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ABSTRACT

Context. Magnetohydrodynamic (MHD) waves and magnetic null points are both prevalent in many astrophysical plasmas, including
the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating
events.
Aims. Here we investigate the transient behaviour of the Alfvén wave about fully 3D proper and improper magnetic null points.
Methods. We introduce an Alfvén wave into the vicinity of both proper and improper null points by numerically solving the ideal,
β = 0 MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of
resulting wave modes and the analysis of their interaction.
Results. We find that the Alfvén wave propagates throughout the region and accumulates near the fan-plane, causing current build up.
For different values of null point eccentricity, the qualitative behaviour changes only by the imposition of anisotropic pulse dilation,
owing to the differing rates at which fieldlines diverge from the spine. For all eccentricities, we find that the fast and Alfvén waves
are linearly decoupled. During the driving phase, an independently propagating fast wave is nonlinearly generated owing to the
ponderomotive force. Subsequently, no further excitation of fast waves occurs.
Conclusions. We find that the key aspects of the theory of Alfvén waves about 2D null points extends intuitively to the fully 3D case;
i.e. the wave propagates along fieldlines and thus accumulates at predictable parts of the topology. We also highlight that unlike in the
2D case, in 3D Alfvén-wave pulses are always toroidal, and thus any aspects of 2D Alfvén-wave-null models that are pulse-geometry
specific must be reconsidered in 3D.
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1. Introduction

Over the past few decades, high-resolution and high-cadence in-
struments aboard satellites, such as SOHO, TRACE, Hinode,
and SDO have revealed that MHD waves and oscillations are
abundant throughout the coronal plasma and are present in most,
if not all, of its structures (see reviews by, e.g. De Moortel 2005;
Nakariakov & Verwichte 2005; Ruderman & Erdélyi 2009;
Goossens et al. 2011; and references therein). Such observa-
tions have led to a rapid development of MHD wave theory, per-
haps most notably regarding the dynamics of waves in coronal
loops for the purposes of coronal seismology (e.g., De Moortel
& Nakariakov 2012). Despite their prevalence, these curvilin-
ear structures form only part of a wider set of topological fea-
tures. Since the behaviour of MHD waves strongly depends on
the structure of the background magnetic field, the behaviour of
waves can vary greatly in different topologies. To fully under-
stand the oscillatory corona, it is necessary to develop wave the-
ory for the noncurvilinear and inhomogeneous magnetic topolo-
gies topologies also. In this paper we are concerned with MHD
wave dynamics in one such topology and investigate the be-
haviour of such waves in the vicinity of magnetic null points.

Magnetic null points are singular locations in the field where
magnetic induction is zero and are a natural consequence of
multiple sources of magnetic flux. The existence of magnetic
null points in the coronal magnetic field is implied by field

extrapolations (such as, e.g., Brown & Priest 2001; Beveridge
et al. 2002) and have been estimated to number 1.0-4.0 × 104

points in the corona (Close et al. 2004; Régnier et al. 2008;
Longcope & Parnell 2009). Outside of the corona, the Cluster
mission has detected null points in the Earth’s magnetotail (e.g.
Xiao et al. 2007), and modelling suggests clusters of nulls exist
in the global magnetosphere (e.g. Dorelli et al. 2007). Null points
have also been identified as playing key roles in many processes
of the solar atmosphere, such as in magnetic reconnection (see,
e.g., Pontin 2012), oscillatory reconnection (McLaughlin et al.
2009; 2012; Threlfall et al. 2012), and in CMEs (in the magnetic
breakout model, e.g. Antiochos 1998; Antiochos et al. 1999).
Given the ubiquity of both MHD waves and the prevalence of
null points, wave-null interactions are an inevitable fundamental
aspect of the dynamic solar atmosphere.

The behaviour of MHD waves in the vicinity of magnetic
null points has been studied extensively using 2D models. Here
we seek to evaluate the extent to which the key results regard-
ing transient behaviour of waves extend to the 3D case, thus we
only discuss the 2D case briefly to highlight fundamental results.
For a review of 2D null point investigations, see McLaughlin
et al. (2011).

A series of papers by McLaughlin & Hood (2004, 2005,
2006) considered the transient behaviour of Alfvén and fast mag-
netoacoustic waves about null points in various ideal, β = 0
2D scenarios and found that the differing modes of oscillation
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always have distinct features; the fast wave always refracts along
the Alfvén-speed profile, accumulating at the null point; whereas
the Alfvén wave is confined to fieldlines, and accumulates along
separatricies which it cannot cross. Over time, regardless of the
initial wave configuration, all of the wave’s energy will accu-
mulate at these regions of topology, with ever steepening gra-
dients. These regions are thus identified as locations for pref-
erential heating by (passing) MHD waves, via ohmic heating.
Furthermore, the authors found that waves of different modes
do not interact (in their linear solution). A later nonlinear so-
lution of the same scenario (Thurgood & McLaughlin 2013b)
considered the possibility of nonlinear mode coupling due to
the inhomogeneous geometry of the 2D null. When an Alfvén
wave propagates in regions of nonuniform Alfvén-speed pro-
file, magnetoacoustic waves can be excited via the nonlinear
magnetic pressure gradients (viz. ponderomotive force see, e.g.,
Nakariakov et al. 1997; Verwichte et al. 1999; Botha et al.
2000; Tsiklauri et al. 2001; Thurgood & McLaughlin 2013a).
Thurgood & McLaughlin (2013b) found that at 2D nulls such
mode excitation only occurred during driving at boundaries, and
subsequently no further excitation occurred despite the inho-
mogeneous field. Overall, they determined that the effect did
not significantly impact upon the dynamics of the main Alfvén
wave. As such, the original conclusions of McLaughlin & Hood
(2004, 2005, 2006) hold in the shock-free nonlinear case and at
2D null points in the cold-plasma limit.

However, as singularities, null points are intrinsically 3D,
thus the 2D configurations discussed in fact capture the physics
of a null line of infinite extent. The 2D studies therefore serve to
give an initial grounding in the physics of realistic null points,
and for a more complete understanding we must consider the
3D case.

Until recently, papers that addressed the topic of MHD wave
behaviour about 3D null points primarily focused on aspects of
current accumulation (in an attempt to identify regions where
reconnection is likely to occur) rather than the transient features
of MHD wave propagation. Notably, studies by Galsgaard et al.
(2003), Pontin & Galsgaard (2007), Pontin et al. (2007), and
Galsgaard & Pontin (2011a,b) considered various driving mo-
tions on boundaries which resulted, depending on the particular
nature of driving, in current accumulation at the null point, the
spine or the fan plane (characteristic regions of 3D null topology,
see Sect. 2.2). Thurgood & McLaughlin (2012, their Sect. 1) sug-
gested that these papers represented a tantalising suggestion that,
like their 2D counter parts, at 3D nulls MHD waves behaved
in a discrete, decoupled manner and that they accumulated at
predictable regions of the magnetic topology. They considered
the nature of the fast magnetoacoustic wave in the 3D regime
for null points of varying eccentricity (see Sect. 2.2). The study
confirmed that in all cases that fast magnetoacoustic waves even-
tually accumulate at the null point due to refraction along the
Alfvén speed profile (albeit at different rates, due to the effect of
the field eccentricity). They concluded that, 3D null points are
likely locations of localised heating events due to passing fast
waves being trapped in the vicinity. Additionally, they found no
evidence of geometric or nonlinear coupling to the Alfvén mode,
although the propagating wave did sustain a nonlinear distur-
bance longitudinally to the background field (which was later
confirmed as due to the action of the ponderomotive force in
Thurgood & McLaughlin 2013a). Finally, we note that the ob-
served behaviour of the fast wave strongly corresponded to that
predicted by the Wentzel-Kramers-Brillouin (WKB) method as
considered in McLaughlin et al. (2008).

McLaughlin et al. (2008) also derived a WKB approxima-
tion for the behaviour of the Alfvén wave at fully 3D null points.
Their findings strongly suggest that, in 3D, the Alfvén wave
is confined to fieldlines, propagates at the equilibrium Alfvén
speed and accumulates along the spine and fan of the null point
(an intuitive extension of the 2D results). However, their imple-
mentation of the WKB method was unable to address the possi-
ble geometric or nonlinear interaction between modes.

Thus, as it stands, the question of how MHD waves behave
in the neighbourhood of fully 3D magnetic null points is only
partially answered. In this paper, we consider the complemen-
tary scenario to that of Thurgood & McLaughlin (2012) and in-
vestigate the dynamics of the Alfvén wave about 3D null points
of varying eccentricity (as opposed to the behaviour of the fast
wave at different 3D null points). Thus, we consider this work
to be a companion paper to Thurgood & McLaughlin (2012),
hereafter referred to as Paper I.

We proceed as follows: in Sect. 2 we outline the methods
used to model the scenario (governing equations Sect. 2.1, null
point topology Sect. 2.2, the method for isolating wave modes
Sect. 2.3, and numerical solution Sect. 2.4); in Sect. 3 we detail
the results at the proper (Sect. 3.1) and improper (Sect. 3.2) null
points. Finally, in Sect. 4 we present our conclusions and then
also we discuss the combined implications of the results of this
paper and Paper I in Sect. 5.

2. Mathematical model

We model the behaviour of the Alfvén wave at 3D null points
in an analogous way to the process previously used to model the
behaviour of the fast wave at 3D null points. Here, we summarise
our modelling methods. For further details, see Sects. 2−2.5 of
Paper I.

2.1. Governing equations

The three-dimensional, nonlinear, ideal, adiabatic β = 0 MHD
equations are considered. The β = 0 approximation is used to
prohibit acoustic effects (chiefly to prohibit the introduction of
the slow mode) in order to restrict our focus to the behaviour of
the Alfvén wave and its interplay with the fast magnetoacoustic
mode. The governing equations are as follows:

ρ

[
∂u

∂t
+ (u · ∇)u

]
=

(∇ × B
μ

)
× B,

∂B
∂t
= ∇ × (u × B),

∂ρ

∂t
= −∇ · (ρu),

∂p
∂t
= −u · ∇p − γp∇ · u. (1)

Here, standard MHD notation applies: u is plasma velocity, p is
thermal pressure, ρ is density, B is the magnetic field/induction,
γ = 5/3 is the adiabatic index, and μ is the magnetic
permeability.

We consider an equilibrium state of ρ = ρ0, p = p0 (where
ρ0 and p0 are constants), u = 0, and equilibrium magnetic field
B = B0. Finite, small perturbations of amplitude α � 1 are
considered in the form ρ = ρ0 + αρ1(r, t), p = p0 + αp1(r, t),
u = 0 + αu(r, t) and B = B0 + αb(r, t) and a subsequent nondi-
mensionalisation using the substitution u = vu∗,∇ = ∇∗/L,
B0 = B0B∗0, b = B0b∗, t = t t∗, p1 = p0 p∗1 and ρ1 = ρ0ρ

∗
1 is per-

formed, with the additional choices v = L/t and v = B0/
√
μρ0.
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Fig. 1. Left: indicative fieldlines for the ε = 1, azimuthally-symmetric proper null point. Right: the same fieldlines for the ε = 0.5 improper null
point (note the loss of rotational symmetry). Blue fieldlines originate from z > 0, red from z < 0 and the black fieldlines originate at the null and
lie in the fan plane, shaded grey.

The resulting nondimensionalised, governing equations of the
perturbed system are:

∂u

∂t
= (∇ × b) × B0 + N1

∂b
∂t
= ∇ × (u × B0) + N2

∂ρ1

∂t
= −∇ · u + N3

∂p1

∂t
= −γ∇ · u + N4

N1 = (∇ × b) × b − ρ1
∂u

∂t
− (1 + ρ0) (u · ∇) u

N2 = ∇ × (u × b)

N3 = −∇ · (ρ1u)

N4 = u · (∇p1) − γp1 (∇ · u) (2)

where terms Ni are the nonlinear components and the star in-
dices have been dropped, henceforth all equations are presented
in a nondimensional form.

2.2. Equilibrium magnetic field: potential 3D null point

Here we consider the behaviour of Alfvén waves in the vicinity
of single potential null points of the form:

B0 =
[
x, εy,− (ε + 1) z

]
(3)

where the eccentricity parameter ε controls the direction in
which fieldlines predominantly align, and the null point itself
is located at the origin. Two key features of the 3D null point
are the spine line and the fan plane (see Fig. 1 and Priest &
Titov 1996). The spine is an isolated fieldline along the z-axis
that approaches, or leaves, the null point. In this paper, without
loss of generality, we restrict our attention to positive null points

(ε ≥ 0), and as such the spine represents fieldlines approach-
ing the null from above and below the z = 0 plane. The z = 0
plane, known as the fan, consists of radial fieldlines confined to
the plane that point away from the null point (for ε ≥ 0).

Altering the eccentricity parameter ε changes the field topol-
ogy as follows:

• For ε = 1, the magnetic null point has azimuthal symmetry
about its spine, with no preferred direction for fieldlines, and
is known as a proper null.
• Null points which deviate from this cylindrical symmetry are

known as improper nulls. For 0 < ε < 1 the fieldlines curve
to run primarily parallel to the x-axis, and for ε > 1 curve to
run parallel to the y-axis.
• For ε = 0, we recover the simple 2D null point in the

xz-plane, with a null line running through x = z = 0.

For more comprehensive information on the classification of dif-
ferent types of 3D null, see Parnell et al. (1996).

2.3. Isolating MHD modes

In Paper I, we developed a magnetic-flux based coordinate sys-
tem where each direction corresponds to a distinct MHD wave
mode. Here, the system is used in two ways. Firstly, it is used to
construct driving conditions that introduce linearly pure Alfvén
waves (i.e. the alternative case to that considered in Paper I,
where fast waves are introduced, see Sect. 2.4). Secondly, it is
used to track interaction between different modes of oscillation
during the simulation.

For null points of the form (3) the coordinate system is
of the following form: perturbations to fluid-variables in the
Â-direction are associated with Alfvén waves, in Ĉ correspond
to fast waves, and in B̂0 correspond to longitudinal disturbances
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(the slow wave is absent in the β = 0 limit); where:

B0 =
[
x, εy,−(ε + 1)z

]
A =

[
zy,−εxz, (1 − ε)xy

]
C =

[
Cx,Cy,Cz

]
Cx = x

[(
ε2 − ε

)
y2 +

(
ε2 + ε

)
z2

]
(4)

Cy = y
[
(1 − ε) x2 + (ε + 1) z2

]
Cz = εz

(
x2 + y2

)

with unit normals B̂ = B0/|B0|, Â = A/|A| and Ĉ = C/|C|. Note
that on the line of the spine (x = y = 0) and the fan plane (z = 0),
B0 = ∇× A no longer holds, rendering the system locally invalid
and as such, the spine or fan cannot be used to drive pure modes
under this coordinate system. This relates to a degeneracy be-
tween the fast and Alfvén wave in these specific regions. For a
further explanation of the coordinate system, which is applica-
ble to cases other than the 3D null, see Sects. 2.3 and 2.3.1 of
Paper I. Note that there exists a purely typographical error (i.e.,
the results are not effected) for Cx in Paper I. The correct form
of Cx is given above.

2.4. Numerical solution

The fully nonlinear MHD equations (1) are solved using the
LARE3D numerical code (Arber et al. 2001) with magnetic
equilibria corresponding to both proper and improper 3D null
points (ε = 1 and ε = 0.5, see Sects. 3.1 and 3.2 respec-
tively). In each scenario we introduce an Alfvén wave at the
upper z-boundary, by driving the following:

u · Â = vA = αF(t)G(r), u · B̂0 = vB = 0, u · Ĉ = vC = 0 (5)

F(t) = sin(2πt), G(r) =
20
9

r
r0

⎡⎢⎢⎢⎢⎢⎣1 −
(

r
r0

)4⎤⎥⎥⎥⎥⎥⎦
2

, r =
√

x2 + y2

for 0 ≤ t ≤ 0.5, 0 ≤ r ≤ r0, with driving amplitude α = 0.001
(we consider the weakly-nonlinear case). Note that vA, vB, and
vC are velocity components in the directions of the coordinate
system discussed in Sect. 2.3, and that vA is not the Alfvén
speed (which we denote cA). The factor 20

9 normalises func-
tion G(r) such that the maxima/minima in the range is ±1. We
choose r0 = 0.25. The other boundary conditions are set as zero-
gradient conditions. The simulations utilise a uniform numerical
grid with domain −3 ≤ x ≤ 3, −3 ≤ y ≤ 3, −1 ≤ z ≤ 2 with
960× 960× 720 grid points. The results presented focus into the
region −2 ≤ x ≤ 2, −2 ≤ y ≤ 2, −1 ≤ z ≤ 2, i.e. a subset of
the full numerical domain. The experiment ends just prior to the
first instance of waves reaching the side boundaries (to ensure
boundary reflection is not an issue).

3. Numerical results

3.1. Proper Null, ε = 1

Let us first consider the proper, radial null point (ε = 1) where
an Alfvén wave is introduced along the top boundary (z = 2)
by driving vA according to Eq. (5). The resultant propagation of
the Alfvén wave is shown in Fig. 2. Figure 2 follows the Alfvén
wave in the xz-plane with y = 0, which is manifest in the velocity
perturbation in the invariant direction Â (NB: the corresponding
field-perturbation b · Â is qualitatively the same). Since the pulse
remains azimuthally symmetric about the spine (x = y = 0)

throughout, the panel captures all of the transient features of the
wave in the whole domain.

The pulse propagates at the local Alfvén speed cA =√
x2 + y2 + 4z2 along the magnetic fieldlines on which it is

driven. The pulse is confined to the fieldlines throughout and
does not propagate transverse to the field (as is characteristic of
an Alfvén wave). The pulse therefore initially propagates down
towards the null point, propagating primarily in the z-direction
(i.e. moving nearly parallel to the spine, e.g., t = 0.75, t = 1.25).
Subsequently, it begins to spread radially outward (from the
spine) and ultimately tends towards propagating primarily ra-
dially outwards (i.e., mostly moving parallel to the fan-plane,
e.g., t = 1.75, t = 2.25). From a 3D perspective, driving accord-
ing to Eq. (5) has introduced a toroidal pulse which undergoes
isotropic dilation as it propagates travels down towards the fan.
It propagates in the ẑ-direction at speed cA(0, 0, z) = 2z and di-
lates uniformly as magnetic fieldlines diverge from the spine. It
accumulates near the fan-plane (cA(0, 0, z)→ 0) where gradients
in the pulse become increasingly steep and consequently, strong
current builds. Eventually resistivity becomes non-negligible, in
agreement with previous wave-null studies (e.g., Galsgaard et al.
2003; McLaughlin & Hood 2004), indicating that the fan-plane
is a likely region for (wave-driven) heating events.

We now consider fluid-velocity perturbations in the other or-
thogonal directions B̂0 and Ĉ. All perturbations to variables in
the B̂0- and Ĉ-directions are of O(α2) and smaller, indicating
that behaviour detailed in the following paragraphs is nonlinear
and that the Alfvén wave is linearly decoupled from the magne-
toacoustic waves (as first discussed in Thurgood & McLaughlin
2013a).

Figure 3 shows the field-aligned perturbations in |vB|, where
we find a nonlinear O(α2/2) disturbance that is everywhere
cospatial to the Alfvén wave in vA. The disturbance in |vB| is
not an independently propagating wave (β = 0, hence such mo-
tion is prohibited j × B0 · B0 = 0). It is rather a consequence
of the propagating Alfvén wave, which exerts a nonlinear mag-
netic pressure gradient along the magnetic field (“ponderomo-
tive force”), which here is manifest in the longitudinal veloc-
ity perturbation. This longitudinal daughter disturbance has been
identified as a general ponderomotive feature in nonlinear MHD
and observed in nonlinear 2D wave-null studies (Thurgood &
McLaughlin 2013a,b), and is equivalent to the “ponderomotive
wing” first reported in nonlinear 1.5D MHD by Verwichte et al.
(1999). Via the ponderomotive force, Alfvén waves are (non-
linearly) compressible, which is manifest as these daughter dis-
turbances. In sufficiently nonlinear regimes, this can result in en-
hanced dissipation of Alfvén wave energy (here, the nonlinearity
is weak). We do not observe the development of static pertur-
bations to the longitudinal velocity. This indicates that nonlin-
ear excitation of slow waves does not occur, again in agreement
with the 2D results (in β = 0, the slow mode has zero-speed and
hence is manifest as a static, unstable perturbation, see Falle &
Hartquist 2002).

In Fig. 4 we report the velocity component in the Ĉ-direction,
which in β = 0 is associated with fast magnetoacoustic waves
and transverse daughter disturbances (cross-field equivalents to
the ponderomotive effect manifest in |vB|). During the driving
phase, we observe the nonlinear generation of a multiple-lobed
pulse of O(α2/2), which subsequently propagates independently
of the Alfvén wave. The pulse travels towards the null point,
across fieldlines at speed cA (thus slowing on the approach to
the null), crossing the fan and wrapping about the null point.
Crucially, this wave crosses the fan plane (which is forbidden for
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Fig. 2. Evolution of the Alfvén wave pulse at the proper null point, observed in |vA|, in the xz-plane with y = 0. Due to the azimuthal symmetry,
the corresponding figures for other planes which intersect the spine-line x = y = 0 are identical. The dotted white lines indicate the position of the
spine line and fan plane.

the Alfvén wave). This refraction along the Alfvén-speed profile
and accumulation at the null point (where gradients and current
eventually can become large leading to non-negligible resistiv-
ity and heating) has been documented as the typical feature of
propagating fast magnetoacoustic waves at both 2D and 3D null
points. After the driving phase, we find that there is no further
excitation of fast magnetoacoustic waves.

The fast wave is excited nonlinearly by the process of
ponderomotive mode excitation. The cross-field ponderomotive
force exerted by an Alfvén wave is of the form

F⊥ = − 1
μρ0
∇⊥

(
b2

z

2

)
(6)

where ∇⊥ is the cross-field spatial derivative, in this case equiv-
alent to Ĉ · ∇, and bz = ±√μρ0vz. Equation (6) can be de-
rived from Eqs. (2) using the process detailed in Thurgood
& McLaughlin (2013a) and is the nondimensionalised equiva-
lent to their Eq. (12). Where transverse gradients in the Alfvén
wave’s amplitude are nonzero, the ponderomotive force acts
across the field. When the average force over the wave’s period
is nonzero, fast magnetoacoustic waves are nonlinearly excited.
Such nonzero average transverse gradients are typically assumed
where the pulse propagates through regions of transverse inho-
mogeneity where ∇⊥cA � 0 (phase-mixing regions).

Although the cross-field Alfvén speed is inhomogeneous in
the vicinity of the 3D proper null, we only observe the generation
of fast waves during the driving phase and do not observe further
excitation. This was previously reported for Alfvén waves at 2D
nulls (Thurgood & McLaughlin 2013b). There are two possible
explanations:

• The net ponderomotive force is nonzero, and acts to excite
fast waves. However, after the initial driving period, a phys-
ical mechanism arises to suppress the further generation of
fast waves.
• The net ponderomotive force is zero throughout and no exci-

tation of fast waves should occur. The excitation observed is
an artefact due to driving at the boundary, which effectively
specifies an unphysical ponderomotive force during the driv-
ing phase. If this is the case, then the wave is a mathematical
artefact as opposed to physical effect.

As the 2D and 3D results agree, we refer the reader to Sect. 4.2
of Thurgood & McLaughlin (2013b) for a comprehensive dis-
cussion of possible explanations outlined above.

Finally, we do not clearly observe any cospatial disturbances
manifest in Ĉ (transverse daughter disturbances). Such a mani-
festation of the ponderomotive force is expected as the Alfvén
wave assumes transverse gradients in the amplitude throughout.
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Fig. 3. Evolution of |vB | at the proper null, which shows a longitudinal daughter disturbance, in the xz-plane with y = 0. It is nonlinear and
everywhere cospatial to the Alfvén wave. It arises due to the action of the Alfvén wave’s ponderomotive force, which carries the disturbance along
its path as it propagates. The daughter disturbance does not impact upon the medium as it passes through.

The transverse daughter cannot be distinguished as initially it is
obscured by the fast wave, and at later times (when the Alfvén
and fast waves are sufficiently separated) the configuration of
the pulse is such that gradients across fieldlines rend the pon-
deromotive force exerted too small to observe at O(α2/2) scales.

3.2. Improper Null, ε = 0.5

We now repeat the experiment and drive vA as per Eq. (5) about
an improper null point of eccentricity ε = 0.5. Here, the null
is not azimuthally symmetric and fieldlines are predominantly
aligned parallel to the x-axis. Again, we separately consider ve-
locity in the Â-, B̂0-, and Ĉ-directions to isolate different modes
of oscillation and disturbances.

Figure 5 shows the propagation of the Alfvén wave, manifest
in vA. As the azimuthal symmetry is lost for ε � 1, we show the
figure in the planes defined by x = 0 and y = 0 (the right and
left panels, respectively). As in Sect. 3.1 the pulse initially prop-
agates down towards the null point, and is stretched as fieldlines
diverge from the spine line. Unlike in the proper-null case, the
“spreading” effect is realised more rapidly in the y = 0 plane
than the x = 0 plane. From a 3D perspective the dilation of the
toroidal pulse is now anisiotropic, and the pulse which is initially

a uniform, ring-shaped torus becomes prolate at later times, due
to preferential stretching in the x̂-direction (where fieldlines di-
verge at the greatest rate). The non-uniformity of the dilation
corresponds to the non-azimuthally symmetric manner in which
fieldlines diverge from running parallel to the spine line when
ε = 0.5 (see the right panel, Fig. 1). Thus, like at the proper
null, throughout the simulation (i.e., not just in these planes)
the Alfvén wave propagates along fieldlines at the local Alfvén
speed, and the difference between nulls of different epsilon ε is
manifest in the differing rates of divergence in the x = 0 and
y = 0 planes.

Let us now consider the other directions B̂0 and Ĉ. As per
Sect. 3.1, we observe no linear disturbances to fluid-variables in
these directions. Thus, the eccentricity of the null and departure
from azimuthal symmetry does not facilitate any linear, geomet-
ric interaction between differing wave modes.

The fluid-velocity |vC| is shown in Fig. 6. We see an inde-
pendently propagating wave nonlinearly generated which prop-
agates towards the null, crosses fieldlines and the fan, and wraps
about the null point where it eventually accumulates, as is typ-
ical of the fast wave. The rate of refraction is again depen-
dent on the Alfvén-speed profile, and therefore the refraction
effect is weaker in the x = 0-plane (right panel) than the
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Fig. 4. Evolution of |vC | at the proper null, in which we see an independently propagating wave, which generated during the driving phase and is
of nonlinear magnitude. It refracts along the Alfvén-speed profile, crosses the fan plane and accumulates at the null.

y = 0-plane (left panel), corresponding to the relative steepness
of the Alfvén-speed profile (see Paper I). There is no further
generation of independently propagating waves after the driv-
ing phase, as reported for the proper null case. No daughter-type
disturbances are clearly observed in |vC|, as per Sect. 3.1.

The Alfvén wave was also found to be accompanied by a lon-
gitudinal daughter disturbance, manifest in in the B̂0-direction as
per that detailed in Sect. 3.1, which is of O(α2/2) and is every-
where cospatial to the Alfvén wave (hence we have not included
an extra figure). As in the case of the proper null, no static distur-
bances (indicators of slow wave excitation) are observed in any
of the components.

We also considered intermediate values of 0 < ε < 1 and
found qualitatively identical results. Wave behaviour about null
points of different eccentricity only differs in that Alfvén waves
spread throughout the region according to the differing rates
of fieldline divergences, and any fast waves excited refract at
differing rates according to the differing Alfvén-speed profiles.
Crucially, different ε do not cause differing nonlinear effects. In
all cases excitation of the fast wave occurs only during the driv-
ing phase and no subsequent conversion occurs.

4. Conclusion

We have studied the behaviour of the Alfvén wave, and asso-
ciated nonlinear effects, in the vicinity of both proper (ε = 1)

and improper (ε = 0.5) 3D magnetic null points. Independent of
eccentricity, we find that:

1. The Alfvén wave is confined to fieldlines, spreading radi-
ally outward as fieldlines diverge, and eventually assumes
steep gradients as it nears the fan-plane, causing current
accumulation.

2. The Alfvén wave continuously sustains a longitudinal
daughter disturbance, due to its ponderomotive force di-
rected along the equilibrium magnetic field B̂0.

3. During the driving phase, independently propagating fast
waves are introduced to the simulation. Subsequently, no fur-
ther excitation of fast waves occurs.

The Alfvén wave behaves in its characteristic manner – it is con-
fined to fieldlines and travels at the Alfvén speed, without excep-
tion. Here, where toroidal Alfvén wave pulses are driven about
the spine, this results in an dilation/stretching of the toroid as the
fieldlines diverge from the spine. When Alfvén waves are driven
in forms such as that prescribed by Eq. (5) at null points of dif-
fering eccentricity, the only difference in the transient behaviour
is the manner in which it expands, which is entirely dependent
on the topological eccentricity parameter ε, which determines
the degree of dilation anisotropy.

This transient behaviour is wholly consistent with an-
alytical predictions made by the 3D WKB approximation
(McLaughlin et al. 2008), and the proper null results reported
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Fig. 5. Alfvén wave, here shown in |vA |, for the improper null ε = 0.5. As azimuthal symmetry is broken, we show two planes y = 0 and x = 0 (left
and right columns respectively). For this null, fieldlines predominantly align to run parallel to the x-axis (see Fig. 1); note that the pulse spreads at
different rates in the different planes.

by Galsgaard et al. (2003), and is an intuitive extension of the
2D results to 3D. As with the separatricies in the 2D models, in
3D the fan-surface is a location where current accumulates due
to propagating Alfvén waves and is thus a possible location of
preferential, ohmic heating.

Nonlinearly, we also find that the theory of Alfvén waves at
2D magnetic null points (Thurgood & McLaughlin 2013b) car-
ries over to the 3D case. Namely, in the manifestation of the
daughter disturbances and the excitation of fast waves only dur-
ing the driving phase. As in the 2D case, it is unclear whether
the excitation of the fast wave is a physical effect or an artefact
of the driving. The possibilities are fully discussed in Thurgood
& McLaughlin (2013b, Sect. 4.2).

Overall, in the case of Alfvén waves at proper nulls, we find
that changing ε only has minor, qualitative effects on the tran-
sient behaviour and that it does not effect the nature of the non-
linear effects. Despite the eccentricity and inhomogeneity, the
wave retains its primary characteristic, that is, it is driven by
magnetic tension only, and is a therefore a true Alfvén wave as
per Alfvén (1942). The mere fact that a true Alfvén wave can ex-
ist about such a null point, indicates that the so-called “fully 3D”
improper null point must contain some invariant direction, which
is a necessary requirement for the existence of true Alfvén waves
as discussed by Parker (1991). Hence, null points of the form (3)

must contain some form of invariance and thus the qualitative
dynamics of the waves and their interaction is the same regard-
less of the degree of eccentricity. Choices of ε give the following
forms of invariance:

• ε = 0 yields an Cartesian/translational invariance (of the
equilibrium field) ∂B/∂z = 0.

• ε = 1 yields an azimuthal/torsional invariance ∂B/∂θ = 0.

• 0 < ε ≤ 1 yields a general torsional invariance ∂B/∂S = 0
where S is a direction around the spine which is associated
with the flux-function.

The previously-studied 2D null point models correspond to the
special case of ε = 0, where the torsional symmetry tends to
translational symmetry. As invariance is intimately connected to
the concept of the Alfvén wave, the extent of the similarity and
difference between translational and rotational invariances de-
termines the extent to which the theory of Alfvén waves at 2D
nulls carries across to 3D nulls. Rotational symmetry (ε > 0),
imposes restrictions on the geometric form that Alfvén wave
pulses may take, unlike in 2D modelling. As an Alfvén wave
must perturb fluid variables across the field without causing a
(linear) magnetic pressure gradient to arise, in cases of rotational
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Fig. 6. Evolution of |vC | at the improper null ε = 0.5. An independently propagating fast magnetoacoustic wave is generated during the driving
phase. Again, as azimuthal symmetry is lost we show two planes to demonstrate the different rates of refraction.

invariance Alfvén waves are always torsional (one could con-
sider twisting along isosurfaces of Â). Thus, any effects noted
in 2D wave-null modelling which are geometry-specific (e.g.,
many 2D models consider planar Alfvén waves only) will not
necessarily extend to 3D in as straightforward a manner as we
have found for the cases considered in this paper.

5. Summary

The primary aim of the study presented here and in Paper I
was to address the question of how the theory of MHD waves
at 2D null points extends to fully 3D potential null points.
Summarising, these studies have shown that the transient be-
haviour of the fast and Alfvén waves are as follows:

• Fast Waves: propagate according to the Alfvén-speed pro-
file along and across the fieldlines, refracting and accumu-
lating at the null point. Different ε simply alters the rate
of refraction (due to steeper/gentler Alfvén-speed profiles).
Independent of eccentricity, the wave eventually accumu-
lates at the null point itself.
• Alfvén Waves: are confined to fieldlines, travelling at cA, and

thus pulses exhibit a “spreading” effect as fieldlines diverge,
typically accumulating near the fan plane. Different param-
eters ε simply change the preferential direction on the pulse
spreading, due to the manner in which fieldlines diverge from
the spine line.

Thus, in terms of transient behaviour the 2D result that differ-
ent modes accumulate in predictable parts of null point topol-
ogy extends completely. Additionally, we report that the nonlin-
ear effects of the Alfvén and fast waves are consistent with the
2D models; namely, the sustaining of daughter disturbances and
the excitation of fast waves due to the ponderomotive force of
an Alfvén wave. Overall, for the β = 0, potential null case, the
2D theory carries over in an intuitive way.

This paper has considered Alfvén wave behaviour about
proper and improper potential null points. However, we finish
by noting that solar nulls are unlikely to be current-free (poten-
tial), as is found to be the case in field extrapolations (e.g., Valori
et al. 2012; Sun et al. 2012). Non-potential nulls are more topo-
logically complicated and asymmetric than the potential class
(examples of non-potential fieldline geometry can be found in,
e.g., Al Hachani & Pontin 2010; Pontin et al. 2011; Pontin 2011).
Currently, it is unclear to what extent the above results hold in
the case of non-potential null points. It may well be expected
that the fast wave will refract about the Alfvén-speed profile
(regardless of fieldline structure) as in Paper I, however the in-
creased asymmetry could possibly complicate the Alfvén wave
dynamics at such nulls. Indeed, given the discussion of invari-
ance being a requirement for the existence of a true Alfvén wave,
does the asymmetry prohibit this mode entirely? Additionally,
the greater inhomogeneity may increase the efficiency of any
ponderomotive mode excitation. Wave behaviour may be com-
plicated further still if such nulls are embedded in large scale
quasi-separatrix layers, as in Masson et al. (2009). As nulls in
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the solar atmosphere will be non-potential, the further extension
of 3D wave-null theory from potential to non-potential cases is
an important outstanding question and should be addressed in
future research.
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