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ABSTRACT 
 

The aim of this chapter will be to review the empirical research literature which has 

examined changes in children’s employment of visual, spatial mnemonic and attentional 

processes when carrying out short term visuospatial working memory protocols. The 

chapter will evaluate the extent to which these processes can be effectively differentiated. 

An element of this consideration will be to ask whether such a focus directs research and 

conceptual attention away from working memory as an integrated system, where within a  

typical short term memory context, the child may bring multiple resources towards 

successful task performance. The review of the research literature will be embedded 

within the major theoretical accounts put forward to account for working memory 

development in children, multiple resources accounts, e.g., Baddeley (1986, 2007), Logie 

(1995, 2011); the embedded process account, Cowan (1988, 1999) and Oberauer’s 

qualification of this account (Oberauer & Hein, 2011); the continuum model postulated 

by Cornoldi and colleagues, Cornoldi & Vecchi (2003); and the time-based resource-

sharing account of  Barrouillet and colleagues (2004, 2009).  

 

 

OVERVIEW 
 

A common consideration of working memory is that it functions to temporarily maintain 

and manipulate information in the service of a range of on-going cognitive tasks (e.g. 

Baddeley, 2012). Within this form of definition, Visuo Spatial Working Memory (VSWM) is 

viewed as the system which maintains and processes non-verbal information. The source of 

this visuospatial information varies dependent upon the particular conception of working 

memory, directly from perceptual information, or as activated, interpreted, long term memory 

content. One particular argument of this chapter will be that this definition of VSWM tends to 

be driven by the nature of the information media explicit in the working memory task 
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demands, rather than the cognitive resources underpinning task performance. Within a child 

developmental context, the incongruency between the task surface visuospatial characteristics 

and the increasing recruitment of a diverse array of cognitive resources emerges as one of the 

defining characteristics of VSWM task performance change in children. 

The chapter content will begin with a brief review of the major theoretical accounts of 

working memory, conventionally originating within an adult literature, but through the 

chapter a developmental perspective will be explicitly emphasised. This review will 

encompass multiple resources accounts (e.g. Baddeley, 1986; 2007, Logie, 1995; 2011); the 

embedded process account (Cowan,  1988; 1999) and Oberauer’s qualification of this account 

(Oberauer & Hein, 2011); and the continuum model postulated by Cornoldi and colleagues 

(Cornoldi & Vecchi, 2003).Subsequently, the time-based resource-sharing account of 

Barrouillet and colleagues (2004, 2009) will be considered. The identification of these 

theoretical frames will be followed by a summary of the research literature which has aimed 

to identify changes in the efficacy of visual, spatial and executive or attentional processes 

within VSWM. The thrust of this summary will be towards conventionally labelled ‘simple’ 

span tasks, rather than the more attentionally engaged ‘complex’ span literature. Relevant 

evidence from processing speed accounts and developmental research with pictorial stimuli 

will be employed to demonstrate the potential for complex representation of visuospatial 

information. The final component of the chapter will attempt to interpret the research 

literature through an explicit consideration of the theoretical frames and research issues.  

 

 

SOME THEORETICAL FRAMES 
 

Multiple Resources Accounts 
 

The original multiple resource or component working memory account suggested by 

Baddeley and Hitch (1974) envisaged three discrete resources, a Central Executive control 

process, a Phonological Loop and a Visuo Spatial Sketch Pad (VSSP). This latter process was 

envisaged as “…retaining and manipulating images, and is susceptible to disruption by 

concurrent spatial processing…” (Baddeley, 1986). In more recent accounts the VSSP has 

been placed explicitly within the context of perceptual and long term memory processes 

(Baddeley, 2000, 2012). In these recent formulations, in addition to the domain specific slave 

processes there is also an Episodic Buffer process which retains integrated material or chunks 

which may be amodal or multidimensional in nature. Figure 1a identifies the architecture of 

the VSSP, emphasising the perceptual input to the store (a gateway account) and its interface 

with the Episodic Buffer. The VSSP is also subject to direct support and scaffolding from 

Long Term Memory (LTM) visual semantics and indirectly from LTM verbal semantics.  

An alternative multiple resource model was proposed by Logie (1995, 2011). In this 

account there was an articulation of the VSSP component of the Baddeley (1974, 1986) 

model, a visual cache process for the storage of visual material and an inner scribe process 

for dynamic spatial representation and the active rehearsal of the passive visual material (See 

Figure 1b below) . This model demonstrated a striking symmetry in function between the 

verbal and non-verbal components of the model. However, one should note that perhaps the 

most fundamental difference between these two accounts is that in Logie’s proposal, all of the 
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information in working memory has gone through interpretation by the LTM (Knowledge 

Base) prior to entry into working memory. This would be conceived of as a workspace 

account rather than a gateway account (Logie, 1996). Thus within this perspective, the visual 

content of VSWM is likely to be in the form of fully integrated, fully bound objects. Whereas 

in the Baddeley account (Figure 1a), feature representation and bound representations may 

co-exist within the VSSP, e.g. colour, shape along with the integrated object (see also 

Baddeley, Allen & Hitch, 2011, Figure 6, p 1398). 

 

 
(A) 

 
(B) 

Figure 1. a) The multiple resource account of Baddeley (2012); b) The multiple resource account of 

Logie (2011). 
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Embedded Processes Accounts 
 

These accounts tend to be less modular than multiple resource accounts, sometimes 

labelled single (attentional) resource accounts. The earliest such model is the Cowan (1988, 

1999, 2008; Engle, Kane, & Tuholski, 1999) Embedded Processes account. In this account 

working memory representation is seen as activated LTM sensory and categorical 

information. This activation level is above the typical level of LTM information; however 

information that is within the Focus of Attention is seen to have the highest level of activation 

(see Figure 2a below). This conceptualisation has been likened to the distinction between 

secondary and primary memory (James, 1890). The key process at work here is the attentional 

modulation within the focus of attention, what Cowan, Fristoe, Elliot, Brunner and Saults 

(2006) have labelled as the scope or capacity of attention. Unsworth and Engle (2007) have 

argued for a second attentional resource, associated with retrieval from secondary memory, 

activated LTM outside of the focus of attention (retrieval from within the focus is assumed 

not to require active processes). If comparisons can be made between this account and 

Baddeley's multiple resource account then one such comparison could be equating the focus 

of attention with a central executive process (as Cowan & Alloway, 2008, actually did, shown 

in Figure 2b). 

Oberauer and Hein (2012) have modified the embedded processes by distinguishing 

between a broad focus of attention, of 3-4 items, in contrast to a component with a narrow 

focus of attention, specifically 1 item. This account accommodated prior experimental 

evidence which suggested that one chunk or item had privileged access and status. This is 

demonstrated in Figure 2b, which illustrates a schematic network in long term memory, with 

5 items currently activate (shaded circles), and 3 items (a, b, & c) under the broad focus of 

attention, but 1 item receiving privileged access status (a). 

 

 

Integrative Accounts 
 

The two broad approaches identified above tend to emphasise modality specific and 

controlled attentional resources respectively. One account, the Continuum Model (Cornoldi & 

Vecchi, 2003) emphasises both modality specific stores and controlled attention. In this 

model, shown in Figure 2c, there is a vertical continuum varying in the degree of attentional 

control needed to carry out the task at hand. At the passive end of the continuum, the lower 

portion of the figure, where maintenance and storage only is required, the authors envisage 

quite discrete modality specific processes. As task demands increasingly require more 

controlled attention, a movement up the continuum, the resources recruited become 

increasingly amodal and generic. Whilst this appears in many ways similar to the Baddeley 

multiple resource account discussed above, it makes more explicit the notion of a flexible 

allocation of attention to task completion (Kahneman, 1973) and consequently undermines 

the naive categorisation of tasks into Simple and Complex. The majority of VSWM tasks will 

inevitably vary in their requirements for maintenance and controlled attention resources. 

Whilst the theoretical accounts identified above tend to be formulated and considered 

within a young adult context, the content of this chapter will also consider accounts 

specifically associated with lifespan development, e.g. the putative contribution of inhibitory 

processes (Hasher, Lustig & Zachs, 2007), and the contribution of Speed of Processing (SOP, 
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Fry & Hale, 1996; Kail & Salthouse, 1994). In particular, a more recent account the Time-

Based Resource-Sharing model proposed by Barrouillet and colleagues (2004, 2011) will be 

considered. This framework has been successfully applied within a child development context 

(e.g. Camos & Barrouillet, 2011). 

 

 
(A) 

 
(B) 
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(C) 

Figure 2. a) The embedded processes account of Cowan (2008???); b) The three embedded component 

model (Oberauer & Kliegel, 2012); c) The Continuum Model (Cornoldi & Vecchi, 2003). 

 

THE DEVELOPMENT OF VISUAL AND SPATIAL WORKING MEMORY 

TASK PERFORMANCE 
 

Visual Working Memory Research Findings 
 

A large number of research protocols have been employed in order to assess visual 

working memory in children, the stimuli have ranged from visual matrix patterns (Della Sala, 

Gray, Baddeley, Allamano & Wilson, 1999; Phillips & Baddeley, 1971; Pieroni, Rossi-

Arnaud, & Baddeley, 2012), coloured patterns arrays (Luck & Vogel, 1997; Riggs, 

McTaggart, Simpson, & Freeman, 2006), to static and dynamic arrays (Mammarella, 

Pazzaglia, & Cornoldi, 2006; Pickering, Gathercole, Hall, & Lloyd, 2001). This current 

section will focus on a number of research protocols, and then in the final section discuss the 

implications of the results from the wider empirical context. It is worthwhile re-iterating that 

the vast majority of these protocols were designed for young adult research rather than as a 

tool for understanding individual differences associated with the lifespan and child 

development in particular.  
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Figure 3. Visuo Spatial Working Memory Task Stimuli. 

Three of the common visual working memory protocols are illustrated in Figure 3 above. 

The visual matrix or Visual Pattern Test (VPT) protocol is shown in Figure 3a, typically a 

matrix pattern where 50% of the cells are black, 50% are white. The pattern is shown for a 

period of time (encoding duration) then retained (maintenance interval) then retrieved either 

though a recall context or recognition process. There is variability in the protocol formats and 

proportion of black cells may vary, as in the matrix pattern shown in Figure 3b, a protocol 

employed by Pieroni and colleagues (e.g. Pieroni et al., 2011; Rossi-Arnaud, Pieroni & 

Baddeley, 2006). In addition, encoding time and maintenance may vary between studies, or 

actually be the focus of experimental manipulation (e.g. Wilson, Scott, & Power, 1987). A 

common element is the use of span measurement where the number of black cells is increased 

until the participant failed to meet the criterion. It should be noted that there is also variability 

in how one measures the span level, with implications for the reliability of the data (Friedman 

& Miyake, 2004; St Clair-Thompson, 2010). Another commonly employed protocol in adult 

research, the visual array procedure of Luck and Vogel (1997) has also been employed within 

a child developmental context. The conventional array format is shown in Figure 3c, the array 

size can contain between 1-6 items, is typically briefly presented (< 1 second) and the 

maintenance interval also tends to be brief (0.5-3seconds). This protocol has been employed 

in a number of child developmental studies, e.g. by Cowan et al. (2005) and Riggs and 

colleagues (Riggs et al., 2007; Riggs, Simpson & Potts, 2011). Visual working memory 

capacity in this protocol was measured in terms of k, derived from array size, and the hits and 

false alarm rates in task performance (see Pashler, 1988). 

Figure 4 identifies the general developmental trajectory for visual matrix span 

development in children. The VPT span data points are drawn from three studies, Wilson et 
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al. (1987), Logie and Pearson, (1997) and Miles, Morgan, Milne and Morris (1996). Despite 

differences in the precise characteristics of their respective protocols the combined data neatly 

fits a developmental function which indicates a rapid increase in VPT span performance from 

the age of 5 years through to 15 years of age. The graph also reveals another interesting 

characteristic of the research findings, that the 15 year old children are performing at level 

equivalent to adults in two of the studies (Wilson et al. and Miles et al.). However, this 

performance level is well above the typical young adult level in the VPT noted by Della Sala, 

Gray, Baddeley and Wilson (1997). In their sample of 345 adults the mean performance was 

9.08. This discrepancy could be due to the recall protocol in the Della Sala et al task as 

opposed to the recognition data in Figure 4 (see Logie & Pearson, 1997, for a direct 

comparison of span performance in the two retrieval contexts). Other differences in terms of 

differences in progression criteria, encoding or maintenance duration, or of pattern 

configuration in the form of complexity could also account for this difference and the latter 

will be discussed at length below. 

Also shown in Figure 4 is the data from the Riggs et al. (2007) study which employed the 

visual array format adopted from Luck and Vogel (1997). Three age groups were employed in 

this study, 5, 7, and 10 years of age. The developmental function overlaps with the VPT 

function only when the two scales are equated for adult performance level. Typically young 

adults achieve a k score of ~ 4 items, a quantitatively similar level of performance to that with 

the matrix employed by Pieroni et al. (2011). However, the k value is significantly smaller 

than the span level typically found in the visual matrix procedure. Identifying the factors 

which could account for this discrepancy lies at the heart of the discussion in the next section. 

 

 
(A) 
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(B) 

Figure 4. a) The Developmental trajectory associated with the VPT Span and k Capacity measures; b) 

The developmental trajectory associated with the Corsi Block task. 

The developmental work by Pickering et al. (2001) explored a particular characteristic of 

the array during the encoding of visual matrix patterns, whether the black cells were 

presented simultaneously on the screen (static version) versus the appearance of individual 

cells in a sequence of screen shots (dynamic version). The age associated development, as 

measured by number of trials correct, demonstrated a large increase between the ages of 5-10 

years, congruent with the improvement shown in Figure 4 with VPT span data. However, the 

improvement in the dynamic version, although significant, was not as large as that of the 

static version. This pattern of developmental fractionation (Baddeley & Hitch, 2000) was 

mirrored in static and dynamic versions of a maze task, and led the authors to conclude that 

static and dynamic sub component processes were present in visual working memory. Their 

conclusion was congruent with the spatial-simultaneous versus spatial-sequential 

differentiation in the Continuum model (Cornoldi & Vecchi, 2003). However as Pickering et 

al conceded, their dynamic matrices task possessed the characteristics of the Corsi Blocks 

task (see Figure 3 d), a task conventionally taken to be a measure of Spatial working memory 

(Della Sala et al., 1999; Logie, 2011). The next section will consider the research findings 

associated with Corsi and other measures of spatial working memory. 

 



Colin Hamilton 10 

Spatial Working Memory Research Findings 
 

One of the major prototypical spatial working memory tasks conventionally employed in 

developmental research has been the Corsi Blocks task (Milner, 1972). The Corsi task (see 

Figure 3d above) was originally constructed  as a complementary task to the digit span task 

within a clinical context, in order to reveal hemispheric specialization; more specifically to 

make demands upon the temporal lobe and hippocampus in the right hemisphere (Milner, 

1972). It shares two major elements in common with the digit span task: the sequential 

presentation of the item (in the Corsi task, the sequential tapping of individual blocks) and the 

demand for accurate serial order in the recall of phase of the task. More recently, researchers 

have employed PC generated Corsi or spatial span procedures, but as with the VPT task, 

variability in the protocol exists across studies (Berch, Krikorian & Huha, 1998). The most 

common outcome measure is the span measure, typically ascending, whereby the number of 

taps is increased until the participant fails to meet the progression criterion. 

The data from 3 studies are superimposed in Figure 4b, data from Orsini, Capitani, 

Laiacona, Papagno, and Vallar (1987), Isaacs and Vargha-Khadem (1989), and Logie and 

Pearson (1997). The data points again fit onto the regression function despite differences in 

protocols. The Corsi Block Span scale in Figure 4b has been adjusted to match that in 4a, 

where the VPT is plotted. This allows a more direct comparison and suggests that the age 

associated improvement in the Corsi is not as large as that of the VPT developmental change. 

This was addressed directly by Logie and Pearson who revealed a significant interaction in 

the task (VPT vs Corsi) by age group analysis. This was taken by the authors as an indication 

of developmental fractionation (Baddeley & Hitch, 2000) and evidence for differentially age 

associated development in two processes; namely the visual cache and inner scribe (Logie, 

1995, 2011). Interestingly, this pattern of results is similar to that reported by Pickering et al. 

(2001), however, the demonstration of developmental fractionation was interpreted 

differently (see above). One should also note that there is evidence of concurrent validity for 

the Corsi using other measures of spatial memory in children (e.g. Pentland, Anderson, Dye 

& Wood, 2003) 

Postma and De Haan (1996) proposed a three-process account of object location or 

spatial memory; a position only process which allowed the precise spatial location of an 

object, based upon a coordinate spatial relations process; an object-to-position process which 

allocates object to locations, a process which would draw verbal as well as visuospatial 

working memory processes; and a combined process which integrates the two processes 

above. Cestari, Lucidi, Pieroni and Rossi-Arnaud (2006) investigated the age associated 

trajectories in 6, 8 and 10 year old children. They found that position only and object-to-

location processes showed early improvement, between 6-8 years, however, the combined 

process developed later between 8-10 years. Thus, their finding suggested the presence of 

significant age associated improvements across the age groups, but with interesting 

differences in trajectories of these processes. 
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ISSUES IN THE INTERPRETATION OF VISUAL AND SPATIAL WORKING 

MEMORY RESEARCH FINDINGS 
 

A fundamental question of any of these studies is the extent to which the research 

question and data allow one to identify which processes are actually changing in child 

development (Cowan & Alloway, 2008; Hamilton, Coates & Heffernan, 2003). If one 

employs the frameworks in Figure 1 as a filter for this interpretation, complexities are 

immediately identified in the process. As Conway et al (2006) suggest, the first issue 

concerns the diversity of conceptual framing employed in the working memory literature and 

how this undermines the mapping ‘…from constructs to mechanisms to measures…’ (p4). An 

example of this is evident in the labelling of VSWM tasks (as well as verbal tasks) as ‘simple’ 

and ‘complex’. Within a multiple resource account such as Baddeley (1986) and Logie (1995) 

simple tasks would presumably make exclusive demands upon the ‘slave’ systems such as the 

VSSP, Visual Cache or the Inner Scribe. Within an embedded processes account (e.g. Cowan, 

1999) or continuum account (Cornoldi & Vecchi, 2003), simple tasks would have the 

capability of demanding executive or attentional resources, but less so than those tasks 

labelled as complex. Thus, tasks such as the VPT or Corsi may recruit visual and verbal 

semantics (Baddeley, 2000) or processes such as recoding, chunking, rehearsal (Engle et al., 

1999). There is extensive dual task evidence in adults to indicate that tasks such as the Corsi 

and VPT are impaired when secondary task interference targets executive or attentional 

resources (Fisk & Sharp, 2003; Rudkin et al., 2007; Vandierendonck et al., 2004; Vergauwe 

et al., 2009). More importantly research has indicated that visuospatial task performance in 

children can be affected by attentional and non-domain specific interference. In tasks 

designed to mimic the cognitive demands of the VPT and Corsi tasks, Hamilton et al. (2003) 

employed verbal fluency (LTM retrieval) interference during the maintenance phase and 

observed that both visual and spatial task performance was significantly impaired. The impact 

of this verbal secondary task suggests a role for amodal resources in these VSWM task 

demands. Thus, even these simple tasks appear to require maintenance and processing 

resources, as indicated in early accounts of the VSSP (e.g. Baddeley, 1986). 

 

 

The Contribution of Processing Speed to Task Performance 
 

Early accounts of individual differences associated with child development (and adult 

ageing) have emphasised the importance of processing speed as a key source of change. Case, 

Kurland and Goldberg (1982) suggested that total capacity (M capacity) remained constant 

over development, however they suggested that processing speed may improve leaving more 

space for storage. This may account for why Hamilton et al (2003) also noted that a simple 

measure of processing speed, articulation rate, was significantly correlated with the younger 

children’s VSWM task performance in their study. The processing speed account was 

qualified by Towse, Hitch and Hutton (1998) in their task-switching account of working 

memory development in children. They accepted that processing speed could impact upon 

span performance but argued that this was because information being maintained in working 

memory was subject to rapid decay and therefore quick processing meant that children could 

access this decaying information more promptly, and were thus more efficient in 
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reconstructing the information. Hitch, Towse and Hutton (2001) went on to identify that 

simple accounts of  processing speed could not account equivalently for discrete complex 

span procedures, e.g. operation span versus counting span (see also Cowan, Elliot, et al., 

2006). More recently Barrouillet and colleagues (e.g., Barrouillet & Camos, 2011; Portrat, 

Camos & Barrouillet, 2008) have suggested that both resource sharing and trace decay 

contribute to working memory task performance, they labelled this a Time-Based-Resource-

Sharing (TBRS) account (Barrouillet, Bernardin & Camos, 2004). They argued that attention 

was required for two key processes in working memory, to carry out the processing demands 

and to actively maintain (or reactivate) the information being maintained.  

The Barrouillet argument differed from Towse et al by implying that attention could be 

allocated to refreshment or reactivation ant any point during the processing phase of a task if 

the cognitive load of the processing component did not demand sustained attention. Thus, 

they demonstrated that it is not time of the processing phase per se which matters, but the 

extent to which attention is occupied during this phase. In a recent child developmental study 

Gaillard, Barrouillet, Jarrold and Camos (2001) provided evidence that in order to make 

working memory span performance in 8 and 11 year olds equivalent, not only had processing 

efficiency to be controlled for but also the time available for reactivating memory traces 

needed to be equated. This study identifies the importance of the active maintenance of 

information in working memory and indicates that in younger children this is attentionally 

demanding and requires more time. The focus upon refreshment and rehearsal within children 

is developed below. 

 

 

Visual and Verbal Representation in VSWM Pictorial Task Performance 
 

Recent research has focused upon the distinction between rehearsal processes and 

refreshment processes in both adults (Camos, Mora & Oberauer, 2011) and in children 

(Camos & Barrouillet, 2011; Tam, Jarrold, Baddeley & Sabatos-Devito, 2010). The work of 

Camos and Barrouillet (2011) looked at changes in children aged 6 and 7 years in how they 

maintained verbal labels related to pictorial stimuli. Their procedure manipulated both 

cognitive load and the processing duration, and is demonstrated in Figure 5 below. 

The standard procedure involved being exposed to animal pictures and then subsequently 

recalling the names of the animals, thus the verbal recall protocol was explicit in the 

procedure. In the baseline condition, shown in 5a, the children were exposed to an animal 

stimulus (bear) for 2000ms, then had to name the colour of a smiley face, within a 4000ms 

processing period, before being exposed to the second animal stimulus (cat). In the heavy 

cognitive load condition, Figure 5b, between the presentation of animal stimuli, the children 

had to name the colour of two smiley faces within a 4000ms processing period, thus the 

cognitive load was doubled in the condition, but the processing duration was the same as in 

the baseline condition. In the final condition, the long processing duration condition shown in 

Figure 5c, the children, between the presentation of animal stimuli, had to name the colour of 

two smiley faces within a 8000ms processing period. This condition therefore had the same 

cognitive load as the baseline, but a processing duration twice as long as the baseline.  
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Figure 5. Investigating the impact of cognitive load on attentional refreshment, derived from the Camos 

and Barrouillet (2011) protocol. 

The Camos and Barrouillet (2011) findings suggested that for the younger children aged 

6yrs, the change in cognitive load did not affect performance, but the increase in processing 

duration did impair performance. In contrast, with the older children aged 7yrs, only the 

cognitive load manipulation affected task performance. The authors argued that this pattern of 

results reflected a qualitative shift from a passive rehearsal process in the younger children to 

an active maintenance or refreshment process in the older children, when cognitive load 

manipulation led to impaired performance. They also suggested that the results in the younger 

children could be accounted by the task-switching account of Towse, Hitch and Hutton 

(1998), whereas the cognitive load effect observed in the older children could be more readily 

explained with reference to their Time-Based-Resource-Sharing account. The authors also 

interpreted their results in terms a process of temporal decay rather than interference. 

Much of the research identified above regarding processing speed involved complex span 

procedures, and much of the research on refreshment and rehearsal has employed verbal 

material, and thus its relevance to Visuo Spatial Working Memory task performance may not 

at first glance appear obvious. However, there has been a long lasting debate within the 

VSWM developmental literature concerning the nature of visual and verbal representation 

with visuospatial material such as objects. The early work of Hitch and colleagues looked in 

detail at the presence of multiple representations with pictorial stimuli (e.g. Hitch, Halliday, 

Schaafstall & Schraagen, 1988; Hitch, Woodin, & Baker, 1989). Hitch et al. (1988) 

contrasted visual working memory in 5 and 10 years olds for line drawings of common 

objects. Through a systematic set of experimental procedures investigating serial position 

curve attributes, visual similarity and retroactive inhibition effects they established that with 

pictorial stimuli, the 10 year olds were more reliant on phonological representation. However, 

even in the youngest children, phonological representation could be employed, and in the 

older children, some visual representation was still employed (Hitch et al., 1989). 

The complexity of pictorial representation through childhood is illustrated in the work of 

Palmer (2000) who manipulated visual and phonological similarity in tasks demanding the 
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maintenance of line drawing pictorial stimuli similar to the Hitch et al. (1988, 1989) 

procedures. Palmer looked at the representation of the pictorial images in children aged from 

3 to 8 years. She observed that the youngest children were not, in the main, susceptible to 

either visual or phonological similarity effects. However, from the age of 3 to 6 years, a 

visual coding strategy, evidenced by a visual similarity effect (VSE), was present. In the 7 

year olds, both visual and phonological similarity effects (PSE) were apparent, some children 

demonstrated only a VSE, some only a PSE, and some both. A second study found a similar 

pattern of complexity across a 3 year sequential period. Palmer concluded a particular 

sequence of coding occurred, an early phase where no strategic process is at work, 

performance being facilitated by LTM activation associated with the pictorial stimuli, 

followed by visual then phonological coding, where a central executive process allocates 

attention to temporarily activated LTM representations. Palmer argued that in older children, 

executive processes would inhibit the visual representation leading to phonological 

dominance. The emphasis in this study was of VSWM operation within a workspace account. 

Henry, Messer, Luger-Klein and Crane (2012) identified a major issue with the 

visual/phonological research identified immediately above, the implicit and explicit cueing of 

phonological representations of the pictorial stimuli. Identifying research which demonstrated 

PSE in very young children, Henry et al. discussed how the observation of children’s 

spontaneous use of phonological recoding may be undermined by the child’s explicit verbal 

labelling of the stimuli, prior to the onset of the procedure, and the requirement for spoken 

recall at retrieval. The procedure began with the experimenter naming the objects, and then 

subsequently employed a sequential presentation of a set of pictures, followed at retrieval by 

a non-verbal response, pointing in the same sequence to the target stimuli on a response 

board. The results suggested that the 4-5-year olds did not show any evidence of visual, 

phonological, or semantic similarity effects, nor word length effect. However, the 6-8-year 

olds did demonstrate PSE and word length effects. A second experimental replication, using 

potentially a more sensitive measure, the total number of items correct being the dependent 

variable (Friedman & Miyake, 2004; St Clair-Thompson, 2010) found a slightly different 

pattern with a significant VSE in the high achieving sub-group (cluster) of the sample. A third 

experiment confirmed the presence of PSE and word length effects in children with high task 

performance. Henry et al. (2012) concluded there was strong evidence for phonological 

coding of the pictorial stimuli, evidence by PSE and word length effects; a recoding process 

which develops gradually in children aged between 5-6 years. In 7-year olds, performance 

was related to the children’s self-report of phonological coding. There was only weak 

evidence for visual representation, and marginal evidence for dual visual/verbal coding.  

What is consistent in the developmental research employing pictorial stimuli is the 

finding of increasing phonological representation of the stimuli through childhood, with the 

declining importance of visual representation. However, it clear that issues associated with 

specific protocols may constrain one’s interpretation of the findings. Henry et al. (2012) point 

to the potential confounds arising from a procedure where the child explicitly identifies the 

names of the pictorial objects and has to provide a spoken response at retrieval. However, in a 

context where the familiar objects are presented, it is clear that there is always the potential 

for visual and verbal LTM semantics to be available to the child, the question then becomes at 

which stage will the child be able to spontaneously make us of these LTM resources? Thus, 

any naming the pictures, by participant or experimenter may merely emphasis the verbal 

semantics associated with the stimuli, regardless of the retrieval protocol. An additional issue 



The Development of Visuo Spatial Working Memory in Children 15 

associated with the procedures employed in the pictorial research has been the sequential 

presentation of the stimuli. 

Whilst in some research, simultaneous versus sequential stimulus presentation appears to 

have no major impact upon span (Cowan, AuBuchon, Gilchrist, Ricker & Saults, 2011), the 

nature of the task demand does change significantly, particularly if the recall requires correct 

serial order (Avons, Ward & Melling, 2004; Jones, Farrand, Stuart & Morris, 1995). There is 

perhaps the requirement for more controlled attention as the representation is updated after 

each event. Extensive research has suggested that with sequential presentation of visuospatial 

material the typical recency effect is restricted to the last item (e.g. Avons et al., 2004; 

Phillips & Christie, 1977). An argument made by Phillips and Christie is that recency item 

and pre-recency items reflect short-term and long-term memory representations respectively. 

Interestingly, in the context of child studies, Phillips and Christie noted that the single item 

recency occurs with short and long lists, the shorter length necessarily being employed in 

child studies. The presence of this recency component in sequentially presented protocols is 

evident in the Hitch et al. (1988) study. Whilst in adults, the retrieval context, backward 

retrieval or probed stimulus does not necessarily influence task performance (Phillips & 

Christie, 1977); the retrieval protocol with young children may be more problematic. Hitch et 

al. (1988, study 2) demonstrated that forward or backward recall of sequentially presented 

stimuli substantially impacted upon the serial position curve (SPC), the recency effect almost 

completely disappeared with forward recall in both the 5 and 10-year old groups. This would 

suggest that the short term component of visual memory is minimised in the forward recall 

protocol. In addition Hitch et al. noted (study 3) that visual retroactive interference had its 

major effect predominantly upon the recency item. Thus, with children, investigation of a 

visual representation in short term memory may be seriously compromised by forward recall 

within a sequential presentation protocol. 

The initial developmental research literature discussed above focused upon tasks such as 

visual matrices, Corsi blocks and visual arrays where the explicit verbal characteristics of the 

stimuli are minimised, thus, it could be possible that in these tasks, verbal recoding is 

minimised. However, even with the VPT stimuli, verbal semantics can be employed to give 

meaning to the black and white cell configurations (Brown, Forbes & McConnell, 2006). It is 

clear from a range of paradigms that participants will attempt to reduce the complexity of the 

stimulus by organising and chunking the stimuli in order to give more meaning in the form of 

verbal and visual semantics to the pattern. Sun, Zimmer and Fu (2011) identified two 

elements associated with complexity in visual patterns; physical complexity associated with 

low level or perceptual cues explicit in the pattern and perceived complexity associated with 

the relevant expertise brought to the study by the participant, this would include the notion of 

visual and verbal semantics identified above. Research has established the importance of low 

level cues in the form of symmetry, grouping, and configuration upon VSWM task 

performance (e.g. De Lillo, 2004; Kemps, 2001; Rossi-Arnaud, Pieroni, Spataro & Baddeley, 

2012). Whilst it is possible that these low level cues could be utilized effectively early in 

child development, the strategic utilization of verbal and visual LTM semantics is likely to 

demonstrate progress through childhood.  

Although it has been suggested in adults that verbal interference does not necessarily 

impair VSWM task performance (Morey & Cowan, 2004), Palmer (2000) has  argued that in 

children the use and integration of visual and verbal information in VSWM task performance 

was likely to arise though attentional processes. The integration of features within or between 
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modalities may be considered to be a primary or primitive role of an executive process ‘dual 

task’ function (e.g. Baddeley, 1996), however there is evidence to suggest that the efficacy of 

some elements of binding increase through childhood (Brockmole & Logie, 2013; Cestari et 

al., 2006).  

 

 

Issues in Identifying VSWM Capacity Changes in Childhood 
 

The content immediately above has highlighted some of the putative issues when trying 

to understand what changes in VSWM task performance in children. This section will focus 

upon research which has attempted to disentangle the potential factors underlying VSWM 

task performance in children. 

A starting point is to consider how and where attentional processes could contribute to 

VSWM task performance. If working memory is seen as a workspace, where content is 

interpreted prior to entry into VSWM, then attentional processes could potentially constrain 

the entry process into VSWM; an encoding impact. Vogel, McCollough and Machizawa 

(2005) provided evidence in adults that a key process in working memory efficacy is the 

inhibition of (goal) irrelevant stimuli, so preventing them from loading working memory. 

Cowan et al. (2006) would have labelled this a control of attention process. The focus of 

attention (see Figure 2a) would act to maintain a number of activated items or chunks; Cowan 

et al. labelled this aspect the scope of attention, and is at work during the maintenance phase 

of working memory. However, other attentional processes could also be at work during the 

retention phase, organising the information, e.g. forming complex chunks informed by both 

visual and verbal semantics, and these could be considered further attentional control 

processes. The presence of such control processes may lead to an overestimate of the scope of 

attention (Cowan, 2010) In addition, there is also potential for attentional influences at the 

point of retrieval, both in terms of the retrieval processes per se (Unsworth & Engle, 2007) 

and the retrieval context (e.g. single probe versus full screen recognition, Wheeler & 

Treisman, 2002). It could be argued that the impact of the retrieval context is less considered 

in the research literature than the other two phases of the working memory task process.  

Recent work by Cowan et al. (2011) has attempted to disentangle the contribution of 

encoding and capacity in VSWM development. These authors established a procedure 

whereby children had to allocate attention to a subset of objects (e.g. circles over triangles) 

within an array. This manipulation allowed the authors to consider what proportion of target 

stimuli were maintained and the number of non-targeted stimuli remembered, the latter an 

indication of inefficient attentional filtering at encoding. The study employed three age 

groups, 6-9 years, 11-13 years, and 18-21 years. The results suggested that the relative 

attentional filtering efficiency of the youngest age group was equivalent to that of the adult 

group. However, despite the lack of age difference in this attentional control process, there 

was an age associated improvement in the task performance. The authors interpreted this as 

indicating an improvement in the visual memory capacity of the children, i.e. an increase in 

the scope of attention. It is difficult to consider where in the Visual Patterns Test, Corsi task, 

or in the original Luck & Vogel (1997) visual array protocol, an inhibitory filtering process 

would be as important for task performance, as all of the information presented is meant to be 

remembered and retrieved. However, there may be a temporal constraint within the encoding 

process associated with attentional disengagement (Fukuda & Vogel, 2011) and should this 
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occur in a child context with brief presentation times then performance in any VSWM task 

will suffer. 

An important characteristic employed in the Cowan et al. (2011) study was the use of 

verbalization in some of the conditions, either the target object’s colour was identified, or the 

child had to say ‘wait’ after each item was presented. The former condition, naming the 

colour, could be seen as a way of implicitly cueing the participant to consider the use of 

verbal labelling, and indeed in both child groups led to an improved k-capacity score. 

However the ‘wait’ utterances manipulation was viewed by the authors as a protocol 

mimicking articulatory suppression, and indeed in all 3 age groups this reduced the span 

level. These results suggest that even with nonverbal stimuli, verbal semantics can be 

employed by children, but more importantly for the authors, that in the absence of these 

phonological labels, capacity continued to increase through childhood. It is clear that in the 

VPT, Corsi and Luck and Vogel protocols, the presence of verbal semantics could inflate 

performance. 

Perhaps more important for these conventional VSWM protocols is the extent to which 

visual, verbal, and configurational cues could lead to elaborated organization and chunking in 

order to reduce the visual complexity, a process of compression (e.g. Kemps, 2001; Rossi-

Arnaud et al., 2012). This would lead to improved VSWM task performance, not necessarily 

because of an increase in the scope of attention, the number of chunks, but rather that 

compression has led to a richer quality, i.e. more information within the chunk. Research by 

Cowan, Hismjatullina et al. (2010) has attempted to disentangle the contribution of capacity 

and compression processes to changes in VSWM performance in children. In their 

experimental protocol, pictorial stimuli were initially associated as pairs or triplets (as 

opposed to singletons) in a familiarisation phase prior to becoming elements of a memory 

procedure. The results suggested that the extent to which adults developed rich (compressed) 

chunk representation was greater. However, whilst controlling for this improvement the 

authors were able to observe that from the 8 year-old group to adulthood, there was an 

increase in the number of chunks that were utilized, thus capacity was still improving. This 

was also the case when compared with adults who were subject to articulatory suppression. 

Therefore, although visual (and verbal) semantics can improve VSWM task performance 

through improving the richness or quantity of information within a chunk, the scope of 

attention independently shows developmental improvement. 

This suggests that in the matrix stimuli of Kemps (2001) and Rossi-Arnaud et al. (2012) 

and the Luck and Vogel (1997) array formats, there is scope for some development of chunk 

compression efficacy through childhood, potentially inflating an accurate measure of 

capacity. This is more clearly seen in the performance of children in the conventional VPT 

task where by the age of 5 years, children are remembering more black cells than the typical 

adult visual memory capacity level (see Figure 3 above). What is required in all of this 

developmental research is the development of protocols where chunk compression efficacy 

can be identified and a distinction made between perceptually driven visual organisation 

(physical complexity in the pattern) and perceived complexity (Orme & Hamilton, submitted; 

Sun et al., 2011), where on-line compression activity may occur in the absence of explicit 

LTM priming which was the case in the Cowan et al., (2010) study. 
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Beyond a Quantitative Approach to VSWM Development 
 

The emphasis in much of the conventional VSWM research identified above and in the 

pictorial stimuli research has been upon the VSWM capacity or scope of attention associated 

with child development. This quantitative approach has been complemented by research 

which has looked at how children may recruit any cognitive resource pertinent to task 

completion. This research has made use of the functional architecture of working memory, 

whereby processes endogenous to, or exogenous to working memory may be recruited 

(Baddeley, 2000; Hamilton et al., 2003). This research has adopted a more qualitative 

approach, a consideration of which process contribute to task performance and is seen in 

many of the studies discuss above. Examples are where phonological representation is 

explored (e.g. Hitch et al, 1988), attentional control processes are examined (e.g. Cowan et 

al., 2011) or the contribution of retrieval from secondary memory is considered (e.g. 

Hamilton et al., 2003). 

A further qualitative approach to investigating short term visual memory has been 

adopted which emphasises the nature, rather than the quantity, of the representation. An 

approach which assesses the quality, high fidelity and fine detail maintained in the 

representation (Hamilton, 2011). The protocol may involve a change detection paradigm 

where the memory stimulus is initially presented then a subsequent stimulus only differs by a 

very small degree. The participant has to judge whether a change has occurred or not. In the 

Thompson, Hamilton et al. (2006) study, the Size JND procedure employed such a protocol. 

The memory stimulus was a single yellow square, at test, another yellow square was 

presented during retrieval and this stimulus this could be either the same size or a different 

size; however the size difference could vary in steps from 40% to 5%. In order to detect a 

change of 5%-10% the participant would have to maintain a high fidelity representation of the 

initial memory stimulus. In the Thompson et al study, a delay of 4 seconds between memory 

and test item led to a performance level of 15%, i.e. for most participants, a smaller change of 

5% or 10% was beyond the quality of their representation. Such high fidelity representation 

was also explored by Dean (2007), Dent (2010), and McConnell and Quinn (2004) with 

texture, colour and size attributes respectively. A consistent observation in these studies has 

been the impact of Dynamic Visual Noise (DVN) interference upon the performance. This is 

an interesting observation given that DVN interference does not appear to impact upon VPT 

performance (e.g. Andrade, Kemps, Werniers, May & Szmalec, 2002). 

This qualitative/quantitative distinction has also been employed in the Luck and Vogel 

(1997) change detection protocol. Thus in a categorical change context, an item in the array 

may change from a face stimulus at encoding to a cube stimulus in the test phase. In contrast, 

in a within-category change context, where high fidelity representation is required, a memory 

item such as a face may at test be another face, thus requiring high quality representation of 

the original face to be remembered (Scolari, Vogel, Awh, 2008). The use of such protocols 

has led to a debate about capacity in VSWM and the extent to which the need for high fidelity 

representation may constrain the number of integrated objects held within working memory 

(see Alvarez & Cavanagh, 2004; Awh, Barton & Vogel, 2007;  Bays, Gatalo & Husain, 

2009). However, for the purposes of the present chapter, it is interesting to note that this 

qualitative approach, assessing the high fidelity quality of visual memory, has been employed 

in a developmental context. 
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Figure 6 below indicates recent observations by Bull, Hamilton and Pearson (2007) 

which looked at developmental changes across two child age groups (5-8, 9-12) and an adult 

group in three tasks, the Size JND/Colour JND (collapsed score), VPT and Corsi task. The 

figure indicates a clear pattern of developmental fractionation, with significantly less age 

associated change in the JND task performance than in either the VPT or Corsi tasks. This 

suggests that in the younger children performance in this task is relatively mature. A recent 

study has further examined the quality of representation in children. Heyes, Zokaei, van der 

Staaij, Bays and Husain (2012) adopted their adult protocol for use with children. This study 

looked at changes in the precision of memory for orientations, with either 1 bar or 3 bar 

(sequential presentation) stimulus conditions. The procedure did not employ a change 

detection protocol, at retrieval a single probe identified the bar to match and participants 

employed a rotating dial to match the bar with the cued memory item orientation. The quality 

of representation was measured by identifying the discrepancy in orientation between the 

memory and rotated test item. This study revealed a number of interesting observations.  

Precision of the representation increased from 9 to 13–years of age, both in the 1–item 

and 3-item conditions; however the 1-item fidelity was much greater than in the 3-item 

context (Heyes et al, Figure 2, p533). However, given that the 3-item condition involved 

sequential presentation, and a consideration of the issues in sequential presentation which 

were identified above, a qualification of the interpretation may be needed. However, the 

authors present the SPC data (Figure 3) and a strong single item recency effect is seen, much 

like the Hitch et al, (1988) and the Phillips and Christie, (1977), pattern of results. Thus, a 

collapsed 3-item figure perhaps obscures the more informative pattern. The authors 

interpreted their findings as support for a single resource model where the demands for high 

resolution demands will impinge upon the number of discrete chunks or objects which can be 

maintained within VSWM. One potential interpretation of the recency item effect in these 

studies is that the most recent item is under a highest level of activation within a narrow focus 

of attention able to maintain high resolution of the image, and the pre-recency items under a 

broader focus of attention where high fidelity cannot be maintained but still be higher than 

chance levels (Oberauer & Hein, 2011). 

Hamilton (2011) has argued that tasks such as the Heyes et al. (2012) task which require 

high resolution, high fidelity representation, may require cognitive resources in the form of 

visual attention or visualization which are exogenous to working memory processes. He has 

argued, on the basis of recent research, that the maintenance of high fidelity representation is 

a consequence of top down visual attention processes acting on a derivative of perceptually 

driven activity in visual cortex (Berryhill, Chein & Olson, 2011; Gazzaley & Nobre, 2011; 

Serences, Ester, Vogel & Awh, 2009; Sergent, Ruff, Barbot, Driver & Rees, 2011; Todd, 

Han, Harrison, & Marois, 2011). As such, these high quality representations are unlikely to be 

supported by either visual or verbal LTM semantics, and thus have no (stable) place in the 

working memory workspace which is reserved for objects already bound and integrated by 

LTM interpretation (Cowan, 1988; Logie, 1995). Evidence from converging cognitive 

paradigms was employed to support this distinction. DVN impairs high fidelity 

representations (Dean, 2007; Dent, 2010; McConnell & Quinn, 2004) in the absence of an 

impact upon a conventional VSWM task, the VPT (Andrade et al., 2002; Hamilton, 2011). In 

addition, when allocation can be given to VPT maintenance, there is temporal stability, 

however even when allocation is allocated to representing high resolution information, the 

quality of the representation diminishes (Orme & Hamilton, submitted; Thompson et al, 
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2006).There are further implications with the use of these tasks within a developmental 

context.  

 

 
Bull Hamilton and Pearson ESRC Figure 6 

Figure 6.  Developmental fractionation in quantitative measures of visuospatial working memory (VPT,     

                Corsi               ) and collapsed qualitative measures of short term visual memory (Size/Colour 

JND              ). 

Should the high fidelity representation be pre-categorical in nature, how does the 

development account of passive rehearsal followed by active refreshment relate to 

improvements in task performance (Camos & Barrouillet, 2011, Tam et al., 2010)? It is 

unlikely that any form of verbal embellishment and thus unlikely verbal rehearsal will 

underpin performance on these tasks, the nature of these tasks lend themselves to a visual 

(only) refreshment process. In addition, Heyes et al. (2012) noted a relationship between 

precision quality and intelligence task performance. This is in contrast to the adult findings 

reported by Fukuda, Vogel, Mayr and Awh (2010) where a categorical change, i.e. a 

quantitative measure, is more predictive of fluid intelligence measures. Thus, it may be the 

case that in a child research context, the attentional processes associated with visualization 

have more importance in the relationship with wider cognitive abilities. 
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CONCLUSION 
 

It is clear in the content above that there is incongruence between the visuospatial 

material employed in a child developmental VSWM research context and the nature of the 

cognitive resources employed to respond to the task demands. In a task which involves the 

short term presentation of visuospatial material (on the surface), a complex and diverse range 

of cognitive resources may be employed, and their deployment and impact appear to be age 

associated. 

Generic processes clearly exogenous to working memory such as processing speed, 

impact upon task performance in children, and age related improvements in processing speed 

may free up cognitive space (e.g. Case, 1982), minimise the decay of information in VSWM 

by allowing a quicker return to the re-activation of decaying traces (e.g. Towse et al., 1998), 

or allow greater opportunity for refreshment of the memoranda throughout the procedure (e.g. 

Barrouillet et al., 2004).  

The application of verbal semantics and the increasing use of phonological resources in 

tasks demanding VSWM also develop through childhood, and this change in strategy may be 

seen as the hallmark characteristic of child development (Cowan & Alloway, 2008). One 

would presume that in parallel to the increasing strategic deployment of verbal semantics 

through childhood, a parallel improvement occurs with visual semantics; such a process 

would contribute to the enrichment of chunk representation, impacting directly on the 

compression process (Cowan et al., 2010). The increasing use of strategy and semantics is 

presumed to make demands upon attentional resources; these controlled processes may 

impact, during the encoding, maintenance, and retrieval phases of a VSWM task protocol. 

Hamilton et al. (2003) argued that in order to disentangle these processes one may 

employ “...a task-analysis or componential-oriented approach.” p66. This is clearly 

exemplified in the work of Cowan and colleagues (2010, 2011) where discrete attentional 

control processes at encoding and maintenance were controlled in order to identify 

developmental changes in the scope of attention or capacity of VSWM. Another way forward 

is to adopt a qualitative approach and consider visual short term memory for high quality 

representation, where the usefulness of visual and verbal semantics is necessarily constrained 

(Bull et al., 2007; Heyes et al., 2012). 

However, should working memory in general, and more specifically visuospatial working 

memory function within the notion of a workspace where available functional architecture 

scaffolding is critical, then perhaps the most important question concerning child 

development should not address the development of specific cognitive resources, but more 

the increasing utilisation of the wider cognitive resources through childhood. 
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