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ABSTRACr 

OPTIMISATION OF THE PERFORMANCE OF 

THIN YM S OLAR CELIS 

BY B. GANDHAM 

The thesis contains a short review of the, theory of 

solar cells and optical properties of thin films. This 

is followed by the introduction of the "interference solar 

cell" which regards the cell as part of a multilayer 

structure and considers the effects of multiple reflections 

at each interface of the cell., Models for normal and 

oblique incidence of light are presented both in the pre- 

sence of drift fields and in their absence. 

This involves a complete novel approach resulting in 

the solution for the photogeneration rate as a function of 

position., computed by solving Maxwell's equations in a cell 

assumed to be composed of optically flat parallel layers. 

The photogenerated current is computed and the effects of 

varying the transport parameters and layer thicknesses are 

shown for Cu 
2 S-CdS Cds-InP and Cds-CuIn Se 2 cells with silver, 

zinc, and molybdenum substrates. It is shown that the opti- 

mum thickness of Ou 2S and CuInSe 2 is 0.111 m- 0.2 Um whilst the 

optimum for ImP is about 3pm. Experimental evidence is pre- 

sented to support an additional prediction that silver is 

superior to zinc or molybdenum substrates. 

The effect of various antireflective coatings has been 

analysed theoretically and the conditions for maximum trans- 

mittance through a metal layer into an absorbing substrate 
have been derived. In order to compare theory with experi- 

ment, a small programme on Schottky barrier cells is descri- 

bed and comparisons made. 



CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

The search for alternative energy sources is being pursued with 

increasing vigour with the realisation of the fact that reserves of 

fuels have only a limited lifetime. Nuclear energy could go a long 

way towards satisfying the world's energy needs but there is concern 

over the dangers to the environment and the long term hazards associ- 

ated with the disposal of nuclear waste. The sun., the wind and the 

waves are alternatives,, that provide an essentially clean source of 

power and do not deplete the world's natural resources. This project 

is concerned with solar radiation as an energy source and in parti- 

cular its direct conversion into electricity using solar cells. A 

solar cell is a photovoltaic device which converts sunlight directly 

into electrical power. There are a number of alternatives to solar 

cells., some of which are more economic at the moment, and so it is 

important to improve upon the cost per unit energy ratio in order to 

compete successfully. This project is directed towards that goal. 

Optical effects which can occur in thin film solar cells have until 

now been ignored in their design. In the course of this work an 

analysis has been carried out which takes into account these optical 

effects, using techniques similar to those used in the analysis of 

thin film multilayer devices. It will be shown that when optical 

interference is taken into account, the optimum thickness of the 

solar cell is smaller and the expected maximum current is larger than 

when these effects are ignored. 

'The thesis will present a brief review of photovoltaic devices 

and optical thin film multilayers., followed by theoretical analysis 

of the thin film ? interference solar cellf. This will include models 

for both normal and oblique incidence of light. Theoretical analysis 
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when electric fields are present and for when they are absent will be 

carried out. Computed results of this novel theory when applied 

to real thin film solar cells are presented and the effec-ts on the 

efficiency of altering the various parameters will be examined. 

These include the very important part played by the substrate in 

thin film solar cells. This will be followed by theoretical analysis 

for antireflecting solar cells with the introduction of the concept 

of the potential transmittance., the inclusion of the 'effective complex 

refractive index' diagrams and the optimum index and thickness values 

for the antireflecting layers. A small experimental programme carried 

out on Schottky barrier cells carried out in order to compare the 

theory with experiment will also be presented. This will be followed 

by the concluding chapter. 

1.2 Background 

A semiconductor has the property that it can absorb a photon 

whose energy is greater than the band gap. During this process an 

electron is excited into the conduction band leaving behind a hole 

in the valence band. Energy conversion has taken place but in order 

to extract the energy of the electron it has to flow through an ex- 

ternal circuit rather than let the energy be lost either through the 

emission of radiation or through its dissipation to the semiconductor 

lattice as the electron and hole recombine. This can be achieved by 

using a semiconductor rectifying device. The potential barrier pre- 

sent in such a device, which when used as a rectifier prevents the 

flow of current in one direction but in a solar cell it serves as the 

mechanism by which the electron and hole are separated. In general 

any rectifying structure., be it P-N homojunction, heterojunction or 

Schottky barrier diode, can be used in a solar cell. 

It should be pointed out that one of the parameters that will 
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influence the choice of the semiconductor is its energy gap. For a 

given radiation there will exist an optimum value for the band gap., 

E9. for which the integrated quantum efficiency over all wave-lengths 

is a maximum. For direct AMI radiation the calculated value for this 

is 1.5 eV (Loferski., 1956). Under diffuse., UK conditions the calcu- 

lated value is 1.78 eV (Mallinson and Landsberg, 1977). 
I 

A. P-N Homojunction 

A P-N homojunction is represented schematically below. It is 

operating at voltage V and current I into R.,, the load resistance. 

RI 

Conduction Band 

-*- Photocurrent 

Light E 
9 

hV 

Fermi Level E 
g rEalence 

Band 

p 

Surface 
P4 bjO 

0N 
g4 I Base 

Figure 1.1 
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In the illustration above the device is illuminated from the P side 

and photons with energy greater than the band gap E9. are absorbed 

throughout the material creating electron-hole pairs. On the P side 

of the device the minority carrier electrons move randomly as they 

are scattered by impurities, photons and other electrons. Any mino- 

rity carrier electron reaching the junction is swept into the N type 

semiconductor by the large electric field present within the depletion 

region. This is accompanied by the transfer of an electron through 

the external circuit maintaining charge neutrality and in this way a 

photocurrent is generated. The electron could, of course, recombine 

with a hole in the valence band and a photogenerated electron only 

contributes to the, total photocurrent if it reaches the junction with- 

in the lifetime of the recombination process. 

If the device represented bythe above diagram is maintained in 

an open circuit condition so that no current flows, then the transfer 

of charge across the junction continues until the electric field gen- 

erated by the space charge prevents any further transport. Under 

these conditions the device exhibits the photovoltaic effect and gen- 

erates its open circuit voltage V 
oc, 

This is shown in the diagram 

below which contains the current-voltage curve for a cell operating 

into a load. Under short circuit conditions the current density Jsc_, 

is'the full photocurrent produced by the cell. The curve for the 

illuminated device is, to a good approximation (Rothwarf., 1978) the 

characteristic of a forward biased diode displaced into the fourth 

quadrant by an amount equal to the photocurrent. For open circuit 

conditions there is-no flow of current and the photocurrent is equal 

in magnitude but opposite in sense to the dark current that the diode 

would pass under a forward bias of V 
oc* 
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Figure 1.2 Current - Voltage characteristics for a solar cell 

The power conversion efficiency of a solar cell is defined as 

Yoc . Jsc . FF 

Pin 

Where Pin is the power density illuminating the cell, the parameter 

FFI referred to as the fill-factor, is a measure of the degree of 

Isquareness' of the current-voltage curve., and relates the maximum 
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power which a cell can deliver to the short circuit current and the 

open circuit voltage. The fill-factor is given by 

FF = Jm . Vm/jsc . Voc 

The current density jt is given by the expression 

Jt ', ' Jd - Je -- - 1.2 

Where Je is the photocurrent generated by the cell and Jd is the diode 

current of the cell when in the dark. 

In a P-N homojunction there are three main dark current mechanisms., 

namely., injection., space-charge recombination and tunnelling. 

The injected current component consists of electrons injected from 

the N-type region over the potential barrier at the junction into the 

P-type region. These excess minority carriers then diffuse and drift 

away from the junction and eventually recombine either at a surface or 

in the bulk. There is also a similar injected current of holes in- 

jected from the P-type region over the junction into the N-type region. 

During the process of injection some of the carriers recombine 

inside the depletion region 'because of the impurity levels within the 

energy gap, resulting in an increase in the dark current through the 

device. Týis 'recombination current' was first discussed by Sah et 

al (1957) but their treatment has since been extended by a number of 

workers. 

Tunnelling in a P-N homajunction is usually negligible unless 

the junction is highly doped. Tunnelling can occur when an empty ' 

state is separated by a short distance and a relatively small barrier 

from a filled electron state. 
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B. Schottky Barrier 

From the point of view of the photocurrent the Schottky barrier 

can be thought of as a P-N homojunction. with a zero junction depth 

(top layer) but having an attenuating metal coating at the front 

instead. 

Me standard expression for the dark current in the Schottky 

barrier is 

J(dark) - A* T2 exp(-e 4P B 
/AkT) (exp(eV/AkT)-l) ---1.3 

Where A* is the effective Richardson constant and ID B is the barrier 

height., approximately equal to the difference between-the metal work 

function and the electron affinity of the semiconductor. A is the 

diode factor. 

This current is mostly due to thermionic emission from the semi- 

conductor to the metal and it is a majority carrier current, whereas 

in the case of the P-N homojunction, the dark current is a minority 

carrier current. The timnelling mechanisms do not come into effect 

until the doping concentration reaches about 1017 cnf, 
3 (Sze, 1969). 

Above this doping level the dark current rises very rapidly with 

doping. Below this doping level the dark current remains approxi- 

mately constant although some slight variations may arise due to 

changes in the image potential with doping. The effect of the image 

potential is to lower the barrier height value (Milnes and Feucht, 

1972). The latest account of the theory of the Schottky barrier 

solar cell can be found in Landsberg and Klimpke (1977). 

0. P-N Heterojunction 

The difference between a P-N heterojunction and a homojunction 

is that the band gaps on either side of the junction are not. equal, 

7 



This is due to the top and base layers being composed-of different 

semiconducting materials. There are now complications as a result of 

the presence of interface states and defects due to lattice mis- 

matches. Recombination of the minority carriers may occur in and 

around the depletion regions because of interface states. Good 

heterojunctions need good thermal expansion match and small energy 

discontinuities AEC and A EV (figure 1-3), arising from the energy 

gap and electron affinity differences of the two semiconductors., in 

addition to a good lattice match. AE0 and AEV impede the flow of 

minority carriers across the junction. 

D. P-N heterojunction energy band diagram 

Photons of energy less than E but greater than E will pass 
1 91 g2 

through the first material which acts as a ? window' and be absorbed 

by the second material. The collection of minority carriers occurs 

in the same way as in the homojunction. The heterojunction can never- 

theless have an advantage over the homojunction in the short wave- 

length response., particularly when E 
91 

is large, as then the photons 

of high energy can be absorbed in the depletion region of the second 

material. The dark current mechanisms are somewhat more complex than 

in the homojunction case. Various different models exist (e. g. Milnes 

and Feucht, 1972) that attempt to explain the experimental behaviour. 

Tunnelling has been shown to be the most dominant in nearly all heter- 

ojunctions except in the cases where the lattice mismatch is very small. 

Tunnelling varies weakly with temperature in contrast to the 

injected and the space charge recombination currents which vary rapidly 

with temperature. Different types of tunnelling current may exist. 

For instanceg there is the tunnelling recombination model where tun- 

nellifig via empty states is followed by recombination. A series of 
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such steps may occur. This is the "temperature independent" tunnel- 

ling model. Tunnelling may also occur part of the way up the barrier. 

These tunnelling currents have a temperature dependence but this is 

not as strong as the thermal currents (injected and the space charge 

recombination). The thermal currents have now also to include the 

effects of AE C and AEV discontinuities as well as the interface 

states. All these different possibilities make it very difficult to 

predict the exact nature of the dark currents for a particular heter- 

ojunction. 

For a good solar cell the dark currents must be as small as 

possible. 

IA EC; TATB 
A! E- 

--A/VLA- 
Light 

E 
gl 

>E 
g2 

T is the electron affinity 
iD is the photoelectric threshold 

Figure 1.3 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 Introduction 

I The magnitude of the photocurrent obtained from the mechanism 

outlined in Chapter One can be determined by studying the behaviour 

of the minority carriers which are electrons in the P-type and holes 

in the N-type material. Diffusion theory is applicable for describing 

their motion and under steady state conditions a constant current of 

electrons to the right and holes to the left is established in a P-N 

junction solar cell, be it homojunction or heterojunction. The formu- 

lation and, solution of this problem has been discussed by many workers 

including Ciunmerow (1954)., Prince (1955)., Lofersky and Wysocki (1961)., 

Moss (1961), Dale and Smith (1961). Wolf (1960., 1963)., Ellis and Moss 

(1970)., Landsberg (1975)., Rothwarf and Boer (1975)., Hovel (1975)., 

Mallinson and Landsberg (1977) and Rothwarf (1978). 

2.2 Derivation of the Photocurrent in P-N junction devices for 

Monochromatic light 

The one dimensional continuity equations that govern the minority 

carriers when the light is shining on the j-unction are 

dj 
31 - (Np - Npo)/ T---2. la 

q dx n+9 

0 in a steady state (for electrons on the P side) 

and 

DPn dj 
-4LP - (p pT+g---2.1b at dx n no p 

=0 in a steady state (for holes on the N side). 
(g is the rate of generalisation of electron hole pairs) 
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P. and Np are the photogenerated minority carrier densities., 

q is the charge on the minority carrier., Pno and Npo are the minority 

carrier densities in equilibrium in the dark, Tp and Tn are the life 

times of the minority carriers and Jn., Jp are the electron and the hole 

currents respectively. 

These currents are defined as 

jn =q Ij n Np Ep +q Dn ep ---2,2a 
dx 

and 

jp =q lip Pn En -q Dp dPn ---2.2b 
dx 

where Ep and En are the electric fields in the P-type and N-type 

regions respectively, D. and Dp are the diffusion constants of the 

minority carriers and 11n., 11 p are their mobilities. 

Under steady state conditions substitution of 2.2 into 2,1 results 

in 

Dn 
"N-P 

+ 11 n EP PNx + 11 n Np fl-P +g=0---2.3; i 
dx2 Tp 

and 

d! En ga dEa N-'ýPno, ) 
DP. 

dX2 
- Pp Eý dx ppn dx Tn +g=02.3b 

The first term in equations 2.3 represent the diffusion of 

minority carriers whilst the second term represents transport due mainly 

to an external applied electric field. The third term describes trans- 

port under the influence of the photogenerated internal electric field 

or Dember field which is the result of the different mobilities of 

electrons and holes. The fifth term is the rate of generation of 

electron hole pairs, whilst the fourth term describes the bulk recombi- 

nation rate of the photogenerated pairs (Hill, 1978). 
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By making the assumption that the mobilities and lifetimes are 

independent of position within'the solar cell., equations 2.3 can be 

solved analytically subject to the following boundary conditions 

(figure 2.1). 

Light 

Figur e 2.1 

Depletion 

Region 

PN 

Top Layer Base 

X=o x=a x=a+w x=b 

1. At the front surface, x=O, recombination occurs 

(1) Jn = S-n (Np -N 0) q 

where Sn is the surface recombination velocity at the front surface. 

It is the rate at which the generated carriers are lost at the surface. 

These are due to the presence of surface states which arise from 

"dangling bonds'l. chemical residues, metal precipitates, oxides and 

so on, 

2. At the junction edge at the front at x=a,, 

Np- Npo =0- 

This is the zero bias condition. The electrons which arrive at x=a 

are swept across the junction by the junction field and the excess 

electron density is taken to be zero. 

3. Similarly for the junction edge facing the base layer 

(P. -P.. ) =Oat x=(a+w). 

4. At the back surface recombination also occurs and 

, 
(1) Jp --'3 SP (pn - Pno)2 at x=b 
q 
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where Sp is the surface recombination velocity at the back surface 

of the cell. 

The current generated is then given by the sum of the currents 

collected in the P-layer., the N--layer and the depletion region. 

This can be written as: 

Jl z-- Je + Jh + Jd 

where 
. Je =q Dn d(Np-Npo) at x =a (electron current) 

and 
dx 

Jh qD p d(Pn7Pno) at x=(a +w) (hole current). 
dx 

Jd is the current collected inside the depletion region and is 

equal to the product A number of photons absorbed within it and the 

charge q on the carrier. The electric field inside the depletion layer 

is assumed to be sufficiently high to accelerate out of it any photo- 

generated carriers before they could recombine., 

When light of intensity I. is incident on a semiconductor of 

absorption coefficient =, the intensity as a function of the distance 

x below the surface of the conductor is given by 

'r x Io e- ' (Lambertts law) 

I 
where = is a function of wavelength. 

Differentiating I with respect to x we get 

dI 
e7 cc X 

dx 0 

This is the absorption rate for the light at x. 

It follows then that the magnitude of the generation rate of electron 

hole-paixs as a function of x*is,. given by 

g= cc' No e7 
cr x---2.4 
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here No is the incident number of photon per unit area per sec at 

wavelength. X per unit band width on the surface of the semiconductor. 

By letting n= Np - Npo and P" Pn - Pnoy then equation 2.3 in the 

case when En and Ep are equal to zero can be rewritten as 

Dj, en 
_, 

n-_ , ', =0---2. Sa 
dx2 Tn 

and 

Dp 6_ 
r- +g=0---2.5b 

dx2 
?p 

where 
9 "n N0 e7 =nx for electrons on P-side 

and 
9p No e-px for holes on N-side 

n and cc p are the respective absorption coefficients) 
The general solution to equation 2.5a is 

n(x) = C, ex/L' + C2 e-x/Ln - cc n 
N. e- 

ccllx 
---2.6 

Dn n 
2-1/L 

n 
2) 

.ý1 f or nL n 

where C1 and C2 are constants to be determined from the 

boundary conditions on page 12 with reference to figure 2.1. 

X/L 2 No 6- 
ý'"n x 

La 
= 

al 
, x/l,, 

_ 
02 

e7- n+ c"n 

dx Ln Dn 
a 

2ý /Ln2 

n(o) =C1+c2- cc N 

Dn -n 

n(a) =C1e a/L, +C2 6-a/In _ 
cc n 

No e- (x na 

Dn ( ccn 2_ /Ln2) 
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da I 
X=o = 

al 
- 

(32 
+ cr n2N0 R-- -- Ln Ln Dn (' ccn 

2- /Ln2) 

a/L. Ca 
Ch 1e2 . 7a/I., 

+ cc n2N0 
Qýn 

Dn ( cc 21 2) 
n 

TLn 

From the boundary condition 2 on page 12 

n(a) =0- 

Trom the boundary condition 1-on page 12 

Sn n(o) = An drk 
dx 

From which 

-0 ja/L. =nN 
0 e7 ccna 

c1=e 
a/Ln 

+ 
Dn (. 

n 
ý_ l/Ln 2) 

ea/Ln 

and 

c 
(x nN0Ln 

(Dn rcn + Sn )e a/Ln 
_wnN0 e- 

ccna (S 
nLn - Dn) 

2 Dn( =n 
2- 1/Ln 2 )((Dn + SnLn) ea/Ln- (Snlll - Dn) . 7a/L. 1) 

Then the electron current Je (page 13) is given by 

q Dn dn 
Ul x=a 

c1e a/Ln 0 e7a/Ln 
n[Ln, ýn 

2a 
cc Nen 
n0 
Dn '( "n 

2 j/L 
a 

2) 

-2 C2+ 'n* Noe7 cc na 
q Dn ic 

cc 
--)ý. 

nn- 
l/Ln 

15 
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The hole current Jh (page 13) is calculated in the same way 

as the electron current but with the application of the boundary 

conditions 3 and 4 to equation 2.6, with p substituted for n every- 

where. 

The hole current is then given by 

Jh qD dp I 
P dx 

x= (a+w) 

q Dp 2 C2 -(a, +w)/L 
p+C, p 

No e7 'p (a+w) 

-I LP Dp ( cc p- 
1/Lp) 

or cc p0 
1/Lp 

where 02 now is given by 

c (D +s )e7 .Pbe (a + w) /Lp 
N, e- cc p 

(a+w) 
pLp-Dp) e 

b/Lp 
2pppno 

Dp( 
p 
ý-l/L 

p 
2) ((DP+SPLP'j 

--F 
(S 

PLP - Dp) e 
b/Lp 

e -(a+ W)/Lp) 

In the case when =n = l/Ln and xp l/Lp the general solution 

to 2.5a is 

n(x) Cl ex/La + C2 e-x/Ln + No e- 
cc nXx 

2D 
n 

The electron and hole currents are then calculated as in the case when 

4z n 

Electric fields En and Ep can be introduced outside the depletion 

region in order to assist the minority carriers to reach the junction 

and thereby overcome some of the losses from both the surface and bulk 

ýt F= 42. y. T(QýL-rW)/L? ) 
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recombination. They can be introduced by forming non-constant doping 

profiles (see page 53). En and Ep may also include the 'Dember field' 

due to the different rates of diffusion for the holes and electrons. 

This may or may not be significant depending upon the material in 

question. 

Ellis and Moss (Ell-is and Moss, 1970)., Landsberg (Landsberg., 1975) 

and others have derived expressions for the light generated current in 

the case for. constant electric fields En and Ep using similar analyses 

to the above. The expression 2.4 was used for the generation rate g. 

In the case of Schottky barrier cells, the expressions for the 

pbotogenerated current outside of the depletion region are similar to 

those for P-N junction cells. 

2.3 Dark currents in P-N jimctions 

This section digresses from the main theme of the thesis in pre- 

senting a rather brief review of the dark current mechanisms mentioned 

in Chapter One. 

For a P-N homOjunction asýuming uniform doping profiles and that 

all donors and acceptors are ionised, the forward dark injected current 

is 

J dark = Jo (e eVAT 
---2.8 injection 

where Jo, = eNj 
2Tx Xn sPPco 

sh (M) + sinh (-) I 

pd LP LP LP 

spTpn 

sinh (Xi; ) +coh (Xn) LP Lp 

Ln Sa Tn xx % cosh (e) + sinh (je) 
- +ifn-Na Ln 

2.9 
SnTn x -x 

s inh (--2) + co sh ( p) -17 Ln Ln 

% 17 



Xn and Xp are the thickness of N and P layers outside of the depletion 

layer. Na and Nd are the acceptor and donor concentrations in P and N 

regions respectively and Ni is the intrinsic carrier concentration. 

Equation 2.8 is found in standard textbooks on semiconductors (e. g. 

Sze,, 1969). Equations 2.8 and 2.9 are derived from the continuity 

equations 2.1 and 2.2 subject to the boundary conditions that 

Jn ý Sn (N 
p- Npo) at the front surface, 

Np- Npo = Np. (e eVAý.., ) at the junction edge with the 

P layer, 

Pn - Pno = Pno (eeVllkýl) at the junction edge with the 

base N layer., 

and Jp = Sp (Pn - Pno) at the junction between the back 

contact and the base layer. 

V is the potential drop across the junction. 

An expression for j. with constant built-in electric fields En and Ep 

can be found in Ellis and Moss (Ellis and Moss,, 1970). 

When the base region is highly doped near the back surface contact, 

the darIC current can be reduced due to an effective reduction in the 

back surface recombination velocity at this contact. The expression 

for J. has been shown to be similar to 2.9 except that Sp in the N-type 

base region is replaced by an effective surface recombination velocity 

given by 

ND+sx+ dp 
Se = 

Nd +L+D -+R cosh (L+ sinh 
ppp 

x+SL+x+ 
/(cosh ( P+) +PP sinh ( ý! 

+-) 
)---2.10 

LDL 
ppp 
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where the asterisked parameters refer to the highly doped region 

(Godlewski et al., 1973). Expressions for the dark recombination 

currents can be found in Sah (Sah et al., 1957 and Choo., 1968) where 

2N. eV 
JC1 1W 

S-'nh(2kT) f (b) 2.11 
Tpo T V)/kT 

no) 2 

ýT NN 
v_,, (a where V is the theoretically maximum photovoltage deN. 2d 

I 

possible, otherwise known as the built in voltage2 w is the thickness 

of depletion layer and Tp and Tn are minority carrier lifetimes on the 

N and P sides of the junction ; f(b) is a complicated expression of 

bias, trapping levels, dopant concentrations and carrier lifetime. 

Sah (Sah et al. 1957) considered the case of a symmetrical P-N hamo- 

junction with recombination centres in the centre of the energy gap 

having approximately equal capture cross-sections for electrons and 

holes. Evans and Landsberg (Evans and Landsberg., 1963) extended their 

treatment to include Auger recombination. Choo (Choo., 1968) considered 

the general case of non-symmetrical junctions with recombination centres 

away from the centre of the energy gap and with non-equal capture cross 

sections. 

The first model for P-N heterojunction was proposed by Anderson 

(Anderson, 1962) using a method similar to that used to derive the 

injection current of an ideal P-N junction. He derived an expression 

for the forward current density. His model ignores the effects of re- 

combination and tunnelling due to interface states. 

I Dolega (Dolega., 1963) proposed a model of a heterojunction formed 

between semiconductors having different crystal lattices and in which 

fast recombination occurs at the-interfacelof electrons and holes which' 

reach the recombination centres by thermal activation. Dolegals 

expression for the forward dark current as given by. Van Opdorp 
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(Van Opdorp., 1969) is ' 

B exp (-eVd) [ 
exp (2v -) -12.12 d kT AkT 

3. 

- 

B is a weak function of temperature and the value of A depends on the 

ratio of the density of defects in the two materials., but-in fact A 

always lies between 1 and 2. 

An expression for the tunnelling current derived by Newman 

(Newman., 1965) is 

Tv Jso exp exp (ý-) ---2.13 Jd 
0 

where the electrons tunnel through the spike 4E. (Chapter 1.2C) to the 

conduction band of the P-type material., where they subsequently recom- 

bine either close to the interface or after thermal excitation out of 

the depletion region. j 
Sol 

T0 and V0 are constants. Equation 2.13 

describes the I-V characteristics of some heterojunctions reasonably 

well but in the majority of cases the current seems to be a mixture 

of both tunnelling and recombination. 

The model containing both the latter mechanisms has been proposed 

by Riben and Feucht (Riben and Feucht., 1966) assuming a single step ' 

tunnelling process and a linear barrier. Their expression is not how- 

ever in good agreement with experiment (Sharma and Purohit., 1974). 

,A multi-step tunnelling process gives an expression for the dark 

current which is in better agreement with experiment (Riben and Feucht, 1966) 

Q4, artinuzzi and Mallen., 1973). 
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2.4 Equivalent Circuit Analysis 

The fi gure below shows an equivalent circuit diagram for a 

solar cell and includes both the series and shunt resistances. 

Je - Jd Jl - Jd - Vt/Rsh 

it 
JI 

R 

The series resistance Rs is due to the sheet resistance of the topý 

layer combined with the bulk resistance of the base layer. Tile 

shunt resistance is due to leakage currents (Hill., 1978). 

From Kirchoff's Law 

vt 

it J1 - jd -R 
sh 

Representing the forward diode current Jd by 

eV d Jd = J. (exp 
AkT, 

The voltage Vd across the diode is greater than the terminal voltage 

Vt since 

R 
vdvt+jsRsvt 

s 

Thus /jt/, ' = J. (exp e (V +jR+ 
Rs 

V 1) + 
Vt 

- J1. - 2,14 AkT tssR 
sh 

tR 
sh 
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Under short circuit conditions the shunt has no effect since the 

terminal voltage Vt = 0., and the short circuit currentj. Jsc., is given 

by the root of the equation 

jRs= ýýT- in (i +---2.15 
sc e jo 

It can be seen that short circuit current is reduced by the 

series resistance but is unaffected by the shunt resistance. When 

the terminal current is zero, the'open circuit voltage V is given oc 
by the root of the equation 

v= AkT (Rsh/(Rs +Rsh)) In (I-- (JI - 
Voc) 

+ 1) 2.16 
oc e jo j0R 

sh 

The open circuit voltage is little affected by the series resistance 

since R 
sh 

>> Rs but is reduced when the shunt resistance values 

approach V 
oc 

/jl. For zero resistance 2.15 reduces to Tsc = J, and 

for infinite shunt resistance 2.16 reduces to 

in (J1/j. + 1). 
oc e 

The shunt and series resistance also affect the shape of the I-V 

characteristics. Differentiating equation 2.14 with respect to Vt 

and ýLssuming j1 does not vary with Vt 

dj 
te. J(I -((l+RS/Rsh) - djsRs) +1-2.17 AkT R dV 
t dv 

t 
sh 

In short circuit condition Jd ^- 0 
-, and 
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djt I 
Vt 01 dv tR sh 

---2.18 

Rewriting equation 2.17 and putting JS =jt (assuming infinite shunt 

resistance) 

dj 
t 

(AkT + eJd Rs) = ej, dVt 

dit 
=1---2.19 dV 

t AkT T 
e, j, l 

Under open circuit conditions 

AkT 
e, J. 

therefore 

djt 
, -. 1 

----2.20 dV 
tR 

&om equations 2.19 and 2.20 respectively, estimates of the series and 

shunt resistances could be made directly from the I-V characteristic 

under illumination. No output power is obtained when the solar cell 

is operating under short circuit conditions or-open circuit conditions. 

Maximum power point on the I-V curve is illustrated in figure 1.2 on 

page 5. Jm and Vm are the current and voltage values respectively 

at that point. The values jm and Vm can be found by optimising the 

power with respect to the load resistance R. 

The optimum value for jm is given by the root of the equation 

AkT Jl+L 
ln(l +m (1+-ý-)) +j (R +R(1+R /R 

e- Jo Jo R 
sh mss sh) 

0 

(Mall-inson and Landsberg, 1977) 
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where 

RRs-1 fR (j, + J, + J, ) + 
AkT/e+jos 

1+R 
s 

2j 
m sh 1+Rs/Rsh 

R 
sh 

I 

x1 1+ 
4Jjtsh&T/e. 23. f. 

I (jl+jo+jm)(! 'S+Rsh) + JmRs + AkT/e') 2 

Vm can be evaluated using ohms law, 
. .. 

( Vm = j2t ). 

The efficiency of the cell can therefore be found from the relation 

2 R/P p JJm/pincident ý Jm incident - max/pincident " 

In equation 2.14 it is assumed that the photogenerated current J, 

is independent of V dI the voltage drop across the junction. Rothwarf 

(Rothwarf., 1978) points out that this condition is not valid under all 

conditions but only when the mobility., the field in the space charge 

region and the diffusion constant are independent of carrier concen- 

tration. He therefore points out that equation 2.14 should more 

generally be replaced by 

(V M-v t(Vd) 2.21 t d) Jd(Vd) - Ji R 
sh 

Jd(Vd) is the current-voltage relation for the diode that would 

exist in the dark if the conditions present in the light could be 

maintained in the dark., and jl(V) is the voltage dependent light 

generated current. In his conclusion he states that 2.21 should 

replace 2.14 in almost all cell: s except in P-N homojunctions. 
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The-materia. 1 properties of thin film solar cells are discussed in 

detail in a recent review by Hill (Hill_, 1978)., and before developing 

the theory of the interference thin film solar cell a brief account 

of the optical theory of thin solid films will be given. 
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2.5 Optical Theory of Thin Films 

A thin film is understood to be a material structure extended 

in two dimensions whilst the third dimension, the thickness of the 

film is of the order of magnitude of few wavelengths of light. In 

a homogeneous thin film the optical constants are everywhere the 

same, whereas in an inhomogeneous thin film they vary in some way. 

When light is incident on one or several superposed films some of 

it is reflected., some absorbed., some diffused and some transmitted. 

One of the methods of determining the amplitudes and intensities of 

beams of light reflected or transmitted by a homogeneous thin film 

or, by a system of homogeneous thin films is by solving Maxwell's 

equations subject to the appropriate boundary conditions (Macleod., 

1969). 

In SI units, Maxwell's equations can be written as 

Vx H=. ; +1 ---2.26 

VxE=-; ---2.27 

V. D=p ---2.28 

v. B=0 ---2.29 

where cc -E 0 

= 1niQ! 

and cr E 

at 

I 

26 



B is the magnetic induction, the electric displacement, K the electric 

field, H the magnetic field., a the conductivity., Uthe relative perme- 

ability., e the relative permitivity and p the electftc charge density. 

e. and p. respectively are the permitivity and permeability in a 

vacuum. 

j is the current density. 

Assuming no space charge in a dielectric medium where a=0 

VxH=ý and VxE=-; 

0 
Vx(Vx E) VxBV. E) -V 

2E 

From Maxwell's equation 2.29 

vs =O 

Vx (V x E) =-V2E 

V 

=- 

04 =- li li 

3(x H) 

2 VEE---2.30 

comparing 2.30 with V2E 
V2 

E 

the differential equation describing the motion of a transverse wave, 

the phase velocity of an electromagnetic wave is given by 

2.31 
11 0EE 0) 

in the dielectric medium 
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and 

V=C in a vacuum. 

In a light absorbing medium where the conductivity is finite, 

E 

V2 EVx H) 
at 

2E= 
ii pEE aE- 2.32 

0a0 

A solution to 2.32 is 

E= Eo exp (i w (t ---2.33 
v 

which represents a plane 

wave of angular frequency w, travelling in the x direction with a' 

velocity v. Substitution of 2.33 into 2.32 results in 

12p PO e co 110 a---2.34 
w 

defining NE as the complex refractive index of the absorbing medium 
v 

we find 

c2 11 11 0cE: 0-ipP ow ac 2 
-, - -2.35 

writing N=n- ik 

n2k2c2 11 11 0 E: E: 0 

2 
2nk 

0a cyw 

at optical frequencies 11 1 so that 

n2k200c2 

and 2nk 0 ac2, ---2.36 
w 
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n, is gp! leraUy known as the refractive index (real) and k as the extinction 

coefficient. 

Rewriting equation 2.33 as 

EE0 exp (iw (t -x N/C)) 2.37 

substituting (rý - ik)f or! N ini 2.37 re sults in 

E o; exp w. (t. 
- 
- nx) 

, 
exp (- w kx),. 2.38 

cc 

In equation 2-38j, k. --, is, a measure of-the , absorption of light in the 

medium and is the distance in which the amplitude of the wave falls k 

to 1 
of its initial"value. wnx 27r - nx is the phase factor corres- e Tc T 

ponding to an optical distance of nx. Xis the wavelength in a vacuum. 

Maxwell's equations 6zin also-be used , to show some important relationships 

between E and H vectors. Consider a plane wave given by equation 2.37 

where x is replaced by a vector r+ $j + Yk., ij j and k being the 

unit vectors along the x., y and z axis respectively and cc., P^ being 

their direction cosines'. 

aE i wE 

Vx H 8D + aE 

from 2.36 

(Maxwellfs equation) 

aE 
E_C0 7f + cy E=iee0 wE + aE 

e E: 0w+ a) E 

i2Nw- iw Ec 
c 11 11 

0 
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and from 2.35 
2 

VxH2WE 
c0 

Now VX. ýai + aj + ak 
ax DY az ---2.39 

Frofii equation 2.37 where x is replaced by r 

9E 
ý 

iWN BE iWN. 
0 3E iwN YE 

T x c OY c zc 

Because there is symmetry between the solutions E and H we can also write 

iw N ccH 3H =iw 
N 

57 c 3ýf c 

and 
3H 
.= 

iwN yH 
- z z c 

Therefore 

iwN (i a+Jý+ ! L9 .wN VxH=-)H =- 1-. r xH---2.40 c D. x- ýy ýz c 

By substituting 2.40 into 2.39 we get 

that is 

Similarly., 

and 

- wN H= iw N2 
C. -- 11 110 c2 

rx H=- X Fd 
c 11 11 

2.41 

Vx E -ýý 
NrxE 

c-- 

Vx E3B 
at 

- 11 11 iw H 

(Maxwell's equation) 

---2.43 
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, 0here H=H exp i (t -E ]ý). 
0c- 

From 2.42 and 2.43 we get 

N 
"(ExE)= I,,, H 
c0 

that is 

(r x---2.44 

2.6 Waxivation of the effective complex refractive index 

From equations 2.44 and 2.41 we can see that EH and r are mutually 

orthogonal and form a right handed set. Let us now consider the boundary 

conditions of a thin film of complex index N1 on a substrate of index N 2-1 

where the thickness of the film is d with the incident medium having a 

complex index of N0. I "\X 

light 

N 

thin film 

a 

N1 

x 

Figure 2.3 

Substrate 
N2 

With reference to the figure 2.3 at the interface b the tangential 

components of E and H are Hb = Hib + Hib 

NI AA 

X 
+ 

H, 

Eb k Elb) - (k x bi ---2.45 C 11 11 0C 11 11 
- 

45 - 

(by using 2.44) 
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The first term represents the positive going wave and the second one the 

negative going wave. 

Alsoy Eý Eib + Elb 
-b -- 

-% + 
so that (k xEk Eib) + (k + E71b). ---2.46 'b) (x 

Substituting 2.46 into 2.45 

X, AA Nj ." Hb 
c 11 11 

(tc x Eb -kx E-Lb) -c 11 11 
(k x Elb) 

N. 1 AA (kx Eb - 21E x Elb) 
0 

that is 

A-= NI kx ! lb (k x Eb) - Hb 
c 11 U0 Z-- N, /c 11 110 

= (k X Eb) - Nj/c 11 lij * 

Similarly., 

+^' 
-Hb kxEx ýb = (k Eb) + Nj/c li li 0" 

' 

At the interface a in the above diagram 

++e Eia Eib 

E la = Elb e 

++ Hla = Hib e 

H la H lb e 

2.47 

---2.48 

---2.49 
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where 61 is the phase factor equal to Nld.,, for normal incidence. 

At the boundaries a and bý (f igur e 2. -3ý 

+A kxEa =k x Ej 
a+kxE la 

Hb (e 
kx (e e7 + Mi, /c P 11 2 

---2.50 

using the relations 2.49., 2.47 and 2.48 

1 

sin 6, 
kxEa=kx Eb COS 61 +12.51 

Similarly., 
N, k 

icx Eb sin6 1+ Hb cos 6,. 2.52 
11 p0 

Equations 2.51 and 2.52 can be written in the matrix notation as 

kxEacos6 12 (i sin 6 1) /(Nl/c 11 ji 0kX !b 

2.53 
Ha 

where., 

i Nj sin Cos 

c0 

Cos 61 

i N, sin 

C. 11 P0 

i sin 6 /(Nl/c PP c) 

COS 61 

Hb 

is called the characteristic matrix of the thin film. The refractive 
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index N, can be replaced by 
! 1- for P-waves and N cos for S-waves 
Cos 61 

when the light is incident at an angle of incidence of e The phase 

factor is then replaced by 

2 7r N (cos 6)d (see equation 3.1)- 57 1 

This can only be done for homogeneous waves. The 

case for inhomogeneous waves will be discussed later. 

If the effective refractive index, of the assembly is -2a... then by 

direct analogy with equation 2.44 

Za A 
c "P P0 

(k x Ea) =Ha 

substituting 2.54 into 2.53 

we get (k xE a) 
za ý 

c 1101 

Cosa 

i Nj sin 6 

Cv 11 0 

2.54 

i sin 61C 11 11 01 
(k x Eb) 

N1 

Cosa iN2 
C11110 

rewritten such that Za = C/B., the effective refractive index can be worked out. 
CV110 

B 

C 

Cos i sin 61c0 

N1 

i N, sin 61 
Cos N2 

c vo clivo 

The matrix relations above relate the tangential components of E and H 

vectors at the incident interface with the tangential components at the 

interface with the substrate. The above treatment can easily be extended 

to the case for an assembly of n thin films on a substrate of refractive 

index Nn +1, and 
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B 
n 

T7 

Cos c ii p ci i sin r 
N 

1 

2.57 

CiN 
sin 6rc 

os6r, C00 

The tangential components of E and H at the incidence interface 

again relate the tangential components at the interface with the substrate 

no matter how many intermediate layers there may be. We can also calcu- 

late the effective refractive index of the whole assembly from which by 

the application of the Fresnel: formula the reflectance of the assembly 

can be derived. 

35 



CHAPTER THREE 

INTERFERENCE SOLAR CELL 

Introduction 

The interference solar cell is defined as one that takes into 

account the optical interference effects due to multiple reflections 

at each interface between the different media constituting the device. 

The substrate interface effects are also included. Its theory will 

be developed starting from the optical characteristic matrix., derived 

in Chapter Two., relating the electric and magnetic fields at the front 

surface to those at the interface with the substrate of an assembly 

of thin absorbing films. 

3.1 Derivation of the absorption rate 

In this section an expression for the rate of absorption of light 

at any point inside the solar cell will be derived.. The solar cell is 

assumed to be a system of plane-parallel sided, homogeneous absorbing 

layers. 

I 0 

Em 
2 1 

no 

j =M+l j =m 

Figur e 3.1 Mültilayer System 

iý3iý2i ý-- 1 
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Let Ea and Ha be the tangential components of the electric and 

magnetic vectors respectively at the boundary j= m+l where light 

of intensity 10 is incident normally in a medium of optical admittance 

no* If Xb is the optical admittance of the substrate and Eb is the 

tangential component of the electric vector at the boundary j=1,,, then 

from the standard characteristic matrix for an as-sembly of thin films 

Ea Cos( 6 In) 

Ha ii 
m sin( 6 

M)Yý 

1 Si-n( 6 in)/ ým _y; 1 

Cos( s -ill) 19 
Y7 ,b 

---3.1 

. 0), 
'ý., sm where y v 

! 4n-i ký dm cose ý) and dm is the thickness 

of the mth layer. 

n-ik 
The "complex refractivett index is defined as m -- M 

mcos C-e-j 
for P-waves and = (n 

m-ikm) cos (a 
m) 

for S-waves. 

nm is the "real" refractive index and km is the extinction coefficient 

for the mth layer. 

Nb= nb - ik b where nb is the "real" refractive index., and kb is the 

extinction coefficient for the substrate. 

For k =0., M is real 

For kmm is in general complex 

is in general given by the generalised form of Snells Law M 

i. 

(n 
m-ik m) sin 6= (n 

m1- 
ikm-, ) sin am-1., 

For normal incidence em = 0. 
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The matrix relation 3.1 can be rewritten in the form 

E 

HaI 

mll M12 1 

M21 M22 ýb Yv 

If R is the reflection coefficient at the boundary j=m 
a 

(1 -R)I Real (E xH ---3.3 a2aa 

Substituting 3.2 into 3.3 and putting 1.1 

I 
a---3.4 

Real (Mll+Ml2 ýb Yv)(M21+M22 ýb Yv)* ' 

For any boundary j in the assembly the relation 3.2 can be used to 

write., 

E. 
3 

H. 
3 

Ra is given by 

All A12 

A2, A 22 ýb Yv 

* 392 

9 

((n 0-za 
(no - Z-a) 

Ra ý-- (n +Z 
((; T--+z )) 

0a0a 

where 1 )2 

2=0, a. 
a(E o)«i 

Ea 

3.5 

(Fresnel's relation) 

3.6 
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Za is the effective "complex refractive indexIt for the whole assembly. 

The intensity at j normal to the boundary is given by 

1 Real (E x H. *) - 3.7 

The electric vector Ex at any point inside the layer is given 

by (see figure 3.2) 

I 

Ex (Cos XIT +i sin let Z 3.8 

where I 
H. 2 ir )2 EI and x1t (n ik )x 

0ix j- i 

2j is the effective complex refractive index for the assembly (figure 3.2) 

on the left hand side of the boundary j. 

j+2 

Figure 3.2 

1 
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The absorption rate per square metre in a lamella dx at x in 

the jth layer is given by 

Absorption Rate A(x) = -1 EE*---3.9 2 Ili xx 

is the conductivity in ohid' m 

E is in Vd-1 
x 

CF i is given by 

ai = 7r co nj kif (from Maxwell's equations) 

f is the frequency of the'wave. 

The analytical expression for A(x) was solved out to 

2 -2Y) + 
p5 

( +2y -2Y) E. E *( 11 (e+y+ýe-e 
ii42 

where 

cos 2 x' +P sin 2 xý ) cT ---3.10 

2 7r 2 
xI=X nj x and y=-, 'r k, x 

Yi 

2+ai 2) /(n 
i2+ki 

2), 

p2= (i + pl) 

p3- pl) 

p4 aj nj - yj kj)/(n i2+ki2 

yj nj + oj kj)/(nj 2+ki2). 
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3.2 Calculation of the short circuit current 

P/N N/P 

i j-1 j-2 i-3 

Top Base 

Substrate 

j "j-3 
a 

1311a1 . 11 3ý'. 1aI j-11 a. 
3 

I J-2 xxxx 
x X=O X=O X=O X=O 

Depletion X=O 
Regions 

Figure 3.3 

Only the case for zero electric field will be considered assuming 

n and ýn to be constant with both X and x. 

The continuity equation to solve for each layer is 

D d2n 
-n=- A(a -x) ---3.11 n dx2 Tn 

(see equations 2.5) 

where 

A(a -x) is in units of photons/m3/sec; 

n is the concentration of the generated carriers i. e. electrons on the 

P side. The same equation applies to holes on the N side by substituting 

p for n everywhere. 
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The boundary conditions (see page 12) applicable to the jth layer are: 
(1) n(a i)=0 

(for zero external bias and ignoring recombination due 

to interface states) 

(2) D Jda 
I=Sn n(O) where Sn is the surface recombination 

dx 0 

velocity at the (j + 1) surface. 

The boundary conditions applicable to the (j-3)th layer are: 

(1) n(o) =0 (for zero bias and ignoring interface states) 

(2) Dd": - - SbP 
3) where Sb is the recombination -M 

Ix=a 
n dx j-3 

velocity at the (i -3) boundary. 

The solution to-3-11 was found-to be 

n=C 6-x/Ln +. ý+x/L. + 'I 
P3 cos(S(a-x)) 

+ 
!A ! sin(S (a - xxj) 

12 4Dn (S2 + t2) 2D 
n (S2 + t2) 

up 2 cosh-(a-x) 
p5 

sinh (= (a-x» 
On 2-t22D 2' 

-t 
2) 

where 
47r k (absorption coefficient)., x 

S 
47r n and t x Ln 

---3.12 

01 and C2 are found from the boundary conditions. 

For aP type layer the short circuit current at j due to absorption 

in the jth layer is given by 
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i= dn IF 
jn dx x=a * 

eD 
ýc 

2 ila/Ln + 
W, 

IKEn- Ln 2D (S 2+t2 

+ 
(1 iP5 

2D ( (X 

where 
CT jp 3 Wl 

On (S2 + t2 

ip3 sin(S aj 

Pn (S 2+t2 

cr Jp2 

4Dn (=2_ t2 

P4S cos(Sa) 

(s 2+ t2) 

aip2 sinh (- a) 

On ( cc 
2_ t2 ) 

+ 
ajp 5 codi( a) 

2D 
n( cc _ t2 

'2 ' 
ajp 3 cos(Sa) 

+ 
cy JP4 ajp 2 cosh'.. ( . a) 

W3 
4D (S 2+t 2) (S2 

n 
2D 

n+ t2) 4D 
n 

(,,, 2 
_ t2 

aip5 sinh(- a) 

2D 
n 

(, 2_ t2) 

c2ý (Wl exp (a/, ýd - Sn'4nW3 -"ýlDnW2 
SL+ D-' 
nnn 

LS -D nnne -xp (2a/L. ) (D 
+LS 

n nn 

a=aj and F is the incident photon flux at wavelength 0 
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For an n type jth layer equations 3.13 still apPly with p substituted 

f or n everywhere. 
I 

Assuming that all the absorbed photons generate minority carriers in 

the depletion regions., the contribution to the short circuit current 

from these is given by 

Jd = (Ii -I j-2 
) e. F. ---3.14 

It is assumed that all the minority carriers are swept across before 

they can recombine. 

The contribution from the base region is given by 

ji-3 = -e Dn dn I* 
U 

(2C 
2+W3+W2)Dn. F---3.15 

Iý: 
L 

2 

where c2 is now defined as 

bw1 
a/Ln 

3( 
L ! 

-b) - (Sb 2 Ln DnDn4 

e 

2a/L 
n( Sb 

+ 1, )+ (1 
Sb) 

DLLD 
nnnn 

where 
cy. PS (I ip cc 

W= -J 3+- and a=a 42 S2 + t2) 2( .2_ t2 ) j-3 

The total short circuit current for an N-P or P-N junction solar cell 
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j total = /J/ + /Jd/-'"/Jj- 
3 -/ at wavelength x---3.16 

Total current over all wavelengths is given by 
X(E 9 

j total (all X is) 
j ýotal dX 

0 

where X (E 
9) 

is the wavelength'corresponding to the cut-off band edge 

frequency for the junction. 

A complete working computer program in Fortran IV has been written 

for the above analysis. 

3.3 Oblique incidence 

From Maxwell's. equationsthe following relationships between E and H 

vectors can be derived (Stern, 1960). 

kr1xE-i k2r2 xE = c0H kx 

krxH-i 1 k r, x H= 2 
_2 - 

N2 E 
cp po 

kxH 
3.17 

where N=n-ik is a P. ure number. 

r1 is the unit vector in the direction normal to the planes of constant phase. 

r is the unit vector'in the'direction normal to the planes of constant 
_2 
amplit. ude. 

2 
(n2,, 2) + (112 2) +2 

Cos 
2 

2 2 2) 2 2)2 + k2 r7 (n kI+ 
((n 

k 

Cos 
2 
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is the angle between rl and r 

when r1 and r2 are parallel,, 'X = Ot 

n and k k. the wave is homogeneous. 2 

The wave is inhomogeneous when r1 and r2 are not paralle4 that is 

when the direction perpendicular to the planes of constant phase is 

not parallel to the direction perpendicular to the planes of constant 

amplitude. 

To distinguish between homogeneous and inhomogeneous waves a little 

more clearly we can write the E vector for the homogeneous case as 

Eg exp (i(wt - 27r N. r» 

(E is with respect to the direction of propagation here) 

whereas for the inhomogeneous case it is 

E0 exp (i (wt -2 7T ik2r 
2) T-o 

.1 ri 

2r2 
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When Snells Law is written as 

(nm -i km) sin a- 
m= 

(n 
m-i 

km_, ) sin ein_, 

where 6 is in general complex as a consequence of the Itrefractive 

indexlt being complex. It is very difficult to attach real physical 

meaning to the values of 6 other than_that they indicate r1 and r2 

are not parallel. 

The second form of writing Snells Law in a generalised way is 

m sin em -= kl(m_, ) sin em_l 

k2 sin -ým =k 2(m-1)"' 'ým-l 3.18 

where e and (D are real and physically represent the directions of 

constant phase and amplitude respectively i. e. directions of r1 and r 20 

The relations 3.18 are derived from the boundary conditions for E 

and H at the interface. 

If the medium of incidence is air then from equation 3.18 we can 

see that r2 is always perpendicular to the boundary. 

The energy flow 9 is still given by the relation 

Real xH 

Real x (r 
1kik2r2)x E) from 3.17 

writing kk1r1-ik2r we get 
-2 

1 3.19 

§- =. L 11 
2 cli va 

Real k' - 
(E* 

. L) E 

Cil p 

- Real (k 
1r1- i- k2r2 )) E ---3.20 
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Now any incident wave can be written as a combination of P- and S- 

waves. For P-waves the E vector is parallel to the plane of incidence 

defined as the plane containing rl_, r2 and the normal to the boundary. 

For S-waves the E vector is perpendicular to the plane of incidence. 

Let us represent the E0 vector by E1+iE2 where E1 and E2 are the 

major and minor axis for the ellipse traced out by the oscillating E0 vector, 

Assuming zero charge distribution and using MaxweUls equation 

D=p=0 we find that 

(k rik2r2) (E +iE 2) 

from which 

Ekr2E2 2_ 

k2r2Ek1 ri E2 

In equation 3.20 above 

(k 
1r1-ik2r2 

(E iE2 (kir, -ik2r 2) 

E1krE2k2r2-i (E 
2kr+k2r 2) 

2E 2k2r2-2i 
(El k2r 2)' 

Substituting the latter into 3.20 where 

- Real k El 

Real (-2E 
2k2r2-2iE1k2r2 

)(El +iE 2) 

(2E, k2r2, E 2) - (2E2 k2r2. El) 

k2r2x (E 
2x El) 
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from which 

kr (E x El). 2222---3.21 

The latter equation shows that when E0 oscillates in the plane of 

incidence (P-waves)., the direction of the energy flow is the vector 

sum of a component in the direction of constant phase plus a component 

given by the second term and lies in the plane of incidence. 

When the Eo vector oscillates in a direction perpendicular to the 

plane of incidence (S-waves)-., the energy flow is in the direction of 

constant phase. 

The arguements applied to normally incident light on a thin film 

multi-layer will now be extended to obliquely incident light. The equation 

3.17 relating E and H vectors indicate that for inhomogeneous waves., 

E and H are not necessarily orthogonal. However, the Poynting vector 

is still perpendicular to the plane containing the E and H vectors. 

For the two special cases when E is parallel to the plane of 

incidence and perpendicular to the plane of incidence the E and H 

vectors are orthogonal still. 

Now equation 3.1 can be used to find the intensity and absorption 

rate for the normal components in the following way. Remembering that 

for P-wave s n, = rý, -i kýa and for S-waves gnl= (nm- i km) cosem_, 

Cos 6m 

'equation 
3.2 still applies except 6m is now complex and given by 

Snell-Is Law as mentioned earlier. 

Equation 3.3 is modified to 

c0se0 -fl Real (E xH *) 
02aa 

where 60 is the angle of incidence. 
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Equation 3.4 becomes 

E2 
(1-R 

a) Cos 60 
for I b Real (-10 Mll + M12 ýb Yv)(M21 + M22 ýb "ý-Yv)* 

Equations 3.5 and 3.9 still apply for the energy components normal 

to the boundary with the following modifications. 

X,, 
2 N Cos 

ik 

XII = 
lar (n ik cos 0. x for S-waves and P-waves xi-i 

write 6+i0 j 1: j jo 

For P-waves equation 3.10 still applies with the exception, that 

E. and H. values will no longer be the same as for normal incidence and 
-j --j 
that( yj-i ýj) is equal to Zj cos ej ;n and k should be 

substituted by c and d respectively by redefining, x1l so that 

2-7r (c. 
- icL) x 

where 

from ýhich 

(cj - id) = (n 
i-iki) Cos 61 

cnj cos F-j cash nj -ki Sifi E: sinh 

dj= -n i sinejsinh Qj-+- ki cos cycosh uj 

Equation 3.10 can now be applied by substituting c for n and d for k also 

in the case for S-waves with the'substitutions 

Xf Cxyd. x ij 

and P, Yj2+ 
2)/(r 

i2+di2 
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P21+P 

P31-P 

P2+d2 4 Yj j- Ij 'j), (, j i 

P5 yj cj + aj dj)/(CJ2 +d1 2) 

where Z. 
Yj -iai Cos 

10 for S-waves 

Equation 3.10 will now give the normal components for the absorption 

rate for both P- and S-waves. 

The absorption rate along the direction of energy flow as a function 

of x (distance along the normal) can be found in the following way. 

Note that the absorption rate is proportional to the intensity 

(equation 3-9). 

111 
-- -7 cr3 

--. 
---L_ 

x normal 

R0R 
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Unfortunately a simple expression for the flow of energy by 

an inhomogeneous wave does not exist but it should theoretically be 

possible to calculate =i at each interface (diagram above) by the 

application of equation 3.21; r1 and r2 can be calculated using the 

generalised form of Snellis Law (equation 3.18); k1 and k2 can be 

I 
evaluated from the relations given on page 45, 

For the S-waves the energy flow is in the direction of rl,, that 

is in a direction perpendicular to the planes of constant phase. 

For P-waves the energy flow direction will be that of. the vector 

equal to Ar1+Br2 

where k 

-1 B" 2c P 110 El) .k2 

The absorption rate as a fmction of x is then given by equation 3.10 

,. 
divided by the cosine ( -). Ix is the direction of energy flow in a given 

layer and can be worked out as shown. 

When working out the short circuit current for zero drift fields 

equation 3.12 gives the minority carrier concentration with the modifi- 

cation that a everywhere has to be replaced by a 
Cos Ix 

The short circuit current is given by equations 3.13,3.14 and 3.15, 
1 

, remembering that I. is replaced and F is the photon flux density 
i Cos CC 

at oblique incidence. 

A computer program can be written and the short circuit current 

analysis for oblique incidence and zero electric field, can be made. 
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CHAPTER 4 

IIINfERFERENCE't CELL WUH CONSTANI! ELECTRIC FIELDS 

4.1 Normal Incidence 

Electric fields can be produced both in the top layer and the 

base layer of the cell by introducing donor or acceptor doping 

concentration gradients. These fields can aid the photogenerated 

carrier to reach the junction and so increase the photovoltaic 

current. 

When electric fields are included the continuity equation 

which governs the minority carriers is 

Dnd2n-n+ 
nE 

dn + A(a- x) = 0. ---4.1 
dx 2 Tn nä 

A(a -x) is giVen by equation 3-10., n is the concentration of 

the minority carriers, Tn is the lifetime, Dn the diffusion 

constant, pn the mobility of the minority carriers and En the 

constant electric field inside the material. It is assumed that 

each photon absorbed generates one pair of minority carriers. 

Equati. on, 4-1 can be written as 

(ý2_t2+B9) n+ 
A(a - x) =0---4.2 D 

where t2 DnTnL2 
n 

If E. 
nn and is the differential operator. D 

n 
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The complementary function to 4.2 is 

y=k1 et Ylx +k2e +y 2x---4.3 

I 

where Y, = -B + (B 2+ 4t 2 

2 

+ 4t)' 

The particular integral is 

cr E 
.1E BS + p3 (S2+ t2 p cos (S (a -x)) + 2Dn42 

(P 
4 

(S2 +t2 )+ P3 BS) sin (S(a -x» 
2 

E. E. * pp 
a112+5 -(a-x) (a - x) 

2)e 
ý2 

- P5) 

n 

f( 

+12 
cc 

2-t2-B 
cr 22---4.4 

cc -t +B cc 
k 

The final solution is given bY 4.3 + 4.4 and represents the 

carrier concentration as a function of x in layer j of figure 

3.2. The constants k1 and k2 are found from the boundary 

conditions with reference to figure 3.3. Interface states are 

ignored throughout. For the jth layer the conditions are 

dn I 
a) Dn dx x=0+pn 

En n(O) Sn n(O) (surface recombination) 

b) n (a 
j)=0 

(zero bias condition)- 
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For the 0- 3)th layer the conditions are 

a) D+ Il: E n(a S n(a n 
dd. 

-n 
Ix=a3 

'd ni-3ni-3 

(surface recombination) 

b) n(O) =0 (zero bias condition). 

We can write the minority carrier concentration as 

n=k1 eylx +k2 J2ý+Qj cos S(a-x) + Q2 sin S(a-x) 

Q3e- (a-x) +Q4 e- -(a -x) - --- 4.5 

where 
cr EE* (ý 2 +t 2 
2D 

n 
YS + P3 (S 

2 

Q, =aEE (+P (S2+t2) + p3 BS) 2 2D i4 

3= 
-aE iEp2+ P5) 
-2r- - -4 2 n 

2 
cc _ t2 -B- 

cr E E. * pp 
.1(2 

5) Q4 2D 42 n 

cc 
2_ t2 + B- 
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The contribution to the short circuit from the jth layer is 

given by 

D dn ii ý2 n dxj x=a 

ya yj aj )a eDnFk 2(Y2 e2i- yl e- W4y,, ey 1 j+ W8) ---4.6 

where W8 ý Q2S - Qf + Q4' 

Q1+Q2+Q 

s 
and kw 6-yi 'j)- wn- B) + 276Dn 

yj -(Sn 5- 
n 

y 

-(S n- r- 
n 

exp(Y - yl) 
.. 2 

where W5Q1S sin (S a) +Q2S cos (Sa) -Q 3cr e cr a+, 
4 "r e- cca 

Q cos (Sa) sin (Sa) +Q ecca+Q a W6 ý1+ Q2 34 

The contributions from the depletion regions are 4gain given 

by equation 3.14 on'the assumption that all the absorbed photons 

generate minority carriers and that they'are swept across before 

they have a chance toxecombine. 
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The contribution from the base or 0 -3)th layer of figure 

3.3 is 

i= eD 
dn F i-3nUI X=o e 

=DnF (k 2 
(Y2 - yl) - W6 yl + W5) ---4.7 

where k2 is now given by 

k2 2- w7 ! 

D-n +B)+ W8 

ny1bsw6 

yj e+(D 11 + B) 
n 

The total short circuit current is given by equation 3.16. 

When the electric field is not uniform throughout the layer 

then the layer can be subdivided and equation 4.5 applied to each 

sublayer separately. The constants k 11 and k2 would have to be 

worked out from the boundary conditions Eor each sublayer. The 

contribution to the current collection at the junction can then 

be worked out for each sublayer. The electric field is of course 

assumed to be constant within each sublayer. 

Lightý 

nk 

Ey 

X-l k-2 2 

I. xz Xz j th layer 

j+l -x 

Figur e 4.1 

x2 xi 
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The boundary conditions for jth layer are, neglecting interface 

states 'and noting that a (x) is different for each sublayer 

n, (al) =0 (zero bias externally) 

n (a 

(continuity of n) 

n (0) = njz(ak) (ap is the thickness of kth sublayer) 

Dn, dnl +D 
n2 

ý! 2- + it . 2E2n2 
(a 

2) dx x=0 dx x=a2 

D 
n2 

dn 
21 + ll'2 E 2n2 

(0) =D n3 
12ý 1n3 (a 

3) dx x=0 dx x=a3 

D 
dn 

9,1 + li. E n, (O) =*Sn nýO) (surface recombination) nk dx x=0zk 

For k sublayers 2 2, simultaneous equations have to be solved to 

find k and k for each sublayer. (a, is the thickness of kth sublayer) 12 

The solution to a two sublayer model can be worked out from 

the following matrix relation 
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-e 
Y12 a2 

-eY22 
a2k 

11 

D 
nl 

(3rl + Bl)., Dnl(y2l+ Bl)., -D n2 eY12 
a2 

(Y12 +B 2) 3-D n2 ey 22 a 2(y 
22 +B 2)k 21 

e 
ylla, 

ey2lal 00k 12 

00 Y12 -W9 (2). 9 Y22 -W9 (2) k 22 

w7 (2) -"; W6 (1) 

D 
n2B2 

W7 (2) +D 
n2 

W8(2) - Dn: L W5 (1) - DnjBj W6(1) 

w (1) 
7 

W9(2) W6 (2) - W5 (2) 

uhere the 2nd subscript and number in brackets refers to the number 

of the sublayer (figure 4.1) and S 
w9Dn-B2 

n2 

The current contribution from the jth layer is then given by 

eD nj 
dn, +eD 

n2 
dnZ I 

dx 

I' 

x a, dx x=a2+a1 (top layer) 

-which can be calculated from equation 4.5. 

The general solution for sublayers in the jth layer is worked 

out as follows 

Let, M all a 12 a13 a 1-4 

a 21 a 22 a 23 a 24 
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yl, a. 
where all a 12 a 13 -2 -e 

alL4 = -e 
2 2., a 21 ": " D 

n(. t- 1')(Yl(ý- 1) +B 9) 1 

23 ý -D n y, e 
1, a. 

(y 
1 2, + BZ ), a 22 = DII(p 

_ 1) 
(Y2(ý 

- 1) + BZ ) 

24 -D nk e (y 
2 R, 

+Bz) 

Let 0 
-1 

00 
-t 

y1i - W9( y2z - Wq(t 

eyil 
al Y2, a, 

....... 0 e0100 

The general matrix can be written as 

m20------------0k 
11 

00 M3 0------0k 21 

000M00k 4 12 

k 
22 
1 

00 
-- ---------om 

-- 
-----------00 

0,0 
.3------------- 

oz kýk 

k2Z 

i. 

u2 

u3 

u 

-w 7(l) 

Wg( Z) W6( 't WS( 't 

4.8 
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where 

w 7( Z) - W6(Z-1) 
UZ 

DW +D BW (9, ) - Dng 
_ 

iWS(£ - 1) -D- l%- 1 W6(£ 
n9,8(9, 

) 
n 9,7 nt 

By writing a suitable computer program the k"s can be calculated 

for each sublayer. 

The contribution to the short circuit current from the jth 

layer is calculated in the same way as for the two layer model. 

The contribution from the base or 0 -3)th layer of figure 3.3 

is calculated as follows 

3)th layer 

2 

2. 

________ ________ ________ 

xzxY, 
-l 

XZ-2 x2X, i-3 

In the case of the 0 -3)th layer an identical relation to 4.8 

exists. M's are identical in form and so are Uls; but 01 is now 

given by the boundary condition. 

dn 11=(- Sil 
- B, n(al) and 

dx a, D 
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is given by the boundary condition n, (O) =0 02, 

yll a, S Y21 a1S 
0, yll e+D+B1 Y21 e+D 11 + B, 

I 

rOL nl 

---0 

O = 0 --------- ------- --1 11 
z - 

1 
, -- I 3 

The short circuit current contribution from the (j -3)th base 

layer is given by 

ji-3 eD n' 
dnll 

x (a +a +a dx 23Z) 

-e D 
n2 

dn 21 'ý 
dx x= -(a 3 +a4+ a., 

dn 

Ax, 
Ix 

The total current collected-at the junction is again given by 

J'total Jj/ + /Jd /t /Jj- J/ where Jd is the 

contribution from the depletion regions as given by equation 3.14. 

4.2 Oblique incidence with Electric Field 

The same arguments apply here as in the case for the zero 

electric field. The absorption ratesfor the P- and S- waves is 

calculated from equation 3.10 with modifications for oblique 

incidence. The direction of energy flow is also calculated as 

discussed in the case for zero electric field. In equation 4.4 

a has to be divided, by the cosine of the angle the energy flow 
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makes with the normal. 

Graded band gap solar cell 

In a graded band gap solar cell the band gap varies with 

thickness. If the top layer of the cell was graded in such a 

way that it moved the minority carriers towards the junction., 

there would be less left at the surface to recombine. Very 

high electric fields can be obtained in a graded band gap 

layer. For example, if the energy gap grading only affects 

the bottom of the conduction band., a 0.3 eV increase in the 

energy gap in the range lpnr corresponds to an internal electric 

field of UP to 300 V cm- 
1 (Makota et al 1975). 

The theory described above for non-zero electric fields 

can equally well be applied to the graded band gap solar cell., 

but it has to be remembered that in the case for the graded 

band gap layer the absorption coefficient varies with distance 

i. e. it is a function of the band gap. In this model then a 

different value for the absorption coefficient as well as the 

electrical parameters have to be entered for each sublayer. 

-This really is a correct model for a step graded gap solar cell, 

. bu t the more steps that can be introduced (depending on the 

capacity of the computer) the more it will resemble a smooth 

graded band gap solar cell. T. S. Moss (1959) discusses 

absorption processes in semiconductors., i. e. variation of the 

, absorption coefficient with the band gap., for instance. 
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CHAPTER 

COMPUTER ANALYSIS FOR THE "INTERFERENCEIT CELL 

(Normal incidence and zero electric fields) 

5.1 Introduction 

Data for AM1 radiation was obtained from M. P. Thakaekora (1974). 

AN1 radiation is approximately 100 mW per cm. 
2 

and is the sun's energy 

that falls on Earth on a clear day at zero zenith. Figure 51.1 is a 

graph for A141 radiation in which the total integrated photon flux is 

plotted against the photon energy. The bbLndgap for Si is 1.1 ev; the 
20 2 

corresponding photon flux from figure 5.1 is 24.3 x 10 photons per m 

per second. Assuming all the photons are absorbed and generate minority 

carriers and that there are no losses due to surface and bulk recombinations 
2 

the corresponding short circuit current is 38.8 mA per-cm 

For a Gu2S.. the band gap energy is approximately 1.2 ev and the 

20 2 
corresponding photon. flux from figure 5.1 is 20.8 x 10 photons per m 

per second. The corresponding short circuit current is 33.3 mA per cm2. 

Therefore the maximum short circuit that a Si-Si cell can generate 

, from AM1 radiation is 38.8 mA per cm2 per second., whereas the Cu2S-CdS 

c ell can generate a maximum short circuit current of 33.3 mA per cm 
2 

The smaller the band gap., the higher the maximum possible short 

circuit current that can be generated. However., the smaller the band 

gap, the loweiý will be the open circuit voltage. 

It follows then that there is an optimmu band gap energy for which 

the . o, ýerall efficiency., after taking into account dark currents., is 

a maximum. Such calculations, have been made for a P-N homo-junction., 

for example by P. Rappaport (1959). The optinnun band gap energy is 

around 1.4 ev. No such-calculations exist for a 8chottky barrier cell. 

For, a heterojunction cell (Ae Vos., 1977) the larger band gap should be greater 

than 1.5 ev and the smallerone equal to 1.1 ev to give an efficiency of 3W,,. 
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Figure 5.1 Photon flux Vs photon energy for AH1 radiation 
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5.2 Intensity and Absorption rates in a Multilayer Stack 

Figure 5.2 shows graphs of intensity., the absorption rate and 

the mean square of the electric vector as functions of position for 

a Cu 2 S- CdS solar cell having the following configuration. 

cds Cja 
2s 

Air 2.5 
n 3.2 

ddpletiön 
k k'= 0 0.47 

reg4on 
-o. 61im 1 

1 0.6mm 1 0.01 1 0.0031 o. 2., 4z rn 1 
1 Arn It4m 11 

Light of wavelength 0.6pmis-, made to shine on the CdS side. 

Refractive index of Cu2S was taken as 3.2 and the extinction coefficient 

calculated as 0.47 5 -1 
. from the absorption coefficient taken as 10 cm. 

(Rothwarf and Boer 1975) and bearing in mind that siwh data was 

not.. well established. (B. J. Mulder 1973) 

Absorption coefficient data for CdS was taken from Loferski (1963) 

and the remainin optical data for CdS and Ag was taken from the 

American Institute of Physics handbook 3rd edition. 

Me following notation of symbols will make it easier to identify 

the graphs in figures 5.2 to 5.9. 

A- represents the mean square of the electric vector 

X- represents the absorption rate 

- represents the intensity 

Ag 
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Figures 5.2 
1. Square of elec. tric vector Vs wavelength 
2. Absorption Rate Vs wavelength 
3. Intensity of light Vs wavelength 
(for notation see page 66) > 

U3 

Relative Arbitrary Units 

71 
1---f G') 
C 
m 
m 

Ul 

Dýý 

r- 

ba 
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Looking at the i2 graph in figure 5.2 one can see a standing wave 

being set up in front of the CdS in air and also a standing wave with a 

smaller amplitude being set up in the CdS. 

A standing wave can also be observed in the Cu 2S but its amplitude 

is attenuating, 

The V 
graph is calculated from equation 3.8. The higher the reflect- 

ance at the interface between CdS and air as shown in figure 5.2, the 

larger will be the amplitude of E2 in front of the CdS layer in air at 

the expense of the amplitude in CdS. 

The same argument applies to the CdS and Cu 2S interface but it has 

to be remembered that the amplitude in Cu 2S is also attenuating due to 

absorption. 

The standing waves are set up as a result of multiple reflections 

from each interface as well as the substrate -which in the case of figure 5.2 

is silver. The reflected waves and the forward travelling waves superpose 

resulting in optic, al interference of the waves. 

From the graphs of the intensity and absorption rate in fig-ure 5.2 

one can see that there is a total reflection of just over 20 percent for 

the assembly as a whole and that the absorption rate is a maximum. where 

the slope of the cvrve is steepest and that it is a minimum where the 

intensity is least steep as expected. 

The intensity is calculated from equation 3.7 and the absorption rate 

from equation 3.10. 

Figure 5.3 shows graphs ofi 
2, 

absorption rate and the intensity f or 

the same cell as for figure 5.2., at the same wave length but with the 

silver substrate substituted by air. 
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Figure 5.3 
1. Square of electricývector Vs-wavelength 
2. Absorption Rate Vs wavelength 
3. Intensity of light Vs wavelength 
(for notation see page 66 ) 

Relative kbitrary Units 
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The absorption rate in the Cu 2S layer in figure 5.3 can be seen 

to have fallen in comparison to that in figure 5.2. Me reason for 

it is that there is no longer sufficient light coming back into the 

Cu 2S layer after reflection at the back as in the case with a silver 

substrate. Even though more light enters a cell, backed by an air 

substrate the absorption is greatest in a silver substrate case. 

This is an illustration of the fact that the substrate can alter the 

optical interference conditions and hence affect the absorption rate. 

The graphs of E2 
, absorption rate and the intensity in figure 5.4 

illustrate how altering the thickness of the CdS layer alone can affect 

the absorption rate in the Qu 2S layer. The thickness for the CdS layer is 

changed to 0.41. an and everything else kept the same as for figure 5.3. 

Comparing figures 5.3 and 5.4 it can be seen that in going from figure 

5.3 to figure 5.4 the absorption rate has risen and the reflectance 

for the assembly as a whole has fallen by 50%. 

The effect ofaLtering the CdS thickness is to change the phase which 

in turn alters the optical interference conditions. 

When the total optical thickness for the assembly is amx ultiple of 

the amplitude of the standing ware in front of the assembly is a mini miim., or 

zero if the assembly is entirely dielectric. When absorbing materials 

are included in the assenibly an amplitude condition must also be satisfied 

for zero reflection. 

In the examples that follow the light enters the cell from the Cu2S 

pide at a wave length of 0.6ým . 
The graphs in figure 5.5 are for a cell with a Cu2S thickness of O. lvm 

and a CdS thickness of 0.6um. The depletion regions are of the same 

thickness as in the previous examples. Me substrate is silver. 
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Figure 5.4 
1. Square of electrip vector Vs wavelength 
2, Absorption Rate Vs wavelength 
3. Intensity of light Vs wavelength 
(for notation see page 66 ). 
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Figure 5.5 

1. Square of electric vector Vs wavelength 
2. Absorption Rate Vs wavelength 
3. Intensity of light Vs wavelength 
(for notation see page 66) 
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Me graphs in figure 5.6 are for a cell identical in every respect 

except that it has air in place of the substrate - 

In the case of figure 5.7 the CdS layer is of 0.411 thickness., other- 

wise the cell is the same as for figure S. S. 

Figure 5.5 shows strong absorption in the Ou. 
2S layer with about 15 

per cent reflectance from the assembly. Figure 5.6 shows reflectance of 

about 22 per cent with absorption low compared to figure S. S. Figure 5-7 

shows reflectance of about 25 per cent with good absorption in the Cu 2S 
layer. Me absorption in figure 5.7 is low in comparison to figure 

. 
5.. 5 

and due mostly to reflection losses as can be observed from the graphs. 

The graphs in figure 5.8 are for a cell with the Ou 
2S 

layer of O. Ziin- 

thickness and a CdS layer of O-4Pm thickness. Me substrate is silver. 

Figiwe 5.8 shows about 30 per cent reflection with good absorption in 

the Cu2S layer. There are also three maximum values for the absorption 

rate in figure 5.8 as compared to figures 5-5., 5.6 and 5.7 in which 

there are only two maxima earch. 

In figure 5.9 the graphs are for a cell with a OdS layer of 0,2Pm 

thickness and a Ou 
2S layer of 0.11im, The substrate is again silver. 

Here one notices very strong reflection of nearly 60 per cent with 

strong absorption in the Gu-S layer with only a single maximun value 

lying roughly in the middle of the layer. 

The graphs of j2., absorption rate and the intensity in figures ý. 2 

to 5.9 have illustrated a number of points. Firstly the absorption rate 

can be maximised by having a strongly reflecting back surface. It can 

be maod mi sed by varying and selecting the opti mum thickness of the Cu2S 

and CdS layers. It can further be maximised by reducing reflection 

losses from the assembly as a whole. As the layers are made thinner 

the'number of-maxima for the absorption rate curve are reduced. 
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Figure 5.6 

1. Square of electric vector Vs wavelength 
2. Absorption Rate Vs wavelength 
3. Intensity of light Vs wavelength 
(for notation 'see page 66 
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Figure 5.7 
1. Square of electric vector Vs wavelength 
2. Absorption Rate Vs wavelength 
3. Intensity of* light Vs wavelength 
(for notation see page 66) 
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Figure 5.8 
1. Square of electric vector Vs wavelength 
2. Absorption Rate Vs wavelength 
3. Intensity 

, 
of light Vs wavelength 

(for notation see page 66 
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Figur e 5.9 

1. Square of electric vector Vs wavelength 
2.. -Absorption Rate Vs wavelength 
3. Intensity of light Vs wavelength 
(for notation see page 66) 
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From the point of view of collecting minority carriers at the 

junction it Is desirable to have the ma3dm , preferably a single 

of the absorption rate curve as near as possible to the junction. This 

would mean that most of the absorption occurs close to the junction; 

thereby reducing losses from recombination.. both surface and bulk. 

By first maximising the absorption rate at any reflectance of the 

assembly., the reflectance can then be minimised by adding on suitable 

anti-reflection coatings. 

Alternativelý., the assembly including the antireflection coating 

layers can be analysed as a whole and the absorption rate maximised 

accordingly., at the same time ensuring minimum reflectance for the 

assembly. 

As an illustration the absorption curve in figure 5.9 would be 

quite desirable as most of the absorption occurs nearer to the junction 

than the front surface., bearing in mind that antireflection coatings 

would have to be used to reduce the reflection losses to a sufficiently 

low value. 

So far only single wavelength absorption has been considered. To 

be of practical use the above optimisation of the absorption rate must 

occur over a wide range of wave lengths as possible. It must be 

remembered that CdS becomes absorbing at wavelengths shorter than 0.5pm 

and contributes to the generation of the minority carriers. 

Although digressing a little it should be mentioned that the above 

analysis when carried out systematically would be most useful in opti- 

mising the efficiency of photocathodes also, Other methods for opti- 

mising the efficiency of photocathodes have been discussed by Kossel 

et al (1969). 
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0 Most of the absorption in photocathodes occurs in the first 10 A 

under the surface so that a maximum of the absorption rate as near as 

possible to the surface is most desirable. For instance a peak in the 

absorption rate such as the one in figure 5.9 could be shifted towards 

the surface by altering for example tbathiclmess of the dielectric 

layer between a back reflecting surface and the photoemmissive material. 

The advantage of this analysis is that the same computer program can 

be used for working out reflectances., transmittances and absorptances 

for a multi-layer with any number and order of arrangements of the con- 

stituent absorbing and dielectric layers. In fact all the different 

designs discussed by Kossel et al (1969) could be worked_out using the 

analysis in this report. It also makes it possible to look for new 

designs whilst using the same theoretichl equations. 

5.3 Spectral Response curves for Cy S- CdS cells 

Table5AUsts the values of parameters and the main results for 

the spectral response curves from figures S. 10 to 5.18. (definition on page 90). 

For the curves : Ln'figures 5.10 to 5.18 the following notation of 

symbols is used; 

A- represents the absorptance f(X) 

E3 - represents the spectral response for the CdS + Ou 
2S 

layers 

ýO - represents the spectral response for the Ou 2S layer 

+- represents the spectral response for the CdS layer 

X- represents the spectral respozýse for the CdS + Cu. S layers 
12 

assuming zero reflection of the whole assembly. 

AM1 radiation data is used for the light entering the cell through the 

ou 2S layer first. 
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Table 5A Absorptance., reflectance., collection efficiency and photogenerated 
current for Cu, 

2 S-Cds substrate thin film solar cells. 

5.10 -5.11 . 5.12 13 5.14 55, -15 -15 5.16 5; 17 5,18 Figure 

10.0 10.0 10.0 10.0 10.0 1.0 1.0 1.0 1.0 CdS Thickness 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Cu 2S 
Thicknes,, ý 

38.1 3o. 8 38.1 38.1 38.1 37.5 37.5 37.5 37.5 % Reflectance 
Who3 ýsembl j 

I for 

61.3 51.2 61.3 61.3 6o. 5 61.6 61.6 61.6 61.6 % Absorption 

Ag Mo Ag Ag Ag Ag Ag Ag Ag Substrate 

19.2 16.7 20.0 20.1 20.1 20.4 15.4 10.0 19.3 Total current 
MA Ck; ý2 R00 

31.0 24.1 32.3 32.5 32.5 32.7 24.6 16.0 30.9 Total current 
MA Cvý, Z2 R=0 

93.2 72.5 97.2 97.6 97.7 98.2 74.1 48.1 93.0 % Collac6iar-, 
efficiency ove 
entered flux 

57.7 50.1 60.2 60.5 60.5 61.4 46.3 30.1 58.1 % Col I zc-L-f an 
efficiency ove 
incident flux 
with k-? ý> U-9 

94.1 98.0 98.1 
r98.6 

98.6 99.7 75.1 48.8 94.4 % COI-I-eJCU <3 VI 

efficiency ovc 
absorption 

2.0 2.0 2.0 2.0 2.0 2.0 0.1 0.05 0.3 Diffusion lenE 
CU 2S r" 

2.0 2.0 2.. 0 2.0 2.0 2.0 2.0 2.0 2.0 Diffusion len6 
CdS 4ý PK 

105 104 ()4 10 0 J& 100 ()4 104 I 104 S. R. V. front 
cinS-1 

1050 1050 1050 1050 10 0 10(), 1050 1050 1050 S. R. V. back 

- 11 1 1 Cms-l 

Air' II 
cu S CdS Substrate 2 

AM1 light 

J 

depletion regions: 
Cu 2S0.001pm thick 

CdS 0.01pm thick 

R 
y 

r 

r 

r 

till 

th 
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Figure 5.10 Absorptance and spectral response curves for Cu. 2 S-CdS cells 
(for notation see page 79) 
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Figiire 5.1.1 Absorptanc 
*e 

and spectral response cirves for Cu2S-CdS cells 
(for notation see page 79) 
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Figure 5.12 Absorptance and spectral response curves for Ou 2 S- CdS cells 
(for notation see. page 79) 
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Figure 5.13 Absorptance and spectral response curves for Cu S- CdS cells 2 

, for notation see page 79) 
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Figure 5.14 Absorptance and spectral response curves for Ou 2 S- CdS cells 
(for notation see page 79) 
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Figure 5.15 Absorptance and spectral response curves for Cu 2 S- CdS cells" 
(for notation see page 79) 
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Figure 5.16 Absorptance and spectral response curves for Ga 2 S- CdS cells 
(for notation see page 79) 
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Figure 5.17 Absorptance and spectral response curves for Gu S-CdS cells 
(for notation see page 79) 
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Figure 5.18 Absorptaftce and spectral response curves for Ci'2 S- CdS cells 

(for notation see page 79) 
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The spectral response S. R. is defined as 

SR = (short circuit current generated at the junctio 
(incident flux) xq 

where q is the electronic charge. 

The refractive index for Cu 2S was assumed to be 3.2 for all 

wavelengths of interest. The extinction coefficients were calculated 

from the absorption coefficient data for the Ou 2 S. The absorption 

coefficient data for Cu S was taken as 105 cid" below 0.95 pm wavelength 2 
having a very sharp absorption edge to about 1.0 pm. Above 0.95 m the 

absorption coefficient data for Ou 2S was taken from Loferski (1961). 

The remaining optical data for both CdS and Ag was taken from 

(American Institute of Physics Handbook 3rd Edition 1977). The 

absorption coefficient for CdS was given as 5.0 x 104 cHrl 0.5 UM 

wavelength and zero above 0.54: Um wavelength. The refractive index 

of CdS varied between 2.3 and 2.8. 

Comparison of figures 5.10 and 5.11 show no change in the 

spectral response curve6 for the CdS layer. However there are 

dramatic differences in the spectral curves and the absorptance 

curves for the Cu 
2S 

layer. Figure 5.10 has a silver substrate and 

figure 5.11 has a molybdenum substrate. The front surface 

recombination in figure 5.11 is 10-4 cm per second whereas it is 

105 cm per second in figure 5.103 otherwise they are identical. 

On comparing more closely the curves for the molybdenum 

backed cell to the silver backed cell (figures 5.11 and 5,12 

respectively) it can be observed that in the wavelength range 
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below 0-5um , both the spectral responses and the absorptances 

are nearly identical for the Cu 2S layer in the two cases. The 

value for the absorptance in the molybdenum backed cell varies 

around 50 per cent compared to 60 per cent in the silver backed 

cell. Even though the silver backed cell reflects more of the 

incident radiation than does the molybedenum backed cell (Table 5A) 

the former still absorbs more radiation for the same incident 

value. If both cells were perfectly anti-reflected such that the 

reflectance was zero, the absorptance in the case for the silver 

substrate would rise to 95 per cent and above whereas the corres- 

ponding value in the molybdenum case would be 70 per cent. 

In the examples just discussed the diffusion length of the 

minority carriers in the Ou 2S 
layer is 20 times the Gu 2S layer 

thickness. Consequently one expects negligible bulk recombination 

losses. In the CdS layer, however, the diffusion length is 1 
5 

times the CdS thickness and a fair amount of bulk recombination 

losses might be expected. The first point is varified by the 

fact that the spectral response curves for the Cu 2S layer almost 

superimpose the absorptance curves (figures 5.10., 5.11 and 5.12) 

in the wave length range greater than 0.5Pm. For wave lengths 

below 0.5 Pm the spectral responses for the Ou 2S layers vary 

from about 24 per cent below the Ou 2S absorptance, values (figure 

5.10) to 22 per cent below the absorptance values (figures 5.1.1 

and 5.12). In the same wave length range the remaining absorptance 

takes place in the CdS layer such that the total absorptance values 

are 2 to 4 per cent above the total spectral responses (figures 5.10., 

5.11 and S. -12). 
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The spectral responses of the CdS layers remain unaltered 

by changingthe substrate from molybedenum to silver (figures 

5.1-1 and 5.12). This can be explained bythe fact that most of 

the radiation entering the cell within the absorption band for 

the CdS layer is. absorbed before reaching the substrate for this 

particular configuration of the cell. 

Generany by decreasing the front surface recombination 

velocity one can increase the spectral response of the cell. 

However there exists a limiting value for the front surface re- 

combination velocity such that decreasing the front surface r&ý 

combination further does not increase the spectral response. 

This is illustrated by comparison of figures 5.12., 5.13 and 5-14. 

This limiting value is 104 cm per second (table 5A). It can be 

further seen that most of the absorption in the CdS lwyers, of 

figures 5.12 14., occurred far away from the back 
., 

5.13 and r 

surface as lowering the back surface recombination velocity from 

effectively infinity to 1 cm per second made no difference to the 

spectral'response curves for the CdS layers. 

Now increasing the front surface recombination velocity from 

104 cm per second to 105 cm per second lowers the spectral 

response (figures 5.10 and 5.12) but the differences in the Cu 2S 

spectral responses are not uniform. ' This is explained by the pre- 

sence of optical interference effects interacting with surface 
I 

recombination velocity (equation 3.13). 

As previously mentioned bulk recombination losses occur in the 

CdS layer (figure 5.. 14) where it can be seen the total spectral 

curve remains a few per cent below the absorptance curve in the 

shorter wavelength range even when front and back s-urface recom- 
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bination velocities are negligible. 

An illustration of the fact that by altering the CdS4, thickness 

and hence the optical interference conditions the spectral res- 

ponses can be changed, is to--be seen by comparing fig-ures 5.14 

and 5.15. Decreasing the CdS thickness from, 10 11 m to 1Vm has 

increased its spectral response but leaves the Cu 2S response 

and absorptance curves unaltered in the shorter wave length range. 

In the longer wavelength range the shape of the absorptance curve 

is changed and raised slightly in addition to the spectral response 

also being slightly increased. Me reason for the CdS spectral 

response rising is that the diffusion length has become twice the 

CdS thickness (table 5A) compared to 
1 

the OdS thickness previously. 5 

The implication of this is that the bulk recombination is the OdS 

layer is reduced. Another point to note here is that the absorption 

of light occurred close to the junction in the WIS layer because 

altering its thickness from lOpm, to lum, did not change its absorp- 

tance curve. 

Spectral response curves and the absorptance curve for a cell 

with a diffusion length in the Ou 2S equal to O. lum. is shown in 

figure 5.16. The front and back surface recombination velocities 

are 104 cm per' second, and 105 cm per second., respectively. The 

other parameters are the same as for figure, 5.15 (see table 5A). 

The absorptance curves in both the figures 5.15 and 5.16 are the 

same as the layer thickness are identical. The spectral response 

for the CdS is slightly lower in figure 5.16 than in figure 5.15 

because of effectively infinite back surface recombination velocity 

in the case for figure 5.16. The back surface recombination has now 

come into play because the CdS thickness is only l. OPm thick. 
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The total spectral response in figure 
. 
5.16 is lower than 

for figure 5.15 because of the very much reduced diffusion length 

in the Cu2S. The Cu S diffusion length for figure-, 5-16 is equal 2 

to the Cu S thickness whereas it is 20 times that for figure 5.15. 2 

Although very similar in shape to the absorptance curve., on 

close examination it can be seen that the total spectral response 

curve in figure 5.16 does not follow the absorptance curve precisely. 

This can be explained from the equation for the short current (see 

equation 3.13 for instance) where there are optical interference 

terms that also include the diffusion length. It could be said 

then that "secondaryll interference effects also take place within 

the diffusion length distance from the junction. 

When the diffusion length is very much larger than the thickness 

of the layer there is good collection of the minority carriers and 

the total spectral response curve almost superposes, the absorptance 

curve as already pointed out. The "secondary" interference effects 

are masked by the primary interference effect in that case. Tile total 

spectral response curve is divided by (1-R), i. e. zero reflectance 

case', there should hardly be any interference fringes present when 

the diffusion length is long. This is observed in figure 5.15. 

The few ripples in the zero reflectance total spectral response 

curve in figure 5.15 are due to the small amount of absorption taking 

place in the silver substrate. It can be seen from equation 3.13 

that whenever L the diffusion length is very much larger than x 
4fn 

the diff-usion length has little-or no effect on the interference 

terms. 
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When L approaches or is less than the nsecondarylt 
n 

interference effects should be observable. Tliese are'observed 

for instance in figure 5.16 particularly when looking at the 

zero reflectance total spectral response curve. Me diffusion 

length in the Cu. 2S equals the Gu2S thickness in that case. , 

Figure ý. 17 shows curves for a cell identical to a cell with 

the curves in, figure 5.16 with exception that the C! 2ý: Zdiffusion 

length in the case for figure 5.17 is 0.05TIvi- ýczause L is less 

than the "secondary" interference effects are again observable. n n 
L for figure 5.17 is half the size of L for figure 5.16 and the 

interference fringes in the zero reflectance spectral response 

curve are observed to be sharper and deeper in figure 5.17., although 

lower in value due to poorer collection of the minority carriers. 

The curves are for a cell with the Cu. 2S diffusion length equal 

to 0-311mi. e. three times the Cu S thickness are shown in figure 5.18. 2 
Again the I'secondaryl, interference terms are observable in the zero 

reflectance spectral response curve but they are quite shallow with 

the collection efficiency over the light entered equal, to 93.0 per 

cent. This is about"S per cent below the case when the diffusion 

length is 2.0p4every-thing else being equal. 

A CdS thickness of 1.01m ispreferable to a thickness of 10.0 M 

from the point of view of saving material as well as. interference 

ronditions. 
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5.4 Short circuit current curves. (Under AN1 radiation) 

The graphs in figures 5.19 to 5.29 show the A141 radiation 

equivalent current in m. A x 10 2 
per micron of wave length at each 

wave length., the short circuit current assuming zero reflection and 

the short circuit current taking into account the reflection. 

The following notation of symbols is used to distinguis .h 

the three curves in figures 5.19 to 5.29. 

+ represents AN1 radiation current 

o represents the short circuit current with zero R 

0 represents the short circuit current with non-zero R. 

Table 5B shows the values of the parameters and the main results 

for the curves in figures 5.19 to 5.29. 

AH1 radiation is incident on the Cu 2S side of the cel-I and the 

back surface reflection is provided by the silver substrate. The 

depletion region in the Cu 2S is assumed equal to 0.0011im and in the 

CdS equal to O. Olpm,, 
I 

The total current over the whole wave length range in question 

is. given by the areas under the curves in figures 5.19 to 5.29. 

If the flux entering the cell = -P , the current collected at 

the junction =I and e= charge on the electron then the collection 

efficiency over flux entered =I/ (-ý x e). (definition) 

On comparing figures 5.19., 5.20 and 5.21 the effects of 

altering the diffusion lengths of the minority carriers in the 

Cu 2S on the short circuit current can clearly be seen. At a front 

surface recombination velocity of 10 
6 

cm per second the collection 

efficiency over the flux entered reduces from 72.5 per cent for a 

diffusion length of 0.5pm down to 62.2 per cent for a diffusion 
I 
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Table 5B Absorptance,. reflectance., collection efficienc3ý and photogenerated 
current for Qu 2S- CdS-,, Ag thin film solar cells 

S. 19 * 5.20 5.21 
' 

5.22 
' 

5.23 5.24 1 5.25 ' 
_5.26 

: 
. 
5.27 

_5.28 
1 5.29 Figure 

-fo-. o -10-. 0 10.0 ' 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Thickness 
- 1 - -- 

1 
CdS., ý 

0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 Thickness 1 
i I II I CU 2 S14M 

38.1 38.11 -38., 1 38.1 38.1 38.1 33.0 33.0 33.0 33.0 33.0 Reflectanc 
R% 

61.3 61. 3 61.4, 61.3- 61.3 61.3 66.4 66.4 66.4 66.4 66.4 Absorptanc 
, A% 

14.9 9.37 12.8 15.4 19.8 10.1 7.81 4.0 12.7 20.5 9.21 Total 
7 Current 

MAcnr2 R 

24.1 15-1 20.7 24.9 31.9 16.2 11.7 6.06 18.9 30.6 13.8 Total 1 
Current 1 
MAcmf-2 R 

72.5 45.5 62.2 74.9 96.0 48.8 35.1 18.2 56'. 9 92.1 41.4 Collection 

- 'Efficiency 
over flux 
entered 

, 44.9 28.2 38.5 46.4 59.4 30.2 23.5 12.2 38.1 61.7 27.7 Coll. Effic 
over incid 
flux % 

0.5 0.05 0.1 *0.1 0.5 4.05 0.1 I 0.0! 0.5 0.5 I 0.1 Diffusion 
I I length Ou 21 

2.0 2.0 2.0 2.0 2-. 0 2.01 2.0 2.0 2.0 2.0 2.0 Diffusion 
I ý I 

I 
- length CdS 

6 10 6 10 10 -6 4 10 4 10 104 6 10 
1 

106 106 104 104 SRV'front 
. 1 

.1 
cm sec-1 

73.2 46.0 62.8 74.9 97.0 49.3 35.4 18.4 57.4 92.9 41.7 Coll. Effic 
over 
absorbed f. 

(Silver substrate and SRV back is infinite) 

SRV = surface recombination velocity 

0 

0 

I 
%nt 

0/ 
10 

. UX 

97 



SHORT CIRCUIT CURRENT 
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Figure 5.19 Photocurrent against wavelength under AN1 radiation 
(see table on page 97) 
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Figure 5.20 Photocurrent against wavelength under AM1 radiation 
(see table on page 97) 
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Figure 5.21 Photocurrent against wavelength under AN1 radiation 
(see table on page 97) 
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Figure, 5.22 Photocurrent against wavelength under AN1 radiation 
(see table on page 97,, 
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SHORT CIRCUIT CURRENT 
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Figure' 5.23 PhotOcurrent against wavelength under AN1 radiation 

(see table on page 97) 
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SHORý CIRCUIT 'CURRENT 
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C 

Figure 5 'gth under AM1 radiation . 24 Photocurrent against wavelen 
(see table on page 97) 
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SHORT CIRCUIT CURRENT 
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length of O. lwn. It further reduces to 45.5 per. cent for a diffusion 

length of 0.05 Unu 

Figures 5.19 and 5.23 illustrate the importance of the surface 

recombination velocity at the front surface. For both figures the 

diffusion lengths are identically O. Sum. For figure 5.19 the front 

surface recombination velocity is 10 
6 

cm per second and for figure 

5.23 it is 104 cm per second. The collection efficiency as defined 

above is. 97-0 per cent for figure 5.23 and 22 per cent below that 

for figure 5-19. 

At a diffusion length of 0. ýUm the collection efficiency over 

the flux entered goes up by 12 per cent in reducing the front surface 

recombination velocity from 10 
6 

cm per sec to 104 cm per sec. At 

a diffusion length of 0.05um it goes up by only 3 per cent in 

reducing the surface recombination velocity from 10 
6 

to 104 cm per 

sec. This can be seen by comparing figures 5.22 and 5.24 with 
I 

figures 5.20 and 5.21. (see table 5B. ) 

The shorter the diffusion length the quicker will the minority 

carriers recombine in the bulk of the material before reaching the 

junction. The shorter the diffusion length the less important becomes 

the surface recombination velocity as illustrated in the examples 

above. 

When little absorption of light occurs at'a distance greater 

than or equal to the diffusion length from the top surface the 

majority of the minority carriers will recombine in the bulk of the 

material before they could recombine at the surface. This is the 

reason why there is only 3 per cent increase in the collection 
6 

efficiency on reducing the surface recombination velocity from 10 . cm 

per sec at a diffusion length of 0.05pm. On the other hand when there. 
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is good absorýption of light within a distance equal to the diffusion 

length from the surface., the carriers have a good chance of getting 

to-the surface and recombining at the surface. Mis explains the 

22 per cent increase in the collection efficiency in reducing the 

surface recombination velocity from 10 
6 

cm per sec to 104 cm per 

sec at a diffusion length of 0.5um. 

Comparing figures 5.19 to 5.24 with figures 5.25 to 5.29 

illustrate the importance of the Cu2S layer thickness on the 
6 

- generated current. At a surface recombination velocity Of 10 cm 

per sec and a diffusion length of O. lpm the effect of altering the 

Ou. 2S thickness from 0.1 to 0.2unis to reduce the collection efficiency 

over flux entered by 27.4 per cent. At a surface recombination 

velocity of 10 
6 

cm per sec and a diffusion length of 0.05pmthe effect 

is to reduce the collection efficiency by 27.6 per cent and at a 

diffusion length of 0.5mand a surface recombination velocity of 

10 
6 

cm per sec the collection efficiency is reduced by 15.8 per cent 

(see table 5B). 

At a surface recombination velocity of 104 cm per sec and 

diffusion length of 0.510., increasing the Cu2S thickness from O. lUm.. 

to 0.2umreduces, the collection efficiency from 97 per cent by 4 per 

cent. At a diffusion length of 0.3umand the same surface recombin- 

ation velocity the collection efficiency falls from 74.9 per cent 

by 33.2 per cent. 

In the examples discussed above., increasing the Ou 2S thickness 

from 0.1 to 0.2pameans that the majority of minority carriers are 

generated further from the junction. That is why at shorter 

diffusion lengths the fall in collection efficiency is the 

greatest. 
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At longer diffusion lengths and low surface recombination 

velocities the fall in the collection efficiency is relatively 

small due to the generated carriers having longer time to reach 

the junction with little surface recombination. 

It can be stated then that surface recombination velocity 

becomes less and less important as the diffusion length gets 

shorter and shorter and is less than the Cu 2S thickness. It 

becomes increasingly important as the diffusion length is, 

increased. and is greater than the Cu 2S thickness. 

As the diffusion lengths and the surface recombination 

,, velocities are altered, it can be seen that the short circuit 

current curves do not rise or fall uniformly over the whole of 

the wave length range. This is caused by the Itsecondary'T inter- 

ference effects already mentioned. 

5.5 CuS Optimum Thickness Analysis 

Tables 50 and 5D list the parameter variations in plotting 

the theoretical curves in figures SAB to 5-39B. The CdS thickness 

is kept at 10.0p. and the back surface recombination velocity at 1050 

cm per sec. AN1 radiation is incident on the Cu 2S side of the cell. 

The, CdS depletion region is kept at 0.0lim and that of the Cu. 2S at 

0.00111" The curves in figures 5-1B to 5-39B show the short circuit 

current in mA per cm 
2 integrated over all wave lengths up to the 

absorption edge versus the thickness of the Cu2S in um for both zero 

R and non-zero R. 
I 

Figures 5.1B to 5.39B show that there is an optimimn value for 

the Cu 2S thickness in each case., for which the value of the generated 

current is a maximum for both zero and non-zero reflection case. 
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Table 5C Parameters for Cu, )S - OdS - substrate cell s (fig, 5, lB to 5,29B) 

Figiwe SRV FVmt 
cm s 

Diffusion 
Length 
CA(, m 

Diffusion 
Length 
cuqs"et. m 

Substrate 
Diff. constants 
CdS 

cm 
2 

sec7 
Cu 

2S 

5-1B 107 2.0 0.7 mo 10 10 

5-2B 10 6 
2.0 0.7 mo 10 10 

5. "3B 105 q. 0 0.7 mo 10 10 
5* 4B 104 2.0 0.7 mo 10 10 
5. '. 5B 107 2.0 0.7 mo 10 10 
5AB 106 2.0 o. 6 ME) 10 10 

5-7B 104 2.0 o. 6 mo 10 10, 
5-8B 107 2.0 0.5- mo 10 10 

5-9B 6 10 2.0 0.5 mo 10 10 
5-10B 104 2.0 0.5 mo 10 10 
5-11B 107 2.0 Cý4 mo 10 10 
5.12B 106 2.0 0.4 No 10 10 

-5.13B 
5 10 2.0 0-4 mo 10 10 

5-14B '104 2.0 0.4 mo 10 10 
5-15B 107 2.0 013 mo 10 
5.16B-- 106 2.0 0.3 mo 10 10 
'5.17B 105 2.0 0.3 mo 10 10 
5.18B 104 2.0 0.3 mo 10 10 

ý5.19B 107 2.0 0,, 2 mo 10 10 
5.20B 106 2.0' 0.2 mo 10 10 
5 21B 105 2.0 0,, 2 HO 10 10 

5.22B 104 2.0 0.2 mo 10 10 

5.23B 10 0 2.0 0,2 mo 10 10 

5.24B 5 10 2.0 0.5 mo 10 10 
40 40 

5.25B 5 
: 10 2.0 0.5 mo 30 30 

5.26B 105 2.0 0.5 mo 20 20 
5.27B 104 2.0 0-05 mo 10 10 

B 5.28 105 2.0 0.5 Zinc 10 10 
- 1 

5. '29B 104 2.0 0.2 Zinc 10 10 

same results obtained when CdS diff. const. kept at 10 cm 
2S -1 

50 -1 SRV Back 10 cm S 

** 
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Table 5D. Parameters for Ou 2 S-CdS - Ag cells (fig. 5-30B to 5-39B) 

Figure 
SRV frint 

cm S- 
Diffusion 
Length 
CdSAr, l 

Diffusion 
Length 
Ou S 2 A7vl 

Substrate 
Diffusion 
Constant 
CdS cm2S-J 

Diffusion 
Constant 
Ou2S cm2S-1 

5-30B 105 2.0 0.7 Ag 10 10 - 

5-31B 104 2.0 0.7 Ag 10 10 

5-32B 104 2.0 o. 6 Ag 10 10 

5-33B 105 2.0 0.5 Ag 10 10 

5-34B 104 2.0 0.5 Ag 10 10 

5-35B 10 4 2.0 0.4 Ag 10 10 

5-36B 10 4 2.0 0.3 Ag 10 10 

5-37B 10 2 2.0 0.2 Ag 10 10 

5-38B 104 2.0 0.2 Ag 10 10 

5-39B 105 2.0 0.2 Ag 10 10 
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In figure 5-1B the optiminn thickness of the Cu, 2S layer 

for the non-zero R case is 0.11jimand for the zero R case is 

any value between 0.11 and 0.13Pm. The maximum current for 

the non-zero R case is 8.7 mA/cm 
2 

and for the zero R case is 

12.4 Wcmý. 

In figure 5.2B the optimum thickness are 0.11 and O. lzlm - 

for the non-zero R and the zero R case., respectively., The 

maximum corresponding currents are 12.3 and 17.7 mA per cm2. 

In figure 5-3B the peaks have become broader and the 

maximun values for zero R case lie at 0.19im and 0.251m with corres- 

ponding currents as 24.7 and 24.9 mA/cm 
2. For the non-zero R 

case the maximum value lies at 0.21pawitha current of 17.4 

mA/cm 
2 

In figureý5.4B the maximum current for the non-zero R 

case is near enough 19.4 mA/cm 
2 

and occurs at all thickness 

of the Cu. 2S between 0.22 to 0.3011m giving a current of 28.2 mA/cm 
2 

The peaks are again broad. 

At a diffusion length of 0.7um ofthe minority carriers in 

th e Cu 2 S., the optimum thickness of the Cu 2S is reduced as 

the front surface recombination velocity is increased. The 

peaks of the curves are also sharper at higher surface recom- 

binatibn velocities 

Without going into any detail it can be seen from figures 5.1B 

to 5.19B that at higher surface recombination velocities, i. e. 106 / 

107 cm per sec., the optimum thickness remains near enough 0.111Mfor 

the non-'zero R case and around 0.12vmforthe zero R case down to O. &In 

diffusion length. The actual values of the currents at the optimum 

thickness, and at other thickness for that matter. decrease as the 

diffusion length is shortened. 
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Table 5E outlines the changes in the current values at'the 

optimum thickness for different diffusion lengths in the Cu 2S at 

high front surface recombination velocities for m-olybdenum 

substrate, 

Table 5F outlines the changes in the current values at the 

optimum thickness for different diffusion lengths in the OU 2S 

at lower surface recombination velocities., i. e. 104 and 105 cm 

per sec., for rolybdenum substrate. 

It can be seen that as the diffusion length is reduced 

the optimum thickness value continues to dberease at lower surface 

recombination velocities. The same thing begins to happen at 

higher surface recombination velocities as the diffusion length 

begins to fall below 0.3pm. At both high and low surface recom- 

bination velocity the effect of it is not only to reduce the 

short circuit current but also has a tendency to reduce the 

optimum thickness value for the CU2 S. 

Figure 5.24B shows the current versus Cu. S thickness curves 2 

for a molybdenum substrate at 105 cm per sec surface recombination 

velocity at a diffusion length of 0.5 pm-and at two different values 

of the diffusion constant. Increasing the diffusion constant 

from 10 Cm 
2 

per see to 40 cm2 per see increases both the currents 

and shifts the optimm thickness values as illustrated in figure 5.24B. 

Below O. lumthere is-very little increase in the current when the 

diffusion constant is increased from 10 cm2 per sec to 40 cm 
2 

per 

sec. At thickness greater than 0.. Lilm. the increase in current 

becomes quite significant. At 10 cm 
2 

per sec diffusion constant 

the optimum thickness at zero R is 0.1ývmcorresponaing to a current 

of 24.2 mA per cm2. At 40 cý2 per sec diffusion constant the 

opti rmim thickness at zero R is 0.25pm-and the correspon4ng current 

equal to 26.3 mA per cm 
2. At higher thickness the increase in 

current is even more significant. 
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Table 5E optimum thickness and photocurrent for Cu2 S-CdS -M. cells 

Diffusion 
Length 

(Cu S) 

SRV 
Froný 
CMS--L 

Current 
(Zero R) 
mA cd-2 

Current , 
(non-zero R) 
mA cnr2 

Opti muin 
thickness 
(zero R) 

Opti imun 
thickness 
(non-zero R) 

0.7 107 12.4 8.7 0.11/3 0.1-1 

0.7 106 17.8 12.3 0.12 6.10/1 

o. 6 107 12.4 8.6 0.11/2 0.10/1 

0.6 10 6 17-75 12.3 0.11/2 0.1-1 

0.5 107 12.4 8.65 0.12 0.11 

0.5 106 17.6 12.3 0.12/3 0.11 

0.4 107 12.5 8.60 0.11 0.10/1 

0.4 106 17.5 12.2 0.11/2 0.10/1 

0.3 107' 12.3 8.60 0.12 0.09/10 

0.3 106 17.3 12.1 0.11/2 0.10/1 

0.2 107 12.1 8.50 0.12 0.10 

0.2 106 10.8 u. 8 0.1-1 0.10 

CdS diffusion length = 2.0 pm 

NB. e. g. 0.11/2 means from 0.1-1 to 0.121im 

rrolyb, -denum Substrate 
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Table 5F Optimum thickness and photocurrent for CU 2 S-CdS - M. cells 

Diffusion 
Length 
CU S 2 

SRV ' 
Front 
cMS-1 

Current 
(zero R) 
mA/cm-2 

Current 
(non-zero R) 
mA/Cff-2 

Optimum J 
thickness 
(CU S) 2 ýero ýO 

Optimum 
thickness 

ACU S) 2 
60n-zero RýU' 

0.7 105 24.7 17.6 0.19 0.21 
24.9 0.25 m. il 

0.7 104 28.2 19.4 0.26 0.22/0-30 

0.6 104 27.6 19.2 0.25 0.21/3 

0.5 104 26.8 18.8 0.25 0. . 21 

0.4 105 23.6 16.6 0.18/9 0.20 
23.5 0.13/4 0*20 

0.4 104 25.6 18.2 0.18/9 0.21 
0.24 . 0.21 

0.3 105 '22.9 15.8 0.13 

0.3 104 24.2 17.0 0 1314 0.20 
0: 17 9 0.20 

0.2 105 21.6 15.0 0.12 0.11 

0.2 104 22.6 15.8 0.12 0. n/2 

0.2 0 10 22.7 15.7 0.11 0.105 

0.05 
1 
104 

1 
14.4 9.2 0.05/6 

1 
0.06/7 

Mo Substrate 

CdS diffusion length = 2. Opm 
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Table 5G Optimum thickness and photocurrent for Cu 2 S-CdS ýý ceUs 

Diffusion 
Constant 
(Cu S cm2 S-1 2 

Diffusion 
Length 

I 

(Cu S) 2, 

Optimum 
TUckness 
(R=o) 

Optimum 
Thickness 
(Rýo) 

4vt 

Current 
mA cnr2 
(Rýo) 

Current 
mA cra-2 

(R==O) 

40- 0.5 0.25 0.22 18.5 26.3 

30 0.5 0.25 0.21 18.2 26.0 

20 0.5 0.25 0.21 18.0 25.4 

10 0.5 0.18 0.20 17.1 24.2 

CdS: Thickness = lo. Opm 

Diffusion length = 2. OPm 

SRV Back = '1050 cm 9-1 
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Figures 5.25B and 5.26B show similar current versus Cu2S 

thickness curves for diffusion constants equal to 30 cm 
2 

per 

see-and 20 cm 
2 

per see., respectively., with all the other 

parameters identical to those for figure 5.24B. At zero R the 

optimum thickness in figure 5.25B is 0.25uncorresporWing to a 

current of 26.0 mA/cm 
2 

and in figure 5.26B the optimum thickness 

is again 0.25pmcorre-spondingýo Ia 
current of 25.4 mA/cm2. Table 

5E summarises the variations in the optimum thickness and the 

short circuit current as the diffusion constant is altered for 

a molybdenum substrate. I 

Graphs of current versus Cu S thickness for a zinc substrate 2 

are shown in figures 5.28B and 5.29B. In figure 5.28B the front 

surface recombination velocity is 105 cms-1 with a diffusion 

length in the Cu 2 S-of O. Spm. In figure 5.29B the front surface 

recombination velocity is 104 cm: 37,1 with a diffusion length of 

O. Zip. The diffusion constants in both cases are 10 cm 
2 

sec7l 

and the CdS kept at 10.0v m thick. 

Comparison of figures 5.22B and 5.29B show that the curves 

are similar but that the currents with the zinc substrate are 

higher by 1.4 ipjk/cm 
2 

and 0.9 mA/cm2 for zero R and non-zero R., 

respectively, as compared with a molybdenum substrate. 

Comparing figures 5.24B and 5.28B the currents again are 

about 0.8 m. A/, cm2 higher with a zinc substrate compared to the 

molybdenum substrate. It can be seen that the zinc substrate 

is better than the molybdenum substrate but not dramatically so. 

Table 5H summarises similar results as above but for a 

silver substrate. The first thing to note is the dramatic 

increase in the short circuit current when the substrate is 
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Table SH optimum thickness and photocurrent for Ou 2 S-CdS- Ag cells 

Diffusion SRV 
Length 

lFront 

(CU 
2 S) CMS-1 ; IieL . 

Opti 
Thickness 
(R=o)(Cu 

2 S) 
>44- 

Current 
MA cm2 

(R=zo) 

lOpti minn 
Thickness 
(Roo) (Cu 

2 S) 

I CurreRt-- 
mA cm2 

(R74o) 

0.7 
- 

105 0.1 30.7 0.1 19.4 
0.2 19,3 

0.7 104 0-1/3 32.1 0.2 21.1 

o. 6 104 0.1/2 32.0 0.205 20.9 

0.5 105 0.07/08 30.5 0.10 19.4 

0.5 104 0.105 31.9 0.1 20.1 
0.2 20.6 

0.4 104 0.10 31.6. 0.1- 20.0 
0.2 20.0 

0.3 104 0.06/09 31.2 

0.2 102 0.1 19.0 

0.2 104 0.05 30.7 0.1 19.0 

0. 
-2 1 

105 0.05 30.0 0.1 18.2 
1 

A 
.9 

Substrate 
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changed to silver from molybdenum or zinc. This is particularly 

true for shorter diffusion lengths. 

By examinin table SH alone it can be seen that the effect 

of surface recombination velocity is again to reduce the optimum 

Ou 2S thickness as well as to reduce the short circuit current. 

Reducing*the diffusion length lowers the current as itdoes in the 

case for a molybdenum substrate but not so significandy. For 

instance at a surface recombination velocity of 105 cm, per see the 

current goes down by 3 mA per cm. 
2 

when shortening the diffusion 

length from O-7Pm toO. 2vnuinthe case for the molybdeniim substrate, 

I whereas it goes down by 0.7 mA/cmý in the case for the silver 

substrate for R equal to zero. 

Figures 5-40B to 5.43B show graphs of the short circuit 

current versus Cu 2S thickness when the Cu2S diffusion-length is 

kept at a constant fraction of the Cu 2S thickness. The front 

surface recombination velocity is kept at 1.04 cm per sec, the 

diffusion length in the CdS is kept at 2.0, jim andthe diffusion 

, constants equal to 10 cm2 per sec for botý Cu 2S and CdS. 

The Cu 2S diffusion length in figure 5.40B, is half the 

Ou 2S thickness., equal to the Cu 
2S thickness in figure 5.41B., 

twice the Cu 
2S thickness'in figure 5-42B and five times the 

ou. 2 S. thickness in figure 5-43B. The substrate is silver in 

all the cases. 

When the diffusion length is at half the thickness value 

in the Ou. S, the optimum value for the thickness when R is not 2- 

zero is O. Ipm. corre. spondingto a current of 10 mA per cm2. When 

R is zero the optiminn thickness appears'to be around 0.05ilm 

corresponding to a current of about 17.0 mA per c ý2. 
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When the diffusion length is equal to the thickness,, 

the optimum thickness for the Cu 2S is 0.09 to 0.12pacorres- 

ponding to a current of 24.6 mA per cm 
2 in the z6ro R case. 

In the non-zero R case there are two maxima values at 0.1 and 

0.2 I'm correspondingto currents of IL5.6 mA per cM2 and 15.9 mA 

per cm 
2, 

respectively. 

For the case when the diffusion length is twice the thickness 

there is a maximum value in the non-zero case at O.; wq corres- 

ponding to 19.9 m. A per cm2 and a maximum value at 0.24mcorres- 

ponding to 18.9 mA per cm 
2. In the zero R case there is a very 

broad maxJTna peaking at 0.13,11mcorrespo-fidingto 29.9 mA per cm2. 
2 The current remains approximately constant at 32 mA per cm 

from 0.14atto 0.31lmihickin the zero R case when the diffusion 

length is five times the thickness. In the non-zero R case there 

2 is a maximum at 0.211m corresponding to 21.5 mA per cm 

-As the maximum possible current is 33.3 mA/cmý there is very 

little advantage in making the diffusion length any longer. 
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CHAPTER 

ANTIREFLECTIVE COATINGS AND EFFICIENCY OF 

SCHOTTKY BARRIER SOLAR CELLS 

The effect of antireflective coatings has been analysed 

theoretically and the conditions for maximum transmittance 

through a metal layer into an absorbing substrate have been 

derived. In order to compare the theory with experiment, a 

small programme on Schottky barrier cells was carried out and 

comparisons made. gilver was chosen as the metal for fabri- 

cating Schottky barrier cells because of its 'good? optical 

properties in the visible region. 

6.1 Analysis 

The solar cell is assumed to be a system of plane parallel 

sided., homogeneous absorbing layers. The whole solar cel-I assembly 

is represented by a theoretical "effective complex refractive 
I 

index' given by equation 3.6. The light is assumed to be incident 

normally. Let this 'refractive index' Za equal "'C'0a. For a 

given wavelength Za can be calculated from a knowledge of the 

optical constants constituting the solar cell assembly. 

Let a single layer of refractive index n be applied to the 

solar cell as an antireflective coating. 

The resulting characteristic matrix from equation 3.1 is 

B Cos ai 
Y 
v 6.1 

Cin Yý'" 1 
sin 6 Cos-. 6 Y" a 

2 Tr nd where Yv 0 
and 6 

6 
(d = thickness of the dielectric layer) 
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Let the leffective refractive indext of the assembly including 

the antireflective layer be Z=. 

Prom equations 3.6 and 3.7 it can be seen that the trans- 

mittance into the solar cell through the antireflecting layer is 

T Real (E E, *. Z'ý-) 2YV, SSa 
1 Real (Z *. /E j2) 

2YV a 

where /ES/ 2 1-R) from equation 3.4 
Real (BC*) 

(R = the relectance of the whole assembly including the dielectric 

layer) 

it follows that 

T=1 Real (2(1-R). 'ýa*) 
Yý a 6.2 

Real (BC*5 Y, Real (BC*) 

e. T'a 
TT Yý Real (ITC-*) 

---6.3 

Expression 6.3 represents the potential transmittance through the 

antireflection coating into the cell, i. e. it is the maximum 

possible theoretical value. Since there is no absorption in the 

antireflective layer it is necessarily true that the maximum 

value in T corresponds to a minimum value in R. Consider the 

case of a Schottky barrier cell which consists of an absorbing 

substrate with an absorbing thin film sandwiched between the substrate and 

an antireflection coating of a dielectric thin film; the 

characteristic matrix now becomes from equation 2.57 

Cos 6,2 i sin 62 

nY -1 2v 

in Y-lsin 6 Cos 6 
.2v22 

Cos S'l i sin a1 
N, Y-L 

v 

v1 
i N, Y-Isin 6 Cos 

where 62 7r nd (refers to the AR coating) 2T22" 

N d, , 
(refers to the thin absorbing layer) 1 

n, 7ik, and Ns = ns -iks - 

1 

Y---]N 
V 
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The situation is now more complicated but equations 6.2 and 

6.3 are still applicable. T now refers to the transmittance into 

the substrate of complex index Ns through an antizeflecting layer 

of index n2 and an absorbing metal layer of complex index N, 

n. Let I 
(. 1ý2T2 1-R E: 0 Real (T5W) 6.4 

where ns is the real part of Ns 

T= (1-R) (rewriting equation 6-4) 6.5 

For a constant thickness of the absorbing film the real part of 

(BC*) remains constant even when we alter the thickness of the 

antireflecting layer. This can be seen from 6.1 where a 1complex 

effective index' Za=-a -io a refers to the substrate and the thin 

metal layer together. It follows that 

B= cos 62+aa sin 62+i Cea sinS 2 
n2n2 

C* = Y-'(- i(. sin 6 COS6 )+- 
-Coss) v22- Oa 2a2 

Real (BC*) 
a cOS2 62+-a sin 

2 62 Y-11 aa V, 
from which ns/ -a---6.6 

As the thickness of the absorbing film is increased ca- will also rise 

so that 
ý 

falls. When the thickness of the absorbing film is zero-a 

will equal n. so that 
1A A D=-1. 

As ý remains 'constant for constant thickness of the absorbing thin 

film equation 6.5 shows that a minimum value in R corresponds to a 

maximum value in T., the transmittance into the substrate through the 

absorbing layer of a given thickness. This would seem to be, in con- 

tradiction to Hovel (1976) where the implication was that this was 

not necessarily true. This is important from an experimental point 

of view when physically depositing an antireflecting coating. One 
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can 'monitor the reflectance R directly and the minimum R value 

will necessarily correspond to the maximum transmittance into 

the solar cell through the thin metal layer. 

Me expression for -a can be calculated from the character- 

istic matrix. It is found to be 

cc =2 Y- ef+gh avI 
f2 +9 2 

where e= du + ckl, + an s+ 
bk 

s 
f=a+ du + vc 

b cu + clv 

h= cu - dk + bn -ka Iss 

u= (n. n, + kýkj)/(n 2+kv= (k n, 7nkl) 
-S 
(n 2+k2 

1 1) 

and a= 
ýos 2u. ni d, cos h 2L'k, d, 

7x 

b= sin 2, ff n, d, sin h 2w kd 
i-I -1 1- 
XX 

c= sin 2v n, d, cos h 2w. 'k d 
7 711 

d= Cos 27r n, d, sin h 27r. k, d, 

Equation 6.6 can then be rewritten as 

n- (f2 + g2 ef + gh) 6.7 
Sv 

Equation 6.7 can be used to predict the maximum possible trans- 

mittance into the solar cell as the thickness of the thin metal 

layer is increased. 

Returning now to the teffective refractive index' of the 

whole assembly including the antireflection layer i. e. E= Z-im., 

from equation 6. 

ýa cos 6+i (n sins - cc a cas s-) 
COS6 +a sin +i cr a sin 6.8 

nn 

169 



The reflectance R of the assembly is given by 

R -. 0 - ý1=! M) 2, -im) 
ýnd + (k+! im)) 

(no 
+ (. Z+dm 

) 

where no is the index of the incident medium . 

For zero R 

/ 

i. e. no -: -- -ýa coss + i(n sins - Oa cos. 6 
Cos 6+ ýh sins + iý sin . nn 

---6.8a 

By comparing the real and imaginary parts the following conditions 

for zero R are obtained- 

i. e. tan a= ("I" a- 'lo) n 6.9 
5a - no 

n2 = no($a2 + ýa) 6.1o 

and from 6.9 d, 
7ýaýo 

(ýa ýo 
.. n 6. u 

_I 
tan B n. Zirn a0 

Equation 6.1-1 gives the ideal thickness value for an antireflecting 

layer with an ideal refractive index given by 6.10. - Similar 

expressions have been derived by Schneider (1966). 

Equating real and imaginary parts of equation 6.8 we get 

j4 (c o s, -S +ýa sin, am-a sin cýa cos 6 6.12 
nn 

m (cosS +. Oa sin 6) +-a sin S= n sin 6- Oa cos s 6.13 
nn 

eliminating 6 from 6.12 and 6.13 

2 : 1- M2-. A, (. n2+. a2+0a 
2) +n2=0 

-9: a 
(H A Macleod (1971)) 

The locus of (k-im) i. e. the 'effective indexI of the whole assembly., 

including the antireflecting layer, on the Argand diagram is there- 

fore a circle with a centre at (n 2+ Oýa2 +. ýa2 
' 0) 

2 

as 6 is varied. 
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The circle passes through the point a) and 'istraced out 

in a clockwise direction (+) from that point. 

'I' 
m 

Locus of S=Z -im as 6 varies 

WVýaVa 2 

21 
a (Xa 

when m=O., X =cca orn 
2 

ý2-a 
2 

In going from the point (cca, O) to a- 
,0) on the Argand 

'Ica 

diagram for 9 the change in phase6 a quarter wave is equivalent 

to a semicircle on the Argand diagram. 

Let us return now to equations 6.9 and 6.11 with reference. to the 

Argand f or Z (diagram below) 

M0 ce. a 2a 2) = 'Za 2 
M 

when 

no 0 
91 

< '. a, - a, ) Eal 

2 

Equation 6.9 gives two alternative values for, &-. The correcý one 

is determined by the initial value for Za =qxa - iýa for the cell 

before adding the A. R. coating. 

If the value 'of aa is positive the starting point for Zwill 

lie below m. =0 on the Argand diagram. In this case we take the6 

value., given by equation 6.9, that is less than a ir/2 
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On the Argand diagram the zero reflectance condition is reached 

when the locus of 2 cuts the m=0 line at k= no (the refractive 

index of the incidence medium). If the starting value for Za lies 

above the m=0 the correct value for 6 in 6.9 is the one that lies 

between a quarter wave and a half wave. 

From equation 6.10 we can see that the zero reflectance 

condition cannot be reached if cca"s less than n(,. The forbidden 

region on the Argand diagram, corresponding to this condition is k<no& 

Taking the incident medium as air.,, the reflectance R is given by 

R= (ý_. g)2 + m2 
(I j.. 02+ m2 

i. e. R( +, t)2 + Rm2 +M2 

i. e. (R-1) + 2X(R+I) + k2(R_l) + m2(R_l) =0 

This can be rewritten as 

12+m2_2. y, 
(L-LR) 

+I=06.14 (1-R) 

This equation represents a constant reflectance contour on the 

Argand diagram for Za. It is a circle with a centre at (I +R 0). 
1-R 

By putting m=0i,, 6.14 

1 14R +- 2Rý 
T--R - 1-R 

iI The radius of the circle is therefore 2R2 
1-R 

and the circle cuts the real axis at xj and x2 (diagram below). 

mn. -U 

isoreflectance circle 
m 

*Za cc aa 
1 

1 +R* 2V 
1-R 1-R 

x21+R+ 2Mý 
T --R I-R 
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Equation 6.14 shows us that for any given value for R there is a circle 

on the Argand diagram such that any value of Z on that circle will 

give a reflectance equal to that particular value. We can use this 

to find conditions for antireflecting., say., down to 5% or lwo in 

cases where no solutions exist for zero R. 
I 

If 5a was the starting point on the Argand diagram, 

that is the-teffqctive refractive indexf of the cell before deposition 

of the antireflecting coating., then to achieve for example a 10%0 

reflectance, we would have to take the 9 value'from Sa, to any point 

on the 10% isoreflectance circle. There are only two real values 

on the isoreflectance circle x, and x2 respectively. X, is the lower 

limiting value such that for real solutions %a: must not fall in the 

region 14 xi. It should be noted that 

xI <n, for R >0 , 

We can now substitute x1 for no in equations 6.9 to 6.11 to give us 

the ideal refractive index and thickness for the antireflecting 

coating in order to reduce R to 10% in this case for instance. 

We can also derive general expressions for **he ideal thickness 

and refractive index for an antireflecting coating wýen x-iY is anY 

point on the isoreflectance contour. x and y are given by the 

equation 

ý2 +y2_2x (I + R-, + 0, RI 

we can rewrite equations 6.12 and 6.13 as 

x COS ý+k sin 6+ Y'ýa sin 6 "ca COS 6 
nn6.12 

-y (COS 6+L. -a sin a)+ ýýa sin n sins -0a COSS .. 
nn---6.13 
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By eliminating a we get 
22 .2 nx a+ Oa Y cza/x 

cr'a x 

i. e. nX( ýca + O, a2 -Y 
2tca/x, 

)32 

from equation 6.12 above 

tan Cc, 
-r., a -x 
xa 'CC 0 a+ Y CT 

i. e. d .1 tan7ý (a -x)n 
27M '&a + Y'a 6.16 

Equations 6.15 and 6.16 are general equations of which 6.10 and 6.11 

are a special case. Substitution of x by no and y by zero results in 

6.10 and 6.11. 

We are in a position to calculate optiminn values for the thickness 

and refractive index for antireflection coatings ev-en when solutions 

do not exist for zero reflectance. By gradually increasing the 

reflectance until a solution appears by use of 6.15 and 6.16 it is 

theoretically possible to predict values of reflectance below which 

it is not possible to reduce. 

Having found the optimin values for n., the refractive index of 

the antireflecting layer and the phase thickness 6, it may be that 

no such material exists. The step may be to find a combination of 

thin films"of available materials whose characteristic matrix is 

equivalent to the ideal one. -Such an ideal combination 

of thin films is symmetrical (Epstein 1952). Any thin film combination 

is symmetrical if each half is a mirror image of the other half. The 

simplest example is a three layer combination in which the central 

layer is sandwiched between two identical layers. 
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Let us consider a symmetrical three layer stack pqp, made 

up of dielectric materials free from absorption and let the character- 

istric matrix of the combination be 

M 11 M12 

M 21 M 22 

cos 6p, i sin 6- Cos 6qi sin 6q Cos 6pi sin 6 
Yn T- -n Y n-p VPvqvP 

inPYv sin6 p COS6 PinqYv sin6 q COS6 qi np Yv sin6 p 
dOS6 

p 

---6.17 
where M 11 = COS6 M 22-' 

M 21 =inYv sin6 

M-i sin 6 
12 Yn 

v 

where 6 and n are the same as in 6.15 and 6.16 
I 

From 6.17 
nn 

-2( --- 
q+-P-) sin 26 sin 6---6.18 cos 6= cos 26 Cos 61 

pqnnpq 
.pq 

i sin 6yi 
sin 26 cos6 +n 2+ n P-) cos 26 sin6 yvnvnppq2npnqpq 

nn 
+-! (-2- --2) sin6 ---6.19 2nqnpq 

and nn 
inY sin6 =iYn( sin 26 cos6 + -1 (--2- + --2) cos 26 sin6 

vvppq2nqnpp 

nn 1 (--ýl - 
q) Sin6 2nqnp 6.20 

(H. A. Macleod 1969 P114) 

Simultaneous solutions of equations 6.19 and 6.20 gives 

nnn 
(-2 - -2-) sin (-P- - 

q) sin6 nnpnqnp 

from which 
n (n2 n2 

sin6 sin 6(p-ý))- 
n (n2 _n2 pq 

---6.21 
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From 6.18 

tan 28 p 
2: a ? -. ncý 

-ý* 2 (n 
4 +ný 

Cos S! R. - Cos 61 
sin 6q---6.22 

From a knowledge of n., 6.., a, and n q.,. 
6. q, and 6 can be calculated. PP 

A single film of index n and phase thickness 6is equivalent'to a 

layer of index n Cý phase thickness 6q sandwiched between two 

identical layers of index np and phase thickness 6p* The index n 

is known as the Herpin index. 

The relative values of n It and n to the Herpin index must be 

such that 

sin 6 2 2) 

(w 2 
n, 

2) 
pq 

6.2 Theoretical Results 

1 

All the equations presented are functions crf wavelength and 

therefore when equations 6.9 to 6.11 for instanae. jg#e us ideal 

values for the refractive index a and the ideal thickness d for the 

antireflecting layer they are true only for one wavelength. 

Ideal values for n and d as functions of wavelengths are presented 
00 

in figure 6.0. They are given for silver thickness of 100A and 200A 

respectively on a silicon substrate. The ideal value for n in the 

case for 100i of silver lies between 2.3 and 2.95 in the wavelength 

region of 0.4pm to 1.2um . 
ZnS with a refractive index of 2.35 in the visible region was 

chosen as a suitable material for single layer antireflecting coating. 
0 The ideal thickness for an antireflecting coating an 100A of silver 

0 
on sil icon at a wavýelength of 0.58 Pm is 420A. The ideal refractive 

index for the same wavelength is 2.35. 
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0 
The ? effective refractive indext for an assembly of 100A of 

silver on silicon lies below the real axis on the Argand diagram 

(Fig. 6.1) and the real part is always greater than 2.0 in the wave- 

length region of 0.4um to 1.2pm . It is apparent that real solutions 

to 6.10 and 6.1.1 exist. For the same assembly the real transmittance 

lies well below the potential transmittance (eqtidtion 6.3 ) and 

the reflectance of the assembly rises from 40% to 60% in the wave- 

length range of O-Om to 1.2Pm (Fig. 6.1). It may be possible., in 

the future., to find or manufacture materials whose refractive index, 

varies with wavelength in an ideal manner but the thickness of the 

antireflecting layer will still have to be single valued. Tlierefore 

by assuming ideal values for n and choosing an ideal thickness value 

for some central wavelength it iA possible to predict the ax3-mum 

possi'hle tran'smittance for that particular thickness value for a single 

layer antireflecting coating (Fig. 6.2). 'At the wavelength for which 

the antireflecting coating is optimum the transmittance (real) curve 

can be seen to be just touching the potential transmittance curve 

(Fig. 6.2)., and the reflectance for the whole assembly at the same 

wavelength can be seen to be minimum. On the Argand diagram this 

corresponds to the point where the leffective refractive indext curve 

for the assembly cuts the real axis. The part of the curve above the 

real axis corresponds to values at wavelengths greater than that value 

for minimum reflectance. The part below the real axis corresponds to 

values at wavelengths shorter than that value for minimum reflectance. 
00 

420A of ZnS (optimuin value at 0.58, Pm) on 100A of silver on a 

silicon substrate gives values for reflectance., transmittance and the 

teffective complex index? similar to the latter case (elf Fig. 6.3 with 

Fig. 6.2). However., the transmittance values on either side of the mini- 

muin reflectance wavelength value are less than in the previous case., in 

particular in the long wavelength region. 
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a 
Transmittance through 200A of silver into silicon with an 

antireflecting coating of ideal refractive index and an ideal thick- 

ness at 0.5pm -wavelength is shown in Fig. 6.4. Unfortunately, there 

are no suitable dielectric materials with refractive indices approaching 

the ideal case. Evaporated silicon has an index of 4.4 but is also 

light absorbing (k 0). Results of evaporated silicon substrate are 

shown in Fig. 6.4. Using evaporated silicon in this way would of course 

cause electrical complications to the Schottky barrier cell. 

Having achieved transmittances such as the ones in Fig. 6.3 with a 

single layer of ZnS., one could try to improve it further by rýepeated 

application of 6.9 to 6.1.1. This was in fact done and it was found that 
0 

with cryolite as a second layer., refractive index 1.35 and thickness 790Ay 

reflectance values in the longer wavelength region would fall. The 

effect of the second layer was to flatten out the transmittance and 

reflectance curves (Fig. 6.5) with a small increase in reflectance in 

the narrow band of minimum reflectance of the single layer antireflecting 

coating. 

It can be seen that minimum reflectance always corresponds to maxi- 

mum transmittance (Fig. 6.5% into the substrate through the thin metal 

layer. If the reflectance curve was perfectly flat., i. e. parallel to 

the obscissa., the teffective index? curve for the whole assembly on theArgand 

diagramwouldbe an isoreflectance circle. A curve approaching this 

circle on the Argand diagram can be seen in Figure 6.5. 

Finally,, it can be deduced that for the same transmittance into the 

substrate the higher the refractive indices of the antireflection coatings 

the thicker can be the metal layer forming the Schottky barrier with the 

substrate. 
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6.3 Experimental Work 

A. Optical Properties of Thin Films on Glass 

Silver films of differing thickness were evaporated onto glass 

and the transmission measured. The sheet resistances ýf the films 

were also measured. Antireflecting coatings of ZnS were deposited 

on top of the silver layers. The transmission was again measured. 

An SP 700A ultraviolet and visible spectrophotometer was used for 

measuring the optical transmission. The thickness of the deposited 

thin films was monitored using a 4.5 MHz resonant frequency quartz 

crystal. 

B. Evaporation of Layers on Glass 

The depositions were carried out using both the electron gun 

and the thermal evaporation technique at pressures below 5x 1075 torr. 

Depositions were also carried out using an ion plating plant. For solar 

cell purposes the silver was required to have high optical transmittance 
0 

simultaneous to having a low sheet resistance. A bulk thickness of 100A 

was found to be a reasonable compromise. To start with the electron 

gun was used for depositing silver on glass. Both the transmittance 

and the bulk thickness were measured. The quartz crystal used in 

measuring the bulk thickness was calibrated first by calculating the 

transmittance at various thickness of silver (assuming bulk n and k values) 

and then by measuring silver thickness by an optical interferometer., 

corresponding to transmittances less than 10% at a wavelength of 0.51im, 

. Af CLI 
" was found to be 3.6HzA where Af is the frequency change in Tt 

the quartz crystal and At is the corresponding thickness of the deposited 

layer. It was decided to carry out further depositions of silver by 

thermal evaporation. This was because-of difficulties arising with the 

electron gun system. The geometry of the system was such that some of 

the evaporating silver was finding its way up the electron gun and causing 

a short circuit in the filament. This was unfortunate as the electron 
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gun tended to produce more uniform and continuous films at smaller 

bulk thickness when compared to the thermal evaporation technique. 

ZnS was still evaporated using the electron gun system. The parameter 

AP, for ZnS was found to be 1.25HA-4 .. For the thermally evaporated silver 

the same parameter was found to be 1-84HA-'.. 

C. Thin Films on Silicon 

Thin silver layers were deposited on silicon substrates to form 

Schottky barrier solar cells. Depositions were carried out using ion 

plating technique and the thermal evaporation method. Spectral responses., 

the I/V characteristics and the barrier heights of the diodes were 

measured. The diode factors were calculated for the cases when the 

biasing was done both electrically and optically. The effect on the 

current output of the cell by the addition of an antireflecting coating. 

was also measured. 

D. Preparation of Silicon Samples 

The silicon substrates were in the form of circular discs diameter 

1 cm, P type with a polished face in the (100) plane. The resistivity 

of the silicon samples was 0-1 ohm cm. 

Before the deposition of silver on the polished side of the disc 

it was first etched with a solution of HF. 
. 

The surface of the disc 

was carefully cleaned with aQ tip which had been previously dipped in 

a 20% HF solution. This was followed by further careful cleansing with 

Q tips which had been dipped in deionised water. 

The back contacts were made prior to polishing the silicon slice 

with HF. This was done by first evaporating a thick layer of aluminium..,, 

by thermal evaporation on the back unpolished side of the silicon dipe. 

The alianinium covered most of the back surface, but not all. The 

silicon was then placed in a quartz tube at 450 0C with Argon flowing 
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through it. It was treated in Aýgon for about 15 minutes. Two separate 

wire connections were made to the aluminium at the back of the disc 

using a silver paste. The disc was then placed in an oven for about 

two hours at a temperature of 60 0 C. This enabled the electrical 

connections to make firm bonds. 

The contacts were then tested for tohmicityl. A piece of indium 

wire dipped into indium-4n&cury makes a very good temporary ohmic con- 

tact with P type silicon. This was tested on a I-V curve tracer. This 

technique was used for making a temporary ohmic contact to that part 

of the back face of the disc which did not have any aluminium on it. 

It was verified that the indium-mercury contact did not touch the 

alurni i3i inn. 

The permanent wire connections to the aluminium and the indium- 

mercury contact were connected to the I-V curve tracer. The character- 

istics were observed to be rectifying. The current was gradually in- 

creased until the characteristics were suddenly observed to be ohmic., 

i. e. a straight continuous line was observed for both in the forward 

and reverse bias. The disc was then ready for polishing with HF which 

was carried out using Q tips to avoid damaging the back contacts. 

E. Deposition of Layers onto Silicon 

The silicon disc., immediately after the polishing process with HF, 

was placed in the vacu= chamber ready for evaporation. The clean 

sil icon sample was exposed to the atmosphere for a few minutes while 

the vacuum pumps were being switched on. When the pressure reached 

around 2x 10-5 torr Ag was evaporated onto the substrate through a 

mask. The area of the evaporated silver formed a circle of 

diameter 0.5 cm, on the silicon surface. 

A special copper holder for the mask containing the silicon disc 

was made such that the disc was in thermal contact with the holder. 
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The holder was also a heater designed to take its temperature up 

to 200 0 C. A thermocouple was attached to the holder to measure the 

temperature of the silicon disc during the evaporation of silver onto 

it. It was recognised that the evaporation of silver onto a heated 

Silicon disc would tend to produce better adhesion of the evaporant 

to the substrate but if the growth of the oxide layers at high 

temperatures were to be avoided the evaporating chamber had to be in 

an ultrahigh vacuum region. The temperature of the disc during 

evaporation of the silver onto it was 30 0 C. The ýsilver was evaporated 

by passing a steady current of 22ANPS through a molybdenum boat con- 

taining the silver. A shutter was placed between the boat and the 

substrate until the silver was observed to be evaporating steadily. 

The shutter was removed and as soon as the required &f reading was 

reached it was immediately replaced. The temperature of the substrate 

during the evaporation process was also noted. The diode was carefully 

removed from the chamber. 

The silicon slice was then carefully removed from its mask and 

placed inside another one. The second mask shielded half the circular 

dot already deposited on the substrate. 

The silicon slice with its new mask was placed in a new vacuum 

chamber and a thick layer of gold deposited an top of the semi circle 

of silver. Using IDag' silver paste., electrical connections to a wire 

were made with the gold contact to the silver layer. The silicon slice 

was left overnight in a vacuum chamber for the contact to harden. The 

diode was then ready for making measurements. The short circuit current 

and the open circuit voltages were measured under the light from a water 

filtered tungsten lamp of intensity 100 mw cm--2 . The unnormalised 

spectral response under the light from a tungsten icidine lamp was also 

measured. 
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I 
The diode was then placed back in the vacuum chamber and an 

antireflection coating of ZnS was deposited on top of the silver. 

The short circuit current and the open circuit voltage were again 

measured. This was followed by measurements of the spectral response 

curve and the barrier height of the photo-diode. I-V measurements 

were made and the diode factors calculated both when biased electri- 

cally and optically. 

F. The Ion Plated Diode 

The ion plated diode was fabricated by first etching the polished 

surface of the P type silicon disc by sputtering the substrate by 

Argon ions. The sputtering process was carried out in the ion plating 

I plant for 5 minutes. A full description of the ion plating technique 

is given in I Reid's phD thesis (Newcastle upon Tyne Polytechnic)ýý A 

schematic diagram is shownin figure 6.5-1. showing the layout of the 

ion plating apparatus. Ion plating is essentially vapour deposition 

onto a substrate which is the cathode of a glow discharge where the 

substrate is cleaned and maintained clean by sputtering. 

After the silver layer was ion plated onto silicon., top contact 

was made as described above and a layer of ZnS was then added on to 

antireflect the solar cell. The same measurements as on the thermally 

evaporated diodes were then made on the ion plated one. 

G. Equipment and Techniques 

The vacuum chambers were 12" diameter and the pressures were read 

using the Pirani, Penning and the ionisation gauges. The vacuum chamber 

in which silver and ZnS were evaporated was pumped by a turbomolecular 

pump backed by a rotary pump. The chamber for evaporating Aluminium 

and gold was pumped by a diffusion pump backed by a rotary pump. 

The I-V characteristics of the photocell both in the dark and-in 

the light were plotted directly onto a chart and also measured point by 

point using a digital voltmeter, an electrometer and a stabilised 

to be published 
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voltage supply unit for biasing the cell. Equipment for measuring 

the spectral response and the barrier height was specially constructed. 

A schematic layout of the apparatus is sho wn in figure 6.5.. 2. 

The photoresponse was measured by mechanically chopping the light at 

the exit slit of the M2 Grubb-Parsons prism monochromator and focussing 

it on the Schottky barrier cell. The short circuit current was detected 

using a phase sensitive detection system. The cell was illuminated from 
I 

the silvar side of the diode. 

The monochromtor was calibrated in the visible region by detecting 

the emission lines of mercury., sodium and helium sources. In the infra- 

red region, suitable for measuring the barrier heights of the sLlver- 

silicon contacts, emission spectra lines of a mercury source were used 

for calibrating the monochrometer in that region (journal of Research 

of National Bureau of Standards V45 No. 62u. 950). A neon-lielium gas laser 

was also used for calibrating the monochromator at 1.153 um wavelength. 

The resolution of the monochromator was found to be about 200A. This 

was observed directly from the response-to the laser line. The tungsten- 

iodine lamp was powered by an IBM computer supply unit of 12 volts DC. 

The ripple in the voltage supply was less than 1 mv so that a stable 

power supply enabled a stable light output from the lamp. 

A Mullard 615 V infra-red detector was used for normalising the res- 

ponse of the Schottky barrier diodes in the region of wavelength where 

readings were taken for measuring the barrier heights. The relative 

and normalised response curve for the infra-red detector was provided 

by the manufacturer. 'In the region of interest the response was 

constant. The response of the Mullard detector was also measured under 

the light from the tungsten-iodine lamp. The phase sensitive detection 

system that-had been set up was used for measuring-this response also. 

The relative values for the photon flux incident on the infrared 

normalised response - response per unit incident radiation 
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Figure 6.5.1 
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Figure 6.5.2 
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detector was the same as that incident on the Schottky barrier cell 

whose normalised response could then be found from the experimentally 

observed response under the same lamp. By plotting the square root 

of the relative normalised responses against hv , the barrier heights 

of the Schottky photodiodes were measured from the intercept on the 

h axis (Fowler theory). The diode factors were-calculated from the 

graphs of lnj versus the voltage across the diode in the dark. From 

the same graphs the saturation current j 
no was also calculated. 

Rrom measurements of V 
oc 

the open circuit voltage and the short 

circuit current j 
sc and using the equation 

ln (i /i + 1) oc q sc no 

the diode factor A was again calculated. This was taken to be the 

value in the light. It was realised that J 
no was not necessarily the 

same in the dark as in the light. 

H. Experimental ResultS 

The experimental results are recorded graphically (figures 6.6 to 

6.23) on pages 200 to 217. Titles of these results and the figure 

numbers are summarised on table 6A. Table 6B contains the measured 

parameters for the solar cells fabricated in the laboratory, 

The remaining, theoretical results are shown on pages Z18 to Z28 

but they are discussed!, together with the experimental results., on 

pages 196 to 198. 
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Table 6A Guide to the experimental results 

Figure 

6.6 Comparision of the theoretical and experimental curves for 

transmittance into glass through silver as a function of silver 

bulk thickness. 

6.7 Experimental transmittance for, thermally evaporated silver onto 
6.8 
6.9 glass both with and without ant'ireflection coatings. 
6.10 

6.11 Unnormalised spectal response measured both with and without 

antireflection coating of ZnS (thermally evaporated diode 1) 

6.12 InJ versus voltage across diode (diode 1) 

6.13 I-V measurements directly onto a chart recorder (diode 1) both 

in the dark and light. 

6.14 R Vs hv (diode 1) 

R is the square root of the normalised response, 

6.15 Unnormalised spectral response for the thermally evaporated 

diode 2 with zero bias. 

6.16 Unnormalised spectral response for the thermally evaporated 

diode 2 with a reverse of 2V. 

6.17 InJ versus voltage across the diode 2 

6.18 R versus hv (diode 2) 

6.19 Unnormalised spectal response curve for the ion plated diode 

with zero bias 

6.20 InJ versus voltage across the ion plated diode 

6.211 R versus hv (ion plated diode) 

6.22 I-V me asurements directly onto the chart recorder both in the 

dark and light 

6.23 Transmittance through glass with ion plated silver of thickness 

equal to that deposited on the ion plated diode. 



I Table 6B Theoretical parameters for the fabricated solar cells 

Parameter Diode 1 Diode 2 Ion Plated Dioe 

Diode factor at low voltages 
i. e. < 0.1 V (dark) 

2.0 1.3 1.2 

Diode factor. at voltages > O. 1V 
(dark) 

8. o 11.4 2.1 

Diode factor in the light- 

using V oc M : Ln( J sc + 1) 
q Jno 

7.6 1.8 1.7 

V-0c 70 mV 81 mV 0.35 V 

Isc 2. OA 9.2/,, tA 3.92/U 

Ino 5/UA 4.5 85/9A 1. 0.11/UA 

Active area of cell 2 0.1 cm 
2 0.1 cm 

2 0.1 cm 

Silver thickness 0 
96A 

0 
100A 

0 
100 - 140A 

Oxide thickness 0 
5-20A 0 5-20A no oxide layt 

Estimated series resistance 3.5 k-fL/I: l 3.5 k-[Va 35LA/b 

Barrier height 0.67 eV 0.78 eV 0.79 eV 

Effective Richardson 

constant (A cnr2 X-2) 
167 5350 472 

195 



6.4 Discussion of Results 

Comparison of the theoretical and experimental curves for trans- 

mittance into glass through the silver as a function of silver bulk thick- 
0 

ness show that the curves superimpose for thickness greater than 300A (? age 203) 
0 For values less than 300A the experimental transmittances are lower than 

the theoretical ones. This can be explained by the fact that the optical 

constants, i. e. 
*n 

and k are themselves functions of the thickness and 
0 

structure of the thin film. For thickness greater than 30OAitis reasonable to 

assume that n and k values are the same as those given in the literature. 

0 For thickness below 300A they must be different (Fig. 6.6). Experimental 

results of thermally evaporated silver onto glass both with and without 

ZnS coatings (Figs. 6.7 to 6.10) compare well with the theoretical 

results of figures 6.24 to 6.26 as well as the results of Anderson et al 

(1976) who studied thin films of metal in connection with Schottky 

barrier cells. They reported sheet resistance of 20P. 0 /o for SOA Cu 

on 50A 0r with 58% transmittanc e at 0.6 ji m wavelength and 57 f or 
00 

50A Ag on 5&-A Cr with 3, r- transmittance at the same wavelength. In 

this work a sheet resistance of 5.5. jj/C3, jjith- a trans#ttance over 50% 
0 

at 0.61im wavelength was measured for 100A of silver on glass. 

Anderson et al (1976) used layered metal films with Cr adjacent to Si 

for good adhesion and high open circuit voltage. The theoretical results 

(Figs. 6.24 - 6.26) show that the peak transmittance into the substrate 

and the general shape of the curve depends not only on the antireflecting 

layer thickness but also on the metal layer thickness. For instance 
0 

when 175A of silver on glass is antireflected with ZnS the overall 

transmittances- are not only reduced but the peaks are shifted to the 
0 blue end of the spectrum when compared with 100A of silver on glass. 

*n is the refractive index 

k is the extinction coefficient 

196 



This is due to the absorption in the silver layer. It can be observed 

that the maximum transmittance always corresponds to minimum reflectance 

whatever the metal layer thickness. 

The experimental values for transmittances are approximately 10 to 

1V, below the theoretical ones; this could b(-, explained by the incorrect 

values for n and k being used when making theoretical calculations. An 

experimentally deposited silver film of 100A tbulki thickness corresponds 
0 

0 to afilm of 140A having n and k values equal to the bulk values (Fig. 6.6). 

This is equivalent to about 15% reduction in the transmittance at least at 

0.5 Pm wavelength. 
I 

Theoretical values for transmittance into silicon through various 

thickness of Ag are lower than those into glass (Figs. 6.27 and 6.24). 

The optimum thickness for ZnS as an antireflecting layer on'silver an top of 

silicon will depend on the wavelength. At a wavelength of 0.6z 11m for 

00 
a silver layer of 100A the optimuin thickness for ZnS is 500A (Fig. 6.28). 

0 The effect of the oxide layer between 100A of silver and the silicon 

substrate is to reduce the reflectance by a couple of per cent at 0.62 PM 

wavelength. 

The theoretical transmittance versus wavelength curves (Figs. 6.29 

and 6.30) show that as ZnS layer thickness is increased., the general 

trend for the peak transmittance is to shift to the red end of the spectrum. 

The effect of the okide layer is again shown to be negligible on the 
0 

transmittance. With a ZnS layer of 480A on silver layer of 1001 thickness the 

integrated transmittance over the region 0-411m. to 1.2 jim. increases by 

a factor of 1.6 (Fig. 6.29). The effect of adding a second layer of 
0000 

cryolite thickness 1111A onto 480A of ZnS on top of 100A. 120A and 175CA) 

of 5ilver layers respectively is shown in Fig. 6-31-- Th e int e- 

grated transmittance is increased by a factor of 1.7. This is not 

significantly greater than with a single layer coating of ZnS. It should 

bulk thickness - density of the t1iin film is assumed to be the same as for 
bulk material 
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be not9d that when applying the theory to a solar cell-the incident 

radiation must be taken into account before deciding whether a single 

or a double layer coating is more suitable. For example, integrated 

short circuit current could be calculated for particular radiation distributioý 

and the optimum thickness for the antireflecting layer deduced. For 

AMI radiation the theoretical optimum thickness for inS calculated in 

00 
this way is 450A (Fig. 6,32) for silver films around. 100A thick. 

Addition of a cryolite layer increases the current slightly (Fig. 6.19) 

at ANI radiation where the optimum thickness for the second layer is 

6mL-2ool (Fig. 6.32). 

From the theoretical spectral response curve under ANI radiation 
00 (Fig. 6.33) it can be seen that the ZnS layer of 450A on 100A of silver 

antireflects mostly in the region containing most-AM! radiation. It does 

not antireflect strongly above LOpm wavelength. The effect of the 

cryolite layer is also illustrated in Fig. 6.20 where it can be seen 

to be insignificant. In the strongly antireflecting region the output is 

doubled by the ddd: Ltion of theZnS layer. The thickness of the silicon 

layer was taken as 500p -with a diffusion length of 100iim'. for the 

minority carriers. 

The inclusion of a back surface (reflecting) showed that the 

incident light did not see it in the wavelength region of interest. 

Some curves of short circuit current versus silicon thickness for a 

Aýi -Si-Ag Schottky barrier cell for R=O and RýLo are shown in Fig. 6.34. 

R7--O corresponds to the case of a perfect antireflecting coating. For 

thin film Schottky barrier cells the back surface can be seen to be 

important (Fig.,,, 6.34). 
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6.5 Conclusions 

The unnormalised experimental spectral response curves of Fig. 6.11 

showed that the peak response was approximately doubled by the ZnS layer. 

This was in agreement with the theoretical predictions. 

The high values for the diode factors (Table 6B) for the thermally 

evaporated diodes would suggest that the simple thermionic-diffusion 

theory by itself is insufficient to explain the workings of the diodes. 

There must be other mechanisms at work. 

The effects of the oxide layers on the voltage and current mechanisms 

is the subject of another project in this laboratory and in a more full 

discussion would certainly need to be taken into account for their effects 

both on the diode factors and the barrier heights. 
t 

The idn plated diode results would be explained more closely- by the thermionic- 

emission theory with diode factors of 2.1 in the dark and 1.7 in the light 

-20 2 
and having a Richardson constant (effective) of 472A cm K (Table 6B). 

The diff erent values f or the diode f actors when biased electrically and by 

the light would appear to agree with the qualitative arguements of Card 

and Young (1976) who pointed out that the charges on the interface states 

are not the same in the two cases. 

Estimates of the series resistances were made from the I-V curves 

and the very high values for the thermally evaporated diodes were 

probably the main cause for such low currents (Table 6B). Even a value 

of 35.0/a series resistance in the ion plated diode was too high and 

certainly limited the current. 

The poor quality of the electrical contacts with'IDag.? paste to the 

active area of the cells probably accounted for the high series resistance 

values. The ion plated diode had an overall efficiency approaching 2% 

and with. improved top contacts and a better matching of the antireflecting 

coating with incident radiation this result could be improved substantially. 
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CHAPTER 

COMPARATIVE RESULTS FOR SOME THIN Fvm CELLS 

In the following work, the'data for Copper Sulphide in the 

chalcosite'phase (Cu - US cells are most efficient in this 

phase) was taken from Mulder, (Mulder, 1973). The incident 

radiation was taken to be AMI in intensity and. spectral 

distribution and the data of Thakoekora (Thakoekora, 1976) was 

U sed as, in 
-Chapter. 

7.1 The, CadmiumýSujphide-Cuprous Sulphide Cells 

Figure 7.2'shows the short-circuit current as a function 

of the-thickness of the cuprous sulphide layer for three values 

of electron"diffusion length aiid for the two extreme conditions 

of syAem reflectivity: R=0 assumes a perfect optical match 

to air - i. e. all the -incident radiation enters the first layer 

whilst for,, R 0 the assembly has the reflectivity calculated 

for optically flat layers of the specified thickness., and the 

structure evident in these curves, is due partly to the variation 

of reflectivity with, Cu S thickness. The reflectivity of poly- 2 

crystalline films, d, epends on their surface topography., and the 

surface roughness of films in solar cells gives rise to 

fairly low values of reflec-Eivities. The 

-peak currents shown-in Figure 7.2-are larger than those calcu- 

lated by'Rothwarf-(lq75), a'nd, the optimum cuprous sulphide 

thickness ar . e, smaller. This is due partly to the choice of 

a silver substrat. e., but mainly to the effect of multiple passes 

of the light through the cuprous sulphide and the depletion 

, layers.,, as can be, seen in Figure' 7.4. 

, 
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- The current depends critically on both the diffusion length 

and the surface recombination velocity, and Figure 7.3 shows the 

current at optimum cuprous sulphide thickness as a function of 

outer surface recombination velocity for three values of electron 

diffusion length. These results suggest that the diffusion 

length should be greater than 0.4umand the surface recombination 

velocity less than about 104 cm. S71 if efficient current collection 

is to be achieved., in broad agreement with the conclusions of 

Rothwarf (1975). 

The importance of the optical properties of the back- 

surface contact is immediately apparent from Figure 7.4 which 

shows the photogenerated current as a function of cuprous sulphide 

thickness for silver., zinc and molybdenum substrate, The 

reflectivity of zinc and molybýenum is less- tharr-that of silven, 

causing the current to be lower, particularly at the 'smaller thick- 

nesses. 

Figure 7.5 shows aflying spot scan of the current from a 

dry-barrier formed cell with a molybdenum substrate, half of 

which was coated with silver. The increase in current on the side 

with thesilver substrate is very evident, the increase being of 

the order of 20% - 30%, as would be expected from Figure 7.4 for 

a cuprous sulphide thickness of about 0.15m. 

7.2 The Cadmium Sulphide - Indium Phosphide Cell 

The optical constants of indium phosphide used were those 

given by Seraphin and Bennett (1967). Figure 7.6 shows the photo- 

current as a function of cadmium sulphide thickness for a range 

of minority carrier diffiision lengths for a configuration in which 

230 



the light enters through the cadmium sulphide. In all cases, 

it can be seen that a larger current is to be expected as the 

cadmium sulphide thickness is reduced. 

The dependence of the photocurrent on the indium phosphide 

thickness is shown in Figure 7.7 for both silver and zinc back- 

surface contacts, and the advantages of using a silver substrate 

is again obvious. 

The effect on the photocurrent of outer surface recombination 

velocity is shown in Figure 7.8, and it can be seen that this para- 

meter is not critical for cadmium sulphide thickness greater than 

about Ipm. 

7.3 The Cadmium Sulphide - Copper Indium Selenide Cell 

The optical constants of copper indium selenide were not 

available., so they were calculated on the assumption of direct 

absorption and an energy gap of l. eV. The electron mobility in 

copper indium selenide was taken to by 150 cm2V-'S-l. Figure 7.9 

shows the variation in photocurrent as a fimction of the thickness 

of copper indium selenide in a CdS -CuInSe 2- substrate configuration. 

For a silver substrate the optimum copper indium selenide thickness 

is about the same as the optimum thickness of cuprous sulphide in 

the CdS -Cu2S, but the effect of using a zinc substrate is even more 

pronounced. I 

The effect of varying. the thickness of the cadmium sulphide layer 

is shown in Figure 7.10. The variations are similar to those for 

the CdS - InP - Ag system, or for the CdS - Cu 2 S- Ag system and the 

effect'of changing the minority carrier diffusion length is also 

similar. 
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CHAPTER 

CONCLUSIONS 

The work for this thesis was carried out in stages. Li 

the first stage a general theory for thin film solar cells was 

developed taking into account the optical effects in thin 

films. Phoiogenerat#n rate as a function of position was 

computed by solving Maxwell's equations in a cell assumed 

to be composed of optically flat parallel layers. The photo 

current was next computed and the effects of varying the 

transport parameters., the substrate and layer thickness were 

observed for heterojunction thin film solar cells. In 

addition to the work on Cu 2S- CdS cells the other hetero- 

junction devices analysed were US - CuI Se 2 and OdS InP 

cel I s. 

Nexty an analysis of the theory of anti-reflection coatings 

as applied to solar cells in general was carried out. This was 

followed by calculations for Schottky barrier cells. These 

cells are difficult to anti-reflect because the top metal layer 

absorbs light without making any contribution to the generation 

and collection of the photo current. Finally, an experimental 

programme on Schottky barrier cells was carried out to make some 

comparisons with the theoretical results. In addition to 

making'supplementary apparatus necessary in the deposition of 

thin films in the vacuum chambers, a unit was specially con- 

structed and built for making spectral response and barrier 

height measurements. 
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Heterojunction Cells 

The model of thin film solar cells presented in this 

paper predicts that the photogenerated current is significantly 

affected by interference effects within the cell and also by 

the optical properties of the substrate. The experimental 

evidence shown in Figure 7.4 offers strong support for the 

prediction that silver is a much better substrate material 

than molybdenum. on purely optical criteria, but of course the 

substrate must also act as an ohmic contact and a nucleation 

surface for the inner layer, and these requirements also 

influence the choice of substrate material Boer (1977). 

Boer (1977) has suggested that interference will play 

a very minor part in determining the photogenerated current 

in thin film solar cells,, since the coherence of the wave 

fronts will be destroyed by strong scattering, and this does 

seem to occur in the Am- 500thickCdS films used in "Clevite" 

type processes. In dry-formed cells using on 5un-10unthick 

CdS films., strong interference peaks from both the Ou 2S and CdS 

layers can be seen in transmission,, and in these cells there- 

fore the photogenerated current must be influenced by inter- 

ference effects. 

-In a solar cell, the power output is decreased if the series 

resistance is too high. The sheet resistivity of the ouier layer 

determines the grid requirement, and hence influences the power 

conversion efficiency and the cost of production (Hill, 1978). 

The Cu S thickness for optimum efficiency of Cu S-CdS cells 22 

may thus be somewhat greater than those shown in Figures 7.2 and 

7.4 and the requirements of low sheet resistivitY will determine 

the minimum thickness of US required in CdS-InP-Ag and 

CdS-CuInSeý-Ag cells. 
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Anti-reflection Coatings on Solar Cells 

It is clear from the results presented in the thesis that 

a simple anti-reflection coating can lead to a very significant 

increase in the intensity of radiation reaching the silicon de- 

pletion layer, and the resultant increase in electrical output 

has been observed many times by many workers. The use of multi- 

layer coatings does not seem to lead to a significant improvement 

in transmittance over that for a single layer coating for the 

materials considered., but it should be noted that although these 

materials are amongst the best optical coating materials available 

at present., their optical constants are not optimum for the AR 

0 
coating of SB or MIS solar-cells. For a 100 A thick silver film 

on silicon, zinc sulphide is quite similar to the ideal material., 

but a coating with a higher refractive index would enable a 

thicker metal layer to be used whilst retaining the same trans- 

mittance, and this would be of great value in reducing the series 

resistance of large area cells. Unfortunately the high index materials 

tend to be absorbing and are thus unsuitable for use in optical 

coatings. 

When designing an SB or MIS solar cell, it is relatively 

straightforward to calculate the transmittance into the silicon for 

any number of layers of insulator, metal or AR coating using the 

techniques described in Chapter Six provided that the optical con- 
0 

stants are known. When metal layers only a few A thick are 

used, these layers rarely show either continuous coverage or bulk 

optical constants_, but the assumption of uniform planar layers with 

bulk optical constants seems to give a good first approximation in 

calculating an optimum AR coating. Once a coating material has 

been chosen with optical constants close to the calculated ideal 

-values., the optimum thickness of a single layer coating can be 
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determined in practice by reflectance measurements during 

deposition, since for non-absorbing coating., maximum trans- 

mittance necessarily coincides with minimum reflectance. 

The performance of the anti-reflection coatings discussed 

above and of all those so far used on SB or HIS cells. is poor 

compared to those on glass or semiconductor materials where 

high transmittance. can be achieved bver a wide wavelength 

range. The problem lies in the metal layers which have 

refractive indices with very small real parts., large imaginary 

parts and very high dispersion. It is therefore extremely 

difficult to design a coating which will give an effective refractive 

index which cuts the real axis on the Argand diagram 

close to unity over a wide range of wavelengths. 

Experimental Work 

The experimental work was carried out essentially to compare 

with the theoretical results. Schottky barrier cells were 

chosen to compare the AR coating theory., being particularly 

difficult to anti-reflect because of the metal layer. 

Electron beam evaporation., thermal evaporation and ion- 

I plating techniques were utilised in the fabrication of Schottky 

barrier cells. When monitoring the deposition of either the 

silver or the zinc sulphide films., it is often convenient to 

monitor the layers deposited on a pyrex glass substrate close 

to the silicon slice. Theoretical curves for silver on glass., 

silver on silicon and zinc sulphide on Ag/glass were calculated 

assuming the layers are of uniform thickness with optical con- 

stants equal to the bulk values. It-has been found that these 

conditions are most closely met if the layers are ion-plated or 

deposited carefully by electron beam evaporation. Thermally 

0 evaporated films thicknesses around 100'A have optical constants 
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which differ significantly from the bulk values and silver films 

0 
of 100 A thickness have many pin-holes. Ion-plated silver films 

I have a much smaller pirf-hole density and this would seem to be 

the better deposition method. 

The experimental transmittances were approximately 10 to 15% 

below the theoretical ones, and this could be explained by the 

incorrect refractive index and extinction coefficient values being 

used when making the theoretical calculations. 

The results of the experiment support the theoretical pre- 

dictions that multilayer anti-reflection coatings on a Schottky 

barrier cell do not significantly improve the output. 

The peak spectral response was roughly doubled by the single 

2nS AR coating. This was in agreement with the theoretical pre- 

dictions. 

The high values for the diode factors (Table 6B) for the 

thermally evaporated Schottky barrier solar cells suggested that 

the single thermionic-diffusion theory by itself is insufficient 

to explain the current mechanisms. 

The ion-plated diode results would be explained mmýe clgsely by 

the thermionic emi s sion theory with diode f actors of 2j, 2 in the dark 

and 1-1 in the light (Table 6B). The different values in the 
i 

diode factors when biased electrically and by the light involved 

appear, to agree with the qualitative assessments of Card and Yang 

(1976) 
1 

who pointed out that the interface charges are different 

in the two cases. 

The experimental results forthermally evaporated silver on. 

glass both with and without fh-S coatings compare well with the 

results of Anderson et al (1976). 
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Conclusion 

For the first time a theory for solar cells has been 

presented which takes into account optical interference within 

the solar cells. The results of the theory were very significant 

and showed that as a result of enhanced absorption of light due 

to optical interference, current collection is improved 

compared -to mod'els of . c6lls, - in whichý- --- 

interference -effects' are excluded. The optical 

properties of the substrate were also shown to affect---signifi- 

cantly 'the current collected. The experimental evidence 

presented in Chapter 7 supports the theory of thin film solar 

cells presented in the thesis. 

The theory for anti-reflection coatings on solar cells (chapter 6 and 

Gandham et al 1979) shows for the first time why it is not 

possible to anti-reflect the solar cell completely and enables 

one to calculate the maximum limit of transmittance into the 

device and the corresponding ideal refractive indices and thick- 

nesses for the anti-reflection coating. It thus allows one to 

use the optically closest available material for anti-reflecting 

that particular solar cell. Oxide layers in Schottky barrier 

cells were shown to be of negligible significance optically on 

the photogenerated current. 

The experimental results would suggest that the ion-plating 

technique can produce thin, yet continuous metal films compared to 

the other methods (evaporation., electron beam) in the'fabrication- 

of Schottky barrier cells. The ion-plating technique should 

also produce AR coatings which are more robust and with greater 

adhesive properties. 

The general theory for the thin film solar cell can initially 

be used for optimising the short circuit current by optically 
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matching the component layers of the device to produce m 'imim 

absorption of the light as close as possible to the depletion 

region of the cell. The complex refractive index for the whole 

assembly can then be calculated, from a knowledge of the optical 

parameters of the device layers. The AR coating theory pre- 

sented in Chapter 6 can then be used for calculating the 

optimum AR coating for maximum transmittance into the cell. 

The actual deposition of the AR coating could be monitored 

by observing the reflectance of the whole assembly. As pointed 

out in Chapter 6 the maximum transmittance into the cell will 

necessarily coincide with minirmim reflectance. 

In the case of a Schottky barrier cell where the optical 

properties of the top metal layer may not necessarily be the 

same as the metal bulk properties., the effective refractive index 

for the whole cell including the metal thin film could be 

measured experimentally using ellipsometry. The effective 

refractive index could then be fed into the AR coating theory 

and the optimum AR coating for the cell calculated from the 

point of matching the material and thickness for maximum trans- 

mittance into the cell. 

The optimum AR coating does not necessarily produce zero 

reflectance but results in a reflectance value below which it 

is theoretically not possible to reduce. 

Again for the first time the theory for the t1interferencell 

4 

cell was extended to include constant electric fields and equations 

for calculating the photogenerated currents in such a cell have 

been presented. The analysis was further extended to obliquely 

incident light. 

It is possible to carry out further work based on this thesis. 
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Computation of the equations f or the photogenerated current in 

a cell with impurity gradients can be carried out. It is 

expected that the photogenerated current would rise as a 

result of these gradients but they are also likely to cause 

a rise in the dark currents in thin film solar cells thus 

cancelling each other out. The existing theory can be extended 

to include junction fields thus p: resenting an even fuller picture 

of a solar cell. 

If one could measure the insolation in a particular geo- 

graphical area then "optimisation techniquestt could be used for 

calculating an ideal refractive index and thickness over an 

extended wavelength range for that particular region by incor- 

porating the equations already presented in the "optimisation 

programme". The entire work could be extended for obliquely 

incident light. 
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