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Geometrically nonlinear analysis of thin-walled open-section composite beams

Thuc Phuong Vo∗ and Jaehong Lee†

Department of Architectural Engineering, Sejong University

98 Kunja Dong, Kwangjin Ku, Seoul 143-747, Korea

(Dated: August 26, 2009)

A geometrically nonlinear model for general thin-walled open-section composite beams with ar-

bitrary lay-ups under various types of loadings based on the classical lamination theory is pre-

sented. It accounts for all structural coupling coming from the material anisotropy and geometric

nonlinearity. Nonlinear governing equations are derived and solved by means of an incremental

Newton-Raphson method. The finite element model that accounts for the geometric nonlinearity

in the von Karman sense is developed to solve the problem. Numerical results are obtained for

thin-walled composite Z-beam and I-beam to investigate effects of geometric nonlinearity, fiber

orientation and warping restraint on the flexural-torsional response.

Keywords: Thin-walled composite beams; classical lamination theory; flexural-torsional response; nonlinear theory

I. INTRODUCTION

Fiber-reinforced composite materials have been used over the past few decades in a variety of structures. Compos-

ites have many desirable characteristics, such as high ratio of stiffness and strength to weight, corrosion resistance

and magnetic transparency. Thin-walled composite structures are often very thin and have complicated material

anisotropy. A large number of practical problems of thin-walled composite structures require a geometrically non-

linear formulation, such as the post-buckling behavior, load carrying capacity of structures used in aeronautical,

aerospace as well as in mechanical and civil engineering. However, their structural behavior is very complex due to

coupling effects as well as warping-torsion and therefore, the accurate prediction of geometrically nonlinear response

is one of the fundamental importance in the design of composite structures.

∗Graduate student

†Professor, corresponding author. Tel.:+82-2-3408-3287; fax:+82-2-3408-3331

; Electronic address: jhlee@sejong.ac.kr

*Revised Manuscript (without changes highlighted)



2

The theory of thin-walled open-section members made of isotropic materials was first developed by Vlasov [1] and

Gjelsvik [2]. In the development of a geometrically nonlinear beam element, basically an updated Lagrangian or a total

Lagrangian formulation can be employed. These formulations must be implemented using appropriate displacement

interpolation functions. Bathe and Bolourchi [3] presented two consistent large rotation nonlinear three dimensional

beam formulations: an updated Lagrangian and a total Lagrangian formulation for a 2-node Hermitian interpolation

beam. Although a large number of studies have been performed on the geometrically nonlinear analysis of isotropic

thin-walled structures, it should be noted that only a few deal with nonlinear flexural-torsional behavior of thin-walled

composite beams with arbitrary lay-ups. A literature survey on the subject shows that there appears some works

reported on geometrically nonlinear theory for thin-walled composite beams. The studies of this theory for these

members carried out so far may broadly be divided into two groups. The first and most common approach is based

on an analytical technique, while the other approach requires a two-dimensional finite element analysis to obtain the

cross-section stiffness matrix. Atilgan and Hodges et al. [4-9] pioneered the second approach, which was referred to as

the so-called ”Variational Asymptotic Beam Section Analysis”. Hodges and co-workers (e.g., Cesnik et al. [5], Volovoi

et al.[6], Yu et al. [7-9] further applied the concept introduced by variational asymptotic method to two dimensional

cross-sectional problem and derived closed-form expressions for the cross-sectional stiffness coefficients of thin-walled

beams. In the present investigation, an analytical approach is adopted for the derivation of the cross-sectional stiffness

matrix considering different effects and their coupling to yield a general formulation. Bauld and Tzeng [10] presented

nonlinear model for thin-walled composite beams by extending Gjelsvik’s formulation to the balanced symmetric

laminated composite materials. However, the formulation was somewhat not consistent in the sense that it used

coordinate mapping when developing nonlinear stresses instead of variational formulation. Gupta and Rao [11,12]

developed finite element analysis to study instability of thin-walled open-section laminated composite beams. The

nonlinear expressions for the strains occurring in thin-walled open-section beams under axial, flexural and torsional

loads, were incorporated in a general instability analysis. Bhaskar and Librescu [13,14] developed non-linear theory

of thin-walled composite beams, which were employed in a broad field of engineering problems. In these models,

the transverse shear deformation was taken into account but the warping torsion component was neglected. By

extending model of Bauld and Tzeng [10], Omidvar and Ghorbanpoor [15] derived a nonlinear finite element analysis

for thin-walled open-section composite beams with symmetric stacking sequence based on the updated Lagrangian

formulation. Fraternali and Feo [16] formulated a small strain and moderate rotation theory of laminated composite

thin-walled beams by generalizing the classical Vlasov theory. This beam model accounted for axial, bending, torsion
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and warping deformations and allowed one to predict critical loads and initial post-buckling behavior. Rajasekaran

and Nalinaa [17] presented a detailed treatment of the formulation of static, bucking and vibration analysis of non-

prismatic thin-walled composite spatial members of generic section. The theory was limited to small strains, moderate

deflections and small rotations. Special attention deserved the works of Machado, Cortinez and Piovan [18,19,20] who

introduced a geometrically non-linear theory for thin-walled composite beams for both open and closed cross-sections

and taking into account shear flexibility (bending and warping shear). This non-linear formulation was developed

by using a non-linear displacement field, whose rotations were based on the rule of semi-tangential transformation.

It was used for analyzing the stability of thin-walled composite beam with general cross-section. However, it was

strictly valid for symmetric balanced laminates and especially orthotropic laminates. Cardoso et al. [21] developed a

finite element model for structural analysis of composite laminated thin-walled beam structures, with geometrically

nonlinear behavior, including post-critical behavior and warping deformation.

In this paper, the analytical model developed by the authors [22] is extended to the geometric nonlinearity. Based

on the variational formulation, a geometrically nonlinear model for general thin-walled open-section composite beams

with arbitrary lay-ups under various types of loads is given. This model is based on the classical lamination theory, and

accounts for all the axial-flexural-torsional coupling coming from the material anisotropy and geometric nonlinearity.

The nonlinear governing equations are derived and solved by means of an incremental Newton-Raphson method.

A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von

Kármán sense is developed to solve the problem. Numerical results are obtained for thin-walled composite Z-beam

and I-beam under vertical load to investigate the effects of fiber orientation, warping restraint and load parameter on

the nonlinear flexural-torsional response.

II. KINEMATICS

The theoretical developments presented in this paper require two sets of coordinate systems which are mutually

interrelated. The first coordinate system is the orthogonal Cartesian coordinate system (x, y, z), for which the x and

y axes lie in the plane of the cross section and the z axis parallel to the longitudinal axis of the beam. The second

coordinate system is the local plate coordinate (n, s, z) as shown in Fig.1, wherein the n axis is normal to the middle

surface of a plate element, the s axis is tangent to the middle surface and is directed along the contour line of the

cross section. The (n, s, z) and (x, y, z) coordinate systems are related through an angle of orientation θ. As defined

in Fig.1 a point P , called the pole, is placed at an arbitrary point xp, yp. A line through P parallel to the z axis is
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called the pole axis.

To derive the analytical model for a thin-walled composite beam, the following assumptions are made:

1. The contour of the thin wall does not deform in its own plane.

2. The linear shear strain γ̄sz of the middle surface is zero in each element.

3. The Kirchhoff-Love assumption in classical plate theory remains valid for laminated composite thin-walled

beams.

According to assumption 1, the midsurface displacement components ū, v̄ at a point A in the contour coordinate

system can be expressed in terms of a displacements U, V of the pole P in the x, y directions, respectively, and the

rotation angle Φ about the pole axis,

ū(s, z) = U(z) sin θ(s) − V (z) cos θ(s) − Φ(z)q(s) (1a)

v̄(s, z) = U(z) cos θ(s) + V (z) sin θ(s) + Φ(z)r(s) (1b)

These equations apply to the whole contour. The out-of-plane shell displacement w̄ can now be found from the

assumption 2. For each element of middle surface, the shear strain become

γ̄sz =
∂v̄

∂z
+
∂w̄

∂s
= 0 (2)

After substituting for v̄ from Eq.(1) and considering the following geometric relations,

dx = ds cos θ (3a)

dy = ds sin θ (3b)

Eq.(2) can be integrated with respect to s from the origin to an arbitrary point on the contour,

w̄(s, z) = W (z) − U ′(z)x(s) − V ′(z)y(s) − Φ′(z)ω(s) (4)

where differentiation with respect to the axial coordinate z is denoted by primes (′); W represents the average axial

displacement of the beam in the z direction; x and y are the coordinates of the contour in the (x, y, z) coordinate

system; and ω is the so-called sectorial coordinate or warping function given by

ω(s) =

∫ s

s◦

r(s)ds (5a)
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The displacement components u, v, w representing the deformation of any generic point on the profile section are

given with respect to the midsurface displacements ū, v̄, w̄ by the assumption 3.

u(s, z, n) = ū(s, z) (6a)

v(s, z, n) = v̄(s, z) − n
∂ū(s, z)

∂s
(6b)

w(s, z, n) = w̄(s, z) − n
∂ū(s, z)

∂z
(6c)

The von Kármán type strains, in which only the products of u, v and their derivatives are retained and all other

nonlinear terms are neglected, are considered and given by

ǫz =
∂w

∂z
+

1

2

[

(∂u

∂z

)2

+
(∂v

∂z

)2
]

(7a)

γsz =
∂v

∂z
+
∂w

∂s
(7b)

Eq.(7) can be rewritten as

ǫz = ǭz + nκ̄z + n2χ̄z (8a)

γsz = γ̄sz + nκ̄sz (8b)

where

ǭz =
∂w̄

∂z
+

1

2

[

(∂ū

∂z

)2
+

(∂v̄

∂z

)2
]

(9a)

κ̄z = −
∂2ū

∂z2
−

∂2ū

∂s∂z

∂v̄

∂z
(9b)

κ̄sz = −2
∂2ū

∂s∂z
(9c)

χ̄z =
( ∂2ū

∂s∂z

)2

(9d)

In Eq.(9), ǭz, κ̄z , κ̄sz and χ̄z are midsurface axial strain, biaxial curvature and high order curvature of the shell,

respectively. The above shell strains can be converted to beam strain components by substituting Eqs.(1), (4) and

(6) into Eq.(9) as

ǭz = ǫ◦z + xκy + yκx + ωκω (10a)

κ̄z = κy sin θ − κx cos θ − κωq + χzr (10b)

κ̄sz = κsz (10c)

χ̄z = χz (10d)
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where ǫ◦z, κx, κy, κω, κsz and χz are axial strain, biaxial curvatures in the x and y direction, warping curvature with

respect to the shear center, twisting and high order curvature in the beam, respectively defined as

ǫ◦z = W ′ +
1

2

[

U ′2 + V ′2 + (r2 + q2)Φ′2
]

− xpV
′Φ′ + ypU

′Φ′ (11a)

κx = −V ′′ − U ′Φ′ (11b)

κy = −U ′′ + V ′Φ′ (11c)

κω = −Φ′′ (11d)

κsz = 2Φ′ (11e)

χz =
1

2
Φ′2 (11f)

The resulting strains can be obtained from Eqs.(8) and (10) as

ǫz = ǫ◦z + (x+ n sin θ)κy + (y − n cos θ)κx + (ω − nq)κω + (2rn+ n2)χz (12a)

γsz = nκsz (12b)

III. VARIATIONAL FORMULATION

Total potential energy of the system is calculated by sum of strain energy and work done by external forces

Π = U + V (13)

where U is the strain energy

U =
1

2

∫

v

(σzǫz + σszγsz)dv (14)

The variation of strain energy is calculated by substituting Eq.(12) into Eq.(14)

δU =

∫

v

{

σz

[

δǫ◦z + (x+ n sin θ)δκy + (y − n cos θ)δκx + (ω − nq)δκω + (2rn+ n2)δχz

]

+ σsznδκsz

}

dv

=

∫ l

0

(Nzδǫ
◦
z +Myδκy +Mxδκx +Mωδκω +Mtδκsz +Rzδχz)dz (15)

where Nz,Mx,My,Mω,Mt, Rz are axial force, bending moments in the x and y directions, warping moment (bi-

moment), torsional moment and high order stress resultant with respect to the centroid respectively, defined by
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integrating over the cross-sectional area A as

Nz =

∫

A

σzdsdn (16a)

My =

∫

A

σz(x+ n sin θ)dsdn (16b)

Mx =

∫

A

σz(y − n cos θ)dsdn (16c)

Mω =

∫

A

σz(ω − nq)dsdn (16d)

Mt =

∫

A

σszndsdn (16e)

Rz =

∫

A

σz(2rn+ n2)dsdn (16f)

The variation of the strain energy can be obtained by substituting Eqs.(11) and (12) into Eq.(15)

δU =

∫ l

0

[

NzδW
′ −MyδU

′′ −MxδV
′′ −MωδΦ

′′ + 2MtδΦ
′ +Nz(U

′δU ′ + V ′δV ′)

+ (My − xpNz)(V
′δΦ′ + Φ′δV ′) − (Mx − ypNz)(U

′δΦ′ + Φ′δU ′) + (r2pNz +Rz)Φ
′δΦ′

]

dz (17)

On the other hand, the variation of work done by external forces can be written as

δV = −

∫

v

(pzδw + pnδu+ psδv)dv (18)

where pz, pn, ps are forces acting in z, n and s direction. The above expression can be written with respect to the

shell forces and displacements by using Eq.(6)

δV = −

∫ l

0

∫

s

(p̄zδw̄ + p̄nδn̄+ p̄sδv̄ − m̄z

∂δū

∂z
− m̄s

∂δū

∂s
)dsdz (19)

where p̄z, p̄s, m̄z, m̄s, p̄n are shell forces defined by

(p̄z, m̄z) =

∫

n

pz(1, n)dn (20a)

(p̄s, m̄s) =

∫

n

ps(1, n)dn (20b)

p̄n =

∫

n

pndn (20c)

After substituting Eqs.(1) and (4) into Eq.(19), the variation of the work done by the external forces can be written

with respect to the bar forces

δV = −

∫ l

0

[PzδW + VxδU + MyδU
′ + VyδV + MxδV

′ + T δΦ + MωδΦ
′]dz (21)

where the bar forces are related to the shell forces as

Pz =

∫

s

p̄zds (22a)
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Vy =

∫

s

(p̄s sin θ − p̄n cos θ)ds (22b)

Vx =

∫

s

(p̄s cos θ + p̄n sin θ)ds (22c)

T =

∫

s

(p̄sr − p̄nq + m̄s)ds (22d)

My =

∫

s

(m̄z sin θ − p̄zx)ds (22e)

Mx =

∫

s

(m̄z cos θ − p̄zy)ds (22f)

Mω =

∫

s

(m̄zq − p̄zω)ds (22g)

Using the principle that the variation of the total potential energy is zero, the weak form of the present theory for

thin-walled composite beams are obtained

0 =

∫ l

0

[

NzδW
′ −MyδU

′′ −MxδV
′′ −MωδΦ

′′ + 2MtδΦ
′ +Nz(U

′δU ′ + V ′δV ′)

+ (My − xpNz)(V
′δΦ′ + Φ′δV ′) − (Mx − ypNz)(U

′δΦ′ + Φ′δU ′) + (r2pNz +Rz)Φ
′δΦ′

− PzδW − VxδU −MyδU
′ − VyδV −MxδV

′ − T δΦ −MωδΦ
′
]

dz (23)

IV. CONSTITUTIVE EQUATIONS

The constitutive equations of a kth orthotropic lamina in the laminate co-ordinate system are given by











σz

σsz











k

=







Q̄∗
11 Q̄∗

16

Q̄∗
16 Q̄∗

66







k 









ǫz

γsz











(24)

where Q̄∗
ij are transformed reduced stiffnesses. The transformed reduced stiffnesses can be calculated from the

transformed stiffnesses based on the plane stress (σs = 0) and plane strain (ǫs = 0) assumption. More detailed

explanation can be found in Ref.[23].

The constitutive equations for bar forces and bar strains are obtained by using Eqs.(12), (16) and (24)











































































Nz

My

Mx

Mω

Mt

Rz











































































=







































E11 E12 E13 E14 E15 E16

E22 E23 E24 E25 E26

E33 E34 E35 E36

E44 E45 E46

E55 E56

sym. E66

















































































































ǫ◦z

κy

κx

κω

κsz

χz











































































(25)
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where Eij are laminate stiffnesses of thin-walled composite beams, and can be defined by

E16 =

∫

s

(2B11r +D11)ds (26a)

E26 =

∫

s

[

2B11rx+D11(x+ 2r sin θ) + F11 sin θ
]

ds (26b)

E36 =

∫

s

[

2B11ry +D11(y − 2r cos θ) − F11 cos θ
]

ds (26c)

E46 =

∫

s

[

2B11rω +D11(ω − 2rq) − F11q
]

ds (26d)

E56 =

∫

s

(2D16r − F16)ds (26e)

E66 =

∫

s

(4D11r
2 + 4rF11 +H11)ds (26f)

where Aij , Bij , Dij matrices are extensional, coupling, bending stiffness and Fij , Hij matrices are higher order stiff-

nesses, respectively, defined by

(Aij , Bij , Dij , Fij , Hij) =

∫

Q̄ij(1, n, n
2, n3, n4)dn (27)

Other values of Eij can be found in Ref.[22]. The explicit forms of the laminate stiffnesses Eij for general I-section

are given in the Appendix.

V. GOVERNING EQUATIONS

The nonlinear equilibrium equations of the present study can be obtained by integrating the derivatives of the

varied quantities by parts and collecting the coefficients of δW, δU, δV and δΦ

N ′
z + Pz = 0 (28a)

M ′′
y + [Nz(U

′ + ypΦ
′)]′ − [MxΦ′]′ + Vx −M′

y = 0 (28b)

M ′′
x + [Nz(V

′ − xpΦ
′)]′ + [MyΦ

′]′ + Vy −M′
x = 0 (28c)

M ′′
ω + 2M ′

t + [Nz(r
2

pΦ′ + ypU
′ − xpV

′)]′ + [MyV
′]′ − [MxU

′]′ + [RzΦ
′]′ + T −M′

ω = 0 (28d)
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The natural boundary conditions are of the form

δW : Nz (29a)

δU : M ′
y +Nz(U

′ + ypΦ
′) −MxΦ′ (29b)

δU ′ : My (29c)

δV : M ′
x +Nz(V

′ − xpΦ
′) +MyΦ

′ (29d)

δV ′ : Mx (29e)

δΦ : M ′
ω + 2Mt +Nz(r

2

pΦ′ + ypU
′ − xpV

′) +MyV
′ −MxU

′ +RzΦ
′ (29f)

δΦ′ : Mω (29g)

Eq.(29g) denotes the warping restraint boundary condition. When the warping of the cross section is restrained,

Φ′ = 0 and when the warping is not restrained (free warping), Mω = 0.

By substituting Eqs.(11) and (25) into Eq.(28), the explicit form of the governing equations can be expressed with

respect to the laminate stiffnesses Eij . Eq.(28) is most general form for axial-flexural-torsional behavior of thin-walled

composite beams, and the dependent variables W , U , V and Φ are fully coupled.

VI. FINITE ELEMENT FORMULATION

The present theory for thin-walled composite beams described in the previous section was implemented via a

displacement based finite element method. The generalized displacements are expressed over each element as a com-

bination of the one-dimensional linear Lagrange interpolation function Ψj and Hermite-cubic interpolation function

ψj associated with node j and the nodal values

W =
2

∑

j=1

wjΨj (30a)

U =

4
∑

j=1

ujψj (30b)

V =

4
∑

j=1

vjψj (30c)

Φ =
4

∑

j=1

φjψj (30d)

Substituting these expressions into the weak statement in Eq.(23), the finite element model of a typical element
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can be expressed as

[

K({∆})
]

{∆} = {f} (31)

The nonlinear algebraic equations of present theory can be linearized using Newton−Raphson iterative method.

Solution of Eq.(31) by the Newton−Raphson iteration method results in the following linearized equations for the

incremental solution at the rth iteration (Bathe [24])

[

T ({∆}r−1)
]

{δ∆} = −{R({∆}r−1)} (32)

where the tangent stiffness matrix is calculated using the definition

[

T ({∆}r−1)
]

≡
(∂{R}

∂{∆}

)r−1

(33)

The residual vector vector after the (r − 1)th iteration is given by

{R({∆}r−1)} = [K({∆}r−1)]{∆}r−1 − {f} (34)

The solution at the rth iteration is then given by

{∆}r = {∆}r−1 + {δ∆} (35)

In Eq.(31), {∆} is the unknown nodal displacements

{∆} = {W U V Φ}T (36)

VII. NUMERICAL EXAMPLES

Throughout numerical examples, a tolerance of ǫ = 10−3 and maximum allowable iterations of 20 (per load step) are

used to check for convergence of nodal displacements in the Newton−Raphson iteration scheme. The initial solution

vector is chosen to be the zero vector, so that the first iteration solution corresponds to the linear solution. Plane

stress assumption (σs = 0) is used in the numerical computation. The results of the present analysis are given for

both the linear and nonlinear case.

For verification purpose, a cantilever thin-walled composite Z-beam with geometry and three lay-ups under an

eccentric transverse load of P=4.54N at free end is performed (Fig.2). All computations are carried out with the

following material properties: E1 = 206.8GPa , E2 = 103.4GPa , G12 = 51.7GPa , ν12 = 0.30. The tip rotations

and deflections of present model are given in Table I, along with the analytical results of Gupta and Rao [12] and
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Rajasekaran and Nalinaa [17] and FEAST-C [25]. The proposed model agrees well with previously available results

and can capture exactly all the geometrical nonlinear response of composite beam. In order to investigate the influence

of warping restraint effect on the nonlinear response, Harursampath [26] further analyzed this example by considering

an eccentric transverse load of P=454N. By using two different boundary conditions at free end: restrained warping

and free warping, the study is made with the symmetric [0◦/45◦/0◦] and anti-symmetric [45◦/− 45◦] lay-ups. Tables

II and III show a good agreement between the results of the approach proposed herein and previous results. It should

be noted that there is no difference results between free and restrained warping models, except for the axial and

torsional displacements in Ref.[26]. For restrained warping model, it seems that the nonlinear results in Ref.[26] were

calculated by assuming that the beam is restrained both warping and axially at the free end. Whereas, for free warping

model, this beam is probably supposed free warping at both free ends. As expected, with two lay-ups considered, for

linear analysis, the warping restraint has a stiffening effect. That is, the influence of the warping restraint becomes

immaterial for all displacements, except for the angle of twist. However, it becomes significant and depends on types

of lay-ups for nonlinear analysis. When comparing with free warping model, all the nonlinear displacements decrease

for the symmetric lay-up, whereas they increase for anti-symmetric one.

Next, a cantilever symmetrically laminated symmetric I-beam with length l = 2.5m under a tip vertical load 250N at

the free end is investigated. Following dimensions for I-beam are used: both of flanges width and web height are 50mm.

The flanges and web are made of sixteen layers with each layer 0.13mm in thickness. All computations are carried

out for the glass-epoxy materials with the following material properties: E1 = 53.78GPa , E2 = 17.93GPa , G12 =

8.96GPa , ν12 = 0.25. For comparison, the axial and vertical displacements at the free end by this study and the

results by 600 nine-noded ABAQUS’s shell elements (S9R5) [27] are presented. The accuracy of the predictions from

present model with the ABAQUS’s solutions can be seen in Table IV for all lamination schemes considered.

In order to demonstrate the accuracy, generality and robustness of this study further, the buckling behavior of

simply supported and cantilever composite mono-symmetric I-beam with length l = 4.0m under axial force at the

centroid is performed. Lay-ups and material properties are the same with previous example except the geometry of I-

section. The top and bottom flange widths are 30mm and 50mm, and web height are 50mm, respectively. The critical

buckling loads obtained from present model are compared with those of Lee et al. [28] and Kim et al.[29], which are

based on the linear bifurcation buckling theory and ABAQUS solution. The results of the different methods are found

again to be in a good agreement in Table V. Load versus the lateral displacement of fiber angle θ = 30◦ and 60◦ in the

flanges and web with different values of initial loading imperfections in x-direction (Vx = 0.01N, 0.05N and 0.10N) are
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plotted in Figs. 3 and 4. The load versus lateral displacement curve monotonically increases and approaches a linear

bifurcation buckling load value, which is characteristic of an incipient limit-point response of the beam. This response

is also justified by the fact that the value of the limit-point load decreases with increasing imperfection amplitude.

A pinned-hinged composite I-beam of length L = 8m under an eccentric uniform load q acting at the left of the

top flange is considered in order to investigate the effects of the load parameter and fiber orientation on the nonlinear

flexural-torsional behavior. The geometry and stacking sequence of composite I-beam is shown in Fig.5, and the

following engineering constants are used

E1/E2 = 25, G12/E2 = 0.6, ν12 = 0.25 (37)

For convenience, the following nondimensional values of the lateral, vertical displacement, and load parameter are

used

u =
u

b3
(38a)

v =
v

b3
(38b)

q =
qL4

E2b33t1
(38c)

Stacking sequence of this beam consists of four layers with equal thickness as follows: [θ/− θ]2 at the bottom flange

and unidirectional at the web and top flange, respectively. For this lay-up, the coupling stiffnesses E15, E16 and E35

do not vanish due to unsymmetric stacking sequence of the flanges. Accordingly, this beam sustains two kinds of

couplings from material anisotropy and geometric nonlinearity simultaneously.

As the first example, the stacking sequence at two specific fiber angle θ = 30◦, 90◦ is considered to study the effects

of load parameter on the displacements in the high nonlinear region. It should be noted that for θ = 90◦, all the

coupling stiffness vanish, that is, only geometrical nonlinear effect exists. The load with increment of ∆q = 0.05 is

increased until the first critical point is reached. The solutions of the linear analysis are also presented to highlight

the difference between linear and nonlinear responses with increasing load. Load versus the vertical displacement

and load versus the angle of twist at two fiber angles are shown in Figs.6 and 7. It is evident that the linear theory

is adequate in a relatively large region up to the point where the applied load reaches value of q = 0.5 and 1 for

fiber angle θ = 90◦ and 30◦, respectively. The results by nonlinear analysis are always larger than those of linear

analysis. This is due to the fact that the geometrical nonlinear effect causes flexural-torsional coupling which results

in a decrease in the flexural and torsional stiffness of the beam. The effect of the geometric nonlinearity is apparent

with increasing load intensity. The highest load of fiber angle θ = 90◦ is smaller than that of θ = 30◦. At this load



14

of θ = 90◦, the nonlinear vertical and torsional displacements are about twice of those of linear analysis. It is from

Fig.8 that highlights the influence of geometrical nonlinear effect on the lateral displacement of beam. This response

is never seen in linear analysis because lateral displacement is decoupled with vertical and torsional load. It implies

that the structure under an eccentric transverse load not only causes the transverse displacement and angle of twist

as would be observed in linear case, but also causes an additional response due solely to geometric nonlinearity which

does not occur in linear case.

To investigate the geometrical nonlinear effect further, the same configuration with the previous example except the

load and laminate stacking sequence is considered. A pinned-hinged composite I-beam under a constant applied load

is analyzed while the fiber angle is rotated in the bottom flange. Based on previous numerical example, an applied load

q = 1.25 is chosen to show effect of fiber orientation on the flexural-torsional response. Variation of the lateral, vertical

and torsional displacements with respect to fiber angle change are illustrated in Figs.9 and 10. As expected, no linear

lateral displacement ū is seen for all fiber angles. For fiber angles less than θ = 30◦, the vertical displacement of linear

and nonlinear analysis coincide. Especially, in Fig.10, the angle of twist of two analyzes shows the same tendency

and reaches minimum value between fiber angle θ ∈ [10◦ − 20◦], that is, because the torsional rigidity E55 becomes

maximum value at this range. However, as the fiber orientation is rotated off-axis, geometrical nonlinear effect is

prominent, that is, the discrepancy between the linear and nonlinear analysis becomes significant. The nonlinear

vertical displacement is not as sensitive as the nonlinear lateral and torsional displacements when fiber angle changes.

The difference between these displacements of two analyses is minimum at θ = 0◦ and reaches maximum value at

θ = 90◦. This phenomenon can be explained that the axial, flexural and torsional rigidities decrease significantly with

increasing fiber angle, and thus, the relative geometrical nonlinear effect becomes larger for higher fiber angles.

VIII. CONCLUDING REMARKS

A geometrically nonlinear model is developed to study the flexural-torsional behavior of general thin-walled open-

section composite beams with arbitrary lay-ups under various types of loadings. This model is capable of predicting

accurately nonlinear flexural-torsional response for various configuration including boundary conditions and laminate

orientation of thin-walled composite beams. The nonlinear governing equations are derived from the principle of

the stationary value of total potential energy and solved by means of an incremental Newton−Raphson method.

A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von

Kármán sense is developed to solve the problem. The present model is found to be appropriate and efficient in
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analyzing nonlinear flexural-torsional behavior of thin-walled composite beams.
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APPENDIX

The explicit forms of the laminate stiffnesses Eij for composite I-section in Fig.11 can be defined by

E16 = (−2y2 + 2yp)B
1

11
b1 +D1

11
b1 + (−2y2 + 2yp)B

2

11
b2 +D2

11
b2 + (2x3 − 2xp)B

3

11
b3 +D3

11
b3

+ (2y1 − 2yp)B
4

11
b4 +D4

11
b4 + (2y1 − 2yp)B

5

11
b5 +D5

11
b5 (39a)

E26 =
1

2
((−2y2 + 2yp)B

1

11
+D1

11
)b2

1
+ (−2y2 + 2yp)(−b1 + x3)B

1

11
b1 +D1

11
(−b1 + x3)b1

+
1

2
((−2y2 + 2yp)B

2

11 +D2

11)b
2

2 + (−2y2 + 2yp)x3B
2

11b2 +D2

11x3b2

+ (2x3 − 2xp)x3B
3

11b3 +D3

11(3x3 − 2xp)b3 + F 3

11b3

+
1

2
((−2y1 + 2yp)B

4

11 −D4

11)b
2

4 + (2y1 − 2yp)(b4 + x3)B
4

11b4 +D4

11(b4 + x3)b4

+
1

2
((−2y1 + 2yp)B

5

11
−D5

11
)b2

5
+ (2y1 − 2yp)x3B

5

11
b5 +D5

11
x3b5 (39b)

E36 = (−2y2 + 2yp)y2B
1

11
b1 +D1

11
(3y2 − 2yp)b1 − F 1

11
b1

+ (−2y2 + 2yp)y2B
2

11
b2 +D2

11
(3y2 − 2yp)b2 − F 2

11
b2

+
1

2
((2x3 − 2xp)B

3

11
+D3

11
)b2

3
+ (2x3 − 2xp)y2B

3

11
b3 +D3

11
y2b3

+ (2y1 − 2yp)y1B
4

11b4 +D4
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11b4
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E46 =
1

2
((−2y2 + 2yp)(−y2 + yp)B

1

11 +D1

11(y2 − yp) − F 1

11)b
2

1 − (−2y2 + 2yp)CB
1

11b1
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11
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2
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11
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b2
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+
1

2
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11)b
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Other values of Eij can be found in Ref.[22].
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CAPTIONS OF TABLES

Table I: The tip rotations and deflections of a cantilever Z-beam under an eccentric transverse load P=4.45N.

Table II: The tip rotations and deflections of a cantilever [0◦/45◦/0◦] Z-beam under an eccentric transverse load

P=445N.

Table III: The tip rotations and deflections of a cantilever [45◦/− 45◦] Z-beam under an eccentric transverse load

P=445N.

Table IV: The tip axial and vertical displacements of a cantilever composite I-beam with symmetric angle-ply

laminates [±θ]4s in the flanges and web under a vertical load P= 250N at free end.

Table V: Critical bucking loads (N) of a simply supported and cantilever composite mono-symmetric I-beam with

symmetric angle-ply laminates [±θ]4s in the flanges and web.
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CAPTIONS OF FIGURES

Figure 1: Definition of coordinates and generalized displacements in thin-walled open-sections.

Figure 2: A cantilever composite Z-beam under an eccentric transverse load and three stacking sequences.

Figure 3: Load versus the lateral displacement at mid-span of a simply supported composite mono-symmetric

I-beam under different values of initial loading imperfections with the fiber angle 30◦ and 60◦ in the flanges and web.

Figure 4: Load versus the lateral displacement at free end of a cantilever composite mono-symmetric I-beam under

different values of initial loading imperfections with the fiber angle 30◦ and 60◦ in the flanges and web.

Figure 5: A pinned-hinged composite I-beam under an eccentric uniform load.

Figure 6: Load versus the vertical displacement at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with the fiber angle 30◦ and 90◦ in the bottom flange.

Figure 7: Load versus the angle of twist at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with the fiber angle 30◦ and 90◦ in the bottom flange.

Figure 8: Load versus the lateral displacement at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with the fiber angle 30◦ and 90◦ in the bottom flange.

Figure 9: Variation of the vertical and lateral displacements at mid-span of a pinned-hinged composite I-beam

under an eccentric uniform load with respect to fiber angle change in the bottom flange.

Figure 10: Variation of the angle of twist at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with respect to fiber angle change in the bottom flange.

Figure 11: Geometry of thin-walled composite I-beam.
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TABLE I The tip rotations and deflections of a cantilever Z-beam under an eccentric transverse load P=4.45N.

Lay-ups Formulation W (mm) U (mm) V (mm) V’(10−5 rad) Φ(10−5 rad)

Ref.[12] 0.0000 0.0215 0.0144 4.260 56.600

[0◦] Ref.[17] 0.0003 0.0230 0.0147 4.350 56.900

Ref.[25] 0.0002 0.0216 0.0156 4.540 56.700

Present 0.0000 0.0230 0.0154 4.547 57.653

Ref.[12] 0.0000 0.0209 0.0312 6.190 56.400

[45◦/ − 45◦] Ref.[17] 0.0005 0.0214 0.0303 6.320 54.800

Ref.[25] 0.0004 0.0236 0.0341 8.120 58.200

Present 0.0001 0.0235 0.0351 6.950 60.166

Ref.[12] 0.0000 0.0161 0.0239 4.750 58.400

[0◦/45◦/0◦] Ref.[17] 0.0004 0.0164 0.0227 4.850 58.800

Ref.[25] 0.0002 0.0177 0.0247 5.440 57.790

Present 0.0000 0.0174 0.0260 5.136 59.833
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TABLE II The tip rotations and deflections of a cantilever [0◦/45◦/0◦] Z-beam under an eccentric transverse load P=445N.

Rotations/ Restrained Warping Free Warping

Deflections Present Ref.[26] Present Ref.[26]

Linear Nonlinear Linear-Nonlinear Linear Nonlinear Linear Nonlinear

W (mm) 0.0000 -0.0129 0.0000 0.0000 -0.0152 0.0000 0.0530

U (mm) -2.5952 -2.6690 -2.6380 -2.5950 -2.7162 -2.6380 -2.6380

U’(10−3 rad) -7.6626 -7.8039 -7.7910 -7.6606 -7.8403 -7.7910 -7.7910

V (mm) 1.7378 1.8141 1.7590 1.7377 1.8654 1.7590 1.7590

V’(10−3 rad) 5.1312 5.4078 5.1940 5.1305 5.6945 5.1940 5.1940

Φ(rad) 0.0308 0.0324 0.0309 0.0598 0.0631 0.2796 0.3166
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TABLE III The tip rotations and deflections of a cantilever [45◦/ − 45◦] Z-beam under an eccentric transverse load P=445N.

Rotations/ Restrained Warping Free Warping

Deflections Present Ref.[26] Present Ref.[26]

Linear Nonlinear Linear-Nonlinear Linear Nonlinear Linear Nonlinear

W (mm) 0.0078 -0.0127 0.0000 0.0133 -0.0069 0.0922 -0.0178

U (mm) -3.5173 -3.3467 -3.5580 -3.5173 -3.1442 -3.5580 -3.5580

U’(10−3 rad) -10.3860 -9.7883 -10.5100 -10.3860 -8.9969 -10.5100 -10.5100

V (mm) 2.3540 2.3392 2.3720 2.3540 2.2718 2.3720 2.3720

V’(10−3 rad) 6.9508 6.9795 7.0030 6.9508 6.8550 7.0030 7.0030

Φ(rad) 0.0352 0.0348 0.0349 0.0602 0.0580 0.4183 0.4861



24

TABLE IV The tip axial and vertical displacements of a cantilever composite I-beam with symmetric angle-ply laminates

[±θ]4s in the flanges and web under a vertical load P= 250N at free end.

Lay-ups Formulation W (cm) V (cm)

[0]16 ABAQUS -0.6124 15.9760

Present -0.6075 15.9113

[15/ − 15]4s ABAQUS -0.7474 17.6434

Present -0.7432 17.6002

[30/ − 30]4s ABAQUS -1.3416 23.6133

Present -1.3404 23.6384

[45/ − 45]4s ABAQUS -2.7501 33.7463

Present -2.7600 33.9294

[60/ − 60]4s ABAQUS -4.3164 42.2037

Present -4.3443 42.5798

[75/ − 75]4s ABAQUS -5.0482 45.6077

Present -5.0838 46.0678

[90/ − 90]4s ABAQUS -5.1983 46.2755

Present -5.2341 46.7453

[0/90]4s ABAQUS -1.3488 23.6829

Present -1.3569 23.7830
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TABLE V Critical bucking loads (N) of a simply supported and cantilever composite mono-symmetric I-beam with symmetric

angle-ply laminates [±θ]4s in the flanges and web.

Lay-ups Simply supported beam Cantilever beam

Lee et al. [28] Kim et al. [29] Present Lee et al. [28] Present

ABAQUS Theory

[0]16 842.28 837.40 842.30 841.00 216.76 216.50

[15/ − 15]4s 768.03 766.80 768.30 767.00 196.25 196.00

[30/ − 30]4s 577.11 577.30 577.80 576.00 146.15 146.00

[45/ − 45]4s 401.65 402.40 402.50 401.00 101.31 101.25

[60/ − 60]4s 318.08 318.80 318.80 318.00 80.18 80.00

[75/ − 75]4s 292.77 293.10 293.10 292.00 73.85 73.75

[90/ − 90]4s 288.15 288.00 72.72 72.50

[0/90]4s 568.95 571.10 571.90 568.00 144.99 144.75
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FIG. 1 Definition of coordinates and generalized displacements in thin-walled open-sections.
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FIG. 2 A cantilever composite Z-beam under an eccentric transverse load and three stacking sequences.
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FIG. 3 Load versus the lateral displacement at mid-span of a simply supported composite mono-symmetric I-beam under

different values of initial loading imperfections with the fiber angle 30◦ and 60◦ in the flanges and web.
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FIG. 4 Load versus the lateral displacement at free end of a cantilever composite mono-symmetric I-beam under different

values of initial loading imperfections with the fiber angle 30◦ and 60◦ in the flanges and web.



30

FIG. 5 A pinned-hinged composite I-beam under an eccentric uniform load.
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FIG. 6 Load versus the vertical displacement at mid-span of a pinned-hinged composite I-beam under an eccentric uniform

load with the fiber angle 30◦ and 90◦ in the bottom flange.
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FIG. 7 Load versus the angle of twist at mid-span of a pinned-hinged composite I-beam under an eccentric uniform load with

the fiber angle 30◦ and 90◦ in the bottom flange.
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FIG. 8 Load versus the lateral displacement at mid-span of a pinned-hinged composite I-beam under an eccentric uniform load

with the fiber angle 30◦ and 90◦ in the bottom flange.
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FIG. 9 Variation of the vertical and lateral displacements at mid-span of a pinned-hinged composite I-beam under an eccentric

uniform load with respect to fiber angle change in the bottom flange.
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FIG. 10 Variation of the angle of twist at mid-span of a pinned-hinged composite I-beam under an eccentric uniform load with

respect to fiber angle change in the bottom flange.



36

FIG. 11 Geometry of thin-walled composite I-beam.


