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ABSTRACT 

A survey of the developments in the field of Computational Fluid Dynamics (CFD) is presented, the 

results of which are used to identify numerical methods capable of solving the equation sets that 

define the various categories of fluid flow and heat transfer that apply to air movement within 
buildings. The background to turbulence modelling is discussed together with the treatment of near- 

wall regions to which turbulence models are inapplicable. A further survey into the application of 
CFD methods to air movement within buildings is presented together with an appraisal of the 

success of these studies in terms of realistic modelling. From this survey it is concluded that there is 

a need to integrate surface radiation heat transfer methods within CFD procedures in order to 

provide a fully coupled model. 

The equation set describing advection, convection and conduction processes together with the k-c 

turbulence model are presented and the development of this equation set into the final mathematical 

model described. Details of the numerical procedure adopted for solution of the equation set are 

provided together with a general approach to the incorporation of radiation heat transfer within the 

same solution scheme. 

Shortwave and longwave radiation heat transfer processes in buildings are discussed and the 

geometric requirements for the numerical simulation of radiation process identified. A general 

numerical method for handling room geometry is presented together with a method for linking 

building surface and CFD grid geometries. A method for incorporating shortwave solar radiation 

together with an approximate method for longwave radiation within the CFD solution scheme is 

detailed, dispensing with the need for an involved iterative approach. 

A computer program has been developed from these mathematical models which is capable of 

solving coupled three-dimensional convection, conduction and radiation heat transfer processes. 
The program has been applied to a set of test cases for which data sets have been provided by the 

International Energy Agency. The results of simulation are compared with the measured data. 
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NOMENCLATURE 

A area of finite volume interface, TDMA coefficient, plane equation coefficient and 

surface area 

a coefficient of finite-difference equation and solar altitude 

B TDMA coefficient and plane equation coefficient 

b finite difference equation term containing grid point variable independent 

elements of source term 

C plane equation coefficient 

CP specific heat at constant pressure 

Cl, C2, C31 CD, Cµ constants of turbulence model 

D conductance and plane equation constant 

E Log-law constant (= 9.793) 

F flow rate and radiation view factor 

f interpolation factor 

fi friction vector 
G irradiation 

GB non-dimensional buoyancy parameter 

GK generation of turbulence energy 

g acceleration due to gravity (= 9.81 in / s2) 

gi gravitational vector (0, -g, 0) 

I radiation intensity 

J radiosity 

k turbulence kinetic energy (u'2 + v'2 + w'2) / 2) 

L characteristic width of calculation domain and length scale 

1 mixing length and length scale 

P pressure and shading factor 

Pe Pecletnumber (=puL/I) 

Q shortwave radiative flux 

q longwave radiative flux 

q" heat flux across a surface 

r radius and rotation matrix element 

R universal gas constant 

Re Reynolds number (= Uo L/ v) 

ReT turbulence Reynolds number (= k2 /v s) 
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Rf. flux Richardson number (_ - GB / GK ) 

S general source term 

Se grid point variable independent element of source term 

SP grid point variable dependent element of source term 

t translation matrix element 

T temperature 

T* non-dimensional heat flux temperature 

U, V, w mean velocity components in a, y and z directions 

u', v', w' fluctuating velocity components in x, y, z directions 

U; mean velocity components in Cartesian tensor notation 

U non-dimensional velocity in wall region (= U/U, ) 
A Ui pseudo-velocity components in Cartesian tensor notation 

U guessed velocity components in Cartesian tensor notation 
UZ friction velocity p)) 

u; ' fluctuating velocity components in Cartesian tensor notation 

v specific volume 

-p ui uil reynolds stresses 

-p uT turbulent heat fluxes 

y* non-dimensional distance from wall (= Ut y/ v) 

x, y, z directions of co-ordinate axes and Cartesian coordinates 

z solar azimuth 

a thermal diffusion coefficient, relaxation factor, azimuth angle and 

absorptivity 

ß coefficient of cubical expansion and elevation angle 

r diffusion coefficient 

AT reference temperature difference (= T- Tr) 

Ski Kronecker delta (= 1 if i=j; otherwise = 0) 
A 
V velocity scale 

au"' äu' 
6 dissipation rate of turbulence energy (= v at high Reynolds No. ) and 

emissivity 

rotation angle and spherical coordinate angle 

x Von Karman constant (= 0.4187) 

µ viscosity 

v kinematic vicosity 

p density and reflectivity 
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0 rotation angle 
Eanb summation of the six neighbouring grid point coefficients 
i 

II total pressure 

Prandtl number 

shear stress and transmissivity 

yf spherical coordinate angle 
df2� elemental solid angle 

Subscripts 

eff effective value 

max maximum value 
P value relating to grid node P, point in Cartesian coordinates 

r reference value 
t turbulent value 

w wall value 
dependent variable 

nb neighbouring coefficients 

Superscripts 

fluctuating component 
* non-dimensional value and value at previous iteration 
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1.0 INTRODUCTION 

1.1 Historical Developments - Building Energy Simulation 

Clarke [11 suggests that the evolution of building energy simulation may be perceived in the form of 

a series of model generations. 

a) First Generation 

Traditionally, building designers have relied on a series of discrete piecemeal calculations in an 

attempt to quantify building performance. The individual calculations are analytical and normally 
involve various simplifying assumptions in order to permit formulation. For example, simple heat 

loss calculation methods assume one dimensional steady heat flow through building elements, a 

situation which rarely, if ever, occurs in the real world. 

This approach does not attempt to simulate energy and mass flow paths that would occur in real 

buildings but rather provides the designer with an indication of building performance under peak 

conditions. The methods are therefore satisfactory for the estimate of peak building loads for the 

sizing of HVAC (Heating, Ventilating and Air Conditioning) systems but must be considered to 

provide doubtful accuracy in the assessment of part load building energy performance or the 

prediction of energy consumption. 

b) Second Generation 

In the wake of the 1973 oil embargo, initiative was provided to investigate the temporal aspects of 

energy flow, particularly in the case of long time constant elements (i.. e. thermally massive 

elements). 

The methods employed were still analytical and piecemeal in nature. Such methods included the 

convolution or response factor method, Mackey and Wright, 1944 [21; Stephenson and Mitalas, 1967 

[3] and the thermal admittance procedure, Millbank and Harrington-Lynn, 1974 [4]. 

Resulting model integrity remained relatively low due to inherent decoupling and the simplifying 

assumptions applied to the flow paths. 
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c) Third Generation 

As previously indicated, one of the major problems associated with modelling energy flow paths in 

buildings is the severe limitation imposed on the modelling method through the adoption of 

simplifying assumptions, which are necessitated in order to force a solution. Simplifying 

assumptions applied to the partial differential equations describing heat and mass transfer normally 

include equation linearity and uni-dimensionality, such assumptions strictly being quite unrealistic. 

In very recent times, the increasing accessibility of relatively powerful computers has enabled the 

application of advanced numerical methods to the solution of the fundamental defining equation sets 

for heat and mass transfer in buildings. Hence, severe equation non-linearity and multi- 

dimensionality could, in principle, be managed 

Using such methods, the building system is considered as a field problem, in which the only true 

independent variables are the space dimensions and time. All the other quantities (flux exchanges 

and state variables) are fully coupled and entirely dependent temporally and space-dimensionally 

throughout the building system. Thus model integrity can be raised substantially so that predictions 

simulate reality much more closely. 

Although the current generation of building energy models incorporate quite advanced treatments for 

coupled transient conduction and radiation heat transfer processes, advection and convection 

processes are still treated in a relatively simplistic fashion using empirical relationships. 

1.2 Computational Fluid Dynamics and the Prediction of Air Flows in Buildings 

A group of numerical methods capable of solving the partial differential equation set that describes 

three-dimensional laminar and turbulent convection processes has been made available through the 

field of Computational Fluid Dynamics (CFD). Over the last twenty years, several researchers have 

applied these methods to air flows in building spaces, some of these studies being described in 

Chapter 2. Whilst the results of these studies have indicated the considerable potential for CFD 

methods when applied to buildings, the computations involved assume that the thermal boundary 

conditions are known in advance. 

However, for most practical building spaces, the field problem comprises a conjugate heat transfer 

process whereby transient conduction through the confining solid elements (floors, walls, partitions, 

roof, windows, etc. ), convection-diffusion in the confined air volumes and shortwave/longwave inter- 

surface radiation exchange between windows, walls, etc. must all be considered with correct 
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matching at the fluid-solid interfaces. 

1.3 Primary Aims of the Study 

The existing state-of-the-art dynamic building thermal models such as ESP [5], BLAST [6] and 
TARP [7] are capable of modelling thermal boundary conditions to a high degree of accuracy. 
However, quite severe approximations are normally made in the calculation of convective heat 

transfer, simplified empirical convection models generally being employed. Conversely, the existing 
CFD codes which have been applied to building problems generally assume that the thermal 

boundary conditions may be prescribed in advance. 

It is the purpose of this study to: - 

a) Demonstrate the requirement and scope for a coupled convection-conduction-radiation 

model. 

b) Identify a potentially accurate method of predicting surface radiation heat transfer 

processes in buildings which may be incorporated directly within a CFD solution 

scheme, without the requirement for an involved iterative approach. 

c) Develop a fully coupled model capable of predicting turbulent convection, conduction 

and radiation heat transfer processes in single or multi-zone building spaces. 

d) Compare the coupled model predictions with measured data, provided by the 

International Energy Agency Annex 20. 

1.4 Outline of the Thesis 

Chapter 2 contains a review of developments in the field of Computational Fluid Dynamics, 

culminating in general numerical methods capable of solving the equations defining convection and 

conduction heat transfer processes. A review of turbulence modelling methods is also presented. 
Chapter 2 concludes with a discussion of the application of CFD to building air flows and building 

thermal modelling. The mathematical basis of the convection-conduction model is presented in 

Chapter 3 together with details of the numerical method employed to solve the defining equation set, 

this chapter also includes a detailed description of the k-c turbulence model. Chapter 4 reviews 

shortwave and longwave radiation modelling methodology and details the algorithms employed in 
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this study for the calculation of radiative heat exchange. A method for incorporating the solution for 

inter-surface longwave radiation exchange within the same solution scheme developed in Chapter 3 

for convection-diffusion processes is also presented. The resulting computer model predictions are 

then compared with the measured results, provided by Annex 20 of the International Energy Agency, 

in Chapter 5. Overall conclusions and recommendations for future work are provided in Chapter 6. 
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2.0 LITERATURE REVIEW 

2.1 Computational Fluid Dynamics 

Roache [8] suggests that the term Computational Fluid Dynamics (CFD) has arisen in order to 

distinguish a specific set of numerical solution procedures from the entire spectrum of general 

numerical methods applied to problems of fluid dynamics. These procedures generally involve the 

discretisation of the defining partial differential equations which describe the behaviour of various 

categories of fluid flow (i. e. conservation equations of mass, momentum and energy), through the 

sub-division of the flow domain into finite volumes, a numerical scheme is then employed to adjust 
the values of the required variables at each grid point until the various discretised conservation 

equations are satisfied. 

Although many significant contributions were made towards the evolution of CFD from the early 

part of the century onwards, such as the numerical solution of the partial differential equations for a 

viscous fluid dynamics problem by Thom in 1933 and Allen and Southwall's residual relaxation 

solution to the problem of viscous incompressible flow over cylinders in 1955 [5], research interests 

were first directed in earnest towards the development of such numerical methods during the mid- 
1960's when digital computers were beginning to appear with adequate processing capabilities to 

afford the very significant computational effort required. 

The majority of the pioneering work was conducted separately by the Mechanical Engineering 

Department of Imperial College, London (UK) and the Los Alamos Laboratories, New Mexico (US). 

The early methods employed by the Imperial College group used the stream function-vorticity 

procedure in which the pressure and velocity terms which appear in the defining equation set are 
displaced by the two quantities, stream function and vorticity. The method was brought into 

existence in 1966 by Runchal and Wolfshtein, using a relatively simple turbulence model, an account 

of the method is detailed in the book by Gosman, Pun, Runchal, Spalding and Wolfshtein [9]. 

One of the most significant features of the method developed by Runchal and Wolfshtein is the 

prescribed treatment for the convection terms. Previously, the numerical solution to the equations of 
fluid dynamics were seen to become quite unstable at high absolute values of Peclet No. 

( Pe = puLIF ), where the flow becomes dominated by convection, the reason for this being the highly 

non-linear relationship between the transported variable and the transport distance. The 

conventional finite difference approach employed by preliminary fonnulations makes the assumption 
that the convected property at the finite volume grid interface is the average of the downwind and 

upwind grid point values. The remedy proposed by Runchal and Wolfshtein is to leave the diffusion 
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terms unchanged but to allow the interface values of the convected properties to take on the upwind 

grid point values. This scheme is known as the 'upwind scheme' and was originally proposed 

independently by Courant Isaacson and Rees in 1952 [10). Various refinements to the way in which 

the convective terms are handled have been proposed since the upwind scheme came into existence, 

these include the 'exact' or 'exponential scheme' after Spalding [11], the 'hybrid scheme' again after 

Spalding[ Ill and the'power-law scheme' after Patankar 112]. 

The stream function vorticity method was widely used by researchers from the mid-1960's through to 

the mid-1970's. However, the method was primarily developed for the investigation of two- 

dimensional elliptical flow phenomena and was not readily extensible to three-dimensional elliptical 

flows or flows with pressure dependent densities and thus incentive was provided to develop a 

computational procedure with wider applicability than the stream function vorticity method 

6x_1 
2 

6x. 
12 

j-1 j-1/2 j j+1/2 j+1 

i+l T- - Q - 

6 yi+I/2 i+1 /2 ( 

Ay i 

I 
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1 

Figure 1- representation of pressure differentials in the finite volume grid 

One of the methods to be most widely used, emerging from the Los Alamos research, concerned an 

explicit solution to the 'primitive variable' form of the defining equation set, the so-called MAC 

I( arker-And-Cell) method, developed by Harlow and Welch in 1965 and described by Roache [8]. 

The 'primitive variable' approach introduces a significant problem to the solution scheme. The finite 

volume form of the integrated Navier-Stokes equations must contain a representation of the pressure 

term (-Max; ) integrated over the control volume. With reference to Figure 1, the resulting 

contribution to the discretised momentum equation may be seen to be Pj 
- 1/2 - Pl + 1/2, which is the 

net pressure force exerted on the control volume of unit cross-sectional area. In order to represent 

' -- 
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- 
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this difference in terms of grid point pressures, a piecewise-linear profile may be adopted for 

pressure. If the finite volume grid interfaces are chosen to lie midway between the respective grid 

points, the pressure difference becomes half of the difference between the adjacent grid point 

pressures. The implication of this is that the momentum equation contains pressure differences 

between alternative grid points rather than adjacent ones. Besides the problem that the pressure field 

is being extracted from a coarser grid than the other variables and the subsequent loss in accuracy, 

there is a much more profound problem in that a quite unrealistic 'zig-zag' pressure field could arise 

that would behave as a uniform pressure field to the momentum equations. The remedy proposed by 

Harlow and Welch is to use a secondary finite volume grid for the calculation and storage of the 

velocity components. In such a displaced or 'staggered grid, the velocity components are calculated 
for the points that lie on the interfaces of the finite volume grid cells. 

In order to obtain a method that enjoyed the applicability of the 'primitive variable' approach, 

coupled with the computational economy of the 'implicit' approach adopted by the stream function- 

vorticity procedure, effort was directed by Imperial College towards the development of a method 

that combined the two approaches. 

The first procedure to appear was the SIVA SIimultaneous-Variable-Adjustment) method. However, 

an improved method appeared very shortly afterwards and was indeed presented in the same 

publication as SIVA [13]. This improved method is known as the SIMPLE (Semi-Implicit-Method- 

for- Pressure-Linked-Equations) procedure and forms the basis of many of the codes in use at present 
in the UK, such as TEACH and CHAMPION [14]. The SIMPLE procedure has been refined 

somewhat in order to provide a less arbitrary method of arriving at the so-called 'guessed' pressure 
field, notably the SIMPLER procedure after Patankar [15] and the SIMPLEST procedure after 
Spalding [16]. It is the SIMPLER procedure that forms the basis of the numerical procedure 
described in this section. 

2.2 Turbulence Modelling 

Turbulence in fluid motion is characterised by fluctuating rotational eddies, the size and frequency of 

which vary considerably throughout the flow. The large eddies are of the same magnitude as the flow 

domain and are determined by the flow boundaries, the smaller high frequency eddies being 

determined by viscous forces. It is the large eddies that extract kinetic energy from the mean flow 

and pass this energy by vortex interaction (self-stretching of the vortices) between successively 

smaller eddies, until the energy is dissipated as heat through molecular viscous action at the smallest 

eddy sizes, this process being known as energy cascade, see Tennekes and Lumley[17]. Additionally, 
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where buoyancy forces are present, there may be an exchange between mean flow potential energy 

and turbulent kinetic energy. 

Because the large eddy motion interacts with the mean flow motion, it is highly anisotropic. 

However, at high Reynolds numbers, where the large scale eddies and small scale eddies are 

spectrally widely separated, the small scale motion loses directional dependence and becomes almost 

isotropic, this phenomonon is known as local isotropy and becomes highly significant when making 

turbulence modelling assumptions. 

The defining partial differential equations of fluid dynamics, described fully in Section 3.1 are 

theoretically applicable to both laminar and turbulent flows, assuming that the fluid is Newtonian. In 

order to accurately represent turbulent flows, the numerical finite volume grid size must be at least 

comparable in magnitude to the smallest eddy size, this may be estimated from dimensional analysis 

to be in the order of the Kolmogorov microscale ((v3/s)4), typically 10-2 - 10-3 in, see Tennekes and 

Lumley [171. A whole flow domain may extend over many metres when considering air flows in 

building spaces and thus the numerical finite volume grid would require such a vast number of grid 

points so as to extend far beyond the capabilities of current digital computers. Fortunately, interest 

in building air flows is concerned with the instantaneous mean quantities rather than the turbulent 

structure itself and thus a turbulence model approach may be adopted. 

The theory behind a turbulence model is to provide a set of differential equations, associated 

algebraic equations and constants, which when solved simultaneously with the continuity, Navier- 

Stokes and energy equations closely simulate the behaviour of real turbulent fluids. 

2.2.1 Eddy Viscosity/Diffusivity Models 

In turbulent flows, the instantaneous velocity (U) may be considered to comprise a mean component 
(U) and a fluctuating component (U ), U= -U +U'. If the velocity components in the partial 

differential equation set are replaced with this instantaneous velocity relationship, additional terns 

arise that represent turbulent stresses (so-called Reynolds' stresses) and turbulent heat flux, taking 

the form -p u'v' and, -p v'T respectively. 

The first major contribution towards the development of turbulence models was by Boussinesq in 

1877 [151, who introduced the eddy viscosity concept (turbulent shear stress, Tt = -p 
üv 

= µt , ay 

where ji is the turbulent or eddy viscosity). 
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Despite the identification of conceptual inconsistencies to the eddy viscosity concept (Rodi [19]), it 

has been found to work well in practice. This is mainly due to the fact that the eddy viscosity as 
defined can be determined to a good approximation in many flow situations. Rodi emphasises the 

A 
proportionality of eddy viscosity to a velocity scale (V) and a length scale (L) characterising the 

(large- scale) turbulent motion: - 

A 
µta VL Eq. 2.1 

Using the definition of eddy viscosity, the laminar diffusion coefficient appearing in the defining 

transport equations may be replaced with an effective diffusion coefficient, being the sum of the 

laminar and turbulent coefficients. 

This leaves the problem of closure, that is establishing a relationship that enables the calculation of 

the eddy viscosity and provides a closed set of equations. 

2.2.1.1 Constant Effective Viscosity Models 

Although not strictly correct, the use of a constant effective viscosity/diffusivity is sometimes referred 

to as a turbulence model. Because local turbulence is not modelled, this approach can only be 

justified where the flow is not significantly influenced by local turbulence effects. However, the 

constant effective viscosity approach has been applied with some success, e. g. Whittle [20]. 

2.2.1.2 Zero-Equation Models 

The simplest turbulence models are based on the so-called 'mixing length' hypothesis of Prandtl [211 

which allows the eddy viscosity µ,, to be calculated from the equation: - 

1-P12141 
Ilu Eq. 2.2 

where 1 is the 'mixing length', p is the local fluid density, u is the velocity in the main stream 
direction and y is the distance normal to that direction. However, this proposal to some extent 

replaces the question of 1h with that of 1, although 1 varies much less throughout the flow domain 

than ly. 

However, models that relate Ih directly to the mean velocity distribution must assume that there is no 

transport of turbulence either spatially or temporally and that turbulence is first generated and then 
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dissipated locally. Thus, for example in building air flow problems, where turbulence is generated by 

a diffuser and transported by the mean motion to a downstream location, if the mean velocity is 

uniform at that location, mixing length models would indicate zero turbulence. Additionally, the 

mixing length hypothesis is difficult to apply to recirculating flows where there is no single direction 

of dominant velocity gradient. Despite these drawbacks, this method has been widely used by 

researchers. One application of the method used in conjunction with the stream function-vorticity 

method is presented by Gosman, Pun et al. [9]. 

2.2.1.3 One-Equation Transport Models 

The problem of lack of universality associated with the mixing length hypothesis was to some extent 

alleviated with the introduction in 1945 of the Prandtl turbulence-energy model [22]. This model is 

based on the supposition that the eddy viscosity may be characterised by *ý[k (where k is the kinetic 

energy of turbulent motion per unit mass = (u'2 + v'2 + w'2 )/2 ) and the turbulence length scale 

1: - 

}it = Cý, pk 1/2 1 Eq. 2.3 

where Cµ is a constant, k being derived from a transport equation: - 

2 312 

Dt =div(Fgrad k)+Ih x, 
) 

+..... -CD 
ip 

Eq. 2.4 

CD is a constant and I must be a prescribed function, e. g.: - 

i 
_ýýýý y 

Eq. 2.5 

see Spalding [23]. The merit of this approach is the ability to model local turbulence effects through 

the convection and diffusion of k, although there is still the problem of prescribing 1. Equation 2.3 is 

sometimes known as the Kolmogorov-Prandti expression because it was independently introduced by 

Kolmogorov in 1942 [24]. 

2.2.1.4 Two-Equation Transport Models 

The Prandtl one-equation model was largely superseded by the emerging family of two equation 

models, where the k-equation is retained but the prescription for the length scale I is replaced with a 
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second turbulence quantity and an associated transport equation. The length scale equation taking 

the following fomi: - 

Z=kn'In Eq. 2.6 

The predominant two-equation models are the k-kl model described by Rodi and Spalding [251, the 

k-W model described by Spalding [231 and finally the k-n model which was originally proposed by 

Harlow and Nakayama in 1968 [271 and subsequently modified by Launder and Spalding in 1973 

[28J. 

The results of the models are similar and all exhibit the same form: - 

az+ az= a (tea 
)+C ZP-C z +S E 2.7 ät U. acX csZ ax. Zl kßLq 

where 

P= production by shear =-u; uj axi 

S= length scale variable dependent source term 

and 6z, CZ1 and C, 2 are empirical constants 

A correction to the source term S is usually required for near-wall situations, however experience 

(Rodi [191) has shown that this is not necessary for the c equation and for this reason, the k-s model 
has become the most generally used model. 

2.2.1.5 Reynolds Stress Models 

A central assumption made in the development of the one-equation and two-equation eddy viscosity 

models is that of an isotropic viscosity. In some cases, this assumption may be too crude; for example 
in recirculating flows with a high degree of swirl. This possibility has motivated the development of 

models in which the transport of constituent Reynolds stresses and scalar fluxes (- u1' uj' and - ui' 

) are modelled separately. An exact equation for - ui' uu' first being derived by Chou [29]. 

However, for general flows, the Reynolds stress model requires the solution of 10 partial differential 
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equations (6 components of Reynolds stress, 3 components of scalar flux and one equation for scalar 

fluctuations). The transport equations have therefore been simplified by dependent variable gradient 

approximations in order to replace differential equations with algebraic equations and thus reduce 

computational demands. Rodi [30] has assumed that the transport of - u; ' uff' is proportional to the 

transport of k, the resulting non-constant proportionality factor being - u; ' uu' /k. This approach is 

known as algebraic stress modelling 

A state-of-the-art review of Reynolds stress and algebraic stress models is presented by Launder [31]. 

Although showing significant potential for the future, these models are as yet largely untested and 

computationally very expensive and have consequently not yet achieved practical application. 

2.2.2 Subgrid Scale Modelling or Large Eddy Simulation (LES) 

A quite different approach to turbulence modelling has been adopted by Deardroff [32), whereby the 

spectral separation of large scale and small scale turbulent motion, exhibited at high Reynolds 

numbers, is exploited. The large scale motion, wliich is comparable in magnitude to the flow domain 

is resolved explicitly, whereas the isotropic small scale motion which cannot be resolved using the 

same grid size is modelled separately. 

However, the limited research to date, indicates that the method, while being theoretically promising 

is computationally extremely expensive, and has revealed no significant advantage over the 

considerably more computationally efficient two-equation models. 

2.2.3 Summary of Turbulence Models 

Although the constant effective viscosity model has been applied with some success [20], the 

inherent inability to model local turbulence and turbulence transport indicates the possibility of a 

severe lack of generality to this approach. 

The Prandtl mixing-length hypothesis [211 is however capable of local turbulence modelling and has 

been applied very successfully to a wide range of problems. However, it is unable to model the 

transport of turbulence and requires the specification of 1, which in some cases can prove very 
difficult indeed 

The introduction of one-equation models such as the Kolmogorov-Prandtl model [221 has enabled 

the transport of turbulence to be taken into account, however these models still require the 
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specification of a length scale and thus suffer from the same deficiency as the mixing-length models. 

Whilst the LES and Reynoldslalgebraic stress methods both show considerable potential for the 

future they are as yet largely untested and computationally very expensive, whereas the k-c two- 

equation model has been widely tested and shown to be reliable and computationally efficient under 

awide range of flow conditions (see Launder and Spalding [281). It is therefore the k-c model that 

has been selected as the preferred turbulence model for this study. 

2.2.4 Turbulence Modelling and the Near-Wall Region 

The k-s turbulence model is only valid for regions of fully turbulent flow and thus an alternative 

treatment is required to model fluxes of momentum and heat in near wall regions where the local 

Reynolds' number of turbulence is so small that the molecular viscous effects dominate over 

turbulent ones. 

The two methods of accounting for these regions in turbulence modelling are firstly the employment 

of wall functions and secondly the use of low-Reynolds-number turbulence models. 

Low Reynolds number modelling requires a high resolution finite volume grid to be associated with 

the near-wall regions and the adoption of an alternative pair of equations for k and u which enable 

molecular viscosities to exert influence as a solid boundary is approached. The wall function method 

is normally preferred for reasons of computational economy. The usual approach to the wall function 

method is to assume that the thin fluid layer adjacent to the solid boundary is a zone of local 

equilibrium where the shear stress and heat flux in that region are uniform and the universal 

logarithmic law of the wall applies, see Schlichting [34). 

This results in the following velocity profile: - 

Ü =KIn(Ey) Eq. 2.8 
z 

where Ut = friction velocity = (� / p) 

the log-law constants x and E are determined from experiment. 

When uniform shear stress prevails in the near-wall region and the generation and dissipation of 

energy are in balance, Ideriah [351 has shown that the following relationship prevails: - 
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, r«, =Tp=pC12k Eq. 2.9 

thus: - 

tP= pxC; ý'kpýUP/1n(Eyp) Eq. 2.10 

The dissipation rate ep near the wall is fixed by the requirement that the length scale varies linearly 

with distance from the wall, thus: - 

374 112 s /x 
p=Cµ P Yp Eq. 2.11 

Near-wall turbulence energy kp, is obtained from the direct solution of the k-equation (ref. 

Section 3.3), diffusion of energy to the wall being set to zero, in the absence of better information 

(see Launder and Spalding [28]). 

A similar analysis for heat flux yields a similar relationship (see Spalding [23J): - 

PUZCC(T- T)/ q 
w=6ý(Up+P{6/ßt}) Eq. 2.12 

where P {a / at} is a function of the ratio of laminar and turbulent Prandtl numbers, such as that 

based on the work of Jayatillaka [36] :- 

Pfa/at}=9.24{(a/aa)314 -1}{1 +0.28eV (-0.007a/at)} Eq. 2.13 

2.3 Comparison of CFD Predictions with Measured Results for Building Air Flows 

One of the first attempts to model air flows in a building space using a two-equation model of 

turbulence was made by Nielsen, 1974 [37] who applied a variation of the Runchal Wolfshtein 

stream function vorticity procedure to a two-dimensional representation of a mechanically ventilated 

room, the Launder and Spalding k-e model of turbulence was employed with no modification to 

include buoyancy generation and destruction terms. Very good agreement between predicted and 

experimental results was achieved. 

Zohrabian, Mokhtarzadeh-Dehghan and Reynolds, 1988 [381 applied the SIMPLE algorithm to t«"o- 

dimensional buoyancy driven flow in a stairwell. They concluded that the k-c model of turbulence 
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provided adequate results in terms of flow characteristics for both predicted velocities and heat 

transfer at the upper compartment of the stairwell when compared with the measured results. 

Jedrzejewska-Scibak and Lipinsld, 1985 [39] compared the results of a two-dimensional simulation 

of turbulent buoyant flows in an industrial hall with experimentally measured results and obtained 

satisfactory correlations. They concluded that despite the achievement of satisfactory correlations, 

there is a need for some degree of heuristic, experimental input. 

However, there have been relatively few studies comparing numerical predictions for three- 

dimensional non-isothermal recirculating flows with measured results in building spaces. These 

include works such as that of Hjertager and Magnussen, 1977 1401 who developed a computer code 
based on the Patankar and Spalding SIMPLE algorithm which they employed to predict temperature 

and velocity fields in a space with a high side-wall air supply diffuser and adjacent ceiling mounted 

extract grilles. This study again employed the Launder and Spalding k-c model of turbulence but 

without buoyancy modification, good agreement was achieved between predicted and experimental 

results for isothermal flows but not for buoyant flows. 

Sakamoto and Matsuo, 1980 [411 employed a variation of the Harlow and Welch MAC method to 

examine isothermal flow in a rectangular space with a. square ceiling mounted supply diffuser and a 
low side-wall extract grille, both a two equation model of turbulence and a more advanced 'large 

eddy' simulation procedure were used. Relatively good agreement was observed between their own 

experimental measurements of the velocity field and the predicted results, although there was some 
discrepancy in turbulence quantities. However, these discrepancies were exhibited by both turbulence 

modelling methods and the author's recommendation was to adopt the more computationally 

efficient two equation turbulence model. 

Gosman et al, 1980 [42] applied the TEACH code in conjunction with the k -r- turbulence model to 

an isothermal flow in a rectangular room with a square side-wall diffuser at high level and a low- 

level extract grille situated on the far wall. This code had the facility to incorporate empirical data 

concerning the inlet flow properties within the finite volume control cells surrounding the inlet, thus 

dispensing with the requirement for fine mesh resolution in the vicinity of the inlet. 

Chen Quingyan and Van Der Kooi, 1987 [431, have applied the PHOENICS [441 code and the 

CHAMPION [14] code in conjunction with the k-n turbulence model to a space equipped with both 

heating and mechanical cooling facilities, both facilities employing forced convection. The test space 

comprised a rectilinear room -siith a window complete with venetian blind located in one end wall 
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and two fan-coil units supplying pre-cooled air positioned beneath this window, warne air being 

supplied during the heating cycle from a diffuser located in the opposite wall, air extraction effected 

by two floor level extract grilles sited on the same wall as the warm air diffuser. A particularly 

interesting feature of this investigation was the simulation of transient response to a step input of 

heat flux to the venetian blind. Very good correlations were established between predicted and 

experimental measurements for both temperature and velocity distribution during the cooling cycle. 

However, some discrepancy was noticed between experimentally measured and predicted 

temperature distributions for the heating cycle, and from this they concluded that the wall functions 

for heat flux required improvement. 

Murakami et al, 1989 [49] obtained good correlation between experimental measurements and 

predicted results with the Launder and Spalding k-s model through the application of a variant of 

the MAC method to isothermal flow in a rectangular space with obstacles in the flow domain, air 
being supplied to the space by means of ceiling mounted rectangular diffusers and extracted by low- 

level side-wall extract grilles. 

Kurabuchi, Fang and Grot, 1989 [50] have also used a variant of the MAC method, in the form of 
their EXACT code, in conjunction with the k-c turbulence model to investigate isothermal flows in 

building spaces and have again obtained a good comparison between predicted and experimentally 

measured results. 

Haghighat, Jiang and Wang, 1989 [51] have applied a code based on the SIMPLE algorithm in 

conjunction with the k-s turbulence model to a partitioned room with an interconnecting doorway 

between the two resulting spaces. Air flow being buoyancy driven, induced by a temperature 
differential between the two end walls, the remaining walls, ceiling and floor being assumed to be 

well insulated. The conclusions of the study were that the air flow pattern was sensitive to the 
location of the partition and the size and location of the doorway in the partition. The rate of heat 

transfer between the two spaces although being sensitive to door height and location was found not 
to be sensitive to partition location. Good agreement was obtained between measured and simulated 
Nusselt numbers. 

Haghighat et al, 1992 [45] have developed the Concordia code, again based on the SIMPLE 

algorithm incorporating the Launder and Spalding k-c turbulence model. They have attempted to 

validate the code using experimental data obtained for a typical office space. They concluded that, in 

general, satisfactory agreement was achieved between measured and simulated Nusselt numbers 
throughout the flow domain. 
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Ohira and Omari, 1996 [46] applied a code based on a variant of the SIMPLE algorithm employing 

the k-s turbulence model to a problem involving the venting of gas water heater flue gases into a 

centralised apartment block courtyard. They compared the predicted results with measured results 

and concluded that the CFD predictions were reasonably accurate. 

2.4 Application of CFD to Building Thermal Modelling 

Chen Quingyan, 1989 [52] has used the PHOENICS [44] code and the CHAMPION [14] code in 

conjunction with the k-s turbulence model to predict a number of air flow distributions for various 
forced convection boundary conditions in typical office type spaces. The resulting velocity 
distributions are stored in a database and made available to a room energy balance program 

ACCURACY. The ACCURACY program employs z-transfer function techniques to calculate 

transient heat conduction through the building fabric, simplified analytical techniques being 

employed in the treatment of shortwave and longwave radiation processes. 

One of the conclusions of the study was that the accuracy of energy prediction for forced convection 

problems in offices where temperature differentials occur may be improved considerably through the 

use of CFD techniques. 

A central assumption made in the technique adopted by Chen Quingyan is that the velocity field 

changes only very slightly with time if the supply air flow rate is maintained constant. This 

assumption allows a number of velocity fields to be calculated in advance for various boundary 

conditions (inlet mass, internal gains, etc. ). The room energy balance program may then select an 

appropriate velocity field for the given boundary conditions and subsequently solve the energy 

equation (see Chapter 3) for temperature, calculating the energy equation convection coefficients 
from the pre-calculated velocities. This assumption will not be valid for flows involving a significant 

degree of natural convection, where the transient velocity field is being determined by the thermal 

boundary conditions. 

Holmes, Lam, Ruddick and Whittle [531 have coupled a two-dimensional thermal model, R2D2 with 

a CFD code AIRFLO. The thermal model employs the radiosity concept for the calculation of inter- 

surface radiation exchange and due to the simple geometry of the building space involved, analytical 

radiation view factors are adopted for parallel and orthogonal planes. The model calculates transient 

heat conduction through the building fabric using an explicit finite difference algorithm. The CFD 

code uses a pressure coupled formulation for the solution of the momentum equations and the 
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'hybrid' differencing scheme (see Section 3.3.3) for the calculation of convection-diffusion 

coefficients. 

Coupling between the thermal model and the CFD code was achieved through the surface convection 

coefficients which were derived from recommendations made by the Chartered Institute of Building 

Services Engineers 154]. 

The test case for the study comprised a rectilinear office space supplied with heated air by a ceiling 

mounted air diffuser, the temperature of the supply air being controlled by feedback from a sensor 
located at the return air grille, the grille itself being located near the floor level. 

The thermal model and CFD code were run in both sequential and fully coupled mode. Holmes et al. 

concluded that the fully coupled simulation resulted in an oscillatory air flow pattern which indicated 

an instability in the control of the supply air temperature, this characteristic of the problem was not 

predicted through sequential operation of the codes. 

Havet, Blay and Veyrat, 1994 [47] have coupled a thermal model with a CFD code using an iterative 

procedure in order to investigate air flow and temperature distribution within a large enclosure 
heated by radiant panels. The method involved the calculation of surface convective heat transfer 

coefficients using a CFD code followed by the calculation of surface temperatures using the 

calculated convection coefficients in conjunction with the thermal model. The calculated surface 

temperatures are then passed back to the CFD code and this process is continued until convergence is 

achieved. They concluded that the flow pattern was dependent on the location of the radiant panel 

and that the wall and mean air temperatures were insensitive to panel location. 

Gan, 1995 [48] has combined a CFD code based on the SIMPLE algorithm with a radiosity model 

using an iterative approach. The resulting code was applied to a typical office space under winter 
heating and summer cooling modes. Gan concluded that the inclusion of a radiation model is 

necessary in order to obtain a satisfactory evaluation of thermal comfort. 

There are commercial codes available including CFX, supplied by AEA Technology Engineering 

Software; PHOENICS, supplied by Concentration Heat and Momentum Limited and FLOW3D, 

supplied by Computational Fluid Dynamics Solutions which include facilities for radiation 

modelling. These facilities are generally based on the flux and zone methods described by Spalding 

[161 as opposed to a fully coupled model. 
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2.5 Conclusions 

a) A summary of the developments in the field of Computational Fluid Dynamics (CFD) has been 

presented. It has been demonstrated that these developments have culminated in a set of numerical 

procedures (SIMPLE, SIMPLER and SIMPLEST) that are capable of solving the equation set 
defining transient three-dimensional advection, convection and conduction heat transfer processes in 

buildings. 

b) The main characteristics of turbulent flow have been discussed and the interpretation of turbulent 

flow variables in terns of mean components and fluctuating components has been presented. Various 

methods of turbulence modelling have been discussed, ranging frone the simplest constant effective 

viscosity models to the very complex Reynolds stress and large eddy simulation techniques. It has 

been concluded that a good compromise between modelling rigour and computational efficiency is 

offered by the two-equation family of models, adopting the Boussinesq eddy viscosity concept. The k- 

u model is the preferred two-equation model due to the fact that it requires no modification for near- 

wall flows and that it is the most widely used and tested model. 

c) It has been shown that an adequate number of investigations have been conducted into three 

dimensional turbulent isothermal air flows in building spaces [40] [41] [42] [43][45][46][49][50][5 11 

in order to establish that the Launder and Spalding k-s turbulence model can provide very good 

correlations between experimentally measured and predicted velocity fields for this type of problem. 

d) It appears that little research has been conducted into the validity of the k-s turbulence model and 

wall function method when applied to three-dimensional turbulent buoyant flows in building spaces. 
The investigation conducted by Hjertager and Magnussen [40] produced poor correlations between 

predicted and measured results for buoyant flows although the version of the k-e model employed 
had no modification to include buoyancy generation and destruction terms. Quingyan and Van Der 

Kooi [43] concluded from the results of their investigation into buoyant flows that the existing wall 
function methods require improvement. 

e) The limited research conducted into the coupling of building thermal models with CFD codes 
[47][48][52][53][54] has indicated the potential for improving the range of applicability of 
independent CFD and thermal codes and the potential for the inclusion of a radiation model [48], 

although no attempt has been made to produce a universally applicable fully coupled three- 
dimensional model. 
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3.0 ADVECTION, CONVECTION AND CONDUCTION PROCESSES 

In all practical building spaces, the field problem comprises a conjugate heat transfer process in 

which conduction in the confining solid elements (floors, walls, partitions, roof, etc. ) and 

convection-diffusion in the confined air volumes must be considered with correct matching at the 

fluid-solid interfaces. 

Adopting a conventional approach to the solution for transient heat conduction in solid regions 
(finite difference, response factor, etc. ) in conjunction with a separate solution scheme for the fluid 

regions would either lead to severe approximations or an involved iterative procedure for matching 

the interface conditions. 

This section describes the development of a single solution scheme for conjugate convection- 

conduction heat transfer processes throughout the calculation domain. Additionally, a detailed 

description of the k-c turbulence model is included. 

Methods for handling air infiltration processes and casual convective heat gains arising from 

occupants, lighting and equipment are also discussed and a general approach to the inclusion of 

surface radiative heat exchange is described, the approach being further developed in Chapter 4. 

3.1 Mathematical Basis 

3.1.1 The Dependent Variable Equation Set 

The processes of fluid flow and heat transfer are governed by the principles of conservation of mass, 

momentum and energy. These principles may be expressed in the form of a series of partial 
differential equations. The equations are presented using Cartesian-Tensor notation. 

The mass conservation or continuity equation takes the following form: - 

22 +)= at OX; 
Eq. 3.1 

When considering building air flows, the velocities are normally so low that we may consider the 

flow to be incompressible in which case the continuity equation reduces to: - 

aui 
Eq. 3.2 
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The general equations describing conservation of momentum are sometimes referred to as the 

Navier-Stokes equations, derivations of which are described by Schlichting [34], et al. A compact 
form of the momentum conservation equations may be expressed as follows: - 

at(Pui)+ 
j 

jPuju; +pSij -µC + 
, 
-! CKK6ij]}=g; -f; Eq. 3.3 

where 

0- -lu 

a 5. a.; 

and therefore 

ei; 1; =2ä =2ka +o+oi) 
auw 

Sid is the Kronecker delta: - 

ISij =1; i=j 

N =0; i# 1 

Again, assuming incompressible flow, the general momentum conservation equation reduces to: - 

(P U; )+X1{Puj ui +PS; ß-µä +auil =g; -fl Eq. 3.4 

where g; = body force and fj = friction force 

Expanding this equation into the three velocity components and assuming negligible friction force: - 

aaa au au 
at &ý axi 

ý Pu)+ Puju)= u4Jý+9-) - +gx Eq. 3.5 

ýP V) + 
axi P ui v) =[t+ a3')] ay + gy Eq. 3.6 

(pw)+ p1ýtiv)= 
a1), 

+ 
}] 

} Eq. 3.7 
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The g terms in the momentum equations express the temperature dependent gravitational effect, i. e. 

buoyancy effect which is manifest in the V-component momentum conservation equation and may be 

described by the following term: - 

g(P1- P) E9.3.8 

The Boussinesq approximation is employed, which assumes the instantaneous temperature 

dependent properties of the fluid (density, molecular viscosity, etc. ) to be invariant throughout the 

calculation domain with the exception of the buoyancy term where the local density is derived from 

an equation of state: - 

Pv=RT Eq. 3.9 

If specific heat capacity is assumed invariant throughout the flow domain and independent of 

temperature throughout the range experienced and that kinetic heating and chemical reaction is 

absent, temperature may be considered a conserved property and the energy equation becomes: - 

p T)+ puýT)= 
-(F, 

j'ýT +ST Eq. 3.10 

where ST = volumetric rate of heat generation 

3.1.2 The k-c Turbulence Model 

If the substitution of U; +U' is made for U in the Navier-Stokes equations, the resulting time- 

averaged form of the equation results: - 

-(P u; ) { aXj P uj ui +p sij -9ä 
ýh au- 

ä'3 eI{ICsij 

g; - fi p'ui, (p uj)'u; ' Eq. 3.11 axi 

Usually 
2 

-( p' u; ) is neglected on the grounds that fluctuations in p' and U; are uncorrelated. The 

quantities (p uj)'ui are known as the Reynolds stresses. 

Similarly, the energy equation may be transformed into the following time-averaged form of the 
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equation: - 

17 -7 0P 
T)+a P uj 

cý ]}= 
ST'äiPui)'T' Eq. 3.12 

Where 
ä 

(p ui)' T' is the turbulent heat flux. 

For general flow situations, the Boussinesq eddy viscosity concept may be expressed as: - 

11-1 Eq. 3.13 

The second term in Eq. 3.13 is necessary to make the expression applicable also to normal stresses 

(when i =j), i. e. both sides will be equal to twice the kinetic energy of the fluctuating motion when a 

summation of normal stress is taken, see Rodi [19]. Similarly an eddy thermal diiiusivity may be 

defined: - 

7T 
_(puj)'T' =rt(ax. Eq. 3.14 

Where I't is the turbulent diffusivity. Like the eddy viscosity, r is not a fluid property but depends 

on the state of turbulence. In fact, the Reynolds analogy between thermal transport and momentum 

transport suggests that f is closely related to µt , (Ft = p1 / 6t). 

Adopting the same assumptions as in Section 3.2.1, applying the eddy viscosity concept, and 

omitting the overscore convention for time-averaging, the time averaged momentum equation 

becomes: - 

(pu) +ä (pu; ui)= -ä + 
(au. 

+ Ir-g; Eq. 3.15 at xi 

Where II = total pressure =p+3k 

and the time averaged energy equation takes the form: - 

at , 
P'1)+ Tx. (Pui T) 

a (cc 
+ä a 

}+ST 
Eq. 3.16 
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The equation for the transport of turbulence energy k can be derived in exact form from the Navier- 

Stokes equation, and is given as follows: - 

ök ök öö ru' u' p- öýu 
+ u; a_-a uj 'lý 2'+ p) 

+v- 
i- 

uý uI' aý -ßg; u; 6' - 

I--------II----------------III-----------------------IV-------V---------------VI--------------- 

axy 
VII 

in which the various teens represent the following: - 

I - Rate of change 
II - Convection 

III - Turbulent diffusion 

IV - Molecular diffusion 

V - Production by shear (GK) 

VI - Buoyant production/destruction (GB) 

VII - Viscous dissipation (s) 

Eq. 3.17 

Certain assumptions concerning unknown correlations must be made before the transport equation 

can practically form part of the turbulence model. The turbulent diffusion flux of k is normally 

assumed to be proportional to the gradient of k: - 

ß, 
(u3 u;, Pl 

_ 
vL äk 

l2 +P) 
6kaXi 

Eq. 3.18 

where at is an empirical diffusion constant. The production by shear is approximated as follo«s: - 

11 -ui... GK 
}+, 

=-u; uj `t ax; aX a 
CU- Eq. 3.19 

The buoyant production/destruction term is modelled using the gradient approximation: - 

. =Rý 
ae GB=-pg; u; 8 

at axi 
Eq. 3.20 
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where at is the turbulent Prandtl No. 

The transport equation fork then becomes: - 

ok 
+u 

ok 
+v ok + `t 

räßu 
+ 

5u'\ aýu 
+ pg. vt a9 

Eq. 3.21 
&a axj 

I(ßk 
at lay; a. a at ax; 

An exact form of the equation for the rate of dissipation of turbulence energy may also be derived 

from the Navier-Stokes equation and is given as follows: - 

aE a% a' au' Va' aýu; t a2E + 'ý any =- axk uk a. k aXk 'P aX; ax, OX1 + OXk2 
I---------II----------III---------------------------------------------------- 

. 
ý2" au au� aw 1 UL au;, 2v 2v 
öXk ÖXl ÖXI i, 

ýii öXk ÖXkÖX1 k öx1 

IV 

2v axk ax, '9X1 -2 alkaxl g; u; 6 

V---------------------VI-------- VII------- Eq. 3.22 

in which the various terms represent the following: - 

I - Rate of change 

II - Convection 

III - Diffusion 

IV - Generation by the mean motion 

V - Generation due to vortex stretching 

VI - Destruction due to viscous action 

VII - Buoyancy production/destruction 

The production terms due to mean motion are omitted from the model form of the equation because 

they tend to be less important when the Reynolds No. is large and local turbulence structure becomes 

nearly isotropic, see Tennekes and Lumley [ 17]. 

The diffusion terms are modelled as in the k-equation, adopting the gradient diffusion assumption: - 
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a N. 1 auLý va' au., alp a aý 
-v-uk-'---`-----'-+ z -- 

f( 
+ v) 

1 
Eq. 3.23 axk aak axk P a.; aa, aXt axk aYl l 6c ax; 

where 6E is an empirical diffusion coefficient. 

The terms describing generation due to vortex stretching and dissipation due to viscous action must 
be modelled as a difference rather than the terms themselves, see Rodi [55]. The most widely used 

approximation for these terms is given as follows: - 

z 
9 

Eq. 3.24 - 2v k1ä-2v aakä., 
=k (CAP - C20 

where C1 and C2 are empirical constants and P is production by shear. 

Using a similar approach to that adopted for the k-equation, the buoyancy term could be modelled 

simply by replacing P with GK + GB, however several numerical experiments to date have led to 

some controversy concerning the definition of a generally applicable coefficient for GB, Rodi [19] 

has suggested that subsequent to replacing P with GK + GB, the Cl coefficient should be 

supplemented with another coefficient being a function of the flux Richardson number (R1= - GB! 

Gk): - 

(IC1 (GK + GB) (1 + C3R£)] - C28} Eq. 3.25 k (CI P- Ces) =E 

where 

=-= ßg; GB 3g; U 6' `v 00 
Eq. 3.26 ax. 

However no universally valid correction has been identified and Rodi [56] suggests that a reasonable 
first approximation is to set Rf=0, which is valid for vertical buoyant shear layers anyway. A 

common practice is to include a C3 coefficient with the buoyancy term, and to adjust the value of the 

coefficient depending on the particular problem, i. e.: - 

Eq. 3.27 k(C1P-C2)=k(Cl GK-Ces+C3 GB) 
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Thus, the resulting model form of the s-equation takes the following form: - 

G% as ö 

et + ui -öxj - öxj D+ V) 1 Lg. ö>ý 

+uL 2ni 
k 
r- I C1V 

(ö 

öaý - Ces + C3ßg; ßt Eq. 3.28 
Dxij 

Using the eddy viscosity concept i. e. vt a VL, the velocity scale V is defined as and the length 
ý�z 

scale L is defined as Cµk k where CL is an empirical constant, thus the eddy viscosity is derived 

from the following relationship: - 

Ih = Cup 
k2 
E Eq. 3.29 

A closed set of equations is thus provided for the turbulence model. 

3.1.3 The Final Model Equation Set 

The complete k-c turbulence model together with the recommended empirical constants are 

presented as follows: - 

3.1.3.1 Conservation Equations for the Time-Averaged Variables 

- Pu, )+ýxiiPui u; )_ -ax+ 
äj (µ+F1. )C x+ä 

)} 
-g; Eq. 3.30 

where II =p+2k 

ä PZi + (P uj T) _ia+äý+ ST Eq. 3.31 

3.1.3.2 Eddy Viscosity 

Nt=C 
k2 

µP e 
Eq. 3.32 
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3.1.3.3 Conservation Equations for Turbulence Kinetic Energy and its Dissipation Rate 

äk äk av ok au; au) &- (I v oA 
+U--= - +v + +ý*7 + (3gi -_- Eq. 3.33 

6t a. at 1 aa;; a.; k a. i 

CAE 1- U- -h= et axi D 
a 

k {cIv 
la+ 

a_-1 
- CZS + C3ßg; 

ä} 
Eq. 3.34 

3.1.3.4 Empirical Constants 

Values for the empirical constants are those recommended by Launder et al. and presented by 

Launder and Spalding [28]: - 

C C C, 6 6 C 

0.09 1.44 1.92 1.0 1.3 1.0 

3.2 The Numerical Procedure 

General procedures for the numerical solution of the defining equation set are presented by Patankar 

[15] and Spalding [16] and two of these procedures are now summarised. 

3.2.1 The General Differential Equation 

Spalding [16] observes that the conservation equations for the time-averaged dependent variables 

and the turbulence kinetic energy and dissipation rate may be expressed in the form of a general 
differential equation: - 

(Pý) + K, (P 9 ý) =ä r& + s+ Eq. 3.35 

where 4 may be any of the dependent variables (velocity components, temperature) or one of the 

turbulence quantities (turbulence kinetic energy k, or dissipation rate e ), F is the diffusion 

coefficient for the prominent diffusion term and Sý is the source term which accounts for all other 

remaining terms in the dependent variable and turbulence equations. 
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The basis of the numerical method is to integrate the general differential equation over a series of 
discrete volumes into which the flow domain is divided, the source terms of the resulting set of 

discretised equations are then linearised in order to derive a set of linear algebraic equations that 

may be solved using a variety of numerical solution methods. 

3.2.2 The Finite Difference Form of the General Differential Equation 

The flow domain is first sub-divided into finite volumes, grid points being located at the geometric 

centres of these volumes, see Figure 2. 

L 6"; /2 ax; +, iz 

f I 
j-1 j-1/2 j j+1/2 j+1 

6Yi+I/2 1+1/2 

i G- 

1 

--(D 

11/2 6 Y, _, /2 

Figure 2- X-Y section of the finite volume grid for dependent variables 

For the purpose of clarity, the development of the numerical method is initially described using the 

two-dimensional, steady-state form of the equation set: - 

(Puh) + (P vwä rO aa, 
ý 

+ýr ay) } SO Eq. 3.36 

Additionally, the finite volume grid is assumed to comprise equal sized volumes throughout the flow 

domain, although the procedure actually adopted will allow non-uniform grids and this will be 

discussed later. 

4 
1 ý1 1 

32 



The general differential equation may be integrated over the control volume shown in Figure 2, i. e. 

AX x AY x 1: - 

,+ "n j+, n ddaaaa fi-1/2 

Jj- 

1/2 ax ay axký Mx) oyv ay) 

r1 j+11z(ä) e3' - r; j 1i2(ä) AY +r; +1i2j(ä) ex - r; 
_, ýjI 

ýýJ 
et - 

i+1/2 i-1/2 

(Pu4) i j+1/2 Ay + (Pu4) i j-1/2 AY - (PO) i+1/2 j AX + (P"4) i-1/2j Ax + 

, +iiz rj+in 
S didy=0 Eq. 3.37 Si-11 

"j-1/z 

If a piecewise linear profile is adopted for the spatial derivatives: - 

r11, (41 -4 )' y r; , 1'7o ,) AY rj4-�-l " o4, -4 ;) AX 
83; +1i2 s 

-in 
8Y, +1i2 

r; _, ß, j (4 ;4 ; _, ) ex 
S3, - (Pu4) i j+1/2 Ay + (Puh) i j-1/2 Ay - (Pv4) i+1/2 j AX + 

, v2 

(Pv4) i-112 j Ax + '+ 1n j+1/2 S dr dy =0 Eq. 3.38 
-f i-1M 

fI-1! 

2 

The integral f"+ 1/2 ; +, n S dx dy =0 is evaluated to S Ax Ay where S is the average value of S 
J;. in 

ýi-ia 

over the control volume. In order to account for the fact that S may be a function of 4) , the S term 

may be expressed as: - 

S =SC+Sp4p Eq. 3.39 

Equation 3.38 may be simplified through the introduction of two variables, the convection coefficient 

C and the diffusion coefficient D. The convection and diffusion coefficients for the i j+1/2 interface 

in Figure 2 would be: - 

Di j+l/2 - Ay 
1/2 

y Eq. 3.40 

C; j+1/2 = (Pu) ij+112 Ay Eq. 3.41 
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Incorporating these coefficients in the finite difference equation results in the following: - 

Di j+1/2 (ýi j+l - 4) - Di j+1/2 (ýi j+l - 4) + Di+1/2 j %+1 j- ýi jý - Di-1/2 j Oi j+1 - ýi-1 j 
Ci j+l/2 ýi j+l/2 + Ci j-1/2 4i j-1/2 - Ci+112 j 4i+1/2 j+ Ci-1/2 j 4i-1/2j+ S Ax iy =0 

Eq. 3.42 

3.2.3 Treatment of the Combined Convection-Diffusion Coefficients 

If a strict central difference scheme was adopted, the control volume interface values of 4 would be 

approximated by a linear interpolation, e. g.: - 

4j+1/2 
- 

(4 j+ý j+1 )/2 Eq. 3.43 

assuming that the interface lies midway between the grid points. The final discretised equation 

would then take the following form: - 

aij4; j=aij+112ýij+l+aij-1124ij-1+a1+112j4i+1j+ai-112jýi-1j+ S Ax Ay Eq. 3.44 

where, 

ai j+1/2 = Di j+112 - C+112/2 

aij-1/2=Dij-1/2 + Cij-1/2/2 

ai+1/2j=Di+1/2j - Ci+1/2j/2 

ai-1r2j=Di_1/2j + Ci_112j/2 

ai j= ai j+1/2 + ai j-1/2 + ai+1/2 j+ ai-1/2 j+ (Ci j+1/2 - Ci j-1/2 - Ci+1/2 j- Ci-1/2 ) 

It is noted at this point that in order to provide a physically realistic scheme, in the absence of a 

source term, the grid point coefficient must be equal to the sum of the neighbour coefficients, i. e.: - 

a, j - Eanb Eq. 3.45 

This may be appreciated by considering a situation in the absence of convection when the discretised 

equation would appear thus: - 

8ijýij=Dij+1/2+ij+1 +Dij-1/24 ij-IýDý112 jýi+1 j+Di-1/2jýi-lj Eq. 3.46 
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In this case, if the neighbour values of 4 were to be increased by an arbitrary constant K, the grid 

point value must also increase by K and the only way of ensuring this is to make the grid point 

coefficient equal to the sum of the neighbour coefficients. 

Similarly, in order to ensure that the grid point values increase or decrease as the neighbour grid 

point values, the coefficients must be of the same sign and thus a convention is adopted to ensure 

that the coefficients are always positive. 

For this reason, at high absolute values of Peclet No., when C exceeds 2D, there is a possibility that 

the grid point neighbour coefficients could become negative whilst the grid point coefficient is 

positive resulting in a physically unrealistic scheme, and indeed a numerically unstable one. 

A solution to this problem, originally proposed by Courant Isaacson and Rees [10], is to adopt the 

upwind scheme, whereby the interface value of 4 takes on the value at the upwind grid point, i. e.: - 

4ij+l/2=4ij Cij+l/2> 0; 

4i j+1/2 = tj+1+ Ci j+1/2 < 0; 
1 

This scheme may be represented in the following 'pseudo-code' form: - 

Ci j+112 ýi j+1/2 = max(Ci j+112,0) 4i j- max(-Ci j+112,0) ýi j+1 Eq. 3.47 

Equation 3.44 may then be modified to include this new formula for convective flux: - 

a. j 4jj =a1j+1i2ýij+i+a1 1/2 ij-l+a; +1i2j ýi+ij +ai-ii2j ýj-1j+ S Ax Ay Eq. 3.48 

where, 

air+1n = Dig+1i2 + max(-Cij+112,0) 

a112=D112 + MaX(Cij-1/2,0) 

ai+1/2 j= Di+1/2 j+ max(-Ci+1/2 j, O) 

ai-1/2 j= Di-1/2 j+ max(Ci-1/2 j, 0) 

a1= ai j+1/2 + ai j-1/2 + ai+1/2 j+ ai-1/2 j+ (Ci j+1/2 - Ci j-1/2 - Ci+1/2 j- Ci-1/2 j) 

It will be noticed that the grid point coefficient will only be equal to the suns of the neighbour 
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coefficients when the continuity equation is satisfied, this may be ensured by combining the 

discretised dependent variable equation with the discretised form of the continuity equation. 

The two-dimensional continuity equation takes the following form: - 

19(p V) a(p U) 
=0 Eq. 3.49 ax ay 

This may be integrated over the control volume shown in Figure 2: - 

Ci j+1/2 - Ci j-1/2 - Ci+1/2 j- Ci-1/2 j=0 Eq. 3.50 

where C is as defined in Section 3.3.2. 

Eq. 3.50 is now multiplied through by 4 and then subtracted from the discretised form of the general 

differential equation (Eq. 3.48): - 

ajjýjj=ail+112ßi1+1+a; 1-1n$jj-1+a, +1i2jýi+1)+ai-1i2jýi-1j}b Eq. 3.51 

where, 

ai j+1/2 = Di j+1/2 + max(-Ci j+1/2,0) 

a112 = Di j-1/2 + max(Ci j-112,0) 

ai+1/2 j= Di+1/2 j+ max(-Ci+1/2 j> 0) 

ai-1/2 j= Di-1/2 j+ max(Ci-1/2 j, 0) 

aij=aij+1/2+aij-1/2+ai+1/2j+ai-1/2j -S PAX 
Ay 

b=S Ax Ay 

3.2.4 Alternative Combined Convection-Diffusion Coefficient Schemes 

Considering the one-dimensional form of the general differential equation (Eq. 3.48), without 
sources: - 

öx(Puý)-ön 
r 

0' 
Eq. 3.52 

Assuming rý to be constant and adopting the following boundary conditions for the domain 
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0<x<L: - 

4=x=01 

ý=ýL; x=LJ} 

the solution to Eq. 3.52 is shown by Patankar [15] to be: - 

exlXPx/L)-1 (P = Peclet No. ) Eq. 3.53 
ýL - ýO exp(P)-1 

This solution is presented graphically in Figure 3. It will be noticed that the upwind scheme is only 

correct for large values of IPI. 

In order to provide a differencing scheme which is equally applicable to low P values as well as high 

P values, various schemes have been proposed, including the exponential and hybrid schemes after 

Spalding [16], and the power-law scheme after Patankar [15]. 

Figure 3- exact solution to one-dimensional convection-diffusion problem 

Patankar [15] proposes a method whereby the various schemes may be expressed as functions of 
Peclet number in the formulae for the discretised equation coefficients, e. g.: - 

air+in = D>>+1,2 f(P) + (-Ci j+vv 0) Eq. 3.54 

where f(P) is the function of Peclet number which represents the particular combined convection- 
difusion scheme: - 
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Central difference 1-0.5 1 PI 

Upwind 1 
Hybrid max (0,1 - 0.5 IPI) 

Power Law max(0, (1 - 0.1 IPI)5) 

Exponential IPI / [exp( IPI) 
-1] 

3.2.5 Inclusion of the Unsteady Term 

Returning to the unsteady forni of the general differential equation: - 

ä PO + (p uj 4) = axjý rýäx) + Sý Eq. 3.55 

and assuming that the grid point value of 4 is constant throughout the control volume indicated in 

Figure 2, the temporal derivative may be integrated over the control volume as follows: - 

i+ 1/2 Jj+in ft+dtdxchi=pAx 
Ay (4pI - 4p) Eq. 3.56 

t 
Jj112 

i-1n 

where dpi indicates the future time row value of 4i and bP indicates the current time row value of 4 

If it is assumed that the grid point values of 4 are a weighted average of the current and future time 

row values, subsequent to rearrangement of the terms in accordance with the procedure outlined in 

Sections 3.2.1 - 3.2.3, we arrive at the following: - 

ai j4i j= ai j+112 [f41 i j+1 + (1-f) 4°i j+1] + ai j-112 tfý1 ij-1 + (1-f) 4°i j-i1 + 

a1+112 j [41 i+1 j+ (1-f) A+1 jl+ ai-1/2 j P1 i-1 j+ (1-f) 4°i-1 j] + 

[a°i j- (1-f) ai j+v2 - (1-f) ai j-112 - (1-f) ai+112 j- (1-1) ai-112 jl 4°i j Eq. 3.57 

where f is the weighting factor. 

As noted by Patankar [15], unless the weighting factor f is taken to be 1.0 (i. e. a fully implicit 

scheme where the grid point values take on the future time row values), the coefficient of ý% may at 

times become negative thus leading to a physically unrealistic scheme (see Section 3.2.3). Thus the 

fully implicit scheme becomes the preferred scheme and the final unsteady three-dimensional 
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discretised equation set may be presented as follows: - 

aij0ijk=aij+1/2k4ij+1k+aij-1/20ij-1k+ai+1/2jOi+ljk+ai-1/2jOi-1jk+ 

aijk+1/2ýijk+1+aijk-1/24ijk-i+b Eq. 3.58 

where, 

ai j+1n k= Di j+v2 kf(Pi j+112 k) + max(-Ci j+112 k' O) 

ai j-112 k= Di j-1/2 k f(Pi j-112 k) + niax(Ci j-112 k' 0) 

ai+Ir2 jk= Di+112 jk f(Pi +I/2 j k)+ max(-Ci+112 j k, 0) 

ai-, 12jk=Di-112jkf(pi-112jk)+ (Ci-112jk' 0» 

ai j k+112 = D. j k+112 f(Pi j k+1/2)+ may'(-Ci j k+1/2' 0) 

ai j k-1/2 = Di j k-I/2 f(pi j k-1/2)+ max(Ci j k-1/2> 0) 

a°ijk=pAx Ay Az /At 

aijk=aij+1/2k+aij-1/2k+ai+1/2jk+ai-1! 2jk +aijk+1/2+aijk-lt2 +a°ijk-SpOx iyAz 

b= SCAx Ay Az+a°ijk 4°ijk 

3.2.6 Representation of the Momentum Equation Pressure Terms - the Staggered Gri d 

The pressure term -3I11Öx (II = total pressure) appears as one of the momentum equation source 

terms (ref. Section 3.2). When the pressure term is integrated over the control volume shown in 

Figure 2, the resulting contribution to, say, the U-momentum equation is IIij_1i2 - nip+ii2 " If a linear 

interpolation practice is employed, this term becomes: - 

(II-j_1 + II1j)/2 - (flu + II;, +, )i2 = (II; j_1 - Illy+l)/2 Eq. 3.59 

thus, the pressure differentials are established from alternate grid point pressures rather than 

adjacent ones, this practice can lead to a serious numerical problem whereby a 'zig-zag' pressure 
field would behave as a uniform field, as illustrated in Figure 4. 

fl=100 fl=200 n=loo fl=200 
i, j-1 i'1 i, j+1 i, j+2 

00 -0- 

Figure 4 -'zig-zag' pressure field 
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A similar problem arises in the construction of the discretised continuity equation. Harlow and 

Welch [571 proposed a remedy for this problem which is to adopt staggered grids for the velocity 

components as illustrated in Figure 5. 

Using this procedure, pressure differentials for the momentum equations are extracted from adjacent 

grid points and the discretised continuity equation similarly may be constructed from adjacent grid 

point velocity components. 

Figure 5- staggered grid for velocity components 

Note - velocities for velocity component control volume interface flow rates are derived from 

interpolations as indeed are diffusion coefficients for scalar grid control volume interfaces and 

certain velocity component control volume interfaces, see Section 3.3.9. 

3.2.7 Derivation of the Unknown Pressure Field - the SIMPLE AI oý rithm 

As noted in Section 3.3.5, the pressure term forms one of the momentum equation source terms, 

however there is no equation as such from which the pressure field may be derived. In order to 

develop a method of deriving this unknown pressure field, the pressure term is extracted from the 

source term and integrated separately. The basis of the SIMPLE algorithm is to represent the 

pressures and velocities in terms of 'guessed' values and corrections and to cast the discretised 

continuity equation into the form of a pressure correction equation, i. e.: - 
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II=II*+H Eq. 3.60 

u=u`+u Eq. 3.61 

the discretised U-momentum equation derived generally in Section 3.2 may be represented as: - 

ai j+112 ui j+112 =E aýbub +b+ A(IIij - IIij+I) Eq. 3.62 

where 

anbu, tb = ai j+112 ui j+l + ai j-1/2 u ij-1 + ai+1/2 j ui+1 j+ ai-1/2 j ui-1 j 

and 

A=AyxI 

and in terms of guessed velocities and pressures: - 

ai j+1/2 U*i j+1/2 =E anbu*nb +b+ A(II`i j- II`i j+1) Eq. 3.63 

If Eq 3.63 is subtracted from Eq 3.62 the velocity correction equation results: - 

aij+1/2u1ij+1/2=1anbunb+A(f1ij-rl1ij+l) Eq. 3.64 

At this point, the SIMPLE procedure dispenses with the E af, bu 
nh term, in order to procure a 

manageable pressure correction equation of a similar form to the discretised general differential 

equation and thus open to the same solution techniques. Detailed discussion of the motivation behind 

this approximation is given by Patankar [I5], however in summary, the pressure correction equation 

may be perceived to be an intermediate algorithm that has no effect on the final solution assuming 

that convergence is achieved, this is due to the fact that the pressure correction equation is not 

actually required during the final iteration. It is due to the omission of these neighbouring velocity 

corrections that the algorithm is called a'Semi-Implicit'method 

The velocity correction equations now become: - 

11 

uij+1/2 =dj+1/2(Hij "11 ij+1) Eq. 3.65 
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or 

Ui j+1/2 Ui j+112 + di j+1/2(r i j- fl'i j+l) Eq. 3.66 

where 

dy j+1/2 y AIai 
j+1/2 

The two-dimensional continuity equation takes the form: - 

a(P 
+ 

a- 
=0 Eq. 3.67 

ö,: äy 

Integrating the continuity equation over the control volume shown in Figure 2 results in the 

following discretised form of the equation: - 

I(PU)i j+1/2 - (Pu)i j-1121 Ay + [(PV)i+112 j- (Pv)i-1/2 j] AY =0 Eq. 3.68 

The velocity components in the discretised continuity equation are now replaced with velocity 

correction equations, which results in the following pressure correction equation: - 

1111t 

a13 a1+112 nij+i+a; j-v2n1j-l+ai+112jni+I j+a1-, /2j II; -lj 
+b Eq. 3.69 

where 

ai j+v2 Pi j+1/2 di j+1/2 Ay 

aij-1/2 = Pij-1/2 "ýj-1/2 
Ay 

ai+1/2 j= Pi+1/2 j di+1/2 j AX 

ai 
-1/2j 

= Pi-1/2j d, 
-1/2j 

Ax 

b= [(Pu )i j-1/2 - (Pu*)i j+1/2l Ay + [(Py*)i-1/2 j- (PV*)i+1/2 jl Ax 

The pressure correction equation completes the equation set required to calculate the flow field 

variables. 
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3.2.8 The SIMPLER Algorithm 

The SIMPLE algorithm has been modified and provided with a less arbitrary method of establishing 
the pressure field, the revised algorithm is called SIMPLE(R)evised, after Patankar [15]. The 

pressure field in SIMPLER is derived from a very similar equation to the pressure correction 

equation employed by SIMPLE, with the significant exception that no approximations are introduced 

in the derivation of the equation, which may be described as follows: - 

The momentum equation is first arranged in the following form: - 

a, º, ý, h u, j+1/2 
E+ba. 

iý. 
+ d+112(1l ij -11kij+1) Eq. 3.70 

+1/2 

a 'pseudo-velocity' may then be defined: - 

AE ___+b E 3.71 Uij+1/2 - all+v2 

Thus the momentum equation becomes: - 

ui j+1/2 = ui j+1/2 + di j+l/2(rl 
#i 

j- rl ;i 
j+, ) Eq. 3.72 

This equation has a very similar form to the velocity correction equation (Eq. 3.66). Thus, in a 

similar fashion to that employed in the derivation of the pressure correction equation, the pseudo- 

velocity equations are substituted into the discretised continuity equation, resulting in the following 

pressure equation: - 

ai jnf ,= ai j+ti2 nfi j+t + ai j-1/2 nti j-i + aº+v2 j nfi+i j+ ai-1/2 j fii-t j Eq. 3.73 

where 

ai j+1/2 = Pi j+1/2 di j+1/2 Ay 

aij-1/2 = Pij-1/2 cý-j-1/2 Ay 

ai+1/2 j= Pi+1/2 j +1/2 j 
Ax 

a112 j= pi-1/2j di-1/2 
j Ax 

nnnn b= [(P u)i j-1/2 - (P u)i j+1/21 Ay + [(P V)i-1/2 j- (P'')i+1/2 j] Ax 
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The SIMPLER algorithm may then be represented in the form of the flow chart presented in Figure 

6. 
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3.2.9 Solution of the Finite Volume Discretised Ectuation Set 

The equation set is solved using a line-by-line method incorporating the Tri-Diagonal-Matrix- 

Algorithm. 

3.2.9.1 The Tri-Diagonal-Matrix-Algorithm (TDMA) and the Line-By-Line Method 

This method is perhaps best described by initial consideration of a one-dimensional problem, in 

which case the discretised equation set has the following form: - 

aj 4j = aj+112 4j+i + aj-112 4j. 1 +b Eq. 3.77 

and in matrix form: - 

a1 a2 41 b1 
a1 a2 a3 42 b2 

a2 a3 a4 ý3 = b3 

a3 a4 as 44 b4 

a4 as 45 b5 

It is this characteristic form of the three matrix diagonals that gives the TDMA its name. 

For the purpose of describing the algorithm, the equations are represented using the following 

convention: - 

aiýi=bi4it1 + ciýi-1+dj Eq. 3.78 

The boundary equations have a special form whereby either the boundary value of 4) is known, or is 

not required (e. g. specification of a flux), thus al =0 and a2 is therefore known in terms of a3. 

Because a2 may be expressed in terms of a3, a3 may correspondingly be expressed in terms of a4 and 

ultimately an may be expressed in terms of an+l. 

This may be put into the form of the following algorithm: - 

4=A., 41+j + B1 

and thus 

Eq. 3.79 
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ýi-1 = Ai-14i + B-. 1 Eq. 3.80 

Substituting Eq. 3.80 in Eq. 3.78: 

ai 4i = bi 4i+t + ci(Ai_1 ýi + Bi_1) + di Eq. 3.81 

Referring to Eq. 3.79, the coefficients A, and Bi may be expressed in terms of A; 
_I and B. 

_1: 

bE3 
82 A. 

a; _c, A; 
_1 

q.. 

+ c" B"- 
B; = Eq. 3.83 

a; - c; A; 
-1 

At the starting boundary, c; =0 (Eq. 3.78), thus: 

A= Eq. 3.84 

B1 =, Eq. 3.85 

Equations 3.82 and 3.83 may then be employed until node n-1 is encountered, at that point, b,, = 0 

and thus AI, = 0, and from Eq. 3.79 ¢n =B. From this point, back substitution of A; and Bi in 

Eq. 3.79 may be conducted, thus allowing 41 to be derived. 

The TDMA may be applied to a two-dimensional situation as follovºs: - 
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i+3 0 0 + 0 0 0 

i+2 0 0 + 0 
.0 

0 

i+1 0 0 + 0 0 0 

0 0 + 0 0 0 

i-2 0 0 + 0 0 0 

j-2 j-1 j j+1 j+2 j+3 

o o + o 0 0 

0 0 + o .o 0 

0 0 + o 0 0 

o o + o 0 0 

0 0 + o 0 0 

0 0 + 0 0 0 

Figure 7 -'line-by-line' method 

Referring to the crossed grid points in Figure 7, an iterative technique is employed whereby the grid 

point values of the lines adjacent to the line being solved are taken to be the previous iteration 

values. In this way, the TDMA is swept across successive lines throughout the calculation domain 

until convergence is achieved for all grid point values. 

In the three-dimensional situation, successive planes are solved throughout one of the dimensions, 

e. g. the X-Y plane may be solved along the Z-dimension in successive sweeps. In a similar fashion to 

the two-dimensional problem, grid point values for planes adjacent to the plane being solved are 

taken to be the previous iteration values. 

3.2.10 The Non-Uniform Cartesian Grid 

Although the numerical procedure described in this section is applicable to general orthogonal 

curvilinear coordinate systems, the additional calculations required for various distances, areas and 

volumes require a substantial effort. Thus, despite the economies offered in terms of computer 

storage requirements, a regular Cartesian system has been adopted due to ease of problem definition 

coupled with computational economy, Figure 8 indicates the convention adopted for the principal 

axes of the coordinate system in relation to the origin of the calculation domain. 
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Y 

Z 

0,0,0 

X 

Figure 8- origin of finite volume domain in relation to principal axes of coordinate system 

In order to cater for geometrically irregular calculation domains, control volumes may be made 

equivalent to solid volumes using the procedure detailed in section 3.4. Using this method, quite 

complex geometries may be represented, although obviously curved and angled surfaces must be 

represented by a series of rectilinear bodies and correspondingly the finer the mesh, the more 

accurate this representation becomes. 

Again, for reasons of computational economy, it is desirable to use a fairly coarse grid where the ¢- 

x variation is gradual and to use a fine grid where there are steep ý-x gradients or in order to 

represent the geometric features of air terminal devices, flow path obstructions, sloping surfaces, etc. 
This is achieved through the employment of a non-uniform grid 

In order to derive control volume interface flow rates and conductances, an appropriate interpolation 

scheme must be adopted: - 

Referring to Figure 9: - 

Interpolation factor, f= 
1/2 
s +vz 

Eq. 3.86 
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Axt Axt+i 

j j+1 
o0 

dx 
j+1 

Figure 9- interpolation scheme 

3.2.10.1 Interface Velocities - Linear Interpolation 

The interpolation method employed is a conventional linear interpolation, i. e.: - 

4j+1/2 =f 4j + (1"f) ýj+l 

3.2.10.2 Interface Diffusion Coefficient (F) - Harmonic Interpolation 

Eq. 3.87 

The interpolation method adopted for interface diffusion coefficients is that described by Patankar 

[15] whereby an appropriate interpolation may be derived by considering the interface flax which is 

to be represented: - 

rj+t/2 «j - ýj+d 
Eq. 3.88 

Xj+l/2 

The appropriate expression for I'j+, /2 is the one that reproduces the required Jj+ii2, i. e.: - 

'j+1/2 - (1/2Axj)/r'j + (1/20xj+1)Jj+1 Eq. 3.89 

This equation is now combined with the interpolation factor: - 

rj+1/2 (ir)f 
- Eq. 3.90 

j+1 
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This practice is known as harmonic interpolation. 

3.2.11 Convergence and the Iterative Procedure 

Non-linearities and equation interlinkages are dealt with through the iterative nature of the scheme, 
however the existence of severe non-linearities and strong interlinkages can lead to instabilities in 

the solution scheme. In order to alleviate such problems, the method of underrelaxation is adopted 

whereby the dependent variables at each iteration take on a certain percentage of the previous 
iteration values. 

If the current iteration grid point value of the dependent variable is calculated to be 4P and the 

previous iteration value is 4P`, then the current iteration value is derived from: - 

cep =gyp` +a (gyp - ýpý) (a < 1.0] Eq. 3.91 

where a is the underrelaxation factor. By using very small values of a (0.1), only very slow changes 
in ý are allowed. 

Where significant buoyancy effects occur, considerable underrelaxation may be required due to the 

conventional de-coupling of the energy/momentum equations. In order to improve the convergence 

of strongly buoyant flows, more appropriate methods of energy/momentum equation coupling have 

been sought. One method proposed by Galpin and Raithby [581 involves a Newton-Raphson 

linearisation of the discretised equation coefficients, however the improvement in convergence 

characteristics appears offset by the additional computational requirements and the method has 

therefore not been implemented in this procedure. 

During each iteration, the iterative solution of each of the discretised equation sets is only taken to a 

partial state of convergence by defining the number of passes made by the solver. At the end of the 

solver routine, residuals are calculated for each of the grid point variables. Convergence is deemed to 

have been achieved when the absolute values of all of the dependent variable residuals are less than a 

specified tolerance. The residuals are determined as follows: - 

R=lanb4nb+b-ap p Eq. 3.92 
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3.3 Boundary Conditions and Sources 

3.3.1 Shear Stress at the Wall Boundary 

As noted in Section 2.2.4, in the near-wall region, the turbulence Reynolds number, ReT decreases 

to a point where molecular viscosity influences the production, destruction and diffusion of 

turbulence energy and thus the transport equations for k and c become inapplicable and an 

alternative method for modelling shear stress must be applied. For the purpose of computational 

efficiency, the procedure being described employs the wall function method whereby the thin fluid 

layer adjacent to the wall is assumed to be in a state of local equilibrium in which the shear stress is 

uniform and the log law of the wall may be applied, resulting in a velocity profile of the following 

form: - 

U#=KIn(Ey) 

where 

U`=U/U, 

U =T «](PCµ1/4 
k112) 

Y* = pClt 1/4 k1/2y/µLAAf 

Eq. 3.93 

the log-law constants x and E are empirically derived, e. g. the values employed by Ideriah [33], 

based on the work of Patel, x=0.4187 and E=9.793. 

An alternative method which is favoured by several researchers [48][42][43] is the 'power-law' 

method whereby the velocity profile adjacent to a wall is approximated to a power-law profile: 

uL = 

ýS\n 

Both the above methods have been employed in this study. 
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3.3.2 Heat Flux at the Wall Boundary 

Although specification of heat flux at the wall boundary presents no problem, a specified wall 
boundary temperature must be transformed to a wall heat flux in a similar fashion to the prescription 

of wall shear stress. The conventional approach is to apply a one-dimensional Couette flow analysis 

to the equilibrium near-wall layer, which results in a similar relationship to the velocity profile 

relationship: - 

T`=6t (Us+P[a /at}) Eq. 3.94 

where T is a dimensionless quantity that represents the resistance of the wall layer to heat transfer. 

The most widely adopted P function is that proposed by Jayatillaka [361: - 

Pfa /at}=9.24{(a/ai)3/4 -1}{1 +0.28cxp(-0.007a/at)} Eq. 3.95 

However, this method has been shown to underestimate wall heat fluxes [43][50] and therefore an 

alternative ad hoc treatment using empirical relationships has been adopted for the purpose of this 

study. 

Empirical relationships for the specification of surface heat transfer coefficients are based on the so- 

called 'dimensionless' numbers, the relationships taking the following form: - 

Nu =C Ren Pc Eq. 3.96 

where C, m and n are constants determined from experimental data. 

The relationship adopted for the purpose of this study is that resulting from the work of McAdams 

{59]. The relationship was derived for parallel flow over copper plates at a reference temperature of 
21.1 degrees Centigrade: - 

h, =5.678La+b( 
V )n] 

0.3048 

where 

he = surface convection coefficient (W m'2 K71) 

V= parallel flow velocity (m s'1) 

Eq. 3.97 
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a, b and n are constants determined from experimental data. Values of these constants for rough 

walls are as follows: - 

a=1.09 
b=0.23 v<4.88ms-' Eq. 3.98 

n=1.00 

a=0.00 
b=0.53 4.88 m s-1 <v< 30.48 m s'1 Eq. 3.99 

n=0.71 

The velocity term may be adjusted for temperatures other than 21.1 degrees Centigrade using the 

following relationship: - 

284.26 V 
VO _ (273.16 + 9m) Eq. 3.100 

3.3.3 Turbulence Kinetic Energy k and the Rate of Dissipation of Turbulence Kinetic Energy s in the 

Near-Wall Region 

In the absence of better information, diffusion of turbulence kinetic energy to the wall is set to zero, 

see Launder and Spalding [28]: - 

ök 
ox1=0 Eq. 3.101 

The length scale in the near-wall region is presumed proportional to the distance from the wall , see 
Launder and Spalding [28]: - 

Eý v= 
CIt 314k,, Eq. 3.102 

Additionally, the source term Gk, employed in the equations for both turbulence kinetic energy and 

the dissipation rate of turbulence kinetic energy, is modified in order that the velocity gradients 

parallel to the wall may be extracted from the wall shear stress. 
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3.3.4 Inflow Conditions 

Velocities: specified 

Temperatures: specified 

Turbulence kinetic energy, k: specified 

Dissipation of turbulence kinetic energy, c: specified 

Values fork and s are taken from Kurabuchi, Fang, and Grot [501: - 

For a straight duct end or a nozzle type jet: 

k=0.01 -0.03 U02 1=0.05 -0.25 Lo 

For a radial diffuser: 

k=0.05 -0.15 U02 1=0.01 -0.02L0 

where 

Uo = Area averaged inflow velocity 

Lo = Representative length of intake 

E= Cµ k3/2/I 

3.3.5 

3.3.6 

Outflow Conditions 

Velocities: specified 

Temperatures: =0 Ox, 

Turbulence kinetic energy: =0 ax, 

Dissipation of turbulence kinetic energy: =0 

Air Supply/Extract and Infiltration Processes - the Pressure and Pressure Correction Equations 

In the case of building air flow problems, the boundary pressures are usually unknown but the 
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normal velocities at the boundary are known (normally zero) or may be*specified. Thus, the pressure 

and pressure correction equations may be modified for the near-wall situation, whereby the normal 
boundary velocities are incorporated directly into the equations rather than using the velocity 

correction or pseudo-velocity formulae, consequently the boundary pressures are not required.. 

For problems where all pressure/pressure correction equation boundary conditions are defined in 

terms of normal velocities, the calculated values of pressure will be relative to each other because 

there is no reference pressure. Where absolute values of pressure are required or pressure itself is to 

be employed as the boundary condition, the appropriate grid point pressures are set equal to the 

required values. The pressure correction at those grid points is then set to zero and the 

pressure/pressure correction equations are solved for the remaining cells. 

Where infiltration processes are considered critical, a two-tier process may be adopted in order to 

determine the correct boundary conditions for the pressure/pressure correction equations. Air flow 

around the building may be calculated first by defining the building as an enclosure type polyhedron 

(see section 4.1.1) and employing the appropriate wind direction and mean wind velocity as the 

boundary conditions. From this initial calculation, surface pressures may be derived which are used 

as the pressure boundary conditions for a more refined building model. 

3.3.7 Casual Convective Heat Gains from Occupants. Lighting and Equipment 

A significant amount of heat is generated in buildings by artificial lighting, miscellaneous equipment 

(computers, typewriters, etc. ) and the occupants themselves. Casual heat gains may be introduced to 

the energy equation directly, by means of the energy equation volumetric source term: - 

at(PT) + (p 9 . 1ý = 
ýý (a 

+6I+ ST Eq. 3.103 

where ST = volumetric rate of heat generation 

With a knowledge of the control cells volumes, the appropriate volumetric rate of heat generation 

may be specified for any given location, thus enabling the correct net heat gain to be introduced to 

the energy equations for the relevant cells. 

3.3.8 Shortwave Radiation - Solar Gain 

Shortwave radiation may be introduced to the energy equation in a similar manner to casual 
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convective heat gain. Having established the instantaneous net surface flux arising from solar heat 

gain, this may be included in the volumetric source term of the appropriate cells by first converting it 

into a volumetric flux. Refer to Chapter 4 for a more detailed description. 

3.3.9 Incorporation of Longwave Radiative Heat Exchange Within the EnerEquation Source Term 

Longwave radiative flux may be incorporated within the finite volume cell energy equation source 

terms in a similar fashion to casual heat gains. However, the dependence of the source term on the 

cell temperature T may be exploited in terms of convergence characteristics (i. e. improved 

convergence) through a suitable linearisation. As previously noted in Section 3.2.2, the source term 

S may be expressed as SC + SP4 in order to account for the fact that S may be a function of 4). 

Patankar [151 suggests that the optimum source term linearisation is the one that makes the straight 

line S= SC + Sp4p a tangent to the S-4) curve. If a smaller magnitude of Sp is employed, this results 

in a low estimate of the decrease in S with an increase in 4), whereas too large a magnitude results in 

prolonged convergence due to excessive underrelaxation. 

Thus, a source term having the general form S=A- B' may be linearised as follows: - 

S=S+ 
as 

Io- #) Eq. 3.104 

where S` is the previous iteration value of S. 

Therefore, 

s=A-Bý`°-nBý'-1 (4- , s) 

Extracting the variable dependent component of this expression: - 

SP = -nB4'""1 Eq. 3.105 

and 

Sc =A+ Bý*I' (n - 1) Eq. 3.106 

Thus, expressions for radiative flux which contain fourth powers may be linearised using this 

procedure prior to inclusion within the energy equation source temis. 
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3.4 Heat Conduction Through Solid Re pions 

An important component of heat transfer processes in buildings is transient heat conduction into and 

out of external walls and internal partitions. Under transient conditions, the rate of heat transfer will 
depend on incident solar radiation, incident longwave radiation and time variant adjacent air 

temperatures. 

Transient three-dimensional heat conduction through solids may be described by the Fourier 

equation: - 

ö2T ö2 T 

a at 2X2 + 
ßy2 

+Z Eq. 3.107 

or in Cartesian-Tensor notation: - 

at aa. °` ä) Eq. 3.108 
i 

It will be noticed that Eq. 3.108 is a contraction of the time-averaged energy equation under zero 

velocity conditions: - 

Pý+ý (Pujý=ýXý 
Ca+6} 

Eq. 3.109 

Thus, the calculation domain may be extended over both fluid and solid regions comprising the 

internal air spaces, internal partitions and external walls. When solving the momentum equations for 

control volumes in the solid regions, the grid point coefficients may be set equal to a very large 

number which will ensure that the velocities become of negligible value. Subsequently, when solving 

the energy equation, the diffusion coefficients for the fluid domain may be derived from the 

laminar/turbulent viscosities (using the Reynolds analogy), whilst the diffusion coefficients for the 

solid domain may be derived from the thermophysical properties of the appropriate material. The 

problem may then be solved as a convection-conduction problem throughout the calculation domain, 

however velocities and therefore Peclet numbers are set to zero in the solid regions and the time 

averaged energy equation becomes equivalent to the Fourier equation. Heat flux at the fluid/solid 

interface is derived from a wall function (see Section 3.3.2). 
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3.5 Conclusions 

a) The partial differential equation set describing advection, convection and conduction processes, 
incorporating the k-c turbulence model transport equations has been presented and the development 

of these equations into the final mathematical model has been described- Details of the numerical 

technique SIMPLER used to solve the defining equation set have been provided 

b) Methods for prescribing the thermal, momentum and turbulence boundary conditions have been 

described. A general method for incorporating radiation heat exchange within the same solution 

scheme as developed for advection, convection and conduction processes has also been presented. 

c) A method for handling transient three-dimensional heat conduction in solid regions, using the same 

numerical procedure as for fluid regions has been discussed and the convenience of this scheme 
demonstrated 

d) A general method for incorporating radiation heat exchange within the same solution scheme as 
developed for advection, convection and conduction processes has also been presented. 
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4.0 SHORTWAVE AND LONGWAVE RADIATION PROCESSES 

The preceding chapter has demonstrated a numerical method for the calculation of transient 

turbulent advection, convection and conduction heat transfer in buildings, through the discretisation 

of the three-dimensional forms of the mass, momentum and energy equations. It has also been 

demonstrated that radiative heat flux may be incorporated within the energy equation source terms, 

in the form of a volumetric flux. This chapter considers a detailed treatment of shortwave and 
longwave radiation heat transfer in buildings, the derivation of net surface radiative flux and the 

transformation of this surface flux into a volumetric flux for incorporation within the finite volume 

solution scheme. 

In the context of this study, longwave radiation refers to the thermal electromagnetic radiation 

emitted by a surface as a result of its temperature. Shortwave radiation is also a form of thermal 

radiation although having a particular wavelength distribution (between approximately 0.21im and 
2.2µm). 

This chapter should be read in conjunction with Appendix I which provides details of the various 

geometric procedures referred to throughout. 

4.1 Geometrical Considerations 

Radiation heat transfer processes in buildings are generally planar surface phenomena. Thus, a 

method must be adopted that will enable planar polygonal surfaces to be defined and manipulated 

within the same Cartesian coordinate system as the finite volume scheme described in Chapter 3. 

The method adopted for this study is commonly used in the field of computer graphics and has been 

described by Mortenson [61]. The method involves the definition of a planar polyhedron in terms of 

the coordinates of the vertices bounding each polygonal surface. Thus, a list of vertex coordinates 

may be established for each polyhedron and subsequently a list of vertex sequences defining closed 
loops of edges bounding the faces may be generated- Figure 10 illustrates the description of a 

polyhedron using this method Note that a last-to-first edge is implied in the surface vertex 

sequences. 

Having established an ordered vertex sequence for the surfaces comprising a polyhedron, various 

surface quantities may subsequently be derived. Considering any of the constituent polygons 
illustrated in Figure 10, the polygon area may be derived from an algebraic trapezoidal summation 
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(see Foley and Van Dam [62]): - 

AREA = (XP2 _}. y, 2 + ZP2 )1/2 

where 

n 
Xp = (zi yj - yi zj) 

i=1 

n 
yp= E (xizj - zixj) 

i=1 

n 
zp = y- (yicj-x. yj) 

i=1 

j=i+1; i<n 

j=1; i=n 

n= number of vertices 

Eq. 4.1 

10.6,5 

10,6,0 VERTEX LIST 

0,6,5 No. Coordinates 

1 0,0,0 
, 6,0 2 10,0,0 

3 10,0,5 
4 0.0.5 

10,0,5 5 0,6,0 
6 10.6,0 
7 10,6,5 

10,0,0 8 0.6,5 

0,0, 
SURFACE UST 

Y 
0,0,0 No. Vertex Sequence 

11265 Z 22376 
33487 
44158 
55678 
64321 

X 

Figure 10 - ordered vertex description of polyhedra 

For angular transformations that are required for various geometrical surface operations, the 

orientation of each polygonal surface is required. Surface orientation is defined using the normal 

convention of azimuth (a) and elevation (ß) angles. Here the azimuth angle is defined as the 

clockwise angle between a projection of an outward facing surface normal onto the X-Z plane and 

the principal Z-axis of the finite volume Cartesian coordinate system (see Figure 9). Similarly, the 

elevation angle is defined as the angle between an outward facing normal to the surface and the X-Z 
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plane. Azimuth and elevation angles, as defined (for anti-clockwise surface vertex sequences) are 

illustrated in Figure 11 and may be derived from the following expressions,: - 

r a. p =tanl(xx/zp); -zp #0 

0. =-90; zp =0 andxp 0 

ap=0; zp=0andxp0 

ap=90; zp=0 andxp>0 

(3P=ian7' [yp/(xp2+zp2)1/21; xp2+zp2 40 

ßp = -90; X, 2 + zp2 =0 and yp <0 
ßp = 0; xP2 + zp2 =0 and yp =0 

ßp=90; X, 2+zß, 2=0 and yp >0 

where x p, yp and zp are as defined above 

UP 

WEST NORTH 

ß 

EAST 
SOUTH 

Figure 11 - azimuth and elevation angles 

4.1.1 Surface Polyhedron 'Types 

As already noted, the outward facing normal to a surface may be made to point in the opposite 

direction by reversing the surface vertex sequence. Thus, external surface polyhedra and internal 
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surface polyhedra may be defined simply by adopting a bounding vertex sequence convention; anti- 

clock-%vise for surfaces pointing outwards from the polyhedron and clockwise for inward facing 

surfaces. Using this convention, various polyhedron types may be established in order to enable 

accurate calculation of radiative heat exchange in addition to facilitating the definition of the finite 

volume domain boundaries and associated thermophysical properties. The various polyhedron types 

are illustrated in Figure 12 and described as follows: - 

4.1.1.1 External polyhedra 

Used to define external building surfaces in order to account for external insolation and heat transfer 

with the external environment. 

4.1.1.2 Internal polyhedra 

Used to define internal building surfaces in order to account for internal radiative exchanges and to 
define internal zonal boundaries. 

4.1.1.3 Interface polte 

Polyhedra that are nested between external and internal polyhedra in order to define multi-layered 

constructions and therefore have no exposed surfaces. Interface polyhedra have the same vertex 
ordering as external polyhedra by convention, in order to ensure the correct surface matching for the 
identification of connections (see Section 4.1.3). 

4.1.1.4 Enclosure polyhedra 

Enclosure polyhedra are similar in function to internal surface polyhedra except that the surfaces 
face outwards frone the interior of the polyhedron. This type of polyhedron may be used to define 
building spaces that are enclosed by other building spaces. 

4.1.1.5 Obstacle polyhedra 

Obstacle polyhedra are used to simulate the effect of structural columns, furniture, etc. which may be 
located in the flow domain. Obstacle polyhedra are similar to enclosures except that all cells 
enclosed by the polyhedra are static. 
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Figure 12 - surface polyhedron types 

4.1.2 Polygonal Surface Definition and the Finite Volume Grid 

Most building geometries exhibit a high degree of rectilinearity and this may be exploited in terms of 

the efficiency with which the finite volume grid is generated by defining the building geometry 

within the finite volume grid using the most appropriate orientation. The actual geographical 
building orientation may then be arrived at through the definition of an azimuth angle between the 

geographical North-south axis and the finite volume coordinate system X-Z principal axis. This 

system may be perceived as the use of a 'local' coordinate system used for the definition of the finite 

volume grid and associated surface descriptions. This local coordinate system then being orientated 

with respect to areal-world coordinate system by means of rotation through the site azimuth angle. 
Both systems share a common arbitrary ori gin which is located geographically through the site 
latitude and longitude angles. These coordinate systems are illustrated in Figure 13. 
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NORTH 
Y 

a 
z 

0,0,0 

EAST 

X 

Figure 13 - local and real-world coordinate systems 

4.1.3 Identification of Constituent Surface Finite Volume Cells and the Definition of Thermophysical 

Properties 

Volumetric surface radiation flux must be introduced to the energy equations for the correct finite 

volume cells and similarly, mean surface radiant temperatures must be correctly obtained from the 

constituent cell temperatures. A method must therefore be sought in order to associate the relevant 
finite volume cells with each defined building surface. 

Considering Figure 14, the surface illustrated may be rotated sequentially about the Y and X axes, 

using the surface azimuth and altitude angles, in conjunction with the rotation matrices detailed in 

Appendix I. Thus, the three-dimensional surface is transformed into a two-dimensional surface, 

parallel with the X -Y plane. Maximum and minimum x -y coordinates may then be derived from the 

transformed surface vertices and these maxima and minima used to generate a two-dimensional grid 

extending across the entire surface. Each grid point, subsequent to a test for surface containment, is 

first translated by a very small distance along the Z-axis and then transformed to the local finite 

volume coordinate system (by rotation). The transformed grid point will then be located within the 

correct finite volume cell, adjacent to the surface of interest. The X, Y and Z planes associated with 

the finite volume cell may then be determined by simple grid containment tests in the X, Y and Z 
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dimensions. 

Having identified all finite volume cells associated with each surface, the total volume occupied by 

the cells comprising a surface may be calculated. The surface volume is later used to transform 

surface radiant flux densities into volumetric fluxes for inclusion within the energy equations for the 

appropriate cells. 

A similar procedure is adopted in order to determine which finite volume cells lie in solid regions 

and to subsequently assign the correct thermophysical properties to each cell. Within the problem 
data set, a set of surface-to-surface connecting material types are established, each material type 

being referenced by an integer which points to a record in the materials database file. Thus, using the 

same procedure as for surface identification, the connecting surfaces may be transformed into two- 

dimensional planes and a grid generated across the surfaces, however in this case, the grid is 

'marched' from one surface to the other along the Z-axis in order to identify all finite volume cells 
between the surfaces. Multi-layered constructions may be defined using interface polyhedra. In the 

case of multi-layered constructions, where nested interface polyhedra are employed, a convention is 

employed whereby the connections between the interface polyhedra are defined from the outside 

moving inwards. This convention ensures that the inner connecting polyhedron will lie behind the 

outer connecting polyhedron with respect to the principal X-Y plane, subsequent to rotations. 

66 

Figure 14 - transformation of 3D surface to 2D surface 



EXTERNAL POLYHEDRON 
INTERNAL POLYHEDRON 

DOOR WINDOW 

Figure 15 - definition of surface doors and windows 

Windows and doors are defined by identifying the surfaces between which the door or window lies. 

Thus, building surfaces must be subdivided in order to enable the correct geometry of doors and 

windows to be established, however this will normally be required in order to achieve a reasonably 

accurate representation of local surface-to-surface radiative exchange (see Section 4.3). Surface 

subdivision for the purpose of window definition is illustrated in Figure 15. Finite volume cells lying 

within doors and windows are identified using the same 'marching' grid procedure as described 

above for the identification of surface-to-surface connections. 

4.2 Shortwave Radiation Processes 

Direct and diffuse solar radiation incident on an opaque external building facade will be partially 

reflected and partially absorbed. The absorbed component will tend to elevate the surface 

temperature, causing an increase in convective heat transfer to the outside and also an increase in 

conductive heat transfer towards the internal surface of the building. 

if the external facade of the building incorporates a transparent aperture such as a window, a 

proportion of the incident direct and diffuse shortwave radiation will pass through the aperture. The 

direct component will take the form of the window area projected onto an internal surface, thus 

forming an irradiated 'patch', the location of this patch being time-dependent and determined by 
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solar position. In the case of an opaque internal surface, this irradiated patch will be partially 

reflected and partially absorbed, whilst in the case of a transparent internal surface, the patch will 

also be partially transmitted. Internal irradiated patches may result in significant increases in local 

surface temperature. This rise in local surface temperature will result in an increase in conductive 

heat transfer towards adjacent surfaces in addition to an increase in convective heat transfer to the 

contained air volume thus giving rise to differential buoyancy forces. In this study, the internally 

reflected component of direct solar radiation is assumed to be diffusely reflected. The procedures for 

calculating direct and diffuse solar radiation incident on building surfaces and determining the 

geometrical location of time-dependent directly irradiated internal solar 'patches' are described in 

detail in this section. 

4.2.1 Solar Angles 

In order to calculate the intensity of direct and diffuse solar radiation, incident on sloping surfaces at 

any particular time, it is necessary to determine the position of the sun. Solar position is normally 

defined in terms of two angles, the solar azimuth (a) and the solar altitude (z), both of which may be 

derived from the so-called 'basic earth angles'. Solar azimuth, altitude and the basic earth angles are 

illustrated in Figure 16. Mathematical derivations of the solar angles may be found in several texts 

(e. g. Duffie and Beckman [631) and are consequently merely stated as follows: - 

a= sind [cos (L) cos (d) cos (h) + sin (L) sin (d)] Eq. 4.2 

z= tan-' {sin (h) / [sin (L) cos (h) - cos (L) tan (d)]) Eq. 4.3 

where 

a= solar altitude 

z= solar azimuth 

L= site latitude (north positive, south negative) 
h= solar hour angle = 15 112 

- is I, is = solar time 

d= solar declination = 23.45 sin(280.1 + 0.9863 Y), Y= year day number (1 - 365) 
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In order to determine the intensity of direct solar radiation incident on a sloping surface, it is 

necessary to know the angle between an incident solar ray and a normal to the surface, this angle is 

known as the solar angle of incidence and is given as follows: - 

where 

ý= cos'' [sin (a) cos (1 - ß) + cos(a) cos (co) sin (1 - ß)] Eq. 4.4 

(j) = surface - solar azimuth angle =Ia- al, a= surface azimuth angle 

ß= surface angle of elevation 
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4.2.2 Intensity of Direct and Diffuse Radiation on Inclined Surfaces 

Solar radiation incident on external building surfaces comprises three components; direct, sky 
diffuse and ground reflected. The direct component is simply derived from the known intensity of the 

direct component on a horizontal surface, combined with the calculated solar angle of incidence and 

solar altitude: - 

Id = Idh cos 4' / sin a Eq. 4.5 

The ground reflected component is assumed to be an isotropic diffusely reflected average of direct 

and diffuse solar radiation incident on the horizontal: - 

Igr = 0.5 (Id, + Imo) r Eq. 4.6 

where 

Ig = diffuse ground reflected radiation (W m 2) 

r= ground reflectivity 

The direct, sky diffuse and ground reflected intensities may then be combined with each external 

surface area together with the volume occupied by the finite volume cells comprising the surface, in 

order to derive volumetric fluxes for inclusion within the appropriate finite volume cell energy 

equations: - 

qf= (I A)N Eq. 4.7 

where 

I= Intensity (W m'2) 
A= surface area (m2) 

V= volume occupied by finite volume cells comprising the surface (m3) 

4.2.3 The Proiection of Direct and Diffuse Solar Radiation Onto Internal Surfaces Through Windows 

Internal air flow and heat transfer is significantly influenced by the size, location and construction of 

external surface windows, due to the resulting insolation of internal surfaces. It is therefore necessary 
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to determine the location and magnitude of the proportion of solar radiation incident on an external 

building surface, that projects through a window in the surface and onto internal building surfaces, 

as a function of time. The magnitude of the incident direct and diffuse radiation on external surfaces 

4.2.3.1 

has been dealt with previously. 

Direct Component 

In order to determine the magnitude of the direct component of solar radiation projecting through a 

window, the incident direct flux is merely modified by the overall transmissivity of the window and 

combined with the area of the transparent proportion of the window: - 

Qd = [Idl, i (1 - P) A cos 4J / sin a Eq. 4.8 

where 

P= shading factor 

A= area of window 

i= window transmissivity 

a) 

b) 

C) 

In order to determine the location of an internal irradiated area arising from projection of the direct 

solar component through an external window, the following algorithm has been adopted: - 

Using the same method as described in Section 4.1.3, the external window surface is rotated in order 

that it is parallel with the X-Y plane and then overlaid with a two-dimensional grid. 

Subsequent to point containment tests (for non-rectilinear windows), the geometric centre of each 

grid cell P (x y z), is rotated back to the 'real-world' coordinate system. A unit vector S', is then 

constructed to lie parallel with the incident solar rays, pointing inwards, towards the interior of the 

building. The unit solar vector is constructed using the solar azimuth and altitude angles: - 

[XS. Ys' zs. ] = [xp yp Zp] - [cos(a)sin(z) sin(a) cos(a)cos(z)] Eq. 4.9 

The unit solar vector is then scaled up to extend well beyond all building surfaces, in the direction of 

a solar ray, to result in the solar vector S: - 

[Xs Ys zs] =K [XS, Ys' zs, l Eq. 4.10 
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where K is a very large number 

d) The solar vector S is then tested for intersection with each internal building surface plane (including 

enclosures and obstacles), subsequent to checking for surface visibility. If an intersection occurs, the 

point of intersection on the surface plane is then tested for containment within the surface 

boundaries. If the point is contained, the distance between the window grid point and the point of 

intersection is calculated and stored (i. e. the magnitude of the window-surface vector). 

C) For each sequential surface intersection with the solar vector, starting from the window grid point 

and finishing with the intersection farthest from the window, the associated finite volume cells are 
identified by simple grid containment tests in the X, Y and Z dimensions. For each intermediate, 

transparent surface encountered, the incident flux is divided into absorbed, transmitted and reflected 

components: - 

Qa=QdPa Eq. 4.11 

Qt=QdPt Eq. 4.12 

Qr=QdPr Eq. 4.13 

where P is the area of the grid cell expressed as a proportion of the window area . 

The reflected component is added to the accumulated reflected flux associated with the relevant 

surface, for further processing. Reflected flux is assumed to be diffusely reflected and is apportioned 

on the basis of enclosure view factors (see Section 4.3.1). 

The absorbed flux is incorporated within the associated finite volume cell energy equation source 

term, in the form of a volumetric flux: - 

QY=ýiAxAYAz Eq. 4.14 

where 0x, Ay and Az are the finite volume cell dimensions in the X, Y and Z dimensions, 

respectively. 

The transmitted flux then becomes the incident flux for the next surface in sequence and this process 
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continues until the final, opaque surface is encounterecl. 

f) Stages b) - e) are the repeated for all window grid cells. 

4.2.3.2 Diffuse component 

The transmission of the diffuse component through a window may be calculated on the basis of the 

following relationship: - 

Q1=(Ids+Igp)AT Eq. 4.15 

The transmitted diffuse component of solar radiation and the direct component subsequent to 

internal reflection are both distributed over internal building surfaces on the basis of radiation view 
factor relationships. 

4.3 Longwave Radiation Processes 

In the context of this study, longwave radiation refers to the thermal electromagnetic radiation 

emitted by a surface as a result of its temperature. The total energy emitted by a fully absorbing or 
'blackbody' surface is proportional to the absolute temperature of the surface raised to the fourth 

po«er: - 

Eb=6T4 Eq. 4.16 

where 

Eb = blackbody emissive power (W m'2) 
T= absolute temperature (K) 

ß= Stefan-Boltzman constant = 5.669 x 10-8 W m72 K-4 

For reflecting or 'nonblackbody' surfaces, an absorptivity may be defined: - 

E 
aEb Eq. 4.17 

where 

E= emissive power of body (W m'2) 

73 



Eb = blackbody emissive power (\V m'2) 

a= absorptivity 

In this study, all building surfaces are assumed to obey the Kirchoff identity, which states that the 

emissivity of a body is equal to the absorptivity of that body, i. e.: - 

9=a Eq. 4.18 

Thus, the emissive power of a nonblackbody becomes: - 

E=caT4 Eq. 4.19 

4.3.1 Radiation View Factor 

Considering two arbitrarily orientated radiating black surfaces as illustrated in Figure 17, the 

proportion of radiant energy leaving surface 1 and arriving at surface 2 is known as the surface 

radiation view factor for surfaces 1->2. The source and target surfaces to which the view factor 

relates are indicated through the use of subscripts whereby the first subscript refers to the source 

surface and the second subscript refers to the target surface. Thus, the energy leaving surface 1 and 

arriving at surface 2 is: - 

q12 = Ebt Ai F12 Eq. 4.20 

and the energy leaving surface 2 and arriving at surface 1 is similarly: - 

q21 = Eb2 A2 F21 Eq. 4.21 

If the surfaces are at the same temperature, the net heat exchange must be zero: - 

Eb1 Ai F12 - Eb2 A2 F21 =0 Eq. 4.22 

and also: - 

Ebl = Eb2 Eq. 4.23 

thus: - 
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A1F12 =A2F21 Eq. 4.24 

This relationship is known as one of reciprocity and holds for nonblackbodies if the.. angular 
distribution of emitted radiation is diffuse. 

NORMAL 

a2 

NORMAL 
/ 

UAtcos 

I ý1 
aal 

Figure 17 - radiation view factors 

Considering Figure 22, the energy leaving dAl travelling towards dA2 at an angle of 41 to the 

normal to dAl is: - 

gdA1->dA2 = lb CA1 cos ý1 Eq. 4.25 

where Ibis the blackbody intensity, that is the blackbody radiation emitted per unit area and per unit 

solid angle in a specified direction. Thus, the radiation arriving at an elemental area dA at a 
distance r from Al is: - 

gdA1->dM = lb dAl cos 41 a 

where 

r= solid angle subtended by the area dA 

Eq. 4.26 
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6jA 

Figure 18 - unit hemisphere 

The elemental area dA� may be expressed in terms of the spherical coordinates illustrated in Figure 

18: - _ 

dA�=rsiný dyrrd4 Eq. 4.27 

Equations 4.26 and 4.27 may be combined and integrated over a hemisphere centred at dAl, as 
illustrated in Figure 18, in order to derive the emissive power from dAl. 

Thus, 

21c 
2 

Eb dAl = lb dAl f 
sin 4 cos ý dýdyf = 7E IbdA1 Eq. 4.28 

0 0 
0 

and therefore: - 

Eb = lr lb Eq. 4.29 

For the situation illustrated in Figure 17, the elemental area dAn is given by: - 

dA. = cos 42 dA2 Eq. 4.30 
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and the energy arriving at dA2 which is emitted from dAl is: - 

dql_>2 = Ebl cos ý1 cos ý2 Eq. 4.31 
71 r2 

and similarly, the energy arriving at äA1, which is emitted from äA2 is: - 

dg2_, 1= Eb2 cos ýZ cos Old 
d 

Eq. 4.32 

and therefore the net energy exchange is: - 

A2 
Al 

q1->2 = (Ebl - Eb2) 
Jcos 

41 cos 42 Eq. 4.33 
71 r2 

where the integral is equivalent to Ai F12. 

Exact analytical integrations are only practical for simple geometric relationships between 

participating surfaces and to further complicate the problem, internal building surfaces quite often 
involve the problem of partial obstruction, whereby surfaces are not wholly visible to other enclosure 

surfaces. Thus, in order to evaluate the integral for general polygonal surfaces with arbitrary 

orientation to each other and to allow for the possibility of partial obstruction requires an 

algorithmic, numerical approach. 

One numerical algorithm has been proposed by Moore and Numan [64]. This approach involves the 

subdivision of a surface into a number of elemental areas, dA;. A unit hemisphere constructed 

around dA, is then divided into a number of equal solid angles through 'strip and patch' subdivision 

as illustrated in Figure 23. An elemental view factor may now be deimed as the ratio of the radiative 
flux leaving dA1 that arrives at dA, to the total radiative flux leaving dA;: - 

dfaAi->aAj = 
dq ̀ Eq. 4.34 

and from Equations 4.26 and 4.30: - 

dq 
` 

cos q ! N- cos 
q 7r r 

Eq. 4.35 
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Similarly, the point configuration factor may be defined as the fraction of the radiative energy 

leaving dA, which is received by Ay- 

COS cos 
c; j _ rZ 

&A Eq. 4.36 

Thus, from Equation 4.33: - 

A; F; j _ 

ýcjj 
dA; Eq. 4.37 

Returning to the unit hemisphere illustrated in Figure 18, each solid angle may be associated with a 

viewed polygon, a polygon being defined as 'viewed' if the axis of the solid angle is not intersected by 

any other polygon. The point configuration factor is then found by summing the contributions of 

each viewed polygon and the view factor subsequently derived from Equation 4.37. 

The fact that this algorithm guarantees that all radiation is theoretically accounted for (i. e. 
J 
LFi,, j = 1.0 may be proved by considering Equation 4.36 which may be rewritten as follows: - 

S2. 

c; j _f 71 
dS2 Eq. 4.38 

noting that the area dAi viewed from dA, is cos 4jd. ý-. 

Now for dfdA; 
_, A1= 1.0, the integral must be: - 

S2" jcos 
4; dc = 7r Eq. 4.39 

If all dS)� are the same, the integral may be approximated by the following summation: - 

nn 
cos ýn = df2 Y-COS Eq. 4.40 

By definition, for M all to be equal, the areas subtended at the surface of the unit hemisphere must 
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be equal. The area of a horizontal strip of the sphere is given by: - 

S=2zrRh Eq. 4.41 

and therefore to divide the hemisphere into equal strips requires h to be equal. The subtended areas 

may now be made equal simply through equal subdivision of the strips. 

For the unit hemisphere illustrated in Figure 19: - 

cosh=5 Eq. 4.42 

where ö is the projection of the radius onto the normal. If the hemisphere is divided into n strips, the 

cosines will be: - 

Ii1i21 (n-1) 
2n' T+-n' 2n+n'"""' 2n+ n 

Thus the sununation using the formula for arithmetic series will be: - 

S. = (n/2) [2a + (n-1) b] 

where 

Eq4.43 
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1 
a-2n 

b=n 

Thus, 

S. = n/2 Eq. 4.44 

If each strip is then subdivided into m equal patches, then the cosine sununation will be mn/2. Since 

each patch subtends a solid angle of 2n/mn steradians, Equation 4.67 becomes: - 

(2n/mn) (mn/2) = lt 

J 
and therefore L'; 

-, j = 1.0. 

Eq. 4.45 

The Moore and Numan method is implemented in the present study using the following algorithm: - 

a) The surface, for which view factors are being calculated, is rotated until it is parallel with the 

principal X-Y plane (see Section 4.1.3) and subsequently overlaid with a two-dimensional grid. 

b) The centre of each grid cell is used as the centre of a unit hemisphere and a patch is then traversed 

around a series of strips into which the hemisphere is divided. The width of the patch and the height 

of each strip is determined by the division azimuth (a) and altitude(f3) angles, as illustrated in Figure 

20. Thus the vertex coordinates of each patch may be derived through similar rotations as those 

described in Section 4.1.2.2: - 

xi =x+ sinoi cosß' Eq. 4.46 

x2 =x+ sing cosß' Eq. 4.47 

x3 =x+ sing cosß Eq. 4.48 

x4 =x+ sinn' cosß Eq. 4.49 

yl =y+ Cosa: cosß' Eq. 4.50 

Y2 =y+ cosoc cos! ' Eq. 4.51 

y3 =y+ cosy cosß Eq. 4.52 

Y4 =y+ cocci cosß Eq. 4.53 
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zl = Z2=z+ sin Eq. 4.54 

z3 = z4 =z+ sinn Eq. 4.55 

c) Vectors are then constructed between the patch vertices and the hemisphere centre. The vectors thus 
derived are then scaled up to extend well beyond all building surfaces: - 

[ab'c]=K[abc] 

where K is a very large number. 

Eq. 4.56 

d) Each scaled vector is then tested for intersection with the plane of all other participating surfaces. If 

an intersection occurs, the coordinates of the point of intersection are tested for containment within 
the surface and if found to be contained, the length of the vector between the hemisphere centre and 
the intersection point is recorded. 

e) Process d) is repeated for all surfaces in order to determine the nearest intersection to the hemisphere 

centre. 

fj The cosines cos4l and cos42 are calculated for the smallest vector identified in e), using the visibility 

algorithm detailed in Section 4.1.2.4 and the point configuration factor (Equation 4.36) subsequently 

calculated and added to the cumulative configuration factor for the particular surface pairing. 

g) The processes b) - f) are repeated for all grid cells identified in a) and finally the view factors 
(Equation 4.37) are calculated. 
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4.3.2 Radiative Heat Exchange Between Nonblackbody Building Surfaces 

Having established a method for determining the geometric view factor for arbitrarily orientated and 

partially obscured surfaces, the calculation of radiative heat transfer between black surfaces becomes 

a relatively trivial task since all of the radiant energy incident upon the surfaces is absorbed. The net 

radiant exchange for the nonblackbody surfaces illustrated in Figure 17 would therefore simply be: - 

q1->2 = F12 Al (F-b1 - Eb2) Eq. 4.57 

However, in the case of building surfaces which are normally nonblackbodies, the situation becomes 

more complex. Radiant energy received by nonblackbody surfaces will not be entirely absorbed and a 

proportion of it will be reflected towards other participating surfaces and similarly a proportion of 

this reflected energy will be reflected by other surfaces and so on. Thus, the solution method must 

account for these multiple reflections if it is to be deemed accurate. 

The conventional approach to the numerical solution of radiation problems of diffuse reflections 
between nonblackbody surfaces is based on a formulation involving the terms irradiation and 

radiosity: - 

J=sEb+pG Eq. 4.58 

where 

G= irradiation = total radiation incident upon a surface per unit time and per unit area 
J= radiosity = total radiation which leaves a surface per unit time and per unit area 

However, despite the rigour and relative simplicity of the radiosity matrix method, a primary 

objective of this study is to develop a single solution scheme for conjugate convection, conduction 

and radiation heat transfer processes. Therefore, a more approximate analytical method, which 

expresses radiative heat transfer in terms of future time row values of temperature rather than 

radiosities, is preferred 

As a result of numerical experiments, Clarke [5] has concluded that for a typical building enclosure, 

approximately 99% of all radiant heat transferred between the surfaces of the enclosure is absorbed 

after the third reflection. Considering the two arbitrarily orientated nonblackbody surfaces illustrated 
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in Figure 26, the radiative flux emitted by surface 1 is st At a T14 and the proportion of this flux 

received by surface 2 will be et Al F12 a T14. Subsequent to the radiative flux arriving at surface 2 

from surface 1, a proportion of the incident flux will be reflected back towards surface 1, (1 - c2) ct 

At F12 6 T14. Similarly, a proportion of this flux is then reflected back from surface 1, (1 - sl) (1 - 

c2) cl AI F122 F21 a T14 and this process continues to infinity. 

CA F�QT. 

Ct_Eýc, A, F�F., a 

c, F, A, F�aT, 
(1 ̀  0-A, 

F Fraj 

F, (1-r, )(1--A A, F. F aT, 

Figure 21 - radiant exchange between two surfaces 

Thus, the radiative flux received by surface 2 from surface 1 through infinite reflection is: - 

q(2)1->2 -S1S2Al F126T14+(1-El)s2(1-e2)cl AlF122F216T14 

(1 - 61)2 62 (1 - )2 sl Al F123 F212 a T14 +. . .. Eq. 4.59 

This expression is a geometric progression having the form: - 

a+ar+ar2+.. .. +ar°-1 Eq. 4.60 

Now, in general, the sum to infinity of a geometric progression is: - 

Sn=a(1 
_r) 

Eq. 4.61 

where r, the common ratio, is (1 - cl) (1 - c2) F12 F21 and the first term a, is et a2 Al F12 r T14. If r 

lies between -1 and +1, assuming that in approaches zero as n increases, the sum to infinity 
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becomes: - 

Sn =1ar Eq. 4.62 

Thus, Equation 4.59 becomes: - 

s, c, A, F�6T, 4 
E4.63 (2)1->2 1- [(1 - 61) (1 - c2) F12 F211 q 

Similarly, considering the three interacting surfaces illustrated in Figure 22, the radiative flux 

received by surface 2 from surface 1 through infinite reflection is: - 

q(3)1_>2 = c1 s2 (1 - sn) Al Fln Fn2 6 T14 +C2 (1 - cl) (1 - C2) (1 - sn)2 

c1 AlF1n2Fn22F21aT14+ 62(1-c1)2 (1-62)2(1-sn)3 

st Al F1n3 Fn23 F212 6 T14 +. ... Eq. 4.64 

t, (1--)F, F, F, ar 

E. (l -F, )(1-£)(1-FYI^, r FI cr 

Figure 22 - radiant exchange between three surfaces 

Identifying a similar geometric progression as for the two surface case, Equation 4.64 becomes: - 

_ 
F, s, (1 - s�) A, F1 F,, T14 

'k3)1_>2 1-(1-sl)(1 -a) (1-en)F1nFn2F21 Eq. 4.65 
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and therefore the flux arriving at surface 2 from surface 1 via all other participating enclosure 

surfaces, accounting for three surface reflections only is: - 

n 

_ 
E, ý (1 -E; ) A, F,; F;, ) 6T14 

q(3)12 -1- [(1 - C1) (1 - C2) (1 - si) F1º Fi2 F211 Eq. 4.66 

i=1 

In the same fashion, four surface reflections may be accounted for and so on. The approximate total 

flux arriving at surface 2 from surface 1 due to infinite two and three surface reflections may be 

derived by adding equations 4.63 and 4.66: - 

_ 
E, 6, A, F�6T, 4 

q1_>2 1- [(1 - e1) (1 - c) Fie Feil + 

ll 

c, (1 -c; )s, A, F,; F;, aT, 4 
1-[(1-E1)(1-c2)(1-si)FiºFs2F21J 

i=1 

where i* 1,2 

and similarly the flux arriving at surface 1 from 2 is: - 

E, E, A, T', 
92_>1 1 -I(1 -c2)(1 -EI)F21Fl21+ 

n 
e. ) A, 7 Fý; F;, a T24 

[(1 -62) (1 -El) (1 -si)F2iFitF121 
i=1 

where i01,2 

Eq. 4.67 

Eq. 4.68 

and thus the net exchange of radiative flux between surfaces I and 2 is found by subtracting 
Equation 4.67 from Equation 4.68: - 

n 

__ 
E, E., A, F,, ß (T, 4 - T, 4) 

+ q2°1 1 -[(1 -E1)(1 -c2)F12F21] 
i=1 

s, (1 -6; )c, -A, F,; F; 1(y T, 4 
1- [(1 -s2) (1 -sl) (1 -si)F2iFi1F121 
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n 
fit (1 - S; ) s., A, F,; F;, cs T14 

Eq. 4.69 -ýJ 1-[(1-c1)(1-c2)(1-ci)F1iFi2F211 

The net radiative flux exchange between surfaces must now be expressed as a volumetric flux to be 

included within the finite volume cell energy equations as described in Section 3.4.10. 

Considering Figure 23, the view factor for radiation from surface 1 to surface 2 may be expressed 

as: - 

F1->2 = F1,1->2 + F122->2 + F1,3,2->2 + F14422->2 

Thus, the surface radiation view factors derived using the method detailed in section 4.3.1 may be 

incorporated within the finite volume cell expressions by simply dividing each participating surface 
factor by the number of cells that lie in the surface plane. 

In order to derive the most appropriate expression for radiant flux to be incorporated within the 

energy equation source term, of the form indicated in Section 3.3.9, Equation 4.69 may be expressed 
in terms of Tl: - 

S= Sc + Spýp =A- BT14 Eq. 4.70 
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Thus from Equations 3.105 and 3.106, 

Sc= A+ 3B Tls4 Eq. 4.71 

and 

Sp= -4 B T13 Eq. 4.72 

where 

n 
s, c, 2 A, F21a T, 4 E1 (1 - E; ) E, A, F,; F;, a T, 4 

A=l- 
[(1 - E2) (1 - El) Fzl F12J +11- (1 - E2) (1 - E1) (1 - Ei) Fei Fil F12 

i=1 

i#1,2 
11 

s, s, A, F�a cl (1-s) s., A, F,; F;, a 
B-1-[(1-c1)(1-62)F12F211 1-(1-61)(1-6)(1-ci)F1iFi2F21 

i=1 

i#1,2 

The Sc term requires modification due to the fact that T is expressed in absolute temperature: - 

Sc=A+3BTß`4 -1092BT1*3 Eq. 4.73 

4.4 Application of the Coupled Convection-Conduction-Radiation Model 

The coupled model has been applied to the Annex 20 test room (see Chapter 5) under typical winter 
heating conditions with and without the radiation model to demonstrate the influence of radiation on 

the air flow and temperature distribution. 

The Annex 20 test room geometry has been modified to incorporate a simple side-wall diffuser 

located at 0.3 m below the ceiling as shown in Figure 24. The supply volume flow rate is set at 
0.0525 m3s-t, which is equivalent to an air change rate of 5 a. c hr-' and results in a discharge 

velocity of 3.5 ms 1. The window surface temperature is set at 5 °C and the supply temperature 

25 °C. 
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Figure 25 - simulated velocity vectors on centre-line of Z-dimension in X-Y plane (without radiation 
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Figure 26 - simulated velocity contours on centre-line of Z-dimension in X-Y plane (without 

radiation model) 
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Figure 27 - simulated temperature contours on centre-line of Z-dimension in X-Y plane (without 

radiation model) 
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Figure 28 - simulated velocity vectors at 0.05 m below ceiling in X-Z plane (without radiation 

model) 
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Figure 29 - simulated velocity contours at 0.05 m below ceiling in X-Z plane (without radiation 

model) 
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Figure 30 - simulated temperature vectors at 0.05 m below ceiling in X-Z plane (without radiation 

model) 
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Figure 31 - simulated velocity vectors at 3.6 m along Z-axis in X-Y plane (without radiation model) 
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Figure 32 - simulated velocity contours at 3.6 m along Z-axis in X-Y plane (without radiation 

model) 
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Figure 33 - simulated temperature contours at 3.6 m along Z-axis in X-Y plane (without radiation 

model) 

A further simulation has been conducted using the coupled radiation model to demonstrate the 

influence of shortwave solar radiation on air flow and temperature distribution. The simulation has 

been conducted for a latitude of 50 IN at a time of 10.00 hrs on 21st January assuming that the 

window faces due east and the window glass has a transmissivity of 0.9. 

Figures 34-42 show the results of simulation incorporating the radiation model. The air flow 

distribution may now be seen to be almost dominated by the buoyant flow up the surface of the north 

wall driven by the incident solar flux. Air temperatures throughout the occupied volume of the office 

are elevated significantly by the penetrating solar radiation, varying between 29.8 °C towards the 

floor and 31.0 °C towards the ceiling. Mean air speeds througout the occupied volume vary between 

0.08in s'1 -0.7in s'I. 
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Figure 34 - simulated velocity vectors on centre-line of Z-dimension in X-Y plane (with radiation 
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Figure 35 - simulated velocity contours on centre-line of Z-dimension in X-Y plane (with radiation 

model) 
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Figure 36 - simulated temperature contours on centre-line of Z-dimension in X-Y plane (with 

radiation model) 

Figure 37 - simulated velocity vectors at 0.05 m below ceiling in X-Z plane (with radiation model) 
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Figure 38 - simulated velocity contours at 0.05 in below ceiling in X-Z plane (with radiation model) 
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Figure 39 - simulated temperature vectors at 0.05 m below ceiling in X-Z plane (with radiation 

model) 
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40 - simulated velocity vectors at 3.6 m along Z-axis in X-Y plane (with racuauon model 
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Figure 41 - simulated velocity contours at 3.6 m along Z-axis in X-Y plane (with radiation model) 
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Figure 42 - simulated temperature contours at 3.6 m along Z-axis in X-Y plane (with radiation 

model) 

4.4 Conclusions 

a) A general method for the geometrical manipulation of polyhedral bodies has been presented, using 

methods developed in the field of computer graphics. It has been demonstrated that these methods 

may be used to calculate radiation view factors and internal solar tracking. 

b) A review of calculation methods for solar angles and solar radiation incident on sloping surfaces has 

been presented together with the development of an algorithm for internal solar tracking. 

C) The concept of the radiation view factor has been reviewed and the details of a numerical method for 

the calculation of view factors for arbitrarily orientated surfaces has been presented 

d) A general method for the calculation of radiative heat transfer between nonblackbody surfaces based 

on the radiosity concept has been discussed. Subsequently a more approximate method, involving the 

surface temperatures directly, has been presented. This latter method enables the solution for inter- 

surface longwave radiative heat exchange to be incorporated within the same solution scheme as that 

described in Chapter 3 for convection-conduction processes. 
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e) The influence of shortwave radiation on air flow and temperature distrbution and the potential of the 

radiation model has been demonstrated by example. The coupled radiation model could be applied to 

any situation where radiation may have a significant effect on air flow and temperature distribution, 

such as passive solar design. 
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5.0 COMPARISON OF MODEL PREDICTIONS WITH MEASURED RESULTS 

In order to assess the predictive capabilities of the model, the results of calculations have been 

compared with measured results provided by Annex 20 of the International Energy Agency (IEA). 

Annex 20 was established by the LEA in order to investigate the physical processes associated with 

airflows in buildings, within the framework of the International Energy Program. 

As part of one of the projects undertaken by Annex 20, concerned with airflows in single zone spaces, 
known as Subtask 1, test rooms of a similar geometry have been established at a number of sites 

throughout Europe and North America. Arising from this work, sets of measured data have been 

made available for various categories of flow regime generated within the test rooms. The data 

supplied by Annex 20 for this study were measured by Jorma Heikkinen at the Technical University 

of Helsinki. 

Three test cases representing different general flow categories have been selected by Annex 20 for 

investigation: 

a) Test case B 

Forced convection (isothermal) with supply air diffuser and exhaust opening. Three different 

supply air flow rates are considered. The specification of test case B is described by 

Heikkinen[651. 

Case B 1: air flow rate = 0.0158 m3 (1.5 ac hr-'), discharge velocity = 1.84 ms-' 
Case B2: air flow rate = 0.0315 m3 (3.0 ac hr-'), discharge velocity = 3.68 ms-' 
Case B3: air flow rate = 0.0630 ru3 (6.0 ac hr'), discharge velocity = 7.26 ms-' 

b) Test case D 

Free convection under winter heating conditions with a radiator located beneath a cold 

window. Three combinations of radiator and window surface temperature are considered The 

specification of test case D is described by Lemaire [661. 

Case D1: radiator surface temperature = 46 'C 

window surface temperature= 10 'C 
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Case D2: radiator surface temperature = 55 'C 

window surface temperature =5 'C 

Case D3: radiator surface temperature = 65 

window surface temperature =0 'C 

c) Test case E 

Mixed convection under summer cooling conditions with a supply diffuser, exhaust opening 

and warm window. Three combinations of supply flow rate, supply air temperature and 

window surface temperature are considered. The specification of test case E is described by 

Heikkinen [671. 

Case E1: air flow rate = 0.0158 m3 (1.5 ac hr'), discharge velocity = 1.84 ms-' 

supply air temperature = 10 'C 

window surface temperature = 30 'C 

Case E2: air flow rate = 0.0315 m3 (3.0 ac hr'), discharge velocity = 3.68 ms-' 

supply air temperature = 15 'C 

window surface temperature = 30 

Case E3: air flow rate = 0.0630 m3 (6.0 ac hr'), discharge velocity = 7.26 ms-' 

supply air temperature = 15 'C 

window surface temperature = 35 'C 

The measured data includes sets of measured values of air speed and temperature at pre-defined grid 

points throughout the test room. The data is presented as records comprising the three-dimensional 

Cartesian co-ordinates of the measured point, measured air speed and measured temperature. 

5.1 The Test Room 

The dimensions, construction and configuration of the test room used by Heikkinen conform to the 

specification described by Lemaire[68]. 

The room dimensions are 4.2 mx3.6 mx2.5 m high. The walls of the room comprise 0.1 m 
insulation and a wooden sheet on the inner surface. 

The test room dimensions are illustrated in Figure 43. 
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Figure 43 - test room 

5.1.1 The Test Room Components 

A number of components are available in order to provide the required boundary conditions for 

various flow regimes: 

a) A supply air diffuser located in the rear wall. 

b) An exhaust opening located below the supply diffuser in the rear wall. 

c) A window located in the front wall. 

d) A radiator located beneath the window in the front wall. 

The configuration of room components is dependent upon the studied test case (refer to description of 

test cases B, D and E). 

All room components are located so as to provide symmetry about the centre plane in the z- 
dimension. The location of room components are illustrated in Figure 24. 
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5.1.1.1 The Dimensions, Location and Construction of the Window 

The window is constructed of a single sheet of 6 mm glass, the dimensions of which are 

1.585 mx1.985 m. The glass is mounted flush to the inner wall surface into an aperture of 

dimensions 1.6 mx2.0 m. The top of the window is located 0.2 m from the ceiling in the front wall 

of the room. 

5.1.1.2 The Dimensions and Location of the Supply and Exhaust Openings 

The supply diffuser selected by Neilsen [69] for Subtask 1 is of the HESCO type. The diffuser 

comprises 84 nozzles in a4 row x 21 configuration. The direction of each nozzle is individually 

adjustable. 

The diffuser is mounted on the rear wall with a distance of 0.2 m between the ceiling and the inner 

upper surface of the diffuser. The dimensions of the opening required for the diffuser are 0.17 mx 

0.71 m. 

The exhaust opening is located in the rear wall, 0.2 below the inner lower surface of the supply 

diffuser. The dimensions of the exhaust opening are 0.2 mx0.3 m 

5.1.1.3 The Dimensions and Location of the Radiator 

The radiator is a Stelrad single panel type P1, the dimensions of which are 0.3 mx2.0 m. The 

radiator is mounted on wooden blocks, 0.1 m from the floor and 0.05 m from the front wall. 

5.2 Test Case B 

Test case B2 has been selected for the purpose of comparison. The measured results are presented in 

the form of graphical velocity contours and mean velocity plots in Figures 44 and 45. 

Geometric polyhedra (see Section 4.1) are defined to represent the external and internal dimensions 

of the test room. The ASCII geometry file for test case B2 (ann20b2.001) in included in Appendix 

HI. 

A significant problem encountered in the specification of the model geometry for test case B is the 

description of the air supply diffuser (see Section 5.1.1.2). In order to model the diffuser explicitly, 
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the required grid resolution would be computationally impractical. As a first approximation, the 

'basic model' approach outlined by Neilsen [70] was adopted. The 'basic model' comprises an 

opening of 0.18 mx0.062 m equivalent to the effective flow area of the diffuser nozzles and 

retaining the diffuser aspect ratio. A velocity of 3.68 m s'1 at an upward angle of 40°. to the 

horizontal is prescribed for the diffuser outlet. Outflow turbulence kinetic energy and dissipation rate 

are derived using the expressions detailed in Section 3.4.4. The ASCII boundary conditions file for 

test case B2 (ann20b2. b01) is included in Appendix III. 

The finite volume grid comprises 18 x 14 x 16 cells in the X, Y and Z dimensions respectively, an 
irregular grid mesh being required to fit the supply and extract dimensions and to provide finer 

spacing in the vicinity of walls. 

Convergence was achieved after 300 iterations, taking approximately 5 minutes on a 350 MHz 

Pentium II type PC. Convergence was deemed to have been achieved when all dependent variable 

residuals were less than 10-6 in magnitude. 

The results of calculation for the 'basic model' are presented in the form of graphical mean air speed 

contours, velocity vectors and variational profiles in Figures 46-47 and 50-51. 

In an attempt to provide a more realistic representation of the HESCO diffuser, a 'multiple jet model' 

was developed The outlet area of the diffuser was divided into five equal squares having a 
dimension of 0.0498 in, spread across the actual diffuser width, in order to stimulate the spread of the 

diffuser. The dimensions of each square was obtained from the required volume flow rate and outlet 

velocity. The outlet velocity, direction, turbulence kinetic energy and dissipation rate for each nozzle 

were each prescribed in the same fashion as for the 'basic model'. 

The finite volume grid was increased in resolution to 25 x 16 x 21 cells in order to cater for the 

multiple jet configuration. 

Convergence was again achieved after 300 iterations, taking approximateIy 5 minutes on a 350 MHz 

Pentium II type PC. Convergence was deemed to have been achieved when all dependent variable 

residuals were less than 10-6 in magnitude. 

The results of calculation for the 'multiple jet model' are presented in the form of graphical mean air 

speed contours, velocity vectors and variational profiles in Figures 48-49 and 52-53. 
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Comparing the measured mean air speed contours in Figures 44 and 45 with the 'basic model' and 

'multiple jet model' both in terms of flow patterns and mean air speeds. Mean air speeds predicted 

using the 'basic model' are significantly higher than measured results throughout the flow domain 

whereas the 'multiple jet model' results compare very favourably. The predicted air speed in the near 
floor region using the 'multiple jet model' ranges between 0.02 - 0.14 ms-1. 

Referring to Figures 45,51 and 53 which illustrate the mean air speed contours in the X-Y plane at 

0.05 mg below the ceiling, fiery good agreement can be observed between measured results and the 

'multiple jet model' in terms of the overall shape and projection of the jet along the ceiling, although 

the measured results would suggest slightly greater penetration than the predicted results. The 'basic 

model' results in too wide a spread of the jet. 

Referring to Figure 54 which shows the variation of mean air speed with relative distance along the 

Y-axis, it can be seen that the predicted mean air speeds compare well with the measured air speeds 
for both the 'basic model' and the 'multiple jet model'. For both model types, the mean airspeed can 
be seen to exceed the measured air speed at the height of the diffuser by 0.1 - 0.15 ms'1, although 

there is better agreement with the 'multiple jet model'. - 
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Figure 44 - test case B2: measured velocity contours on centre-line of Z-dimension in X-Y Wane 
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Figure 45 - test case B2: measured velocity contours at 0.05 m below ceiling in X-Z plane 
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Figure 46 - test case B2: simulated velocity vectors on centre-line of Z-dimension in X-Y plane 
(basic model) 
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Figure 47 - test case B2: simulated velocity vectors at 0.05 m below ceiling in X-Z plane (basic 
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Figure 48 - test case B2: simulated velocity vectors on centre-line of Z-dimension in X-Y plane 
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Figure 49 - test case B2: simulated velocity vectors at 0.05 m below ceiling in X-Z plane (multiple 

jet model) 
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Figure 50 - test case B2: simulated velocity contours on centre-line of Z-dimension in X-Y plane 
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Figure 51 - test case B2: simulated velocity contours at 0.05 m below ceiling in X-Z plane (basic 

model) 
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Figure 53 - test case B2: simulated velocity contours at 0.05 m below ceiling in X-Z plane (multiple 

jet model) 
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Figure 52 - test case B2: simulated velocity contours on centre-line of Z-dimension in X-Y plane 
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Figure 54 - test case B2: variation of mean air speed with relative distance on the Y-axis 

5.3 Test Case E 

Test case E2 has been selected for the purpose of comparison. 

On the basis of the test case B results, the 'multiple jet model' was selected as the preferred diffuser 

model for test case E. Two sets of calculation have been conducted for test case E2 for the purpose 

of comparison, firstly excluding a radiation model and secondly including the radiation model 

described in Section 4.3. Boundary conditions for velocities, turbulence kinetic energy and 

dissipation rate were prescribed in the same fashion as for test case B2. Surface heat transfer is 

calculated using the method detailed in Section 4.4.2. Heat transfer from the walls to the outside is 

assumed to be zero (i. e. adiabatic boundary conditions). 

A finite volume grid of 21 x 16 x 19 cells was employed for the simulation, an irregular grid being 

defined to fit the supply jets, extract aperture and window. The geometric polyhedron representation 

of the test room (see Section 4.1), developed for test case B2 was modified to include additional 

surfaces in order to represent the window in the radiation model. 

Convergence was achieved after approximately 300 iterations for both calculations including and 

excluding the radiation model. Calculations took approximately 6 minutes on a 350 MHz Pentium II 
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II type PC. Convergence was deemed to have been achieved when all dependent variable residuals 

were less than 10-6 in magnitude. 

Initial results indicated severe asymmetry about the test room z-axis centre-line which were first 

considered to imply a numerical problem. Various grid resolutions were applied to investigate the 

dependence of the asymmetry on grid dimensions, however the same asymmetry was manifest in all 

cases. In order to minimise the possibility of a coding error, the same model and boundary 

conditions were defined using a commercially available code (FLOVENT) where the same 

asymmetry was again seen to occur. The underlying reason for the asymmetry was deemed to be 

beyond the scope of this study. 

The measured results are presented in the form of graphical velocity and temperature contours and 

mean velocity plots in Figures 55-58. The calculated results are presented in the form of graphical 

velocity vectors, temperature and velocity contours and mean velocity plots in Figures 59-70. 

Velocity and temperature profiles are presented in Figures 71-74. 

Due to the asymmetry, the predicted results must be viewed with some caution, although there is 

seen to be quite good agreement between the mean air speed contours in both the X-Y and X-Z 

planes, particularly in the case where the radiation model has been excluded, the temperatures are 
depressed by 0.5-1K below the radiation model results throughout the flow domain. Referring to the 

speed and temperature profiles in Figures 51-66 for the measured results and predicted results using 
the radiation model, it can be seen that while the mean air speeds compare favourably, the predicted 

temperatures are about 1K below the measured temperatures, suggesting that the surface heat 

exchange method might benefit from some refinement. 
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Figure 55 -test case E2: measured velocity contours on centre-line of z-dimension in x-v plane 
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Figure 56 -test case E2: measured velocity contours at 0.05 in below ceiling in x-z plane 
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Figure 57 -test case E2: measured temperature contours on centre-line of z-dimension in x-y plane 
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Figure 58 -test case E2: measured temperature contours at 0.05 m below ceiling in x-z plane 
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Figure 59 -test case E2: simulated velocity vectors on centre-line of z-dimension in x-y plane 
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Figure 60 -test case E2: simulated velocity vectors at 0.05 m below ceiling in x-z plane (excluding 

radiation model) 
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Figure 61 -test case E2: simulated velocity vectors on centre-line of z-dimension in x-y plane 
(including radiation model) 
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Figure 62 -test case E2: simulated velocity vectors at 0.05 m below ceiling in x-z plane (including 

radiation model) 
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Figure 64 -test case E2: simulated velocity contours at 0.05 m below ceiling in x-z plane (excluding 

radiation model) 
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Figure 63 -test case E2: simulated velocity contours on centre-line of z-dimension in x-y plane 
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Figure 66 -test case E2: simulated velocity contours at 0.05 m below ceiling in x-z plane (including 

radiation model) 
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Figure 65 -test case E2: simulated velocity contours on centre-line of z-dimension in x-y plane 
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Figure 67 -test case E2: simulated temperature contours on centre-line of z-dimension in x-y plane 

(excluding radiation model) 
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Figure 68 -test case E2: simulated temperature contours at 0.05 m below ceiling in x-z plane 
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Figure 69 -test case E2: simulated temperature contours on centre-line of z-dimension in x-y plane 

(including radiation model) 
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Figure 70 -test case E2: simulated temperature contours at 0.05 m below ceiling in x-z plane 
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Figure 71 -test case E2: variation of mean air speed with relative distance on the x-axis 
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Figure 72 -test case E2: variation of mean air speed with relative distance on the y-axis 

121 



Temperature CC) 
22 

21 

29 

19 

18 
6 0.2 0.4 8.6 8.8 

x/L 

-"- Neasured -F- Sihulated X Simulated(radiation) 

Ja -test case tz: vanatu 

Temperature CC) 
22 

21 

with relative distance on the x-axis 

29 

L9 

18 L 
0 8.2 0.4 0.6 8.8 

g/H 

-'- Measured -t- Simulated -3iE- Siiwlated(radiation) 

Figure 74 -test case E2: variation of temperature with relative distance on the y-axis 
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5.4 Test Case D 

Test case D2 has been selected for the purpose of comparison. 

Unfortunately only a limited set of measured results were made available for test case D. the results 

comprise measurements for only half of the test room. Accordingly measured results are only 

presented graphically for the z-axis centre-line. Graphical velocity contours, temperature contours 

and mean velocity plots are presented in Figures 75 and 76. Velocity and temperature profiles are 

presented in Figures 89-92. 

Two sets of calculations have been conducted for test case D2 for the purpose of comparison, firstly 

excluding a radiation model and secondly including the radiation model described in Section 4.3 

Surface heat transfer is calculated using the method detailed in Section 4.4.2. Heat transfer from the 

walls to the outside is assumed to be zero (i. e. adiabatic boundary conditions). 

A finite volume grid of 19 x 12 x 15 cells was employed for the simulation, an irregular grid being 

defined to fit the radiator and the window. The geometric polyhedron representation of the test room 

(see Section 4.1), developed for test case B2 was modified to include additional surfaces in order to 

represent the window and radiator in the radiation model. 

Convergence was achieved after approximately 300 iterations for both calculation including and 

excluding the radiation model. Calculations took approximately 6 minutes on a 350 MI-Iz Pentium II 

type PC. Convergence was deemed to have been achieved when all dependent variable residual were 

less than 10-6 in magnitude. 

The calculated results are presented in the form of graphical velocity vectors, temperatures, velocity 

contours and mean velocity plots in Figures 58-69. Velocity and temperature profiles are presented 
in Figures 89-92. 

There is seen to be reasonable agreement between the mean speed contours in both the X-Y and X-Z 

planes in terms of the general flow pattern, although the magnitude of the predicted air speed is 

somewhat lower than the measured air speeds throughout the flow domain for both sets of 

calculations. The discrepancy in air speed magnitudes may be due in part to measurement 
inaccuracies at these very low air spccds (< 0.1 ms-1). 

Referring to the temperature contours in Figures 75-76,83-86 and the temperature profiles in 
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Figures 89-90, reasonable agreement can be seen to exist between the predicted results using the 

radiation model and the measured results. As expected, in the absence of a radiation model, the 

predicted results over-estimate the temperatures throughout the flow domain. the predicted results 
using the radiation model slightly under-estimate the flow temperatures, again indicating the 

possible need for refinement of the method for calculating surface heat transfer. 
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Figure 76-test case D2: measured temperature contours on centre-line of z-dimension in x-y plane 
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Figure 77 -test case D2: simulated velocity vectors on centre-line of z-dimension in x-y plane 

126 

................... 
'ý 

! 
---. \ `""- 

\R 
"" ýi 15: jam! I ll 

tT 

1 I ! __,. ,I t{Iý 
. ýý 

1-- 
-« ---- -º -/ 

º 
ý1 

1 
. 

P- rq i 

..... -+ -rr-- 
+ 

1 
i'i 

rr ýý -r r- ýr ýr _.. ýr +-r" ýr I1 

I 11 1 

.. . -. .. ý... ' ýý ---"- `ý mss. 
ý1 11 

iý 
(i 

1 
7. 

.--------.. --º ,ý 
{t . 

1 
r--, -. -. -lJ ri mar 
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radiation model) 
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Figure 79 -test case D2: simulated velocity vectors on centre-line of z-dimension in x-y plane 
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Figure 80 -test case D2: simulated velocity vectors at 0.05 m below ceiling in x-z plane (including 
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Figure 82 -test case D2: simulated velocity contours at 0.05 m below ceiling in x-z plane (excluding 

radiation model) 
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Figure 81 -test case D2: simulated velocity contours on centre-line of z-dimension in x-y plane 



Figure 84 -test case D2: simulated velocity contours at 0.05 m below ceiling in x-z plane (including 

radiation model) 
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Figure 83 -test case D2: simulated velocity contours on centre-line of z-dimension in x-y plane 
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Figure 85 -test case D2: simulated temperature contours on centre-line of z-dimension in x-y plane 

(excluding radiation model) 
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Figure 86 -test case D2: simulated temperature contours at 0.05 m below ceiling in x-z plane 
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Figure 87 -test case D2: simulated temperature contours on centre-line of z-dimension in x-y plane 

(including radiation model) 
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Figure 88 -test case D2: simulated temperature contours at 0.05 m below ceiling in x-z plane 
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Figure 90 -test case D2: variation of mean air speed with relative distance on the y-axis 
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5.5 Results Obtained by IEA Annex 20 Participants 

5.5.1 Test Case B2 

A number of researchers; Heikkinen and Piira [71], Fontaine [72], Furst [73], Chen [74], Vogl and 

Renz [75], Said [76], Lemaire and Elkhuizen [77], Tjelflaat [78], Johansson et al [79] have 

simulated test case B2 using commercial CFD codes with a number of different air inlet models. A 

uniform air flow distribution is evident from the results and the distribution compares well with 

measured results. 

Contours of air speeds resulting from simulation have been provided by various researchers; 
Heikkinen and Piira [71], Lemaire and Elkhuizen [77], Skovgaard and Neilsen [80] and Vogl and 

Renz [75]. Predicted air speeds at near floor level are in the range 0.1 to 0.2 m s'I compared to 

measured speeds of 0.1 m s-1 and slightly higher. 

5.5.2 Test Case E2 

Lemaire [811 has applied the WISH3D commercial code to test case E2 and demonstrated that flow 

reversal across the window could occur depending on the supply inlet model employed. Simulations 

were found to slightly over-estimate the jet penetration. Simulations were conducted for half of the 

test room, assuming a plane of symmetry, however some indication that an asymmetric flow pattern 

may result when a coarse grid is extended across the whole room was provided. 

Heikkinen [82] employed the FLUENT commercial code and obtained a reasonable representation 

of the flow pattern, mean velocities, jet penetration length and temperatures with measured results. 

Vogl and Renz [831 similarly employed the FLUENT code and again achieved reasonable 

comparison with measured data. 

5.5.3 Test Case D2 

Lemaire [84] applied the WISH3D code to test case D2 and observed that the flow pattern was 
driven by buoyant flow from the radiator upwards across the cold window surface. Prescribed heat 

fluxes were employed for the radiator and window, conventional wall functions having been found 

to significantly under-predict surface convection coefficients. 
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Vogl and Renz [85] also applied the FLUENT code to test case D2 and achieved flow patterns and 

velocity distributions that were broadly consistent with measured results. 

Furst [86] demonstrated that a reverse flow (downward) could be achieved if the heat transfer from 

the radiator was under-estimated by the adopted wall function. 

5.6 Conclusions 

a) Measured results for three building test cases have been provided by Annex 20 of the International 

Energy Agency. The first test case (B2) represents a forced convection isothermal flow, the second 

(E2) mixed convection under summer cooling conditions and the third (D2) free convection under 

winter heating conditions. 

b) A HESCO multiple nozzle type diffuser was employed for test cases B2 and E2. The model has been 

used to predict velocities within the test room for test case B2, using two diffuser representations; a 

simple single jet approximation and a more complex five jet approximation. While the former 

diffuser type led to an over-estimation of mean air speed throughout the flow domain, the five jet 

representation resulted in very good agreement with measured results. 

c) Although predicted results for the mixed convection test case E2 were found to contain a significant 
degree of asymmetry about the centre-line of the z-axis, good agreement was achieved between 

predicted and measured results. Results were obtained including and excluding the radiation model 

developed in Section 4.3. Better agreement was achieved with the radiation model, the model under- 

estimating air temperatures in the absence of the radiation model. 

d) Good agreement was achieved between predicted and measured results for test case D2. However, 

predicted mean air speeds were found to be somewhat lower than measured air speeds, although this 

discrepancy could be partly due to the inaccuracy of air speed measurement at very low velocities. In 

the absence of the radiation model, predicted air temperatures were found to be over-estimated. Air 

temperatures predicted with the coupled radiation model were slightly under-estimated indicating 

the possible need for some refinement in the method for estimating surface heat transfer. 
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6.0 CONCLUSION 

A summary of the developments in the field of Computational Fluid Dynamics, together with a 

review of turbulence models and associated solution methods has been presented in Chapter 1. It 

has been concluded from existing research that the Launder and Spalding k-c turbulence model is 

capable of providing good correlations between measured and predicted results for a wide range of 
building air flows although research into the validation of the model for purely buoyancy driven 

flows is limited. A review of the research into the application of CFD to building air flows has 

demonstrated the need for coupled convection-conduction-radiation models and highlighted the 

limitations of existing approaches. 

Details of the underlying mathematical model of advection, convection and conduction processes 
incorporating the k-c turbulence model is presented in Chapter 3, together with details of the 

SIMPLER numerical procedure adopted for the solution of the equation set. General methods for 

handling boundary conditions and conduction in solid regions are also discussed. An approach for 

incorporating longwave radiation heat exchange within the same numerical solution scheme 

adopted for convection and conduction processes is also outlined in Chapter 3 and it is this approach 

that forms the basis of the coupled long-wave radiation model. 

Considerations for modelling shortwave and longwave radiation heat transfer processes in building 

spaces are discussed in Chapter 4 together with a general vector geometry method for calculating 

radiation view factors and internal solar tracking. An approximate method for modelling longwave 

radiation with a potentially high degree of accuracy is described and a procedure for incorporating 

this method directly within the CFD numerical solution scheme is detailed. The potential for 

application has been demonstrated with particular regard to air flows that may be significantly 
influenced by shortwave radiation and consequently the coupled model would be particularly useful 
in the area of passive solar design. 

Finally, predictions derived from the resulting fully coupled convection-conduction-radiation model 

are compared with experimental measured data for three test cases, provided by Annex 20 of the 

International Energy Agency. It is demonstrated that the coupled model is capable of producing 

more realistic correlations then the convection-conduction model alone. 

The method of modelling surface heat flux using wall functions requires some further research. An 

adhoc treatment for surface convection coefficients using an empirical approach has been adopted 
for this study due to concern raised by various researchers as to the accuracy of conventional energy 

equation wall functions. 
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Simulation conducted for the IEA Annex 20 test case E2 resulted in a severely asymmetric flow 

pattern. While it was decided to limit the investigation into this phenomenon it is an aspect of the 

work that requires further investigation. 

Although it has been demonstrated that the k-s turbulence model is capable of producing good 

correlations between measured and simulated results, it adds a considerable computational load and 

can introduce instabilities into the solution scheme. The development of an accurate but more 

computationally efficient method of modelling turbulence would greatly improve the potential of 
CFD as a practical design tool. 

Where the air flow pattern within a building space is driven by bouyancy, considerable 

underrelaxation may be required in order to procure a solution due to de-coupling of the energy and 

momementum equations. Further research is required to determine methods for coupling the energy 

and momentum equations in order to improve the convergence characteristics. 
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APPENDIX 1- GEOMETRIC PROCEDURES 
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This appendix details the various point and surface geometric operations required for building 

surface and construction definition, internal solar tracking and radiation view factor derivation. 

AI.! Surface Plane Equation 

For the determination of points of intersection between lines and surfaces, required for internal solar 

tracking and the derivation of radiation view factors, the equation of the plane in which the polygon 

surface lies is required, i. e.: - 

Ax+By+Cz+D=0 Eq. AI. I 

Considering the points (s, y, z), (x1, yt, z1), (x2, y2, z2) and (x3, y3, z3) lying in the same plane, 

then: - 

Ax+By+Cz+D=0 Eq. AI. 2 

Ax, + By, + Cz1 +D=0 Eq. AI. 3 

A. 2+By2+Cz2+D=0 Eq. AI. 4 

Ax3+By3+Cz3+D=0 Eq. AI. 5 

and if there is a solution to this set of homogeneous equations, the determinant of its coefficients 

must be zero: - 

xyz1 

X1 Y1 z1 1=0 
Eq. AI. 6 

x2 Y2 z2 1 
h3 y3 Z3 1 

Expanding by cofactors about the first row: - 

yi z1 1 Xi zl 1 xl yl 1 x1 Yi z1 

x Y2 zz 1 -y x2 Z2 1 +z xz yz I - Yz z2 "C2 =0 Eq. AI. 7 
y3 Z3 1 X3 Z3 1 X3 y3 1 x3 y3 Z3 
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The determinants, including their signs are the coefficients A, B, C and D. The determinants may be 

expanded in order to arrive at expressions for the coefficients: - 

A= yl (Z2 - Z3) + y2 (Z3 - Z1) + y3 (Zl - ZZ) Eq. AI. 8 

B= -x1 (Z2-Z3)-X2(Z3-Zl)-X3(Z1-z2) Eq. Al. 9 

C= X1 (Y2-Y3)+X2(y3-YI)+X3(Yl-Y2) Eq. AI. 10 

D= -X1 (Y2Z3- y3Z2) - X2 (YiZ3 - y3Z1) - X3 (YiZ2 - YZZI) Eq. Al. I 1 

The plane equation coefficients may therefore be derived with a knowledge of three non-collinear 

points lying on the plane. 

AI. 2 Rotation 

With reference to Figure 93, the point P may be rotated about the Z-axis to point P using simple 

trigonometric relationships: - 

x=r cos 4 Eq. A1.12 

y=rsiný Eq. Al. 13 

and 

x'=rcos(O+4)=rcos4 cosh-rsin4 sinO Eq. Al. 14 

y'=rsin(©+4)=rcos4 sinO-rsiný cosh Eq. AI. 15 

Z' =Z Eq. AI. 16 
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P( . r. z) 
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Figure 93 - rotation of a point about the Z-axis 

Thus, 

x'=xcos0 -ysin0 Eq. A1.17 

and 

y'=xsinO +ycos6 Eq. AI. 18 

or in matrix form: - 

cos 0 sin 00 

[x' y' z'] = [x y z] -sin 0 cos 00 Eq. AI. 19 
001 

A similar treatment results in matrices for rotations about the X and Y axes. Thus, the three rotation 

matrices are given as follows: - 

10 0 
Rx(0) =0 cos 0 sin 0 Eq. AI. 20 

0 -sin 0 cos 0 

cos 00 -sin 0 

Ry(g) =010 Eq. A1.21 

sin 00 cos 0 
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cos 0 sin 00 

Rz(0) _ -sin 0 cos 00 Eq. AI. 22 

001 

AL3 Translation and the Use of Homogeneous Coordinates 

Points may be translated simply by adding the appropriate translation distances to the coordinates of 

the point. Thus, the translation of the point P(x, y, z) to a point P'(x' y' z'), a distance Sx units 

parallel to the X-axis, Sy units parallel to the Y-axis and Sz units parallel to the Z-axis, would 
involve the following additions: - 

[x' y' Zl = [x y Z] + [6x Sy sz] Eq. AI. 23 

Because rotation involves a multiplication, and translation an addition, these transformations are not 

easily combined. A common method to enable concatenation of these transformations involves the 

use of homogeneous coordinates. A three-dimensional point P(x, y, z) in homogeneous coordinates 

would be expressed as P(x, y, z, W), where W is a non-zero scale factor. In this manner, the actual 

Cartesian coordinates may be found through division by the scale factor, i. e. x/W, y/W and z/W and 

indeed this division may be obviated through the definition of a unity scale factor. Having now 

introduced a fourth element to the coordinate vector, translation may be conducted through matrix 

multiplication. Thus, the above translation becomes: - 

1000 

0100 
[x' y' z' 1] _ [x yz 1] 

0010 Eq. A1.24 

sx sy &1 

and similarly, adopting homogeneous coordinates, the rotation matrices become: - 

1oo0 

0 cos 0 sin 00 
Rx(O) Eq. A1.25 

0 -sin 0 cos 00 

0001 
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cos 00 -sin 00 

0100 
Ry (0) 

sin 00 cos 00 
Eq. AI. 26 

L0001 
cos 0 sin 000 

_ 
-sin 0 cos 000 

Rz(O) 
0010 

Eq. A1.27 

L0001 

AL4 

Thus, an arbitrary number of translations and rotations may be performed on a point by multiplying 

various rotation and translation matrices together and then multiplying the point row vector 

(expressed in homogeneous coordinates) by the resulting transformation matrix. The concatenated 

transformation matrix is of the following fonn: - 

r11 r12 r13 0 

r21 r22 r23 0 
T_ 

r31 r32 r33 0 

tx tY tZ 1 

Eq. AI. 28 

Note that a surface may be transformed simply by transforming each of the bounding vertices. 

Surface Visibility 

A surface may be defined as being visible from a particular view point if the angle between an 

outward facing normal to the surface and a line drawn between the point of intersection of the 

normal with the surface and the view point lies in the range 0- 90 degrees. 
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P3 

Figure 94 - surface visibility 

With reference to Figure 94, a normal to the surface defined by points P1, P2 and P3 may be 

constructed by taking advantage of the properties of the vector cross product. The cross product of 

the vectors a and b( defined by the points Pn Pl and PnP2 respectively) is: - 

i a, { bX 

axb=j ay by Eq. AI. 29 
k az bZ 

Deriving the value of the determinant for Eq. AI. 29: - 

axb= (ay bZ - ab y )i - 
(a; bZ - aX bx )j - (ax by - ab X )k Eq. AI. 30 

and in component form: - 

axb= [(aybb -axby) -(axb, -; bb) (aby -aybb)] Eq. AI. 31 

If n=axb, then n is always perpendicular to a and b. 

Note that for internal building surfaces (i. e. clockwise vertex ordering), the normal will point in the 

opposite direction. 

Having established a normal to the surface at the point P, a vector may be constructed in the 

direction of the view point VP, v. The angle 0 between the vectors n and v may then be derived from 
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the vector dot product: - 

A=cos', n. y 
I I(I 

Eq. AI. 32 
nv 

where In I and Ivl represent the magnitudes of vectors n and v: - 

InI= n7z2+n12+nz2 Eq. AI. 33 

AI. 5 

Note that the magnitude of 0 is used in the derivation of radiation view factors, detailed in Section 

4.3.1. 

Line/Surface Intersection 

If a line and surface intersect, then they will have a common point Pi as illustrated in Figure 95. In 

order to determine this point, the equation of the plane in which the surface lies must be solved in 

addition to the equations for the line: - 

Ax+Bx; +Czj+D=O Eq. AI. 34 

x; =(x1- x0)u +xo Eq. AI. 35 

yi = (Yl - Yoh Ui + Yo Eq. AI. 36 

zi = (z1 - zo) u1 + zo Eq. AI. 37 

ui may be derived by substitution of Equations AL35 - AI. 37 into Equation AL34: - 

_ 
Aa; +Bx; +Cz; +D 

ui -A (x, - xo) +B (y1 - yo) +C (zl - z0) 
Eq. AL38 

If 0< ui < 1, then the intersection occurs and Equations A1.35 - AI. 37 may be solved for x;, y; and z;. 
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AI. 6 Polygon Point Containment Tests 

In order to determine whether or not the point PT, lies within the polygon illustrated in Figure 96, 

the maximum and minimum x -y coordinates of the polygon are first determined. The x-y coordinates 

of PT are then tested to determine whether or not they lie in the intervals x.. - x, , and ya, t - yn, ffi. 
If PT is found to lie within the maximum and minimum x-y intervals, the intersections of y= yT are 

calculated for each edge of the polygon. The x-coordinates of the intersections are then paired in 

ascending order (there always being an even number of intersections) and the x-coordinate of PT is 

then tested to see if it lies in the paired x-coordinate intervals, i. e. xl - x2, X3 - X4, etc. 

y max 

PT 

xt x2 

nx3 

x4 
y= yT 

x min x max 

Figure 96 - point containment test 
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Figure 95 - line/surface intersection 



APPENDIX II - THE COMPUTER CODE 
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This appendix details the structure of the group of computer programs that have been developed 

from the numerical procedures described in Chapters 3 and 4. The program code has been developed 

using the 'C' programming language. The resulting group of program modules have been collectively 

named EMB, standing for Energy and Mass transfer in Buildings. 

The code was orginally compiled and linked using Version 6.0 of the Microsoft C compiler. All 

source code complies with the ANSI standards with the exception of graphics functions employed by 

the EMBview module which are detailed in Section AII. 3.4.5. All EMB program modules may 

therefore be compiled and linked to execute on various hardware platforms with the exception of 

EMBview which has been developed to run specifically on a PC. 

AII. I The Finite Volume Grid, Data Structures and Memory Allocation 

The numerical solution scheme requires the calculation domain to be sub-divided into a series of 

parallel planes in the X, Y and Z dimensions, resulting in a three-dimensional rectilinear finite 

volume grid. The practice adopted in this study is to locate the grid points for the dependent scalar 

quantities at the geometric centres of the finite volumes thus defined. A convention is adopted 

whereby the planar sub-divisions in the X, Y and Z directions are referred to as columns, rows and 

divisions, respectively. 

The finite volume cell dimensions for scalar quantities are stored in a two-dimensional array, 

gd[3][A, L4XDJMJ, where the first index is referenced using the defined constants COL, DIV and 

ROW, and ALIXDIM is a constant defining the maximum number of cells allowed in any direction. 

The number of columns, rows and divisions defined for a specific problem are stored in the variables 

ncols, nroxs and ndivs. The U, V and W velocity component grids are staggered with respect to the 

scalar quantity grid by locating the U-component grid points midway between the scalar grid points 

in the X-direction and similarly the V and W components in the Y and Z directions respectively. 

Due to the employment of staggered grids for the velocity components, the number of velocity 

component cells in the direction of the component are always one less than the number of scalar cells 

in that direction, i. e. ncols-1 for the U-component, nroKs-1 for the V-component and ndivs-1 for the 

W-component. A complete grid is illustrated in Figures 97 and 98 and all finite volume grid 

dimensions for both the scalar grid and staggered velocity component grids, together with the 

variable names as they appear in the code are presented in Figure 99. 
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I I I 1 

Figure 97 - X-Z plane of finite volume grid 

1 

11 

Figure 98 - X-Y plane of finite volume grid 
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Ax=cvdx , Ox=cvdx 
(U) (U) 

bxt_, =gdxw, bx,., =gdxe 
(U) (U) 

p! 

p1 ýýý-ýw 
ý8 6-ic 

2 
`h. ;. j-i ý+ h. l. j . i. ja1 

Qx=cvdx Ax=cvdx 

(ý) (4) 

Sxj-, =gdxw 8xj� =gdxe 
(ý) (4) 

------------------------------ 

Dy=cvdy Ay=cvdy 
(V) (V) 

8y, _, =gdys by,., =gdyn 
(V) 

F 
(V) 

-eJc eX 

Ay=cvdy Dy=cvdy 
(0) (0) 

Sy, 
-, =gdys 

t 
by,., =gdyn, 

(0) (45 ) 

------------------------------ 

tz=cvdz tz=cvdz 
(W) (W) 

bz, 
-, =gdzb 54., =gdzt, 
(W) (W) 

Lz=cvdz Oz=cvdz 

bz, 
_, =gdzb bz.., =gdzti 
(4) (p) 

Figure 99 - Finite Volume Grid Dimensions 

150 



All grid point variables are stored in a four-dimensional array of single precision floating point 

numbers, the base address of which is assigned to the pointer ****grid. The first allocated 

dimension of the grid array is the variable index (the size of which is defined using the constant 

MAXIAR) and the remaining three are array element location indices, the sizes of which are 

problem specific and are stored in the variables ndivs, nrows and ncols. The array is dynamically 

allocated, using the C contiguous memory allocation function calloc( in the following code: - 

if((grid=(Iloat ****)calloc(MAXiVAR, sizeof(Jloat ***))) == NULL) 

leave('Jnsufficient memory for grid' j; 

for(g=O; (S<M4XVAR-1), g++) 

if((grid[g]=(17oat ***)calloc(ndivs+2, sizeof(Jloat **))) == NULL) 

leave("Jnsuficient memory for grid'); 

for(5=O; (S<=MAXVAR-1); g++) 
for(h=0; (h<=ndivs+l); h++) 

if((grid[gJ[h]=(float **)calloc(nrows+2, sizeof(float *))) == NULL) 

leave("lnsuf cient memory for grid'); 

for(g°O; (gam MAXVAR-1); g++) 
for(1i=0; (h<=ndrvs+1); h++) 

for(i=0; (i<=nroiss+1); i++) 
if((grid[g)[h][i]=(/Joat *)calloc(ncols+2, sizeof(Jloat))) == NULL) 

leaver'Insuf cient memory for grid'%; 

The grid[J[][J[J variable index is referenced through a series of constants which are defined in the 

defs. h include file as follows: - 

U PSVEL: A U-component pseudo-velocity (U) 

V PSVEL: 
_ 

V-component pseudo-velocity (V) 

IV PSVEL: 
A 

W-component pseudo-velocity (W) 

U STAR: U-component guessed velocity (U ) 

V STAR: V-component guessed velocity (V ) 

1V STAR: W-component guessed velocity (W ) 

U VEL: U-component velocity (U) 

V VEL: V-component velocity (V) 
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IV VEL: W-component velocity (W) 

TEMP: Temperature (T) 

TURB KE. - Turbulence kinetic energy (k) 

TURB DISS: Dissipation rate of turbulence kinetic energy (s) 

PRESSURE: Pressures (P) 

PRESSURE C: Pressure corrections (P') 

U COEFF Velocity U-component grid point coefficient 

V COEFF: Velocity V-component grid point coefficient 

IV COEFF: Velocity W-component grid point coefficient 
GDE N. " General differential equation coefficient - NORTH (h, i+l, j) 

GDE S. " General differential equation coefficient - SOUTH (h, i-1, j) 

GDE E: General differential equation coefficient - EAST (h, i, j+1) 

GDE W: General differential equation coefficient - WEST (h, i, j-1) 

GDE T: General differential equation coefficient - TOP (h+1, i j) 

GDE B: General differential equation coefficient - BOTTOM (h-1, i, j) 

GDE BP: General differential equation 'b' term 

GDE AP: General differential equation grid point coefficient (h, i, j) 

VISCOSITY: Laminar or turbulent viscosity 

FLUX: Total thermal flux to cell 

CASUAL: Casual heat gains to cell 

U VELO: U-component velocity (U) at previous time increment 

V VELO: V-component velocity (V) at previous time increment 

IV VELO: W-component velocity (W) at previous time increment 

TEMPO: Temperature (T) at previous time increment 

TURK KEO: Turbulence kinetic energy (k) at previous time increment 

TURB DISSO: Dissipation rate of turbulence kinetic energy (6) at previous 

time increment 

A series of finite volume cell 'switches' and the polyhedron-surface index numbers to which the cell 
belongs are stored in grid parameter structures: - 

struct gridpar st { 

struct gridparbf st gridpar bJ 

unsigned char mat, nb, bd[6], sf[6J; 

152 



}; 

where mat is the materials database index number (see Section 4.1.3), nb is the number of polyhedra 

to which the cell belongs and bd[6] and sJ[6J are arrays of polyhedra and surface pairings. The 

gridparbf st structure is a bit field structure which is used for the storage of two-state variables: - 

structgridparbf st ( 

unsigned bfstatic: 1; 

unsigned bfisothermal: 1; 

unsigned bfisouvel: 1; 

unsigned bfisovvel: l; 

unsigned bfrsowvel: 1; 

unsigned bfexternal: 1; 

unsigned bfexsurface: 1; 

unsigned bfintsurface: 1; 

unsigned bfobsurface: 1; 

unsigned bfencsurface: 1; 

unsigned bfirradiated: 1; 

unsigned bfobstacle: 1; 

}; 

/* Static cell flag */ 

/* Isothermal cell flag 

/* Constant U component cell fag 

/* Constant V component cell fag 

/* Constant IV component cell fag 

/* External air cell fag */ 

I* External surface cell flag 

/* Internal surface cell flag */ 

/* Obstacle surface cell flag *l 

/* Enclosure surface cell flag 

/* Irradiated cell flag 

/* Obstacle cel/, flag */ 

The gridpar st structures are stored in the form of a three-dimensional array which is dynamically 

allocated using a similar algorithm as that used for the allocation of the grid array. 

The data required for building space polyhedra as defined in Section 4.1, are stored in geometric 
body structures: - 

struct body_st { 

unsbyte nv, ns, type; 

double vt[MAXV+IJ[4]; 

struct surface *s AL XS+1]; 

}; 
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where the various fields are defined as follo«"s: - 

nv: Number of vertices 

ns: Number of surfaces 

type: Polyhedron type (internal, external, enclosure, etc. ) 

vt[MAXVERT+1][4]: Cartesian coordinates of each polyhedron vertex, using 

the homogeneous coordinate system discussed in 

Appendix I. 

struct surface *sJ[ MAXS+1J: Array of pointers to surface structures. 

MAXVERT and AL4XS are constants used to define the maximum number of vertices and surfaces 

that may be associated with a polyhedron. 

The *sf[J array is an array of pointers to the following polyhedron surface structures: - 

struct surface ( 

float vf[AL4XBODY+IJ[AL XS+1J; 

unsbyte sfv[MAXSV+1J, type; 

float A, B, C, D, flux, absorp, trans; 

float alpha, beta, area, volume, hc, mrt; 

}; 

where the various fields are defined as follows: - 

vJJMAXBODY+1][M4XS+1J: Radiation view factors. MAXBODY is constant 
defining the maximum number of geometric bodies 

allowed. MAXS is as defined earlier. 

s, fv[MAXSV+I]: Bounding vertex sequence for surface. The vertex index 

numbers used in the sequence point to the vertex array 

element defined in the associated body structure. 

type: Surface type (Wall, window, door, isothermal surface). 

154 



A, B, C, D: Plane equation coefficients for the surface. 

flux: Used in the calculation of incident solar radiation. 

absorp, tran: Absorptivity and transmissivity, used for the 

calculation of solar flux. 

alpha, beta: Surface azimuth and elevation angles. 

area: Surface area. 

volume: Total volume occupied by finite volume cells associated 

with the surface. 

hc: External surface heat transfer coefficient. 

irrt: Mean radiant temperature of surface. 

The amount of data associated with each surface structure is extensive and thus to economise on 

system memory, the surface structures are dynamically allocated using the C mallocO function and 

each allocated structure assigned to an element of the surface structure pointer array associated with 

the appropriate body structure. 

The ****grid and ***gridpar pointers are defined in mains and declared as external variables to all 

functions by means of the include file main. h. An array of geometric body structures bd[J is 

similarly defined and declared. 

Other variables which are required by several functions and are thus defined and declared as external 

are as follows: - 

a) Finite volume dimension array: gd[ (storage class: double). 

b) Number of divisions, rows and columns, as defined in the problem data file; ndivs, prows 

and ncols (storage class: int). 
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C) Simulation data structure: struct simdata st slindata. 

The simdata st is defined as follows: - 

struct siºudata st { 

char project[100], date[20J, infile[20]; 

char bcfile[20J, tiafile[20], if le[20]; 

int maxicount, ssec, fsec, sday fday, shour; 

int(hour, smonth, finonth, tmodel, rnrodel, imodel, dmodel, ni[AL4XVAR]; 

double dt, igrx [MAXVARJ; 

double ogrxfMAXVARJ, rtemp; 

double dumpint, cevf, tol[AIAXVAR]; 

}; 

where each field represents the following: - 

project[100J: project name 

date[20]: simulation date 

infile[20]: binary model file name 
bcfile[20J: boundary condition file name 

iaf le[20]: weather file name 

vfile[20J: view factor file name 

maxicount: maximum number of outer loop iterations 

ssec, shour, sday, smonth: simulation start time 

fsec, (hour, fday, finonth: simulation finish time 

tnrodel: K-c turbulence model (ON/OFF) 

dinodel: dynamic model (ON/OFF) 

rmodel: radiation model (ON/OFF) 

imodel: isothermal model (ON/OFF) 

ni[MAXVARJ: number of inner iterations for each dependent variable 
igrxf AIAXVARJ: inner loop relaxation factors (if SOR solver employed) 

ogrxj[MA PVARJ: outer loop relaxation factors 

tol[JL4ÄYARJ: outer iteration termination tolerances for each 
dependent variable 
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cevf viscosity multiplier for constant effective viscosity 

turbulence model 

rtemp: calculation reference temperature 

di: time step for dynamic calculation 

dumpint: calculation results output interval for dynamic 

calculation 

d) Material properties structure array: struct material st mat[rL4XNIAT+1], where the 

material structures are defined as follows: - 

struct material st ( 

double rho, cp, k, absorp, trans; 

}; 

where each field represents the following: - 

rho: density 

cp: specific heat capacity 

k: thermal conductivity 

absorp: absorptivity 

trans: transmissivity 

e) An array of weather data structures: struct IVeatherDataSt 

iveatherData[NMONTHS+]J[NDAYS+]J[NHOURS+IJ, where the weather data 

structures are defined as follows: - 

struct it'eatherDataStruct ( 

int TotalHorizontallrradiation, DiffuseHorizontallrradiation; 

int DryBulbTemperature, IYindSpeed, IVindDirection; 

}; 

f) A connection structure 
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struct connection st ( 

unsbyte bdl, sf1, bd2, sf2, mat, type; 

}; 

where each field is defined as follows: - 

bdl: index number of first geometric body 

sfl: index number of first geometric body surface 

bd2: index number of second geometric body 

sf2: index number of second geometric body surface 

mat: index number of material record in materials database, 

embsim. mat (refer to d) above) 

type: connection type (wall, door, wiwindow, etc. ) 

AII. 2 Overview of the EMB Program 

The program comprises five executable files, two problem description files and four system data 

files. The relationship between the executable, problem description and system data files is 

illustrated graphically in Figure 100 and the function of each module is described in Section A11.2.1. 

AII. 2.1 Problem Definition and Data Entry - The EMBgen Program Module 

The first stage in the process of problem definition is to establish the rectilinear perimeter of the 

geometric problem domain in terms of the extent of the domain along the principal X, Y and Z axes. 
The required grid resolution may then be determined for the various regions of the calculation 
domain by considering the domain geometry (location of internal and external surfaces, doors and 

windows), probable regions of steep dependent variable gradients, the location of flow obstacles and 

the geometry of air diffusers, grilles, heat sinks, heat sources, etc. 

The calculation domain is then sub-divided into the appropriate finite volume cell dimensions along 

the X, Y and Z axes. Having established the extent and dimensions of the finite volume grid, a 

series of polyhedra are defined using the convention described in Section 4.1, in order to establish 

the geometry of internal and external surfaces, enclosures, interfaces and obstacles. A series of inter- 

surface connections may then be defined in order to establish surface types (walls, doors, windows 

and isothermal surfaces) and to assign the correct materials database index number to each finite 
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volume cell. 
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ASCII geometry file (*. 00? ) EB en bins eomet file (*. m0? ) 

bina eomet file (*. mO? ) EMBrad view factor file (*. rv/) 

binary results file (embsim. dm) EMBview 

view parameter file (display. dat) 

bina results file (embsim. dm) EMBIran ASCII results file (embsim. asc) 

Figure 100 - Relationship between program files and executable modules 

160 



A data file is then prepared as an ASCII text file, using a text editor. An example of a geometry data 

file is included in Appendix III. The ASCII geometry data file is passed to the EMBgen executable 

module as the first of two arguments, the second being the name of the binary file to be generated, 

e. g: - 

embgen <test. 001> <test. m01> 

The EMBgen module employs a series of functions that enable a set of parameters to be established 
for each finite volume cell, the parameters being stored in a gridpar st structure as defined above. In 

addition to the finite volume cell parameters, the geometric body and surface structures are 

established for each polyhedron and the constituent surface azimuth, altitude angles and area are 

calculated. The function calls employed by EMBgen are illustrated in Figure 101 and each function 

together with arguments and return value is described in Section All. 3.2. 
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Figure 101 - Function calls made by the EMBgen mainO function 
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AII. 2.2 Calculation of Radiation View Factors - The EMBrad Program Module 

The EMBrad module is used to calculate radiation view factors for the various polyhedron surface 

configurations defined in the ASCII model geometry file (refer to the EMBgen module under Section 

AII. 2.1). The module requires two arguments, the first being the name of the binary model geometry 

file, the second being the name of the ASCII view factor file to be generated, eg: - 

embrad <test. m01> <test. v vp 

The module employs a call to the function view, factorsO which in turn makes a sequence of function 

calls which collectively represent the algorithm detailed in Section 4.3.1. 

The function calls employed by EMBrad are illustrated in Figure 102 and each function together 

with arguments and return value is described in Section AII. 3.2. 
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Figure 102 - Function calls made by the EMBrad main() function 
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AII. 2.3 Problem Simulation - The EMBsim Program Module 

The main calculation routines for problem solution are contained within the EMBsim module. 

A number of data files must first be established prior to problem solution. The problem data files are 

illustrated in Figure 100 and summarised in Section AII. 2.3.1 - AII. 2.3.6. 

The EMBsim module reads the external data files (problem definition and support files) and 

initialises the dependent variable residual log file. 

The module may be run in dynamic or steady-state mode by setting the sniodel switch in the 

einbsim. sini simulation data file. 

a) Dynamic Mode 

The module establishes a dynamic loop, the limits of which are the defined start and stop times 

specified in the embsim. sim simulation data file. The loop is incremented by the time step dt, which 

is again specified in the embsim. sim data file. The boundary() and simpler() functions are then called 

for each time step from witin the dynamic loop to establish boundary conditions and solve the definig 

equation set, respectively. Calculation results are written to a series of. dmp files at each results time 

step specified in embsim. sim. Each new time step begins when convergence has been achieved in the 

the simpler() numerical solution scheme. 

b) Steady-State Mode 

The boundaryO function is first called to establish surface boundary conditions and subsequently the 

simplero function is called to solve the resulting problem equation set. 

In both steady-state and dynamic modes, the dependent variable residuals are written to the residual 
log file embsim. log, as well as being displayed on the computer monitor, at the end of each of the 

solution scheme outer iterations. 

The solution schem may be interrupted during the calculations using a CTRL-C interrupt, in which 

case the dependent variables are written to the results file embsim. dmp at the end of the current 
iteration and the EMBsim module execution is terminated. 
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The function calls employed by EMBsim are illustrated in Figures 103,104 and 105. Each function 

together with arguments and return value is described in Sections AII. 3.2. and AII. 3.3. 

AH. 2.3.1 Binary Geometry File 

The problem geometry is defined in an ASCII file and then transformed into a binary file using the 

EMBgen module (refer to Section AII. 2.1). 

AII. 2.3.2 Boundary Condition File 

Boundary conditions may be defined for the problem using an external weather data file and/or a 

boundary condition file. The boundary condition file is an ASCII file in which the value of 

dependent variables may be defined for ranges of grid points. The dependent variable values and grid 

parameter switches for the defined grid point range are read from the file using the readboundary( 

function. An example of a boundary condition file is included in Appendix III. 

AII. 2.3.3 Simulation Data File 

The simulation data file contains the external data file names for the problem, convergence control 

criteria and various other items of problem specific data 
. The file is read into a simulation data 

structure. Refer to Section AII. 1 for details of the simulation data structure. 

AII. 2.3.4 View Factor File 

If radiation heat transfer is to be calculated for the defined problem, view factors must be specified 

for all participating building geometry polyhedron surface pairings. The view factors are specified in 

an ASCII text file which may be prepared using a text editor or generated automatically using the 

EMBrad module. View factors for each surface pairing are specified with the participating 

geometric body structure array indices and the contained surface structure array indices. An example 

of a view factor file is included in Appendix III. 

AII. 2.3.5 Materials Database 

The materials database is an ASCII text file which contains a series of records of thermophysical 

properties for various materials. The file is read into a materials structure array using the getmat( 
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function. Refer to Section AII. 1 for details of the materials structure. An example of a materials 

database is included in Appendix III. 

AII. 2.3.6 Weather File 

When the EMBsim module is executed, the weather file specified in the embsim. sim simulation data 

file is read into a weather structure array (refer to Section All. 1). At each time step of the 

calculation, various items of weather data (external temperature, wind data and solar data) are 

obtained from the weather structure array using the current simulation month, day and hour as 

indices. 
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Figure 103 - Function calls made by the EMBsim main() function 
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Figure 104 - Function calls made by simpler( function 
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Figure 105 - Function calls made by theboundary( function 
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AII. 2.4 Translation of Binary Results File to ASCII Format - The EMBtran Program Module 

The EMBtran module is used to translate the binary results file embsim. dmp into an ASCII file 

embsim. asc. The dependent variables are written to the file as a series of x-y grid point tables for 

each grid division along the z-axis. A number of argument switches are available to enable the 

required variables to be extracted: - 

/u x-dimension velocities 
/v y-dimension velocities 
/w w-dimension velocities 
It temperatures 

/p pressures 

/k turbulence kinetic energy 
/e dissipation rate of turbulence kinetic energy 
/g grid dimensions and polyhedra geometry 

AII. 2.5 Graphical Visualisation of Simulation Results - The EMBview Program Module 

The EMBview module enables the three-dimensional building geometry, finite volume grid and the 

magnitudes of dependent variables to be viewed graphically on a PC hardware platform. 

The module may also be used to inspect the three-dimensional geometry of the model and finite 

volume grid generated using EMBgen (see Section AII. 2.1), prior to calculation. 

Before executing the EMBview module, various display parameters may be defined using an external 
ASCII display data file which is read by the program into a display structure: 

struct display_st ( 

char project[31J, modelfile[15]; 

double dfactor, mintemp, maxtemp, 'naxvel; 

double ti[AIAXBAND+]J, vz[AIAXBAND+]]; 

int ntband, nvband, ftype; 
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}; 

An example of a display data file is included in Appendix III. 

When the EMBview module is run, a three-dimensional image of the building geometry and defined 

contents (partitions, enclosures, obstacles, heat emitters, etc. ) is displayed. 

The building geometry is displayed with an axis frame which may be positioned to lie in the Y-Z, X- 

Z and X-Y planes by pressing ALT-X, ALT-Y or ALT-Z. The frame may then be moved along the 

selected axis to coincide with the center of a finite volume grid plane by pressing the UP or DOWN 

arrow keys. The entire displayed image (geometry and frame) may be rotated and scaled using the 

following keys: - 

x- rotate clock%Nise around the X axis 

X- rotate anti-clockwise around the X axis 

y- rotate clockwise around the Y axis 

Y- rotate anti-clockwise around the Y axis 

z- rotate clockwise around the Z axis 

Z- rotate anti-clockwise around the Z axis 

i/I - zoom IN 

o/O - zoom OUT 

Having established the required orientation and scaling factor, dependent variable magnitudes may 
be displayed using the following keys: - 

Fl - three-dimensional vector visualisation. This option may be used for flow visualisation purposes. 
A series of vectors are displayed indicating the direction of flow at the gid cell centre, the 

length of the vector being proportional to the magnitude. 

F2 - two-dimensional solar irradiation display. This option enables solar irradiated cells to be 

highlighted within the selected plane. 

F3 - two-dimensional vector display. This option is used to display velocity vectors across the plane 

selected using the axis frame. The length of each vector indicates the magnitudeof the velocity 

resolved in the selected plane. A velocity scale is displayed at the right hand side of the screen. 
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F4 - two-dimensional area fill temperature display. Each cell in the selected plane is shaded 

according to temperature. A temperature-shade key is displayed at the right hand side of the 

screen. The magnitude of the temperature increments are determined by the temperature range 

defined in the display. dat file, there being a maximum of ten increments. 

F5 - two-dimensional finite grid display. This option is used to display the dimensions of the finite 

volume grid. A distance scale is displayed at the right hand side of the screen. 

F6 - two-dimensional velocity contour display. The magnitude of each contour is defined in the 

display. dat file, each contour being drawn in a different colour. The display is overlaid with a 

magnitude grid to enable contours to be identified. 

F7 - two-dimensional temperatue contour display. The magnitude of each contour is defined in the 

display. dat file, each contour being drawn in a different colour. The display is overlaid with a 

magnitude grid to enable contours to be identified. 

The module may be exited by pressing the F10 key. 

AII. 2.5.1 Coordinate systems employed by Microsoft C graphics functions 

A physical display monitor has a range of display points or pixels which depend upon the current 

video mode (display adaptor) e. g. 16 colour VGA on a PC has a resolution of 640 X 480 pixels. A 

particular area of the physical screen may be designated a viewport using the Microsoft setvietiiport 

function and all subsequent graphics calls may then be directed to the resulting viewport. 

A floating point coordinate system (i. e. based on physical units) may then be assigned to the current 

viewport using the Microsoft set indow function. This function enables a viewport to be scaled to 

the correct range for the required display objects. The displayed graphic object may the be 

manipulated using a system of units appropriate to the object. 

EMBview employs an array of graphic window structures which incoroprate viewport coordinates 

and window coordinate ranges (i. e. ranges of physical units) for each display required e. g. three- 

dimensional geometry display, two-dimensional contour display, temperature scales, etc. 
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structg%Iin_st { 

int vxl, vx2, vyl, vy2; 

double ivxl, 1tix2, i yl, u y2; 

unsigned char tircoord; " 

}; 

A convention has been adopted whereby the origin of the window coordinate systems lie at the 

geometric centre of the vierrports. 

AII. 2.5.2 Dependent variable display 

With the exception of flow visualisation, the magnitudes of dependent variables are displayed in the 

form of vectors, contours or area fills in one of the three two-dimensional planes (Y-Z, X-Z and X- 

Y). For ease of manipulation each plane is transformed into a temporary display X-Y plane. 

In order to map the three displayable planes (Y-Z, X-Z and X-Y) onto the temporary, X-Y plane, 

vector structures are defined for the three major axes: 

struct vector st ( 

int dim, maxplane, xdim, ydim, maxxdiv, maxydiv, xcomp, ycomp; 

int zcomp; 

double lhd, xlhd, ylhd, minxdim, minydim; 

}; 

where each field is defined as follows: 

dim: defined axis constant for referencing grid dimensions COL, 

DIV or ROW from the gd[3][MAXDIMJ array. 

maxplane: number of divisions, rows or columns appropriate to the 

specific axis. 
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xdim: defined axis constant to be mapped onto temporary display X 

axis. 

ydim: defined axis constant to be mapped onto temporary display Y 

axis. 

maxxdiv : number of divisions, rows or columns appropriate to the 

specific axis to be mapped onto the temporary number of X 

divisions. 

maxydiv: number of divisions, rows or columns appropriate to the 

specific axis to be mapped onto the temporary number of Y 

divisions. 

xcomp: axis to be mapped to temporary X axis for coordinate 

transformation. 

yco np: axis to be mapped to temporary Y axis for coordinate 

transformation. 

zcomp: axis to be mapped to temporary Z axis for coordinate 

transformation. 

lhd: geometry dimension (length, height, depth) in current axis. 

xlhd: geometry dimension (length, height, depth) of axis to be 

mapped onto temporary X axis. 

ylhd: geometry dimension (length, height, depth) of axis to be 

mapped onto temporary Y axis. 

minxdim: minimum geometry vertex on axis to be mapped onto 

temporary X axis or coordinate transformations. 

minydim: minimum geometry vertex on axis to be mapped onto 

temporary Y axis or coordinate transformations. 
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The function calls employed by the EMBview module are illustrated in Figure 106 and each function 

together with arguments and return value is described in Section AIL3.4.5. 
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Figure 106 - Function calls made by the EMBview main() function 
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AII. 3 Program Structure 

The executable files are built from a group of calculation source files and data 'include' files. To 

facilitate program development, the source files are grouped into four sub-directories under the main 

EMB directory: 

\include: 

Icalclib: 

IEMB 

Isimcalc: 

L 
lexec: 

pre-processor include files 

calculation library files 

simulation function sequence call files 

executable source files 

AII. 3.1 Pre-processor include files; the include sub-directory 

Common data structures, constants and macros are defined in the include file defs. h which is made 

available to all source files using the C preprocessor #include directive. Similarly, external function 

declarations, constants and macros which are peculiar to specific function groups are defined in an 

include file having the same prefix file name as the function group source file, e. g. geometry. h is the 

include file for geometry. c. External data declarations (i. e. common data) are included in the nmain. h 

file. 

AII. 3.2 Calculation library files; the Icalclib sub-directory 

Calculation functions are grouped into a series of source files using logical associations, e. g. all 

interpolation functions are grouped into the intplt. c source file. The calculation source files are then 

compiled separately and archived into the form of an object library (using the ar utility under UNIX 

and the lib utility under MS-DOS Microsoft Q. The calculation library may then be linked with each 

executable 'main' object file, enabling common access to functions, e. g. the same geometrical 

transformation functions (rotations, etc. ) are required for binary data file generation, radiation view 

factors and solar tracking and graphical results display. The Icalclib source files and their associated 

functions, together with arguments, return values and function description are detailed in Sections 

AII. 3.2.1 - All. 3.2.14. 
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AII. 3.2.1 GDE. C 

a) void coeffs(var, var type, divs, rows, cols) 

Arguments: 

var (int): Grid variable as defined in DEFS. H. 

var type (int): Grid variable type as defined in DEFS. H. Type may be 

scalar (SCALAR), U-component of velocity 

(U COMPONENT), V-component of velocity 

(V COMPONENT) or W-component of velocity 

(IV COMPONENT). 

divs (int): Number of divisions in flow field. 

rows (int): Number of rows in flow field. 

cols (int): Number of columns in flow field. 

Return value: 

None. 

Description: 

coeffsO calculates the general differential equation grid point and finite volume interface 

coefficients in addition to the b' term (refer to Eq. 3.58). Interpolations for interface velocities 

and diffusion coefficients are effected, where necessary, through calls to intplt_gvO. Source 

terms are obtained via calls to the appropriate source function, the correct function being 

selected by means of an array of pointers to source functions, the index of the array being the 

variable index var, which is passed into coeffsO from simplerO. The correct wall function is 

selected in a similar fashion, if the adjacent finite volume cells are static (i. e. if the bfstatic 

flag is set in the gridpar bf bit field of the appropriate gridpar structure). In the case of the 

energy equation, the correct wall function is selected if either the current finite volume or an 

adjacent finite volume (but not both) is defined as STA TIC, this relationship being established 

through application of an'exclusive or' macro, which is defined in theDEFS. H file as xorO. 
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b) double f(Pe) 

Arguments: 

Pe (double): Peclet number. 

Return Value: 

Diffusion coefficient factor. 

Description: 

Used to derive the combined convection-diffusion coefficient for alternative discretisation 

schemes (see Section3.2.4). 

AII. 3.2.2 PRESSUREC 

a) double p coeffs(uvar, war, imar) 

Arguments: 

uvar (int): U-component variable, either pseudo-velocity (U) or 

guessed velocity (U), as defined in DEFS. H as U PSVEL 

and U STAR, respectively. 

war (int): V-component variable, either pseudo-velocity (V) or 

guessed velocity (V), as defined in DEFS. H as V PSVEL 

and V STAR, respectively. 

m'ar (int): W-component variable, either pseudo-velocity (W) or 

guessed velocity (W), as defined in DEFS. H as IV PSVEL 

and IV STAR, respectively. 

Return value: 

The maximum absolute value of finite volume mass residual - the b' term of the pressure 

correction equation (see Eq. 3.69). 
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Description: 

p_coeffso calculates the grid point and finite volume interface coefficients for the pressure 

and pressure correction equations (Equations 3.69 and 3.73 , respectively). uvar, vvar and 

xvar are passed to the function in order that the correct b' term may be calculated, i. e. 

U STAR, V STAR and 1V STAR for the pressure correction equation, and U PSVEL, 

V PSVEL and IV PSVEL for the pressure equation. 

AII. 3.2.3 FILE. C 

a) int readmodel(flr, ncn, cn) 

Arguments: 

fn (char *): ASCII geometry model file name. 

ncn (int *): number of surface-surface connections. 

en (struct connection st *): array of connection structures. 

Return value 

None. 

Description: 

The readmodelü function is used to read an ASCII problem geometry data file from disk in a 

defined sequence and to assign the data values to the appropriate data structures. The data 

comprises finite volume grid dimensions, site latitude and orientation, building space 

polyhedra data sets and a list of surface-surface connection information, an example of an 

ASCII geometry file is included in Appendix III. 

The readmodelO function calls the geometric rotateO function in order to generate a site 

orientation rotation matrix which is used in conjunction with the transform() function to 

convert the building space polyhedra vertex coordinates from a local coordinate system to a 

'real-world' coordinate system (see Section 4.1.2). 

Prior to reading each polyhedron surface data set, system memory is dynamically allocated for 
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a surface structure, using the addsurface macro which is defined in DEFS. H: - 

#defrne addsurface ((struct surface *)malloc(sizeof(struct surface))) 

The allocated surface structure is then assigned to the appropriate element of the surface 

structure pointer array, defined within the current geometric body structure array element, 

e. g.: - 

if((bd[i]. sf jjJ=addsurface) == NULL) leave ("Inst f cient memory for surfaces'); 

Each set of surface-surface connection data is read into a connection st structure, as defined 

in Section AII. 1. 

b) int dumpmodel(fn) 

Arguments: 

fn (char *): binary geometry model file name. 

Return value 

1 if the file is written successfully, other wise 0. 

Description: 

dumpmodelO opens the disk file fn, for writing, the variables ndivs, ncols, nroias nbodies, 

orient and latitude are then written to disk in the form of a header structure. The 

gridpar[J[J[J array is subsequently written to disk as a byte stream. Each element of the 

geometric body structure array bd[J is then written to disk, the dynamically allocated surface 

structures being written sequentially following the associated body structure. 

The dumpmodelO function calls the geometric rolate( function in order to generate a site 

orientation rotation matrix which is used in conjunction with the transform( function to 

convert the building space polyhedra vertex coordinates from the 'real-world' coordinate 

system to a local coordinate system (see Section 4.1.2). 
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c) int loadmodel(fn) 

Ar uý ments: 

fn (char *): binary geometry model file name. 

Return value 

1 if the file is read successfully, otherwise 0. 

Description: 

The file fn is opened for reading and the variables ic, ndivs, nrows, ncols, nbodies, orient, 
latitudeare read via the file header structure, the finite volume grid parameter array 

gridpar[J[J[J[ is subsequently read in the form of a byte stream. Each element of the 

geometric body structure array bd[J is then read, the surface structures associated with each 

element are read subsequent to memory being dynamically allocated and assigned to the 

appropriate surface structure pointer array element. 

The loadmodelO function calls the geometric rotateO function in order to generate a site 

orientation rotation matrix which is used in conjunction with the transformO function to 

convert the building space polyhedra vertex coordinates from a local coordinate system to a 
'real-world' coordinate system (see Section 4.1.2). 

d) int dumpf (In, status, month, day, hour, sec) 

Arguments: 

fir (char *): dump file name. 

status (int): flag to exit program or return to calling function. 

month (int): simulation month. 
day (int): simulation day. 

hour (int): simulation hour. 

sec (int): simulation second. 
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Return value: 

1 if the file is «ritten successfully, otherwise 0. 

Description: 

When the simulation is run in steady-state mode, dump() is called automatically on 

termination of the program (either through a CTRL-C interrupt or when the dependent 

variable residuals have diminished to the defined tolerances. The disk file EMBSIM. DAIP is 

opened for writing and the variables is (iteration count), ndivs, prows, ncols, nbodies, orient, 
latitude and the simulation time (cnionth, cday, chour and csec) are written to the file in the 

form of a header structure, the main finite volume grid arrays grid[][][][] and 

gridpar[J[J[J[J are subsequently written to the file in the form of byte streams. Each element 

of the geometric body structure array bd[] is then written to disk, the dynamically allocated 

surface structures being written sequentially following the associated body structure. The 

E1IBSJM. DMP file is subsequently closed and the program exited 

The dumpfO function calls the geometric rotateO function in order to generate a site 

orientation rotation matrix which is used in conjunction with the transfonn p function to 

convert the building space polyhedra vertex coordinates from the 'real-world' coordinate 

system to a local coordinate system (see Section 4.1.2). 

When run in dynamic mode, the dumpü function is called by the EMBSIM module at the end 

of a results output interval, the duration of which is defined in the EMBSJMSIM file. Each 

interval results file is prefixed with FMB, followed by the interval serial number (e. g. 

EMB0001. DMP, F. MB0002. DMP, etc. ). 

e) , nr ! oadf(fn) 

Arguments: 

fn (char *): binary dump file name. 

Return value: 

1 if the file is read successfully, otherwise 0. 
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Description: 

The file fn is opened for reading and the variables ic, ndivs, nroiis, ncols, nbodies, orient, 
latitude and the simulation time (cmonth, cday, chour and csec) are read via the file header 

structure, the main finite volume grid arrays grid[J[J[J[J and gridpar[JQ[J[ are 

subsequently read in the form of byte streams. Each element of the geometric body structure 

array bd[J is then read, the surface structures associated with each element are read 

subsequent to memory being dynamically allocated and assigned to the appropriate surface 

structure pointer array element. 

The loadfQ function calls the geometric rotateO function in order to generate a site 

orientation rotation matrix which is used in conjunction with the transformo function to 

convert the building space polyhedra vertex coordinates from a local coordinate system to a 
'real-world coordinate system (see Section 4.1.2). 

f) int readboundary(fn) 

Arguments: 

fn (char *): boundary condition data file name. 

Return value: 

I if the file is read successfully, otherwise 0. 

Description: 

The ASCII boundary condition data file flu (specified in F-MBSIMSIM and read into 

simdata. bcfrle) is read from disk. Boundary conditions that may be specified comprise 

velocity components, temperatures, casual heat fluxes, static cells, turbulence kinetic energy 

and the dissipation rate of turbulence kinetic energy. The boundary condition information is 

entered in the data file in the form of rows of data specifying blocks of finite volume cells (in 

terms of starting and finishing X, Y and Z cell numbers), the appropriate variable index and 
the value of the variable to be specified. The format of the boundary condition data file is 

presented in Appendix III. 
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g) int readwf(jn) 

Arguments: 

fn (char *): ASCII weather data file name (*. asc). 

Return value: 

1 if the file is read successfully, otherwise 0. 

Description: 

Reads each daily record of the asc weather file into an array of WeatherData St structures 

(see Section All. 1). 

h) int getmat(/iz) 

Arguments: 

fig (char *): ASCII materials database file name (enmbsim. mat). 

Return value: 

1 if the file is read successfully, otherwise 0. 

Description: 

Reads each record of the embsini. mat materials database file into an array of material st 

structures (see Section AII. 1). 

i) int getsimdatao 

Arguments: 

None. 
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Return value: 

1 if the file has been read successfully, otherwise 0. 

Description: 

getsimdatap reads various items of data required by the EMBSIM module into a simdata st 

structure, as defined in Section AIL 1. 

5.3.2.4 UTIL. C 

a) void initgridvarO 

Arguments: 

None. 

Return value: 

None. 

Description: 

Initialises grid point variables which are not set by the problem data file. Initial values are as 
follows: - 

U-component of velocity: 0.1 ms-1 

V-component of velocity: 0.0 ms-1 

W-component of velocity: 0.0 ms-1 

Temperature: 20 C 

Pressure: 0.0 Pa 

Pressure correction: 0.0 Pa 

Turbulence kinetic energy: 0.01 

Dissipation of turbulence kinetic energy: Cµ k'-5 / 0.05 
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b) void viscositiesO 

Arguments: 

None. 

Return value: 

None. 

Description: 

This function calculates the turbulent viscosities for each scalar grid point throughout the 

flow field, using the turbulence kinetic energy and dissipation of turbulence kinetic energy 

quantities (Equation 3.32). 

5.3.2.5 IN7PLT. C 

a) double intplt__gv(intplt, gv, h, i j, vl, v2, mask) 

Arguments: 

intplt (double (*)()): pointer to appropriate interpolation function - linear or 
harmonic. 

gv (int): grid variable to be interpolated, as defined in DEFS. H. 

/ (int): division. 

i (int): row. 

j (int): column. 

vl (double): When an interpolation is required between two previously 
derived values, vl represents the first value. 

v2 (double): When an interpolation is required between two previously 
derived values, v2 represents the second value. 

mask (char *): a ten element array of signed bytes, each byte being 

defined as follows: - 
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{ 1,1,0,1, L1 
interpolate/don't 

_J 
interpolate flag 

DIV 

ROW 

COL 

Increment/decrement to be 

applied to h, i or j 

(depending on whether mask[]J 
is equal to DIV, ROTVor COL) 

Increment/decrement to be 

applied to h, i or j 

depending on whether mask[l] 
is equal to DIV, ROW or COL 

Increment/decrement to be applied 

to h, i and j in order to index 

first variable 

Increment/decrement to be applied 

to h, i and j in order to index 

second variable 

Return value: 

Result of interpolation. 

Description: 

1,1,1 ,} 

intplt_gvO is used by coeffsO and G_kO in order to derive finite volume interface velocities 

and diffusion coefficients through the application of arithmetic and harmonic interpolations, 

respectively (refer to Section 3.2.10). Arrays of interpolation masks are defined at the 
beginning of functions coeffso and G_kO, the first element of the mask indicates whether or 
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not an interpolation is required for the current variable, the second element indicates the 

dimension across which the interpolation is required, the third element is the required 
increment or decrement to be applied to h, i or j depending on the interpolation dimension, 

the fourth element is applied in the same way as the third element, the third and fourth 

elements being used to calculate the interpolation factor f (see Section 3.2.10), the fifth, sixth 

and seventh elements are the required increments or decrements to be applied to h, i and j 

respectively, in order to derive the correct index for the first interpolation variable value, 

similarly the eighth, ninth and tenth elements are used in order to index the second variable 

value. At the beginning of the function coeffsü, these masks are set up in the form of 4x10 

two-dimensional arrays for each variable to be interpolated, each array being a set of four ten- 

element masks for the variable types defined in DEFS. H (i. e. U COMPONENT, 

V COMPONENT, TV COMPONENT and SCALAR), the first dimension of the array being 

indexed via the defined constants for the variable types. If the first increment/decrement field 

for each variable is set as PASSED (defined in DEFS H), inlpltgvo will conduct an 
interpolation between vl and v2 rather than deriving the interpolation variables, thus 

enabling an interpolation between previous results of interpolations which is required by the 

function G kQ in the determination of velocity gradients. 

b) double intplt l(fiv1, v2) 

AAr uments: 

f (double): interpolation factor. 

vI (double): first interpolation variable. 

v2 (double): second interpolation variable. 

Return value: 

Result of interpolation. 

Description: 

Conducts a linear interpolation between vl and v2 via the interpolation factor f (see 

Section 3.2.10). intplt Ip is called by intpltgvo for the determination of finite volume 
interface velocities. 

190 



c) double intplt h(f, v1, v2) 

Arguments: 

f (double): interpolation factor. 

vl (double): first interpolation variable. 

v2 (double): second interpolation variable. 

Return value: 

Result of interpolation. 

Description: 

Conducts a harmonic interpolation between vl and v2 via the interpolation factor f (see 

Section 3.2.10). intplt 10 is called by intpltsvO for the determination of finite volume 

interface diffusion coefficients. 

d) double get gd(dm, l, nrask) 

Arguments: 

dm (double *): sub-array of the grid dimension array gd[J[], either 

gd[DIV], gd[ROW] or gd[COLJ. 
I (double): division, row or column. 

mask (char *): a six-element array of signed bytes where each byte is 

defined as follows: - 
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{ 1,0,1,1, -1,0 } 

calculate/don't calculate flags 

for variable types U COMPONENT, 

V COMPONENT, 1V COMPONENT 

and SCALAR, in that order 

increment/decrement to be applied to din[l] 

in order to derive the first scalar cell 

dimension 

increment/decrement to be applied to din fl] 

in order to derive the second scalar cell 

dimension 

Return value: 

Calculated grid dimension 

Description: 

This function calculates the grid dimensions for all variable types (velocity components and 

scalar variables), gdyn, gdys, gdxe, gdxw, gdzt and gdzb. The calculation is conducted simply 

by taking the arithmetic mean of the two scalar cell dimensions, due to the location of the 

finite volume grid points at the geometric centre of the finite volumes. 

AII. 3.2.6 SOURCE. C 

a) double G k(h, i, j) 

Arguments: 

h (int): division. 

i (int): row. 

j (int): column. 
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Return value: 

The Gk source element employed in the turbulence kinetic energy and dissipation of 

turbulence kinetic energy equations. 

Description: 

Q 
_k-0 

determines all of the required finite volume interface velocity components in order to 

establish velocity gradients across the current cell, through calls to intplt_ ", 0. The Gk source 

term is then calculated from finite difference approximations for the velocity gradients, in 

conjunction with the appropriate turbulent viscosity. 

b) double G b(h, i, jJ 

Arguments: 

h (int): division. 

i (int): row. 

j (int): column. 

Return value: 

The Gb source element employed in the turbulence kinetic energy and dissipation of 

turbulence kinetic energy equations. 

Description: 

G_bO establishes the vertical temperature gradient across the cell and subsequently calculates 

the Gb term using the mean field thermal expansion coefficient beta (refer to Section 3.1.2). 

193 



c)-h) void source_u(Sp, Sc, e, h, i, j) 

void source v(S p, Sc, e, h, i, j) 

void source 1v(Sp, Sc, e, h, i, j) 

void source t(Sp, Sc, e, h, i, j) 

void source k(Sp, Sc, e, h, i, j) 

void source e(Sp, Sc, e, h, i, j) 

Arguments: 

Sp (double *): pointer to the grid point variable coefficient element of the 

source term. 

Sc (double *): pointer to the element of the source term excluded from the 

grid point variable coefficient. 

e (double): average dissipation of turbulence kinetic energy, required 

for the calculation of the turbulence kinetic energy source 

term when the current cell is adjacent to a static cell. 

h (int): division. 

i (int): row. 

j (int): column. 

Return value: 

None. 

Description: 

These functions calculate the source terms required by the appropriate differential equations. 
The source terms are returned to coeffsO via pointers to Sp and Sc. 
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AII. 3.2.7 PSVEL. C 

a) void pseudovelocities(var, psvel, coeff, divs, rows, cols) 

Arguments: 

var (int): velocity component as defined in DEFS. H (U IGEL, V 
-TEL 

and TV VEL). 

psvel (int): 'pseudo-velocity' component as defined in DEFS. H 

((LPSVEL, V PSVEL and IV PSVEL). 

coeff (int): momentum equation grid point velocity coefficient as 
defined in DEFS. H (U_COEFF, V COEFF and 
W COEFF). 

divs (int): number of divisions in flow field 

rows (int): number of rows in flow field 

cols (int): number of columns in flow field 

Return value: 

None. 

Description: 

This function calculates 'pseudo-velocities' which are subsequently employed by the pressure 

equation (see Section 3.2.8). During calculation of the pseudo-velocities, the grid point 

coefficients are stored in the grid[][J[][] sub-array determined by coef,, these coefficients are 

subsequently used in the calculation of pressure coefficients, pressure correction coefficients 

and velocity corrections. 
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AII. 3.2.8 VCORR. C 

a)-c) void u_correctionO 

void v correctionO 

void w correctionO 

Arguments: 

None. 

Return value: 

None. 

Description: 

These functions calculate the U, V and W velocity components as defined in DEFS. H 

(U I/EL, V VEL and Ii' VEL), using the velocity correction formulae detailed in 

Section 3.2.7. 

All. 3.2.9 SQLVE. C 

a) double solve(var, divs, rows, cols) 

Arguments: 

var (int): variable equation to be solved. 
divs (int): number of divisions in flow field. 

rows (int): number of rows in flow field. 

cols (int): number of columns in flow field. 

Return value: 

Normalised maximum absolute residual (see Section 3.2.11). 
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Description: 

This function solves the discretised equation set for the variable defined by var, using the 

coefficients and source terms previously calculated by coeffso and p_coeJf sO. The method 

employed may be either the SOR or the line-by-line methods, detailed in Section 3.2.9. 

AII. 3.2.10 JVALLFN. C 

a) doubl for coeff(k, y) 

Arguments: 

k (double): turbulence kinetic energy. 

y (double): distance from wall or static cell. 

Return value: 

Velocity coefficient for wall shear stress. 

Description: 

for coeffo calculates the velocity coefficient for the wall shear stress, which is employed by 

the velocity component wall functions and the turbulence kinetic energy and dissipation of 

turbulence kinetic energy source term function G_kO. 

b)-e) double wallfunc v(h, i, j, ha, ia, ja, wfe, Sp, Sc, i jk, yw, dx, face) 

double wal f me t(h, i, j, ha, ia, ja, tiefe, Sp, Sc, % jl , yw, dx, face) 

double walifunc k(h, i, j, ha, ia, ja, tiefe, Sp, Sc, wfk, }iv, dx, face) 

double wallfunc e(h, i, j, ha, ia, ja, i1 fe, Sp, Sc, tij , yw, dx, face) 

Arguments: 

h (int): division. 

i (int): row. 
j (int): column. 

ha (int): adjacent cell division. 
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is (int): adjacent cell row. 

ja (int): adjacent cell column. 

titfe (double *): pointer to average dissipation of turbulence kinetic energy 

variable, this term is set by the iaallfunc kQ function and 

subsequently passed into the source kO function. 

Sp (double *): pointer to grid point variable coefficient of source term. 

Sc (double *): pointer to element of source term excluded from grid point 

variable coefficient. 

ivjk (double): turbulence kinetic energy. 

yw (double): distance from w; all. 

dx (double): dimension of cell perpendicular to wall. 
face (int): orientation of cell face (NORTH, SOUTH, EAST, WEST, 

TOP or BOTTOM). 

Return value: 

Differential equation finite volume wall interface coefficient. 

Description: 

These functions are used to calculate shear stresses, heat fluxes and turbulence quantities in 

near-wall regions (see Section 3.3). 

AII. 3.2.11 GEOMETRY. C 

a) int ray intersect(sf sc, fc, ic) 

Arguments 

sf (struct surface *): pointer to structure associated with surface with which the 

intersection is to be calculated 

sc (double *): xyz coordinates of vector start point. 
fc (double *): xyz coordinates of vector end point. 
is (double *): computed ayz coordinates of vector/surfcae intersection 

point. 
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Return Value 

1 if an intersection occurs, otherwise 0. 

Description 

Determines whether or not a vector and plane intersect and if so calculates the xyz coordintes 

of the intersection point, using the algorithm detailed in Appendix I. 

b) void geometric centre(nv, ivi, cg) 

Arguments 

nv (int): number of polgon vertices. 

tvt (double (*)[4]) temporary array of xyz vertex coordinates. 

cg (double *) xyz coordinates of the computed geometric centre of the 

polygon. 

Return Value 

None. 

Description 

Calculates the geometric centre of a concave polygon, simply by taking the midpoint of the 

maximum and minimum coordinates of the X, Y and Z dimensions. The geometric centre 

coordinates are returned in the cg array. 

c) void zero malrix(m) 

Arguments 

m (double (*)[4]): 4x4 matrix to be zeroed. 
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Return Value 

None. 

Description 

Assigns zero values to each element of a 4x4 matrix, prior to subsequent assignments. 

d) void tra7slate(X»rv, Ymv, Zmv, translation 171atrix) 

Arguments 

Xmv (double): distance point is to be translated along the X axis. 

Ymv (double): distance point is to be translated along the Y axis. 

Zmv (double): distance point is to be translated along the Z axis. 

translation matrix (double (*)[4]): 4x4 point transformation matrix for translation. 

Return Value 

None. 

Description 

Constructs a translation matrix as described in Appendix I. 

e) void rotate(axis, angle, rotation matrix) 

Arguments 

axis (int): principal axis around which point is to be rotated 

angle (double): angle through which point is to be rotated 

rotation matrix (double (*)[4]): 4x4 point transformation matrix for rotation. 

Return Value 

None. 
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Description 

Constructs a rotation matrix as described in Appendix I. 

f) void scale(Xsc, Ysc, Zsc, scale matrix) 

Ar muments 

Xsc (double): ratio by which X coordinates are to be scaled. 

Ysc (double): ratio by which Y coordinates are to be scaled. 

Zsc (double): ratio by which Z coordinates are to be scaled. 

scale matrix (double (*)[41): 4x4 point transformation matrix for scaling. 

Return Value 

None. 

Description 

Constructs a scaling matrix as described inAppendix I. 

g) void nnzdt matrix(m2, m1) 

Arguments 

m2, ml (double (*)[4]): 4x4 matrices to be multiplied together. 

Return Value 

None. 

Description 

Conducts a 4x4/4x4 matrix multplication and returns the result in the m2 matrix. The 

mult_matrix() function is used to construct a concatenated transformation matrix when 
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sequential rotation, translation or scaling operations are required 

h) void transform(pt, mat, tpt) 

Arguments 

pt (double *): 

mat (double (*)[4]): 

tpt (double *): 

Return Value 

None. 

Description 

xyz coordinates of point to be transformed. 

transformation matrix. 

xyz coordinates of transformed point. 

Transforms the three-dimensional coordinates of a point pt[J, using the transformation matrix 

niat[J by performing a 1x4/4x4 matrix multplication. The result of the multiplication is 

returned in tpt[J. 

i) void unitvec(cs, ce, cu) 

Arguments 

cs (double *): 

ce (double *): 

cu (double *): 

Return Value 

None. 

Description 

xyz coordinates of vector start point. 

ayz coordinates of vector end point. 

xyz coordinates of unit vector end point. 

Calculates a unit vector with start point cs! ], in the direction cell. The coordinates of the end 

point of the unit vector are returned in cu[]. 

202 



i) double dot(cl, c2, c3) 

Ar uiý vents 

cl (double *): 

c2 (double *): 

c3 (double *): 

Return Value 

The vector dot product. 

Description 

ayz coordinates of first vector start point. 

xyz coordinates of common end point for both vectors. 

xyz coordinates of second vector start point. 

Calculates the vector dot product (scalar product) of two vectors sharing a common point: - 

bl 

a'b = [al a2 a3] b2 
b3 

j) void normal (cl, c2, c3, nc) 

Arguments 

cl (double *): 

c2 (double *): 

c3 (double *): 

ne (double *): 

Return Value 

None. 

Description 

xyz coordinates of first vector start point. 

xyz coordinates of common end point for both vectors. 

xyz coordinates of second vector start point. 

xyz coordinates of normal vector end point. 

Calculates the end point coordinates of a unit normal, starting at a common point between 
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two vectors, by calculating the vector cross product between the two -vectors, see Appendix I. 

The cross product is passed to the unitvec( function in order to derive the unit normal. 

k) double vector length(cl, c2) 

Arguments 

cl (double *): xyz coordinates of vector start point. 

c2 (double *): ayz coordinates of vector end point. 

Return Value 

Length of vector. 

Description 

Calculates the length of a vector, see Appendix I. 

1) int visible(sc, vp, cszz) 

Ar ents 

sc (double *): xyz coordinates of point to be checked for visibility. 

vp (double *): xyz coordinates of view point. 

can (double *): pointer to value of cosine of angle between the view point- 

viewed point vector and the outward normal vector to the 

viewed point. 

Return Value 

1 if point is visible, otherwise 0. 

Description 

Determines visibility of one point from another and if visibility is confirmed, computes the 

angle cosine between the viewed point-view point vector and an outward normal to the viewed 
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point, using the algorithm described in Appendix I. 

m) void p1ane(c1, c2, c3, A, B, C, D) 

Arguments 

cl, c2, c3 (double *): 

A, B, C, D (double *): 

Return Value 

None. 

Description 

xyz coordinates of first three non-collinear clockwise 

vertices of surface. 

pointers to values of coefficients of plane in which surface 
lies. 

Calculates coefficients of surface plane equation, using the algorithm detailed in Appendix I. 

n) double poly_area(nv, hvt) 

Ar uý ments 

nv (int): number of polygon vertices. 

tvt (double (*)[4]): temporary array of xyz coordinates of polygon vertices. 

Return Value 

Area of polygon. 

Description 

Calculates the area of a concave or convex polygon, using the algebraic trapezoidal 

summation algorithm detailed in Appendix I. 
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o) int point_contained inplane(nv, tvt, pt) 

Arguments 

in, (int): number of polygon vertices. 

tvt (double (*)[4]): temporary array of xyz coordinates of polygon vertices. 

pt (double *): xyz coordinates of point for which containment is to be tested. 

Return Value 

1 if point is contained, other wise 0. 

Description 

Determines whether or not a point is contained within a concave or convex polygon, using the 

algorithm detailed in Appendix I. 

5.3.2.12 SOLAR. C 

a) void solar angles(lat, day, hour, ornt, phi, beta, gamma, theta) 

Arguments 

lat (double): latitude. 

day (int): day of year. 
hour (double): hour of day. 

ornt (double): surface orientation angle. 

phi (double): surface tilt angle. 
beta (double *): pointer to computed value of solar altitude. 

gamma (double *): pointer to computed value of solar azimuth. 

theta (double *): pointer to computed value of solar angle of incidence. 

Return Value 

None. 
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Description 

Calculates solar angles using the equations detailed in Section 4.2.1. 

b) double solarrad(month day, hour, beta, theta, drct, duf) 

Arguments 

month (int): 

day (int): 

hour (int): 

beta (double): 

theta (double): 

drct (double *): 

diff (double *): 

Return Value 

month of year. 
day of year. 
hour of day. 

solar altitude. 

solar angle of incidence. 

pointer to derived value of direct component of solar flux. 

pointer to derived value of direct component of solar flux. 

Total derived incident solar flux (direct plus diffuse). 

Description 

Reads total and diffuse solar flux from the weather data array, WeatherData (see Section 

All. 1), the array is indexed using month, day and hour. The derived direct component (total- 

diffuse) is corrected for angle of incidence and solar altitude (see Section 4.2.1). 

c) void solar vector(sc, K"c, gamma, beta) 

Ar ments 

sc (double *): computed xyz coordinates of solar vector end point. 

we (double *): ayz coordinates of solar vector start point. 

gamma (double): solar azimuth. 

beta (double): solar altitude. 
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Return Value 

None. 

Description 

Calculates solar vector described in Section 4.2. 

d) int ray_in_cell(uc, gamma, beta, gp, srad) 

Arguments 

wc (double *): xyz coordinates of window grid point. 

gamma (double): solar azimuth. 

beta (double): solar altitude. 

gp (int): computed division/row/column location of irradiated finite 

volume cell. 

srad (double *): pointer to computed value of solar flux incident on finite 

volume grid cell. 

Return Value 

I if a finite volume grid cell is irradiated, otherwise 0. 

Description 

Determines whether or not a finite volume grid cell is irradiated by a solar ray projected from 

the window concerned, using the algorithm detailed in Section 4.2. If a cell is found to be 

irradiated, the division/row/column location of the cell is returned in gp[J. If 

transinittinglabsorbing/reflecting surfaces are encountered in the path of the ray, the 

transmitted radiation (srad) is corrected by the transmissivity of each transmitting element, 

the final incident flux being returned to the variable address *srad. 

208 



e) void solarpatch(body, surface, irad, gamnia, beta) 

Arguments 

body (int): 

surface (int): 

irad (double): 

gamma (double) 

beta (double): 

Return Value 

None. 

Description 

index number of building polyhedron with which window 

surface is associated 

index number of building polyhedron window surface. 

incident direct solar flux. 

solar azimuth. 

solar altitude. 

Calculates the transmitted direct component of solar radiation and calculates the location of 

an internally irradiated solar patch arising from an external window surface, assigning the 

correct proportion of flux to the finite volume cells lying within the patch. The algorithm 

adopted by this function is described in Section 4.2. 

fl void insolation(lot, month, day, hour) 

Arguments 

! at (double): latitude. 

month (int): month of year. 
day (int): day of month. 
hour (int): hour of day. 

Return Value 

None. 
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Description 

Computes solar angles, solar flux and conducts internal solar tracking through calls to 

solar anglesO, solarradO and solar patchO. 

AIL3.2.13MODEL. C 

a) void find grid coordinates(pt, xyz) 

Arguments 

pt (double *): xyz coordinates of point. 

xyz (int *): computed division/row/column location array for finite 

volume grid cell. 

Return Value 

None. 

Description 

Uses simple grid containment tests in the X, Y and Z dimensions in order to identify the finite 

volume grid cell in which the point pt[J lies. The location of the cell (as division/row/column 

index) is returned in the xyz[J array. 

b) void surfaceseo(body, surface) 

Arguments 

body (int): building polyhedron index number. 

surface (int): building polyhedron surface index number. 

Return Value 

None. 
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Description 

Calculates the area and orientation angles of a building polyhedron surface, using the 

algorithms described in Section 4.1. The coefficients of the surface plane equation are also 

calculated using Equations AI. 8-AI. 11, the derivations of which are described in Appendix I. 

c) void connection_cells(cn) 

Arguments 

cii (struct connection st): 

Return Value 

None. 

Description 

a connection structure (see Section All. 1). 

The connection ce11sO function uses the method described in Section 4.1 in order to assign 

the correct materials database index number to the appropriate finite volume cells. 

Additionally, the gridpar[][J[J. gridparbfstatic switches are assigned the appropriate logical 

values (TRUE or FALSE). Surface absorptivities are also assigned by this function. 

d) void surface_cells(body, surface) 

Arguments 

body (int): building polyhedron index number, 

surface (int): building polyhedron surface index number. 

Return Value 

None. 
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Description 

Determines which finite volume grid cells are associated with each building polyhedron 

surface, using the method described in Section 4.1. The gridpar[J[J[J. nb, gridpar[J[J[J. bd[J 

and gridpar[J[J[J. sf[] variables are subsequently assigned the correct values. Additionally, 

the surface cells() function assigns the corect values to the gridpar[J[JQ. gridpar bjsurface 

type switches (see Section AIL 1). 

e) void external cells() 

Arum 

None. 

Return Value 

None. 

Description 

The external cellsO function identifies all finite volume grid cells external to all building 

polyhedra by conducting grid traverses. Initially the function sets the external condition 

switch (set in a gridpar[J[J[J. gridpar bf structure) to TRUE and then FALSE when an 

outward facing external surface is encountered and similarly back to TRUE again when an 
inward facing external face is met. 

AII. 3.2.14RAD. C 

a) void strip patch(body, surface, pcl, pt], tptl, bn) 

Arguments 

body (int): building polyhedron index number. 

surface (int): building polyhedron surface index number. 

pc] (double (*)[4]): xyz coordinates of source surface vertices. 

p11 (double *): xyz coordinates of source surface grid point. 
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tptl (double *): 

Im (double (*)[4]): 

Return Value 

None. 

Description 

xyz coordinates of source surface grid point, transformed to 

2D plane. 

transformation matrix to transform 2D points projected from 

source surface grid point back to 'real-world coordinates. 

Computes 'strip and patch' coordinates projected from source surface grid point and 

subsequently calculates elemental view factors, in accordance with the procedure described in 

Section 4.3. 

b) void of grid(body, surface) 

Arguments 

body (int): building polyhedron index number. 

surface (int): building polyhedron surface index number. 

Return Value 

None. 

Description 

Transforms 3D building surface into 2D plane and constructs a t«wo-dimensional grid for use 
in view factor determination. The of gridO function subsequently calls stripj, atchO in order 

to determine the elemental view factors for each grid cell. Subsequent to all grid cells being 

accounted for, the elemental view factors are combined in order to derive point configuration 

view factors which are similarly combined to form surface-surface view factors (refer to 

Section 4.3). 
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c) void vieivw factorsO 

Arguments 

None. 

Return Value 

None. 

Description 

The vieiti, factorso function calculates radiation %riew factors for all participating surface 

pairings throughout the calculation domain, using function calls to of gridd. 

AII. 3.3 Simulation function call sequence files: the lsimcalc sub-directory 

The Isimcalc sub-directory contains two source files, simpler. c and boundary. c, which contain the 

function call sequences for the finite volume solution algorithm and radiation/climatic boundary 

conditions, required by the simulation module EMBsim. 

AII. 3.3.1 SIMPLER. C 

a) simplerO 

Arguments: 

None. 

Return Value: 

None. 

Description: 

The iteration residual log file is first initialised through a call to init logpand subsequently, 
the simplerO function initiates a conditional loop in which is embedded a sequence of 
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function calls which constitutes the coded form of the numerical solution algorithm presented 

in Figure 6. The conditional loop is terminated when either the dependent variable residuals 

are less than the tolerances defined in the enibsim. sim file, or when a CTRL-C interrupt is 

initiated. On termination of the loop, the dumpO function is automatically called. As each 

iteration or loop pass is processed, dependent variable residuals are displayed on the monitor 

in the form of graphs, allowing convergence progress to be monitored, residuals are 

additionally written to the run-time residual log file EMBSIM. LOG by means of calls to 

barite IogO on completion of each iteration. 

All. 3.3.2 BOUNDARYC 

a) boundaryO 

Arguments: 

None. 

Return Value: 

None. 

Description: 

The boundaryü function is used to update external surface temperatures, external surface heat 

transfer coefficients and calculate internal and external solar irradiation using the surfaced 

and insolationO functions. Refer to Figure 105 for function calls made by boundaryO. 

AII. 3.4 Executable module source files; the lexec sub-directory 

The lexec sub-directory contains the executable module source files which all contain the module 

nnain p function in addition to various other module specific functions. The various executable 

module source files and associated functions are detailed in Sections AII. 3.4.1- AH. 3.4.5. 
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AII. 3.4.1 Ei1BGEN C 

a) mainO 

Arguments: 

argc (int): 

argv (char **) 

Description: 

number of arguments. 
Ist argument: ASCII building geometry file name. 

2nd argument: binary building geometry file name,. 

Generates a binary geometry file from an ASCII geometry file using the function call 

sequence illustrated in Figure 101. Refer to Section AII. 2.1 for operational details of the 

EMBgen module. 

AII. 3.4.2 EMBRI4D. C 

a) main 

Arguments: 

arge (int): number of arguments. 

argv (char **): Ist argument: ASCII building geometry file name. 

2nd argument: binary building geometry file name,. 

Description: 

The mainQ function calls the loadmodelo funtion to read the binary geometry file, generates 

view factors for the geometric body surface pairings, using the viewjactorso function and 

finally writes the surface pairing view factor data to an ASCII text file using the xrite vf( 
function. Refer to Figure 102 and Section AII. 2.2 for function calls made by the 

viewjactorsO function and operational details of the EMBrad module. 
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AII. 3.4.3 E %IBSIM C 

a) mainO 

Arguments: 

argc (int): not used. 

argv (char **): not used. 

Description: 

Reads external data files (problem definition and support files), initialises dependent variable 

residual log file and sets up solution scheme loop. Refer to Figures 103,104 and 105 and 

Section AII. 2.3 for function calls made by the EMBsim maino function and operational 

details of the EMiBsim module. 

AII. 3.4.4 EMBTRAN. C 

a) mainO 

Arguments: 

argc (int): number of arguments. 

arge (char **): switches to specify which variables are written to the text file 

(/u /v /w /t /p /k /e /g). 

Description: 

The loadf' function is called to read the binary results file embsim. dmp into the gd[I[], 

grid[J[J[J[J, gridpar[J[J[J and bd[J arrays. The argument switches are read into a byte 

array which is passed to adumpO in order that the required variables are processed The 

adump( function is then called to write the dependent variables to the ASCII results text file 

embsim. asc. 
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b) adumpO 

Arguments: 

fn (char *): ASCII text file name. 

vsºaitch (unsigned char *): array of variable sw`itches. 

Description: 

The adump() function writes dependent variables to an ASCII text file as a series of x-y grid 

point tables for each grid division along the z-axis. The grid dimensions and surface 

polyhedra geometry may also be written to the file. The variable switches determine which 

variables are processed. 

AII. 3.4.5 EMBVIEIV C 

a) mainO 

Arguments: 

argc (int): not used. 

argv (char **): not used. 

Description: 

The mainO function incorporates a loop which enables the model building geometry to be 

rotated and scaled graphically to obtain required views. Dependent variables may then be 

displayed as vectors or contours. The function calls employed by maino are illustrated in 

Figure 106. Some of the functions used by main() are general geometric functions which are 

required by several EMB modules and are consequently included in the geometry. c source file 

(see Section AII. 3.2.11), the remaining functions are detailed below. 

b) void inittcolorsO 
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Arguments: 

None 

Return value: 

None 

Description: 

Initialises fill colour shades for temperature distribution. Fill colours range between blue and 

red using varying blue/red densities. 

The RGB macro is used to mix colour densities in order to assign the required shade to a long 

integer: 

#define RGB(r, g, b) (Ox3F3F3FL & ((long(b) « 161 (g) « 81 (r))) 

where r, g and b are the proportions of red, green and blue. 

The resulting colour indices are assigned to each temperature range integer using the 
Microsoft renrappalette function. 

c) void initdcolorsQ 

Arguments: 

None 

Return value: 

None 
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Description: 

Initialises contour colours. A maximum of ten contours may be defined for each dependent 

variable, the magnitude of each variable contour being defined in the external display data file 

display. dat. A Microsoft C predefined colour index is assigned to each contour integer using 

the Microsoft remappalette function. 

d) void set in(v, tiv) 

Arguments: 

v (int): viewport index 

w (int): window index 

Return value: 

None 

Description: 

This function sets the current viewport and window coordinates to the values set in the 

graphic window structure array using the v and iv indices (see Section AII. 2.5.1). 

e) void normalise coordsO 

Arguments: 

None 

Return value: 

None 

Description: 

This function transforms the coordinates of the building geometry structure vertices (see 
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Section AII. 1) into the system adopted by EMBvview (see Section AII. 2.5.1). 

f) void initwo 

Arguments: 

None 

Return value: 

None 

Description: 

Initialises temperatures and velocities for contour and area fill display. 

For each grid point in the finite volume grid, the three velocity components (U, V and `V) are 

resolved into a single value of air speed for later contour display. Temperature ranges are also 

established for area fill display. - 

g) void borders(display) 

Arguments: 

display (int): display type index 

Return value: 

None 

Description: 

Draws borders for the various windows. The two display types are for three-dimensional 

visualisation purposes and for two-dimensional variable display. 

h) void initfontO 
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Arguments: 

None 

Return value: 

None 

Description: 

Reads in font information for text display, using the Microsoft egisterfontso and se onto 
functions. 

i) void initvidO 

Arguments: 

None 

Return value: 

None 

Description: 

Initialises the video mode using the Microsoft setvideonodeO function. 

jý Vold init inO 

Arguments: 

None 
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Return value: 

None 

Description: 

This function initialises the graphics window structure array for the various vievport 

coordinates (e. g. temperature scale, status line, etc. ) and establishes the correct window 

ranges for the current building geometry. 

k) void initvectin10 

Arguments: 

None 

Return value: 

None 

Description: 

The inith'ectinfO function initialises the vector structures required for mapping the three 
displayable planes (Y-Z, X-Z and X-Y) onto a temporary X-Y plane for ease of manipulation 
(see Section AII. 2.5.2). 

1) void initarrouheadO 

Arguments: 

None 

Return value: 

None 
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Description: 

Initialises arrow dimensions using overall building geometry for scaling. 

m) void initfrmneO 

Arguments: 

None 

Return value: 

None 

Description: 

The axis frames described in Section AII. 2.5 use structures for display information: 

struct axes st ( 

double cc[4]; 

char txt[2]; 

}; 

cc[4J: untransformed coordinates of principal axis vertices. 

txt[2]: axes labels (e. g. "X"). 

struct frames! ( 

double vertices[4][4]; 

struct axes st axes[21; 

}; 

vertices[4J[4]: untransformed coordinates of frame vertices. 

ares[2]: axis structures for the two pricipal axes. 
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The initframeO function initialises the above frame structures. 

n) void shotirtindexO 

Arguments: 

None 

Return value: 

None 

Description: 

The showtindexp function displays the temperature index in the viewport set up by a call to 

setitinO. 

o) void shorn indexU, factor, tx) 

Arguments: 

factor (double): scaling factor 

fi (int): frame index 

xt (*char): index label 

Return value: 

None 

Description: 

The shonvindexO function displays the velocity and distance index in the viewport set up by 

a call to setwinO. The factor and fi arguments are required due to the different screen area 

allocations required for grid and velocity display. 
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p) void arroiv(fixedhead xtail, ylail, xlip, ytip) 

Arguments: 

xtail (double): 

ytail (double): 

xtip (double): 

ytip (double): 

fixedhead (unsigned char) 

Return value: 

None 

Description: 

x-coordinate of arrow tail 

y-coordinate of arrow tail 

x-coordinate of arrow tip 

y-coordinate of arrow tip 

arrow head size toggle 

Draws arrow between points xtail ytail and xtip ytip. The frxedhead toggle determines 

whether or not the arrow head is scaled in proportion to the arrow length. 

a) void showstatusline(var, xyz, dim) 

Arguments: 

var (int): display type index 

xyz (int): axiz 

dim (double): distance of axis frame from origin 

Return value: 

None 

Description: 

This function displays a status line at the top of the screen indicating the current project title, 

the distance that the axis frame is from the origin along the current principal axis, the 
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orientations of the other two principal axes and the type of display vimport (flow 

visualisation, velocity vectors, contours, etc. ). 

r) void shoiiframe(vyz, m, dim, zc) 

Arguments: 

xyz (int): 

m[J[4J (double): 

dim (double): 

zc (double): 

Return value: 

None 

Description: 

frame axis index. 

transformation matrix. 

distance of frame from origin. 

z-coordinate view dimension used in transforming 3d 

coordinates to 2d display coordinates. 

The showframeO function transforms the vertices of the axis frame stored in the array of 

frame structures (see initfranteO) using the transformation matrix in[J[4J. The axis frame 

array is indexed using the xyz integer. Subsequent to tranformation the frame is displayed to 

the current vieaport. 

s) void sholgeomehy(nm, zc) 

Arguments: 

ni/J[41 (double): transformation matrix. 
zc (double): z-coordinate view dimension used in transforming 3d 

coordinates to 2d display coordinates. 

Return value: 

None 
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Description: 

The building geometry vertices stored in the bd[] array are transformed to the current rotation 

angle and scaling factor using the transformation matrix m[J[4]. Subsequent to tranformation 

the building geometries are displayed to the current vie«port. 

t) void contourgrid(var, fi, plane, cd, in, zc) 

Arguments: 

var (int): index of dependent variable to be displayed. 

fi (int): frame index. 

plane (int): index of plane on current principal axis. 

cd (double): distance of frame from origin. 

m[][4] (double): transformation matrix. 

zc (double): z-coordinate view dimension used in transforming 3d 

coordinates to 2d display coordinates. 

Return value: 

None 

Description: 

This function is used to generate a grid of dependent variable magnitudes to be displayed in 

conjunction with the dependent variable contours. The dependent variable magnitudes are 

generated using interpolations over a uniform grid dimension. Final display coordintes are 

generated by transforming the interpolated finite volume grid points using the current 

transformation matrix. 

u) void vecout(xstart, ystart, xstop, ystop) 

Arguments: 

xstart (double): x-coordinate of start of contour segment. 

ystart (double): y-coordinate of start of contour segment. 

228 



xstop (double): x-coordinate of end of contour segment. 

ystop (double): y-coordinate of end of contour segment. 

Return value: 

None 

Description: 

The vecout function is called by conrecO to generate a contour segment between the two- 
dimensional coordinates xstart ystart and xstop-ystop. 

v) void conrec(vf, nband) 

Arguments: 

of (struct vector st ): a vector structure as detailed in Section AII. 2.5.2. 

nband (int): number of contour bands. 

Return value: 

None 

Description: 

The conrecO function uses a conventional contouring algorithm to generate dependent 

variable contours. The magnitudes for which contours are generated are defined in the display 

data file display. dat. 

w) void shotitvar(var, fr, cd, in, plane, zc) 

Arguments: 

cd (double): distance of frame frone origin. 

m[J[4] (double): transformation matrix. 

zc (double): z-coordinate view dimension used in transforming 3d 
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coordinates to 2d display coordinates. 

var (int): index of dependent variable to be displayed- 

fi (int): frame index. 

plane (int): index of plane on current principal axis. 

Return value: 

None 

Description: 

The shoiivarO function extracts dependent variable magnitudes from the finite volume 

dependent variable grid array grid[J[J[J[] (see Section All. 1), for the selected division within 

the selected plane (Y-Z, X-Z or X-Y). The showvar( function then determines the 

coordinates of each of the appropriate finite volume grid centres, using the grid dimension 

array gd[][AIAXDIMJ, maps the coordinates to a temporary X-Y coordinate system and 

finally transforms the coordinates by the current rotation angle and scaling factor using 

factoring the transformation matrix m[][4]. 
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AIII. 1 Geometry File 

# Data file for EMBGEN 
# Blank lines or lines beginning with a '#' symbol will be ignored 

# No. X cells 

19 

#X cell dimensions 

#Ref. Dimension 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.10000000 
0.04980000 
0.15020000 
0.20000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.30000000 
0.20000000 
0.20000000 
0.10000000 
0.10000000 

# No. Y cells 

16 

#Y cell dimensions 

#Ref. Dimension 

1 0.10000000 
2 0.10000000 
3 0.30000000 
4 0.30000000 
5 0.25000000 
6 0.25000000 
7 0.25000000 
8 0.25000000 
9 0.21405637 
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10 0.17684363 
11 0.10000000 
12 0.04980000 
13 0.06000000 
14 0.10000000 
15 0.10000000 
16 0.10000000 

# No. Z cells 

25 

#Z cell dimensions 

#Ref. Dimension 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.10000000 
0.20000000 
0.20000000 
0.20000000 
0.20000000 
0.20000000 
0.20000000 
0.24500000 
0.04980000 
0.11520000 
0.04980000 
0.11520000 
0.04980000 
0.11520000 
0.04980000 
0.11520000 
0.04980000 
0.24500000 
0.20000000 
0.20000000 
0.20000000 
0.20000000 
0.20000000 
0.20000000 
0.10000000 

# Latitude (degrees) 
55.0 

# Site orientation (degrees clockwise from North) 
0.0 

# Data for surface bodies 

# No. of surface bodies 
2 

# Data for surface body 1 
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# Body type 
# [1: External; 2: Internal 3: Enclosure 4: Isothennal obstacle 5: Interface] 
1 

# No. vertices 
16 

# Cartesian coordinates of each vertex 

#No X Y Z 
1 0.000 0.000 0.000 
2 4.400 0.000 0.000 
3 4.400 0.000 0.900 
4 4.400 0.000 2.900 
5 4.400 0.000 3.800 
6 0.000 0.000 3.800 
7 0.000 2.700 0.000 
8 4.400 2.700 0.000 
9 4.400 2.700 0.900 
10 4.400 2.700 2.900 
11 4.400 2.700 3.800 
12 0.000 2.700 3.800 
13 4.400 0.800 0.900 
14 4.400 0.800 2.900 
15 4.400 2.400 2.900 
16 4.400 2.400 0.900 

# No. surfaces 
10 

# Vertex ordering for each surface 
# NOTE - ANTICLOCKWISE order for external/obstacle/enclosure surface vertices, 
# CLOCKWISE order for internal surface vertices 
# FIRST THREE VERTICES MUST BE NON-COLLINEAR 

#No No. Vert Vert 
1 4 2871 
2 6 98231316 
3 4 414133 
4 4 14 15 16 13 
5 4 1510916 
6 6 4511101514 
7 4 612115 
8 4 17126 
9 6 789101112 
10 6 216543 

# Data for surface body 2 

# Body type 
# [1: External; 2: Internal 3: Enclosure 4: Isothermal obstacle 5: Interface] 
2 

# No. vertices 
16 
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# Cartesian coordinates of each vertex 

#No X Y Z 
1 0.100 0.100 0.100 
2 4.300 0.100 0.100 
3 4.300 0.100 0.900 
4 4.300 0.100 2.900 
5 4.300 0.100 3.700 
6 0.100 0.100 3.700 
7 0.100 2.600 0.100 
8 4.300 2.600 0.100 
9 4.300 2.600 0.900 
10 4.300 2.600 2.900 
11 4.300 2.600 3.700 
12 0.100 2.600 3.700 
13 4.300 0.800 0.900 
14 4.300 0.800 2.900 
15 4.300 2.400 2.900 
16 4.300 2.400 0.900 

# No. surfaces 
10 

# Vertex ordering for each surface 
# NOTE - ANFICLOCKWISE order for external/obstacle/enclosure surface vertices, 
# CLOCKWISE order for internal surface vertices 
# FIRST THREE VERTICES MUST BE NON-COLLINEAR 

#No No. Vert Vert 
1 4 1782 
2 6 28916133 
3 4 3 13 144 
4 4 13 16 15 14 
5 4 1691015 
6 6 5414151011 
7 4 511126 
8 4 61271 
9 6 712111098 
10 6 612345 

# Connections 
# Define from outer polyhedron to inner polyhedron 
# No. of surface connections 
10 

4[0: Wall; 1: Window; 2: Door, 3: Isothermal external wall] 

#No Type Bdl Sfl Bd2 Sf2 Mat 

1 3 1 1 2 1 1 
2 3 1 2 2 2 1 
3 3 1 3 2 3 1 
4 1 1 4 2 4 3 
5 3 1 5 2 5 1 

235 



63 1 62 61 
73 1 72 71 
83 1 82 81 
93 1 92 91 
10 3 1 10 2 10 1 

A11I. 2 Boundar y Condition File 

# Variable Xl X2 Yl Y2 Z1 Z2 Value 

# Variable: [K] - Boundary turbulence kinetic energy: (float) 
# [E] - Boundary dissipation of turbulence kinetic energy: (float) 
# [T] - Isothermal cell: Temperature (float) 
# [U] - Isovel cell: Velocity X-component (float) 
# [V] - Isovel cell: Velocity Y-component (float) 
# [W] - Isovel cell: Velocity Z-component (float) 
# [Q] - Energy equation source term: Flux (float) 
# [S] - Static cell: Const. (int) 

# TEST CASE: E2 

F111212990 
F11 12 12 11 11 0 
F1 1 12 12 13 13 0 
F1 1 12 12 15 15 0 
F1 1 12 12 17 17 0 

U00 12 12 992.5403 
U0 0 12 12 11 11 2.5403 
U0 0 12 12 13 13 2.5403 
U00 12 12 15 15 2.5403 
U0 0 12 12 17 17 2.5403 

U22 12 12 992.5403 
U22 12 12 11 11 2.5403 
U22 12 12 13 13 2.5403 
U22 12 12 15 15 2.5403 
U22 12 12 17 17 2.5403 

#V 22 11 12 992.1315 
#V 22 11 12 11 11 2.1315 
#V22 11 12 13 13 2.1315 
#V 22 11 12 15 15 2.1315 
#V22 11 12 17 17 2.1315 

TOO 12129930.0 
TOO 12 12 11 11 30.0 
TOO 12 12 13 13 30.0 
T00 12 12 15 15 30.0 
TOO 12 12 17 17 30.0 
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K001212990.22 
K0 0 12 12 11 110.22 
K0 0 12 12 13 13 0.22 
K00 12 12 15 15 0.22 
K00 12 12 17 17 0.22 

E00 12 12 990.0872 
E0 0 12 12 11 11 0.0872 
E00 12 12 13 13 0.0872 
E0 0 12 12 15 15 0.0872 
E00 12 12 17 17 0.0872 

F119912140 

U0099 12 14 -0.525004 

T19 19 5 13 6 20 10.0 

AIlI. 3 Materials Database File 

# EMBSIM. MAT - Material thermophysical properties 
# Density (kg/m3), Specific Heat Capacity (J/kgK), Thermal Conductivity (W/mK), 
# Absorptivity Transmissivity 

# 1: Common building brick 
1600 840 0.04 0.90 0.00 

# 2: Wood (Oak) 
540 2400 0.15 0.90 0.00 

# 3: Glass 
2600 670 10.00 0.90 0.44 

# 4: Insulation 
50 670 0.02 0.90 0.00 

# 5: Steel 
7860 420 63 0.90 0.00 

AIII. 4 Display Data File 

TEST [NO RADIATION] 
0 
2.0 
20.0 22.0 
0.1 
0.05 0.08 0.1 0.15 0.5 
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20.2 20.4 20.6 20.8 21.0 21.2 21.4 21.6 21.8 22.0 
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