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Abstract Where spatial gradients in the amplitude of an Alfvén wave are non-zero, a non-
linear magnetic-pressure gradient acts upon the medium (commonly referred to as the pon-
deromotive force). We investigate the nature of such a force in inhomogeneous 2.5D MHD
plasmas by analysing source terms in the nonlinear wave equations for the general case
of inhomogeneous B and ρ, and consider supporting nonlinear numerical simulations. Our
equations indicate that there are two distinct classes of ponderomotive effect induced by
Alfvén waves in general 2.5D MHD, each with both a longitudinal and transverse mani-
festation. i) Geometric effects: Gradients in the pulse geometry relative to the background
magnetic field cause the wave to sustain cospatial disturbances, the longitudinal and trans-
verse daughter disturbances – where we report on the transverse disturbance for the first
time. ii) ∇(cA) effects: Where a pulse propagates through an inhomogeneous region (where
the gradients in the Alfvén-speed profile cA are non-zero), the nonlinear magnetic-pressure
gradient acts to accelerate the plasma. Transverse gradients (phase mixing regions) excite in-
dependently propagating fast magnetoacoustic waves (generalising the result of Nakariakov,
Roberts, and Murawski (Solar Phys. 175, 93, 1997)) and longitudinal gradients (longitudi-
nally dispersive regions) perturb along the field (thus creating static disturbances in β = 0,
and slow waves in β �= 0). We additionally demonstrate that mode conversion due the non-
linear Lorentz force is a one-way process, and does not act as a mechanism to nonlinearly
generate Alfvén waves due to propagating magnetoacoustic waves. We conclude that these
ponderomotive effects are induced by an Alfvén wave propagating in any MHD medium,
and have the potential to have significant consequences on the dynamics of energy transport
and aspects of dissipation provided the system is sufficiently nonlinear and inhomogeneous.
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1. Introduction

Due to the abundance of observational data confirming the existence and ubiquity of MHD
wave motions in coronal plasma, it is clear that a well-developed theory of MHD wave
propagation is required for understanding many dynamic processes ongoing in the coronal
plasma (see reviews by, e.g., De Moortel, 2005; Nakariakov and Verwichte, 2005; Ruderman
and Erdélyi, 2009; Goossens et al., 2011; De Moortel and Nakariakov, 2012). The magnetic
topology of the corona supports a wide variety of features, and as such can be highly inho-
mogeneous. Since the behaviour of MHD waves is determined by the medium in which they
propagate, an understanding of wave propagation in inhomogeneous media is essential.

One important consequence of considering propagation in an inhomogeneous medium is
the concept of phase mixing. Simply, as a pulse or wave train propagates through the inho-
mogeneous medium, oscillations on neighbouring field lines become out of phase as local
Alfvén speeds on each field line differ. This process naturally creates transverse gradients in
the wave across the background magnetic field, and acts as a (linear) dissipative mechanism
of Alfvén wave energy, and hence is often considered as a potential mechanism of coronal
heating (see, e.g., Heyvaerts and Priest, 1983; Browning, 1991; Narain and Ulmschneider,
1990, 1996). Typically, such studies have considered an inhomogeneity in density (to per-
mit a unidirectional field, which makes mathematics more tractable), however, as this paper
will re-enforce, the process of phase mixing is strictly dependent on a non-uniform back-
ground Alfvén speed, i.e. is dependent on both density and magnetic field profiles, and is
not restricted to cases of density inhomogeneity only.

There is a secondary consequence of these non-zero spatial gradients in the amplitude of
a propagating MHD wave: nonlinear magnetic-pressure gradients and nonlinear magnetic
tension (i.e. the nonlinear Lorentz force) act upon the plasma. In the MHD context, these
forces are often referred to as the ponderomotive force. Generally, a ponderomotive force is
defined as a basic nonlinear force consisting of spatial gradients in a wave-field which has a
non-vanishing effect when averaged over the period, however, we note that the term has been
used to refer to other forces (see Allan, Poulter, and Manuel (1991) and Verwichte (1999)
for discussions of the term’s historical usage). The concept exists in areas of plasma physics
other than MHD waves, in particular in the study of laser-plasma interaction where the force
causes, including self-focusing (e.g. Chen, 1984) and channel formation (e.g. Boyd and
Sanderson, 2003). The ponderomotive force in the MHD waves context (i.e. the nonlinear
Lorentz force arising in fluid equations of motion) has been formally discussed by Dewar
(1970) and Webb et al. (2005). For a thorough discussion of the ponderomotive force in
various contexts, and a demonstration of the equivalence of particle-orbit ponderomotive
force, see Allan, Poulter, and Manuel (1991), Section 3, and Appendix A.

In our case (propagating MHD waves in inhomogeneous media), the effects of such a
force are primarily of interest in that they have the potential to facilitate nonlinear mode con-
version, the result of which has consequences on energy transport and dissipation. In many
previous studies of ponderomotive effects (e.g., in almost all of the forthcoming references),
because such studies are concerned with phenomena due to propagating Alfvén waves, the
authors use the term ponderomotive force to refer specifically to the nonlinear magnetic
pressure force (as Alfvén waves do not act on the medium via nonlinear magnetic tension,
e.g. as shown in Section 3). However, as reported in Thurgood and McLaughlin (2012), prop-
agating magnetoacoustic waves have a similar action on the medium, but in their case due
to both nonlinear magnetic tension and nonlinear magnetic pressure. To avoid ambiguity,
henceforth when referring to the force responsible for the investigated phenomena we avoid
the term ‘ponderomotive force’ in favour of the more specific ‘nonlinear magnetic-pressure
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gradient’ or ‘nonlinear magnetic tension’ as appropriate. We use the term ‘ponderomotive
effect’ to refer to the wider family of phenomena caused by the nonlinear Lorentz force of
propagating MHD waves, and in this paper we primarily consider the specific set of pon-
deromotive effects induced by propagating Alfvén waves. Outside of the coronal plasma
context, ponderomotive effects of MHD waves have been investigated in magnetospheric
physics (e.g. Rankin et al., 1994; Tikhonchuck et al., 1995; Allan and Manuel, 1996) and as
an acceleration mechanism in the solar wind (e.g. Stark, Musielak, and Suess, 1995). Within
the context of coronal plasmas, ponderomotive effects where considered initially by Holl-
weg (1971) and later by Nakariakov et al. (1997), Verwichte (1999) and Verwichte et al.
(1999), the last three of which are key references in this paper.

Verwichte (1999) and Verwichte et al. (1999) considered the nonlinear evolution of
an Alfvén wave in a homogeneous 1.5D model. They found that the nonlinear magnetic-
pressure gradient was responsible for two features of the resultant wave behaviour. Firstly,
they found that the propagating Alfvén wave sustains a disturbance which is longitudinal to
the background magnetic field, and caused no net perturbation to the plasma (since the aver-
age nonlinear magnetic pressure over the wave period was zero). They dubbed this feature a
ponderomotive wing. Secondly, they found that the interaction between two crossing Alfvén
waves gives rise to a non-zero net perturbation of plasma density. Hence, in warm plasmas,
this cross-ponderomotive effect was identified as a potential mode conversion mechanism,
as would certain combinations of pulse geometry and background inhomogeneity leading to
non-zero longitudinal perturbations as the pulse propagates.

Nakariakov et al. (1997) considered the nonlinear excitation of the fast wave by a prop-
agating Alfvén wave which undergoes phase mixing in a unidirectional field structured by
a background density profile (hence, an inhomogeneous background Alfvén speed). They
derive governing wave equations, then evaluate them at an initial instant where only a pure,
linear Alfvén wave is perturbing the system to find that the nonlinear fast wave equation
contains a source term dependent on transverse gradients in the Alfvén wave amplitude,
hence showing that nonlinear mode conversion is permitted in their scenario. This is then
demonstrated in a numerical simulation, where an initial condition perturbs the medium to
generate an Alfvén pulse with a profile ∝ sech2(y) (where B̂ = ŷ). The pulse subsequently
generates fast magnetoacoustic waves as the simulation evolves. They conclude that Alfvén
waves not only heat directly via the phase mixing dissipation method as per Heyvaerts and
Priest (1983) but also indirectly through nonlinear coupling to the fast wave, which is itself
dissipative.

Botha et al. (2000) extended this work and found that the efficiency of the mode conver-
sion is determined by the frequency and amplitude of the Alfvén wave, and by the gradient
in the background Alfvén speed. Their work showed that the fast wave component eventu-
ally reached saturation, and concluded that (if the Alfvén wave amplitude is high enough)
the nonlinear mode conversion can be a significant sink of Alfvén wave energy that other-
wise would contribute to the linear phase mixing damping mechanisms as per Heyvaerts and
Priest (1983). McLaughlin, De Moortel, and Hood (2011) further extended the work into the
visco-resistive case, where they found that the equilibrium density profile (and hence the lo-
cation of heating) is significantly modified by the visco-resistivity and the ponderomotive
effects (i.e. drifting of the heating layer can occur).

In this paper, we focus on the possibility of the nonlinear Lorentz force as an agent for
mode conversion in the general 2.5D MHD scenario, and also consider how ponderomotive
effects identified in 1.5D models carry over. To do so, we first extend the source term anal-
ysis of Nakariakov et al. (1997) to a MHD scenario which may be inhomogeneous in both
magnetic induction and density (i.e. the background Alfvén speed is inhomogeneous). Then,
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we emulate the numerical experiment of Nakariakov et al. (1997) in light of our extended
analysis to discuss previously unreported ponderomotive effects.

Thus, the paper is presented as follows: in Section 2 we derive wave equations for a
general 2.5D cold plasma, to determine the set of nonlinear interactions permitted between
the MHD wave modes. In Section 3, we analyse nonlinear source terms forced by general
Alfvén waves, and further consider the case for harmonic Alfvén waves in Sections 3.1
and 3.2. In Section 4 we present results of the numerical experiment. Finally, we interpret
our results and draw conclusions in Section 5.

2. MHD Wave Equations in a General, 2.5D β = 0 Medium

We first determine the role nonlinear terms of the MHD equations play in facilitating mode
coupling in an ideal, 2.5D, β = 0 plasma permeated by a general, potential, magnetic field,
which we take as B0 = [Bx,By,0] such that ∇ × B0 = 0, with a background density ρ0 =
ρ0(x, y). We set ∂/∂z = 0 throughout, i.e. take ẑ as the invariant direction. The governing,
ideal, β = 0 nonlinear MHD equations are

ρ

[
∂v
∂t

+ (v · ∇)v
]

=
(∇ × B

μ

)
× B,

∂B
∂t

= ∇ × (v × B), (1)

∂ρ

∂t
= −∇ · (ρv),

where the standard MHD notation applies. Initially, the medium is flow-free (v0 = 0), and
is perturbed by finite amplitude perturbations of the form B = B0 + b(x, y, z, t), ρ = ρ0 +
ρ1(x, y, z, t), v = 0 + v1(x, y, z, t). This yields

∂v1

∂t
− 1

μρ0
(∇ × b) × B0 = 1

μρ0
(∇ × b) × b − ρ1

ρ0

∂v1

∂t
−

(
1 + ρ1

ρ0

)
(v1 · ∇)v1,

∂b
∂t

− ∇ × (v1 × B0) = ∇ × (v1 × b),

∂ρ1

∂t
+ ∇ · (ρ0v1) = −∇ · (ρ1v1),

(2)

where the left-hand-side/right-hand-side governs the linear/nonlinear behaviour, respec-
tively.

We now decompose into xyz-components such that v1 = (vx, vy, vz) and b = (bx, by, bz),
giving

∂vx

∂t
+ By

μρ0

(
∂by

∂x
− ∂bx

∂y

)
= N1,

∂vy

∂t
− Bx

μρ0

(
∂by

∂x
− ∂bx

∂y

)
= N2,

∂vz

∂t
− 1

μρ0

(
Bx

∂

∂x
+ By

∂

∂y

)
bz = N3,

∂bx

∂t
− ∂

∂y
(vxBy − vyBx) = N4, (3)
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∂by

∂t
+ ∂

∂x
(vxBy − vyBx) = N5,

∂bz

∂t
−

(
Bx

∂

∂x
+ By

∂

∂y

)
vz = N6,

∂ρ1

∂t
+ ∂

∂x
(ρ0vx) + ∂

∂y
(ρ0vy) = N7,

where the nonlinear components N1, . . . ,N7 are

N1 = 1

μρ0

[(
by

∂bx

∂y

)
−

(
by

∂by

∂x
+ bz

∂bz

∂x

)]

− ρ1

ρ0

∂vx

∂t
−

(
1 + ρ1

ρ0

)(
vx

∂

∂x
+ vy

∂

∂y

)
vx,

N2 = 1

μρ0

[(
bx

∂by

∂x

)
−

(
bx

∂bx

∂y
+ bz

∂bz

∂y

)]

− ρ1

ρ0

∂vy

∂t
−

(
1 + ρ1

ρ0

)(
vx

∂

∂x
+ vy

∂

∂y

)
vy,

N3 = 1

μρ0

(
bx

∂

∂x
+ by

∂

∂y

)
bz

− ρ1

ρ0

∂vz

∂t
−

(
1 + ρ1

ρ0

)(
vx

∂

∂x
+ vy

∂

∂y

)
vz,

N4 = ∂

∂y
(vxby − vybx),

N5 = − ∂

∂x
(vxby − vybx),

N6 = ∂

∂x
(vzbx − vxbz) − ∂

∂y
(vybz − vzby),

N7 = −ρ1

(
∂vx

∂x
+ ∂vy

∂y

)
−

(
vx

∂

∂x
+ vy

∂

∂y

)
ρ1.

Note that the nonlinear Lorentz force in the momentum equation has been considered in the
alternative tension-pressure form

(∇ × b) × b = (b · ∇)b − 1

2
∇(b · b)

so that the contributions of the different aspects may be compared. Here, (b · ∇)b is the
nonlinear magnetic tension and ∇(b · b)/2 is the nonlinear magnetic-pressure gradient.

We now seek wave equations governing the evolution of the permitted wave modes. To do
so, we differentiate the momentum equation terms to link the system of equations. We then
find the velocity components corresponding to the fast, slow (absent in β = 0) and Alfvén
wave by using the coordinate system of Thurgood and McLaughlin (2012). They use this
system to not only derive governing wave equations, but to allow the formation of initial con-
ditions that correspond to pure, distinct wave modes and to decompose propagating waves
into constituent modes (we utilise this approach in our simulations in Section 3). In our 2.5D,
Cartesian analysis the velocity components are thus v⊥ = v1 · (ẑ × B0) = −Byvx + Bxvy

(fast), vz (Alfvén), and v‖ = v1 · B0 = Bxvx + Byvy (longitudinal perturbations, where the
slow mode is absent in β = 0). Hence, the governing equations are
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[
∂2

∂t2
− c2

A

(
∂2

∂x2
+ ∂2

∂y2

)]
v⊥ = Bx

∂N2

∂t
− By

∂N1

∂t
+ c2

A

(
∂N5

∂x
− ∂N4

∂y

)
, (4)

[
∂2

∂t2
− 1

μρ0

(
Bx

∂

∂x
+ By

∂

∂y

)2]
vz = ∂N3

∂t
+ 1

μρ0

(
Bx

∂

∂x
+ By

∂

∂y

)
N6, (5)

∂2v‖
∂t2

= Bx

∂N1

∂t
+ By

∂N2

∂t
, (6)

where cA =
√

B2
0/μρ0 is the background/equilibrium Alfvén speed that varies in the xy

plane, such that cA = cA(x, y). Note that by setting the nonlinear terms of Equations (4) – (6)
to be zero (i.e. the right-hand-side) we revert to the linear regime, and can see that the linear,
β = 0 fast waves and Alfvén waves are completely decoupled, and there are no disturbances
along the magnetic field.

3. Source Term Analysis

We now consider conditions on the fluid variables that correspond to a pure, linear Alfvén
wave (as per Alfvén, 1942), i.e. waves driven only by magnetic tension) at an early time
when other modes are taken to be absent (i.e. coupling has not yet occurred) to determine
which terms of Equations (4) – (6) will act as sources of other modes of oscillation in the
general MHD case (i.e. terms that contribute to the acceleration of velocity components that
are initially zero in the absence of the corresponding wave mode), i.e. we perform a source
term analysis.

To do so, we take vz �= 0 and bz �= 0 with vx = vy = bx = by = ρ1 = 0 (and so v⊥ =
v‖ = 0), as perturbations in the ẑ-direction correspond linearly to a pure Alfvén wave (and
the linear Alfvén wave does not perturb mass density). Note that this sets Ni = 0 for i =
3, . . . ,7, and simplifies N1 and N2. The wave equations (Equations (4) – (6)) become

∂2v⊥
∂t2

= 1

μρ0

∂

∂t

[
bz

(
By

∂

∂x
− Bx

∂

∂y

)
bz

]
, (7)

[
∂2

∂t2
− 1

μρ0

(
Bx

∂

∂x
+ By

∂

∂y

)2]
vz = 0, (8)

∂2v‖
∂t2

= − 1

μρ0

∂

∂t

[
bz

(
Bx

∂

∂x
+ By

∂

∂y

)
bz

]
(9)

again, the right-hand-side contains the nonlinear terms.
Here, we see that there is a source term associated with v⊥, thus in this case it is possible

that ∂2v⊥/∂t2 �= 0. Inspection reveals that Equation (7) can be rewritten as:

∂2v⊥
∂t2

= − 1

μρ0

∂

∂t

[
ẑ × B0 · ∇

(
b2

z

2

)]
. (10)

Hence, the Alfvén wave can cause a nonlinear magnetic-pressure gradient to arise which in
turn causes the excitation of fast magnetoacoustic waves, where gradients transverse to B0

are responsible. Note that the term ẑ×B0 ·∇ is the gradient in the direction across field lines.
This concurs with the analysis of Nakariakov et al. (1997), which considered nonlinear ef-
fects in a unidirectional field and found coupling terms associated with transverse gradients
(note that if we specifically consider Equations (4) and (5) for such a scenario, we recover



Ponderomotive Effects Induced by Alfvén Waves in 2.5D MHD

their wave equations, see Appendix A.) Hence, the Alfvén wave exerts a transverse, non-
linear magnetic-pressure gradient in any situation in which it assumes non-zero gradients
across the magnetic field. However, as highlighted by Verwichte (1999) the net perturbation
will only be non-zero if the ponderomotive force averaged over a wave-period is non-zero.

Similarly, we find that the Alfvén wave can cause a nonlinear pressure gradient to arise
which causes longitudinal perturbations to the equilibrium field. By rewriting Equation (9)
as

∂2v‖
∂t2

= − 1

μρ0

∂

∂t

[
B0 · ∇

(
b2

z

2

)]
(11)

we see that this is due to longitudinal gradients in the Alfvén wave amplitude, i.e. this is the
longitudinal effect of nonlinear magnetic pressure.

We note that Equations (10) and (11) can be integrated with respect to time (see Ap-
pendix C) to yield

∂v⊥
∂t

= − ẑ × B0

μρ0
· ∇

(
b2

z

2

)
= − 1

μρ0
∇⊥

(
b2

z

2

)
, (12)

∂v‖
∂t

= − B0

μρ0
· ∇

(
b2

z

2

)
= − 1

μρ0
∇‖

(
b2

z

2

)
, (13)

i.e., a familiar force equation (‘F = ma’) dependent on the square of the amplitude of the
Alfvén wave field, conforming to the general definition of a ‘ponderomotive force’ discussed
in Section 1. Here, we have adopted the notation ∇⊥ ≡ ẑ × B0 · ∇ and ∇‖ ≡ B0 · ∇ – these
terms are the gradients transverse and longitudinal relative to the equilibrium magnetic field
in the xy-plane.

One can also perform a source term analysis for fluid variables corresponding to an ini-
tially pure fast wave. Doing so, we find that the ponderomotive effects of the propagating
fast wave do not facilitate coupling to the Alfvén mode, the fast wave does not interact with
the Alfvén wave on any level, linear or nonlinear in a medium with an invariant direction
(see Appendix B). Hence, we further can conclude that ponderomotive conversion in β = 0
is a one-way process from the Alfvén to the fast magnetoacoustic mode.

3.1. Harmonic Alfvén Wave

To further investigate the nature of ponderomotive coupling, we reconsider the source terms
of the fast wave and longitudinal equations when forced by a harmonic linear Alfvén wave
of form

vz = A cos θ = �(
Aeiθ

)
, θ = ωt − k · r, bz = S(x, y)vz,

where S(x, y) is a spatial scaling term between velocity and magnetic field perturbations that
is associated with the background Alfvén speed (for a linear Alfvén wave, b = ±√

μρ0v).
If we consider that linear Alfvén waves propagate along magnetic field lines only, then the
direction of the wavevector must be k̂ = B̂0. We also can derive a dispersion relationship
from Equation (8) (linear terms only) that links frequency, wave number and Alfvén speed:
c2

A = ω2/k2. Thus, we can consider the wavevector to be k = kk̂ = kB̂0 = ωB̂0/cA, hence
the function θ = ω(t − B̂0 · r/cA). Inserting the harmonic form of such a wave, the source
terms driving the fast and longitudinal modes (Equations (7) and (9)) become

∂2v⊥
∂t2

= A2S2

μρ0

ω2

c2
A

[
(B̂0 · r)∇⊥(cA) − cA∇⊥(B̂0 · r)

]
cos 2θ, (14)
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∂2v‖
∂t2

= A2S2

μρ0

ω2

c2
A

[
(B̂0 · r)∇‖(cA) − cA∇‖(B̂0 · r)

]
cos 2θ. (15)

Hence, Equations (14) and (15) govern the transverse and longitudinal perturbations forced
via the action of a harmonic Alfvén wave.

The forced motion is driven at double the frequency (cos 2θ ) and is of order O(A2),
i.e. key features of the ponderomotive effect previously reported in the literature (see e.g.,
Nakariakov, Roberts, and Murawski, 1997; Botha et al., 2000; McLaughlin, De Moortel,
and Hood, 2011). We find that perturbations to v⊥ and v‖ are dependent on two distinct
classes of terms, one associated with gradients in the Alfvén-speed profile and the other
with gradients in the geometry of the propagating pulse relative to the equilibrium magnetic
field.

3.2. Instantaneous, Geometric Terms: ∇⊥(B̂0 · r) and ∇‖(B̂0 · r)

It is known in 1.5D homogeneous MHD, for an Alfvén pulse propagating along a field line,
that due to gradients in the wave intensity (i.e. ponderomotive effect) the leading flank acts
to longitudinally accelerate the plasma and the rear flank acts to longitudinally decelerate
the plasma, thus sustaining a cospatial, instantaneous perturbation that is transported along
the magnetic field which, depending on the specific pulse geometry, may or may not cause a
non-zero (net) longitudinal perturbation as it passes through the medium (i.e. the ‘pondero-
motive wings’ of Verwichte, Nakariakov, and Longbottom, 1999). Regardless of whether a
net perturbation to the plasma occurs, this longitudinal daughter disturbance is continually
sustained by the propagating Alfvén wave and always remains cospatial to its progenitor
(viz. the daughter occupies the same spatial region as the Alfvén wave). If we impose con-
ditions equivalent to 1.5D homogeneous MHD (i.e. Equations (14) and (15) where ∇⊥ = 0
and ∇‖(cA) = 0) only one driving term remains,

∂2v‖
∂t2

∼ ∇‖(B̂0 · r),

i.e. this term governs the longitudinal daughter disturbance.
Our equations indicate that, if we extend our consideration to the homogeneous 2.5D

case (i.e. allow non-zero transverse gradients), a transverse equivalent to Verwichte’s pon-
deromotive wings, a transverse daughter disturbance, can exist when there are transverse
gradients in the pulse profile across the equilibrium magnetic field, i.e.:

∂2v⊥
∂t2

∼ ∇⊥(B̂0 · r).

Such a profile, in homogeneous MHD, is imposed as an initial condition and would be main-
tained throughout, however, in inhomogeneous MHD a profile with transverse gradients can
develops naturally via phase mixing, i.e. where the pulse enters a region with a transverse
Alfvén-speed profile, thus assuming a pulse geometry with transverse gradients. We stress
that such a transverse inhomogeneity of the Alfvén-speed profile (i.e. a phase mixing region)
can be dependent on variable B0 and ρ0, and is not just upon a density inhomogeneity in a
unidirectional field.

3.3. Inhomogeneity Terms: ∇⊥(cA) and ∇‖(cA)

Now permitting ∇(cA) �= 0 and considering 2.5D inhomogeneous MHD, our equations show
the ponderomotive effects not only depend upon the instantaneous magnetic pressure pertur-
bations of assumed pulse geometry discussed previously, but also upon magnetic pressure
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Figure 1 The Alfvén-speed
profile cA (red dashed line) and
the density profile ρ0 (blue solid
line). There is steep, continuous,
transverse gradient in Alfvén
speeds (a phase mixing region) in
the region −1 < x < 1.

perturbations as the pulse geometry is altered from instant to instant (i.e. the full set of
Equations (14) and (15)). This term is thus the ponderomotive effect due to Alfvén-speed
profile inhomogeneities, where its transverse manifestation (which can be thought of as a
phase mixing term) excites fast waves, and the longitudinal manifestation excites longitu-
dinal perturbations (which can be thought of as a longitudinal dispersion term). If the net
longitudinal perturbation is non-zero, due to the absence of gas pressure gradients in β = 0
the perturbation will be static.

Thus, the analysis of Sections 3.1 – 3.3 shows that the harmonic Alfvén wave nonlin-
early interacts with the medium via the longitudinal and transverse manifestations of two
classes of ponderomotive effect, namely the geometric effect (cospatial, ponderomotive
daughter disturbances) and the ∇(cA) effect (ponderomotive acceleration due to inhomo-
geneous Alfvén-speed profile). Both may yield non-zero net perturbations of the medium,
causing coupling to the longitudinal and transverse (fast magnetoacoustic) modes. As the
two terms may interfere (constructively or destructively), the precise dynamics of pondero-
motive mode conversion will vary on a case by case basis.

4. Numerical Demonstration

We now demonstrate the ponderomotive effects identified in Sections 3 – 3.3 by considering
simulations of a simple scenario, namely that of an initially uniform pulse separating in a
unidirectional field stratified by a smooth, yet steep, transverse density profile (i.e. a trans-
verse Alfvén-speed profile). Such a scenario was considered in Nakariakov et al. (1997),
we emulate their results to demonstrate features that they did not report upon. We solve the
nondimensionalised, nonlinear MHD equations using LARE2D (see Arber et al. (2001) for
details of code and, e.g., Thurgood and McLaughlin (2012) for details of the nondimen-
sionalisation procedure, noting that all quantities are nondimensional in this section) for the
equilibrium magnetic field B0 = ŷ where the plasma is structured by a density inhomogene-
ity of the form

ρ0 = ρ0(x) = 0.2 + e−4x

1.0 + e−4x

in the numerical domain x, y ∈ [−8,+8] with a resolution of 19202 grid points for a cold
plasma initially at rest (v0 = 0).

The resulting (nondimensionalised) Alfvén-speed profile, shown in Figure 1, is thus
cA ≈ 1 for x < −1, cA ≈ √

5 for x > +1, with a steep but continuous transition between
the two limits in the region −1 < x < 1. In this scenario (due to the unidirectional field) the
longitudinal direction here is simply ŷ and the transverse direction is x̂. Thus the transverse
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Figure 2 Contour plots of vz , showing the propagation of the Alfvén wave, which undergoes phase mixing
due to the transverse inhomogeneity in Alfvén-speed profile.

and longitudinal velocity components of the simulation (vx and vy ) relates to the trans-
verse and longitudinal velocity components in the previous analysis (v⊥ and v‖) such that
v⊥ = −Byvx + Bxvy = −vx and v‖ = Bxvx + Byvy = vy .

We perturb the system by imposing an initial condition of the form

vz = 2A sech2

(
y

a

)

with pulse-width parameter a = 0.25, which creates an Alfvén wave (with apex at y = 0)
which separates into two oppositely travelling pulses with amplitude A = 0.001. The ini-
tial amplitude is taken to be small so that if a fast wave is nonlinearly generated, it will
not disturb the equilibrium field through shock wave formation. Simple reflecting boundary
conditions are employed, thus the simulation is halted once the pulses reach the boundaries.
Figure 2 shows the resulting separation and propagation of the Alfvén waves (seen in vz).
Throughout time, the pulse geometry maintains its initial longitudinal (∝ sech2y) and trans-
verse (= 0) profiles outside of the phase mixing region (x < −1 and x > +1). In the region,
due to phase mixing, the profiles change in time, with the creation of transverse gradients in
pulse geometry which become increasingly steep as time progresses.

We now consider perturbations to the longitudinal velocity component vy , shown in Fig-
ure 3. Here, we note two nonlinear features. The first is a disturbance that appears to prop-
agate as the Alfvén waves (i.e. along the field lines at the Alfvén speed) yet is observed in
the longitudinal velocity component. These are not independently propagating waves (in our
β = 0 simulation there is no gas pressure to facilitate longitudinal oscillations) but instan-
taneous perturbations/disturbances that are sustained and carried by the propagating Alfvén
waves in vz, i.e. these are the longitudinal daughter disturbances identified in Section 3.2,
and is associated with longitudinal gradients in the pulse geometry (for the harmonic Alfvén
wave, this was of the form ∇‖B̂0 · r). The longitudinal daughter disturbance sustained by the
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Figure 3 The longitudinal velocity component vy for the same times as Figure 2. We find a nonlinear static
perturbation localised at the initial position of the Alfvén pulse and nonlinear cospatial disturbances that are
transported with the Alfvén waves. The colour bar is scaled by a factor of ×106, i.e. by ×A2.

upwardly propagating Alfvén wave is of the same sign, whereas the daughter sustained by
the downwardly propagating wave is the opposite to its progenitor. Their maximum ampli-
tudes are vy = ±4.999 × 10−7, respectively, which is of O(0.5A2). We note that amplitude
of the longitudinal daughter is weaker by a factor of approximately

√
5 in the higher Alfvén

speed region compared to its counterpart in the lower Alfvén speed region.
The second longitudinal ponderomotive effect is a static perturbation assuming the ge-

ometry of the initial pulse, which is also is of smaller amplitude in the higher Alfvén
speed region. The fluid velocity is perturbed such that vy = ±3.031 × 10−7 at x = −8 and
vy = ±6.678 × 10−8 at x = +8 (in the vicinity of y = 0), hence this perturbation is also
weaker in the higher Alfvén speed region by a factor of approximately

√
5, i.e. the amplitude

of the longitudinal perturbations is inversely proportional to cA. The perturbation is accom-
panied by a stationary mass density enhancement (ρ1), initially generated at the same order
as the velocity perturbations (the same magnitude and with the inverse proportionality to cA)
then grows linearly in time during the simulation. These features are the 2.5D analogue of
the cross-ponderomotive effect noted in the homogeneous 1.5D MHD study of Verwichte,
Nakariakov, and Longbottom (1999), a non-zero longitudinal plasma perturbation caused by
crossing pulses (which corresponds to our initial condition).

Figure 4 shows the transverse velocity component vx , which is the velocity compo-
nent associated with the fast magnetoacoustic wave. As reported and thoroughly detailed
in Nakariakov et al. (1997), we find nonlinear disturbances in vx are generated in the phase
mixing region and propagate outwards from regions of high-to-low Alfvén speed, inde-
pendently of the Alfvén wave, clear evidence that the Alfvén wave nonlinearly generates
independently propagating fast magnetoacoustic waves as it undergoes phase mixing. As
the Alfvén wave is small, the fast waves saturates at a low amplitude (vx = −3.338 × 10−7)
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Figure 4 The transverse velocity component vx for the same times as Figure 2. Propagating fast waves em-
anate from the phase mixing region. As the Alfvén wave undergoes phase mixing, independently propagating
fast waves are generated and a cospatial transverse daughter disturbance develops. The colour bar is scaled
by a factor of ×106, i.e. by ×A2.

relative to its progenitor, in agreement with Botha et al. (2000). Aside from outwardly prop-
agating fast waves of Nakariakov et al. (1997), Figure 4 reveals that as the Alfvén wave
undergoes phase mixing, a transverse cospatial disturbance arises in the region, i.e. we can
see the transverse daughter disturbance. This is most clearly visible when comparing the
later panels of Figure 4 to the corresponding times on Figure 2 (to determine the region
cospatial to the Alfvén wave).

5. Conclusion

In this paper, we present two main results:

• The analysis and conclusions of Nakariakov et al. (1997) extend to the general 2.5D MHD
case, such that the nonlinear magnetic pressure exerted by an Alfvén wave propagating
through a region of variable Alfvén speed facilitates mode conversion from the Alfvén to
magnetoacoustic modes in many MHD scenarios (to the fast mode via phase mixing and
to the longitudinal mode via dispersion along field lines).

• The ponderomotive effect not only generates independently propagating magnetoacoustic
waves but also longitudinal and transverse daughter disturbances, which remain cospatial
and dependent upon the progenitor wave.

After deriving wave equations for a general MHD system (Equations (4) – (6)) with a
non-rotational invariance (i.e. ∂/∂z = 0), the source term analysis of Section 3 demonstrates
that the nonlinear magnetic-pressure gradients generated by a propagating Alfvén wave can
facilitate mode conversion from the Alfvén to magnetoacoustic modes, provided that the
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pulse assumes a geometry which yields a non-zero net force over the wave’s period. A sim-
ilar source term analysis for a propagating fast wave is presented in Appendix B, which
confirms the additional result that the process is one-way (i.e. the nonlinear Lorentz force
does not permit conversion from the fast magnetoacoustic to the Alfvén mode). This, of
course, is entirely intuitive as pressure gradients (magnetic or otherwise) cannot act in the
Alfvén wave direction, as it is impossible to have gradients in an invariant direction (by
definition).

In Section 3.1 we consider the terms forced by a harmonic Alfvén wave, and find that
perturbations to v⊥ and v‖ are generated at double the frequency and at the square of the
driving/initial amplitude, in agreement with results reported in the literature. Such a result is
necessary for ponderomotive effects, as the nonlinear magnetic-pressure gradient acts upon
the square of bz (and hence the square of vz). The forced wave equations (Equations (14) and
(15)) are found to contain two distinct sets of terms, each with a longitudinal and transverse
manifestation, which are:

• Geometric effects
i) ∇‖(B̂0 · r) – Longitudinal daughter disturbances

ii) ∇⊥(B̂0 · r) – Transverse daughter disturbances
• ∇(cA) effects

iii) ∇‖(cA) – Perturbations due to longitudinal dispersion
iv) ∇⊥(cA) – Perturbations due to phase mixing

Reducing to homogeneous 1.5D MHD, we find that one term forcing longitudinal per-
turbations remains, corresponding to ∇‖(B̂0 · r) above, which is dependent on longitudi-
nal gradients in a function of pulse geometry and background magnetic field. This term is
responsible for the cospatial ponderomotive wing reported in Verwichte, Nakariakov, and
Longbottom (1999). Upon permitting a transverse direction (i.e. homogeneous 2.5D MHD),
we find that a transverse analogue is permitted. Hence, to distinguish the two we refer to the
longitudinal/transverse manifestations as the longitudinal daughter disturbance and trans-
verse daughter disturbance, respectively. When we further consider the inhomogeneous sce-
nario and permit gradients in the Alfvén speed, a second class of forcing term is permitted,
again with transverse and longitudinal manifestations, which accelerates the medium as the
Alfvén wave passes through regions of inhomogeneity. The transverse manifestation occurs
where the Alfvén wave undergoes phase mixing (regions with transverse gradients in Alfvén
speed) and the longitudinal manifestation occurs where longitudinal dispersion occurs (in re-
gions with longitudinal gradients in Alfvén speed), where we stress that the Alfvén-speed
profiles vary with B0 and ρ0 (i.e., phase mixing can occur in regions of uniform density,
if the magnetic field has transverse stratification, an example of this is magnetic null point
configurations, see e.g., Fruit and Craig, 2006).

To illustrate the phenomena implied by our analysis and interpretation of Sections 3 –
3.3, we considered numerical simulations of plasma with a unidirectional field structured
by transverse density profile (the same scenario considered in Nakariakov et al., 1997).
In addition to the results detailed in Nakariakov et al. (1997) – namely, the generation of
independently propagating fast waves, we find clear evidence for the existence of the longi-
tudinal daughter disturbance, which remains cospatial to its progenitor throughout its transit.
We note that the disturbance is differs by a factor of

√
5 in the higher Alfvén speed region

(relative to its amplitude in the lower Alfvén speed region). An explanation is found by re-
considering Equation (15) in the limit x = −∞ and x = +∞ for our scenario. Specifically,
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for the scenario there is no longitudinal dispersion (∇‖cA = 0) and both the frequency and
the longitudinal geometric gradient is identical at both extremes (thus we arbitrarily take
ω = 1 and ∇‖(B̂0 · r) = 1 without loss of generality), and the scaling function is taken as
S2 = μρ0. The equation implies

max(v‖) ≈ 1

2cA
v2

z .

Given that in the simulation cA(x = −∞) = 1, cA(x = +∞) = 5 with the Alfvén wave
amplitude A = 0.001 we find that v‖(x = −∞) = 5.000 × 10−7 and v‖(x = +∞) =
2.236 × 10−8 which is in excellent agreement with the reported amplitudes of the longitu-
dinal daughter disturbances in the homogeneous regions. Hence, the longitudinal daughter
disturbances of Alfvén waves are generated with amplitude of O(A2/2cA).

The simulations also reveal the transverse manifestation of the cospatial disturbance, the
transverse daughter. This is observed to develop over time (initially, transverse gradients
in pulse geometry zero) as the Alfvén wave undergoes phase mixing, remaining cospatial
to the phase mixed part of the Alfvén wave. To our knowledge, this is the first time this
phenomena has been reported.

An additional effect noted in the simulation is that of the static perturbation at y = 0 that
is manifest in the longitudinal, ŷ-components of fluid variables (e.g. in vy , Figure 3). We
believe that this is the much the same cross-ponderomotive effect as reported in Verwichte,
Nakariakov, and Longbottom (1999), despite the fact that our scenario is inhomogeneous
2.5D as opposed to the homogeneous 1.5D analysis they perform. This is because i) the
cross-ponderomotive effect will not have any transverse action as Alfvén waves cannot sep-
arate in the transverse direction (and there is nothing to suggest such a phenomena in the
simulation data), and ii) there is no inhomogeneity along the field lines, and hence disper-
sion terms (∇‖cA) will not, in the specific case, impact upon the separation dynamics. As our
simulation is inhomogeneous (with transverse stratification), it highlights that perturbations
due to the cross-ponderomotive effect are (like the other ponderomotive effects observed)
inversely proportional to the speed cA. It is, however, likely that in general, dispersion during
pulse crossings will yield a more complicated effect. For cases where propagating Alfvén
wave pulses are likely to meet (e.g. recent simulations by Matsumoto and Suzuki (2012)
report wave reflection due to the transition region and, subsequently, turbulent effects in the
lower solar atmosphere) and the scenario is sufficiently nonlinear it would be necessary to
investigate the ponderomotive effects on interaction between Alfvén waves further. We sug-
gest that it would be necessary integrate Equation (15) over a separation period of a general
wave form on vz (from which the form of bz follows) that corresponds to the general solution
satisfying the variable-speed 1.5D wave equation utt = c(y)uyy for travelling pulses from
a Gaussian-like initial condition (i.e. a variable speed D’Alembert solution). Such an ana-
lytic solution can be found by transforming the variable speed wave equation to a constant
coefficient Klein–Gordon equation, however, the profile of the wave speed has to conform
to various conditions (of which, our scenario in Section 4 does not satisfy). See Grimshaw,
Pelinovsky, and Pelinovsky (2010) for a comprehensive overview of the homogenisation
process.

During the separation of the pulse, we also note the generation of a stationary density en-
hancement (initially of O(A2/2cA)) that subsequently grows linearly in time. Again, this is
in agreement with that reported by Verwichte, Nakariakov, and Longbottom (1999). Linear
density instabilities were shown to be a general feature of β = 0 MHD by Falle and Hartquist
(2002). There, the authors analyse the eigenmodes of cold MHD and show that there is a
Jordan-mode instability, associated with the absent/zero-speed slow waves, which causes
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such density enhancements. This instability is to shown arise when the parallel (i.e. slow)
velocity component is not constant. The cross-ponderomotive effect of a separating Alfvén
wave (or two crossing Alfvén waves), as observed in our simulations, excites such a mode
by accelerating the parallel velocity component by applying a (nonlinear) magnetic pressure
gradient.

Throughout the paper we have considered the cold plasma regime. If the β �= 0 MHD
wave equations (Equations (4) – (6) if gas pressure gradients are permitted) are considered
under the conditions for an initially pure Alfvén wave as per Section 3, we find that gas
pressure gradients do not contribute, i.e. the β �= 0 equivalents of the source terms derived
in Equations (7) – (15) are unchanged, i.e. the way in which a passing Alfvén wave nonlin-
early perturbs the medium is identical to that detailed in this paper. Hence, where non-zero
longitudinal perturbations of the medium occur (which are static in β = 0, e.g. the cross-
ponderomotive perturbation in Figure 3), gas pressure gradients will subsequently arise to
transport the disturbance longitudinally, i.e. slow magnetoacoustic waves will be generated.
Thus, in β = 0, ponderomotive mode conversion is permitted between the Alfvén wave and
both magnetoacoustic modes. In addition to the implications for mode conversion in an ex-
tension to a β �= 0 regime, we note that the cross-ponderomotive effect, and subsequent ex-
citation of a Jordan-mode instability, will still generate large density enhancements in low-β
plasmas as per Falle and Hartquist (2002). Thus, crossing Alfvén waves will directly con-
tribute to the creation of inhomogeneity in low-β plasmas, due to their cross-ponderomotive
effects.

We note that aspects of mode conversion, coupling and interaction, explored in this pa-
per from the perspective of applied nonlinear forces, can be investigated using alternative
methods, in particular a MHD instability approach. The relationship between the results
presented here, and literature on Alfvén wave instabilities (such as, e.g., Derby, 1978; Gold-
stein, 1978; Champeaux, Passot, and Sulem, 1997; Webb et al., 2001) will be explored in
future work.

We conclude the paper by highlighting that all of the analysis can be repeated with differ-
ent types of invariant coordinate system. For instance, we could consider azimuthal invari-
ance, or the general coordinate system of Thurgood and McLaughlin (2012) for zero-helicity
topologies, and yield the same results. Given that an invariant coordinate is a necessary con-
dition for the existence of true Alfvén waves as per Alfvén (1942) (see, e.g., Parker, 1991
and Section 2.3.1 of Thurgood and McLaughlin, 2012), we believe our results and conclu-
sions extend to any scenario in which an Alfvén wave (a wave driven by magnetic tension
only) can exist. We have shown that a nonlinear Lorentz force of a propagating Alfvén wave
can generate independently propagating fast and slow magnetoacoustic waves, dependent on
the interplay between Alfén speed profile and pulse geometry (viz., the form of the daugh-
ter disturbances), which varies on a case by case basis. As the transient properties of the
magnetoacoustic modes are fundamentally different to the Alfvén wave, such conversion
facilitates the indirect transport and dissipation of (initially) Alfvén wave energy to plasma
regions that are inaccessible in the linear MHD regime. In modelling wave behaviour in
sufficiently nonlinear solar plasmas, the ponderomotive effects of propagating waves must
be evaluated.
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Appendix A: Recovery of Wave Equations for a Medium with a Homogeneous
Magnetic Field and a Transverse Density Profile (Nakariakov, Roberts,
and Murawski, 1997)

Here we demonstrate that our general wave equations for 2.5D MHD (Equations (4) and
(5)) reduce to those considered in the case of Nakariakov et al. (1997), which considered
a unidirectional homogeneous magnetic field structured by a transverse density profile. To
do so, we take the field as constant in ŷ, i.e. B0 = B0ŷ, Bx = 0, and By = B0 and consider
density as a function transverse to the field, i.e. ρ0 = ρ0(x). Thus, the Alfvén and fast wave
equations (Equations (4) and (5)) become

[
∂2

∂t2
− c2

A(x)
∂2

∂y2

]
vz = ∂N3

∂t
+ B0

μρ0(x)

∂N6

∂y
, (16)

[
∂2

∂t2
− c2

A

(
∂2

∂x2
+ ∂2

∂y2

)]
v⊥ = −B0

∂N1

∂t
− c2

A(x)
∂N4

∂y
+ c2

A(x)
∂N5

∂x
. (17)

The Alfvén wave equation (Equation (16)) is only superficially different from the equa-
tion governing the Alfvén wave in Nakariakov et al. (1997), which (in their notation) is

[
∂2

∂t2
− c2

A(x)
∂2

∂z2

]
vy = 1

ρ0(x)

(
∂N2

∂t
+ B0

4π

∂N5

∂z

)
, (18)

where the apparent difference is due to the following.

• The analysis of Nakariakov et al. (1997) considered ŷ as the invariant direction, hence vy

corresponds to the Alfvén wave (as opposed to vz in this paper as ẑ is invariant). Addition-
ally, ∂/∂y corresponds to ∂/∂z in this paper and Nakariakov et al. (1997), respectively.

• Hence, the nonlinear terms have a different ordering; their N1, N2, N3, N4, N5, N6, N7

corresponds to our N1, N3, N2, N4, N6, N5, N7, respectively.
• The nonlinear terms originating in the equation of motion (N1, N2, N3) are not exactly

identical. They differ by a factor of ρ−1
0 (we divided through the equation of motion by

ρ0 to group it with the nonlinear terms, they left it with the linear terms, e.g., our N1 is
equal to their N1/ρ0).

• Nakariakov et al. (1997) use cgs units, as opposed to SI in this paper.

The fast wave equation of Nakariakov et al. (1997) is
[

∂2

∂t2
− c2

A(x)

(
∂2

∂x2
+ ∂2

∂y2

)]
vx = 1

ρ0(x)

(
∂N1

∂t
+ B0

4π

∂N4

∂z
− B0

4π

∂N6

∂x

)
. (19)

The above only differs from our fast wave equation as per the aforementioned superficial
differences. Additionally, the nonlinear terms (right hand side) differ by a factor of −B0.
The explanation is simple – in this case v⊥ = v1 · ẑ × B0 = −B0vx . Both correspond to
a transverse perturbation of the field in this scenario and hence wave equations on either
describe the evolution of the Alfvén wave; in a homogeneous field it is simpler to use vx ,
for an inhomogeneous field v⊥ is required. Expressing v⊥ in terms of vx and simplifying
reduces our fast wave equation (Equation (17)) to the comparable form

[
∂2

∂t2
− c2

A(x)

(
∂2

∂x2
+ ∂2

∂y2

)]
vx = ∂N1

∂t
+ B0

μρ0(x)

∂N4

∂y
− B0

μρ0(x)

∂N5

∂x
. (20)
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Appendix B: Nonlinear Effects of a Propagating Fast Wave

We can set vz = 0 and bz = 0 and place restrictions on vx , vy , bx , and by that correspond to
v‖ = b‖ = 0, v⊥ �= 0, b⊥ �= 0 and ρ1 �= 0 to consider the ponderomotive effects caused by a
fast wave, yielding

[
∂2

∂t2
− c2

A

(
∂2

∂x2
+ ∂2

∂y2

)]
v⊥ = Bx

∂N2

∂t
− By

∂N1

∂t
+ c2

A

(
∂N5

∂x
− ∂N4

∂y

)
�= 0, (21)

∂2vz

∂t2
= 0, (22)

∂2v‖
∂t2

= 1

μρ0

∂

∂t

{
Bxby

[(
∂bx

∂y

)
T

−
(

∂by

∂x

)
P

]
+ Bybx

[(
∂by

∂x

)
T

−
(

∂bx

∂y

)
P

]}

= 1

μρ0

∂

∂t

[
b⊥

(
∂bx

∂y
− ∂by

∂x

)]
, (23)

where subscripts T and P indicate whether a term is contributed by magnetic tension or
magnetic pressure, respectively, and b⊥ = b · ẑ × B0 is the transverse perturbation of the
magnetic field. The key result here is that Equation (22) shows that the fast wave does not
interact with the Alfvén wave on any level; linear or nonlinear.

However, Equation (23) contains source terms, thus a propagating fast wave does cause
nonlinear field-aligned disturbances that will cause, in certain circumstances, nonlinear
Lorentz force coupling (via both nonlinear magnetic pressure/ponderomotive force and non-
linear magnetic tension Departing from the β = 0 case, these source terms remain, i.e. the
magnetoacoustic modes are coupled linearly by gas-pressure gradients, and nonlinearly by
the Lorentz force.

Equation (21) shows that such an initial fast wave undergoes self-interaction. In this case,
this is due to a combination of nonlinear Lorentz force, convective acceleration (contained
within N1 and N2 which are permitted to be non-zero) and nonlinear induction (N4 and N5).
Interestingly, the nonlinear induction term can be rewritten as

c2
A

(
∂N5

∂x
− ∂N4

∂y

)
= −c2

A

(
∂2

∂x2
+ ∂2

∂y2

)
v · ẑ × b,

i.e. the nonlinear induction term is effectively of the same form as that of the linear motion
due to velocity perturbations across the equilibrium field, however, is instead motion due
to perturbations across the induced magnetic field (though at the equilibrium, not induced,
Alfvén speed).

Finally, we note that although there are no slow waves in the β = 0 case, the nonlinear
source term due to the Lorentz force acting upon the Alfvén wave (the right hand side of
Equation (22)) would remain unchanged for β �= 0. This source term remains zero if an
Alfvén wave is initially absent. Thus, the nonlinear Lorentz force does not facilitate slow to
Alfvén mode conversion either. Hence, the analysis shows that for any 2.5D MHD scenario
that there is a one-way, nonlinear mode conversion mechanism between the Alfvén and
(both) magnetoacoustic modes that will become manifest when a phase mixed/ dispersive
Alfvén wave (via propagating in the vicinity of an inhomogeneous Alfvén-speed profile)
assumes a geometry that exerts a non-zero average force over its period perturbing along
and across the magnetic field.
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Appendix C: Derivation of Force Equations (Equations (12) and (13))

We demonstrate that Equations (10) and (11) can be integrated with respect to time to yield
the force equations (Equations (12) and (13)) (i.e., with zero value ‘integration constants’)
by simply considering an alternate, direct derivation from the momentum equation.

Under the source-term conditions of Section 3 (vz �= 0 and bz �= 0 with vx = vy = bx =
by = ρ1 = 0) the x̂ and ŷ components of the momentum equation simplify to yield

∂vx

∂t
= − 1

μρ0
bz

∂bz

∂x
= − 1

2μρ0

∂b2
z

∂x
,

∂vy

∂t
= − 1

μρ0
bz

∂bz

∂y
= − 1

2μρ0

∂b2
z

∂y
.

From which Equations (12) and (13) readily follow by constructing equations in terms of
v⊥ and v‖ from v⊥ = v1 · (ẑ × B0) = −Byvx + Bxvy and v‖ = v1 · B0 = Bxvx + Byvy .
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