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Abstract 

A former industrial site now used for recreational activities was investigated for total PTE 

content, uptake of the PTEs by foraged fruits and mobility of the PTEs using single extraction 

such as HOAc and EDTA. In order to evaluate the health risks arising from ingestion of the 

PTE contaminated soil, the oral bioaccessibility using in vitro physiologically based 

extraction test (PBET) and tolerable daily intake (TDI) or mean daily intake (MDI) was used. 

The PBET simulates the transition of the PTE pollutants in the soil into human 

gastrointestinal system while the TDI or MDI is the mass of soil that a child would require to 

take without posing any health risk.  In addition to the former industrial site, an investigation 

of the urban road dust from Newcastle city centre and its environs was undertaken with the 

view to looking into the PTE content, oral bioaccessibility and the platinum group elements 

(PGEs). 

Optimized microwave procedure was applied to 19 samples obtained from a former industrial site (St 

Anthony‟s lead works) in Newcastle upon Tyne. Of the range of PTEs potentially present at the 

site as a consequence of former industrial activity (As, Cd, Cr, Cu, Ni, Pb and Zn), the 

majority of top soil samples indicated elevated concentrations of one or more of these PTEs. 

In particular, data obtained using either inductively coupled plasma mass spectrometry (ICP-

MS) or flame atomic absorption spectroscopy (FAAS) indicates the high and wide 

concentration of Pb on the site (174 to 33,306 mg/kg). Comparing the resulting PTEs data 

with UK Soil Guidelines Values (SGVs) suggests at least parts of the site represent areas of 

potential human health risk. It was found that Pb soil values exceeded the SGV on 17 out of 

the 19 sampling sites; similarly for As 7 out of 19 sampling sites exceeded the SGV. While 

for Cd and Ni the soil levels were below the stated SGVs. 

Samples of foraged fruits collected from the same site were also analysed for the same  PTEs. 

The foraged fruit was gathered over two seasons along with samples of soil from the same 

sampling areas, acid digested using a microwave oven, and then analysed by ICP-MS.  The 

foraged fruits samples included blackberries, rosehips and sloes which were readily available 

on the site. The concentration levels of the selected elements in foraged samples varied 

between not detectable limits and 24.6 mg/kg (Zn). Finally, the soil-to plant transfer factor 

was assessed for the 7 elements. In all cases, the transfer values obtained were below 1.00, 
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except Cd in 2007 which is 1.00, indicating that the majority of the PTE remains in the soil 

and that the uptake of PTE from soil to plant at this site is not significant. 

The determination of total or pseudo total PTE content of soil is often insufficient to assess 

the risk to humans. A range of extraction protocols were applied to the 19 samples urban 

topsoils, and report on the correlations between pseudo total PTE content and results obtained 

following a physiologically-based extraction procedure (oral bioaccessibility), EDTA and 

HOAc extraction protocols (reagent-specific available fraction), for a broad range of PTEs 

(As, Cd, Cu, Cr, Ni, Pb, Zn). Results of the single-reagent extraction procedures did not, in 

general, provide a good indication of oral bioaccessibility but shows positive correlation with 

the pseudo total PTE content. The bioaccessibility data shows that considerable variation 

exists both spatially across the site, and between the different PTEs, but correlates well with 

the pseudo-total concentrations for all elements (r
2
 exceeding 0.8). One of the main 

objectives of this work is to show the role of bioaccessibility in generic risk assessment. 

Comparison of the pseudo-total PTE concentrations with SGV or generic assessment criteria 

(GAC) indicated that all of the PTEs investigated need further action, such as receptor 

exposure modelling. If we refine our generic risk assessment using the PTE bioaccessibility 

data then a very different picture of the site emerges; one where 5 out of the 7 PTEs 

investigated indicate the need for a more detailed site-specific risk assessment showing that 

bioaccessible fraction instead of pseudo total PTE content allows a more considerable 

approach to human health risk assessment to be made. 

Potential health risk from the site was also calculated to estimate the mass of soil a child 

would require to ingest to reach the estimated TDI or MDI. From the results for a child with 

geophagy (50 g/day) behaviour the levels of all PTEs are exceeded except Cr (III). In contrast 

for a child with pica behaviour (1 g/day) only two PTE exceeds the TDI value i.e. Cd and Pb; 

in addition, for As, the IDoral value and the MDI values are exceeded. Based on the 

unintentional consumption of 0.1 g of soil, only Pb and As exceed the guideline value (TDI 

and IDoral respectively) for this type of samples. 

 The pseudo-total and bioaccessible concentration of 6 PTEs in urban street dust from nine 

sampling sites across Newcastle upon Tyne city centre and its environs was investigated. 

Typical pseudo-total concentrations across the sampling sites ranged from 4.4 to 8.6 mg/kg 

for As, 0.2 to 3.6 mg/kg for Cd, 25 to 217 mg/kg for Cu, 14 to 46 mg/kg for Ni, 70 to 4261 
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mg/kg for Pb, and, 111 to 652 mg/kg for Zn. This data compared favourably with other urban 

street dust samples collected and analysed in a variety of cities globally, the exception was 

the high level of Pb determined in a specific sample in this study. The concentration of PTEs 

in the samples has been compared to estimated tolerable daily and mean daily intakes values 

against recommended ingestion values for geophagy behaviour, soil-pica behaviour and 

unintentional consumption. Based on the unintentional consumption of dust samples (0.1 

g/day) no PTE exceeded the guidelines values. The oral bioaccessibility of PTEs in street 

dust was assessed using PBET. Based on a worst case scenario the PBET approach estimated 

that Cd and Zn had the highest % bioaccessible fractions (> 45%) while the other PTEs i.e. 

As, Cu, Ni and Pb had lower % bioaccessible fractions (< 30%). It was postulated that Cd 

and Zn were more likely to be derived from anthropogenic sources whereas the other PTEs 

were more indicative of both anthropogenic and natural sources. The bioaccesible 

concentration was compared to the guideline values based on the unintentional consumption 

(0.1 g/day). In all cases the bioaccessible concentration values were well below the guideline 

values.  

The concentrations of PGE (Rh, Pd and Pt) were measured in the 9 sampled points of urban 

road dust from the Newcastle city centre. The result reveals that the concentration of Rh 

ranges from 1.2 to 54.8 ng/g, Pd from 2.7 to 203.7 ng/g and Pt from 8.1 to 118.5 ng/g. The 

mean value of Pd (79.8 ng/g) is significantly higher than those of Rh (17.6 ng/g) and Pt (38.2 

ng/g) showing a shift from Pt to Pd in its use in the construction of catalytic converters. The 

grain size analysis was carried out using three dust samples. The three samples were 

fractionated into six size fractions with their sedimentological equivalent in parenthesis: 

1000-2000 µm (very coarse sand), 500-1000 µm (coarse sand), 250-500 µm (medium sand), 

125-250 µm (fine sand), 63-125 µm (very fine sand) and <63 µm (silt and clay). The typical 

relationship in grain size analysis is that concentration of the metal increases with decreasing 

grain size. On this basis, most of the dominant fraction analysed for PGEs in soils by many 

researchers is the <63 µm  size fractions. However, this assumption is called into question in 

the present study as the result obtained shows that reasonable concentration of PGEs can be 

obtained in other size fractions especially the 63-125 µm hence analysis of only < 63 µm 

fraction will underestimate the PGE concentration in the environmental sample. 
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Chapter One: Environmental significance of PTEs in urban soils and dust 

1.1 Introduction 

 The study of urban soils and dusts is becoming increasingly important because the PTE 

content of soil/dust in urban environments is typically elevated as a result of anthropogenic 

inputs such as traffic emissions (vehicle exhaust particles, tire wear particles, weathered street 

surface particles, brake lining wear particles), industrial emissions and historic legacy (power 

plants, coal combustion, metallurgical industry, auto repair shop, chemical plant, etc), 

domestic emissions, weathering of building and pavement surface and atmospheric deposits 

(1). These anthropogenic inputs stem from increases in population and rapid economic 

development globally. As a result of the increase in percentage of the population living the 

cities, the environmental quality of urban soils is becoming very important with regards to 

human health (2). Urban soils are characterised by unpredictable soil structures, higher pH, 

low organic matter as well as high concentration of trace elements compared to natural soil 

(3, 4). These characteristics are as  a result of  urban development coupled with 

historical/industrial activities carried out in urban areas and can lead to consequences such as 

hazards in construction projects and adverse effect on buildings and building materials. Also 

to be affected are the flora and fauna potentially resulting in the bioaccumulation of 

contaminants in plants, fruits and vegetables entering the human food chain (5). Urban 

soils/dust are valuable indicators of the urban environment. They can be freely inhaled (the 

fine portion), adhere readily to hands, body and clothes and hence are liable to be ingested 

and can easily be washed away by rain to the aquatic environment thereby potentially 

polluting the water. Top soils and roadside dusts in urban area are indicators of potentially 

toxic element (PTE) contamination from atmospheric deposition (6). The PTE content in 

urban soil/dust are commonly studied soil pollutants because they are ubiquitous, toxic and 

persistent. They cannot be degraded to non toxic forms by either biological or chemical 

means thus may either accumulate locally or be transported over long distances.  Once they 

contaminate the ecosystem, they remain a potential threat for many years. They may be of 

geological origin entering into the soil system by weathering or anthropogenic activities such 

as mining, industrial processing, agricultural run-off and sewage disposal. The rapid 

development and increase in mining and industrial activities have gradually redistributed 

many of the PTEs from the earth‟s crust to the environment hence has substantially raised the 

chances of human exposure to these elements through ingestion, inhalation or skin contact. 

Potentially toxic elements can be retained by soils and /or mobilised to soil solution by 
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biological and chemical mechanisms with a potential impact on human health. When the PTE 

contamination is very high (thousands of mg/kg) and the metal sorption capacity of the soil is 

exceeded, PTEs in soils can runoff into rivers or  lakes or leach into the ground water, 

causing accumulation in animals, plants and people (7). The most common PTE listed by the 

United States Environmental Protection Agency (USEPA) are arsenic (As), cadmium (Cd), 

chromium (Cr), copper (Cu) nickel (Ni), lead (Pb) and zinc (Zn). Some of these PTEs are 

essential for the metabolism of living organisms. Potentially toxic elements such as Cr, Cu, 

Ni and Zn are required by organisms at low level and become toxic at some higher levels of 

exposure. Non-essential elements including As, Cd and Pb are toxic and not required by 

organisms at any level. Table 1.1 shows some of the industrial uses and sources of these 

elements. Above a certain concentration, all PTEs have adverse effects (Table 1.2) on human 

health (8-11). The hazard imposed by PTE contaminants within the soil is dependent on their 

ability to migrate into the water system and their availability for biological uptake. The 

degree to which a contaminant may dissociate from soil solids and become available to a 

target organism (i.e. bioaccessibility) is therefore a determining risk factor (12).  

Another important group of elements with respect to their concentration in urban soils/dust 

are the platinum group elements (PGEs). These groups of elements can be found in urban 

soils/dust as a consequence of the deposition from cars fitted with catalytic converters. 

1.2 Solid phase partitioning 

The manner in which an element is bound to the soil components or other environmental 

solids, influences the mobility and, ultimately, the bioavailability and toxicity of the element 

to organisms (13). PTE cations can occur in many geochemical forms: free or complexed 

ions in soil solution, ions held to charged surfaces (exchangeable) and metal hydroxides and 

carbonates (14). PTEs may also be associated with Fe and Mn oxides and Al hydroxides, can 

be bound within organic matter and also can be incorporated into sulphides and bound within 

lattice structure of soil. Some potentially toxic elements are weakly bound to the solid phase 

hence have greater potential to be easily extracted i.e available. As a result, their toxic effects 

to the environment start earlier than those released in the later stage. 

The release of these PTEs from the solid phase depends on the strength of the reagents used 

in the process. Normally the reagents are targeted to remove the analyte of interest in the 
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specific phase either by exchange process or dissolution of the target phase. The solid phase 

partitioning depends greatly in soil pH and organic matter content (13). 

1.3 PTEs in urban soils and dusts 

A brief review regarding the occurrence in soil, uses, deficiency and toxicity of each of the 

most common PTEs is presented as follows:  

1.3.1 Arsenic (As) 

Arsenic is a semi metallic element that occurs in a wide variety of minerals, mainly as As2O3, 

and can be recovered from processing of ores containing mostly Cu, Pb, Zn, Ag and Au. It is 

also present in ashes from coal combustion. According to its oxidation state, As occurs in 

nature as arsenate (As
5+

), arsenite (As
3+

), arsenic metal (As
0
), and arsine (As

3-
).  

Table 1.1: Industrial uses of some PTEs (15). 

PTE Industrial Uses 

As Pesticides/herbicides, glass and ceramic works, traditional medicines. 

Cd Electroplating, storage batteries, stabilisers, solar cells, pigments, alloys 

for telegraph and telephone wires, photoelectrical and electron optical 

devices, nuclear reactors 

Cr Alloying additives to stainless steel, chrome plating, dyes, pigments, 

tanning of leather, textiles, cassette tapes, magnetic storage media for 

computers, matches, pyrotechnics, photography, seed disinfection. 

Cu Electrical goods, kitchenware, alloys, algaecides/fungicides, pigments, 

supplement in deficient pastures, intra-uterine contraceptive devices. 

Ni Alloys for corrosion resistant equipment. Cooking utensils, coinage, 

heating elements, gas turbines, jet engines, electroplating, paints, 

pigments, batteries. 

Pb Storage batteries, antiknock agent in petroleum/gasoline, paints, 

ammunition, glassware, ceramics, protection from radiation, bearing 

alloys, rubber industry, printing press. 

Zn Galvanising of iron and steel for corrosion protection, alloys, 

vulcanization of rubber, photocopying paper, paints, TV tubes, rayon 

glass, enamel and plastic industries, fertilisers, medicine and cosmetics. 

 



4 

 

Among these, most investigations on As geochemistry have focused on As
5+

 and As
3+

 

because natural occurrence of As
0
 is rare and As

3-
 exists only under highly reducing 

conditions.(16)  A wide range of As concentrations has been reported in soils around the 

world with an average of 5–10 mg kg
− 1

 in uncontaminated soils (16). Arsenic may 

accumulate in soils due to agricultural practices such as the applications of As-containing  

Table 1.2: Toxicity of major potentially toxic elements (PTEs) in polluted soils (8-11). 

PTE Toxicity Human 

toxicity 

Zoo 

toxicity 

Phyto 

toxicity 

As Various skin lesions appear (after several years of 

low arsenic exposure ): hyperpigmentation, ie dark 

spots, hypopigmentation, ie white spots and 

keratoses of the hands and feet. After a dozen or 

more years skin cancers are expected . Longer 

exposures may lead to cancers of the lungs, 

kidneys, liver and bladder. 

H M L 

Cd Nephropathy, pulmonary lesions and lung cancer M M  

Cr Allergic contact dermatitis, possibly carcinogenic in 

some cases of workers being exposed, mostly 

because of Cr
+6

 

H M L 

Cu Cu is absorbed primarily from food. The toxicity 

for human is not very high. 

 H M 

Ni The toxicity for humans is not very high, but it can 

cause respiratory diseases. 

  M 

Pb Lead can be very toxic for human health. For 

children: reduction in intellectual quotient, 

hyperactivity, hearing loss. For adults: increased 

blood pressure; liver, kidney and fertility damage. 

M M  

Zn Zinc deficiency may also be a problem for human 

health. At high doses Zn may interfere with calcium 

metabolism and impair immune responses. 

  H 

H = high; M = moderate: L = low. 



5 

 

pesticides and herbicides, pig manure, and phosphorus fertilizers, thereby raising concerns 

about the risk of As to the environment and human health (16-21). The accumulated As in 

soils can distribute among different soil components, such as organic matter, Fe and Mn 

oxides, carbonates and sulphides, and such distribution could affect its mobility, 

bioavailability and toxicity (16, 22-24). 

Though both aqueous As
5+

 and As
3+

 are highly toxic to organisms, As
3+

 has 200 times higher 

toxicity than As
5+

 at the same concentration (25, 26). In addition to its toxicity, As
3+

 has 

enhanced mobility in natural water system and this mobility increases as pH increases (27, 

28). Under reducing conditions As
3+

 dominates, existing as arsenite (AsO3
3-

) and its 

protonated forms: H3AsO3, H2AsO3
-
, HAsO3

2-
. Arsenite can adsorb or co-precipitate with 

metal sulphides and has a high affinity for other sulphur compounds.  

In aerobic environments, As
5+

 is dominant, usually in the form of arsenate (AsO4
3-

) in various 

protonation states: H3AsO4, H2AsO4 
-
, HAsO4 

2-
, AsO4 

3-
. Arsenate, and other anionic forms 

of As behave as chelates and can precipitate when metal cations are present (29). As
5+

 is 

readily immobilized on soil and sediment particles by adsorption on and co-precipitation with 

oxides of Mn, Al and Fe under acidic and moderately reducing condition (30, 26). Arsenate 

(As
5+

) can also be mobilized under reducing conditions that encourage the formation of As
3+

, 

under alkaline and saline conditions, in the presence of other ions that compete for sorption 

sites, and in the presence of organic compounds that form complexes with As (27, 28). 

Arsenates can be leached easily if the amount of reactive metal in the soil is low. 

Studies on the geochemical behaviour of As during the past decade have revealed that 

microorganisms play a significant role in electrochemical speciation and cycling of As in 

nature by mediating the transformation of As and As-adsorbents (31, 26). Elemental arsenic 

and arsine, AsH3, may be present under extreme reducing conditions. Sorption and 

coprecipitation with hydrous iron oxides are the most important removal mechanisms under 

most environmental conditions (28, 32, 33).  

Tolerable daily intake (TDI) and mean daily intake (MDI) indicates the quantity of soil a 

child is required to take in a day without running the risk of being harmed. These values have 

been used to assess the potential health risk to a child. In the case of As, a non-threshold 

carcinogen, TDI is inappropriate hence an oral index dose (IDoral) has been proposed of 0.3 
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µg/kg bw/day (34). Therefore the IDoral value based on an assumed body weight of 10 kg 

child is 3 µg/day and MDI 5 µg/day based on 20 kg child (34).                                                             

 

1.3.2 Cadmium (Cd) 

Cadmium is soluble in acids but not in alkalis. It is similar in many respects to Zn but it forms 

more complex compounds. Cadmium occurs naturally in the form of cadmium sulphide or 

carbonate (CdS or CdCO3). It is recovered as a by-product from the mining of sulphide ores 

of Pb, Zn and Cu. Sources of Cd contamination include plating operations and the disposal of 

Cd-containing wastes (27, 28). The most common form of Cd include Cd
2+

, cadmium-

cyanide complexes, or Cd(OH)2 solid sludge (27, 28). Adsorption mechanism is the primary 

source of Cd removal from the soil (35,36). The chemistry of cadmium in the soil 

environment is to a great extent controlled by pH. Under acidic conditions Cd solubility 

increases and very little adsorption of Cd by soil colloids, hydrous oxide and organic matter 

takes place. At pH values greater than 6, Cd is adsorbed by the soil solid phase or is 

precipitated, and the solution concentration of Cd is greatly reduced. Cd forms soluble 

complexes with inorganic and organic ligands, in particular Cl
-
. The formation of these 

complexes will increase the mobility of Cd in soil. Hydroxide and carbonate of Cd solids 

dominate at high pH. Cadmium will also precipitate in the presence of phosphate, arsenate, 

chromate and other anions. Cadmium is relatively mobile in surface water and ground-water 

systems and exists primarily as hydrated ions or as complexes with humic acids and other 

organic ligands (28). Sorption is also influenced by the cation exchange capacity (CEC) of 

clays, carbonate minerals, and organic matter present in soils and sediments. Under reducing 

conditions, precipitation as CdS controls the mobility of cadmium (27, 28). Cadmium salts 

with low solubility includes cadmium phosphate (Cd3(PO4)2), sulphide (CdS), hydroxide 

(Cd(OH)2 and carbonate (CdCO3). The solubilities of these Cd salts will increase with 

decreasing pH. 

The TDI for Cd based on a 10 kg child is 5 µg/day (37) and for MDI is 28.7 µg/day based on 

a 20 kg child (38). 

1.3.3 Chromium (Cr) 

Chromium does not occur naturally in elemental form but only in compounds. It is mined as a 

primary ore product in the form of the mineral chromite, FeCr2O4. Major sources of Cr 

contamination include releases from electroplating processes and the disposal of Cr 
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containing wastes (27). Chromium is unstable in O2, it immediately produces a thin oxide 

layer that is impermeable to oxygen and protects the metal below. Chromium exists in the 

environment in two stable oxidation states, Cr
6+

 and Cr
3+

, which have different toxicity and 

transport characteristics. 

Chromium in oxidation state of +6 is the form of Cr commonly found at contaminated sites 

(28). Hexavalent chromium, Cr
6+

, typically exists as the oxyanion chromate (CrO4
2
−) and 

dichromate (Cr2O7
2-

) and precipitate readily in the presence of metal cations such as Ba
2+

, 

Pb
2+

, and Ag
+
. Chromate and dichromate also adsorb on soil surfaces especially Fe and Al 

oxides. The hexavalent Cr has a high solubility in soils (at a high soil pH) and waters and 

tends to be mobile in the environment. Additionally, it is acutely toxic, subject to biological 

uptake, and also carcinogenic (39). Chronic exposure to hexavalent Cr is reported to induce 

renal failure, anaemia, haemolysis and liver failure. 

In contrast, Cr
3+

, is the dominant form of Cr at low pH (<4). Chromium in oxidation state of 

+3  has a limited hydroxide solubility and forms strong complexes with ions such as NH4
+
, 

Cl
-
, F

-
, CN

-
, SO4

2-
 making it relatively immobile and less available for biological uptake. Cr

+3
  

is an essential trace element to humans and shortages may cause heart conditions, disruptions 

of metabolisms and diabetes. Uptake of excess Cr
3+

 can cause health effects e.g. skin rashes. 

Therefore, reduction of Cr
6+

 to Cr
3+

 is considered an important remediation strategy for 

reducing the deleterious effects of this pollutant. Cr
6+

 can be reduced to Cr
3+

 by soil organic 

matter, S
2- 

and Fe
2+

 ions under anaerobic conditions.  

The TDI of Cr
3+

 based on a 10 kg child is 50 µg/day for soluble compounds and 50,000 

µg/day for metallic and insoluble compounds (37). The MDI for Cr
3+

 is 60.2 µg/day and 6.7 

µg/day for Cr
6+

 (38). 

1.3.4 Copper (Cu) 

Copper is a very common substance that occurs naturally in the environment and is 

distributed through natural phenomena (wind-blown dust, decaying vegetation, forest fires 

and sea spray) and human activities (mining, metal production, wood production and 

phosphate fertilizer production). Copper is mined as a primary ore product from CuS and 

oxide ores. Mining activities are the major source of Cu contamination. Other sources of Cu 

include algaecides and Cu pipes. Copper has low chemical reactivity. In moist air it slowly 
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forms a greenish surface; this coating protects the metal from further attack. Copper can be 

found in many kinds of food, in drinking water and in air; as a result we absorb quantities of 

Cu each day by eating, drinking and breathing. The absorption of Cu is necessary, because it 

is a trace element that is essential for human health. Solution and soil chemistry strongly 

influence the speciation of Cu. In aerobic, sufficiently alkaline systems, CuCO3 is the 

dominant soluble copper species. The cupric ion, Cu
2+

, and hydroxide complexes, CuOH
+
 

and Cu(OH)2, are also commonly present. When copper ends up in soil it strongly attaches to 

organic matter and minerals over a wide range of pH values. As a result of this, it does not 

travel very far after release and it hardly ever enters groundwater (28). The affinity of Cu for 

humates increases as pH increases and ionic strength decreases. Copper does not break down 

in the environment and because of that it can accumulate in plants and animals when it is 

found in soils. On copper-rich soils only a limited number of plants have a chance of survival. 

Copper can interrupt the activity in soils, as it negatively influences the activity of 

microorganisms and earthworms. The decomposition of organic matter may seriously slow 

down because of this. In anaerobic environments, when S2 is present CuS(s) will form. The 

cupric ion (Cu
2+

) is the most toxic species of Cu. Toxicity has also been demonstrated for 

CuOH
+
 and Cu2(OH)2

2+ 
(28, 40). Acute inhalation of Cu dust or fumes at concentration of 

0.075-0.12mg/m
3
 may cause metal fume fever with symptoms such as cough, chills and 

muscle ache (41). The TDI for Cu based on a 10 kg child is 1400 µg/day (37) and for MDI 

7000 µg/day based on a 20 kg child (38). 

In plants, Cu is essential in seed production, disease resistance and regulation of water. 

Copper in excess can be phytotoxic to plants and it has been used as an algaecide to control 

algal blooms. It can cause plant damage if, for example, it is present at too high concentration 

in sewage sludge which is applied to agricultural land. Copper is required by humans in trace 

level in order to help haemoglobin formation and carbohydrate metabolism 

1.3.5 Nickel (Ni) 

The most important oxidation state of the Ni is +2. It also exists as certain compounds in 

which the oxidation state of the metal is between -1 and +4. It is used in stainless steel 

production, nickel-cadmium batteries, alloys, and electroplating. Nickel is resistant to 

corrosion by air and water under ambient conditions and combines readily with other metals 

including Cr, Cu, Fe and Zn to form alloys (42). Nickel contamination may occurs from 

emissions of metal mining, smelting, and refining operations; Nickel plating and alloy 
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manufacturing; land disposal of sludge, and disposal of effluents. Nickel is found in the 

environment combined primarily with oxygen or sulphur as oxides or sulphides. Nickel is a 

potent skin sensitiser (that is, able to cause allergic reaction in humans) and as many as 1 – 

4% of men and 8 – 20 % of women in the general population may be Ni sensitive (43). The 

TDI for Ni based on a 10 kg child is 500 µg/day (37) and for MDI 130 µg/day based on a 20 

kg child (43).  Direct contact of Ni leads to skin rash which is the most common type of 

reaction to Ni exposure (44). Ingestion of Ni can cause skin reactions in previously sensitised 

individuals. The other main concern for oral exposure to Ni is its developmental toxicity 

potential, which has been observed in experimental animal studies (43). Soluble Ni salts and 

the mixture of Ni sulphides and oxides present in refinery dust are carcinogenic to the lung 

and nasal tissues in humans (43). Other toxic effects of Ni observed following inhalation 

exposure include chronic bronchitis, emphysema, reduced vital capacity and asthma. Nickel 

is present in a number of enzymes in plants and microorganisms. In humans, Ni influences Fe 

absorption and metabolism, and may be an essential component of the haemopoietic process.  

1.3.6 Lead (Pb) 

The primary industrial sources of Pb contamination include metal smelting and processing, 

Pb battery manufacturing, pigment and chemical manufacturing and Pb contaminated wastes. 

Widespread contamination due to the former use of Pb in gasoline is also of concern. Lead 

released to groundwater, surface water and land is usually in the form of elemental Pb, lead 

oxides and hydroxides, and lead metal oxyanion complexes (27). Lead occurs most 

commonly with an oxidation state of 0 or +2. Pb
2+

 is the more common and reactive form of 

lead and forms mononuclear and polynuclear oxides and hydroxides. Under most conditions 

Pb
2+ 

and lead-hydroxy complexes are the most stable forms of Pb (27, 28). Low solubility 

compounds are formed by complexation with inorganic (Cl
-
, CO3

2-
 , SO4

2-
, PO4

3- 
) and 

organic ligands (humic and fulvic acids, EDTA, amino acids) (28, 29). Lead carbonate solids 

form above pH 6 and PbS is the most stable solid when high sulphide concentrations are 

present under reducing conditions. Most Pb that is released to the environment is retained in 

the soil (45). The primary processes influencing the fate of Pb in soil include adsorption, ion 

exchange, precipitation, and complexation with sorbed organic matter. These processes limit 

the amount of Pb that can be transported into the surface water or groundwater. The relatively 

volatile organo lead compound tetramethyl lead may form in anaerobic sediments as a result 

of alkylation by microorganisms (27). The amount of dissolved Pb in surface water and 
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groundwater depends on pH and the concentration of dissolved salts and the types of mineral 

surfaces present. In surface water and ground-water systems, a significant fraction of Pb is 

undissolved and occurs as precipitates (PbCO3, Pb2O, Pb(OH)2, PbSO4), sorbed ions or 

surface coatings on minerals, or as suspended organic matter. Lead can be very toxic for 

human health. For children: reduction in intellectual quotient, hyperactivity, hearing loss. For 

adults: increased blood pressure; liver, kidney and fertility damage. The TDI for Pb based on 

a 10 kg child is 36 µg/day (37). 

1.3.7 Zinc (Zn) 

Zinc is a fairly reactive metal that will combine with oxygen and other non-metals, and will 

react with dilute acids to release hydrogen. Zinc does not occur naturally in elemental form. It 

is an essential trace element which is present in soil and can be toxic when exposure exceeds 

physiological needs. It is usually extracted from mineral ores to form ZnO. The primary 

industrial use for Zn is as a corrosion-resistant coating for iron or steel (27, 28). Metallic Zn 

is mixed with other metals to form alloys such as brass and bronze and also used to make dry 

cell batteries. Zinc oxide is used in the manufacture of paints, rubber, ceramic and many other 

products. The main source of exposure to zinc is from food though there might be oral 

exposure arising from working in industries where Zn is used as source of raw materials. Zinc 

usually occurs in the +II oxidation state and forms complexes with a number of anions, 

amino acids and organic acids. Zn may precipitate as Zn(OH)2(s), ZnCO3(s), ZnS(s), or 

Zn(CN)2(s). Zinc is one of the most mobile PTEs in surface waters and groundwater because 

it is present as soluble compounds at neutral and acidic pH values. At higher pH values, Zn 

can form carbonate and hydroxide complexes which control its solubility. Zinc readily 

precipitates under reducing conditions and in highly polluted systems when it is present at 

very high concentrations, and may co-precipitate with hydrous oxides of iron or manganese 

(27, 28). Sorption to sediments or suspended solids, including hydrous iron and manganese 

oxides, clay minerals, and organic matter, is the primary fate of Zn in aquatic environments. 

At high doses Zn may interfere with calcium metabolism and impair immune responses. The 

TDI for Zn based on a 10 kg child is 5000 µg/day (37) and for MDI 27000 µg/day based on a 

20 kg child (38) 

1.3.8 Platinum group elements (PGEs) 

The PGEs consists of iridium (Ir), osmium (Os), palladium (Pd), platinum (Pt), rhodium (Rh) 

and ruthenium (Ru). These elements are all transition metals lying in the d-block (Group 8, 9 
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and 10 and period 5 and 6). Platinum and Pd are found in pure state in nature (46). The other 

four elements Ir, Os, Rh and Ru occur as alloys of Pt and Au (47). The concentration of PGEs 

in the lithosphere is very low, with the average estimated to be in the range of 0.001–0.005 

mg/kg for Pt; 0.015 mg/kg for Pd; 0.0001 mg/kg for Rh; 0.0001 mg/kg for Ru; 0.005 mg/kg 

for Os; and 0.001 mg/kg for Ir (48). Of the six PGEs, the ones of interest for this study are 

Pd, Pt and Rh because of their use in the construction of catalytic converters used in the 

automobiles. Platinum group elements released from the catalytic converters are primarily 

bound to aluminium oxide particles (49). They were until recently, regarded as inert elements 

but recent studies have shown that they may be soluble and quite reactive (50). The details of 

PGEs are discussed in chapter six. 

1.4 Contaminated Land Legislation  

The legal definition of 'contaminated land', as provided by Part IIA of the Environmental 

Protection Act 1990 (51) is: “Land which appears to the local authority in whose area it is 

situated to be in such a condition, by reason of substances in, on or under the land that a) 

significant harm is being caused or there is a significant possibility of such harm being 

caused or b) pollution of controlled water is being, or is likely to be, caused”. This Act come 

into force in England and Scotland in 2000 and in Wales 2001. The Act creates a framework 

to identify and clean up contaminated land, where contamination poses unacceptable risks to 

human health or the environment. The UK follows a non-statutory Contaminated Land 

Exposure Assessment Model (CLEA) which details a standard approach in dealing with 

contaminated land and associated human health risk assessment for England and Wales. The 

approach is risk based and involves an assessment which is carried out to determine whether 

the land is fit for its current use or redevelopment (52). The risk assessment explores and 

investigates the likelihood, presence and significance of the pollutants and their linkages, 

which is the relationship between a contaminant, pathway, and the receptor. The concept of 

this linkage pathway is to assess the size of the hazards associated with the pollutants and 

how the source-pathway-receptor interlink with each other forming a pollutant linkage 

(Figure 1.1) (53) that poses potential risk to human health, eco-system and plants.  

     

 

 

Figure 1.1: Exposure linkage of contaminant to receptor 

Source                     

(Substances in environmental media 

such as soil, food chain, water.) 

 

Pathway  
(inhalation, ingestion, 

dermal contact). 

Receptor 
(Humans, Ecosystem 

components). 
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To evaluate the degree of soil contaminant using the risk-based approach there is set 

guidelines by the Environmental Agency and DEFRA, Soil Guideline Values (SGV). Soil 

guideline values give an indication of the representative average levels of contamination in 

soil below which the long-term human health risks should be minimal and above it there may 

be a cause for concern and possibility of posing significant risk to human health. The SGV 

has been modelled for three main land uses:  (a) residential (b) allotments and (c) 

commercial/industrial. They are designed to be applicable across the range of site conditions 

and contaminant forms that are typically encountered on the UK (54). It is a generic risk 

assessment criteria which can be used in the preliminary assessment of the risk to human 

health from chronic exposure to contaminated soil. Soil guideline values are derived using the 

contaminated land exposure assessment model (CLEA). The CLEA model is based on 

comparing predicted contaminant exposure levels with established toxicological levels (or 

Health Criteria Values: HCV). The basic assumption in using the CLEA model to derive 

SGVs is that contaminant released from the soil is taken up into the body to the same extent 

as from the medium or organism used to derive the HCV. In a situation where the HCV is 

determined using organisms other than human or contaminants are present as recalcitrant 

compounds, the above assumptions using CLEA model may not necessarily be true (55). At 

present SGVs are available for only As, Cd and Ni among the metals being studied with the 

rest being either recently withdrawn or not available. Generic assessment criteria published 

by CEIH and LQM (38) are available for a range of other metals.  

1.5 Assessment of environmental risk to humans using oral bioaccecibility 

There are several methods of assessing environmental risk of soil contaminants to humans. In 

England, DEFRA supports the use of CLEA model i.e SGVs and generic risk assessment as 

outlined in section 1.2. The Scottish and Northern Ireland Forum for Environmental Research 

(SNIFFER) proposed method for deriving site-specific human health assessment criteria for 

contaminants in soil and is adapted in Scotland and Northern Ireland. In all these methods, 

the assumption is that the total metal concentration in the soil ingested is equal to that 

absorbed by the body. None of these methods until very recently considered the internal 

exposure or dose which is the actual fraction of the total amount of ingested contaminant 

from the soil that reaches the systemic circulation; hence the risk from soil intake with 

regards to metal contamination may be overestimated.                                                           
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Oral bioaccessibility can be determined by either in vivo or an in vitro method. The in vivo 

method requires direct tests with human or suitable animal models as a surrogate for humans. 

The use of humans for bioaccessibility testing is understandably not feasible on ethical 

grounds. The routine use of animals is also challenging in terms of cost, time, facilities and 

ethical issues (56). On the basis of the above, in vitro method of measuring oral 

bioaccessibility has been developed. The principle underlining in vitro methods is that uptake 

of a contaminant depends on the rate and extent of its dissolution in the gut (56). There are 

different types of in vitro models (57). The in vitro bioaccessibility test mimics the digestive 

system of humans by using reagents/enzymes. The digestive system of humans consists of the 

mouth, stomach and the small intestine. The mouth compartment of the digestive system in 

most of the in vitro methods is omitted because of the short time the contaminant spends in 

the mouth. The stomach and the small intestine is therefore the major compartment of the 

system and where the contaminant spends most of the time hence the definition of oral 

bioaccessibility as the fraction that is soluble in the gastrointestinal environment and 

available for absorption (58). The major problem facing in vitro method is the issue of 

validation, reproducibility and robustness for regulatory acceptance in risk assessment. At 

present, none of the in vitro methods has been approved by regulators in the UK and the 

bioaccessible fraction obtained largely depends on the applied in vitro method. The 

Bioaccessibility Research Group of Europe (BARGE) unified method (which is batch based) 

focuses on digestion characteristics as a method of separation was used in this work. This 

method has recently undergoing a unification process and it is anticipated that it should 

provide a standard method that will produce a conservative estimate of the oral bioaccessible 

fraction of contaminants from soil to be used in human health risk assessment. 

 In vitro bioaccessibility testing should be validated with the in vivo method. Unfortunately, 

no UK soil samples have undergone in vivo testing hence the true or acceptable 

bioaccessibility values of the metal contaminants in UK soils are still unknown.  

1.6 Aims and objective of the research. 

An overview is shown in Figure 1.2 and highlights two main environmental media 

investigated: Urban soils and urban road dust. All of the experiments were designed to 

achieve the following aims:  

(a) Optimisation of microwave digestion (Chapter 2) 
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(b) To determine the pseudo total PTE concentration (using the above method) of 

environmental media as part of a generic quantitative risk assessment at an urban 

park (Chapter 3). 

(i) 

 

 

 

 

 

 

(ii) 

 

 

 

 

 

 

Figure 1.2: Overview of the study 

(c) To augment this study through the investigation of PTE bioavailability using EDTA 

and HOAc (Chapter 3). 

(d) To evaluate the application of in vitro oral bioaccessibility testing using the BARGE 

method (Chapter 4). 

(e) To investigate the natural and anthropogenic input of PTEs in urban dusts collected 

from the Newcastle city centre, and its environs, and bioaccessibility of PTEs in these 

dusts (Chapter 5). 

(f) To investigate the spatial distribution of platinum group elements (PGEs) and the 

effect of particle grain size on the concentration of PGEs (Chapter 6). 

 Urban soil 

  Pseudo total concentration 

  Uptake of PTEs by 

foraged fruits 
Bioavailability of PTEs using 

EDTA and HOAc Extractions 

Bioaccessibility of PTEs using 

BARGE method 

Urban Road 

Dust 

Pseudo total concentration in 

PTEs. 

Grain size analysis of 

PGEs 
Concentration of PGEs 

           Bioaccessibility of PTEs  
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Chapter Two: Instrumental methods of measuring PTEs and microwave 

optimisation 

2.1 Introduction 

In most inorganic analytical laboratories, trace element analysis is usually performed using 

instrumental techniques such as flame atomic absorption spectroscopy (FAAS), X-ray 

fluorescence spectroscopy (XRF), graphite furnace atomic absorption spectroscopy 

(GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), inductively 

coupled plasma-mass spectroscopy (ICP-MS). These analytical techniques differ in terms of 

sensitivity, requirements for sample preparation, sample throughput and costs of analysis. 

Most of the instrument is dedicated to the analysis of either a liquid or solid samples. 

Instruments in which solid samples are introduced directly during measurement cover with 

difficulty needs usually required in environmental applications such as determinations of 

elements at trace or ultra-trace concentrations hence the need to transform the sample into 

liquid form before introduction to the instrument. For the purpose of this study, three 

instrumental techniques will be discussed (i.e. FAAS, XRF and ICP-MS) by focussing on the 

principles, basic components, the mode of operations and limitations of each of these 

techniques drawing out the strength and weaknesses of each of the technique rather than the 

detailed description of the techniques. 

 

2.1.1 Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) 

 Principle 

ICP-MS involves the dissociation of the sample (which must be in liquid form) into its 

constituent atoms or ions. The ions are extracted from the plasma and passed into the mass 

spectrometer, where they are separated based on their atomic mass-to-charge ratio by a 

quadrupole. The sample is pumped at 1 mL/min into a nebulizer where it is converted into a 

fine aerosol with Ar gas at about 1 L/min. The fine droplets of the aerosol, which represent 

only 1 - 2% of the sample, are separated from larger droplets using a spray chamber. The fine 

aerosol then emerges from the exit tube of the spray chamber and is transported into the 

plasma torch via a sample injector where the processes shown in Figure 2.1 take place. 

 

Droplet    (Desolvation)   Solid  (Vaporization)  Gas (Atomization)  Atom  (Ionization) Ion                           

M(H2O)
+
X

-
                        (MX)n                            MX                             M                            M

+ 
  

From sample injector                                                                             To mass spectrometer 

Figure 2.1: Mechanism of conversion of a droplet to positive ion in the ICP 
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Basic Components of ICP-MS 

This is an elemental analysis technique based on production, sampling, mass filtering and 

detection of positive ions. There are four basic components of ICP-MS as shown in Figure 

2.2. 

 Inductively coupled plasma (ICP) 

 Sampling interface 

 Ion focusing optics and mass spectrometer (MS) 

 Ion detector 

 

 

 

Figure 2.2: Major components of ICP-MS system (1) 
 

 ICP: This is the source of heat. The temperature ranges from 6000 -10000K (2). This high 

temperature is needed to dissociate (excite) the sample to form the positive ion. The process 

for the formation of the positive ion is shown in Figure 2.1. If the sample of interest exists as 

a trace metal salt in solution, the first step that takes place is desolvation of the droplet. When 

the water molecule is removed from the droplet, it becomes a small solid particle. As the 

sample moves further into the plasma, the solid particle changes first into gaseous form and 

then into ground-state atom. The final process of conversion of an atom to ion is achieved 

mainly by collisions of energetic argon electron (and to a lesser extent by argon positive ion) 

with the ground state atom (3). The ion then emerges from the plasma and is directed into the 

interface of the mass spectrometer 

 

  Sampling interface: The sampling interface lies between ICP and MS. The ICP torch which 

is used to ionize and atomize materials requires high operational temperature (about 7000K), 

while the mass spectrometer is operated at room temperature and requires the vacuum 

condition to avoid collisions with any gas molecules before ions can reach the detector. This 

task is accomplished by the use of interface between ICP and MS, and the use of vacuum 

ICP Sampling 

interface 

Ion optics and 

mass spectrometer 
Ion detector 
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pumps to remove nearly all the gas molecules in the space between the interface and the 

detector. 

 

Ion optics: The ion optics are positioned between the skimmer cone of the sampling interface 

and the mass separation device. The function of the ion optic system is to take ions from the 

hostile environment of the plasma at atmospheric pressure via the interface cones and steer 

them into the mass analyzer, which is under high vacuum. Another important role of the ion 

optic system is to stop particulates, neutral species, and photons from getting through to the 

mass analyzer and the detector. These species cause signal instability and contribute to 

background levels, which ultimately affect the performance of the system. 

 

 Mass Spectrometer: These are used to separate isotopes based on their mass to charge ratio 

(m/z). Three basic mass analyzer are available for ICP-MS: (i) quadrupole (ii) magnetic 

sector field (high resolution) and (iii) time of flight (TOF). The most common type among 

these is the quadrupole because of its compactness and ease of use. One of the disadvantages 

of the quadrupole is that it offers low resolution when dealing with ions of the same mass to 

charge ratio. Comparisons between the three analysers are presented in Table 2.1. 

Table 2.1: Comparison of mass analysers figure of merit (4). 

Parameter ICP-QMS ICP-SFMS ICP-TOFMS 

Sensitivity (cps) 10
5
 10

6
 10

3
-10

4 
per m/z 

Background (cps) 1-10 <0.1 1-10 per m/z 

Resolving power Unit mass Upto 10000 Upto 1500 

Precession (% RSD) 0.1 0.05 0.02 

Ion sampling mode Sequential Sequential Simultaneous 

Cost £ ££ £ 

Speed Fast Slow Fast 

Maintenance/operation Easy Complex Easier than SFMS. 

Spectral generation m/zs
-1

 2000-3000 350 6000000 based on 300m/z 

measured @20000Hz 

 

Ion detector: The ion beam separated by the mass analyzer is converted to electrical signal 

using detector. The most common type of ion detector found in an ICP-MS system is the 

electron multiplier. 

 Strength and weakness of ICP-MS 

The advantages of using ICP-MS for analysis of PTEs includes low detection limit (ng/l), 

multi element analysis, wide dynamic range, isotopic measurement, speed of analysis is very 

high, high productivity, very economical for many samples, easily interpreted spectra and can 

also be used in hybrid techniques e.g. laser ablation ICP-MS for solids and liquid 
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chromatography ICP-MS for speciation studies. Limitations of using the equipment include 

high initial capital cost, requires some method development skills, it suffers some spectral 

interferences and samples are limited to <0.2% dissolved solids therefore need to be properly 

filtered. 

2.1.2 Flame Atomic Absorption Spectroscopy (FAAS) 

This is a very common technique for detecting PTEs and metalloids in environmental 

samples. It is a reliable technique and simple to use. The technique is based on the fact that 

ground state PTEs absorbs light at specific wavelengths.  PTE ions in a solution are converted 

to atomic state by means of a flame. Light of the appropriate wavelength is supplied and the 

amount of light absorbed can be measured against a standard curve. 

 Principle: 

The technique requires a liquid sample to be aspirated and mixed with combustible gases, 

such as acetylene and air or acetylene and nitrous oxide. The mixture is ignited in a flame 

whose temperature ranges from 2100 to 2800 
o
C. During combustion, atoms of the element of 

interest in the sample are reduced to free, unexcited ground state atoms, which absorb light at 

characteristic wavelengths. The characteristic wavelengths are element specific and accurate 

to 0.01-0.1nm (5). To provide element specific wavelengths, a light beam from a lamp whose 

cathode is made of the element being determined is passed through the flame. A detector 

(photomultiplier) detects the amount of reduction of the light intensity due to absorption by 

the analyte, and this can be directly related to the amount of the element in the sample. 

 Basic components of FAAS 

Flame atomic absorption hardware is divided into six fundamental parts namely: (a) 

Radiation source. (b) Atom cell (c) Wavelength selector (Monochromator) (d) Detector (e) 

Amplifier (f) Signal processor as shown in Figure 2.3 

Radiation source: The hollow cathode lamp is the most common radiation source in atomic 

absorption spectroscopy. The cathode is made of the element of interest with a low internal 

pressure of an inert gas (Ne or Ar). The hollow cathode lamp provides a constant and intense 

beam of analytical light line for the element of interest. 

The Atomizer: The atom cell consists of two parts: the nebulizer and the flame. The 
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Figure 2.3: Block diagram of atomic absorption spectrometer (6). 

nebulizer sucks up liquid sample at a controlled rate, create a fine aerosol, mix the aerosol 

and fuel and oxidant thoroughly for introduction into the flame. The flame destroys any 

analyte ions and break down complexes. It (flame) create atoms (the elemental form) of the 

element of interest example Fe
0
, Cu

0
, Zn

0
, etc 

The Monochromator:  This is the wavelength selector. It isolates analytical lines' photons 

passing through the flame and remove scattered light of other wavelengths from the flame. In 

doing this, only a narrow spectral line impinges on the detector. 

 The detector: The common detector used is the photomultiplier (PMT), the function of 

which is to convert the light signal into an electrical signal. The processing of electrical signal 

is fulfilled by a signal amplifier. The signal could be displayed for readout or further fed into 

a data station for printout by the requested format. 

 Strength and weakness of FAAS: The strengths of using FAAS includes relatively few 

interference, good performance, robust interface, low capital cost, being fast and easy to use. 

However, FAAS has moderate detection limit ranging from µg/l and mg/l, It has element 

limitation i.e. can be used to measure metals only, only one element per determination, the 

instrument has no screening ability and cannot be used for isotopic measurement. 

2.1.3 X-ray Fluorescence (XRF) 

In both environmental studies and quality control processes, it is of significance that the 

analytical procedures used for elemental determination should be rapid and simple, taking 
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into account the number of samples to be analyzed. Atomic spectroscopy, including FAAS 

and ICP-MS are common techniques used for PTE determination in environmental samples 

(7, 8). However, these techniques require a prior destruction of the matrix by mineral acids 

which may lead to problems of contaminants by reactants employed or disturbances of the 

measured concentration by element losses due to incomplete solubilization and/or 

evaporation (9, 8). Moreover, the method of matrix destruction used strongly depends on the 

chemical composition of the sample and on the element to be determined (10). In view of 

these problems, the use of other methods for direct and multi-elemental analysis of samples 

has been increasing over the last few years, including X-ray fluorescence spectrometry (XRF) 

(11). Simplicity of sample preparation, minimum manipulation, speed, cost effectiveness, 

application to a wide range of concentrations from 100% to few part per million (ppm) and 

the chance of analyzing some elements such as sulphur that can hardly be determined by 

other techniques have promoted XRF as a useful alternative to conventional spectroscopic 

techniques. 

 Principle 

In XRF Spectrometry, high-energy primary X-ray photons are emitted from a source (X-ray 

tube) and strike the sample. The primary photons from the X-ray tube have enough energy to 

knock electrons out of the innermost, K or L, shell. When this occurs, the atoms become ions, 

which are unstable. An electron from an outer shell, L or M, will move into the newly vacant 

space at the inner shell to regain stability. As the electron from the outer shell moves into the 

inner shell space, it emits an energy known as a secondary X-ray photon. This phenomenon is 

called fluorescence. The secondary X-ray produced is characteristic of a specific element. 

The energy (E) of the emitted fluorescent X-ray photon is determined by the difference in 

energies between the initial and final shell of the individual transitions. This is described by 

equation 2.1 

                               E = hc/λ                    2.1 

Where h is Planck's constant; c is the velocity of light; and λ is the characteristic wavelength 

of the photon. Energies are inversely proportional to the wavelengths; they are characteristic 

for each element. 

Basic components of XRF 

The setup of XRF instrumentation (Figure 2.4) consists of four basic components (a) An                          
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excitation source (b) A sample (c) A detector (d) A data collection and analyzing system. 

The excitation source is typically an x-ray tube. The x-ray tube sends a beam of x-rays with 

various energies to the sample, and the sample absorbs and emits the x-rays to the detector. 

The detector senses each impinging x-ray and sends electrical pulses to the data collection 

and analyzing system. The analyzing system categorizes each x-ray by its energy. This set up 

is a generic one. The X-LAB 2000 instrument used in the present study incorporates 

secondary targets and polarisation of sample excitation X-ray. The polarisation drastically 

reduces the scattering background in the collected spectrum resulting in improved limits of 

detection and reduced measurement times. Three Barkla scatterer targets are used for this 

purpose; boron carbide which is optimised for elements from manganese to molybdenum; 

aluminium oxide optimised for trace element analysis for the elements from molybdenum to 

cerium; highly ordered pyrolytic graphite for other elements. Secondary targets enable 

optimal excitation of the element from potassium to manganese, independent from the iron 

content of the sample (12).  

 
Figure 2.4: The principle of XRF and the typical XRF detection arrangement (13) 
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Strength and weakness of XRF: The strengths of XRF have already been alighted in section 

2.1.3.. The major weakness of XRF is that analyses are generally restricted to elements 

heavier than fluorine. It has limited sensitivity for some important pollutant elements (e.g., 

Cd and Pb) and a somewhat poorer precision and accuracy compared to atomic spectroscopic 

techniques (14). In addition the detection limits of ICP-MS and FAAS are better than those of 

XRF and the latter is also not suitable for isotopic measurement. Comparison of the three 

techniques is shown in Table 2.2 

Table 2.2: Comparison of Elemental Techniques 

Parameters XRF FAAS ICP-MS References 

Detection limits % - ppm mg/l ng/l 15, 16 

Sample throughput  10-15 secs per 

element 

All elements in <1minute 17  

Dynamic range Wide 10
3
 10

8
 16 

Interferences Very few Few High 18 

Dissolved solids in 

solution 

N/A 0.5 -5% 0.1-0.4  16 

Sample volume required Very large  (g) Large Very small 16 

Isotopic analysis No No Yes  7 

Ease of use Very easy Easy Moderately easy  16 

Method development Very easy Easy Difficult 16, 19  

Capital cost Very low Low Very high 15, 16 

Sensitivity Good High Very high 15 

Sample preparation 

method 

Non 

destructive 

Destructive Destructive 20, 14,  21 

 

2.2 Principal sources of uncertainty in environmental trace analysis. 

Figure 2.5 show that chemical analysis of environmental samples can be divided into the 

following steps: planning, representative sampling, preparation of the samples, instrumental 

measurement of the analytical signal and evaluation of the data. Generally each step in the 

analysis contains an uncertainty. 

 

 

 
 

 

 

 

                                          Up to 1000%           Between 100 and 300%    Between 2 and 20%              Up to 50% 

 Figure 2.5: Flow chart for inorganic environmental analysis including a rough error 

estimation of the different analytical procedure (16).  
  

In any analytical investigation the degree of difficulty and the likelihood of error depend less 

on the physico-chemical properties of the substance or sample to be analyzed than on the 

Planning 

of analysis. 
Representative    

sampling. 

Sample 

preparation: 

physical and 

chemical. 

Instrumental 

measurement 

Data 

Evaluation 



30 

 

concentration range in which the substance to be determined occurs in the sample (4). 

Whereas % and ppm ranges can often be determined without much trouble and as a matter of 

routine, at ppb and even more at ppt levels present a problem.  

2.2.1 Sample preparation 

In the analysis of environmental samples, one of the most common sources of error which  

analysts encounter are those emanating from preparation steps. Sample preparation is the 

most critical part of the analysis because it is responsible for the most and often hidden 

sources of errors. It is usually time-consuming and many errors influencing the reliability of 

the final results may be introduced at this stage (22). Errors due to contaminations may be 

usually overcome if necessary precautions are taken concerning reagents, equipment and the 

manner of working. Contaminations, frequently observed, are due to systematic or random 

introduction of non-negligible amounts of the analyte during different steps of the analysis. 

The choice of the sample preparation procedure will depend on the measurement technique 

used. Sample preparation involves several stages. For solid samples, the stages includes 

drying (air, laboratory oven 39 to 42
o
C), homogenization (mixing/crushing), grinding (mills, 

mortars), followed by a sub sampling, mineralization and dissolution of a subsample. Most of 

these steps performed in the laboratory may be sources of contaminations, essentially due to 

the type of vessels and purity of reagents, used.  Drying protects the sample material against 

microbial decomposition during subsequent storage and acquires constant reference value by 

determining the dry weight as opposed to the fresh weight, which is difficult to quantify. 

Samples that cannot be dried immediately can be kept in a refrigerator at 4°C before being 

processed further (23). To obtain a representative sample and increase the surface area of the 

sample, the solid sample has to be split into smaller parts by applying a mechanical force. 

The size of the sample is reduced further by grinding. Grinding generally applied to solid 

samples prior to the dissolution procedure, may contaminate the sample by abrasion of the 

mortar or milling parts with certain hardness (24). Sample preparation steps necessitate the 

use of reagents and vessels made in porcelain, glass, quartz, PTFE, platinum or various 

plastics. Impurities present in reagents are important (and often systematic) sources of 

contaminations, in particular if they are added in great amounts. Total dissolution of samples 

cannot be achieved in one step using a single reagent. In practice, a number of steps and 

reagents is dictated by the matrix composition. The dissolution process can lead to 

volatilization of the analyte  arsing from high temperature (eg dry ashing) or volatilization of 
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chlorine ions as nitrosyl chloride (NOCl) as in acid digestion, adsorption, coprecipitation of 

the analyte with a precipitate formed by a main matrix element within the reactive mixture 

(2). Incomplete dissolution as a result of wrong choice of reagent can lead to error. The good 

choice of the sample preparation procedure, the quality of its application and a suitable 

laboratory environment become therefore the most critical points for a successful trace 

element analysis. 

The matrix of a sample is responsible for the degree of difficulties encountered during   

analyses because it will impose constraints not only in the analyte determination but also 

during preparation steps (8). In view of elevated concentrations of analyte, the sample matrix 

is the factor responsible for interference observed during measurements of other elements 

present at lower concentrations. 

 

Samples collected for environmental monitoring fall into different categories as a function of 

the analytical difficulty associated to the complexity of the matrix and/or concentration levels 

to determine: Waters (drinking, surface, ground, and rain); Soils, sediments, suspended 

particulate matter collected in natural waters, dusts;  Plant samples;  Seawater (ultra-trace 

concentrations), biological fluids (very complex matrix: blood, milk, or highly variable 

matrix: urine); Wastes (urban or industrial) (8). Depending on the instrument for 

measurement, the sample can be introduced either in solid or liquid form. Very few 

techniques allow solid samples to be introduced directly into the instrument for analysis 

therefore analysis of solid samples by other methods involve bringing  them into a solution in 

order to satisfy needs of introduction systems of most analytical techniques utilized in routine 

laboratories.  

 

2.2.2 Sample collection and storage 

Sampling is the first and one of the most important steps, in analysis and has the role of 

ensuring the representativity of the sample in the context studied. For this reason also, it 

represents the most potential source of errors. A representative sample is one that is evenly 

distributed, and is required for the analysis. One of the special problems of environmental 

analysis is that the quantity of the original sample may be in kilogramme or tonne range and 

out of this only a few hundred milligrams can be put into the equipment for the actual 

analysis (7). In other words, there is very considerable reduction in bulk from the original 
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sample to the sample used for measurement. Nevertheless, it has to be ensured that the 

sample used in analysis has the same mean chemical composition as the original sample. 

Depending on the samples to analyze and elements to be determined, the sampling tools, 

filtration devices and storage vessels have to be carefully chosen and cleaned to minimize 

risks of possible contamination (22). All vessels to be used should thus be washed, rinsed and 

then soaked overnight in 1–10% (v/v) analytical grade nitric acid. Finally, before use all 

vessels should be rinsed in high purity deionised water.  Sample collection and storage is 

associated with the risk of contamination especially when the sampling is to do with low 

concentration of the analyte (8). In order to minimize analyte losses by adsorption of metal 

ions on the vessel or on the suspended particles, the samples collected can be stored for a 

short time in a refrigerator, and for longer periods in a freezer. For the same purpose, aqueous 

solutions are generally acidified immediately after sampling (generally at pH 1.5 with nitric 

acid) (16). This treatment is generally sufficient to prevent the adsorption of trace elements 

on to walls of the vessel for relatively long term storage. Another means to avoid adsorption 

losses is immediate freezing of the sample collected and its thawing just before 

measurements. This is the best method for storage of natural waters because an acidification 

may mobilize into solution some trace elements associated with particulate matter present in 

the sample. 

 

2.3 Optimisation of microwave digestion  

Acid digestion or wet decomposition is routinely employed for the determination of elements 

in solids in order to transfer the analytes into solution so that they can be introduced into the 

instrumentation (e.g. ICP-MS, AAS) in liquid form (25, 26). Acid digestion involves the use 

of acid and heat to destroy the organic matrix, carbonate bound fractions and sorbed fractions 

of a sample to liberate the metal content. It measures the total or pseudo-total (depending on 

the reagent used for the digestion) concentration of the metal present in the sample matrix. In 

this study, acid digestion was carried out using aqua regia (HCl: HNO3 3:1 v/v) and 

microwave system to heat the sample. Microwave radiation is a non-ionising radiation in the 

frequency range of 300 and 300,000 MHz (27). The frequency of 2450 MHz is used 

throughout in every microwave oven apparatus (27, 28). The interaction between sample and 

microwave radiation is due to two processes (29, 30).The first process is the dipole rotation 

as a function of the oscillating electromagnetic field. At 2450 MHz, the dipole aligns and 

randomises five billion times a second. In the second process the ionic conduction 
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mechanism takes place whereby the ionic species migrate in the direction of the electric field. 

These two processes produce intense heating which is faster than the convection and thermal 

conduction used in classical heating methods.  Thus, heating efficiency depends on the 

presence of polar molecules (e.g. water) and ions in the sample environment. High 

temperatures can be reached at relatively low pressures (31, 32). Microwave digestion is 

therefore a rapid and efficient method of sample decomposition prior to determination of 

trace metals. The advantages of microwave digestion involve higher recovery of the analyte, 

shorter extraction time and use of smaller quantities of solvent (33, 34).
  
A large number of 

different acid mixtures have been used for microwave digestion e.g. HNO3 /HCl, 

HNO3/H2SO4, HNO3/HClO4 and sometimes HF. In this work, an acid mixture of HCl/HNO3 

(3:1 v/v) was used and the degree of dissolution during microwave digestion was examined 

by investigating four variables, namely acid volume (V), digestion time (t), microwave power 

input (P) and temperature (T). The optimised conditions of these variables were used in the 

digestion of soil reference material and its concentration determined to ascertain the accuracy 

of the method  

2.4 Experimental. 

2.4.1 Central Composite Design (CCD). 

Central composite design (CCD) is required in order to establish the optimum conditions and 

also to obtain information about the inter-relationships between the variables (35).   A central 

composite randomised design was set up to obtain the various reaction conditions for each 

run. Twenty eight standard runs were obtained from the CCD. Each of the variables had 

limits set at five coded levels: -α, -1, 0, +1 and +α (36). The variables identified were 

temperature, time, power and volume of solvent. The use of a CCD allows all operating 

parameters to be investigated individually, as squared terms, and to consider interaction 

effects (36). The results of the CCD were evaluated using multilinear regression. The range 

of metals for which this technique has been applied are Cr, Cu, Ni, Pb and Zn. Table 2.3 

shows the minimum and maximum values for each of the variables which were employed to 

generate the equation of a straight line used in the computation of the various values for each 

run.  The experimental design for the 28 standard runs using the four variables was set up and 

is shown in Table 2.4. To fully understand the way in which microwave system affects 

digestion, individual operating variables were considered along with nonlinear effects and 

interaction terms. The operating variables were studied using a full second order central 
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composite design (36).The results from the central composite design can be assessed using 

multilinear regression represented by equation 2.2  

Y = βo + β1T + β2t + β3P + β4V + β5T
2
 + β6t

2
 + β7P

2
 + β8V

2
 + β9T.t + β10T.P +  

           β11T.V + β12t.P + β13t.V + β14P.V                                          (2.2)   

Where T = Temperature, t = time, P = Power, V = Volume, βo = Intercept and 

β1 – β14 = Parametric coefficients and Y = Response 

 

Table 2.3: Upper and lower limit of the variables for computing conditions for standard runs 

Variables Temperature 

(T
o
C) 

Time (t) 

minutes 

Microwave power 

(P) Watts 

Volume (V) mL 

of acid mixture 

+2.27519 80 10 550 10 

0 130 20 675 13 

-2.27519 180 30 800 16 

-1 160 24 730 14 

+1 110 16 620 12 

 

2.4.2 Instrument and Reagents 

All chemicals used were of analytical grade. Concentrated HCl and concentrated HNO3 were 

obtained from Fisher Scientific UK. Ltd. (Loughborough, Leicestershire). A multi-element 

standard containing Cr, Cu, Ni, Pb and Zn and internal standard solution containing Sc, In, 

and Tb were purchased from SPEXCertPrep (Middlesex, UK). Ultra pure water of 

conductivity 18.2MΩ-cm was produced by a direct Q™ millipore system (Molsheim, 

France). A soil certified reference material (GBW 07401) from China (Certified 1986, 

Revised 1998) was used. ICP-MS measurements were carried out with an ICP mass 

spectrometer X series II (Thermo Electron Corporation, Cheshire, UK.). All digestions were 

carried out using a Start D multiprep 42 high throughput rotor microwave digestion system 

supplied by Milestone Microwave Laboratory Systems UK. The weighing balance used was 

Explorer Ohaus model E406 00032 from Switzerland. 

2.4.3 Microwave digestion protocol 

The Start D microwave system has a sample capacity of 42, maximum temperature of 200 
o
C 

with a PFA vessel of volume 65 mL. 0.5 g of the soil sample was weighed into the vessel pre-

cleaned with an acid (Conc. HNO3). Then different volumes of aqua regia (HCl:HNO3 3:1 
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v/v) depending on the standard run were added to the soil. The vessel was sealed with the 

TFM cover. The sealed vessels were placed inside a rotor of the microwave digestion system 

and submitted to a microwave dissolution program shown in Table 2.6. Ventilation (cooling) 

time of 30 minutes was allowed while the vessels were still in the oven.  

Table 2.4: Experimental design which shows the range of conditions for the variables 

Standard run Temperature (
o
C) Time (minutes) Power (W) Volume (mL) 

13 110 16 730 12 

10 110 24 620 12 

26 130 20 675 16 

8 160 16 620 14 

2 160 24 620 14 

5 160 25 730 14 

19 80 20 625 13 

21 130 10 625 13 

25 130 20 550 13 

18 180 20 675 13 

16 110 16 620 12 

3 160 25 750 13 

1 160 24 730 12 

23 130 20 675 13 

14 110 16 620 14 

12 110 24 620 14 

7 160 16 730 12 

15 110 16 730 14 

24 130 20 800 13 

28 130 20 675 13 

11 110 25 730 12 

6 160 16 620 12 

17 130 20 675 13 

4 160 24 620 12 

9 110 24 730 14 

27 130 20 675 10 

22 130 20 675 13 

 

After cooling, the digest was filtered using a whatman filter paper into a 50 mL volumetric 

flask and diluted to the mark with Milli-Q water of conductivity 18.2MΏ-cm at 25 
o
C. For 

each digestion, reagent blanks were also carried out. The blanks were prepared in the same 

way as the sample except that the sample was not added in the blank. The filtrate obtained 

from the digestion was stored in the fridge (4 
o
C) prior to metal analysis. 
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2.4.4 ICP-MS protocol 

An X series II ICP-MS was tuned using a 10 ng/l solution of Li, Be, Bi, Ce, Co, In, Ba, Pb, 

Tl, U in 2% HNO3 to verify mass resolution (37, 38). 
 
The tuning was done in standard and 

CCT (Collision Cell Technology) mode. The CCT mode is used for the first order transition 

elements. The conditions for standard mode and CCT mode are shown in Table 2.5. 

Calibration standards of 0-400 ng/l prepared from a 100 mg/l stock solution of the multi 

element mixture were used to calibrate the instrument. The soil samples were diluted with an 

appropriate dilution factor. A mixed internal standard (Sc, In and Tl) was added to the diluted 

soil samples, calibration standards and blanks and all analysed using ICP-MS. 

Table 2.5: Operating conditions for ICP-MS 

ICP-MS Conditions Standard Mode CCT Mode 

Extraction -152.9 -156.9 

Forward Power (W) 1400 1400 

D1 -40 -40 

D2 -140 -110 

Quadrupole Bias (V) 0.2 -14 

Hexapole Bias (V) -2.0 -18 

Nebuliser gas flow (L/min) 0.83 0.83 

Count rate 
7
Li>40000, 

115
In>200000, 

238
U>300000 

59
Co>10000, 

115
In>50000, 

238
U>100000. The soil sample 

from St Anthony was digested 

using the optimised microwave 

procedure described in 4.2.3. 

The ICP-MS was tuned by the 

procedure detailed in 4.2.4 and 

the tuning conditions as shown 

in table 3 of 4.2.4 for both CCT 

and Standard mode. The 

calibration equation is shown in 

table 3. Lead and Zn were 

analysed using FAAS by 

preparing calibration standard 

from 1000 mg/kg of the stock 

solution. The concentration of 

the metal (Pb and Zn) were 

measured at λ = 217 and 398.8 

nm respectively.  

 

Ratio Limit 
156

CeO/
140

Ce<0.0200 
156

CeO/
140

Ce<0.0200 

Collision cell gas (L/min) N/A H2/He (4.50) 

Cool gas flow (L/min) 13.0 13.0 

Auxiliary gas flow (L/min) 0.90 0.90 

Internal standards 
45

Sc, 
115

In, 
159

Tb 
45

Sc, 
115

In, 
159

Tb 

 

2.5 Results and Discussion 

2.5.1 Microwave Optimisation 

The calibration data and the total PTE concentration in a selected local soil sample is shown 

in tables 2.6 and 2.7 respectively. The individual PTEs in Table 2.6 are investigated using a 

multilinear regression equation (equation 2.2). Statistical treatment of these data is shown in 

Table 2.8. It is clear that some individual PTE have statistical significance at the 95% 

confidence level (p value < 0.05) as summarised in Table 2.9. From the statistics, 

temperature, time and power play significant role in the digestion process. Temperature and 

power play a significant role in Cu dissolution while the dissolution of Zn has time as the 

major factor as shown by the statistical analysis. This can be demonstrated by considering 
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temperature and power for Cu recovery. At the highest power of 800 watts and a moderate 

temperature of 130 
o
C (Standard run 24), the Cu recovery is 208.4 mg/kg while keeping the 

time constant at 20 minutes and volume of 13 mL. This recovery is very close to the highest 

value of Cu obtained in all the runs (the optimised run). At the highest temperature of 180 
o
C 

and power of 675 watts (Standard run 18), Cu recovery is 168 mg/kg at constant time and 

volume of 20 minutes and 13 mL respectively though not too close to the optimum value but 

goes a long way in showing that the majority of the dissolution in this case comes more from 

temperature than from power.  Similarly, the recovery for Zn is poor (418 mg/kg) when the 

lowest time of 10 minutes was applied in the digestion (standard run 21). At other lower t of 

16 minutes, the recovery varies depending on the temperature, power and volume of solvent 

used. Example standard run 7 had Zn recovery of 759 mg/kg when a time of 16 minutes is 

used. The temperature used for the dissolution is 160 
o
C and the power is 730 watts which is 

high enough to produce such a reasonable recovery in 16 minutes. The highest recovery of Pb 

(506.7 to 659.9 mg/kg) occurs mainly between the temperatures of 130 to 160 
o
C (Standard 

runs 25, 3, 24, 17 and 7). For a constant t of 20 minutes, volume of 13 mL and temperature of 

130 
o
C, the recovery for Pb for runs 25, 24 and 17 are 506.7, 522.8 and 556.0 mg/kg 

respectively while the high temperature of 160 
o
C for time of 25 minutes and also volume of 

13 mL for standard run 3 gave 659.9 mg/kg. Though the standard run 7 was operated at high 

temperature of 160 
o
C the recovery for Pb in this run is lower than that of run 3 because the 

time of operation (16 minutes) was lower. Standard run 3 gave the highest recovery in all of 

the elements (Cr. Cu, Ni, Pb and Zn) studied. The optimised values are 97.0, 250.5, 98.9, 

659.9 and 998.3 mg/kg for Cr, Cu, Ni, Pb and Zn respectively (Table 2.7). The optimised 

conditions that gave the optimum values are temperature of 160 °C, a time of 25 minutes, 

power of 750 watts and a volume of 13 mL (standard run 3). These conditions were used in 

the microwave digestion of subsequent samples. In comparison with literatures, it is observed 

that the microwave conditions vary depending on the mass of the sample used in the 

digestion and the manufacturer / model of the microwave. For instance Navarro et al., 2008 

(39) used a Start D model with 0.3 g mass of sample and conditions were 500 W for 10 

minutes and 450 W for 18 minutes making a total of 28 minutes for the digestion and the 

volume of aqua regia used was 15 mL while operating at a temperature of 160
o
C. Yasemin et 

al., 2007 (40) used a Perkin Elmer Multiwave 3000 with 0.5 g mass of sample with a power 

of 600 W, digestion time of 30 minutes and aqua regia volume of 12 mL. Nouri et al., 2007 

(41) used a 0.1 g mass of sample in two microwave models: ETHOS and MARS 5 
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microwave systems. In the ETHOS system the conditions used were 12 mL of aqua regia, 60 

minutes digestion time, 650 W power and an operating temperature of 220 
o
C while in the 

MARS 5 the conditions were 3 mL of aqua regia, digestion time of 15.5 minutes operating at 

a power of 600 W and temperature of 175
o
C. These variations identify the importance of 

optimising the microwave instrument before being used in the digestion of real samples. 

Considering the fact that only Cu and Zn show statistical significance at 95% confidence, 

stepwise linear regression may be a more appropriate technique to use for the microwave 

optimisation study. 

Table 2.6: ICP-MS calibration data for PTEs Cr, Cu, Ni,  Pb and Zn. 

Elements Isotope Calibration Equation  y = mx+ c Correlation Coefficient r
2
 

Standard Mode CCT Mode Standard Mode CCT Mode 

Cr 
52

Cr y = 1461.9x + 12.1 y = 587.6x + 10.9 0.9998 0.9997 

Cu 
63

Cu y = 1020.9x + 11.9 y = 681.6x + 5.8 0.9994 0.9993 

Ni 
60

Ni y = 378.9x + 35.6 y = 235.4x + 3.4 0.9998 0.9996 

Pb 
208

Pb y = 82677x + 0.8 N/A 0.9993 N/A 

Zn 
66

Zn y = 2798.5x + 6.4 y = 2772.5x + 6.5 0.9996 0.9995 

 

2.5.2 ICP-MS Analysis of soil CRM 

In order to assess the accuracy and precision of the optimised microwave digestion followed 

by ICP-MS or FAAS protocol soil certified reference materials (GBW 07401 from China) 

was analysed. The results, shown in Table 2.10 show good agreement between the certified 

and measured values. The ICP-MS measurement was conducted in both standard and 

collision cell technology (CCT) modes. The CCT mode is used mainly for first order 

transition elements to reduce oxide formation. The obtained results and the percentage 

recovery (shown in brackets) for the total metal analysis are shown in Table 2.10. From the 

result, Cr has a measured value of 62.9 mg/kg in standard mode and 61.5 mg/kg in CCT 

mode with 102% recovery in standard mode and 99% in CCT mode. The standard deviation 

for Cr in standard mode is ±2.3 and ±0.5 for CCT mode. The results in both modes are good 

but Cr was measured in CCT mode in the sample because of a smaller standard deviation 

obtained when the CRM was measured. The measured values for Ni, Cu and Zn in CCT 

mode are also closer to the certificate value compared to the standard mode. The percentage 

recovery obtained from CCT mode in these elements are all above 95% compared to the  
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Table 2.7: Concentration of PTEs measured by ICP-MS in Ouseburn soil samples 

Std Run Cr mg/kg Cu mg/kg Ni mg/kg Pb mg/kg Zn mg/kg 

16 51.5 189.1 75.4 382.7 636.0 

10 50.2 170.9 74.7 360.7 554.3 

13 47.5 163.7 68.8 348.6 595.6 

20 64.6 176.8 79.5 399.2 635.2 

19 49.2 195.3 77.4 391.8 822.5 

18 81.3 168.0 78.2 453.7 635.5 

5 90.7 187.9 85.5 447.7 635.5 

2 83.2 163.8 90.3 405.7 664.5 

8 74.2 157.4 84.6 385.5 586.3 

21 67.9 222.1 92.7 372.4 418.0 

25 97.5 196.7 92.1 506.7 817.0 

26 69.7 207.0 95.4 493.2 972.7 

1 72.6 158.2 85.4 434.5 662.5 

3 97.0 250.5 98.9 659.9 998.3 

28 61.3 182.8 92.2 391.4 663.0 

12 53.8 167.4 86.1 368.7 597.5 

15 55.2 173.0 84.9 391.8 595.6 

6 65.8 167.4 78.9 392.8 605.3 

11 49.1 171.8 75.4 378.8 661.9 

4 68.1 245.8 85.9 389.6 603.7 

24 67.5 208.4 93.2 522.8 710.7 

14 54.7 241.7 82.7 493.0 569.5 

9 53.7 195.0 77.8 427.0 767.0 

27 58.6 203.0 81.9 498.0 747.0 

17 58.4 207.0 88.0 556.0 738.0 

7 74.0 205.0 94.0 555.0 759.0 

23 56.0 159.0 84.0 392.0 614.0 

22 72.0 198.0 77.0 458.0 701.0 

 

standard mode whose recoveries are < 90% except for Zn. Zinc in standard mode gave a 

recovery of 97% and concentration of 660.9 mg/kg compared to CCT mode which gave 

101% recovery and 688 mg/kg concentration. Zn was measured in CCT mode for the sample 

because the measured value (688 mg/kg) for the total metal concentration is closer to the 

certificate value (680 mg/kg) than in standard mode (660.9 mg/kg). The recovery is also 

higher in CCT mode than in the standard mode for Zn. Pb is measured in standard mode. The 

result for Pb showed 96 mg/kg for measured value and 98 % recovery compared to the 

certificate value of 98 mg/kg. On the basis of the elements determined in the soil CRM,  
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Table 2.8: Statistical treatment of individual PTE data using multilinear regression 

Parameter Variable Ni Cr Cu Zn Pb 

  Coeff P 

value 

Coeff p value Coeff p value Coeff p value Coeff p value 

βo  601.3614 0.2333 1475.9270 0.0948 -1596.0525 0.2718 -1612.9 0.7379 -2922.112 0.6533 

β1 T -0.1711 0.9033 -4.1746 0.0995 7.0057 0.1031 14.9881 0.2889 29.3234 0.1324 

β2 t -16.1548 0.0965 -26.0584 0.1135 -2.8772 0.9138 -216.084 0.0296 -89.6912 0.4650 

β3 P -0.7228 0.3542 -2.0115 0.1405 1.4758 0.5095 9.0154 0.2437 4.8505 0.6338 

β4 V -14.8792 0.6679 -27.9420 0.6364 126.0447 0.2209 57.1615 0.8662 113.4817 0.8039 

β5 T
2
 0.0013 0.1887 -0.0008 0.6083 -0.0012 0.6551 -0.0051 0.5798 -0.0073 0.5485 

β6 t
2
 0.0891 0.1876 0.0535 0.6324 -0.1714 0.3717 0.9547 0.1527 -0.9683 0.2734 

β7 P
2
 5.18E-05 0.9014 -4.5E-05 0.9495 -0.0001 0.9173 -0.0083 0.0597 -0.0104 0.0769 

β8 V
2
 -0.7569 0.3039 -2.0290 0.1158 -4.4109 0.0503 -12.876 0.0862 -18.8807 0.0644 

β9 T.t -0.0008 0.9663 0.0023 0.9427 -0.0204 0.7103 0.1768 0.3500 -0.1073 0.6695 

β 10 T.P -9.59E-05 0.9446 0.0043 0.0848 -0.0099 0.0247 -0.0266 0.0662 -0.0173 0.3503 

β 11 T.V -0.0078 0.9181 0.1068 0.4132 0.0303 0.8897 0.1268 0.8644 -0.9058 0.3724 

β 12 t.P 0.0095 0.2843 0.0230 0.1372 0.0232 0.3652 0.1415 0.1150 0.1622 0.1742 

β 13 t.V 0.5067 0.3002 0.5705 0.4883 -0.1117 0.9357 5.2106 0.2785 2.7640 0.6634 

β 14 P.V 0.0362 0.3088 0.0808 0.1882 -0.0243 0.8098 0.2205 0.5219 0.6331 0.1842 
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Table 2.9: PTEs statistically significant at 95 % confidence interval 

Metal Variable of significance 
Cu T.P 
Zn t 

 

the following operating modes were identified as the most appropriate. Cr, Cu, Ni, Zn would 

be determined in CCT mode while Pb will be determined using standard mode. All future soil 

samples were measured using these experimentally determined ICP-MS operating mode 

conditions.  

Table 2.10: Total PTE concentration in soil CRM  GBW 07401 by ICP-MS/FAAS 

 

Element 

GBW 07401 (Soil) 
Certificate Value     

Mean ± SD (mg/kg) 

Measured Value (mg/kg)                      

Mean ± SD  (n = 3) 
 Standard Mode  CCT Mode 

As 34 ± 5 NA 34.8 ± 5.4 
Cd 4.3 ± 0.6 4.8 ± 1.2 NA 
Cr 62 ± 6 62.9 ± 2.3 (102) 61.5 ± 0.5 (99) 
Cu 21 ± 2 14.9 ± 1.8 (71) 20.0 ± 2.3 (96) 
Ni 20.4 ± 2.7 15.7 ± 2  (77) 20.1 ± 2.9 (102) 
Pb 98 ± 8 96 ± 2 (98) NA 
Zn 680 ± 39 660.9 ± 3 (97) 682 ± 10 (100) 
Pb~ 98 ± 8 99.3 ± 0.1 (101) 
Zn~ 680 ± 39 688 ± 7 (101) 

        ~ Measured by FAAS,   NA = not available, Nos in brackets are % recoveries. 

In all, the elements determined using the optimised condition gave good result when 

compared with the certificate values hence the validity of the method. Note that Zn and Pb 

were also measured in the CRM (Table 2.10) using FAAS because some of the soils collected 

across the study site were of such high concentration to warrant the use of FAAS rather than 

ICP-MS (see chapter three). From the results the recovery/accuracy in each case is 101%. 

2.6 Conclusion 

The type of instrument needed to carry out PTEs analysis is dependent on the nature of the 

sample, the analyte concentration and the sensitivity of the instrument. The optimised 

microwave condition obtained in this work is temperature of 160
o
C, time of 25 minutes, 

volume of the aqua regia of 13 mL and power of 750 watts. These optimised conditions are 

used in subsequent analysis. 
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Chapter Three: Evaluation of PTE contamination at a former industrial 

site (St Anthony’s Lead Work) in Newcastle upon Tyne 
 

3.1 Introduction  

PTEs are well-known for their toxic effects and therefore information on their concentrations 

and distribution in the environment is important.  Pollution of the environment by these 

elements can pose a serious threat to plants, animals and even human beings because of 

bioaccumulation, non-biodegradable properties and toxicity of the contaminants even at low 

concentrations. Since these elements are non-biodegradable, their pollution is long lasting.  

Different approaches are used for soil and sediment analysis, many of them focussed on 

pollutant desorption from the solid phase; others on the pollutant adsorption from a solution 

by the solid phase. Among the approaches based on desorption, leaching procedures are the 

most widely accepted and used (1). Leaching involves two processes: - (a) Mobilization of 

the target metal from the solid particle and (b) Dissolution of metal-containing solid phases 

(e.g. Al, Fe, Mn oxides or hydroxides, organic matter and silicate minerals). The dissolution 

process is a three step mechanism involving (1) fast ligand adsorption onto surface functional 

groups of solid particles (2) slow mineral metal detachment and (3) fast protonation restoring 

the original surface functional groups (2, 3).  Changes in environmental conditions, whether 

natural or anthropological, can strongly influence the behaviour of both essential and 

potentially toxic elements by altering the forms in which they occur. The transfers of metals 

from soil to plants pose potential health risks because they can enter the food chain and the 

environment (4 ). Plant uptake is one of the major pathways by which heavy metals enter the 

food chain (5,  6).The uptake of PTEs by plants from soils is of interest because excess 

dietary intakes are detrimental to human health.  

Of the leaching extraction processes, single and sequential extraction has been the most 

widely accepted and used.  Sequential extraction provides more detailed information about 

the different availabilities of PTEs partitioning among different geochemical phases, enabling 

differentiation between several physical forms of speciation: exchangeable, carbonates, 

oxide, organic-bound and residual forms. The most widely used method for determining 

sequential extraction are those proposed by Tessier et al. 1979 (7) and modified by Rauret et 

al. 1999 (8). The former method has four steps, where four fractions of extractable PTEs are 

released from the sample:- exchangeable (ion exchange PTEs), associated with carbonates 

(acid soluble PTEs), associated with Fe-Mn oxides (reducible PTEs) and associated with 
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organic matter (oxidizable PTEs) (9). The modified method constitutes three steps, with the 

major difference to Tessier et al. 1979 method being the replacement of the first two steps 

with a single step, use of large sample size and an increase in the volume of extractant (10). 

In both cases, the residual fraction is always digested using aqua regia and summed up with 

those of other fractions and compared with the result of a separate   aqua regia digest of the 

whole soil (pseudo total). This is an additional step. The conventional protocol of the Tessier 

et al. 1979 method, or its modification, is a time consuming procedure owing to the lengthy 

operating time required in the successive extraction steps and consequently, could be 

considered tedious for routine analysis especially when considering the bioavailable fraction, 

hence the use of single extraction (9).  

Single step extractions are mainly applied to soil samples to identify the bioavailable fraction 

using a number of different reagents to extract all, or part of, the metals from soil. A 

commonly used single extraction approach to characterise soil bioavailable fraction of metals 

is the use of the HOAc/EDTA procedure (11). Using EDTA to extract metals has been 

proven to be effective because of its strong complexing ability (11). The advantages of 

EDTA in heavy metal extraction are high efficiency of metal extraction, formation of metal 

complexes which are thermodynamically stable and soluble, low adsorption of the chelating 

agents and their metal complexes on soil (12-14). According to Perez et al. 2002 (9), single 

extraction procedures provided similar amounts of extractable PTEs to those released in the 

first three fractions of the Tessier et al. 1979 method, which can be considered to be the more 

mobilizable fractions. Laboratory studies have shown that EDTA is effective in mobilising 

PTEs (15). 

The determination of PTEs in foraged or edible fruits is not well reported in the literature. 

Exceptions, for example, include studies on the PTE content of blackberries (16, 17), wild 

berries (18) and (tropical) fruits (19). As the potential human health risk from gathering 

foraged fruits is unpredictable (a) due to seasonal variation (excess and low abundance) and 

(b) an individual‟s intention to gather, the need to assess this source of contamination has 

importance. The growing public awareness of potential contaminants in foodstuffs, coupled 

with the growth in farmers markets selling „home-made‟ produce e.g. jams and natural herbal 

remedies,  raises concerns  about the source of such produce especially foraged fruits and 

berries from former industrial sites. In this study foraged samples from a former industrial 

site, now used as a local community countryside park, present a potential human health risk 
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either from direct consumption of fresh samples or following their conversion in to products 

for private consumption or sale e.g. jam.  Of particular importance on this site is the presence 

of Pb (20); however other elements were also analysed in the foraged fruits (As, Cd, Cr, Cu, 

Ni and Zn). 

This work is aimed at (1) evaluating the pseudo- total PTEs content at the site (the former St 

Anthony‟s Lead works) (2) comparing the effectiveness of HOAc and EDTA in the 

extraction of PTEs from the site. (3) to evaluate the soil-to-plant transfer factors (gathered 

over two successive sampling seasons) for predicting  a potential health risk from forage 

fruits once soil contamination levels are known.   

3.1.1 Site description 

The St Anthony‟s Lead Works was situated along the banks of the river Tyne to the South-

east of Newcastle City Centre. The area of the site is about 52,651 m
2
. The factory which 

operated from around 1840 to mid 1930s smelted lead ore imported from Europe, mainly 

Spain and processed this along with United Kingdom produced lead (20). The factory refined 

lead ore to extract silver and then manufactured white and red lead, and made sheet and lead 

pipe. The site was landscaped in the mid 1960s (20). Current uses of the site include:- fishing 

on the riverside, ball games, walking, and dog exercise. The site is currently occupied by 

Walker Riverside Park. and site surfaces include hard standing (footpath, road and car park) 

grassed and shrubby/wooded areas (Table 3.1). Figure 3.1 shows the period usage where the 

soil samples were collected and Figure 3.2 the site layout where the foraged samples were 

collected.   

Table 3.1: Site Description of former St Anthony’s lead works (20) 

Description of 

location. 

The site is situated next to both Felling View and Pottery Bank in the 

Walker area of Newcastle. 

Site Boundaries. North- Disused railway track, East- Pottery Bank, South- River Tyne, 

West- Open ground. 

Site Setting The site is situated on the banks of the River Tyne in a predominantly 

recreational area and consists of public open space. 
Adjacent Land Uses Adjacent land uses includes educational, recreational and residential. 

Site Surfaces This include hard standing (footpaths, car park and road) grassed, 

landscaped and planted areas 

Vegetation Vegetation present on the site includes grassed areas, shrubs and trees. 

Subsurface 

Structures 

This may include foundations, structures and various tanks associated 

with the sites former land uses. 
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Figure 3.1 Sample locations for soil samples at former St Anthonys lead site. The building are labelled to indicate previous usage. 
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Figure 3.2 Sample locations for foraged fruits collected from former St Anthonys lead works. The layout of the former buildings and 

infrastructure are also indicated.
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3.2 Experimental 

3.2.1 Sampling and sample preparation 

Samples of soil were collected from 19 sample points on the site (Figure 3.1) by 

digging a square hole of about 10 cm
2
 from the top soil. The grass on the top of the 

soil was removed. The top soil collected was put inside a wax paper geochemical bag, 

and labelled to include the sample point, date of collection and the site where it was 

collected. The hole created was covered back after the collection. During sampling, 

sample handling and sample preparation polyethylene gloves were worn. The soil 

samples were dried in the sample bags in an oven at a temperature of <40
o
C for 6 

days. The dried soil samples were gently disaggregated in a porcelain pestle and 

mortar and passed through a plastic sieve of mesh size 2 mm and stored. A powdered 

sub-sample was digested using microwave digestion technique and then stored in the 

fridge for metal analysis using ICP-MS and FAAS. The description of the sample site 

is shown in Table 3.2 

Also samples of foraged fruit (blackberry, elderberry, rosehip and sloes) were 

collected from the site over two successive seasons (September 2007 and 2008; 

Figure 3.2). In terms of sample size per site a minimum of 10 fruits were collected for 

blackberry, sloes and rosehips, whereas for elderberry a plethora of berries was 

collected. Immediately following collection, all samples were washed thoroughly in 

distilled water and the edible portions prepared for analysis. This involved oven 

drying of samples at a temperature of 37
o
C for about 28 days, followed by powdering 

using an agate mortar and pestle. 

3.2.2 Instrument and Reagents 

In addition to the instrument and reagents used in 2.2.2, EDTA from BDH chemicals 

Ltd Poole England and HOAc from Fisher Scientific UK Ltd (Loughborough, 

Leicestershire) were used. Carbolite AAF 1100 furnace was used in organic matter 

content determination. All pH were measured using a Jenway 3020 pH meter supplied 

by S.H scientific Blyth Northumberland UK. Soil mixing was done using SB3 rotator 

by Stuart (end over end).  Flame atomic absorption spectroscopy (FAAS) 

measurements were carried out using an A. Analyst model 100 supplied by Perkin 

Elmer Corporation, Norwalk, Connecticut, USA. Energy dispersive X- ray  
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Table 3.2:  Description of sampling site & sample.  

Sample No Description of sampling site Description of sample 

SAL 1 Open grassy area (recently mown), c 50cm from trees. Topsoil (imported) sample  1-10 cm 

SAL 2 Near foot of the slope dominated by scrub woodland (principally 

Elder, Hawthorn & Rosehip at sample location).  Approx. 50 cm 

from sample 1 and just into the undergrowth (scrub). 

Removal of overlying litter layer. Topsoil (made 

ground/imported soil) just under trees/shrubs sampled 0-

10cm.  

SAL 3 Base of slope dominated by scrub woodland (principally shrubs 

& Silver Birch at sample location), near visible occurrences of 

red lead. 

Removal of overlying litter layer. Topsoil (made ground) 

under trees/shrubs sample 0-10cm. 

SAL 4 Open grassy area (recently mown), approx. 20 cm from rough 

grass fringing the slope. Near utilities cover. 

Topsoil (imported) sample 1-10cm.  

SAL 5 Sample taken from wooded (scrub) slope. Removal of overlying litter layer. Topsoil (made ground) 

sample 0-10cm. 

SAL 6 Collected at apex of short slope in open (bare) ground adjacent to 

trees/shrubs. 

Topsoil  (made ground) sample 0-10cm. 

SAL 7 Rough grass/herbs. Topsoil (imported) sample 1-10cm. 

SAL 8 Adjacent to tarmac path at top of steep slope, next to fence. Topsoil (made ground) sample 1-10cm.  

SAL 9 West of cupellation near foot of slope and underneath scrub 

(Birch, Hawthorn, Rowan). 

Litter layer removed. Topsoil (made ground) sample 0-

10cm. 

SAL 10 Grassy area near edge of scrub covered slope. Topsoil (imported) sample 1-10cm. 

SAL 11 Open grassy area (recently mown), approx. c 50cm from scrub 

woodland. 

Topsoil (imported) sample 1-10cm. 

SAL 12 Steep wooded slope Top soil 0-10 cm. 
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SAL 13 Ashy slope. Unofficial path.  Sample contains very little organics. 10 cm max. topsoil 

depth. 

SAL 14 Steep wooded slope.  Ashy, little topsoil. Little organic matter.  Furnace slag 

SAL 15 Steep wooded slope. Ashy material exposed around rabbit/fox holes. 

Demolition material, stone and bricks present. 

SAL 16 Grass cover. Clayey soil, with ash, bricks & stones present. Chimney 

area. 

SAL 17 Steep wooded escarpment. Red lead present at surface. Shallow humus/soil over 

clayey subsoil. Sample from top 10 cm. 

SAL 18 Grass cover Top soil (imported) sample 1-10 cm. 

SAL 19 Wooded riparian slope  Sandy material. Possible presence of red lead. Possibly 

tipped material. 
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fluorescence spectroscopy (ED-XRF) analysis was performed on a Spectro Analytical 

X-Lab 2000 instrument fitted with a Gresham Si (Li) detector. Flame photometer used 

was from Evans Electroselenium LTD, Essex, UK. Carbolite AAF 1100 furnace was 

used in % loss of ignition (LOI) determination. An end-over-end shaker (Stuart 

Rotator SB3) was used for the single extraction (Barloworld Scientific Ltd., 

Staffordshire, UK). 

3.2.3 Soil pH 

The pH was determined in a soil: deionised water suspension 1: 2.5 w/v (21) as 

follows; 10 g of soil sample was accurately weighed into a 50 mL Sarstedt extraction 

tube. 25 mL of deionised water was added to the soil. The sample was placed on a 

shaker and agitated at 30 rpm for 10 minutes. Then, the sample was left to stand for 

10 minutes and the pH recorded. The pH was measured using pH meter after being 

calibrated with buffer solutions of pH 4 and 7. 

3.2.4 Soil organic matter content 

Soil organic matter content was determined using the method of LOI as described by 

Baize 1993 (22). 5 g of soil sample was accurately weighed into a pre-weighed 

crucible. The weight of soil (W) and the weight of soil and crucible (W1) were 

recorded. The sample was placed in a pre-heated muffle furnace (400 °C) for 4 hours 

and then cooled in a desiccator. The sample was re-weighed and the weight was 

recorded (W2). The % LOI was calculated using equation 3.1.  

% LOI = W1 - W2 x 100                                                            3.1                 

       W  

3.2.5 Cation exchange capacity (CEC) 

Soil testing laboratories do not provide direct measurement of CEC rather an estimate 

of it based on exchangeable cations. Effective CEC as a preferred nomenclature was 

determined according to the procedure described by Robertson et al., 1999 (23). It 

involves measurement of exchangeable cations which include both the base cations 

(K
+
, Ca

2+
, Mg

2+
, and Na

+
) and the acid cation (H

+
).Other cations such as NH4

+
 and 

trace metals are usually present in minor amounts and can be effectively ignored.  
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Base cations measurement 

4 g sample of fresh sieved soil was weighed into a 50 mL Sarstedt extraction tube. 40 

mL of 1 M NH4OAc, pH 7.0 (77.1 g NH4OAc was added to 950 mL deionised water, 

adjusted pH to 7.0 with HOAc or aqueous ammonia, and made up the volume to 1.0 L 

with deionised water) was added to the sample. The sample was agitated on a shaker 

at 30 rpm for 1 hr, after which it was centrifuged at 1000 g for 10 minutes. The 

supernatant was removed and filtered through a Whatman No.41 filter paper for 

analysis using Flame Atomic Absorption Spectrometer (FAAS) for Ca
2+

/ Mg
2+

 and a 

Flame Photometer for Na
+
/ K

+
. The base cations were calculated from equations 3.2 

and 3.3.  

Gravimetric basis – Element mass  

mg element / kg soil = (C x V)                                                                                 3.2.    

                                        W 

Where  

C = concentration of ion in extract in mg/L, V = volume of extractant  

W = dry mass of soil.  

Gravimetric basis – Element moles of charge  

cmolc element / kg = (Cg x n)                                                            3.3 

                                  (10 x A)  

Where 

 Cg = element mass on gravimetric basis, as mg element /kg soil  

n = valence of ion, A = atomic mass of ion  

Exchangeable acidity 

10 g sample of fresh sieved soil was weighed into a 100 mL extraction tube. 25 mL of 

1 M KCl was added to the sample. The sample was shaken thoroughly and was 

allowed to sit for 30 minutes after which it was sieved in a 2 mm mesh size. The 

moisture content of a separate sub sample was determined as detailed in 3.2.4. The 

sieved solution was filtered through a Buchner funnel and the residue washed with 

five successive 25 mL aliquot of I M KCl for a total of 150 mL KCl per soil sample. 

To the filtrate was added five drops of phenolphthalein and titrated with 0.1 M NaOH 
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to the first permanent pink end point and the volume of NaOH used recorded. Five 

drops of phenolphthalein was added to a blank solution of 150 mL 1 M KCl passed 

through a Buchner funnel and titrated with 0.1 M NaOH. The volume of NaOH used 

was for the blank was recorded. The exchangeable acidity was calculated using 

equation 3.4. 

Exchageable acidity (cmol/kg) =    (NaOHdif/W) x (0.1 mmol H
+
/mL NaOH) x  

                                   (0.1 cmol H
+
/mmol H

+
) x 10

3
g soil/kg soil)                    3.4                                                                                                                                                                      

Where 

NaOHdif  = mL of NaOH added to sample filtrate less mL of NaOH added to blank 

solution 

W = g dry soil (i.e. 10 g – water content).  

 

The effective cation exchange capacity is determined using equation 3.5 

 CEC (cmolc / kg) = exch K
+
 + exch Ca

2+
 + exch Mg

2+
 + exch Na

+
 + exch acidity         3.5                                                                                                               

Where exch K
+ 

etc. = concentrations of individual ions expressed as cmolc / kg dry 

soil 

3.2.6 Pseudo total PTE content of soil from former St Anthony’s lead works  

The soil samples were digested using the procedure detailed in 2.4.3. The optimised 

conditions of temperature of 160
o
C, time 25 minutes, power 750 watts and volume of 

13 mL was used in the digestion process. The ICP-MS was tuned by the procedure 

described in 2.4.4 and the tuning conditions as shown in Table 2.5 of 2.4.4 for both 

CCT and Standard mode. The calibration equation is shown in Table 3.3. Lead and Zn 

were analysed using FAAS by preparing calibration standard from 1000 mg/kg of the 

stock solution. The concentration of the metal (Pb and Zn) were measured at λ = 217 

and 398.8 nm, respectively.  

3.2.7 Total PTE content in foraged fruits by ED-XRF 

Approximately 4 g of the dried ground sample was accurately weighed and mixed 

with 0.65 g of Hoechst wax HWC binder. The mixture was made homogenous by  
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Table 3.3: Calibration Data As, Cd, Cr, Cu and Ni on ICP-MS and Pb, Zn on FAAS 

Element Isotope Calibration Equation  y = mx + c Correlation Coefficient r
2
 

CCT mode Standard mode CCT Mode Standard Mode 

As 
75

As y = 562.15x + 0.02 y = 2952.40x – 0.04 0.9992 0.9991 

Cd 
111

Cd N/A y = 435.64x + 11.15 N/A 0.9996 

Cr 
52

Cr y = 587.68x + 10.97 y = 1461.92x + 12.14 0.9997 0.9998 

Cu 
63

Cu y = 681.63x + 5.83 y = 1020.88x + 11.99 0.9993 0.9994 

Ni 
60

Ni y = 235.42x + 3.44 y = 378.93x + 35.58 0.9996 0.9998 

*Pb 
208

Pb N/A y = 0.0136x – 0.003 N/A 0.9993 

*Zn 
66

Zn N/A y = -0.0065x
2 

+ 0.136x + 0.0029 N/A 0.9996 

*Elements measured using FAAS 
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shaking in a Retsch MM 200 shaker for 3 mins at 30 cycles per second. The 

homogenous mixture was packed in a stainless steel compartment and then formed in 

to a 32 mm pellet using a hydraulic press (Graseby Specac) by applying a pressure of 

< 10 bar. The pressed pellet was placed inside the ED-XRF instrument and its 

elemental composition determined 

3.2.8 Single extraction using EDTA 

0.05 M EDTA was prepared as ammonium salt solution by adding in a beaker 14.61 g  

EDTA to 80 mL deionised water. The dissolution was achieved by gradually adding 

13 mL of ammonia solution (25%). The solution was then transferred to a 1.0 L 

Polyethylene container and approximately 900 mL of deionised water was added. The 

pH of the solution was adjusted to 7.0 by adding a few drops of NH3 or HCl as 

appropriate and the solution was made up to 1.0 L with deionised water. 2 g of soil 

CRM (BCR 700) was weighed into a 50 mL centrifuge tube and 20 mL of 0.05 M 

EDTA (pH 7.0) was added. The mixture obtained was shaken in an end-over-end 

shaker at 30 rpm for 1 hr at room temperature. The mixture was centrifuged for 10 

minutes at 3000 g and the supernatant was decanted, filtered through a Whatman No 

41 filter paper and stored in a polyethylene bottle at 4
o
C. The extract was analysed 

using ICP-MS. The same procedure was adopted on the samples. 

3.2.9 Single extraction using HOAc 

0.43 M HOAc was prepared by adding 25 mL glacial HOAc to about 500mL of 

deionised water in a 1.0 L polyethylene container. The solution was then made up to 

1.0 L with deionised water. 20 mL of 0.43 M HOAc was added to 0.5 g of soil CRM 

(BCR 700)   in a 50 mL centrifuge tube and the mixture extracted by shaking with an 

end-over-end shaker at 30 rpm for 16 hrs at ambient temperature (overnight) making 

sure that there was no delay between the addition of the extractant solution and the 

beginning of the shaking. The mixture was centrifuged for 10 minutes at 3000 g and 

the supernatant was decanted and filtered through a Whatman no 41 filter paper and 

stored in a polyethylene bottle at 4
o
C until analysis with ICP-MS. This procedure was 

applied to the samples. 
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3 .3 Results and Discussion 

3.3.1 Soil properties (pH, % LOI, CEC) 

The behaviour of heavy metals varies for different types of soil and so characterising 

the soil sample is important. Table 3.4 shows the properties of the soil collected from 

former St Anthony‟s lead works. The soil characteristics such as pH, % LOI and CEC 

have a direct influence on the mobility and availability of PTEs (24-27). 

 Soil pH is one of the most important factors in the control of the absorption, mobility 

and bioavailability of PTEs in the soil solution (27). A high pH contributes to a 

decrease of PTE mobility by the formation of precipitates, which increases the 

number of adsorption sites and decreases the competition of H
+ 

for adsorption, 

thereby increasing the PTE stability with humic substance. The pH was carried out in 

water. The average pH measurement in the sampled points from the site is 7.3  

There is only limited variability in the % LOI except with that of SAL 18 where the % 

LOI is much higher. The average % LOI is 11.47%. The % LOI contributes to the soil 

CEC and a high value of % LOI results in a high value of CEC, which will have direct 

impact on the availability of metals. 

CEC indicates the number of cation exchange sites and the value gives an idea of the 

number of cation adsorption sites in the soil (23). PTEs in soils of low CEC are more 

susceptible to leaching. Table 3.5 shows the typical CEC values for different soils. 

From Table 3.5, it can be seen that the CEC values at former St Anthony‟s lead works 

(SAL) (Table 3.4) falls within the normal range, except for SAL 18, which has a high 

value of 161 cmol/kg. The cation adsorption potential of PTEs in this case will be 

high because of the high CEC. According to Cameron, (28) CEC values are 

considered low if below 12 cmol/kg. 

3.3.2 ICP-MS of soil CRM 

The soil certified reference material (BCR 700) was analysed in two different modes 

(Standard and CCT) using inductively coupled plasma mass spectrometer (ICP-MS) 

for both HOAc and EDTA extraction. The results obtained are shown in Table 3.6. As 

noted previously, the CRM was run to check the accuracy and precision of the 

instrument. The CRM was run three times for each extractant (for a precision 

estimate) and the mean taken. The result of the CRM showed good agreement 
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                Table 3.4: Soil Properties at St Anthony’s Lead Works (SAL) 

Sample Points pH (%) LOI CEC (cmol/Kg) 

SAL 1 6.6 10.1 14.4 

SAL 2 7.5 10.9 21.4 

SAL 3 7.2 10.7 19.0 

SAL 4 6.6 13.0 18.5 

SAL 5 7.4 11.5 19.1 

SAL 6 6.5 9.1 9.4 

SAL 7 6.6 16.1 - 

SAL 8 7.7 14.6 - 

SAL 9 7.7 11.6 27.5 

SAL 10 7.6 9.4 19.7 

SAL 11 7.4 7.5 24.6 

SAL 12 7.7 8.2 21.7 

SAL 13 7.0 10.6 22.4 

SAL 14 7.9 9.6 25.8 

SAL 15 8.0 8.4 23.5 

SAL 16 6.9 10.7 18.0 

SAL 17 7.1 15.1 21.8 

SAL 18 8.1 24.7 161.0 

SAL 19 7.8 6.4 18.8 

Mean Values 7.3 11.5 28.6 
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Table 3.5: Typical CEC values for different soils (29)  

Rating CEC 

(cmol/Kg) 

Comment 

Very low 0 – 10 Very low nutrient holding capacity indicating sandy soils 

with little or no clay or organic matter. Nutrients will 

easily be leached. 

Slightly 

low 

10 -15 Slightly low nutrient holding capacity indicating a more 

loamy mineral soil. Nutrients will still be leached. 

Normal 

range 

15 – 40 Adequate to high nutrient holding capacity indicating soils 

with increasing clay content. 
High + 40 Very high level normally found in very heavy soil with a 

high clay content or soils with a high organic matter level. 

Nutrients can be bound very tightly to the soil particles 

and therefore unavailable. 

 

with the certificate values for both modes but the CCT mode was chosen for Cr, Cu, 

Ni and Zn because it gave a better accuracy than the standard mode while Cd and Pb 

was measured in standard mode.. All subsequent measurements with respect to single 

extraction determination were made using these conditions.  

3.3.3 Pseudo-total PTE content of soil from former St Anthony’s lead works 

The range of contaminant concentration depends on the activities, disposal patterns 

and the nature of the soil. The specific type of PTE contamination found in former St 

Anthony‟s lead works is directly related to the operations that occurred at the site. In a 

typical uncontaminated soil the PTEs likely to exist in soil is shown in Table 3.7.  

The pseudo-total PTE concentration of the soil from the site is shown in Table 3.8 and 

the box plot representation of this data (Figure 3.3) shows that Pb, Zn and As have the 

highest concentrations. The box plot shows that As, Cd, Cr and Zn have outliers while 

Pb with great variation has no outlier. 

In spite of the remediation landscaping works at the site, the levels of Pb in all the 

sample is far above a typical soil concentration (Table 3.7) and also above the 

withdrawn Pb SGV (except SAL 1 and 11) for industrial/commercial which is 750 

mg/kg (30). The values for Zn are well below the generic assessment criteria (GAC)                 

value of 188000 mg/kg for industrial (31). With respect to Cd and Ni, the SGV for                                                                                                                                     
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Table 3.6: Single Extraction for BCR 700 

  HOAc Extraction EDTA     Extraction 

Element 

 

Certificate Value 

(mg/kg) 

Standard Mode 

(mg/kg) 

CCT Mode   

(mg/kg) 

Certificate Value 

(mg/kg) 

Standard Mode 

(mg/kg) 

CCT Mode 

(mg/kg) 

Cd 67.5 ± 2.8 67.5 ± 0.5 (100) N/A 65.2 ± 3.5 63.5 ± 0.3 (97.4) N/A 

Cr 19.0 ± 1.1 16.7 ± 2.7 (87.9) 19.8 ± 0.8 (104) 10.1 ± 0.9  7.9 ± 4.2 (78.2) 10.0 ± 0.3 (100)   

Cu 36.3 ± 1.6 35.5 ± 1.9 (97.8) 36.4 ± 1.1 (100) 89.4 ± 2.8 78.5 ± 3.0 (87.8) 87.9 ± 0.9 (98.3) 

Ni 99.0 ± 5.1 87.9 ± 2.4 (88.8) 97.7 ± 0.8 (98.7) 53.2 ± 2.8 43.4 ± 0.8 (81.6) 61.0 ± 0.6 (115) 

Pb 4.85 ± 0.38 4.6 ± 1.8 (94.8) N/A 103 ± 5 108 ± 0.7 (105) N/A 

Zn 719 ± 24 648 ± 3.3 (90) 696 ± 1.1 (96.8) 510 ± 17 471 ± 0.7 (92.4) 498 ± 0.7 (105) 

Pb~ 4.85 ± 0.38 5.01 ± 0.5 (103) 103 ± 5 105 ± 3.2 (102) 

Zn~ 719 ± 24 701 ± 4.5 (97.5) 510 ± 17 503 ± 24 (98.6) 

~ Measured by FAAS; N/A = Not applicable; Numbers in bracket represents % recovery
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 industrial/commercial are 230 and 1800 mg/kg respectively, these metals have their 

concentrations below the SGV. SAL 1 and SAL 11 represent the imported soil brought in as 

part of the remediation and landscaping process and are covered with grass (Table 3.2.)  

Analysis of the data using principle component (PCA) allows simplification of the dataset to 

produce a new reduced set of variables known as components. Table 3.9 shows that the first 

two components are significant and account for 83.4%. Factor 1 accounts for 61.4% of the 

total variance and is dominated by Cu, Pb and Zn. Factor 2 is dominated by As and Cd 

accounting for 22.1% the total variance. A biplot of the first two components clearly 

Table 3.7: PTEs concentration in rural soil with no local PTE input mg/kg dry soil (32). 

PTE Typical soil Concentration 

Arsenic (As) 2 – 20 

Cadmium (Cd) 0.1 – 1.0 

Chromium (Cr) 10 – 50 

Copper (Cu) 5 – 20 

Nickel (Ni) 10 – 50 

Lead (Pb) 0.1 – 20 

Zinc (Zn) 10 – 50 

 

separates the soils data into two main groups as shown in Figure 3.4. The interpretation of 

each of the components is achieved by examining the relationship between the components 

and the component loading. Loadings with high correlations are shown in bold and suggests 

PC1 summarises general PTE contamination at the site (particularly Cu, Pb and Zn) while 

PC2 summarises PTE contamination for As and Cd in particular. The negative loading of 

cluster group 1 on PC 1 reflects less contaminated sites while the positive loadings of cluster 

group 2 on PC 1 reflect samples with higher metal contamination. Cluster group 2 forms a 

more dispersed group of samples with samples 19 and 15 forming the extremes on the basis 

of their component loadings. Samples with high PTE concentrations (PCA cluster group 2) 

all come from relatively steeply sloping land some of which is bare ground (e.g. sample 13 

and 6) while the majority is covered by scrub woodland. Several of the sample sites within 

cluster group 2 also had observable red lead deposits visible in the immediate vicinity (e.g. 

samples 3 and 17) and are associated with the suspected location of water tanks (sample 3) 

and red Pb furnaces (sample 17).  All the samples taken from the open grassy area (SAL 1, 4 

and 11) indicated lower elemental concentrations. 
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Table 3.8:Pseudo-total PTE concentration of soil from former St Anthony’s lead works 

Site                                         Measured value in mg/kg (mean ± SD n = 3) 

  

 

As Cd Cr Cu Ni Pb* Zn* 

SAL  1 19 ± 1.7 0.5 ± 3.6 70 ± 0.9 46 ± 3.7 30.7 ± 4.5 174 ± 0.4 169 ± 0.6 

SAL  2 59 ± 1.4 1.1 ± 1.8 84 ± 0.6 70 ± 2.1 42.6 ± 2.3 1381 ± 1.5 332 ± 1.0 

SAL  3 905 ± 3.6 36.8 ± 0.2 81 ± 5.9 501 ± 0.4 94.6 ± 0.4 29302 ± 7.9 10620 ± 5.6 

SAL  4 140 ± 0.8 2.2 ± 1.8 75 ± 0.8 61.8 ± 1.9 30.5 ± 1.9 1048 ± 2.5 427 ± 3.4 

SAL  5 140 ± 0.6 3.0 ± 1.5 74 ± 1.0 99 ± 1.1 32.6 ± 0.7 2452 ± 1.9 540 ± 1.9 

SAL  6 1156 ± 2.3 10.2 ± 1.5 84 ± 4.7 598 ± 2.9 156.8 ± 0.8 29286 ± 5.3 5464 ± 2.5 

SAL  7 178 ± 3.2 2.7 ± 1.4 107 ± 7.2 214 ± 4 52.5 ± 5.1 5071 ± 1.9 959 ± 4.1 

SAL  8 266 ± 0.9 3.7 ± 1.2 74 ± 1.0 147 ± 1.3 39.8 ± 1.2 4833 ± 1.6 1522 ± 4.3 

SAL  9 398 ± 0.9 9.0 ± 1.8 93 ± 6.9 238 ± 4.7 38.2 ± 2.9 7214 ± 1.8 2172 ± 3.9 

SAL  10 178 ± 0.9 2.8 ± 1.1 93 ± 6.9 127 ± 1.7 31 ± 4.5 2691 ± 1.3 879 ± 4.7 

SAL  11 10 ± 0.7 0.4 ± 2.4 82 ± 0.9 22 ± 1.5 22.2 ± 1.8 221 ± 3.2 123 ± 1.1 

SAL  12 669 ± 2.7 24.5 ± 2.2 164 ± 0.8 320 ± 1.7 142 ± 1.8 17443 ± 6 3233 ± 0.7 

SAL  13 722 ± 2.8 12.0 ± 1.6 543 ± 0.7 465 ± 1.74 135 ± 0.5 15024 ± 10 4355 ± 0.8 

SAL  14 148 ± 2.6 7.9 ± 4.9 117 ± 1.1 181 ± 1.1 73 ± 0.5 4266 ± 12 2189 ± 2.3 

SAL  15 856 ± 2.7 13.5 ± 1.4 620 ± 0.6 682 ± 1.5 100 ± 1.2 28709 ± 28 7092 ± 2.0 

SAL  16 358 ± 2.7 9.8 ± 1.7 116 ± 1.2 171 ± 1.7 59 ± 2.7 4968 ± 16 1133 ± 1.6 

SAL  17 2816 ± 4.6 23.6 ± 1.0 121 ± 0.3 404 ± 1.3 96 ± 1.3 22822 ± 18 8488 ± 4.2 

SAL  18 61 ± 2.6 1.8 ± 9.9 402 ± 1.1 102 ± 1.4 55 ± 1.6 1338 ± 15 537 ± 2.5 

SAL  19 6502 ± 2.9 43.7 ±  0.9 93 ± 0.9 104.7 ± 0.7 56 ± 1.3 33306 ± 11 3268 ± 1.2 

SGVs/GAC 32R, 43A, 640I 10R, 1.8A, 230I 4.3R, 2.1A Cr(VI) 2330R, 524A 130R, 230A 450RA, 750I 3750R, 618A 

 

  3000A Cr (III)  1800I  188000I 

*Concentrations measured using FAAS; R = Residential; A = Allotment; I = Industrial; Nos in italics represents the GAC values. 
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Figure 3.3: Boxplot of PTEs concentration in soil from former St Anthony’s Lead works 

3.3.4 Mobility of PTEs in soils from former St Anthony’s lead works 

Pseudo total PTE concentration is a useful guide in evaluating the pollution level in the 

environment. However, it does not give an estimate of how much of the PTE content that is 

bioavailable to a target organism. The single extraction using EDTA and HOAc has been 

used to demonstrate the fraction of the pseudo total content that is extracted from the soil by 

plant (plant available).  

Table 3.9: Component matrix for data of St Anthony’s Lead Works. 

Elements Components 

1 2 

As 0.285 0.541 

Cd 0.367 0.475 

Cr 0.187 -0.547 

Cu 0.428 -0.315 

Ni 0.383 -0.285 

Pb 0.478 0.049 

Zn 0.438 -0.014 

Initial Eigenvalue 4.297 1.544 

Percentage of variance 61.4 22.1 

Cumulative percent 61.4 83.4 
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Correlation analysis has been carried out between the pseudo total PTE content and the single 

extraction using EDTA/HOAc and the results shown in Appendix D (A-G). 

43210-1-2-3

4

3

2

1

0

-1

-2

-3

First Component

S
e

c
o

n
d

 C
o

m
p

o
n

e
n

t

 19

 18

 17

 16

 15

 14

 13

 12

 11
 10

 9
 8

 7

 6

 5 4

3

 2 1

   

Figure 3.4: Biplot of the first two principal components. Each soil sample is numbered 1-19.             

From the result, significant strong positive correlation between the EDTA/HOAc and the 

pseudo total concentration for all the PTEs measured were obtained. The correlation 

coefficients between EDTA and HOAc are as follows: - As (0.911), Cd (0.985), Cr (0.844), 

Cu (0.905), Ni (0.589), Pb (0.891) and Zn (0.816). Details of the extraction using EDTA and 

HOAc for individual elements are discussed below.  

Arsenic (As) 

The total concentration of Arsenic (As) in all the sample points is greater than the SGV for 

residential and allotment except for SAL 1 and SAL 11 whose concentration values are 21 

and 15.2 mg/kg respectively. The SGV for residential is 32 mg/kg allotment is 43 mg/kg and 

commercial is 640 mg/kg. The concentration values for SALs 3, 6, 13, 15, 17 and 19 are well 

above the SGV for commercial. The percentage of As extracted (Figure 3.5) using EDTA is 

typically greater than those of HOAc in all the sample points except for SAL 3 and 6.  The 

concentration of As extracted using EDTA ranges from 1.6 to 1235 mg/kg while that of 

HOAc ranges from 0.2 to 998.4 mg/kg. The higher extraction of As using EDTA is possibly 

Group 1 

Group 2 
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the result of its complexing ability (13).  Site 6 has the highest value of mobility in all the 

sites for both HOAc and EDTA. This might be associated with the low value of CEC for  

                                 
Figure 3.5: Percentage /concentration (mg/kg) of As extracted in EDTA and HOAc. 

this sample point (Table 3.5) thereby leading to increased mobility. Similarly the lowest 

mobility is obtained in site 18 which can be as a result of a high pH  (pH 8.10 Table 

3.4)which contributes to the formation of precipitates, by increasing the number of adsorption 

sites and decreasing the competition of H
+ 

for adsorption, thereby increasing the PTE stability 

with humic substance.  Also with a high value of CEC there is higher binding force and hence 

low mobility.  

Cadmium (Cd) 

As expected, the concentration of Cd in all the sample points is low compared to other metals 

measured. Though the concentrations are small, there is reasonable mobility of the metal in 

the sampled points except in SAL1 and 2 (Figure 3.6). The % of Cd extracted using EDTA is 

higher than those using HOAc.   Cadmium is relatively mobile in surface water and ground 

water systems and exists mainly as hydrated ions or as complexes with humic acids and 

organic ligands such as EDTA (33). Sorption is influenced by the CEC of clays, carbonate 

minerals and organic matter present in the soil (34). SAL 18 has the highest CEC value and 

this implies low mobility of Cd as opposed to SAL 6 with high mobility. The % Cd extracted 



69 

 

using HOAc ranges from 6.4 to 53.9 (0.14 to 16.4 mg/kg) as opposed to that of EDTA which 

is 10.0 to 74.5 (0.07 to 14.9 mg/kg).  The % extraction using HOAc is higher in SAL 3, 5, 7,  

     

               

               
Figure 3.6: Percentage/concentration (mg/kg) of Cd extracted in EDTA and HOAc. 

8 and 14 and an equal value of extraction using both EDTA and HOAc in SAL 19 and SAL 

4. 

Chromium (Cr) 

All of the sampled points in this study had total soil Cr concentrations below the 

industrial/commercial SGV of 5000 mg/kg, although SAL 12, 13, 15 and 18 (with 173, 576, 

655 and 404 mg/kg Cr respectively) exceed the SGV for residential and allotments (130 

mg/kg). Using HOAc extraction, the mobility of Cr ranges from 0.2 to 21.7% total Cr (0.1 to 

18.2 mg/kg) (Figure 3.7). Similarly using EDTA, the concentration extracted ranges from 0.1 

to 2.7% of the total Cr (0.12 to 2.3 mg/kg). Of all the points sampled, Cr has the least 

mobility compared to other metals with the highest mobility obtained using HOAc except 

SAL 2 and 9 which has 0.4% extraction using the acid and 0.3% using EDTA.  

Copper (Cu) 

As earlier stated the concentration of Cu likely to exist in uncontaminated soil ranges from 5-

20 mg/kg (Table 3.7). When these values were compared with the pseudo-total Cu 

concentration obtained in this work, all the sampled points showed elevated concentration. 
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The % of Cu extracted using EDTA ranges from13.2 to 52.6 of the total Cu while that of 

HOAc ranges from 4.5 to 54.5 of the total Cu (Figure 3.8). 

                           

               
Figure 3.7: Percentage/concentration (mg/kg) of Cr extracted in EDTA and HOAc 

The mobility of Cu determined by EDTA ranges from 8.4 to 315 mg/kg while that of HOAc 

ranges from 0.7 to 326 mg/kg and EDTA mobility is higher than that of HOAc except in SAL 

6 and SAL 19. The HOAc extractable contents were approximately a factor of two to twelve 

times lower than that of EDTA except for SAL 8, 12, 13 and 15 which were less than twice 

those of EDTA. The lower values of HOAc extraction may be associated with the fact that 

HOAc only poorly breaks down strong copper-humic acid complex, as reported by Whalley 

and Grant 1994 (35).  Also the acetate anion is a less effective complexing ligand compared 

to EDTA which makes re-adsorption processes more likely (36). The effect of pH on copper 

mobility has been studied by many scholars (37-39). In all their studies they found out that 

the mobility of Cu increases with a decrease in pH. This is in agreement with the result 

obtained in Walker Riverside Park as shown in SAL 6 and 18 (Table 3.4). SAL 6 with the 

lowest pH (6.53) has the highest mobility in both HOAc and EDTA while SAL 18 with the 

highest pH has the least mobility.   

Nickel (Ni)  

All of the soils analysed have Ni concentration below that of the SGV for residential (130 

mg/kg), except SAL 6 and 13 whose values are 140.4 and 136 mg/kg respectively. The SGV 
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for allotment and commercial are 230 and 1,800 mg/kg. These values are well above the 

concentrations of Ni in all the sampled points. The ability of Ni to form soluble complexes  

            

                
Figure 3.8: Percentage/concentration (mg/kg) of Cu extracted in EDTA and HOAc 

with soil controls its mobility. In top soils, Ni binds to organic matter and can form soluble 

chelates which are more mobile in the presence of fulvic and humic acids (40). Soil pH is the 

most important factor controlling Ni solubility, sorption and mobility (41-43 ). The solubility 

and mobility of Ni increases with decreasing pH (42). From the results at the site, the lowest 

pH of 6.53 was found in SAL 6 (Table 3.4) and has the highest corresponding mobility in 

both EDTA and HOAc compared to other sampled points (Figure 3.9). SAL18 produces the 

highest pH (8.10) and has the lowest percentage mobility of 0.5 and 1.1 for HOAc and EDTA 

respectively. Of all the elements, Ni displays the least mobility in the soils at the site after Cr. 

Lead (Pb) 

Figure 3.10 show the % extracted using both extractants and the box plot of the 

concentrations. The concentrations of Pb from all the sampled points are well above the 

recently withdrawn SGV except SAL 1 and 11 whose values are 188 and 270 mg/kg 

respectively. The SGV for lead is 450 mg/kg for residential and allotment and 750 mg/kg for 

industrial (30). Lead has the highest overall concentration (Table 3.8) and the highest 

concentration in each of the sampled points. This is expected because this site was a former 

lead industrial site. Mobility of metals in soil depends among other things on the 

concentration of the metal in the soil. The mobility of Pb using EDTA ranges from 87 to  
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Figure 3.9: Percentage/concentration (mg/kg) of Ni extracted in EDTA and HOAc 

28,100 mg/kg and that of HOAc ranges from 12.5 to 17,100 mg/kg. The % of the total 

concentration of Pb extracted by EDTA and HOAc tends to mask the actual concentration 

extracted. For instance, the concentration of Pb extracted by EDTA in SAL 6 is 25,100 mg/kg 

and that for acetic acid is 16,100 mg/kg. These concentrations are extremely high, well above 

SGVs and the numbers reflect plant available rather than total concentration. From this result,  

 

Figure 3.10: Percentage/concentration (mg/kg) of Pb extracted in EDTA and HOAc 
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additional risk assessment is required to consider the use of the site and extent of potential 

receptor exposure with respect to Pb.  

Zinc (Zn) 

All of the soils tested are well above the Zn GAC value for residential and plant uptake (320 

mg/kg) except SAL 1 and 11 whose values are 169 and 144 mg/kg respectively. All of the 

soil tested is well below Zn GAC for commercial/industrial lands (188000 mg/kg). The 

mobility of Zn is higher in HOAc than in EDTA for the entire sample studied from the site 

(Figure 3.11) 

 
Figure 3.11: Percentage/concentration (mg/kg) of Zn extracted in EDTA and HOAc 

Schafer et al.,1998 (44) have classified several heavy metals according to there mobility 

properties. They observed that mobility of Zn is the highest and is the easiest to be transferred 

from one medium to another because it is present as soluble compounds at neutral and acidic 

pH values. Potentially mobile Zn concentration as measured in HOAc ranges from 54.4 to 

5073 mg/kg with the highest corresponding to SAL 6, forming about 92.8% of the total 

concentration, while SAL 18 has the lowest percentage of about 18.2% of the total. The 

amount of Zn extraction using EDTA ranges from 10 to 4200 mg/kg. 

3.3.5 Quality control for foraged fruit measurement  

Samples of a plant certified reference material GBW 07603/NCS DC 73349 (bush branches 

and leaves) were analysed by ICP-MS in order to assess the accuracy and precision of this 
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approach following microwave digestion. Previous studies (45) have shown that elements 

with masses >80 amu can be analysed in standard mode whereas elements <80 amu should be 

analysed in CCT mode by ICP-MS. The results (Table 3.10) highlight the closeness of the 

data with the certified values and the good precision achievable.  In addition, a comparison 

was also made with ED-XRF and the plant CRM. Good agreement with the certified values 

was obtained for all seven elements investigated using both ICP-MS and ED-XRF.  

Table 3.10: Total PTE concentration (mg/kg, dry weight) in a plant certified reference 

material GBW 07603/ NCS DC 73349 (Bush branches and leaves). 

Element Isotope^ Bush branches and leaves GBW 07603 / NCS DC 73349 

 
Certified value 

mean ± SD 

ICP-MS* measured value        

mean ± SD 

n = 3 

ED-XRF+      

mean ± SD 

n = 3 
Standard  Mode CCT Mode  

As 75 1.25 ± 0.10 NA 1.21 ± 0.17 1.27 ± 0.82 

Cd 111 (0.38)# 0.37 ± 0.03 NA 0.60 ± 0.03 

Cr 52 2.6 ± 0.1 NA 2.0 ± 0.3 2.2 ± 0.7 

Cu 63 6.6 ± 0.4 NA 6.4 ± 0.4 6.2 ± 0.6 

Ni 60 1.7 ± 0.2 NA 1.9 ± 0.4 1.4 ± 0.8 

Pb 206 47 ± 2 49 ± 5 NA 43 ± 7 

Zn 66 55 ± 2 NA 53.2 ± 3.2 50 ± 4 

^ for ICP-MS; * three sub-samples of each CRM was microwave digested and analysed by 

ICP-MS; + three sub-samples of the CRM was analysed by ED-XRF; # indicative value only; 

NA = not available. 

3.3.6 Foraged fruits elemental concentration  

In this study, the concentration of seven elements (As, Cd, Cr, Cu, Ni, Pb and Zn) in foraged 

fruits was determined by both ICP-MS and ED-XRF, for samples collected in September 

2007 (Table 3.11), to assess the potential human health risk from their consumption. The use 

of comparable data from both ICP-MS and ED-XRF allows several scenarios to be 

investigated. For direct analysis of solid samples ED-XRF can be used to (a) rapidly acquire 

baseline data on major and minor elemental composition, and (b) provide a guide for the level 

of dilution required by ICP-MS prior to analysis. Good agreement was obtained between the 

two analytical techniques for the seven elements studied. The highest concentration of Cr was 

found in one of the sample of rosehips (7.3 mg/kg, dry weight) with the lowest levels in 

elderberry (1.2 mg/kg, dry weight). The highest concentration of Ni was found in one of the 

sample of rosehips (3.3 mg/kg, dry weight) with the lowest levels in another sample of 

rosehips (1.5 mg/kg, dry weight). In the case of Cu the highest concentrations were found in  
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Table 3.11: Analysis of foraged fruits from Site (SAL) (mg/kg, dry weight) mean ± SD n=3 (September 2007) 

Element SAL 1 SAL 2 SAL 3 SAL 4 SAL 5 SAL 6 

 
 ICP-MS* EDXRF+ ICP-MS* EDXRF+ ICP-MS* EDXRF+ ICP-MS* EDXRF+ ICP-MS* EDXRF+ ICP-MS* EDXRF+ 

 As 0.32 ± 0.19 ND 0.32 ± 0.05 ND 0.19 ± 0.27 ND ND ND 0.23 ± 0.10 ND ND ND 

Cd 0.5 ± 0.03 0.5 ± 0.58 0.6 ± 0.04 0.5  ± 0.5 0.7 ± 0.02 0.4  ± 0.6 ND ND 0.7 ± 0.02 0.8  ± 0.3 0.7 ± 0.03 0.6  ± 0.5 

Cr 1.2 ± 0.4 1.4 ± 0.2 2.4 ± 0.6 2.3 ± 0.1 3.1 ± 0.4 3.7  ± 0.1 7.3 ± 0.2 6.7  ± 0.05 2.2 ± 0.1 2.5  ± 0.1 5.5 ± 0.1 5.8  ± 0.1 

Cu 9.4 ± 0.3 9.6 ± 0.06 6.2 ± 0.2 6.4  ± 0.1 6.7 ± 0.2 7.2  ± 0.1 5.4 ± 0.03 5.6  ± 0.09 14.4 ± 0.1 15.1  ± 0.1 5.3  ± 0.1 5.9  ± 0.1 

Ni 2.1 ± 0.04 1.8 ± 0.3 1.7 ± 0.1 1.5  ± 0.4 2.2 ± 0.2 2.7  ± 0.2 2.2 ± 0.2 2.4  ± 0.26 3.2 ± 0.2 3.3  ± 0.2 3.2 ± 0.2 3.1  ± 0.2 

Pb ND ND 0.9 ± 0.12 0.8  ± 1.0 0.8 ± 0.08 0.8  ± 0.50 1.1 ± 0.3 1.6  ± 0.58 0.5 ± 0.6 0.5  ± 1.0 0.9 ± 0.03 1.0  ± 0.9 

Zn 19.0 ± 6.3 19.3± 0.03 12.3 ± 5.1 14.8  ± 0.04 12.4 ± 2.3 16.4  ± 0.04 12.5 ± 2.2 13.4  ± 0.04 22.8 ± 3.3 26.1  ± 0.03 13.0 ± 2.3 13.4  ± 0.04 

NOTE: SAL 1 = Elderberry,   SAL 2 = Rosehips,  SAL 3 = Rosehips,  SAL 4 = Rosehips,  SAL 5 = Black berry,  SAL 6 = Sloes, * three sub-samples of 

foraged fruit were microwave digested and analysed by ICP-MS; + one sub-sample of foraged fruit was analysed three times by ED-XRF; ND = not detected 
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one of the sample of rosehips (15.1 mg/kg, dry weight) with the lowest levels in sloes (5.3 

mg/kg, dry weight). Relatively high concentrations of Zn were found in all samples; typical 

levels were 26.1 mg/kg, dry weight in one of the sample of rosehips whilst another sample of 

rosehips had the lowest concentration (12.3 mg/kg, dry weight). The levels of the most toxic 

elements i.e. Cd and Pb were all below 1.6 mg/kg, dry weight (Rosehips) with the lowest 

levels in rosehips and elderberry (not detected). Samples were also obtained 12 months later 

to assess the potential influence of time on element concentration of foraged fruits from the 

same sampling locations (Table 3.13). In the samples of foraged fruits from September 2008 

(Table 3.13) only microwave digestion followed by ICP-MS analysis was used.  The box plot 

for the seasonal variation in concentration between 2007 and 2008 for the PTEs is shown in 

Figure 3.12. Unfortunately no sloes were obtained in September 2008. For samples obtained 

from the same sampling sites i.e. SAL 1-5 inclusive, the elemental concentration did not alter 

by a factor of 2 for any element with a concentration < 0.7 mg/kg, dry weight. Some notable 

exceptions to this were Cu in SAL 3 (rosehips) which altered in concentration from 6.7 ± 0.2 

mg/kg, dry weight (September 2007) to 2.0 ± 0.3 mg/kg, dry weight (September 2008). Also 

SAL 4 (rosehips) which had significant element change for Cr from September 2007 to 

September 2008 and included 7.3 ± 0.2 mg/kg, dry weight to 1.3 ± 0.7 mg/kg, dry weight for 

Cr. It is difficult to directly compare the results from this study with the data reported in the 

literature because our concentrations are on a dry weight basis, whereas the literature 

concentrations are in fresh weight basis. Nevertheless, it has been possible to make an 

approximate comparison by converting our values to fresh weight using the experimentally 

determined moisture content as shown in Table 3.12. 

Table 3.12: Comparison of own data with literature values for Blackberry from SAL 5 

Elements Experimentally determined data Literature values 

Conc. (mg/kg) 

dry weight 

Conc. (mg/kg) 

fresh weight+ 

Conc. (mg/kg) 

fresh weight (17) 

As 0.23 0.003 N/A 

Cd 0.70 0.010 0.0007-0.094 

Cr 2.20 0.030 0.01-1.24 

Cu 14.40 0.20 0.60-3.30 

Ni 3.20 0.050 0.025-0.70 

Pb 0.50 0.007 0.0128# 

Zn 22.80 0.32 1.5-5.6 

+ Based on calculated value using an experimentally determined moisture content of 70.5%. 

# Median value; N/A not available 
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Table 3.13: ICP-MS Analysis of foraged fruits from site (SAL)* (mg/kg, dry weight) mean ± SD n =3 (September 2008) 

Element SAL 1 SAL 2 SAL 3 SAL 4 SAL 5 SAL 7 

 

SAL 8 

As 0.42 ± 0.12 0.28 ± 0.10 ND ND ND 0.37 ± 0.03 ND 

Cd ND ND ND ND ND ND ND 

Cr 1.7 ± 0.6 1.6 ± 0.5 2.4 ± 0.4 1.3 ± 0.7 2.6 ± 0.4 1.2 ± 0.7 1.3 ± 0.5 

Cu 6.4 ± 0.3 6.3 ± 0.3 2.0 ± 0.3 6.4 ± 0.3 11.6 ± 0.2 6.5 ± 0.3 6.5 ± 0.2 

Ni 2.3 ± 0.3 3.2 ± 0.4 1.9 ± 0.3 1.1 ± 0.3 2.5 ± 0.2 0.9 ± 0.4 1.6 ± 0.3 

Pb 1.91 ± 0.4 0.17± 0.1 0.23± 0.4 0.16 ± 0.8 0.32 ± 0.2 0.16 ± 0.4 0.15 ± 0.7 

Zn 24.6 ± 4.2 16.1 ± 3.9 23.4 ± 3.6 14.6 ± 3.8 22.0 ± 3.4 17.8 ± 3.9 16.2 ± 3.2 

NOTE: SAL 1 = Elderberry,   SAL 2 = Rosehips, SAL 3 = Rosehips, SAL 4 = Rosehips, SAL 5 = Black berry, SAL 7 = 

Rosehip, SAL 8 = Rosehip, * three sub-samples of foraged fruit were microwave digested and analysed by ICP-MS. ND = not 

detected 
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Figure 3.12: Boxplot showing seasonal variation in concentration for seven PTEs for 2007 and 2008 

From Table 3.12, allowing for an approximation for moisture content, some of the element 

concentrations are within the ranges quoted, while some appears to be slightly lower in 

concentration (e.g. Cu, Ni, Pb and Zn) in the samples reported in this work. This finding goes 

to tell that though the site is heavily contaminated with PTE such as Pb, the amount taken by 

the foraged fruits is very small so may not likely pose any significant harm to the body when 

consumed. 

3.3.7 Soil plant transfer factor 

An approach to assess the uptake of elements in to plants from soil is to determine the 

transfer factor (TF). The transfer factor is defined (46-49) as shown in equation 3.6 

TF = Cplant / Cpsudo total-soil                                                                                                 3.6   

where Cplant is the concentration of an element in the plant material (dry weight basis) and 

Cpseudo total-soil is the total concentration of the same element in the soil (dry weight basis). In 

order to apply this approach two assumptions need to be made. The first is that the element 

contamination of soil in the specific sampling locations remains constant from one sampling 

season to another, and the second is that the foraged fruits and soils were sampled from 

approximately the same locations (within a distance of <2 m).  
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The PTE content of the site at the specified locations (Figure 3.2) was determined and is 

shown in Table 3.14. Elevated levels of Pb are noted throughout the site (the site is a former 

lead works); variations in the Pb content of the soil (range 188 to 28676 mg/kg) are location 

specific (Figure 3.2). Also high levels of Zn are noted (mean 2256 mg/kg with a range of 169 

to 7023 mg/kg). The highest soil PTE levels are noted at sites SAL 5-8 with potential risk 

from toxic elements (i.e. As, Cd, Cr and Pb). 

Table 3.14: Pseudo total content of PTEs in soil from the site (SAL)*(mg/kg, dry weight) 

Metal

s 

SAL 1 SAL 2 SAL 3 SAL 4 SA: 5 SAL 6/7 SAL 8 

As 27 ± 4.7 61 ± 4.2 143 ± 4.8 204 ± 0.3 861 ± 2.7 604 ± 1.6 422 ± 0.3 

Cd 0.5 ± 13.5 1.2 ± 3.4 5.1 ± 1.1 4.5 ± 0.9 12.5 ± 1.5 24.4 ± 2.7 11.7 ± 0.4 

Cr 97 ± 5.2 100 ± 5.2 86 ± 6.8 66 ± 6.0 655  ± 1.0 173 ± 0.8 77 ± 6.2 

Cu 36 ± 0.8 51 ± 0.6 94 ± 0.6 128 ± 0.5 715 ± 0.5 316 ± 1.1 197 ± 0.4 

Ni 38.9 ± 0.9 40.4 ± 0.4 45.4 ± 0.5 42.2 ± 0.4 102  ± 0.9 149  ± 1.1 48.3 ± 0.4 

Pb# 188 ± 0.7 1256 ± 1.9 2605 ± 1.8 3861 ± 1.8 28676 ± 

13 

19044 ± 

10 

7349 ± 1.3 

Zn# 169 ± 0.9 387 ± 2.8 661 ± 2.0 1463 ± 2.4 7023 ± 0.7 3611 ± 2.0 2478 ± 1.9  

* three sub-samples of soil were microwave digested and analysed by either ICP-MS or FAAS# 

Using the PTE content of foraged fruits and soil from the same locations it was possible to 

assess the soil-to-plant transfer factors (Table 3.15) over two successive sampling seasons. It 

should be noted that no sloes were gathered in September 2008 due to their absence; 

consequently additional samples of rosehips were gathered from the same sampling site (SAL 

7) and an additional site (SAL 8). Also the box plot for the transfer factor for the two seasons 

(2007 and 2008) is shown in Figure 3.13.  

Transfer factors over successive seasons (for sites SAL 1-5) generally remained within a TF 

of ≤ 2 in terms of consistency. Exceptions were Ni in SAL 2 (multiplication factor of x 2.2); 

in SAL 3, Cu (multiplication factor 3.4) while in SAL 4 and Cr (multiplication factor 5.6). No 

trend was observable in these exceptions between elevated element levels in season 1 or 2. In 

all cases, except Cd in SAL 1 in 2007, the transfer factor was significantly <1.00 indicating 

that the majority of the element remained in the soil matrix and was not transferred in to the 

foraged fruit matrix.  
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Table 3.15: Transfer values for PTE uptake over two successive seasons. 

Element SAL 1 SAL 2 SAL 3 SAL 4 SAL 5 SAL 6 

 

SAL 7 SAL 8 

 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 

As 0.012 0.016 0.005 0.004 0.001 ND ND ND 0.0003 ND ND NA NA 0.0006 NA ND 

Cd 1.000 ND 0.500 ND 0.137 ND ND ND 0.056 ND 0.029 NA NA ND NA ND 

Cr 0.012 0.014 0.024 0.016 0.036 0.028 0.111 0.020 0.003 0.004 0.032 NA NA 0.007 NA 0.017 

Cu 0.261 0.180 0.121 0.124 0.071 0.021 0.042 0.050 0.020 0.016 0.017 NA NA 0.020 NA 0.033 

Ni 0.054 0.059 0.035 0.079 0.048 0.042 0.052 0.026 0.031 0.025 0.021 NA NA 0.006 NA 0.033 

Pb ND 0.010 0.0005 0.0001 0.0003 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000 NA NA 0.0000 NA 0.0000 

Zn 0.112 0.146 0.032 0.042 0.019 0.035 0.009 0.010 0.003 0.003 0.004 NA NA 0.005 NA 0.007 

NOTE: SAL 1 = Elderberry,   SAL 2 = Rosehips, SAL 3 = Rosehips, SAL 4 = Rosehips, SAL 5 = Black berry, SAL 6 = Sloes, SAL 7 = Rosehip, SAL 8 = 

Rosehip, ND = not detected; NA = no data as no foraged fruit sample taken. 
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Figure 3.13: Box plot for transfer factors for the two seasons 2007 and 2008 

3.4 Conclusion and implications for human health 

The following conclusions can be drawn from this study 

(1) The site ranges from weakly acidic to neutral soil with low organic matter content 

while cation exchange capacity was within the normal range except SAL 18 (160.98 

cmol/kg) which is above normal. 

(2) Elemental concentrations across the site are highly variable 

(3) Concentration plots and PCA analysis of the data from the site reveals that soil sample 

points SAL 3, 6......SAL 19 have the highest PTE concentrations with Pb, As and Zn 

in excess of SGVs. 

(4) Table 3.8 shows that the concentration of most of the metals investigated exceed the 

SGVs/GAC. However, site specific circumstances such as the environmental 

pathways and site usage patterns of human receptors needs to be taken into account as 

exceedence does not necessarily imply that there is an actual risk to health. The 

particular chemical form and hence its extractability is also important. Chapter four 

details future work investigating the supplementary evidence to support risk 

assessment at such sites using oral bioaccessibility testing. 



82 

 

(5) The plant availability estimated using EDTA/AcOH varies across the sampled points 

but correlates positively with pseudo total PTE concentration. 

(6) The elemental composition of foraged fruit over two sampling seasons shows that 

while the level of metal contamination in the soil is relatively high for some elements 

e.g. Pb, Zn and As the suspected risk to human health based on soil-to-plant transfer 

ratio is negligible. 
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Chapter Four: The use of the physiologically-based extraction test to assess 

oral bioaccessibility of PTEs from an urban recreational site 

4.1 Introduction 

In the UK, the environmental health risk to humans of metals from contaminated land sites 

are currently assessed using the non-statutory Contaminated Land Exposure Assessment 

(CLEA) model (1). The model was developed to allow a comparison between predicted 

contamination exposure levels and known toxicological or Health Criteria Values (HCVs), to 

derive a Soil Guideline Value (SGV) which is both site and contaminant dependant (2). 

These SGVs are generic assessment criteria that assess the risks to human health from 

chronic exposure to contaminated soil. On that basis SGVs are classed as intervention values 

and any exceedance may indicate an unacceptable human health risk from that contaminated 

site (3). Derivation of SGVs using the CLEA model assumes that the contaminant is released 

from the soil and is taken up by the human body to the same extent as the model which has 

been used to determine the HCV (for that contaminant) (3); this assumption may, of course, 

not be true as the HCVs may have been determined using non-human material and more 

soluble form of the contaminant (4). Therefore basing the human health risk of contaminants 

from contaminated soils on SGVs assumes that all the contaminant is taken up by the 

systemic circulation; this over-simplification negates both the insolubility of the contaminant 

and its potential sequestration within the soil (5). Researchers are therefore investigating 

alternate approaches that allow a better representation of the likely oral bioaccessibility (i.e. 

extractable in the human gut) of contaminants (6). Any estimation of the oral bioavailability 

of soil-bound contaminants is based on the principle that uptake (i.e. absorption) of the 

contaminant depends on its release (i.e. bioaccessibility) in the gastro-intestinal (GI) track (7, 

8). The approaches are often described using in vitro method. It is therefore important in 

assessing human health risk assessment to consider the oral bioaccessibility of the 

contaminant, determined using in vitro methodology, from contaminated land sites. 

A range of in vivo approaches have been evaluated to assess the bioavailability of PTEs for 

humans from a variety of matrices including soil, dust and food (9-11), the information 

obtained using these approaches cannot always be related to humans due to differences in 

physiology, contaminant and the matrix itself (12). So while some work does continue on in 

vivo approaches considerable barriers exist not least relating to ethical governance issues as 

well as financial constraints, such that in vitro approaches are becoming more prevalent. The 
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in vitro approaches have been developed to simulate both the stomach and intestinal juices. A 

number of comparative studies have suggested that the bioaccessibility results obtained are 

largely dependent on the specific in vitro conditions used, the actual contaminant under 

investigation and the sample matrix (1, 7-8). As the new CLEA model software (13-14) 

allows greater functionality and the incorporation of bioaccessibility data into site specific 

risk assessments the development of robust and agreed protocols is appropriate and timely. 

This work investigates the oral bioaccessibility of PTEs in soil from a former industrial site 

which is now an open access urban green space used for recreational purposes in Newcastle 

upon Tyne. While much of the literature reported data on bioaccessibilty has focused on As 

and Pb, this study investigates a broad range of elements (As, Cd, Cr, Cu, Ni, Pb and Zn), all 

of which may be present in elevated concentrations due to the sites known industrial legacy. 

In addition, the magnitude and spatial variability across the site of the oral bioaccessible 

fraction is also of inherent interest.  

4.2 Experimental 

4.2.1 The study site 

The study site, sample collection strategy and preparation along with soil characterisation as 

well as the apparatus needed for the experiment has already been described in 3.1.1, 3.2.1- 

3.2.5.  

4.2.2 Reagents 

In addition to the reagents used in 3.2.2, for the physiologically-based extraction test the 

following reagents were required. Sodium hydrogen phosphate (NaH2PO4) and potassium 

hydrogen phosphate (KH2PO4) were obtained from Baker Scientific, UK. Sodium chloride 

(NaCl), potassium thiocyanate (KSCN), anhydrous sodium sulphate (Na2SO4), potassium 

chloride (KCl), calcium chloride (CaCl2.2H2O), ammonium chloride (NH4Cl), sodium 

bicarbonate (NaHCO3), magnesium chloride (MgCl2.6H2O), sodium hydroxide (NaOH), 

hydrochloric acid (HCl), 30% hydrogen peroxide, urea, uric acid, anhydrous D+ glucose, D-

glucosaminehydrochloride, pepsin (pig), bovine serum albumin (BSA) and pancreatin (pig) 

and concentrated nitric acid (69%, HNO3) were all obtained from Merck (Poole, England). 

Mucin (pig) was obtained from Carl Roth, Germany. D-glucuronic acid (Fluka) and  

  -amylase (bacillus species), lipase (pig) and bile salts (bovine) were obtained from Sigma. 
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4.2.3 Preparation of extraction reagents for the in vitro extraction test 

 The in vitro extraction test is based on the BARGE method (15). Essentially simulated saliva 

fluid was prepared by first adding 145 mg of amylase, 50.0 mg mucin and 15.0 mg uric acid 

to a 2 L HDPE screw top bottle. Then, 896 mg of KCl, 888 mg NaH2PO4, 200 mg KSCN, 

570 mg Na2SO4, 298 mg NaCl and 1.80 mL of 1.0 M HCl was added into a 500 mL volume 

container and made up to the mark with water (inorganic saliva components). In to a second 

500 mL volume container was added 200 mg urea and made up to the mark with water 

(organic saliva components). Then, the 500 mL of inorganic and 500 mL of organic saliva 

components was simultaneously poured in to the 2 L HDPE screw top bottle. The entire 

content of the screw top bottle was shaken thoroughly and the pH of the solution (gastric 

simulated saliva fluid) measured and was found to be within the range 6.5 ± 0.5. 

Simulated gastric fluid was prepared by first adding 1000 mg of bovine serum albumin, 3000 

mg mucin and 1000 mg pepsin to a 2 L HDPE screw top bottle. Then, 824 mg of KCl, 266 

mg NaH2PO4, 400 mg CaCl2, 306 mg NH4Cl, 2752 mg NaCl and 8.30 mL of 37% HCl were 

added separately into a 500 mL volume container and made up to the mark with water 

(inorganic gastric components). In to a second 500 mL volume container was added  650 mg 

glucose, 20.0 mg glucuronic acid, 85.0 mg urea and 330 mg glucosamine hydrochloride and 

made up to the mark with water (organic gastric components). Then, the 500 mL of inorganic 

and 500 mL of organic components were poured simultaneously in to the 2 L HDPE screw 

top bottle. The entire content of the screw top bottle was shaken thoroughly and the pH of the 

solution (gastric simulated fluid) measured. The pH was found to be within the range 0.9-1.0. 

The combination of mixed saliva fluid (1 mL) and gastric fluid (1.5 mL) was checked and 

was in the range of pH 1.2 – 1.4. 

 Simulated duodenal fluid was prepared by first adding 200 mg of CaCl2, 1000 mg bovine 

serum albumin, 3000 mg pancreatin and 500 mg lipase to a 2 L HDPE screw top bottle. Then, 

564 mg of KCl, 80 mg KH2PO4, 50.0 mg MgCl2, 5607 mg NaHCO3, 7012 mg NaCl and 180 

µL of 37% HCl was separately added into a 500 mL volume container and made up to the 

mark with water (inorganic duodenal components). In to a second 500 mL volume container 

was  added 100 mg urea and made up to the mark with water (organic duodenal 

components). Then, 500 mL of inorganic and 500 mL of organic duodenal components was 

simultaneously poured in to the 2 L HDPE screw top bottle. The entire content of the screw 
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top bottle was thoroughly shaken and the pH of the solution (simulated duodenal fluid) was 

measured. The pH was found to be within the range 7.4 ± 0.2. 

Simulated bile fluid was prepared by first adding 222 mg of CaCl2, 1800 mg bovine serum 

albumin and 6000 mg bile to a 2 L HDPE screw top bottle. Then, 376 mg of KCl, 5785 mg 

NaHCO3, 5259 mg NaCl and 180 µL of 37% HCl was separately added in to a 500 mL 

volume container and made up to the mark with water (inorganic bile components). In to a 

second 500 mL volume container was added  250 mg urea and made up to the mark with 

water (organic bile components). Then, 500 mL of inorganic and 500 mL of organic bile 

components was simultaneously poured in to the 2 L HDPE screw top bottle. The entire 

content of the screw top bottle was shaken thoroughly and the solution allowed to stand for 

approximately 1 hour, at room temperature, to allow for complete dissolution of solid 

reagents. The pH of this solution (simulated bile fluid) was measured and was found to be 

within the range 8.0 ± 0.2. The pH for the combined saliva fluid (1.0 mL), gastric fluid (1.5 

mL), 3.0 mL duodenal fluid and 1.0 mL bile fluid was checked to be within the range 6.3 ± 

0.5. 

4.2.4 Preparation of samples using BARGE method  

‘Gastric’ Extraction. An accurately weighed sample (0.6 g) was placed into a 50 mL screw- 

cap Sarstedt tube and treated with 9 mL of simulated saliva fluid by manually shaking the 

soil-fluid mixture in the screw-cap vessel. Then, after 5 – 15 mins 13.5 mL of simulated 

gastric fluid was added. This was followed by shaking the mixture on an end-over-end shaker 

maintained at 37 ± 2°C for 1 h. At that stage the pH of each soil suspension was checked (the 

pH should be maintained between 1.2 -1.7). The solution was then centrifuged at 3000 rpm 

for 5 min and a 1.0 mL aliquot of   supernatant removed. Finally, 9.0 mL of 0.1 M HNO3 was 

added to the supernatant and the extract stored at < 8 C prior to analysis by ICP-MS.    

 ‘Gastric + Intestine’ Extraction. An accurately weighed sample (0.6 g) was placed into a 

50 mL screw- cap Sarstedt tube and treated with 9 mL of simulated saliva fluid by manually 

shaking the soil-fluid mixture in the screw-cap vessel. Then, after 5 – 15 mins 13.5 mL of 

simulated gastric fluid was added. The mixture was then shaken on an end-over-end shaker 

maintained at 37 ± 2°C for 1 hour. Then, the pH of the soil suspensions was checked such 

that the pH was maintained between 1.2 -1.7. Following this 27.0 mL of simulated duodenal 

fluid and 9.0 mL of simulated bile fluid were added by manually shaking the soil-fluid 
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mixture in the screw-cap vessel. The pH of the resultant suspension was adjusted to 6.3 ± 0.5, 

by the dropwise addition of 37% HCl, 1 M or 10 M NaOH, as required. The mixture was 

again shaken on an end-over-end shaker maintained at 37 ± 2°C for 4 h. Then, the soil 

suspension was removed and its pH measured (and record); the pH should be maintained 

between 6.3 ± 0.5. The soil suspension was then centrifuged at 3000 rpm for 5 min and a 1.0 

mL aliquot of supernatant removed. Finally, 9.0 mL of 0.1 M HNO3 was added to the 

supernatant and it was stored at < 8 C prior to analysis by ICP-MS.    

4.2.5 Microwave digestion protocol/ICP-MS analysis of sample 

See sections 2.4.3 and 3.2.6.for details 

4.2.6 Determination of oral bioaccessibility 

The oral bioaccessibility of PTEs from soil can be determined using the BARGE procedure. 

The percentage bioaccessible fraction (% BAF) can be calculated using equation 4.1 

        Bioaccessible fraction (%) = CBioaccessibility × 100                                   4.1                    

                           Cpseudo total  

Where, CBioaccessibility  =  Concentration of PTE released from soil (mg/kg) obtained via 

BARGE stage I (gastric) or stage II (gastric + intestinal); Cpseudo total = Pseudo total 

concentration of PTE in soil (mg/kg). 

4.3 Results and Discussion 

4.3.1 Evaluation of the BARGE approach: Application to soil CRM 

At the moment, there is no CRM for bioaccessibility testing as a result, the assessment to the 

accuracy of the BARGE was derived using a mass balance type approach adopted and 

applied to a soil certified reference material (GBW 07401). Initially, using the microwave 

digestion approach, the CRM was analysed for 7 PTEs under investigation and the results 

compared to the certified values. The results (Table 4.1) show good accuracy (and precision, 

based on triplicate determinations) between the measured and certified values for all PTEs 

studied. Then, the BARGE protocol was followed on the same CRM and data obtained on the 

PTE content (using ICP-MS) for both the gastric digest (stage I) and gastric + intestinal 

digest (stage II). Finally, the residual fraction from stage II was acid digested using the 

microwave protocol described above and also analysed by ICP-MS. In terms of the mass 

balance it is noted that the sum of stage II and the residual fraction digest are in close 

agreement with both the certified CRM values and the pseudo-total PTE content, determined 
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using the microwave digestion protocol, with recoveries between 80.4 and 123.3% (compared 

to certified values) and 81.6 and 110.4% (compared to pseudo-total values). The sum of stage 

II and the residual fraction show increased imprecision in data as might be expected, based on 

cumulative errors. It is noted that the largest percentage bioaccessibility fraction (% BAF) is 

obtained for stage II digests for all PTEs considered, however, the % BAF varies according to 

the PTE ranging from 6.8% for Cr to 83.3 for Cd.  

4.3.2 Characterization of study site topsoils 

Each of the soils collected in this study was characterised for pH, loss on ignition (as 

indicative of soil organic matter content) and cation exchange capacity. The results, shown in 

Table 4.2, indicate that the pH of the soils from the study site were largely neutral (pH range 

6.5 – 8.1, with a median pH value of 7.4) while the loss on ignition data indicated soil organic 

contents ranging from 6.4 to 24.7 %, with a median value of 10.7 %. Finally, the cation 

exchange capacity (CEC) of the soil ranged from 9.4 to 161.0 cmolc/kg with a median value 

of 21.4 cmolc/kg. Also in Table 4.2 is a summary of the PTE concentration across the site for 

the 7 elements studied.  

4.3.3 Evaluation of the BARGE approach: Application to an urban recreational site 

The summary data of bioaccessibility for the 19 topsoils are presented (Table 4.3). Reporting 

bioaccessibility data as % BAF conceals the actual concentration of the element in the extract 

and is also highly dependent on the determined total concentration, which itself may be liable 

to the vagaries of the extraction technique (i.e. total v pseudo-total). As such the minimum, 

median and maximum metal concentration determined for each extraction stage are presented 

and the % BAF is only presented for the worst-case scenario sample (i.e. for the maximum 

determined PTE concentration at each extraction stage; Table 4.3). For completeness the 

amount of PTE that remained in the soil after gastric + intestinal digest is also shown i.e. the 

concentration of PTE that remained in the residual digest. As might be expected, the % BAF 

varies across the range of PTEs as well as the individual sample locations.  The extraction 

stage (i.e. the gastric or the gastric and intestinal stage) which exhibited the highest 

concentration, and hence highest % BAF was consistently the gastric and intestinal stage (see 

Appendix A). Of the 19 topsoils, all the PTEs investigated predominantly indicated higher 

extracted PTE content following the gastric and intestinal stage compared to gastric stage 

only.  
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Table 4.1: Analysis of soil certified reference material (GBW 07401) using microwave digestion and the BARGE method.  

Element Certified 

value      

Mean ± SD 

(mg/kg)        

(n = 3) 

Pseudo-total 

metal    

Mean ± SD 

(mg/kg)        

(n = 3) 

BARGE in vitro Extraction Test Residual fraction digest Total metal                     

(stage II + 

residual fraction)  

Mean ± SD 

(mg/kg)              

(n = 3) 

% Recovery 

based on 

pseudototal 

metal 

concentration 

Stage I                

(gastric digest)  

Stage II                

(gastric and intestinal 

digest)   

Mean ± SD 

(mg/kg)        

(n = 3) 

%Residual* 

Mean ± SD 

(mg/kg)        

(n = 3) 

 

% 

BAF+ 

Mean ± SD 

(mg/kg)     

(n = 3) 

%BAF+ 

As 34 ± 5 34.8 ± 5.4 11.2 ± 3.6 32.2 16.1 ± 2.9 46.3 20.8 ± 6.3 59.8 36.9 ± 12.8 106 

Cd 4.3 ± 0.6 4.8 ± 1.2 2.2 ± 1.3 45.8 4.0 ± 1.1 83.3 1.3 ± 3.2 27.1 5.3 ± 5.6 110.4 

Cr 62 ± 6 61.5 ± 0.5 2.3 ± 4.6 3.7 4.2 ± 5.2 6.8 48.6 ± 5.1 79.0 52.8 ± 14.9 85.9 

Cu 21 ± 2 20.0 ± 2.3 5.2 ± 1.4 26.0 11.4 ± 1.1 57.0 7.8 ± 3.2 39.0 19.2 ± 5.7 96 

Ni 20.4 ± 2.7 20.1 ± 2.9 3.6 ± 3.5 17.9 5.1 ± 3.9 25.4 11.3 ± 3.2 56.2 16.4 ± 10.6 81.6 

Pb 98 ± 8 99.3 ± 0.1 14.3 ± 1.3 14.4 18.2 ± 9.2 18.3 78.1 ± 4.02 78.7 96.3 ± 14.5 96.9 

Zn 680 ± 39 660.9 ± 3.0 180 ± 24 27.2 258 ± 37 39.1 418 ± 33 63.2 676 ± 94 102 

+ % BAF: stage related bioaccessibility, calculated as a fraction of the pseudo-total; * % Residual: residual fraction calculated as a 

fraction of the pseudo-total. 
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     Table 4.2: Topsoil properties (n = 19). PTE concentration (mg/kg, dry weight) 

Soil parameter Minimum Maximum Mean Median Standard deviation 

pH 6.5 8.1 7.3 7.4 0.5 

LOI (%) 6.4 24.7 11.5 10.7 4.1 

CEC (cmolc / kg) 9.4 161 28.6 21.4 34.4 

As 15.0 5062 683 204 1161 

Cd 0.5 45.9 11.8 7.1 12.7 

Cr 66.0 655 168 100 165.7 

Cu 24.0 715 238 180 196.7 

Ni 37.3 149 72.2 55 36.6 

Pb 188 29302 11215 5256 11269 

Zn 144 10620 2887 1463 2995 

     Note: LOI = loss on ignition; CEC = cation exchange capacity 
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Table 4.3: Summary of stage related bioaccessibility and residual fraction of PTEs in all topsoils. 

 

Element 

BARGE in vitro extraction test (mg/kg) (n = 19) Residual digest (mg/kg) (n = 19) 

Stage 1 (Gastric digest) Stage 2 (Gastric + Intestinal digest) 

Minimum Median maximum                   

(% BAF+) 

minimum median maximum     

(% BAF+) 

minimum median maximum  

(% 

residual*) As 3.4 ± 0.9 92 ± 3.5 2134 ± 6.3 

(32.8%) 

6.0 ± 1.1 160.0  ± 3.0 3366 ± 3.4 

(51.8%) 

5.6 ± 2.3 103 ± 2.1 3167 ± 25 

(62.6%) 

Cd 0.3 ± 2.5 4.1 ± 2.5 19.03 ± 0.3 

(51.7%) 

0.30 ± 0.5 4.70 ± 2.0 29.3 ± 6.3  

(67.1%) 

0.2 ± 7.1 2.5 ± 2.2 15.3 ± 6.3 

(33.3%) 

Cr 17.1 ± 3.4 22.9 ± 3.3 208 ± 2.9   

(33.5%) 

29.0 ± 6.6  42.5 ± 7.0 400 ± 21    

(64.5%) 

31.5 ± 2.9 54.7± 2.9 323 ± 3.9  

(62.6%) 

Cu 6.2 ± 3.2 25.4 ± 2.0 131.4 ± 2.0   

(26.2%) 

15.9 ± 4.1  109.4 ± 3.5 472 ± 1.9   

(69.2%) 

8.9 ± 2.8 55.9 ± 2.1 201.1 ± 7.9 

(35.9%) 

Ni 4.1 ± 1.1 15.6 ± 2.2 44.9 ± 1.4 

(31.6%) 

7.30 ± 8.3 26.70 ± 3.7 75.10 ± 7.8 

(47.9%) 

13.4 ± 2.5 30.3 ± 2.4 84.4 ± 5.1 

(60.1%) 

Pb 65.5 ± 5.0 1811 ± 5.0 13653 ± 4.7 

(40.9%) 

94.0 ± 3.0 2331 ± 5.2 15374 ± 4.5 

(46.2%) 

92.2 ± 4.0 2540 ± 5.3 19940 ± 44 

(69.5%) 

Zn 31.1 ± 6.6 616 ± 5.1 3806 ± 6.2 

(35.8%) 

53.0 ± 7.7 881 ± 3.9 6013 ± 2.1 

(56.6%) 

70.8 ± 5.4 645 ± 3.3 4802 ± 2.9 

(58.5%) 

+ % BAF: bioaccessibility data for the sample exhibiting the highest concentration, calculated as a fraction of that samples pseudo-total for 

stage I or Stage II; * % Residual: residual fraction calculated as a fraction of the pseudo-total for the soil exhibiting the highest residual 

concentration. 
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A boxplot of all the data is shown in Figure 4.1. It is noted that the highest bioaccessible 

fraction is observed for Cd with Cu exhibiting the second highest values.  
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Figure 4.1: Box plot for bioaccessibility of As, Cd, Cr, Cu, Ni, Pb and Zn in topsoils 

The bioaccessibility data shows variation across the site both spatially and between different 

PTEs but largely mirrors the pseudo-total concentrations The relationship between the % LOI 

and the % BAF was computed graphically and is shown in Appendix E. From the graph, 

there is no clear relationship between %LOI and %BAF in this site. It has been reported that 

the relationship between total concentration and the bioaccessible fraction is not necessarily 

linear (16), however in this case a high correlation exists. The correlation coefficients were 

calculated using the pseudo-total PTE concentrations and the bioaccessible PTE 

concentrations (i.e. BAF from the gastric + intestinal stage); the values are As (r
2
 0.9978), Cd 

(r
2
 0.9597), Cr (r

2
 0.9144), Cu (r

2
 0.9630), Ni (r

2
 0.7990), Pb (r

2
 0.8959) and Zn (r

2
 0.9554). 

In terms of the overall bioaccessibility, the % BAF (computed based on gastric + intestinal) 

ranges are as follows: As (42-64%), Cd (60 – 96), Cr (29 – 74), Cu (62 – 78), Ni (21 – 71), 

Pb (25 – 58) and Zn (37 – 62). These values are less than the 100% assumed in CLEA model 

indicating that some of the PTEs are retained in the soil matrix of the residue.  
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Most researchers observed high bioaccessibility of some metals in the stomach phase 

example: Roussel et al., 2009 (17) observed that Cd, Pb and Zn are more bioaccessible in the 

stomach with %BAF of 68, 62 and 47 respectively, Lamb et al., 2009 (18) in their study 

discovered that Pb is more bioaccessible in the stomach with %BAF of over 80 while the rest 

(Cu,Zn and Cd) was more in the intestinal phase, Turner et al., 2007 (19) observed more Cd 

and Zn in the stomach phase, Poggio et al., 2009 (20) observed higher bioaccessibility of Pb 

and Zn in the stomach while Cu and Ni were in the intestinal phase. In the present research, 

high bioaccessibility is observed in the intestinal phase (G+I) than in the stomach phase for 

all the metals studied. This is not surprising considering the fact that absorption normally 

occurs in the intestine and bioaccessibility actually measures the fraction which is absorbed 

in the blood stream during digestion.  

4.3.4 Generic risk assessment and the role of bioacessibility data 

As noted in section 1.4, the UK uses the widely accepted source–pathway–receptor paradigm 

of pollutant linkage to assess human health risks from contaminated land (21-22). On that 

basis the key exposure pathways that are considered appropriate for this site have been 

identified as follows: (i) direct ingestion of soil (while the site is largely vegetated it does 

have exposed soil particularly on the steep-sloped shrubby/wooded areas); (ii) direct 

ingestion/inhalation of dust (dust generation, via digging at the site) the potential for 

accumulation of soil material on footwear and its subsequent transport into buildings where it 

may be inhaled is limited, however, dust is more likely risk); and (iii) ingestion of soil 

attached to „vegetables‟ (the seasonal foraging of wild fruits and berries does occur). These 

aspects will be considered based on the measured data. 

It is possible to compare the BAF results from this work with the published SGVs. However, 

following a review of SGVs (3) only a limited number of values are available for use in 

generic risk assessment. Of relevance to this work SGVs are available for As, Cd and Ni (23-

25). However, generic assessment criteria (GAC) values have been published for Cr, Cu and 

Zn (16) and so have been used to compare the data against. The lack of an updated SGV for 

Pb means that the data in this work for Pb have been compared with the previous value (that 

was withdrawn in July 2008) (1). On that basis a generic quantitative risk assessment for this 

site was able to be carried out. It should also be noted that an urban recreational space is not 

considered as part of the land scenarios inherent within the SGV/GAC values. On that basis 

the data on this work was compared to SGV/GAC values for both allotment and residential 
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land use scenarios. [Note: Exceedance of SGV/GAC values of the total elemental 

concentration in soil is indicative of a potential risk to human health for users of the site. 

However, in this case (an urban recreational site) the assumptions on which the SGV/GAC 

values are determined (i.e. age, sex and frequency of use) may not be the most appropriate]. 

A comparison of the determined pseudo-total element concentrations with the SGV/GAC 

guidelines provides the following observations. In the case of As, 17 out of 19 samples 

exceed the lower SGV (residential scenario) of 32 mg/kg; also 17 samples exceed the higher 

SGV (allotment scenario) of 43 mg/kg with 5 soil samples exceeding the SGV (allotment 

scenario) by almost 20 times. For Cd, 16 out of 19 soil samples exceed the lower SGV 

(allotment scenario) of 1.8 mg/kg, and 7 out of 19 samples exceed the higher (residential 

scenario) SGV of 10 mg/kg. For Cr, if the concentration represents Cr (VI) then all soil 

samples exceed the residential scenario of 4.3 mg/kg, as well as the allotment scenario of 2.1 

mg/kg with all samples having more than 15 times the GAC values in both scenarios. If 

however, the concentration represents Cr (III) then none of the soils exceed even the lowest 

GAC value of 3,000 mg/kg (allotment scenario). For Cu, 2 out of 19 soil samples exceed the 

lower GAC (allotment scenario) of 524 mg/kg; none of the soil samples exceed the higher 

GAC (residential) of 2,330 mg/kg. For Ni, 3 out of 19 samples exceed the lower SGV 

(residential scenario) of 130 mg/kg; however, none of the 19 samples exceeds the higher 

SGV (allotment scenario) of 230 mg/kg. For Pb, 17 out of 19 soil samples exceed the 

allotment & residential scenario of 450 mg/kg, with concentrations in 17 soils at more than 

twice the SGV and a maximum soil concentration of 33,306 mg Pb/kg. While finally for Zn, 

13 out of 19 soil samples exceed the lower GAC value (allotment scenario) of 618 mg/kg; 5 

soil samples also exceed the higher (residential scenario) of 3,750 mg/kg, with concentrations 

more than twice the GAC value (i.e. maximum soil concentration of 10,620 mg Zn/kg). 

Therefore based on the generic risk assessment criteria, a high percentage of soil samples, for 

all of the 7 elements investigated, indicate further investigation may be required. 

Unfortunately, as already indicated, differences between this site conceptual model and the 

inherent assumptions within the generic land use scenarios mean that the estimated exposure 

could well be different. The use of oral bioaccessibility data may therefore contribute to a 

better understanding of the generic risk assessment. Also, as previously highlighted, the 

SGVs (except Pb) all assume that the contaminants are completely available to the receptor 
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following exposure; as this is unlikely it will lead to an overestimate of the exposure from the 

soil.  

Consideration of the bioaccessible data, based on the concentration of element in the gastric + 

intestinal stage (rather than the value for %BAF), allows a modified view to emerge for some 

elements. In terms of Cr, and specifically Cr (VI) and Cr (III), no changes occur as a result of 

using the bioaccessible data i.e. all data exceeds the GAC values for residential and allotment 

scenarios. In summary, in the case of As, 15 samples still exceed residential and allotment 

scenarios (a change of two fewer); for Cd, 1 sample fewer exceeds the allotment scenario and 

3 fewer the residential scenario; for Cu and Ni, no samples exceed the allotment or residential 

scenarios; for Pb, 16 still exceed the allotment & residential scenario; while for Zn, 3 fewer 

exceed the allotment scenario and 4 fewer exceed the residential scenario. It is concluded that 

while only a small shift in emphasis is made by the use of bioaccessibility data the approach 

does have merit. This is because the assumptions made about the use of SGV/GAC values 

and the land scenarios (allotment and residential) may not adequately reflect the urban 

recreational site chosen to study in this work. In addition, it should be borne in mind that the 

generic SGVs are based on the following soil type: a sandy loam soil with 6 % soil organic 

matter content (26). The current site soil property data identifies typically higher organic 

matter content, based on the loss on ignition values being indicative of soil organic matter 

(Table 4.2). This, coupled with the high cation exchange capacity values, is likely to make 

the soils more naturally retentive of the elements under investigation than those in the generic 

models (22).  

4.3.5 Estimation of bioaccessibility of soil using TDI and MDI 

The potential health risk of soil ingestion can be assessed by calculating the mass of sample 

that a child would require to ingest to reach the estimated tolerable daily intake (TDI) or 

mean daily intake (MDI) for each of the potentially toxic elements investigated. The values 

of the TDI are shown in Table 4.4 and are based on a 10 kg child, while the values for the 

MDI are based on a child aged between 5-6 years of age and which corresponds to a weight 

of 20 kg (27). In the case of As, a non-threshold carcinogen, a TDI is inappropriate. An oral 

index dose (IDoral) has been proposed of 0.3 µg kg
-1

 bw day
-1

 for As (28). Therefore based on 

the IDoral value and an assumed body weight of a 10 kg child the ingestion value is assumed 

to be 3 µg/day. The US EPA (29) has recommended values for daily soil (including soil and 

outdoor settled dust), indoor settled dust and soil plus dust ingestion for children. 
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Table 4.4. Amount (µg) of PTE ingested from the sampled SAL soil calculated from the content of PTEs(mg/kg) and assumptions of 

daily soil ingestion rates of 50 g (soil-geophagy), 1 g (soil-pica) and 0.1 g (guideline value based on unintentional consumption)(29). 

Particle size <250 µm, Tolerable daily intake (TDI) values and mean daily intake (MDI) for a child weighing 10 kg for TDI and 20kg for 

MDI  are also presented. 

Element 50 g/day 

ingestion rate 

1 g/day 

ingestion rate 

0.1 g/day 

ingestion rate 

Bioaccessible 

concentration+ 

(0.1g / day)  

TDI
a 

µg/day 

MDI 

µg/day 

As 13300 266 26.6 33.7 3* 5
b
 

Cd 395 7.9 0.8 0.3  5 28.7
e
 13.4

c
 

Cr (III) 4650 93 9.3 4.0  50,000 60.2
e
 

Cu 8550 171 17.1 4.7  1400 7000
e
 

Ni 2750 55 5.5 0.8  500 130
d
 

Pb 248400 4968 496.8 153.7  36 N/A 

Zn 76100 1522 152.2 60.1  5000 27000
e
 

 

+ based on the maximum bioaccessible concentration using either the „gastric‟ or „gastric + intestinal‟ phase; in accordance with the TDI (IDoral) 

the calculation is based on a child weighing 10 kg. 

* oral index dose (IDoral) value of 0.3 µg kg
-1

 bw day
-1

 (28) and assuming a child weighing of 10 kg. 

a
 reference (30); 

b
 
–d

 references (28, 31-32); 
e
 reference (16); N/A = not available. 



101 

 

The recommended guideline value for soil and dust ingestion has been assessed to be 100 

mg/day for children between the age 1 and <6 years. In addition, for children up to age 14 

who may exhibit soil-pica behaviour the estimates range from 400 to 41,000 mg/day with a 

recommended upper percentile soil pica ingestion rate of 1,000 mg/day (pica was defined in 

the report (29) as the recurrent ingestion of unusually high amounts of soil); while the 

recommended upper percentile geophagy soil estimate is 50,000 mg/day (geophagy was 

defined in the report (29) as the intentional ingestion of earths, usually associated with 

cultural practices). Therefore on the basis of these recommendations, the amount of PTE 

ingested from the soil sample was calculated based on 50 g/day (geophagy), 1 g/day (soil-

pica) and 0.1 g/day (guideline value based on unintentional ingestion). The values obtained 

were compared with the TDI (or IDoral in the case of As) and MDI values to assess the risk of 

the PTE to the child. From the results for a child with geophagy behaviour the levels of all 

PTEs are exceeded except Cr (III). In contrast for a child with pica behaviour (1 g/day) only 

two PTE exceeds the TDI value i.e. Cd and Pb; in addition, for As, the IDoral value and the 

MDI values are exceeded. Based on the unintentional consumption of 0.1 g of soil, only Pb 

and As exceed the guideline value (TDI and IDoral respectively) for this type of samples. 

Though these calculations can help to estimate the potential risk from the urban environment 

studied they only assume ingestion (oral) as the means of exposure. Inhalation and 

subsequent transfer to the gastro-intestinal tract via coughing up and re-swallowing may also 

be relevant to consider.  

4.4 Conclusion 

Our generic quantitative risk assessment highlighted that exceedances of the SGV (for either 

residential or allotment landuse) were present for all of the 7 PTEs based on pseudo-total 

concentrations. Site-specific circumstances, such as critical pathways, receptors, site-usage 

patterns and activities, need to be taken into account and so exceedence does not necessarily 

imply that there is an actual risk to health.  

One objective of this work was to apply a robust in vitro GI procedure to soils sampled across 

a former industrial site in NE England, and to highlight the role of such data for use in human 

health risk assessment. The results indicated that the bioaccessibility of PTEs investigated in 

soils across the site is less than the 100% assumed by the CLEA model. Cadmium however, 

indicated a much higher %BAF than other analytes with over 50 % of the pseudo-total Cd 

concentration bioaccessible in all the 19 soils investigated. The bioaccessibility data indicated 



102 

 

both elemental and spatial differences and highlight total soil concentration to be a rather 

crude estimate of the fraction that is potentially extractable in the body and hence potentially 

taken into the blood stream. Given too that the generic land use categories (allotments and 

residential)  are a very conservative screening tool for an area of public open space a detailed 

qualitative risk assessment is recommended as part of the on-going risk assessment at this 

site, along with a detailed user study to identify exposure duration of the various receptor 

groups. Site-specific SGVs/GAC need to be refined on the basis of soil type, the PTE 

bioaccessibility data, and receptors behaviours, as this might lower or increase their 

exposures. Bioaccessibiliy data are an additional tool towards a more holistic 

multidisciplinary approach to understanding human health risk at contaminated site. 
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Chapter Five: Natural and anthropogenic PTE input to urban street dust 

and the role of oral bioaccessibility testing 

5.1 Introduction 

Dust is solid matter which comprises soil, anthropogenic metallic constituents and natural 

biogenic materials (1). The soil component of urban street dusts is a mixture of mineral 

constituents and organic matter; the anthropogenic materials are vehicle exhaust particles, 

lubricating oil residues and tyre, brake and engine wear components while the natural 

biogenic materials are tree leaves and other plant matter pulverized by traffic and general 

weathering (2-4). Some of the most common elements associated with automobile industries 

include As, Cd, Cu, Ni, Pb and Zn, either within the fabrication of a vehicle, component parts 

(e.g. brake pads), as additives (e.g. in lubricants) for engine operation or resulting from 

automobile corrosion (5, 6). For example, Cu compounds are used in lubricants as anti-wear 

agents, by providing a protective layer on engine surfaces to reduce friction and prevent 

damages due to continuous rubbing between engine parts. Historically, lead compounds (lead 

tetraethyl (C2H5)4Pb) were added as antiknock agents in petrol prior to their cessation in the 

UK in 1999 (7). The now wide spread use of unleaded fuels however, has not put a stop to 

the use of lead compounds in motoring activities; for example, lead compounds are used as 

anti-wear agents in lubricant oils for engines (5). Among the alternatives added into lubricant 

oils are Zn compounds (5). For example, zinc dialkyldithiophosphate (ZDDP) is added as an 

agent to provide additional protection under extreme-pressure or in a heavy-duty performance 

situation to protect the lubricant itself from oxidative breakdown and to prevent the formation 

of deposits in engines (5, 8, 9). Metals such as Ni are also used for plating the outer part of a 

vehicle, such as, the tyre rims or as an alloy for plating the surface of the cylinder and pistons 

of an engine (10). The source of Ni in road dust is believed to result from corrosion of these 

components over the lifetime of the vehicle (11-13).  

Road dust can be a particular risk to humans due to its small particle size and its inherent 

mobility in windy weather conditions leading to the possibility of direct and indirect 

exposure; direct exposure from dust can occur by inhalation while indirect exposure results 

from contact with exposed skin and outer clothing which in turn can be accidentally ingested 

(14). Young children (up to 5 years of age) are more likely to ingest significant quantities of 

dust than adults because of the behaviour of mouthing non-food objects and repetitive hand / 

finger sucking during outdoor activities (15). Also children have a much higher absorption 
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rate of PTEs from the digestion system and higher haemoglobin sensitivity to heavy metals 

than adults (16). While many studies of total metal content in street dust have been carried 

out (13, 17-27) little has been published on the potential sources (natural or anthropogenic) of 

the street dust (28, 29) and the environmental health risk to humans from the unintentional 

ingestion of this material. Initial work has focused on the determination of the total metal 

content of street dust and its likely anthropogenic or natural origin. The oral bioaccessibility 

of metals in urban road dust has received relatively little attention compared with other 

environmental solids i.e. soils. Therefore, in this chapter it is the indirect exposure route that 

is considered using an oral bioaccessibility approach. However, inhalation sources are likely 

also to be an important source particularly since traffic related particulates are a very fine 

fraction.  The bioaccessible fraction is the total amount of the metal in dust which could be 

released during digestion. This released fraction represents the maximum amount of 

contaminant available for intestinal absorption that may exert toxicity (30). It can be assessed 

using an in vitro physiologically-based extraction test (PBET). The urban site chosen for the 

study is the city of Newcastle upon Tyne, north east England. Sampling took place within the 

city centre from pedestrianised sites around the main shopping areas and close to the city 

centre road network. 

5.2 Experimental 

5.2.1 Sampling and Sample preparation 

Road dusts / sediments (> 10 g) were collected from nine different sites (Figure 5.1) using 

hand brushing with a plastic brush and plastic collection pan. This was achieved by sweeping 

with the brush and pan (31, 32). Each brush and pan was considered disposable and used only 

once. A number of identical dustpan and brushes were used in the present study and the 

sampling process was kept consistent in order to minimize sampling variability. A description 

of the sample sites is shown in Table 5.1. The samples collected were put in a sample bag and 

dried in the oven at 40
o
C for several days. Then, the samples were passed through a plastic 

sieve of mesh size 250 µm to separate into <250 and > 250µm particle size fractions. 

5.2.2 Instrument and reagents 

See 3.2.2 and 4.2.2  

5.2.3 Pseudo total PTE concentration 

See 2.4.3 and 3.2.6 
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 5.2.4 Procedure for in vitro physiologically based extraction test                                    

See 4.2.3 and 4.2.4 as described elsewhere (33). 

Figure 5.1: Map showing sampling points for the urban road dust 

 

5.3 Results and Discussion 

5.3.1 Quality Control 

As ICP-MS can suffer from molecular interferences below 80 amu it is necessary to 

determine its mode of operation i.e. standard or collision / reaction cell mode. On that basis 

75
As, 

63
Cu, 

60
Ni and 

66
Zn were determined using a CCT mode whereas 

111
Cd and 

208
Pb were 

determined in standard mode. Calibration curves were prepared for the six PTEs under 

investigation in this study; based on a calibration range from 0 - 400 ppb with 8 data points  
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Table 5.1: Sample location, driving style and traffic volume 

Site 

number 

Location No of 

vehicles / 

day* 

Driving Style Description/sources Possible receptors 

1 Robinson 

Library, 

Claremont Road 

14,091 Constant 

Speed 

North of City Centre air quality Management 

area (AQMA). Entrance to Claremont bridge 

(over the Great North Road B1318) directly 

opposite entrance to Robinson library. Ivy 

(Hedera sp.) forming a semi protected area in 

which soil/dust can accumulate. Matrix 

comprising soil from adjacent landscaped area 

and curb-side dust. 

Busy pedestrian 

thorough fair with 

cyclist 

2 Brandling Park, 

Forsyth Road 

28885 Constant 

Speed 

North of City Centre AQMA.  Park adjacent 

(to the east) of the Great North Road B1318. 

Sample taken from a rectangular seating area. 

Matrix comprising soil from adjacent 

landscaped area and general urban inputs; 

sloppy sediment overlain by leaf litter. 

Urban parkland. 

Receptors include 

dog walkers, 

pedestrians and 

those using the site 

as a general 

recreation area 

3 Grainger Street 

opposite St 

John‟s Church 

3338 Stop and Start Sample collect from corners either side of 3 

doorways and recessed areas between two 

buildings. Matrix: street dust and „rubbish‟ 

(cigarette ends, litter & other detritus of plant 

and animal origin). 

Busy pedestrian 

route to and from 

station.  Busy with 

vehicular traffic.  
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4 Bolbec Hall, 

Westgate Road 

8629 Stop and Start Sample taken along base of lowest stone step. 

Matrix: street dust, sediment and 

„rubbish‟(cigarette ends, litter & other detritus 

of plant and animal origin). 

Busy with 

vehicular traffic. 

Critical receptors 

pedestrians. 

5 St Nicholas 

Church, St 

Nicolas Street 

9873 Stop and Start Sample taken along edge of building adjacent 

to Nicholas Road and either side of main 

doorway on St Nicholas Place. 

Adjacent to busy 

pedestrian route.  

Busy with 

vehicular traffic.  

6 Blacket Street 

 

1075 Stop and Start Sample taken in „tunnel‟ (Eldon square shops 

above) from block paved area either side of 

the main road. Road access restricted to buses 

and taxis. 

Adjacent less than    

2 m away to busy 

pedestrian route. 

7 Westgate Road 

opposite County 

Court 

7752 Stop and Start Samples collected from the edge of the busy 

road opposite to a pub. Matrix: Dust particles 

blown to the edges of the road 

Adjacent to busy 

pedestrian route. 

Busy with 

vehicular traffic.  

8 St James‟s Park, 

Strawberry 

Street 

5063 Stop and Start Sample taken along the edges of the road 

opposite St James Park and busy with 

vehicular traffic. 

Adjacent to busy 

pedestrian route, 

especially during 

football match. 

9 Percy Street, 

opposite 

Haymarket bus 

station. 

1815 Stop and Start This sample was collected from corners of the 

building directly opposite the Hay market bus 

station.  

Receptors here are 

the pedestrian and 

those queuing for 

buses. 

*Michael Elund. Environmental Health Technichian. Newcastle City Council Newcastle upon Tyne (Personal communication). Email 

michael.elund@newcastle.gov.uk

mailto:michael.elund@newcastle.gov.uk
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typical correction coefficients (r
2
) for all elements were in excess of 0.99.  The dust certified 

reference material (BCR 723) was digested using the microwave protocol described in 3.2.3 

and 4.2.6 and then its PTE content determined using ICP-MS. As the CRM has no certified 

values for the PTEs under investigation in this study only its indicative values could be used. 

The results are shown in Table 5.2. Excellent agreement was obtained with the known 

indicative values (Cd, Ni, Pb and Zn); no values were available for As and Cu. 

Table 5.2: Analysis of PTE content of dust certified reference material (BCR 723) using 

microwave digestion-ICP-MS 

Element Indicative value 

(mg/kg) 

Measured values (mg/kg) Mean ± SD (n = 3) 

Standard Mode CCT Mode 

 As NA NA 10.3 ± 2.1 

 Cd 2.5 ± 0.4 2.4 ± 1.1 NA 

 Cu NA NA 175 ± 3.1 

 Ni 171 ± 3  NA 171 ± 3.5 

Pb 866 ± 16 867 ± 2.3 NA 

 Zn 1660 ± 100 NA 1602 ± 3.7 

 

5.3.2 Pseudo total PTE concentration 

Dust samples were analysed using < 250 µm particle size as this is the fraction that is most 

likely to adhere to hands and thus most likely to be involuntarily ingested (34). A summary of 

the overall data in the form of a box plot is shown in Figure 5.2. The mean concentrations of 

As, Cd, Cu, Ni, Pb and Zn are 6.4, 1.0, 132, 26, 992 and 421 mg/kg, respectively. A major 

outlier in the data occurs for Pb at site 5 (4000 mg/kg); outside the cathedral church of St. 

Nicholas and located on a major road artery through the city centre. Statistical evaluation of 

the data (normality test) indicates that majority of the elements display a normal distribution 

(p-values >0.05), except for Cd and Pb (Table 5.3). As a result of this normal distribution, the 

mean is shown for As, Cu, Ni and Zn while the median is used for Cd and Pb for non-

parametric alternative (see Figures 5.2-5.8). It therefore appears that based on the normality 

test and coefficient of variation (CV) that the examined elements can be classified into two 

groups: Cd and Pb whose CVs are higher than 100 and the other PTEs (As, Cu, Ni and Zn) 

whose CVs are lower than 100 (35).  

The concentrations of each of the elements across the samples are shown in Figures 5.2-5.8. 

In addition, global road dust concentrations of the PTEs under consideration have been 
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compiled from the literature and are shown in Table 5.4. In each case the determined 

concentration is compared with Soil Guidelines Values (SGVs) (63) or Generic Assessment 

Criteria (GACs) (64) (acknowledging the fact that these are based on a very prescribed set of 

scenarios) as well as a comparison with the literature. The results obtained for each element 

are discussed below. 
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Figure 5.2: Box plot of total PTE concentration in street dust: central solid line median, 

  mean, box boundary 25th and 75th percentile and whiskers 10th and 90th percentile. 

Table 5.3: Normality test on the < 250 µm size fraction of street dust 

Elements As Cd Cu Ni Pb Zn 

p-value 0.463 0.016 0.569 0.084 0.005 0.703 

Cv 22.2 106.5 52.2 35.0 146.2 45.1 

cv = coefficient of variation 

 Arsenic 

The concentration of As in the road dust samples from Newcastle upon Tyne ranges from 4.4 

to 8.6 mg/kg with an average value of 6.4 mg/kg (Figure 5.3). It can be seen that As 

concentration is highest in site 1 (8.6 mg/kg) which was collected in front of Robinson 

Library and lowest in site 2 and 3 (4.4 mg/kg) which were collected from Brandling Park and 

Grainger Street, respectively. These values are below the SGV for As for residential (32 

mg/kg), allotment (40 mg/kg) or commercial (640 mg/kg) (65). Data for As concentration in 

urban dusts are relatively few in the literature, but in comparison to Kavala in Greece (13) 
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where the As concentration in road dust was determined with a mean concentration of 13.7 

mg/kg, the concentration across the sites samples in this study are in reasonable accord. 

                          
Figure 5.3: Pseudo total content of As in the <250 µm particle size fraction of dust 

sample collected from Newcastle city centre 

Cadmium 

The Cd concentration in the road dust of Newcastle upon Tyne varies from 0.13 – 1.6 mg/kg 

with an average value of 1.0 mg/kg and lowest among the elements studied (Figure 5.4). This 

concentration is very similar to that found in a typical soil (0.1 – 1.0 mg/kg) (34). The 

average Cd concentration is lower than the SGV for residential (10 mg/kg), allotment (1.8 

mg/kg) and commercial (230 mg/kg) (65). The Cd concentration is highest in the sample 

from site 4 and lowest in sample from site 2. The global Cd concentration shows a large 

range of values from 0.2 to 72 mg/kg. The concentration of Cd in Newcastle upon Tyne city 

centre is greater than those cited for 4 cities: 0.9 mg/kg (Coventry (UK) (25); 0.32 mg/kg 

(Sweden) (41); 0.2 mg/kg (Kavala, Greece) (13); and, 0.37 mg/kg (Ottawa, Canada) (46) 

Table 5.4. The differences in Cd concentration reported in this study fall within the range 

reported in the literature across 26 cites globally (Table 5.4). 

Copper 

Figure 5.5 shows the variation of concentration of Cu in the sampled area. From the current 

study, the average concentration of Cu is 132 mg/kg with a range of 25.3 to 217 mg/kg. The 

average concentration (132 mg/kg) is greater than that found in a typical soil (5 - 20 mg/kg) 

(67). The highest concentration of Cu is found in site 4 and lowest in site 2.
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Table 5.4: Global pseudo total PTE concentrations (mg/kg) in street dust 

City/Country As Cd Cu Ni Pb Zn Year of study 

ofoofof  

Reference 

Newcastle upon Tyne (UK) 6.4 1.0 132 26 992 421 2009 Present study 

Birmingham (UK) - 1.6 467 - 48 534 2003 25 

Coventry (UK) - 0.9 226 - 47 385 2003 25 

Lancaster (UK) - 1.0 – 14.6 - 15 – 126 150 - 

15000 

160 - 3725 1979 36 

London (UK) - 3.5 155 - 1030 680 1988 19 

Manchester (UK) - - 113 - 265 653 2003 37 

Aviles (Spain) - 22.3 183 - 514 4829 2003 38 

Madrid (Spain) - - 118 44 1927 476 1997 21 

Paris (France) - 1.7 1075 25 1450 840 2001 39 

Oslo (Norway) - 1.4 123 41 180 412 1997 21 

Palermo (Italy) - 1.1 98 14 544 207 2003 40 

Sweden - 0.32 79 12 53 220 2006 41 

Various  Cities (Bahrain) - 72 - 126 697 152 1993 12 

Athens (Greece) - 1.8 – 4.3 - - 65 – 259 75 - 241 1987 42 

Kavala (Greece) 13.7 0.2 124 58 301 272 2009 13 

Launda (Angola) - 1.1 38 10 266 98 2005 43 

Various Cities (Nigeria) - 0.2 – 1.7 - 1 – 3 4 – 243 12 - 48 1984 18 

Cincinnati, Ohio (USA) - - 253 - 649.7 - 1998 44 

Honolulu, Hawaii (USA) - - 167 177 106 434 2000 45 

Ottawa (Canada) - 0.37 65.8 15.2 39.1 112.5 2001 46 

Hermosillo (Mexico) - 4.25 26.3 4.7 36.2 388 2007 47 

Baoji (China) - - 123 49 408 715 2009 27 

Beijing (China) - 1.67 42 72 126 167 2007 48 

Guangzhou (China) - 2.4 176 23 240 586 2006 49 

Hong Kong (China) - 2.18 24.8 - 93.4 168 2001 4 
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Hong Kong (China) - - 110 28.6 120 3840 2003 50 

Shanghai (China) - 1.2 196.8 84 295 734 2008 2 

Xian (China) - - 95 - 231 422 2006 51 

Instanbul (Turkey) - 1.0 – 6.7 47 - 407 10 – 66 61 – 383 226 - 1852 2003 24 

Kayseri (Turkey) - 2.53 36.9 44.9 74.8 112 2006 52 

Sivas (Turkey) - 2.6 84 68 197 206 2003 53 

Yazgat (Turkey) - 3.0 38 77 69 - 2005 54 

Aman (Jordan) - 3.1 – 11.2 66.5 - 350 43 – 88 210 – 1131 166-410 2007 55 

Aqaba-Shuna (Jordan) - 5 - 40 79 79 2004 3 

Aqaba (Jordan) - 1.9 – 2.9 21 - 56 51 - 115 93 – 212 103 - 160 2007 55 

Karak (Jordan) - - 11.3 4.2 11.2 13.1 2004 56 

Dhaka (Bangladesh) - - 46 26 74 154 2006 57 

Kuala Lumpar (Malaysia) - 3.0 - - 2466 344 1989 58 

Cuenca (Equador) - 0.6 – 1.4 - - 19 – 970 44 - 1018 1990 59 

Islambad (Pakistan) - 5.0 52 23 104 116 2009 60 

Calcutta (India) - 3.12 44 42 536 159 1999 61 

Taejon (Korea) - - 47 - 57 - 52 – 60 172 - 214 1998 62 
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Figure 5.4: Pseudo total content of Cd in the <250 µm particle size fraction of dust 

sample collected from Newcastle city centre 

The global concentration of Cu as reported in Table 4 varies from 11. 3 - 1075 mg/kg. 

Among the 41 places reported, 9 places have higher and 23 places have lower concentration 

of Cu than in this study. 

                  
Figure 5.5: Pseudo total content of Cu in the <250 µm particle size fraction of dust 

sample collected from Newcastle city centre 

Nickel 

The concentration of Ni in the dust samples, for all the sampled sites, varies between 13.7 – 

46.1 mg/kg with an average concentration of 26 mg/kg (Figure 5.6). The highest Ni 

concentration of 46.1 mg/kg is found in site 3 and the lowest value of 13.7 mg/kg was found 
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in site 2. The value of the Ni concentration measured was found to be below the SGV for 

residential (130 mg/kg), allotment (130 mg/kg) and commercial (1,800 mg/kg) (68). Of the 

41 cities of the world reported in Table 5.4, 17 of the cities have higher Ni concentration than 

the ones determined in this study (and 9 with lower concentrations).  

                          
Figure 5.6: Pseudo total content of Ni in the <250 µm particle size fraction of dust 

sample collected from Newcastle city centre   

Lead 

The variation in Pb concentration in the present study is large; Pb concentration varies in the 

range 70.2 to 4261 mg/kg with a mean value of 992 mg/kg (Figure 5.7). The highest 

concentrations of Pb are observed at sites 4, 5 and 7 where the concentrations are 2363, 4261 

and 1312 mg/kg, respectively. These areas are among the sampling sites with the highest 

traffic volume. In contrast the lowest concentration of Pb was found at site 2 (Brandling Park) 

where the traffic loading was the highest. This low Pb concentration is perhaps as a result of 

the driving style i.e. constant velocity, and the distance of the park from the road. The mean 

concentration of Pb  in the road dust is higher than the SGV for residential / allotment (450 

mg/kg) and commercial (750 mg/kg) (69). The concentration of Pb globally varies from city 

to city and is within the range 4 to15,000 mg/kg (Table 5.4). Of the 41 cities shown in Table 

6.4, only 4 places have their Pb concentration greater than in the present study while the 

majority (i.e. 35 places) have lower Pb concentrations in their street dust.  

Zinc 

The Zn concentration in the road dust samples ranged from 111 to 652 mg/kg (Figure 5.8)     
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Figure 5.7: Pseudo total content of Pb in the <250 µm particle size fraction of dust 

sample collected from Newcastle city centre  

average value of 421 mg/kg  which is higher than the concentration of Zn in soil (10 - 50 

mg/kg) (67).  The average value of Zn in the street dust in this study is higher than the GAC 

value for residential/plant uptake (320 mg/kg) and lower than the industrial value (188000 

mg/kg) (64).  

                                   
Figure 5.8: Pseudo total content of Zn in the <250 µm particle size fraction of dust 

sample collected from Newcastle city centre  

The global concentration of Zn varies in the range of 13 to 4829 mg/kg (Table 5.4) with 10 

places having higher Zn concentrations and 25 places lower than in the present study. 
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5.3.3 PTE concentration/traffic volume 

Some researchers (70-71) have suggested a direct relationship between PTE levels and traffic 

volume in the roadside environment while others (70) have demonstrated that driving style 

may be more influential in affecting metal concentration. The results from this study suggest 

that there appears to be no straightforward correlation between traffic volume and PTE 

concentration. In general, higher PTE concentrations are found at sites where the 

predominant driving style is stop/start (i.e. intersection and traffic lights); these locations 

form either a major route to the city centre or are within the city centre and thus subject to 

frequent traffic congestion. In contrast, the lower PTE concentrations were from samples with 

high traffic volumes i.e. 14091 and 28885 vehicles per day at site 1 and site 2, respectively 

(Table 5.1). At these sites the traffic is generally a constant flow. In addition, sample site 6 

has the lowest volume of traffic but a higher PTE concentration than those with the highest 

traffic flow (sites 1 and 2). This suggests that driving style has the most significant effect on 

metal contamination in road side dust compared to traffic volume. Graphical relationship 

between the traffic volume and pseudo total concentration of urban road dust is shown in 

appendix F.  

5.3.4 Inter-element relationship in road dust  

In order to investigate any inter-element relationship in the road dust samples correlation 

analysis was performed (Table 5.5). From the matrix generated (Table 5.5) it is evident that 

some correlation exists between most PTEs investigated, except As. Strong positive 

correlations exist between Cu and Cd (0.680), Pb and Cu (0.736), Zn and Cu (0.856) (Table 

5.5). These significant positive correlation values may indicate that road dust contamination 

by these PTEs (Cd, Cu, Ni, Pb and Zn) originated from common sources (e.g. automobiles) 

while the lack of correlation between As and the other PTEs may be indicative of multiple or 

independent sources. The moderate correlation value of 0.404 between As and Pb may imply 

at least one common source e.g. traffic related. 

5.3.5 Bioaccessibility of PTEs in urban street dust 

The oral bioaccessibility of PTEs from the dust reference material (BCR 723) and the urban 

dust samples were assessed using the in vitro PBET procedure.  The percentage bioaccessible 

fraction (% BAF) was calculated using the equation 4.1. 
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Table 5.5: Inter-element correlation matrix for street dust. 

 Metal       As             Cd               Cu                  Ni                     Pb                 Zn 

As            1.000 

Cd            0.025          1.000   

                (0.949)                     

Cu            0.282           0.680          1.000 

                (0.462)         (0.044) 

Ni            -0.372           0.152           0.342             1.000 

                 (0.325)         (0.697)        (0.368) 

Pb             0.404            0.427           0.736             -0.047                1.000 

                 (0.281)         (0.252)         (0.024)           (0.905) 

Zn             0.135             0.437            0.856             0.629                 0.447               1.000 

                 (0.729)           (0.239)         (0.003)           (0.069)             (0.228) 

 Numbers in bracket represents the p-values 

In order to assess the oral bioaccessibility (BARGE) procedure the CRM (BCR 723) was 

analysed and the results are shown in Table 5.6. A mass balance approach was adopted to 

assess the overall recovery of the six PTEs after in vitro BARGE procedure. By summing the 

„gastric + intestinal‟ stage II fraction with the „residual‟ stage III fraction allows the total 

recovery of the procedure to be determined. Based on the pseudo-total, as determined using 

the microwave digestion protocol, recoveries between 83 to 98% were obtained. 

The BARGE methodology, as described above, was applied to all the dust samples from the 

Newcastle city centre to assess the oral bioaccessibility. A summary of the data is shown in 

Table 5.7 indicating the minimum, median and maximum concentration extracted using 

either gastric only (stage I) or gastric + intestinal (stage II) for all 6 elements investigated 

from the 9 sampling positions. In addition, for each element and stage the worst case scenario 

for the %BAF is shown (i.e. for the maximum determined PTE concentration at each stage) 

Table 5.7 It is noted that %BAF varies across the PTEs studied as well as the individual dust 

sample locations (see appendix C). The difference in bioaccessibility between the elements is 

most likely to be as a result of the different chemical forms in which the PTEs are bound to 

the dust constituents. Previous studies have shown that the bioaccessibility of some PTEs in 

the stomach phase is higher than in the intestinal phase but in this work, it is apparent (see 
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appendix C) that the gastric + intestinal stage always exhibited the highest %BAF as shown 

in the boxplot Figure 5.10.  

It is noted (Figure 5.10) that Cd and Zn have a relatively high bioaccessibility (i.e. mean 

values > 45%) in both the „gastric‟ and „gastric + intestinal‟ fractions. In addition, it has been 

reported, that PTEs from anthropogenic sources are generally more soluble in the 

gastrointestinal environment and thereby more bioaccessible (72). It is therefore concluded 

that Cd and Zn are most likely derived from anthropogenic sources whereas the lower mean 

values (i.e. < 30% bioaccessible) for As, Cu, Ni and Pb may be indicative of mixed sources 

of origin i.e. a combination of both anthropogenic and natural origin. It should however be 

noted that bioaccessible values for As, Cu, Ni and Pb are wide ranging with samples having 

bioaccessible values over 45% (Figure 5.10). 

5.3.6 Bioaccessibility of PTEs in urban street dust by TDI or MDI  

As earlier discussed in section 4.3.5, the bioaccessibility of dust sample can be estimated by 

calculating the mass of dust that a child would require to ingest to reach the estimated TDI or 

MDI for each of the PTEs investigated. The values of the TDI are shown in Table 5.8 and are 

based on a 10 kg child, while the values for the MDI are based on a child aged between 5-6 

years of age and which corresponds to a weight of 20 kg.  On the basis of the 

recommendations discussed in section 4.3.5, the amount of PTE ingested from the dust 

sample was calculated based on 50 g/day (geophagy), 1 g/day (soil-pica) and 0.1 g/day 

(guideline value based on unintentional ingestion). The values obtained were compared with 

the TDI (or IDoral in the case of As) and MDI values to assess the risk of the PTE to the child. 

From the results for a child with geophagy behaviour the levels of all PTEs are exceeded, 

except for Zn which is below the MDI. In contrast for a child with pica behaviour (1 g/day) 

only one PTE exceeds the TDI value i.e. Pb; in addition, for As, the IDoral value and the MDI 

values are exceeded. None of the PTEs investigated exceed the guidelines values for this type 

of sample i.e. based on the unintentional consumption of 0.1 g of dust. This calculation 

assumes ingestion (oral) as the only means of exposure ignoring other routes such as 

inhalation which might be very useful route of exposure to dust samples. 
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Table 5.6: Indicative, pseudo-total, stage related bioaccessible and residual fractions of PTEs in BCR 723.  

Element 

 

Indicative 

value  

 

Pseudo-total 

metal 

(mg/kg) 

 

In-vitro gastro-intestinal extraction, mg/kg 

Stage I               

(Gastric digest) 

Stage II               

(Gastric + Intestinal 

digest) 

Stage III 

(Residual 

digest) 

Total metal                  

II + III 

 
Mean ± SD; 

(n = 3) 

Mean ± SD; 

(n = 3) 

% 

BAF 

Mean ± 

SD; (n = 3) 

%     

BAF  

Mean ± SD;   

(n = 3) 

Mean ± SD;  

(n = 3) 

%  

Residual  

As NA 10.3 ± 2.1 1.8 ± 8.1 17.5 3.0 ± 10.4 29.1 6.4 ± 3.2 9.4 ± 21.7 91.3 

Cd 2.5 ± 0.4 2.4 ± 1.1 1.2 ± 2.3 50.0 1.3 ± 0.9 54.2 0.8 ± 1.2 2.1 ± 4.4 87.5 

Cu NA 175 ± 3.1 40.8 ± 4.9 23.3 71.5 ± 4.5 40.9 96.2 ± 5.3 167.7 ± 14.7 95.8 

Ni 171 ± 3  171 ± 3.5 38.7 ± 5.2 22.6 59.7 ± 5.4 34.9 105 ± 2.3 164.7 ± 12.9 96.3 

Pb 866 ± 16 867 ± 2.3 96.4 ± 83 11.1 123.8 ± 13 14.3 595 ± 15 718 ± 111 82.8 

Zn 1660 ± 100 1602 ± 3.7 527 ± 5.5 32.9 683 ± 7.2 42.6 886 ± 23 1569 ± 35.7 97.9 

% BAF: stage related bioaccessibility, calculated as a fraction of the pseudo-total; % Residual: residual fraction calculated as a fraction of   the 

pseudo-total; NA = not available 
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 Table 5.7: Summary of Stage related bioaccessibility and residual fraction of PTEs in road dust. 

 

Element 

In-vitro gastro-intestinal extraction (mg/kg) 

Stage 1 (Gastric digest) Stage 2 (Gastric + Intestinal digest) Stage 3 (Residual digest) 

Minimum median Maximum 

(% BAF) 

minimum Median Maximum 

(% BAF) 

minimum median Maximum 

(% residual) 

As 0.60 0.90 1.60 (18.6) 1.0 1.70 3.1 (36.1) 3.70 4.80 6.60 (76.7) 

Cd 0.03 0.20 1.50 (41.7) 0.03 0.30 1.90 (52.8) 0.13 0.49 2.20 (61.1) 

Cu ND 7.50 65.60 (30.2) 1.60 23.30 74.10 (64.4) 19.5 102.20 145.50 (75.8) 

Ni 0.70 2.90 5.90 (26.8) 2.1 6.0 8.80 (32.4) 9.30 18.30 40.50 (87.8) 

Pb 0.04 33 1405 (32.9) 0 33.0 1586 (37.2) 52 138 2652 (62.2) 

Zn 49.2 160 239 (37.6) 63.6 24.3 347(53.2) 51.70 211 335 (52.7) 

% BAF: stage related bioaccessibility for the sample exhibiting the highest stage concentration, calculated as a fraction of that samples pseudo-

total for gastric and intestinal phases;  % Residual: residual fraction calculated as a fraction of the pseudo-total for the sample exhibiting the 

highest residual concentration; ND – not detected. 



124 

 

 

Zn G+IZn GPb G+IPb GNi G+INi GCu G+ICu GCd G+ICd GAs G+IAs G

80

70

60

50

40

30

20

10

0

Potentially toxic elements

B
io

a
c
c
e

s
s
ib

ili
ty

 (
%

)

 

Figure 5.9: Box plot for oral bioaccessibility in road dust: central solid line median,  

mean, box boundary 25th and 75th percentile and whiskers 10th and 90th percentile. 

However, it is concluded that the dust samples, in this study, do not constitute a potential risk 

for children based on daily visits to the areas studied. 

 5.4 Conclusion 

The data presented supports the findings that PTEs from road dust have important inputs in 

the environment and need to be considered as part of any human health risk assessment. The 

mean concentrations of PTEs in the dust were as follows: Pb (992) > Zn (421) > Cu (132) > 

Ni (26) > As (6.4) > Cd (1.0) mg/kg. Statistical analysis such as correlation matrix and 

dendrogram shows that some of the PTEs have linkage which indicates common sources of 

pollutant. Cadmium  and Zn are most likely derived from anthropogenic sources whereas the 

lower mean values (i.e. < 30% BAF) for As, Cu, Ni and Pb may be indicative of mixed 

sources of origin i.e. a combination of both anthropogenic and natural origin. In terms of the 

upper (90
th

) and lower (10
th

) percentiles, it is noted that Cd, Cu and Pb („gastric + intestinal‟) 

individual values range in magnitude from 58-65 %BAF whereas As, Ni and Zn have a 

smaller %BAF range (25-35%). In addition, the bioaccessible concentration is considered in 

terms of the ingestion rate for a 10 kg child (i.e. in line with the tolerable daily intake, TDI, 

for Cd, Cu, Ni, Pb and Zn and the calculated IDoral for As) (Table 5.8).  
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Table 5.8. Amount (µg) of PTE ingested from the sampled urban road dust calculated from the content of PTEs (mg/kg) and 

assumptions of daily soil (soil + outdoor settled dust ) ingestion rates of 50 g (soil-geophagy), 1 g (soil-pica) and 0.1 g (guideline value 

based on unintentional consumption)(73). Particle size <250 µm, Tolerable daily intake (TDI) values and mean daily intake (MDI) for a 

child weighing 10 kg for TDI and 20kg for MDI  are also presented. 

Element 50 g/day 

ingestion rate 

1 g/day 

ingestion rate 

0.1 g/day 

ingestion rate 

Bioaccessible 

concentration+ 

(g / day)  

TDI
a 

µg/day 

MDI 

µg/day 

As 315 6.3 0.6 0.03 3* 5
b
 

Cd 35 0.7 0.1 0.02 5 28.7
e
 13.4

c
 

Cu 7000 140 14 0.74 1400 7000
e
 

Ni 1245 24.9 2.5 0.09 500 130
d
 

Pb 7650 153 15 15.9 36 N/A 

Zn 23450 469 47 3.50 5000 27000
e
 

 

+ based on the maximum bioaccessible concentration using either the „gastric‟ or „gastric + intestinal‟ phase; in accordance with the TDI (IDoral) 

the calculation is based on a child weighing 10 kg. 

* oral index dose (IDoral) value of 0.3 µg kg
-1

 bw day
-1

 (74) and assuming a child weighing of 10 kg. 

a
 reference (75); 

b
 
–d

 references (76-78); 
e
 reference (64); N/A = not available. 
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The results range between 0.02 and 15.9 g / day. In all cases, except for Pb, the bioaccessible 

concentration is significantly below the guideline values based on unintentional consumption 

(0.1 g / day). On that basis use of the bioaccessible concentration offers an alternate basis for 

assessing risk to humans 
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Chapter Six: Influence of particle size on the distribution of platinum 

group elements (PGEs) in urban street dust/sediments 

6.1 Introduction 

The PGEs comprise iridium (Ir), osmium (Os), palladium (Pd), platinum (Pt), rhodium (Rh) 

and ruthenium (Ru). These elements are all transition metals lying in the d-block (Group 8, 9 

and 10 and period 5 and 6). Platinum and Pd are found in their pure state in nature (1). The 

other four elements Ir, Os, Rh and Ru occur as alloys of Pt and Au (2). Platinum group 

elements are mined in South Africa, Siberia and Sudbury, Ontario. The concentration of 

PGEs in the lithosphere is among the lowest, with the average estimated to be in the range of 

0.001–0.005 mg/kg for Pt; 0.015 mg/kg for Pd; 0.0001 mg/kg for Rh; 0.0001 mg/kg for Ru; 

0.005 mg/kg for Os; and 0.001 mg/kg for Ir (3, 2, 4). Worldwide production of PGEs has 

been steadily increasing since 1970. This reflects the growing worldwide use of PGEs (5). Of 

the six PGEs, the ones of interest for this study are Pd, Pt and Rh because of their use in the 

construction of catalytic converters used in the automobiles. The total worldwide supply in 

1999 and 2000, as shown in Table 6.1, was 265 and 238 tonnes for Pd; 156 and 164 tonnes 

for Pt; 14.9 and 16.2 tonnes for Rh; respectively (6). In 2001 the highest published value for 

Pt in road dust was 2.252 mg/kg (7) and that of Pd was 0.556 mg/kg (8).The use of PGEs, 

reported in literature, is a cause of concern because relatively little is known about the 

mobility, toxicity and bioaccumulation processes of PGEs (9). 

Platinum group elements have various applications one of which is their use in the 

construction of catalytic converters. The properties of PGEs which makes them suitable to be 

used as catalytic converter include: - (i) outstanding catalytic properties (ii) resistance to 

chemical attack (iii) stable electrical properties (iv) high corrosion resistance (v) low 

coefficient of thermal expansion (vi) high melting point (vii) high mechanical strength. 

Platinum group elements released from the catalytic converters are primarily bound to 

aluminium oxide particle (10, 11). They were until recently, regarded as inert elements but 

recent studies have shown that they may be soluble and quite reactive (12). 

The main emissions of automobile engines are N2, CO2 and H2O. These emissions are mainly 

non harmful to human health however, because combustion is never perfect, smaller amounts 

of more harmful emissions are also produced namely carbon monoxide (CO), hydrocarbons 

(HC) or volatile organic compounds (VOCs) and oxides of nitrogen (NOx). These gases are 

the largest source of ground level ozone which is responsible for smog formation, respiratory 
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Table 6.1: PGE supply by application (worldwide) (6) 

Application 1999 (kg) 2000 (kg) 

Palladium   

Autocatalysts 161,170 139,480 

Dental 31, 500 24,700 

Electronics 56,100 58,600 

Other 16,600 15,000 

Total demand (Pd) 265,000 238,000 

   

Platinum   

Autocatalysts 33,600 38,000 

Jewellery 79,400 83,300 

Industrial 38,400 41, 400 

Investment 5,100 1,420 

Total demand (Pt) 156,500 164,000 

   

Rhodium   

Autocatalysts 12,530 13,760 

Chemical 964 992 

Electronics 170 170 

Glass 851 1,050 

Other 312 312 

Total demand (Rh) 14,900 16,200 

 

Problems and plant life damage. The UK National Atmospheric Emissions Inventory (NAEI) 

report reveals that road traffic is the largest emission source of these pollutants and dominates 

UK emissions in 2007 contributing 53% of the total (13). Air quality problems experienced 

today in the UK are caused by pollution from road transport (14) which is being addressed by 

the UK National Air Quality Strategy (15). It is on this background that catalytic converter 

was developed to convert the three main regulated emissions gases to harmless products. The 

catalytic converter was made compulsory for all new cars coming into UK in 1991 therefore 

most modern cars are fitted with a three way catalytic converter. The three way refers to the 

three regulated emissions it helps to reduce-CO, unburnt HC and NOx. The converter uses 

two types of catalyst: the reduction and oxidation catalyst. The Pd and Pt are used as 

oxidation catalyst to oxidise CO and HC while Rh is used as a reduction catalyst to reduce 

NOx (16, 17). While the three way catalytic converters (Pd-Pt-Rh) significantly reduces up to 

90% gas emissions produced during gasoline combustion (11, 18, 19) they may at the same 

time create serious environmental problems. This situation is due to the deterioration of the 

surface abrasion of the catalytic converter thus releasing the PGEs adsorbed in small particles 
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into the environmental compartments of air, soil and water (19). Several authors have linked 

increased concentrations of PGEs in our roadside environment to increases in the number of 

vehicles fitted with catalytic converters thereby causing environmental pollution (18, 20-25).  

The trends over time in Pd and Pt used by application, for Europe are listed in Tables 6.2 and 

6.3 (6).The growing demand for Pd in Europe is largely in response to the introduction of 

Euro Stage III legislation in January 2000, i.e. the Pd-rich catalysts can meet stricter emission 

limits for petrol-fuelled vehicles, resulting in a shift away from Pt-based technology (6). 

Table 6.2: Palladium demand by application in Europe (kg) (6) 

Palladium demand 1992 (kg) 1994 (kg) 1996 (kg) 1998 (kg) 2000 (kg) 2002 (kg) 

Autocatalyst 1,130 7,370 24,258 38,658 51,175 38,690 

Chemical 2,100 1,700 1,840 1,840 2,690 1,990 

Dental 8,500 7,230 7,230 5,950 3,120 1,280 

Electronics 5,950 7,230 8,500 7,660 7,370 3,120 

Jewellery 992 851 851 1,420 1,280 990 

Other 425 709 567 709 567 425 

Totals (Pd) 19,100 25,100 43,200 56,300 66,200 47,800 

 

Table 6.3: Platinum demand by application in Europe (kg) (6) 

Platinum demand 1992 (kg) 1994 (kg) 1996 (kg) 1998 (kg) 2000 (kg) 2002 (kg) 

Autocatalyst 16,158 16,916 14,033 14,649 16,770 32,850 

Chemical 1,420 1,420 1,700 1,700 2,410 2,980 

Electrical 851 709 709 1,280 2,270 1,840 

Glass 425 851 1,130 709 709 280 

Investment: small 992 1,276 142 142 0 0 

Jewellery 2,410 2,840 3,540 4,540 5,670 4,820 

Petroleum 567 709 425 425 284 425 

Other 1,560 1,840 2,130 2,410 2,840 4,250 

Totals (Pt) 24,400 26,500 23,800 25,800 30,900 47,400 

 

Apart from catalytic converters, additional major uses of PGEs are in the glass, chemical, 

electrical, electronics and petroleum industries, the manufacture of jewellery, in medicine as 

cancer treatment drugs, and in dentistry as alloys. 

6.1.1 Accumulation and mobility of PGEs 

Research has shown that PGEs could become available to plants and especially to humans 

and livestock, who consume plants growing on a contaminated soil (26). Elevated and 

continuously increasing Pd and Pt levels were described for roadside grass samples, (27, 28). 

The availability of PGEs to plants depends on their mobility and these elements become 
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mobile under acidic soil water conditions, a fact which increases their uptake by plants (1). 

PGEs emitted into the environment, may form soluble compounds able to be absorbed by 

plants, thus creating the possibility for their presence in the food chain. Catalyst converter 

emitted PGEs, may undergo rapid transformations in the environment, and subsequently 

behave similarly to soluble PGE salts (21). Hoppstock and Sures 2004 (29) in their review 

demonstrated biological availability of soluble and particle bound PGEs to plants and 

animals. Laboratory studies with mussels exposed to road dust revealed an increasing 

biological availability of PGEs in the following order:  Rh > Pt > Pd (30).  Similar results 

were obtained by Schafer and Punchelt 1998 (31) when demonstrating that plants can 

assimilate Pd, Pt and Rh. Tankari et al. 2007 (32) found that Pd and Rh concentrations 

increased with the time of plant exposure to PGE pollution. 

6.1.2 Health risk effects of PGEs 

The health effect of PGEs toxicity is exemplified by Pt. Platinum was believed to be 

chemically inert. However, this was not true as recent evidence suggests that Pt in the 

environment can be ionized into forms that are environmentally and biologically active (12). 

Platinum group elements which are released from catalytic converters are primarily bound to 

aluminium oxide particles (10). Up to 36% of these particles have a size <3 μm (33), and 

therefore reach lung alveolaries. Platinum in road dust can be solubilized, and enters the 

waters, sediments, soils and the food chain. Certain Pt compounds are also known to be 

cytotoxic and have mutagenic and carcinogenic effects which will have some effects on 

microorganisms at very low concentrations (5, 34). In addition, some Pt complexes can bind 

to N and S in proteins producing a reduction in enzymatic activity (6). Though initially 

automobile emitted PGEs were thought of as being inert biologically, recent studies have 

shown the biological availability of not only soluble, but also of particle bound PGEs, to 

plants and animals (35, 30). 

Adverse occupational health effects following exposure to complex salts of Pt were first 

observed in 1911 in a photographic studio (1).  Studies conducted on precious metal workers 

in four British Pt refineries revealed that 52 out of 91 persons had symptoms of sneezing, 

wheezing and shortness of breath (36). Platinum compounds, especially the soluble salts, 

such as ammonium tetrachloroplatinite(II) and ammonium hexachloroplatinate(IV) used in 

the production of industrial catalysts (37) are toxic, and chronic industrial exposure to them is 
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responsible for the development of a syndrome known as Platinosis, which is characterized 

by the respiratory and cutaneous hypersensitivity (34). 

The first efforts towards understanding the PGEs risk effects was to analyze the body fluids 

for the basic three noble elements in people occupationally involved in PGEs manufacturing. 

Employees exposed during the production and recycling of Pt-based catalytic converters 

revealed Pt levels in urine and blood up to 100 times higher than those of non-exposed 

individuals (34). In general the Pt(II), Pt(V) and Pd (II) toxic effects on the cellular level are  

comparable to the toxic effects of Cd(II) and Cr(VI), sometimes even exceeding the damage 

induced by the above species of Cd and Cr (38). 

Whereas numerous studies have concentrated on the heavy metal (e.g. Pb or Cd) 

concentration in the environment, relatively few studies focus on PGE (30). Following the 

potential health risk associated with PGEs and the accumulation and mobility of these 

precious metals in environmental matrices, this work focuses on PGE concentration in the 

environmental matrix of urban road dust and the influence of particle size on the distribution 

of these elements.  

6.2 Experimental 

6.2.1 Sampling and sample preparation 

The sampling procedure is as described in 5.2.1 and sample location shown in Figure 5.1 

Apart from the simplicity of using hand via sweeping, as opposed to a vacuum cleaner, part 

of this study was to investigate the PGE concentration according to particle size and the 

vacuum cleaner only samples particles finer than 250 µm thereby excluding the coarse 

particles needed for grain size analysis. Description of the sample sites are shown in Table 

6.4. The dried samples were sieved through a plastic sieve of mesh size 2 mm to remove 

gravel, refuse and stones. Fractional size coarser than 2 mm was of limited importance when 

considering metal contaminants (39, 9). Only 3% of labile Pb  is held in the 1000 – 2000 µm 

fractions and the remaining 97% labile Pb is in the 0 – 1000 µm fractions (9). It was on this 

basis that some of the samples (8, 14 and 15: the large ones) were fractionated into six size 

fractions with their sedimentological equivalent in parenthesis: 1000-2000 µm (very coarse 

sand), 500-1000 µm (Coarse sand), 250-500 µm (medium sand), 125-250 µm (fine sand), 63-

125 µm (very fine sand) and <63 µm (silt and clay). All the samples (8, 9, 11, 13-15, 17-19) 

were passed through the 250 µm mesh size to separate between <250 and >250 µm. The dry 
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Table 6.4: Sample location/descriptions 

Site number Location Description/sources Receptors 

8 All Saints 

Cemetery 

A few meters west of Jesmond air quality 

management area (AQMA). Cemetery 

situated along the busy Jesmond Road. 

Matrix: Sample of soil/sediment taken 

from the base of the Cemetery wall 

immediately to the east of the Cemetery 

gate. 

Busy pavement 

walkway and 

cemetery entrance.  

 9 (3) Grainger Street 

opposite St 

John‟s Church 

Sample collected from corners either side 

of 3 doorways and recessed areas 

between two buildings. Matrix: street 

dust and „rubbish.‟ 

Busy pedestrian 

route to and from 

station.  Busy with 

vehicular traffic.  

 
11 (4) Bolbec Hall 

 

Sample taken along base of lowest stone 

step. Matrix: street dust, sediment and 

„rubbish.‟ 

 

Busy with vehicular 

traffic. Critical 

receptors pedestrians 

13 (5) St Nicolas 

Church 

Sample taken along edge of building 

adjacent to Nicolas Road and either side 

of main doorway on St Nicolas Place 

Adjacent to busy 

pedestrian route.  

Busy with vehicular 

traffic.  

14 St Nicolas 

Square 

Sample taken in open paved square 

where sediment had accumulated in the 

uneven paving slabs. Matrix comprising 

soil from adjacent landscaped area and 

street dust. 

 

Adjacent to busy 

pedestrian route.  

Busy with vehicular 

traffic.  

15 Central Station 

 

Sample taken under archway entrance to 

station adjacent to the taxi rank. Matrix: 

accumulated street dust. 

Adjacent to busy 

pedestrian route.  

Busy with vehicular 

traffic.  

17 (7) Westgate Road 

opposite 

County Court. 

Samples collected from the edge of the 

busy road opposite to a pub. Matrix: 

street dust particles blown to the edges of 

the road. 

Adjacent to busy 

pedestrian route. 

Busy with vehicular 

traffic.  

18 (8) St James‟s 

Park 

Sample taken along the edges of the road 

opposite St James Park busy with 

vehicular traffic. Matrix: accumulated 

street dust. 

Adjacent to busy 

pedestrian route 

especially during 

football match. 

19 (9) Percy street 

opposite 

Haymarket bus 

station. 

 

This sample was collected from corners 

of the building directly opposite the Hay 

market bus station. Matrix: accumulated 

street dust and „rubbish.‟ 

Receptors here are 

the pedestrian  

Numbers in bracket represents the sample location in Figure 5.1 
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sieved samples were sub-sampled using cone and quarter prior to undergoing further analysis. 

6.2.2 Instrument and reagents 

Concentrated HCl and HNO3  were obtained from Romil Limited Cambridge. A multi-

element standard containing Ir, Pd, Pt and Rh was purchased from SPEXCertPrep 

(Middlesex, UK). Ultra pure water of conductivity 18.2MΩ-cm was produced by a direct Q™ 

millipore system (Molsheim, France). A road dust certified reference material was used (BCR 

723 No 114) supplied by the institute for reference materials and measurements (Certified 

2002, Revised 2008). Poly-prep chromatography columns and AG
®
 50W-X8 cation exchange 

resin 200 – 400 mesh size from Bio-rad laboratories Hercules Canada were used. An 

evaporating unit for Reacti-Therm™ heating models (containing Reacti-vap™ teflon® 

coated needles 4” (102 mm) x 19 gauge and Reacti-Therm™ heating module) and vortex 

mixer were from Fisher Scientific UK Ltd. (Loughborough, Leicestershire). Other 

instruments were specimen tubes made of soda glass with stopper, retort stand with clamps, 

glass measuring cylinder (A grade), volumetric flask (A grade) and eppendorf micro pipette. 

Dust samples were collected from locations across Newcastle city centre and local environs. 

ICP-MS measurements were carried out with an ICP mass spectrometer X series II (Thermo 

Electron Corporation, Cheshire, UK). All digestions were carried out using a Start D 

multiprep 42 high throughput rotor microwave digestion system supplied by Milestone 

Microwave Laboratory Systems UK. The weighing balance used was Explorer Ohaus model 

E406 00032 from Switzerland. 

6.2.3 Preparation of cation exchange resin and separation columns 

All plastic containers used were soaked in an acid bath for about one week prior to the 

preparation. They were rinsed with ultra pure water and allowed to dry before being used. 

250g of AG 50 – X8 200 -400 mesh cation exchange resin was placed into a pre-cleaned one 

litre plastic container. 250 mL 6M HCl was added to the container and was shaken to allow 

mixing. This solution was allowed to stand overnight. The next morning the 6M HCl was 

decanted from the mixture and replaced by 250 mL 8M HNO3. The new solution was shaken 

and allowed to stand overnight. The next morning the 8M HNO3 was decanted from the 

mixture and replaced by 250 mL 6M HCl. This process of mixing and decanting 6M HCl and 

8M HNO3 was repeated three times. After the third time, the resin was finally stored in 250 

mL 6M HCl and was ready for use (C.Ottley, personal communication 2009). The retort 

stands with the clamps were arranged such that the Poly-prep chromatographic column will 
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be held tightly and in a convenient position. The entire set up was placed in a well secured 

place to avoid shaking and other forms of interferences such as dust from external sources 

getting into the column. Once the column was set, 4 mL of freshly shaken resin was added to 

the column and the solution allowed to drain through. 10 mL of 6M HCl was added to the 

settled resin and the solution allowed to drain through, after which the solution was 

equilibrated using 15 mL of 0.5M HCl. A pre-cleaned acid washed specimen tube was placed 

beneath each column prior to the loading of the sample. 

6.2.4 Microwave digestion and column separation for PGE analysis 

The sample was digested using the microwave method, as outline in 2.2.3 and 3.2.6 except 

that 20 mL of aqua regia (HCl: HNO3 3:1 v/v), made from Romil acid, was used instead of 13 

mL and the temperature raised to 200
o
C for 10 minutes. This is because catalyst-derived 

particles which carry PGEs are usually in a form difficult to digest (40).The filtrate from the 

microwave aqua regia digest was vortex mixed and sub-sampled by removing 4 mL from 

each sample and blank. The sample and the blank were evaporated to dryness under a stream 

of N2 and heat. The residue was re-dissolved using 5 mL of 6M HCl , evaporated in stream of 

nitrogen and heat and then re-constituted using 2 mL of 0.5M HCl. After re-dissolving the re-

constituted residue, the solution was added to the cation exchange column. The low affinity 

of PGE-anion complexes for the cation resin means that they begin to elute almost 

immediately. The eluent is collected in a pre- cleaned acid washed specimen tubes made of 

soda glass with poly stopper. To the same residue, further 2 mL of 0.5M HCl was added, 

vortex mixed and then poured to the cation exchange column. The eluent was collected in the 

same specimen tubes. A further 6 mL 0.5M HCl was added to the column and the eluent 

collected in the same specimen tubes. The process of washing the residue in the column with 

2 mL and 6 mL of 0.5M HCl was repeated. Experiments have shown that this was sufficient 

to wash all PGEs of interest off the column while all major cations were retained (Al, Ca, Fe, 

K, Mg, Mn, Na and Ti) (41). The solution containing PGEs and other anion complexes from 

the column were evaporated to dryness under stream of N2 and heat. To the dry residue was 

added two drops 16M HNO3 to remove organics and then vortex mixed. This mixture was 

evaporated to dryness in a stream of N2 and heat. The final residue was made up to 2 mL 

using 3% HNO3, vortex mixed and stored in the fridge (4
o
C) for ICP-MS analysis. 

6.2.5 Analysis of PGEs using ICP-MS 

The analytical method adopted for this work follows that of Sutherland et al. 2007 (41). The 
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X series II ICP-MS was tuned using a 10 ppb solution of Li, Be, Bi, Ce, Co, In, Ba, Pb, Tl, U 

in 2% HNO3 to verify mass resolution. The tuning was done in standard mode.  The 

conditions for standard mode are shown in Table 6.5 

Table 6.5: Operating conditions for ICP-MS 

ICP-MS 

Conditions 

Nebulizer flow 

rate L/Mins 

Pole 

Bias (V) 

Hexapole 

Bias (V) 

Focus Forward 

Power (W) 

Resolution 

m/Δm 

Standard 

Mode 

1.0 12 20 30 1150 

 

10000 

 

Calibration standards ranging from 0.1 to 10 µg/kg prepared from a multi element standard 

(Ir, Pd, Pt and Rh), was used to calibrate the instrument and the calibration data are shown in 

Table 6.6. Masses 103, 105, 106, 108, 110, 194, 195, 196, 198 were measured in addition to 

masses 88, 89, 90, 95, 111, 114, 178 and 181 to correct for oxide interferences. Standard 

solutions of Hf, Sr, Y and Zr were run at the beginning of the analytical session to generate 

oxide production ratios that were used for on line corrections. Samples were washed out with 

1% HNO3 for three minutes between each analysis. Instrumental drift was monitored by 

regularly running standard element solution in between samples. Precision and accuracy were 

measured using certified reference material BCR 723 with certified concentrations of Pd, Pt 

and Rh. The soil samples and the blanks were diluted with an appropriate dilution factor. The 

samples and the blanks were analysed using ICP-MS with reference material analysed after 

every 8 samples. 

Tale 6.6: Calibration Data for the PGEs 

Elements Isotopes Calibration Equation y = mx + c Correlation Coefficient r
2
 

Palladium 
105

Pd y = 20713.1x + 2.5 x 10 
-4

 0.9999 

Platinum 
195

Pt y = 20345.4x + 5.3 x10
-4

 0.9999 

Rhodium 
103

Rh y = 128047.4x 0.9999 

 

 

6.3 Results and Discussion 

6.3.1 Isotope selection and interferences 

Spectroscopic interferences are probably the largest class of interferences in ICP-MS and are 

caused by atomic or molecular ions that have the same mass-to-charge as the analytes of 

interest. The determination of PGEs using ICP-MS is associated with numerous of 
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interference problems. This spectroscopic interference, arising from major constituents of the 

sample, complicates PGE determination (42). It is particularly severe when analysing 

catalytic converter pollution products due to the common use of Sr and Zr substrate in the 

catalysts which generates unusually high and significant levels of oxide interferences on the 

PGE masses of interest (41).  ICP-MS is used in the determination because of its multi-

element capacity and the extent of the isotopic information one is able to produce.  

The analytical isotopes 
105

Pd, 
195

Pt and 
103

Rh were selected based on the natural abundances 

of the analytical isotopes and the ascertainment of relative abundances of the potential atomic 

and molecular interfering ions along with the resolution required to separate analyte masses 

from interfering masses (43). Palladium has 105, 106 and 108 isotopes with abundances of 

22.3%, 27.3% and 26.5% respectively. The 106 and 108 suffers from isobaric monoatomic 

interference of Cd ion while 
105

Pd does not suffer any monoatomic ion interference hence is 

the chosen isotope for analysis.  

Platinum 195 was chosen as the preferred isotope for measurement because it has the highest 

abundance (33.8%) compared to the other isotopes. Platinum 194 has abundance of 32.9%. 

Some of the interfering ions are quantitatively retained by the cation column relative to PGEs 

thus effectively separating them and causing reduced problems for example 
87

Sr
16

O, 
86

Sr
17

O  

for 
103

Rh and 
89

Y
16

O for 
105

Pd ( 41). Hafnium and Zr behave as anion complexes (44, 45) and 

hence elute with the PGE from the cation column causing serious interferences. Oxides of 

these elements interfere on the Pd mass spectrum with respect to Zr and in the Pt mass 

spectrum for Hf.  Oxides of these elements were reduced by the use of a nebuliser which 

maintains oxide generation levels below 0.05% of the total mass signal. Example, Zr signals 

of > 10
6
 cps produces 

90
Zr

16
O signal of 500cps or less which can easily be corrected from 

PGE analyte signals that are normally > 10,000 cps. Interferences linked to other metals e.g. 

Cu, Zn and Pb, can be separated in the resolution mode of 4000 cps which is well below that 

for PGEs of 10,000 cps  (46). Interferences not separated from instrumental manipulations 

and treatment stages were corrected mathematically by estimating the contribution of 

interfering species to the PGEs signal through the analysis of single element standard 

solutions of interferents as published in (10, 46, 47).  

6.3.2 Quality control using certified reference material 

Validation was performed by analysing dust reference material BCR 723. 0.5g of the CRM  
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was prepared using microwave digestion (see 2.2.3, 3.2.6 and 6.2.4) and the result of the 

analysis shown in Table 6.7. From the result, there is good agreement between the measured 

value and the certificate. 

Table 6.7: Concentration of PGEs in Dust Reference Material BCR 723  

Elements Measured value (ng/g) Certificate value (ng/g) 
105

Pd 4.8 ± 0.16 6.10 ± 1.9 
195

Pt 75.5 ± 1.16 81.3 ± 2.5 
103

Rh 8.6 ± 0.02 12.8 ± 1.3 

 

6.3.3 PGE concentration in road dust 

The PGEs was determined on the two size fractions >250 and <250 µm and the results shown 

in Table 6.8. From the results of the descriptive statistics (Table 6.9) and a Mann-Whitney 

test (Table 6.10), the median has a higher value in the < 250 µm fractions than in the > 250 

µm even though there is no significant difference in Pd (p = 0.19), Pt (p = 0.15), or Rh (p = 

0.08) concentration between the two fractions at 95% confidence interval. A comparative plot 

between the two fractions (Figure 6.1) shows that most of the data points fall within the <250 

µm fractions when a 45
o 

(1:1) line passes through the plot. On this basis the < 250 µm 

fraction was chosen and as the more conservative fraction in terms of determining the 

concentration of the PGEs and subsequent description of the data will be centred on this 

fraction. 

Platinum, Pd and Rh concentrations in road dusts from Newcastle city centre are presented in 

Figure 6.2.  

Table 6.8: Concentration of PGEs in >250 and <250µm (ng/g) 

Site >250 µm <250 µm 
103

 Rh 
105

Pd 
195

Pt 
103

Rh 
105

Pd 
195

Pt 

8 2.73 ± 0.05 10.15 ± 0.25 10.78 ± 0.34 27.34 ± 0.14 52.16 ± 0.57 24.20 ± 0.74 

9 8.83 ± 0.29 52.57 ± 0.71 26.59 ± 1.18 6.38 ± 0.31 49.78 ± 1.36 29.51 ± 0.19 

11 28.93 ± 0.40 51.59 ± 0.75 356.73 ± 17.11 41.32 ± 0.49 203.68 ± 3.46 54.36  ± 1.60 

13 5.72 ± 0.19 46.08 ± 1.70 18.11 ± 0.34 11.25 ± 0.38 166.38 ± 3.99 49.58 ± 0.25 

14 1.88 ± 0.07 15.2 ± 0.06 8.09 ± 0.51 54.75 ± 0.14 37.96 ± 0.50 13.86 ± 0.03 

15 0.08 ± 0.01 0.59 ± 0.01 5.12 ± 0.02 9.19 ± 0.20 2.70 ± 0.13 29.84 ± 0.47 

17 1.37 ± 0.03 7.64 ± 0.09 6.07 ± 0.37 1.88 ± 0.04 9.71 ± 0.02 8.11 ± 0.63 

18 5.01 ± 0.05 23.39 ± 0.61 1.33 ± 0.01 1.21 ± 0.05 8.30 ± 0.03 118.50 ± 3.33 

19 3.23 ± 0.03 1.79 ± 0.04 18.89 ± 1.14 4.79 ± 0.01 186.92 ± 0.85 16.05 ± 0.23 
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The range of Pd, Pt and Rh concentrations from road dust are 2.70 – 203.7 ng/g, 8.1 – 118.5 

ng/g and 1.2 – 54.8 ng/g respectively with mean concentrations of 79.8 ng/g for Pd and 38.2 

ng/g for Pt and 17.6 ng/g for Rh. The mean value of Pd is significantly higher than those of 

Rh and Pt and this is not surprising as there is a widespread shift in the development of 

catalytic converter technology away from Pt towards Pd as the main catalytic component 

(21). 

Table 6.9: Descriptive statistics for PGEs in the >250 and the <250µm size fraction of 

road dust samples (ng/g) 

Elements Mean Median SD CV 

>250 <250 >250 <250 >250 <250 >250 <250 
103

Rh 6.42 17.56 3.23 9.19 8.83 19.23 137.7 109.4 
105

Pd 23.22 79.8 15.24 49.78 21.4 81.9 91.8 102.8 
195

Pt 50.27 38.23 10.8 29.6 115.2 33.9 229.6 88.6 

 

Samples 11, 13 and 19 exhibits the highest concentration of Pd contributing 28.4%, 23.2% 

and 26.1% respectively of the total PGE concentration. The highest concentration of Pt is 

found in sample 18 contributing 34.5% of the total concentration of PGE in the sampled area. 

The result obtained from Newcastle is compared to those of other cities in the world as shown 

in Table 6.11. Mean Pt concentration in Newcastle dust sample (38.2 ng/g) is comparable to 

those from Ioannina NW Greece (3.2-306 ng/g) (48), Scotland (13 – 335 ng/g) (24), Rome 

Italy (14.4 – 62.2 ng/g) (49). 

Table 6.10: The Non parametric Mann-Whitney test results of >250 and <250 µm size 

fraction for the concentration of PGEs.  

Elements 
103

Rh 
105

Pd 
195

Pt 

>250 <250 >250 <250 >250 <250 

Median 3.23 9.19 15.2 49.8 10.8 29.5 

p-value 0.1449 0.1853 0.0774 

 

Mean Rh concentration (17.9 ng/g) in this study compare favourably with those of Bialystok, 

Poland (19.6 ng/g) (50), Perth in Austrelia (8.8-91.4 ng/g) (21), Ioannina NW Greece (6.1-

64.6 ng/g). Mean Pd (79.8 ng/g) is similar to those reported in San Diego USA (38 – 280 
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ng/g) (51), Germany (1 – 146 ng/g) (52), Perth in Austrelia (58.1-440.4 ng/g) (21), and 

Goteborg in Sweeden (80 ng/g) (7).  

                      

Figure 6.1: Comparison between the <250 and > the 250 µm size fraction for the PGEs 

6.3.4 Grain-size partitioned PGE concentration and mass loading 

Three road dust samples (8, 14 and 15) were separated into six grain size fractions. The 

variation in Pd, Pt and Rh concentrations across these particle size fractions is shown in 

Figure 6.3. A common assumption is that the <63 µm fraction is the most highly 

concentrated, as the typical relationship is an increase in element concentration with 

decreasing grain size (e.g.53, 54). This assertion reveals why most of the dominant fraction 

analysed for PGEs in soil by many researchers is the <63 µm size fraction 
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     Figure 6.2: PGE concentrations in road dust 

(e.g. 7, 9, 25, 42, 43, 49, 50, 55-59). However, this assumption is called into question in the 

present research as the result in Figure 6.3 show that a reasonable concentration of the PGEs 

can be obtained in other size fractions especially the 63 – 125 µm fractions. 

Table 6.11: Global concentration of PGE in Road Dust (ng/g) 

Location 
105

Pd 
195

Pt 
103

Rh Reference 

San Diego (USA) 1985 38 – 280 100-680 - 51 

Germany (1995) 1 – 146 - - 52 

Japan (1987) 297 - - 60 

Frankfurt (1995) - 170 - 61 

 
Richmond (UK) - 0.42 – 29.8 - 23 

Nottingham (UK) 1998 92.9 168.5 - 8 

Birmingham (UK) 1997 - 6.48 - 8 

London (UK) - 73.7 - 62 

Styria (Austria) 1994 4.0 55 10.3 63 

Candid (DE) 1997 47.7 - - 29 

Dortmund - 12 - 64 

Graz Austria - 14.5 - 51 

Belgium - 12.04 - 65 

Rome (Italy) 102 – 504 14.4 – 62.2 1.9 – 11.1 49 

Goteborg, Sweden  80 196 93 45 

Madrid - 317 74 7 

Scotland - 13 - 335 - 24 

Bialystok, Poland 36.6 - - 63 

Bialystok, Poland 37.5 110.7 19.6  50 

Perth (Austrelia) 58.1 – 440.4 53.8 – 419.4 8.8 – 91.4 21 

Ioannina (NW Greece) 2.1 – 18.2 3.2 - 306 6.1 – 64.6 48 
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Similar work carried out by Sutherland et al. 2008 (66) observed that most of the 

concentration of PGEs are found in the coarser grain size fractions suggesting that analysis of 

only the < 63 µm fraction will underestimate the PGE concentration in the environmental 

sample. 

Due to high concentration of the PGE found within specific grain size fractions and the 

differing contribution made by these fractions to the overall sediment mass, it was 

appropriate to calculate metal loadings (54). Platinum group elements loadings were 

calculated for physical grain size fractionated road dust samples. PGE loading values express 

pseudo-total grain specific PGE concentrations relative to the overall mass grain size 

percentage composition of individual road dust samples. The approach of Sutherland 2003b 

(59) was used in the computation of loading on the grain size fraction basis (GSFLoad). 

                                    

Figure 6.3: Grain-size (µm) partitioned PGEs concentration in three road dust sample 

(Site 8, 14 and 15) from Newcastle City Centre. 

                                        Rhi xGSi                  

                                     ∑
6
 Rhi

 
 x  GSi                 

                                     
n=1 

Rhi = Rhodium concentration in individual grain size eg < 63µm 

GSi = Mass percent of individual Rhi = Rhodium fraction 

∑
6 

Rhi = Summation of rhodium in the six size fractions. 
n=1 

Relative mass loading percentages per grain size fraction were determined for Pd, Pt and Rh 

for samples 8 14 and 15 as shown in Figure 6.4. For all the PGEs in the three sites, the 

X 100 GSFLoad = 
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highest mass load was associated with the < 63 µm and the 63 - 125 µm. Maximum Pd 

loading were 53.3% in <63 µm, 30% in 63-125 µm and 43.9% in 63-125 µm in sites 8, 14 

and 15 respectively. The maximum Pt mass loading were 50.7% in <63 µm, 40.2% in < 63% 

and 37.1% in 63-125 µm in sites 8, 14 and 15 respectively. Maximum Rh mass loading were 

40.4% in <63 µm, 30.2% in < 63 µm and 33.2% 63-125 µm in site 8, 14 and 15 respectively. 

Lesniewska et al. 2004 (50) observed that the highest concentration of platinum group 

element was in the <75 µm hence suggesting that analysis of <63 µm only can lead to 

underestimation of PGEs. Mass loadings for PGEs had been reported in some literatures. 

Sutherland and Wei & Morrison (66, 67), in their work on grain size partitioning observed 

that mass loading of PGEs in <63 µm has the lowest percentage compared to the other size 

fractions. This finding further reveals that analysis of only <63 µm will result in the 

underestimation of the PGEs in the environmental sample. 

 

                                  

Figure 6.4: Relative PGE mass loading for sites 8, 14 and 15 across the 6 determined 

size fractions. 

6.3.5 Correlation coefficient of PGE and PTEs concentration in road dust 

To establish a relationship between platinum group elements (Rh, Pd and Pt) and PTEs, some 

sample points where both PTEs and PGE were measured (9, 11, 13, 17, 18 and 19) were 

chosen and correlation analysis carried out on them. The PTE concentrations for the selected 
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site are shown in Table 6.12 and the results of the correlation between the PTEs and PGEs 

shown in Table 6.13 in matrix form. 

Lead and Cu are two of group of metals commonly associated with motor vehicle pollution 

Table 6.12: PTE concentration road dust (mg/kg) 

Site As Cd Cu Ni Pb Zn 

9 4.4 ± 0.44 0.70 ± 0.22 140 ± 2.8 46.1 ± 3.4 409.0 ± 0.3 652 ±  4.1 

11 6.2 ± 0.42 3.60 ± 0.08  217 ± 2 27.2 ± 2.5 2363.0 ± 0.4 543 ± 3.1 

13 8.0 ± 0.40 1.01 ± 0.08 205 ± 2 22.0 ± 2.9 4261.0 ± 0.5 511 ± 3.4 

17 7.0 ± 0.54 0.60 ± 0.14 192 ± 2 24.9 ± 3.2 1312.0 ± 0.4 635 ± 0.6 

18 6.3 ± 0.52  1.60 ± 0.09 146 ± 2.6 22.8 ± 3.4 153.4 ± 0.4 469 ± 2.6 

19 6.4 ± 0.62 0.90 ± 0.14 125 ± 2.8 28.8 ± 2.8 134.0 ± 0.3 351 ± 2.7 

 

 (32, 56, 68, 69), and both indicate a strong positive correlation in Table 6.14. Due to its use 

in fuel, Pb has historically been used as an indicator of traffic derived pollution. 

Table 6.13: Relationship of PGEs with PTEs 

           As           Cd          Cu              Ni            Pb              Zn         Rh           Pd           Pt 

 
As      1.000 

 

Cd    -0.025     1.000  

         (0.963)    

Cu     0.538       0.508      1.000 

         (0.271)    (0.303)  

Ni     -0.890     -0.219      -0.449         1.000 

         (0.018)    (0.677)    (0.371) 

Pb      0.670       0.233       0.829       -0.416       1.000 

         (0.145)     (0.656)    (0.041)      (0.412) 

Zn    -0.316       -0.089       0.379       0.436        0.145      1.000 

         (0.541)      (0.867)    (0.459)     (0.387)     (0.784) 

Rh    -0.010        0.908       0.643      -0.052        0.447      0.068         1.000 

         (0.985)      (0.012)    (0.168)     (0.921)     (0.375)   (0.898) 

Pd      0.262         0.479      0.284      -0.142        0.472     -0.499        0.658         1.000 

          (0.616)     (0.336)    (0.586)     (0.788)     (0.345)    (0.313)     (0.156)  

Pt       0.030        0.391      -0.028      -0.343      -0.045      -0.226        0.050       -0.214       1.000 

         (0.955)      (0.443)    (0.958)     (0.506)     (0.933)     (0.667)     (0.925)      (0.684) 

Pearson correlation with p-values in bracket 
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Whereas some studies have demonstrated strong positive correlation between the PGEs and 

Pb (32, 70), in this study Pb has no strong mathematical correlation with any of the PGEs. 

The lack of a strong correlation between PGE and Pb is not surprising as the introduction and 

growth of the use of catalytic converters in automobiles reduces drastically the emission of 

Pb from the automobile to the environment. Rhodium has a strong correlation with Cu and 

Cd (Table 6.13) as well as Pd. A common source is likely and possibly anthropogenic, e.g. 

automobiles.  

6.3.6 PGE ratios for determining emission source 

Platinum group element ratios are of great importance in determining automotive catalysts as 

emission sources (71). Commonly bivariate PGE ratios in a given sample media are 

compared to those associated with typical values in autocatalysts (66). Similarities between 

them have been used as evidence to infer anthropogenic contamination from catalytic 

converters (66). Three common ratio fields for three way catalytic converters (TWC) have 

been defined as follows:- Pt/Pd  1 – 2.5; Pt/Rh 5 – 16 and Pd/Rh 4 – 9 (70). The Pt/Pd, Pt/Rh 

and Pd/Rh observed in the present study are 0.56, 4.08 and 7.27 respectively. These values 

are obtained on n = 24 sample size. The Pt/Pd and Pt/Rh ratio in this study are not in 

agreement with the potential catalytic converter ratio defined by Ely et al., 2001 (70) and 

Whitney and Murray 2003 (21). This result appears to support the earlier assertion (section 

6.1) of shift from Pt to Pd as component of TWC (6). The high Pd in our analysis results in 

the lower ratio of Pt/Pd, and the lower Pt results in the lower Pt/Rh ratio. The ratio of Pd/Rh 

is in agreement with that of Ely et al. 2001 (70). This suggests that the presence of Pd and Rh 

in the sampled points must have come from the automobile as a result of the deterioration of 

the TWC converter fitted at the exhaust of the motor vehicles.  

6.4 Conclusion 

From the present research, the following findings were made:- 

1. Platinum group elements (Pd, Pt and Rh) for <250µm fraction of 9 urban street 

dust/sediment and 3 grain size fractionated samples from Newcastle city centre all indicate a 

strong anthropogenic signal. 

2. The grain size analysis reveals that values of PGE are influenced by the size of the fraction 

analysed. 
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3. From grain size analysis, the highest concentration lies within the <63 and 63-125 µm size 

fraction. Therefore analysis of only the <63 µm will underestimate auto catalyst PGE. 

4. There is a strong positive correlation between Pd and Rh and the Pd/Rh ratio (7.27) for 

Newcastle City Centre samples falls within the ratio field (4 – 9) defined by Ely et al. 2001 as 

indicative of TWC (70). 

5. The low value of the Pt/Pd and the Pt/Rh ratio of the samples in comparison with other 

authors give an indication of a possible recent shift in the composition of the TWC converters 

from Pt towards Pd. 
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Chapter Seven: Conclusion and future work 

7.1 Conclusion 

This research aimed to investigate the oral bioaccessibility of 7 PTEs (As, Cd, Cr, Cu, Ni, Pb 

and Zn) from former industrial site (St Anthony‟s lead works) now used for recreational 

activities. The pseudo total content, uptake by the foraged fruits and mobility of these PTEs 

by single extraction using EDTA and HOAc were examined. Furthermore, an investigation of 

the urban street dust from Newcastle city centre and its environs was performed to determine 

the elemental content, oral bioaccessibility and platinum group elements. 

To achieve the research aims, the experiment were designed into sub-experiments. The first 

experiment was on the former industrial site and dealt with pseudo total PTE content and 

mobility of the PTEs using EDTA and HOAc. In addition, pH, organic matter contents, and 

CEC of the soil from the former site were measured. The mean pH, %LOI and CEC are 7.32, 

11.47 and 28.61cmolc/kg respectively. The pseudo total PTE concentration varied from one 

sample point to the other across the site with Pb and Zn exhibiting the highest concentration 

in all the sampled points. The highest concentration of Pb, Zn and As from the sampled point 

is 33.306, 10,620 and 6,502 mg/kg respectively. Extractions of PTEs in the soils using 

chemical selective extractants (EDTA and HOAc) also varied across the sampled points but 

correlates positively with the pseudo total PTE concentration. The lowest percentage 

extraction was found in Cr (< 25%) and Ni (< 45%).  

In the second experiment, foraged fruits obtained from the site for two seasons were analysed 

for pseudo total PTE content so as to assess the amount of PTEs taken up by the fruits. The 

PTEs availability for the foraged fruits was assessed by measuring the transfer factor (TF). It 

was found that the TF in all the sampled points (except Cd in SAL 1 in 2007) are 

significantly <1.00 in both seasons indicating that the majority of the element remained in the 

soil matrix. Therefore while the level of PTE in the soil is relatively high for some elements 

e.g. Pb, Zn and As, the suspected risk to human health based on soil-to-plant transfer ratio is 

negligible. 

 The possible implication to human health associated with accidental ingestion of the 

contaminated soil was assessed using the BARGE method in the third experiment. The results 

indicated that the bioaccessible fraction varied across the site and between the different PTEs 

but correlates positively with the pseudo total PTE content. All the PTEs measured have their 



161 

 

bioaccessibility more in the gastric + intestinal phase. Other types of measuring 

bioaccessibility used in this work such as single extraction and TDI/MDI relate differently to 

the BARGE experiment. Lead is the PTE of great concern in this site because the 

bioaccessible concentrations are higher than a typical soil intake required by a child to pose a 

risk. The work also shows that cautious estimates of bioaccessibility based on BARGE, have 

a role to play in the estimation of oral exposure during the development of site-specific 

assessment criteria. However, this use of conservatively estimated bioaccessibility should be 

justified on a site by site and substance by substance basis. 

The fourth experiment was on the determination of pseudo total PTE content and their 

bioaccessibilty through oral ingestion on road dust from the Newcastle city centre and ite 

environs. The result obtained from the study indicates that the concentrations of the PTEs 

compared favourably with those of other cities in the world. The mean concentration 

decreases in the order: Pd (992 mg/kg) > Zn (421 mg/kg) > Cu (132 mg/kg) > Ni (26 mg/kg) 

> As (6.4 mg/kg) > Cd (1.0 mg/kg) with driving style (stop/start at intersections or traffic 

lights) having a more significant impact on the concentration than the volume of traffic. The 

bioaccessibility of road dust based on the worst case scenario indicates that Cd and Zn had 

the highest % bioaccessible fractions (> 45%) while As, Cu, Ni and Pb had lower % 

bioaccessible fractions (< 35%). None of the PTE measured was above the unintentional 

consumption of 0.1 g/day when compared with the TDI or MDI values hence are generally 

low to pose a risk. 

The fifth experiment dealt on the evaluation of PGE and the effect of particle size on its 

distribution in urban road dust. The result obtained shows that the mean concentration 

deceases in the order: Pd (79.8 ng/g) > Pt (38.2 ng/g) > Rh (17.6 ng/g). Also the garin size 

analysis shows that most of the PGEs are found in the particle sizes 63-125 µm and < 63 µm 

therefore analyzing particle size of only 63 µm as practiced by most researchers will 

underestimate the PGE concentration in the environmental samples. 

7.2 Future Work 

The present work dealt on oral ingestion as the exposure pathway for assessing risk from 

metal contaminated site. However, development of tests to mimic the processes of other 

pathways such as inhalation leading to bioaccessibility via the lungs and dermal absorption 

leading to skin depot bioavailability need to be considered. Also bioaccessibility of other 
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contaminants such as organic substances and the platinum group elements need to be 

investigated in both sample matrices. Furthermore, a clear understanding of the interactions 

and mechanisms governing the contaminants dissolution from soil/dust in the human gastro 

intestinal tract also need to be investigated. 
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Appendix A 

In vitro Extraction Test (BARGE METHOD): Application to soils from former St 

Anthony’s Lead Works 

Arsenic (As) 

Samples 

(SAL) 

Pseudo-total  

(mg/kg) 

Gastric (mg/kg) Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 19 ± 1.7 5.0 ± 1.4 9.9 ± 1.6 52.1 

2 59 ± 1.4 14.4 ± 1.1 25.7 ± 2.1 43.6 

3 905 ± 3.6 226.4 ± 4.8 375.9 ± 3.0 41.5 

4 140 ± 0.8 48.7 ± 3.4 79.1± 4.6 56.5 

5 140 ± 0.6 41.3 ± 3.8 73.9 ± 4.2 52.9 

6 1156 ± 2.3 372.8 ± 6.2 574.3 ± 4.8 49.7 

7 178 ± 3.2 59.2 ± 3.9 107 ± 5.6 60.1 

8 266 ± 0.9 91.6 ± 1.2 160.4 ± 0.5 60.3 

9 398 ± 0.9 138.8  ± 3.6 254.4 ± 2.3 63.9 

10 178 ± 0.9 54.8 ± 2.3 98.3 ± 1.1 55.2 

11 10 ± 0.7 3.4 ± 0.9 5.5 ± 1.1 55.0 

12 669 ± 2.7 221 ± 3.4 366 ± 1.6 54.7 

13 722 ± 2.8 226 ± 5.6 378 ± 2.3 52.4 

14 148 ± 2.6 54.6 ± 3.3 89.4 ± 3.1 60.4 

15 856 ± 2.7 293 ± 4.8 485 ± 5.2 56.7 

16 358 ± 2.7 124 ± 3.5 228 ± 2.3 63.7 

17 2816 ± 4.6 996 ± 21.6 1708 ± 15.4 60.7 

18 61 ± 2.6 19 ± 3.5 30 ± 4.3 49.2 

19 6502 ± 2.9 2134 ± 6.3 3366 ± 3.4 51.8 
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Cadmium (Cd) 

Samples 

(SAL) 

Pseudo-total  mg/kg) Gastric (mg/kg) Gastric + Intestinal (mg/kg) % BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 0.5 ± 3.6 0.33 ± 3.3 0.35 ± 0.5 70.0 

2 1.1 ± 1.8 0.69 ± 2.4 0.74 ± 1.6 67.3 

3 36.8 ± 0.2 19.03 ± 0.3 26.63 ± 0.5 72.4 

4 2.2 ± 1.8 1.6 ± 1.1 2.1 ± 0.4 95.5 

5 3.0 ± 1.5 1.3 ± 0.7 2.0 ± 2.5 66.7 

6 10.2 ± 1.5 4.1 ± 4.1 6.9 ± 0.7 67.6 

7 2.7 ± 1.4 1.5 ± 0.6 2.06 ± 2.3 76.3 

8 3.7 ± 1.2 2.5 ± 0.9 2.9 ± 2.3 78.4 

9 9.0 ± 1.8 5.4  ± 0.7 7.1 ± 1.7 78.9 

10 2.8 ± 1.1 1.6 ± 0.7 1.9 ± 2.6 67.9 

11 0.4 ± 2.4 0.3 ± 2.5 0.30 ± 1.3 75.0 

12 24.5 ± 2.2 13.8 ± 7.5 15.5 ± 1.3 63.3 

13 12.0 ± 1.6 8.5 ± 3.1 9.8 ± 1.7 81.7 

14 7.9 ± 4.9 4.2 ± 1.1 4.7 ± 2.6 59.5 

15 13.5 ± 1.4 6.5 ± 3.9 8.1 ± 4.8 60.0 

16 9.8 ± 1.7 5.7 ± 6.7 6.8 ± 1.3 69.4 

17 23.6 ± 1.0 11.02  ± 3.9 16.72 ± 6.2 70.8 

18 1.8 ± 9.9 0.74 ± 15.1 1.12 ± 12.6 62.2 

19 43.7 ±  0.9 17.7 ± 2.5 29.3 ± 6.3 67.1 
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Chromium (Cr) 

Samples 

(SAL) 

Pseudo-total  

(mg/kg) 

Gastric (mg/kg) Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 70 ± 0.9 29 ± 0.54 52.0 ± 0.96 74.3 

2 84 ± 0.6 21.7 ± 0.3 42.5 ± 1.1 50.6 

3 81 ± 5.9 22.3 ± 3.2 42.2 ± 8.3 52.1 

4 75 ± 0.8 17.1 ± 3.4 29.0 ±7.8 38.7 

5 74 ± 1.0 22.5 ± 3.8 33.8 ± 6.6 45.7 

6 84 ± 4.7 22.9 ± 1.9 35.5 ± 7.4 42.3 

7 107 ± 7.2 18.6 ± 2.5 30.8 ± 6.6 28.8 

8 74 ± 1.0 25.6 ± 4.5 41.0 ± 2.9 55.4 

9 93 ± 6.9 22.6  ± 2.6 41.0  ± 5.8 44.0 

10 93 ± 6.9 21.5 ± 2.3 38.9 ± 5.7 41.8 

11 82 ± 0.9 21.2 ± 5.1 35.6 ± 1.7 43.4 

12 164 ± 0.8 43 ± 3.3 75.0 ± 8.8 45.7 

13 543 ± 0.7 112 ± 2.2 214.0 ± 11.7 39.4 

14 117 ± 1.1 41.5 ± 4.5 72.0 ± 2.1 61.5 

15 620 ± 0.6 208 ± 2.9 400.0 ± 21 64.5 

16 116 ± 1.2 42 ± 3.7 55 ± 7 47.4 

17 121 ± 0.3 41.6  ± 3.9 61.1 ± 9.5 50.5 

18 402 ± 1.1 102 ± 6.7 175 ± 9.8 43.5 

19 93 ± 0.9 32 ± 4.7 49 ± 10.4 52.7 
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Copper (Cu) 

Samples 

(SAL) 

Pseudo-total  

(mg/kg) 

Gastric (mg/kg) Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 46 ± 3.7 14.6 ± 6.0 33.5 ± 3.5 72.8 

2 70 ± 2.1 20.0 ± 1.3 43.4 ± 5.0 62.0 

3 501 ± 0.4 131.4 ± 2.0 330.3 ± 1.9 65.9 

4 61.8 ± 1.9 16.3 ± 1.9 42.6 ± 3.7 68.9 

5 99 ± 1.1 26.5 ± 0.8 62.1 ± 2.9 62.7 

6 598 ± 2.9 129.6 ± 2.7 391.5 ± 4.2 65.5 

7 214 ± 4 15.5 ± 5.8 157.5 ± 1.07 73.6 

8 147 ± 1.3 26.7 ± 0.6 103 ± 2.4 70.1 

9 238 ± 4.7 27.5  ± 1.4 151.5  ± 1.7 63.7 

10 127 ± 1.7 21.9 ± 0.7 85.6 ± 2.5 67.4 

11 22 ± 1.5 6.2 ± 3.2 15.9 ± 4.1 72.3 

12 320 ± 1.7 109 ± 1.1 248.0 ± 1.8 77.5 

13 465 ± 1.74 123 ± 3.8 299 ± 4.4 64.3 

14 181 ± 1.1 25.1 ± 1.3 126.1 ± 2.8 69.7 

15 682 ± 1.5 156 ± 1.3 472 ± 1.9 69.2 

16 171 ± 1.7 18.6 ± 4.1 109.4 ± 6.5 64.0 

17 404 ± 1.3 77.9  ± 5.3 248.9 ± 5.3 61.6 

18 102 ± 1.4 23.3 ± 3.8 67.8 ± 4.7 66.4 

19 104.7 ± 0.7 25.4 ± 4.4 68.6 ± 9.6 65.5 
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Nickel (Ni) 

Samples 

(SAL) 

Pseudo-total  

(mg/kg) 

Gastric (mg/kg) Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 30.7 ± 4.5 4.1 ± 1.1 7.3 ± 2.7 23.7 

2 42.6 ± 2.3 15.7 ± 1.9 30.1 ± 6.8 70.7 

3 94.6 ± 0.4 17.6 ± 2.2 34.4 ± 2.9 36.4 

4 30.5 ± 1.9 4.7 ± 1.5 9.0 ± 3.7 29.5 

5 32.6 ± 0.7 6.3 ± 9.7 10.6 ± 5.6 32.5 

6 156.8 ± 0.8 41.6 ± 3.1 75.1 ± 7.8 47.9 

7 52.5 ± 5.1 13.4 ± 5.4 24.4 ± 2.6 46.5 

8 39.8 ± 1.2 7.0 ± 2.0 13.5 ± 3.7 33.9 

9 38.2 ± 2.9 9.2  ± 4.9 16.9 ± 3.2 44.2 

10 31 ± 4.5 6.4 ± 1.7 11.2 ± 3.9 36.2 

11 22.2 ± 1.8 5.4 ± 3.1 7.5 ± 8.3 33.8 

12 142 ± 1.8 44.9 ± 1.4 69.2 ± 1.8 48.7 

13 135 ± 0.5 32.2 ± 1.3 54.5 ± 2.5 40.4 

14 73 ± 0.5 28.9 ± 1.5 37.3 ± 3.6 51.1 

15 100 ± 1.2 33.7 ± 3.3 56.5 ± 6.5 56.5 

16 59 ± 2.7 7.4 ± 8.6 12.6 ± 10.6 21.4 

17 96 ± 1.3 32.5  ± 4.4 48.6 ± 7.9 50.6 

18 55 ± 1.6 15.6 ± 5.6 28.3 ± 11.8 51.5 

19 56 ± 1.3 16.2 ± 1.3 26.7 ± 1.3 47.7 
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Lead (Pb) 

Samples 

(SAL) 

Pseudo-total   

(mg/kg) 

Gastric (mg/kg) Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 174 ± 0.4 65.5 ± 5.0 94.0 ± 3.0 54.0 

2 1381 ± 1.5 445 ± 4.0 683 ± 2.1 49.5 

3 29302 ± 7.9 7110 ± 7.1 11916 ± 4.5 40.7 

4 1048 ± 2.5 177 ± 8.5 262 ± 2.4 25.0 

5 2452 ± 1.9 644 ± 4.3 1121 ± 1.7 45.7 

6 29286 ± 5.3 6007 ± 28 10360 ± 26 35.4 

7 5071 ± 1.9 1981 ± 6.9 2959 ± 5.2 58.4 

8 4833 ± 1.6 1811 ± 4.4 2331 ± 0.9 48.2 

9 7214 ± 1.8 2044  ± 4.5 3115 ± 1.1 43.2 

10 2691 ± 1.3 666 ± 3.6 995 ± 1.1 37.0 

11 221 ± 3.2 73 ± 8.7 119 ± 8.5 53.8 

12 17443 ± 6 5013 ± 2.8 7020 ± 8.3 40.2 

13 15024 ± 10 3445 ± 1.6 4448 ±9.6 29.6 

14 4266 ± 12 1277 ± 6.5 1695 ± 9.2 39.7 

15 28709 ± 28 8363 ± 63 686 ± 58 31.5 

16 4968 ± 16 1417 ± 8.3 2652 ± 5.5 53.4 

17 22822 ± 18 7377 ± 7.1 10962 ± 37.4 48.0 

18 1338 ± 15 553 ± 4.6 700 ± 5.8 52.3 

19 33306 ± 11 13653 ± 4.7 15374 ± 4.9 46.2 
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Zinc (Zn) 

Samples 

(SAL) 

Pseudo-total  

(mg/kg) 

Gastric (mg/kg) Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 169 ± 0.6 40.1 ± 10.0 62.2 ± 9.6 36.8 

2 332 ± 1.0 106.7 ± 1.6 142 ± 0.6 42.8 

3 10620 ± 5.6 3806 ± 6.2 6013 ± 2.1 56.6 

4 427 ± 3.4 156.5 ± 12.2 209.4 ± 5.2 49.0 

5 540 ± 1.9 209.7 ± 5.1 265.3 ± 2.4 49.1 

6 5464 ± 2.5 1588 ± 6.9 2826 ± 2.5 51.7 

7 959 ± 4.1 348.4 ± 4.2 522.6 ± 5.4 54.5 

8 1522 ± 4.3 616 ± 2.8 881 ± 3.0 57.9 

9 2172 ± 3.9 823 ± 4.7 1159  ± 2.8 53.4 

10 879 ± 4.7 385 ± 5.1 454.2 ± 4.7 51.7 

11 123 ± 1.1 31.1 ± 6.6 52.9 ± 7.7 43.0 

12 3233 ± 0.7 1180 ± 14.5 1713 ± 22.8 52.9 

13 4355 ± 0.8 1217 ± 24 1975 ± 31 45.4 

14 2189 ± 2.3 820 ± 1.1 1355 ± 3.1 61.9 

15 7092 ± 2.0 1747 ± 30 2812 ± 28 39.7 

16 1133 ± 1.6 473 ± 2.0 641 ± 2.9 56.6 

17 8488 ± 4.2 2299 ± 2.8 3664 ± 1.9 43.2 

18 537 ± 2.5 175 ± 2.2 281 ± 3.9 52.3 

19 3268 ± 1.2 1160 ± 2.0 2011 ± 4.0 61.5 
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Appendix B 

Arsenic, cadmium and chromium bioaccessibility and pseudo-total data for 19 sample points. 

As Cd Cr 

Samples 

(SAL) 

Pseudo-total 

(mg/kg) 

Bioaccessibility 

(mg/kg) 

Pseudo-total 

(mg/kg) 

Bioaccessibility 

(mg/kg) 

Pseudo-total 

(mg/kg) 

Bioaccessibility 

(mg/kg) 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) 

1 19 ± 1.7 9.9 ± 1.6 0.5 ± 3.6 0.35 ± 0.5 70 ± 0.9 52.0 ± 0.96 

2 59 ± 1.4 25.7 ± 2.1 1.1 ± 1.8 0.74 ± 1.6 84 ± 0.6 42.5 ± 1.1 

3 905 ± 3.6 375.9 ± 3.0 36.8 ± 0.2 26.63 ± 0.5 81 ± 5.9 42.2 ± 8.3 

4 140 ± 0.8 79.1± 4.6 2.2 ± 1.8 2.1 ± 0.4 75 ± 0.8 29.0 ±7.8 

5 140 ± 0.6 73.9 ± 4.2 3.0 ± 1.5 2.0 ± 2.5 74 ± 1.0 33.8 ± 6.6 

6 1156 ± 2.3 574.3 ± 4.8 10.2 ± 1.5 6.9 ± 0.7 84 ± 4.7 35.5 ± 7.4 

7 178 ± 3.2 107 ± 5.6 2.7 ± 1.4 2.06 ± 2.3 107 ± 7.2 30.8 ± 6.6 

8 266 ± 0.9 160.4 ± 0.5 3.7 ± 1.2 2.9 ± 2.3 74 ± 1.0 41.0 ± 2.9 

9 398 ± 0.9 254.4 ± 2.3 9.0 ± 1.8 7.1 ± 1.7 93 ± 6.9 41.0  ± 5.8 

10 178 ± 0.9 98.3 ± 1.1 2.8 ± 1.1 1.9 ± 2.6 93 ± 6.9 38.9 ± 5.7 

11 10 ± 0.7 5.5 ± 1.1 0.4 ± 2.4 0.30 ± 1.3 82 ± 0.9 35.6 ± 1.7 

12 669 ± 2.7 366 ± 1.6 24.5 ± 2.2 15.5 ± 1.3 164 ± 0.8 75.0 ± 8.8 

13 722 ± 2.8 378 ± 2.3 12.0 ± 1.6 9.8 ± 1.7 543 ± 0.7 214.0 ± 11.7 

14 148 ± 2.6 89.4 ± 3.1 7.9 ± 4.9 4.7 ± 2.6 117 ± 1.1 72.0 ± 2.1 

15 856 ± 2.7 485 ± 5.2 13.5 ± 1.4 8.1 ± 4.8 620 ± 0.6 400.0 ± 21 

16 358 ± 2.7 228 ± 2.3 9.8 ± 1.7 6.8 ± 1.3 116 ± 1.2 55 ± 7 

17 2816 ± 4.6 1708 ± 15.4 23.6 ± 1.0 16.72 ± 6.2 121 ± 0.3 61.1 ± 9.5 

18 61 ± 2.6 30 ± 4.3 1.8 ± 9.9 1.12 ± 12.6 402 ± 1.1 175 ± 9.8 

19 6502 ± 2.9 3366 ± 3.4 43.7 ±  0.9 29.3 ± 6.3 93 ± 0.9 49 ± 10.4 
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Appendix B 

Copper, nickel and lead bioaccessibility and pseudo-total data for 19 sample points. 

Cu Ni Pb 

Samples 

(SAL) 

Pseudo-total 

(mg/kg) 

Bioaccessibility 

(mg/kg) 

Pseudo-total 

(mg/kg) 

Bioaccessibility 

(mg/kg) 

Pseudo-total 

(mg/kg) 

Bioaccessibility 

(mg/kg) 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3) 

1 46 ± 3.7 33.5 ± 3.5 30.7 ± 4.5 7.3 ± 2.7 174 ± 0.4 94.0 ± 3.0 

2 70 ± 2.1 43.4 ± 5.0 42.6 ± 2.3 30.1 ± 6.8 1381 ± 1.5 683 ± 2.1 

3 501 ± 0.4 330.3 ± 1.9 94.6 ± 0.4 34.4 ± 2.9 29302 ± 7.9 11916 ± 4.5 

4 61.8 ± 1.9 42.6 ± 3.7 30.5 ± 1.9 9.0 ± 3.7 1048 ± 2.5 262 ± 2.4 

5 99 ± 1.1 62.1 ± 2.9 32.6 ± 0.7 10.6 ± 5.6 2452 ± 1.9 1121 ± 1.7 

6 598 ± 2.9 391.5 ± 4.2 156.8 ± 0.8 75.1 ± 7.8 29286 ± 5.3 10360 ± 26 

7 214 ± 4 157.5 ± 1.07 52.5 ± 5.1 24.4 ± 2.6 5071 ± 1.9 2959 ± 5.2 

8 147 ± 1.3 103 ± 2.4 39.8 ± 1.2 13.5 ± 3.7 4833 ± 1.6 2331 ± 0.9 

9 238 ± 4.7 151.5  ± 1.7 38.2 ± 2.9 16.9 ± 3.2 7214 ± 1.8 3115 ± 1.1 

10 127 ± 1.7 85.6 ± 2.5 31 ± 4.5 11.2 ± 3.9 2691 ± 1.3 995 ± 1.1 

11 22 ± 1.5 15.9 ± 4.1 22.2 ± 1.8 7.5 ± 8.3 221 ± 3.2 119 ± 8.5 

12 320 ± 1.7 248.0 ± 1.8 142 ± 1.8 69.2 ± 1.8 17443 ± 6 7020 ± 8.3 

13 465 ± 1.74 299 ± 4.4 135 ± 0.5 54.5 ± 2.5 15024 ± 10 4448 ±9.6 

14 181 ± 1.1 126.1 ± 2.8 73 ± 0.5 37.3 ± 3.6 4266 ± 12 1695 ± 9.2 

15 682 ± 1.5 472 ± 1.9 100 ± 1.2 56.5 ± 6.5 28709 ± 28 686 ± 58 

16 171 ± 1.7 109.4 ± 6.5 59 ± 2.7 12.6 ± 10.6 4968 ± 16 2652 ± 5.5 

17 404 ± 1.3 248.9 ± 5.3 96 ± 1.3 48.6 ± 7.9 22822 ± 18 10962 ± 37.4 

18 102 ± 1.4 67.8 ± 4.7 55 ± 1.6 28.3 ± 11.8 1338 ± 15 700 ± 5.8 

19 104.7 ± 0.7 68.6 ± 9.6 56 ± 1.3 26.7 ± 1.3 33306 ± 11 15374 ± 4.9 
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Appendix B 

Zinc bioaccessibility and pseudo-total data for 19 sample points. 

Samples (SAL) Pseudo-total (mg/kg) Bioaccessibility (mg/kg) 

 Mean ± SD (n = 3) Mean ± SD (n = 3) 

1 169 ± 0.6 62.2 ± 9.6 

2 332 ± 1.0 142 ± 0.6 

3 10620 ± 5.6 6013 ± 2.1 

4 427 ± 3.4 209.4 ± 5.2 

5 540 ± 1.9 265.3 ± 2.4 

6 5464 ± 2.5 2826 ± 2.5 

7 959 ± 4.1 522.6 ± 5.4 

8 1522 ± 4.3 881 ± 3.0 

9 2172 ± 3.9 1159  ± 2.8 

10 879 ± 4.7 454.2 ± 4.7 

11 123 ± 1.1 52.9 ± 7.7 

12 3233 ± 0.7 1713 ± 22.8 

13 4355 ± 0.8 1975 ± 31 

14 2189 ± 2.3 1355 ± 3.1 

15 7092 ± 2.0 2812 ± 28 

16 1133 ± 1.6 641 ± 2.9 

17 8488 ± 4.2 3664 ± 1.9 

18 537 ± 2.5 281 ± 3.9 

19 3268 ± 1.2 2011 ± 4.0 
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Appendix C 

In vitro extraction test  (BARGE METHOD): Application to Road dust from Newcastle 

City centre Newcastle upon Tyne NE England. 

Arsenic (As) 

Samples 

(Site) 

Total (Microwave) 

(mg/kg) 

Gastric 

(mg/kg) 

Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 8.6 ± 4.6 1.6 ± 6.6 3.1 ± 8.7 36.1 

2 4.4 ± 5.3 0.6 ± 7.0 1.0 ± 14 22.7 

3 4.4 ± 4.4 0.7 ± 9.6 1.2 ± 10.6 27.3 

4 6.2 ± 4.2 1.2 ± 2.5 1.9 ± 4.9 30.6 

5 8.0 ± 4.0 1.5 ± 6.3 2.9 ± 5.5 36.3 

6 6.0 ± 4.5 0.6 ± 11.1 1.1 ± 17.7 18.3 

7 7.0 ± 5.4 0.9 ± 9.4 1.7 ± 14.4 24.3 

8 6.3 ± 5.2 0.7 ± 13 1.3 ± 15.5 20.6 

9 6.4 ± 6.2   0.9 ± 6.3 2.7 ± 12.2 42.2 

 

 

 

Cadmium (Cd) 

Samples 

(Site) 

Total (Microwave) 

(mg/kg) 

Gastric 

(mg/kg)  

Gastric + Intestinal 

(mg/kg)  

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 0.3 ± 6.6 0.1 ± 9.5 0.17 ± 3.0 56.7 

2 0.13 ± 1.2 0.07 ± 8.2 0.07 ± 5.2 53.8 

3 0.7 ± 2.2 0.4 ± 2.1 0.55 ± 12.7 78.16 

4 3.6 ± 0.8 1.5 ± 1.1 1.9 ± 2.0 52.8 

5 1.01 ± 0.8 0.2 ± 1.1 0.3 ± 4.6 29.7 

6 0.23 ± 4.7 0.03 ± 4.1 0.03 ± 3.2 13.0 

7 0.60 ± 1.4 0.2 ± 2.9 0.3 ± 2.9 50.0 

8 1.6 ± 0.9 0.4 ± 3.5 0.4 ± 3.2 25.0 

9 0.9 ± 3.4 0.23 ± 3.4 0.32 ± 8.2 35.6 
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Copper (Cu) 

Samples 

(Site) 

Total (Microwave) 

(mg/kg) 

Gastric 

(mg/kg) 

Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 67.2 ± 2.6 9.5 ± 3.1 23.3 ± 3.5 34.7 

2 25.3 ± 3.7 Nil 6.1 ± 5.1 24.1 

3 140 ± 2.8 7.5 ± 3.8 42.3 ± 4.1 30.2 

4 217 ± 2.0 65.6 ± 1.6 74.1  ± 3.4 64.0 

5 205 ± 2.0 30.7 ± 1.6 66.6 ± 3.5 32.5 

6 59.8 ± 2.4 Nil 1.6 ± 8.0 2.7 

7 192 ± 2.0 35.8 ± 2.2 55.3 ± 5.1 28.8 

8 146 ± 2.6 5.0 ± 6.0 7.6 ± 8.9   5.2 

9 125 ± 2.8 3.1 ± 1.7 12.0 ± 1.9   9.6 

 

 

Nickel (Ni) 

Samples 

(Site) 

Total (Microwave) 

(mg/kg) 

Gastric 

(mg/kg) 

Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 19.1± 2.5 2.9 ± 5.4 5.3 ± 6.1 27.7 

2 13.7 ± 3.5 3.5 ± 6.4 6.0 ± 7.3 43.8 

3 46.1 ± 3.4 2.7 ± 2.3 6.7 ± 2.5 14.5 

4 27.2 ± 2.5 4.4 ± 1.2 8.8 ± 1.1 32.4 

5 22.0 ± 2.9 5.9 ± 0.8 8.4 ± 3.6 38.2 

6 25.0 ± 2.7 1.3 ± 2.5 2.1 ± 5.2 8.4 

7 24.9 ± 3.2 3.2 ± 1.3 6.9 ± 1.7 27.7 

8 22.8 ± 3.4 0.7 ± 5.3 2.2 ± 3.4 9.6 

9 28.8 ± 2.8 0.7 ± 22.7 2.3 ± 13.1 8.0 
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Lead (Pb) 

Samples 

(Site) 

Total (Microwave) 

(mg/kg) 

Gastric 

(mg/kg) 

Gastric +  Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 101 ± 0.4 32.6 ± 1.3 32.6 ± 1.2l 32.3 

2 70.2 ± 0.3 12.5 ± 0.8   22.1 ± 0.3 31.5 

3 409 ± 0.3 8.3 ± 0.6 13.8 ± 1.4 3.4 

4 2363 ± 0.4 850 ± 0.4  1349 ± 0.8 57.1 

5 4261 ± 0.5 1405 ± 0.4 1586 ± 0.7 37.2 

6 127 ± 0.3 35.6 ± 3.0 47.5 ± 0.9 37.4 

7 1312 ± 0.4 483 ±7.0 501 ± 4.0 38.2 

8 153.4 ± 0.4 18.3 ± 2.0   29.2 ± 0.1 19.1 

9 134 ± 0.3 0.04 ± 0.16 0.04 ± 0.11 0.02 

 

 

Zinc (Zn) 

Samples 

(Site) 

Total (Microwave) 

(mg/kg) 

Gastric 

(mg/kg) 

 Gastric + Intestinal 

(mg/kg) 

% BAF 

 Mean ± SD (n = 3) Mean ± SD (n = 3) Mean ± SD (n = 3)  

1 328 ± 3.8 101± 3.5 182.5 ± 5.0 55.6 

2 111± 4.1 49.2 ± 4.3 63.6 ± 5.2 57.3 

3 652 ± 4.1 231.8± 3.9 347 ± 4.9   53.2 

4 543 ± 3.1 160 ± 2.5 217 ± 4.2 40.0 

5 511 ± 3.4 168 ± 2.4 328 ± 4.8 64.2 

6 189 ± 2.6 59.8 ± 4.6 98.7 ± 5.0 52.2 

7 635 ± 0.6 239 ± 3.0 323.6 ± 5.3 51.0 

8 469 ± 2.6 160 ± 5.4 214.3 ± 5.0 45.7 

9 351 ± 2.7 96.9 ± 2.4 139.2 ± 3.8 39.7 
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Appendix D 

Correlation graph between the pseudo total concentration and the single extractions 

(A) 
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(F) 
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Appendix E 

Plot of % BAF against % LOI for each of the PTE studied at St Anthony’s lead works 
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Appendix F 

Graphical relationship between traffic volume and pseudo total concentration of 

individual PTE in urban road dust of Newcastle upon Tyne 
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