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Summary 

Extreme soil water repellency can have substantial implications for soil hydrology, plant growth and 

erosion, including enhanced splash erosion caused by raindrop impact. Previous studies of water 

droplet impact behaviour on man-made super-hydrophobic surfaces, with which water-repellent soil 

shares similar characteristics, revealed three distinct modes of splash behaviour (rebound, pinning and 

fragmentation) distinguished by two transition velocities: rebound-to-pinning (vmin) and pinning-to- 

fragmentation (v*). By using high-speed videography of single water droplet impacts we show that 

splash behaviour is influenced by the hydrophobicity of immobile particles, with hydrophobic glass 

spheres exhibiting all three modes of splash behaviour in the hydrophobic state but hydrophilic spheres 

exhibiting solely pinning behaviour. We found that increasing the particle size of fixed glass spheres 

increases vmin. A study of droplet impact on hydrophobic sand shows that the increased roughness of 

the immobile particles makes impacting droplets more likely to fragment at slower impact velocities. 

The mobility of the particles influenced droplet impact behaviour, with loose, hydrophobic particles 

displaying significantly greater vmin values than their fixed analogues. The surface tension of the water 

droplet also lifted loose, hydrophobic particles from the surface, forming highly mobile ‘liquid 

marbles’. Water-repellent soil was also shown to form ‘liquid marbles’ at both the slow (approximately 

0.3–2.1 m s
−1

) and fast (about 7 m s
−1

) droplet impact velocities studied. The observation of very 

mobile liquid marbles upon water droplet impact on water-repellent soil is significant as this provided a 

mechanism that may enhance erosion rates of water-repellent soil. 
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Introduction 

Water-repellent behaviour is a common feature of many soils under a wide range of land uses, and 

occurs in susceptible soils when their water content is less than a soil-specific threshold (Dekker et al., 

2001; Doerr et al., 2006). The primary implications of this behaviour from a soil physics perspective 

include: (i) reduced infiltration rates and a corresponding increase in the likelihood and amount of 

infiltration-excess (Hortonian) overland flow; (ii) more spatial variability in infiltration and soil 

moisture retention, causing an uneven distribution of soil moisture; (iii) enhanced surface erosion aided 

by the increase in overland flow and (iv) greater susceptibility to wind erosion caused by drier soil 

conditions and reduced cohesion of soil particles (DeBano, 2000; Doerr et al., 2000). Such reduced 

infiltration can also have secondary effects, such as hindering the germination and growth of vegetation 

(DeBano, 2000; Doerr et al., 2000; Hallett et al., 2004). A range of approaches to ameliorate more 

extreme forms of water repellency has been developed (Mueller & Deurer, 2011). Soil is classed as 

extremely water repellent when water droplets placed on the soil surface do not infiltrate within 1 hour 

(water drop penetration time (WDPT) test (Bisdom et al., 1993)) or a solution with an ethanol 

concentration of > 24% is required to allow droplet penetration within 3 s (Molarity of an Ethanol 

Droplet (MED) or %ethanol test (Dekker & Ritsema, 1994; Doerr et al., 1998)). MED tests have also 

been used to show that the particle size and arrangement of close packed, hydrophobic glass spheres 

influence the penetration of liquid into the bead bed (Hamlett et al., 2011). 

Most common soil minerals are naturally hydrophilic and the presence of organic compounds with 

hydrophobic properties is required to render a mineral particle surface water repellent (Doerr et al., 

2000; Ellerbrock et al., 2005; Atanassova & Doerr, 2010). The interplay between the intrinsic water 

repellency of the surface chemistry of the water repellent soil particles and their complex, rough 

topography (both of the soil matrix and of the individual particles) that is believed to induce extreme 

water repellency (McHale et al., 2005; Shirtcliffe et al., 2006; McHale et al., 2007; Bachmann & 

McHale, 2009) and is believed to play a key role in enhanced soil erosion when rainfall occurs (Terry 

& Shakesby, 1993). By displaying a combination of intrinsic chemical hydrophobicity and a rough 

topography water repellent soil lends itself to comparisons with superhydrophboic surfaces (Roach et 

al., 2008) and previous studies of water droplet impact on such surfaces (Reysatt et al., 2006; Tsai et 

al., 2009) have identified three regimes of velocity-dependant droplet behaviour, which are rebound, 

pinning and fragmentation. The transition velocities between the different droplet impact behaviour 

regimes occur at low impact velocities (< ~ 2 m.s
-1

) compared to that of rainfall (9 - 13 m.s
-1

) (Beard, 

1976). Although a similar effect has been argued to occur to granular, porous hydrophobic materials 

like some soils, a direct observation of the phenomenon has yet to be conducted. 

This study presents a step-wise investigation linking studies on ‘ideal’ (super)-hydrophobic 

surfaces (Reyssat et al., 2006; Tsai et al., 2009; Lee & Lee, 2011) to water-repellent soil. Our approach 

is to compare the impact behaviour of individual water droplets on granular systems at impact 

velocities similar to those previously studied on super-hydrophobic surfaces (< about 2 m s
−1

) and 

extend this to faster impact velocities about 7 m s
−1

) which are much closer to the slower terminal 

velocities of raindrops. The influence of the intrinsic chemical hydrophobicity of fixed glass spheres on 
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single water droplet impact behaviour is presented along with the effect of particle size of fixed, 

hydrophobic glass spheres on the droplet impact transitions. This study is then extended to examine 

differences of the transition velocities between fixed and loose glass spheres. Subsequently, the droplet 

impact behaviour on treated sand was studied to investigate the influence of the effect of particle shape 

on the transition velocities. 

The aims of this study were to (i) investigate the various factors that influence the behaviour of 

water droplets upon impact on water-repellent and wettable particulate matter and (ii) to explore 

whether glass particles can provide a realistic model for naturally occurring highly water-repellent soil. 

Materials and methods 

This study involved preparing hydrophilic and hydrophobic samples of both glass spheres and sand. 

The samples were then prepared for testing by either immobilizing a single layer of particles on glass 

microscope slides (fixed samples) or by pouring the particles into a holder (loose samples). The impact 

behavior of single water droplets on the samples were investigated using high speed videography. Prior 

to the droplet impact experiments the effect on water repellency of the surface treatments were 

determined either by contact angle analysis, on fixed, single layers of particles or on flat microscope 

slides, or by MED tests on loose, multilayered particle samples. The methods used to measure water 

repellency will be described first. 

 

Determination of the degree of water repellency 

Contact angle analysis was carried out on hydrophobic and hydrophilic glass microscope slides and on 

fixed hydrophobic glass spheres using a Krüss DSA 10 contact angle meter and analysed using Krüss 

DSA software. The (observed) static contact angle (θ) was measured by placing a water droplet (15 µl) 

on a surface. The volume of the droplet was then increased and decreased to measure the advancing 

(θA) and receding (θR) contact angles, which are the contact angles at which the solid-liquid-vapour 

interface point just begins to advance and recede respectively. We note that these observed contact 

angles differ from the Young’s law contact angle, which is often referred to in the wetting literature. 

This intrinsic contact angle is defined from a combination of the solid-liquid, solid-vapour and liquid-

vapour interfacial tensions and represents the surface chemistry of the solid (with or without surface 

treatment) of an individual particle (see, e.g., McHale & Newton, 2011).  

The MED or % ethanol test (Dekker & Ritsema, 1994; Doerr et al., 1998) was used to determine the 

severity of water repellency for the samples consisting of loose particles.  The test involved 

determining the ethanol concentration required in droplets placed on the sample surface to penetrate 

within 3 s. Concentrations used were 0 and 3 % (wettable), 5% (slightly-), 8.5% (moderately-), 13% 

(strongly-), 24% (very strongly-) and 36% (extremely water repellent) (Doerr et al., 1998).  The test 

was carried out on 5 subsamples each, with each test for the beads, sand and soil samples falling into 

the same respective %ethanol category (see Tables S1-4 for results of MED/ % ethanol tests). The 

MED/ % ethanol test was not an appropriate for water repellency severity of single layers of fixed glass 
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spheres as the single layer had insufficient depth to allow drop penetration. Therefore, the contact angle 

method was used to clarify the hydrophobicity of the surface treatments carried out on the particles 

used to make single layered samples. 

Preparation of glass spheres  

Spherical glass spheres (General purpose glass microspheres, Whitehouse Scientific) of various sieve 

fractions in the range 32 – 212 μm range (sieve sizes: 32-45, 63-75, 75-80, 80-90, 90-106, 125-140 and 

180-212 µm) were passed through sieves (stainless steel wire mesh test sieves - Endecotts) of various 

aperture sizes (50, 75, 80, 90, 106, 112, 125, 150, 180, 212 and 250 μm) to obtain the sieve fractions 

listed in Table 1. The particles were then immersed in 30 vol% hydrochloric acid (HCl) (diluted from 

36% HCl, Fisher Scientific, UK) for 24 hrs, rinsed with copious amounts of water (resistivity = 18 

MΩ.cm
-1

, which was used throughout), dried for 4 hrs at 110 °C and allowed to cool to room 

temperature.  

 

 

Table 1. Contact angle data of fixed layers of hydrophobic particles. The contact 

angle data shown is the average of seven measurements, standard deviation is shown 

as the error. 

In order to render samples hydrophobic and loose, they were then immersed in ‘Extreme Wash In’ 

solution (Grangers, Alfreton, UK) (5 % v/v solution in water) for 30 minutes and then dried at 80◦ C 

for 4 hours. 

Preparation of sand and soil samples 

Natural sand, taken from fluvial deposits in Swansea Bay (51
o
 36’ 19”N, 3

o
 58’ 58” W) was sieved to 

obtain the 180–212μm sieve fraction to allow later comparisons with glass beads of the same sieve 

fraction. The sand was then immersed in HCl (3% v/v in water) for 16 hours, then rinsed with copious 
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amounts of water and immersed in HCl (3 % v/v in water). After 3 hours, the concentration of HCl was 

gradually increased to 30 % v/v in water and the sand was left in the HCl for 1 hour at room 

temperature. The sand was then rinsed with water (3×100 ml), 5 m KOH solution (3×100 ml) and water 

(3×100 ml) and immersed in HCl (30 % v/v in water) for 16 hours, then rinsed with water (5×50 ml) 

and dried for 3 hours at 80◦ C. 

 

The sand was rendered hydrophobic by immersion in ‘Extreme Wash In’ solution (Grangers) (5 % 

v/v solution in water) for 30 minutes and then dried at 80◦ C for 4 hours. The sand was extremely water 

repellent according to the MED/% ethanol test described earlier. A 36% ethanol solution did not 

penetrate the sample within 3 s. This material was used as a simple model analogue for a sandy water-

repellent soil with a narrow particle size distribution. In addition, naturally water repellent surface soil 

material (Humic Cambisol of sandy loam texture), was taken at 0-5 cm depth from a dense Eucalyptus 

globulus plantation over granitic bedrock in northern Portugal (41°26’06’’ N, 8°15’34’’ W). This soil 

sample was air dried, but otherwise untreated, to provide a naturally water repellent soil material in 

drop impact experiments.  It was very strongly water repellent, requiring a 24% ethanol solution for 

drop penetration (see % ethanol test below). Soil solution pH was 5.4, as determined with a Hanna 

portable pH meter using 5 g soil in 25 ml of distilled water.  

 

 In addition, naturally water-repellent surface soil material Humic Cambisol of sandy loam texture) 

was taken at 0–5 cm depth from a dense Eucalyptus globulus Labill. plantation over granitic bedrock in 

northern Portugal (41
o
 26’ 06” N, 8

o
 15’ 34” W). This soil sample was air-dried, but otherwise 

untreated, to provide naturally water-repellent soil material. It was very strongly water repellent, 

requiring a 24% ethanol solution for drop penetration see % ethanol test later). Soil solution pH was 5.4, 

as determined with a portable pH meter (Hanna, Leighton Buzzard, UK) with 5 g soil in 25 ml of 

distilled water. 

Preparation of particulate samples for impact testing 

To prepare layers of fixed particles loose, hydrophilic particles (either glass spheres or sand particles) 

were first placed in a petri dish and then a glass microscope slide, which had been coated with a thin (~ 

20 μm thick), tacky layer of polyurethane adhesive (1A33, Humiseal), was pressed into the top of the 

loose bed of particles. The microscope slide was then removed, having lifted a layer of particles from 

the loose bed, and cured at 80 °C for 16 hrs to set the adhesive during which time the adhesive does not 

migrate from  the microscope slide and up the sides of the glass spheres. At this stage the samples are 

ready to be used as fixed, hydrophilic particles. For the preparation of fixed, hydrophobic samples, the 

particle loaded glass microscope slides were then immersed in ‘Extreme Wash In’ solution (Grangers) 

(5 vol% in water) for 30 mins and then dried at 80 °C for 4 hrs. 

Loose particulate samples were prepared by cutting out equilateral triangular frames (with 

length of side of 15 mm) from 440 µm thick acetate sheet, which were then glued to a glass microscope 

slide using polyurethane adhesive (1A33, Humiseal). Two further acetate frames were glues on top of 
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the base frame with polyurethane adhesive (1A33, Humiseal) and then cured at 80 °C for 16 hrs. The 

loose particles were then poured into the frame and tapped down by resting a microscope slide on top 

of them; this was then removed prior to the droplet impact experiments. 

Drop impact experiments 

For slow impact velocity experiments (v≤about 2.1 m s
−1

 ) the sample and syringe needle were 

enclosed in an acrylic box in order to minimize air flow (Figure S1). The needle was attached to a 

water-filled syringe, located outside of the box, by plastic tubing and mounted between two clamp 

stands. The clamp stands were marked to indicate the needle tip-to-sample distance in order to facilitate 

measurement of the transitional droplet heights (hmin and h*) corresponding with drop impact 

behaviour (the rebound to-pinning and pinning-to-fragmentation transitions, respectively, as described 

in Results and Discussion). The needle tip-to sample heights were converted into transition velocities 

using the equations of a calibration curve (Figure S2). 

In order to control the size of the droplet, separate flat ended syringe needles of two different 

gauges were used to deliver droplets of two different droplet volumes, with 20G and 26G needles used 

to dispense droplets with volumes of about 6 and 3 μl, respectively. Fourteen recordings were made of 

each combination of drop height and particle size and for at least two droplet heights of 0.5-cm 

increments either side of the relevant transition height. The maximum drop height possible in this 

system was 30 cm, which was high enough to provide sufficient impact velocity to observe 

fragmentation, thus both transition velocities, for all samples studied. However, the impact velocities 

studied with such a system (v ≤ about 2.1 m s
−1

) are far slower than those of a raindrop impacting soil 

at terminal velocity (9–13 m s
−1

) (Beard, 1976), but may be comparable to impacts of drops reaching 

the ground from some irrigation systems or following interception by vegetation. 

 For the greater velocity droplet impact experiments droplet heights of ~3.5 m were used and 

these achieved typical impact velocities of 7 m.s
-1

. For such experiments a water filled syringe was 

fixed to the banisters of a stairwell and the droplet was dropped onto the particulate bed below. The 

droplet volume was ~ 10 μl and the impact velocity using this setup were ~7 m.s
-1

, which are 

comparable to the terminal velocity of a water droplet of 0.27 cm diameter in stagnant air which is 7.7 

m.s
-1

 (Gunn & Kinzer, 1949). 

The droplet impacts were recorded using a Hotshot 512SC high speed camera (NAC Image 

Technology, Birmingham, UK); the sample was back lit using a 30 W warm-white LED floodlight. 

High-speed videos were recorded at 4000 frames per second unless otherwise stated) using a 105 mm 

F2.8 EX DG Macro lens Sigma, Welwyn Garden City, UK). An external trigger button was used to 

record the high-speed video just after a single droplet had been released from the needle. The data were 

processed using HotShot HSSC Link v1.1 software (NAC Image Technology). 
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Results and discussion 

Water droplet impact transitions 

Impacts of individual water droplets on hydrophobic surfaces at low velocities allow identification of 

three distinct regimes of droplet behaviour (Figure 1): droplet rebound, droplet pinning and droplet 

fragmentation (Reyssat et al. 2006; Tsai et al. 2009). The droplet rebound regime occurs at droplet 

impact velocities below a critical value (vmin, Figure 1a i). At velocities above this (v > vmin) the droplet 

becomes pinned to the surface (Figure 1a ii). At higher impact velocities (v > v*) droplet fragmentation 

occurs and the critical velocity for the onset of such droplet behaviour is defined here as v* (Figure 1b).  

 

Figure 1 High speed camera images of droplet impact behaviour 

at (a) vmin and (b) v* transition velocities. 

Influence of hydrophobicity  

In order to investigate the effect of particulate hydrophobicity on splash behaviour, glass spheres, 

rendered hydrophilic, were used to form fixed arrays on glass microscope slides; half of these arrays 

were hydrophobic. Glass microscope slides treated in the same manner as the arrays of glass spheres 

confirmed the hydrophilic and hydrophobic states by displaying static water contact angles (θ) of about 

0 and 117.0
o
, respectively.  
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The hydrophobic particulate surfaces exhibited the three distinct droplet impact regimes with 

rebound behaviour (Figure 2a i) at the smallest impact velocity studied (~0.3 m.s
-1

) and fragmentation 

(Figure 2a ii) at impact velocities of ~2.1 m.s
-1

. However, droplet impacts within the range of ~0.3 - 

~2.1 m.s
-1

 exhibited solely pinning behavior (Figure 2b). This observation shows the importance of the 

chemical nature of the particulate surface upon the impact behavior of water droplets.  

 

 
Figure 2 Water droplet impact behaviour on (a) 

hydrophobic and (b) hydrophilic fixed glass 

spheres (32–45-μm sieve range). 

 

Although they exhibit solely pinning behaviour on impact with fixed, hydrophilic glass spheres 

(Figure 2b), the shape and spread of the splash behaviour changed as the impact velocity increased 

Figure 2b). At an impact velocity of around 0.3 m s
−1

 the profile during impact was of a thicker droplet 

with a smaller liquid-solid interfacial area (Figure 2b(i)) than that at an impact velocity of about 2.1 m 

s
−1

. This observation is consistent with the findings of Roux & Cooper-White (2004), who reported that 

the thickness of the splash made by an impacting water droplet decreases and the solid-liquid 

interfacial area increases in order to dissipate the increased kinetic energy as the impact velocity 

increases. 
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Influence of particle and droplet size 

The diameter of the spheres that made up the fixed, hydrophobic samples influenced the droplet impact 

behaviour on the arrays. The critical velocity for the rebound-to-pinning transition (vmin) was dependent 

on both particle and droplet size (Figure 3), with vmin increasing as the particle size increased (Figure 

4). However, the standard error bars show significant overlap, which may result from defects in the 

particle packing. Rebound behaviour occurs when the gaps between particles are not completely filled 

by the impacting droplet, which is momentarily in a Cassie-Baxter state (Cassie & Baxter, 1944), as 

depicted by Figure 5(a). This state allows air pockets to remain within the gaps between surface 

features, allowing the droplet to completely rebound from the surface upon recoil (Reyssat et al., 2006). 

At velocities greater than vmin the pressure exerted by the impact in the shock envelope (Field, 1999) is 

enough to force liquid to fill and wet the inside of the gaps between the particles completely, forming a 

Wenzel state (Wenzel, 1936), as depicted in Figure 5(b). It is the transition between Cassie-Baxter and 

Wenzel states that occurs at the rebound-to-pinning transition velocity (Lee et al., 2010). In our system, 

as the diameter of the hydrophobic glass spheres increased, the depth of the gaps between features 

increased. Therefore, liquid must penetrate further into the gaps in order to achieve the Wenzel state 

needed for pinning. 

Previous work on ‘ideal’ super-hydrophobic surfaces (Reyssat et al., 2006) suggests a stronger 

dependence of vmin on feature size than we have observed. However, our system differs from the 

‘model’ super-hydrophobic systems described in the literature (Reyssat et al., 2006; Tsai et al., 2009), 

which tend to employ straight-sided, photo-lithographically defined pillar features. The particles that 

we have investigated are of similar size to the largest features studied by Reyssat et al. (2006) and also 

have a curved profile, in contrast to the simpler, straight-sided features of most ‘model’ super-

hydrophobic surfaces. The curved profile of the glass spheres results in a non-uniform distance that the 

wetting front must bridge as the wetting front advances through the pore. This distance decreases until 

it reaches a minimum at the throat of the pore, where greater pressure will be required to force the 

wetting front through the throat of the pore than to pass the top of the feature. This results in vmin 

having a stronger dependence on feature size for straight-edged features as, in theory, there will be a 

single threshold penetration pressure required for the transition from a rebound to a pinning state. 
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Figure 3 Graph showing vmin and 

v* of two drop sizes on fixed, 

hydrophobic glass spheres of 

different sizes (error bars show 

standard deviation). 

 

 

 

 

 

 

 

 

 

 

Figure 4 Graph showing vmin of two drop sizes on 

fixed, hydrophobic glass spheres of different sizes 

(error bars show standard deviation). 

 

 

Fragmentation behaviour occurs due to the liquid ‘pancake’ of the impacting droplet breaking up 

as a result of shock waves at high impact velocities due to either jetting from trapped air in surface 

features due to asperities ‘ripping’ the thin liquid layer (Rioboo et al., 2008). We observed that the 

critical velocity for droplet fragmentation (v*) exhibited no significant dependency on particle size, 

which is in agreement with previous work (Reysatt et al., 2006).  

Table 1 shows the static, advancing and receding contact angles of the various particle sizes of the 

fixed, hydrophobic particle beds. The advancing contact angle (θA) appears to be independent of the 
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particle size of the fixed, hydrophobic bed. Surprisingly though, the receding contact angle (θR), the 

relevant angle relating to the retraction of the droplet following its expansion upon impact, does not 

seem to correlate with the rebound-to-pinning transition (vmin). This, however, may be due to the large 

errors of the receding contact angle, possibly due to imperfections in the packing of the particles, 

masking any correlation of θR and vmin.  

The size of the water droplet appears to have an effect on the impact behaviour. Figure 4 suggests 

that the smaller droplet (~ 3 µl, depicted by the open triangles in Figure 4) exhibits greater rebound-to-

pinning transition velocity (vmin) than a larger droplet (~ 6 µl, depicted by the open circles in Figure 4) 

following impact on a textured surface of the same fixed particle size. However, the errors are too large 

to for any firm conclusions to be drawn regarding the effect of droplet volume on the impact behaviour. 

Influence of particle shape 

Fixed layers of hydrophobic sand and glass spheres were studied in order to investigate how the 

particle shape influences the droplet impact behaviour. The roughness of the sand grains in comparison 

to the glass spheres is evident in Figure 6 and this appears to influence the impact behaviour of 

individual water droplets. Water droplets displayed lower transition velocities when colliding with 

fixed, hydrophobic sand particles (vmin = 0.5 m.s
-1

; v* = 0.7 ± 0.1 m.s
-1

) than upon impact on fixed, 

hydrophobic glass spheres (vmin = 0.8 ± 0.1 m.s
-1

; v* = 2.0 ± 0.1 m.s
-1

) (Figures 5b and 5c). This 

observed decrease of transition velocities may be due to the sharper, rough topography of sand particles 

being more likely to pierce the flattened, expanded droplet (second image in both Figure 6b and c) 

compared with the smooth glass spheres. This is in agreement with the presence of asperities 

influencing droplet fragmentation as previously reported (Rioboo et al., 2008). 

 

Figure 5 A cartoon representation of the wetting front of a water droplet sitting 

on a textured surface in the (a) Cassie-Baxter and (b) Wenzel state. 

In the case of fixed, hydrophilic particles, the sharp, rough shape of the sand particles appeared to 

induce droplet fragmentation, though no droplet rebound, upon impact with fixed hydrophilic sand 

beds (v*= 1.8±0.1 m s
−1

), whilst the hydrophilic, fixed glass spheres did not exhibit pinning-to-droplet 

fragmentation over the range of drop impact velocities studied.. 

Loose particles  

Although fixed beds of particles provide a rigid structure for comparison with previous work on 

superhydrophobic surfaces (Reysatt et al., 2006; Tsai et al., 2009; Lee & Lee, 2011) a more realistic 

comparison to soils is to study loose particles that are not fixed to a glass microscope slide.  Droplet 
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impacts on loose, particles appears to result in an increase of the rebound-to-pinning transition velocity 

(vmin) with loose, hydrophobic glass spheres of 32-45 µm sieve size exhibiting a higher vmin (= 1.5 ± 

0.1 m.s
-1

) compared with the fixed analogue (vmin = 0.4 ± 0.1 m.s
-1

). This increase may be attributed to 

the droplet expending less energy recoiling on a loose surface than a fixed one due to the loose surface 

being able to deform in response to the impact of a droplet. The pinning-to-fragmentation transition 

seemed unaffected by whether or not the glass spheres were fixed (v* = 2.0 ± 0.2 m.s
-1

 for fixed 32-45 

μm hydrophobic glass spheres) or loose (v* = 2.0 ± 0.6 m.s
-1

 for loose, 32-45 μm hydrophobic glass 

spheres). This observation suggests that the velocities at which v* occurs results in a shock envelope 

(Field, 1999) that is too high for the particles to absorb via the rearrangement of mobile particles. Such 

forces cause droplet fragmentation regardless of whether or not the particles are mobile (Rioboo et al., 

2008). 

 

Figure 6 (a) Micrographs of fixed, hydrophobic sand and glass 

spheres and (b & c) images of drop impacts on fixed, hydrophobic 

sand and glass, respectively. 

 High speed camera images of single water droplet impacts on loose, hydrophilic glass spheres 

(Figure 7a) shows that upon impact the water droplet displaces some of the loose beads before 

imbibing into the loose particulate bed in less than 0.2 ms. However, water droplets impacting on loose, 

hydrophobic glass spheres behave in a much different manner (Figure 7b). Upon impact with the loose 

hydrophobic glass spheres the water droplet not only causes some loose particles to be ejected from the 
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impact zone (Figure 7b ii) but the recoiling droplet becomes coated with glass spheres (Figure 7b iii 

and 6b iv). The loose hydrophobic particles coat the impacting droplet due to the presence of an 

intrinsic water contact angle (i.e. the Young’s law one determined by the surface chemistry for water 

on a single glass particle) favouring attachment of particles, even hydrophobic ones, to the liquid-air 

interface and the individual particle not being bound to the surface (Figure 7b iii) forming a liquid 

droplet covered by hydrophobic particles (Figure 7b iv and v). Such particle-coated droplets are known 

as liquid marbles and they can freely roll around on the particle bed (Aussillous & Quéré, 2001; 

McEleney et al., 2009; McHale & Newton, 2011). Such liquid marble formation does not occur upon 

water droplet impact on loose hydrophilic glass spheres (Figure 7a). Therefore, the formation of highly 

mobile liquid marbles upon droplet impact on loose, hydrophobic particles represents a mode of 

particle transport that does not occur with hydrophilic particles and this observation may help to 

explain increased erosion rates of water repellent soil. 
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Figure 7 High-speed images of water drop impact on (a) hydrophilic glass spheres, 

(b) hydrophobic glass spheres and (c) a naturally water repellent soil. All video 

sequences are of a droplet impact velocity of about 0.9 m s
−1

. 

The impact behaviour of individual droplet impact on naturally very strongly water repellent 

Portuguese soil was studied and displayed similar transition velocities (vmin = 1.4 ± 0.4 m.s
-1

; v* = 1.8 

± 0.7 m.s
-1

) to that of 32-45 μm hydrophobic glass spheres (vmin = 1.5 ± 0.1 m.s
-1

; v* = 1.7 ± 0.1 m.s
-1

). 

Figure 7c shows that the water repellent soil can form liquid marbles in a similar mechanism to glass 

spheres (Figure 7b). The formation of liquid marbles occurs during fragmentation at the low impact 

velocities studied.  

 

Droplet impact behaviour at greater velocity 

In order to observe more realistic droplet impact behaviour, relative to a rainfall event, high impact 

velocity tests were carried out on loose hydrophilic and hydrophobic glass spheres and the water 

repellent Portuguese soil (Figure 8). The impact velocity of the water droplet was ~ 7 ms
-1

, which is 

comparable to the terminal velocity of raindrops of ~2.3 mm in diameter in stagnant air (Gunn and 

Kinzer, 1949).  

 

 The 7 m s−1 impact behaviours of single water droplets on loose hydrophilic and hydrophobic 

glass spheres (Figure 8a,b), first glance, appear to be similar. One apparent similarity of the droplet 

impacts is that both seem to yield liquid marbles Figure 8a(iii) and b(iii)). However, those in the 

hydrophilic case were not mobile, unlike those in the hydrophobic case, and were probably more 

encased by the fragmenting droplet than the hydrophobic beads, which were entrained on the droplet, 

forming true liquid marble. The mobility of liquid marbles formed by the droplet impact on the loose, 

hydrophobic glass spheres is evident by the observation of a dry crater remaining after the droplet 

impact (Figure 8b(vi)). This was caused by the mobile liquid marbles sliding over the surrounding 

particles, leaving only a small liquid marble trapped in the impact crater. The immobility of the ‘liquid 

marbles’ formed by droplet impact on hydrophilic particles is shown by the wet, ‘crusty’ crater formed 

at the impact site (Figure 8a(vi)), which results from the liquid droplet fragments being absorbed by the 

hydrophilic glass particle bed, leaving the encapsulated particles behind (Katsuragi, 2011). 

 

Droplet impact behaviour (at 7 m s
−1

) on the water-repellent Portuguese soil (Figure 8c) appears to 

be very similar to on hydrophobic glass spheres as it results in liquid marble formation and leaves a 

very similar dry impact zone after the droplet impact event. The observation that liquid marbles form 

during droplet impact on hydrophobic particles (Figures 7, 8b,c) and soil, but not upon droplet impact 

with hydrophilic particles (Figure 7b), is highly significant and may help to explain enhanced soil 

erosion rates that have been observed for water-repellent soil conditions (Doerr et al., 2000). The 

mobility of a liquid marble may present a soil transport mechanism that appears accessible to 

hydrophobic but not to hydrophilic particulate systems. However, further study of droplet impact 

behaviour on non-water-repellent soil would be required to confirm whether or not this is the case. 
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Figure 8 High speed images (recorded at 5000 fps) and photograph of the impact zone of high impact 

velocity (v=about 7 m s
−1

) water droplet impacts on (a) hydrophilic glass spheres, (b) hydrophobic glass 

spheres and (c) a naturally water-repellent soil. 
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Conclusions  

The aim of this study was to investigate water droplet I pact behaviour on water-repellent and wettable 

particulate matter and to determine whether or not water-repellent glass particles can provide a good 

model for naturally-occurring highly water repellent soil.   

The results show that: 

1. The hydrophobicity of the glass spheres is critical to the water droplet displaying the three regimes 

of impact behaviour. 

2. The behaviour of water droplets upon impact with fixed hydrophobic glass spheres is dependent on 

size of the particles themselves. 

3. Particle shape, of fixed hydrophobic surfaces, is also an important factor affecting the initial 

behaviour of the droplet on striking the surface. Rough, angular particles (such as sand) lead to 

droplet fragmentation with slower impact velocities  than those on smooth particulate surfaces such 

as glass spheres. However, droplet impact on loose sand grains was not addressed in this study; 

therefore the increased propensity for droplet fragmentation upon impact with rough particles may 

not be observed if the impact occurs on loose, rough particles caused by surface reconstruction, 

providing a means of energy dissipation. 

4. The cohesion of the particle bed (whether fixed or loose) affects droplet behaviour. This leads to a 

greater tendency of the water droplet to rebound from the extremely water-repellent surface and to 

gather hydrophobic particles on its surface as it does so, leading to the formation of highly mobile 

liquid marbles. 

5. Naturally strongly water-repellent soil behaves in a strikingly similar manner to beds of extremely 

water-repellent loose hydrophobic glass spheres, where the impact of an individual water droplet 

forms a coherent liquid marble capable of independent motion. This suggests that factors 

influencing drop impacts on model particles may provide a reasonable model for the response of 

water-repellent soil to such impacts. 

6. The formation of mobile liquid marbles, at droplet impact velocities approaching that of rainfall, 

could be a possible mechanism for increased soil erosion of water-repellent soils as the formation of 

mobile liquid marbles was not observed upon droplet impact on loose, hydrophilic particulate 

systems. 

We have demonstrated that chemically modified glass beads with a single level of water-

repellency have been shown to behave in a similar manner to soil of comparable hydrophobicity. 

Further work will study particulate systems with layers of varying degrees of water-repellency to 

investigate the importance that the degree of water repellency of sub-surface particulate layers has for 

droplet impact behaviour. 
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Supporting Information 

The following supporting information is available in the online version of this article: 

 

Table S1. Imbibition times measured during five repeated MED tests of loose Portuguese soil. 

Table S2. Imbibition times measured during five repeated MED tests of loose, hydrophobic sand (180–

212-μm sieve size). 

Table S3. Imbibition times measured during five repeated MED tests of loose, hydrophobic glass 

particles (180–212-μm sieve size). 

Table S4. Imbibition times measured during five repeated MED tests of loose, hydrophobic glass 

particles (32–45-μm sieve size). 

Figure S1. (a) Photograph of the high speed camera set-up and (b) a close-up photograph of the needle 

and sample. 

Figure S2. Drop impact velocity versus drop height for 3 and 6 μl droplets. The equations of the curves 

fitted to the data are also shown and used to convert the transitional droplet heights (hmin and h*) to 

transitional droplet velocities (vmin and v*). 
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Supplementary Material 

 

Figure S1 a) Photograph of the high speed camera setup for droplet impact 

velocities of < ~2m.s
-1

 and b) a close up photograph of the needle and 

sample. 
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Figure S2 Drop impact velocity vs drop height for 3 μl and 6 μl droplets. The equations of the curves fitted 

to the data are also shown and used to convert the transitional droplet heights (hmin and h*) to transitional 

droplet velocities (vmin and v*). 
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Table S1 Imbibition times measured during five repeated MED tests of loose Portuguese soil.  

Ethanol 

concentration 

(vol%) 

Imbibition time (s) 

Run 1 Run 2 Run 3 Run 4 Run 5 

36 0.81 0.59 0.55 0.4 0.34 

24 0.72 0.62 0.75 0.89 0.55 

13 7.21 5.40 6.58 4.76 8.54 

8.5 >600 >600 >600 >600 >600 

3 >600 >600 >600 >600 >600 

0 >600 >600 >600 >600 >600 

 

 

Table S2 Imbibition times measured during five repeated MED tests of loose, hydrophobic 

sand (180-212 μm sieve size) 

Ethanol 

concentration 

(%) 

Imbibition time (s) 

Run 1 Run 2 Run 3 Run 4 Run 5 

36 >600 >600 >600 >600 >600 

24 >600 >600 >600 >600 >600 

13 >600 >600 >600 >600 >600 

8.5 >600 >600 >600 >600 >600 

3 >600 >600 >600 >600 >600 

0 >600 >600 >600 >600 >600 
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Table S3 Imbibition times measured during five repeated MED tests of loose, hydrophobic 

glass spheres (180-212 μm sieve size) 

Ethanol 

concentration 

(%) 

Imbibition time (s) 

Run 1 Run 2 Run 3 Run 4 Run 5 

36 2.14 1.78 2.03 1.62 1.47 

24 >600 >600 >600 >600 >600 

13 >600 >600 >600 >600 >600 

8.5 >600 >600 >600 >600 >600 

3 >600 >600 >600 >600 >600 

0 >600 >600 >600 >600 >600 

 

 

Table S4 Imbibition times measured during five repeated MED tests of loose, hydrophobic 

glass spheres (32-45 μm sieve size) 

Ethanol 

concentration 

(%) 

Imbibition time (s) 

Run 1 Run 2 Run 3 Run 4 Run 5 

36 >600 >600 >600 >600 >600 

24 >600 >600 >600 >600 >600 

13 >600 >600 >600 >600 >600 

8.5 >600 >600 >600 >600 >600 

3 >600 >600 >600 >600 >600 

0 >600 >600 >600 >600 >600 

 

 


