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Abstract

Nowadays, the global supply chain system needs to respond promptly to changes in
customer demand and adapt quickly to advancements in technology. Supply chain
management becomes an integral approach which links together producers, distributors
and customers in collaborative management of the whole system. The variability in
orders or inventories in supply chain systems is generally thought to be caused by
exogenous random factors such as uncertainties in customer demand or lead time.
Studies have shown, however, that orders or inventories may exhibit significant
variability, even if customer demand and lead time are deterministic. Most researchers
have concentrated on the effects of the ordering policy on supply chain behaviour,
while not many have paid attention to the influences of applying different forecasting to

supply chain planning.

This thesis presents an analysis of the behaviour of a model of a centralised supply
chain. The research was conducted within the manufacturing sector and involved the
breathing equipment manufacturer Draeger Safety, UK. The modelling process was
embedded in the organization and was focused on the client’s needs. A simplified
model of the Draeger Safety, UK centralised supply chain was developed and
validated. The dynamics of the supply chain under the influence of various factors:
demand pattern, ordering policy, demand-information sharing, and lead time were
observed. Simulation and analysis were performed using system dynamics, non-linear
dynamics and control theory. The findings suggest that destructive oscillations of
inventory could be generated by internal decision making practices. To reduce the
variation in the supply chain system, the adjustment parameters for both inventory and
supply line discrepancies should be more comparable in magnitude. Counter-
intuitively, in certain fields of decision, sharing demand information can do more harm
than good. The linear forecasting 4RMA (autoregression and moving average) model
and the nonlinear forecasting model Wavelet Neural Network were applied as the

supply chain forecasting methods. The performance was tested against supply chain



costs. A management microworld was developed, allowing managers to experiment

with different decision policies and learn how the supply chain performs.
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Chapter 1:Introduction

The contemporary business environment is characterised by an acceleration of the
process of change due to the communication and analytical capabilities supported by
modern Information and Communication Technologies (Sterman, 2000; Terzi and
Cavalieri, 2004; Ortega and Lin, 2004). This poses an ever-increasing demand for
periodical reviews of strategies and organisational processes, and for faster and more
effective learning to deal with problem situations more quickly. Furthermore,
companies increasingly need to react quickly to customer requirements (Hong-Minh,
Disney and Naim, 2000). Naylor ez al/. (1999) suggested the principle of agile
manufacturing, i.e. responding to customer requirements with very short lead times, can

be applied to supply chains.

1.1 Supply Chain Management Issues

Global companies are realising that the efficiency of their businesses is dependent on
collaboration with their suppliers and customers (van der Zee, 2005; Yusuf,
Gunasekaran, 2004; Adeleye and Sivayoganatahn, 2004; Cox et al/. 2004). The concept
of supply chain management (SCM) 1s concerned with the strategic approach of
integrating producers, suppliers and customers in a collaborative network, with the
objective of improving the overall responsiveness of the network, but at the same time
preserving the organisational autonomy of each unit (Terzi and Cavalieri, 2004). More
accurate data and the availability of information to all nodes of the supply chain are
considered crucial to improving its performance. Thus, companies invest heavily in
intra-company information and communication platforms and E-collaboration tools,
such as data warehouse or Enterprise Resource Planning systems (ERP) and
Manufacturing Resource Planning systems (Lyneis, 2005; Li & Li, 2005; Marquez,
Bianchi and Gupta, 2004).

Contemporary Manufacturing Resource Planning (MRP) is a structured approach to
manufacturing management in which a suite of integrated computer software covering
the main operational business functions is used to assist the planning of materials,

capacity and cash flow, in accordance with company policy, to meet customer delivery
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requirements (Ackermans & Dellaert, 2005). It is a total approach to managing a
business (Li & Li, 2005). It includes inventory control data, purchasing and accounts
payable, suppliers’ data, master schedules, production schedules, resource capacities,
manufacturing orders, etc. MRP systems are developed on the assumption that more
data and better information lead to better decisions. The quality of this data is believed
to be accurate or at least good enough to be reliable (Ackermans and Dellaert, 2005).
However, even with the introduction of resource planning systems, the performance of
the supply chain remains problematic (Lyneis, 2005; Fowler, 1999). The weakness of
such systems is that when used on their own they fail to address the complexity of
management situations for two reasons: firstly, they do not take into account the
inherent ‘messiness’ of situations that contain human decision making within the process
that is considered problematic (Maturana & Varela, 1987; Beer, 1979, 1994); secondly,
such tools do not promote learning (Senge, 1984, 1996; Venix, 1994; Morecroft, 2007)
or effective decision support as they do not include the powerful technique of simulation

to allow for what-if analysis of alternative strategies (Terzi and Cavalieri, 2004).
1.2 Draeger Safety, UK. Research Focus

Draeger Safety Ltd. is an international corporation, manufacturing breathing protection
and gas detection equipment. It provides innovative products, services and system
solutions in such areas as gas measuring technology, personal protection, diving and
system technologies. It has a presence in approximately 200 countries on all continents,
with around ten thousand employees worldwide. In 2006, the order intake in Draeger
Safety was around 1.9 billion Euros. Draeger Safety UK in Blyth is one of the
manufacturing plants in the Draeger Group. It is equipped with a sophisticated MRP
environment for sharing information and enhancing communication between production
and marketing. However, the performance of the supply chain is still perceived was
problematic as it was not unusual for high inventories to mount up and backlogs to
develop, causing disruption, as production was dealing with the crisis of overcoming
them. Forecasts were perceived to play a key role. In the current IT logistics planning
system, computer generated forecasting, combined with human decisions, formed the
main driver of other functions, such as scheduling, resource planning and marketing.
Forecast accuracy was, therefore, an important component in the delivery of an effective

supply chain system.



A centralised supply chain system was recently implemented with the purpose of
diminishing costs and avoiding backlogs. This made Draeger’s planning managers even
more worried as it was difficult to predict what the consequences of centralised
inventories would be for the manufacturing plant in Blyth. A team consisting of the
planning department at Draeger Safety, UK and this researcher was formed to explore
the impact of different decision strategies on the behaviour of the supply chain and to
provide insights and recommendations for managers. This required the research to focus

on:

e Modelling and simulation of the material and information flows, including the
decision processes of the centralised supply chain at Draeger Safety, UK;

e Validating the model within the research team and against any available data;

e Analysing of the behaviour of inventories in relation to different decision
strategies and characteristics of managers;

e Evaluating the sensitivity of the supply chain to different methods of forecasting;

e Developing a learning environment to enable managers to conduct what-if

scenarios and explore the behaviour of the supply chain.

The novelty of the research lies in articulating and applying a synergy of theories to the
modelling and analysis of the supply chain, i.e. system dynamics (as an overarching
framework), control theory and non-linear and forecast analysis. The application of these
theories in practice is validated and evaluated within a real life context at Draeger Safety
UK. Tt is envisaged (a hypothesis is made) that the combined use of system dynamics,
control theory and non-linear and forecast analysis will enhance the quality and depth of
study of the systems behaviour and will lead to new insights. A brief outline of the
modelling and simulation of the supply chain with the application of the suggested
theories is given in the following section. The uses and insights of the applied theories

are explored and evaluated throughout the thesis.

1.3 Modelling and Simulation of Decision Making in
the Supply Chain

After reviewing more than eighty scientific papers on the role and application of

simulation in the supply chain, Terzi and Cavalieri (2004) show how simulation is
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successfully adopted in different studies of logistic networks. Their findings ascertain
that simulation allows evaluation of performance prior to the implementation of the
system since it: 1) enables companies to perform powerful what-if analyses leading to
learning and improved planning decisions; 2) permits the comparison of alternative
strategies in a safe virtual world, without interrupting the real system; 3) permits time
compression that allows for timely policy decisions to be made. These findings are also

supported by Chang and Makatsoris (2001).

The suitability of simulation as an approach to studying supply chains does not guarantee
its adequate decision support (van der Zee, 2005) as simulation relies on a heuristic
search for good decision strategies which are led by people. The success of the
simulation study depends on the joint work of the analyst and the chain managers and
actors, as well as the facilities offered by the modelling and simulation tools. Van der
Zee (2005), Sterman (2000) and Senge (1996) suggest that it is important to consider the
simulation model as a communicative tool between analysts and chain actors. system
dynamics (Forrester, 1961; Sterman 2000) as a modelling and simulation framework has

been developed for such a purpose.

This research uses a combination of system dynamics and control theory analyses to
address the issues of decision support and learning in the supply chain. It acknowledges
the insights of non-linear dynamics and chaos theory in exploring the system’s behaviour

(Sice & French, 1998; Mosekilde, 2002).

When used in a management context, Systems Dynamics is a framework for thinking
about how the operating policies of a company and its customers, competitors and
suppliers interact to shape the companies performance over time (Forrester, 1961). It is
an approach that allows the explicit modelling of perceived delays, bounded rationality
and goal-setting and explicitly to discuss systems’boundaries (Ackermans and Dellaert,
2005). To do this, system dynamics uses metaphors drawn from control theory to provide
tools for mapping and simulation, and metaphors from behavioural decision theory to

describe decision making processes (Morecroft, 1985, 2007).

Systems dynamics is a powerful framework for thinking and explaining how the
structure of systems generates behaviour. Ortega and Lin (2004), after reviewing the

critical literature on System dynamics, conclude that this approach is suitable for
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modelling complex systems but, when it comes to analysis, it contains insufficient
analytical support. If an in-depth mathematical analysis of behaviour needs to be carried
out, the appropriate mathematical tools from control theory need to be introduced
(Ackermans and Dellaert, 2005). System dynamics was founded in control theory and,
thus, is compatible with its tools and techniques (Forester, 1961; Roberts, 1978; Sterman,
2001). Ortega and Lin (2005), after studying the use of control theory in supply chain
analyses, suggest that control theory analytical tools are quite suitable. In this research,
block diagrams and stability in discrete time systems and eigenvalue analysis have been
adopted (Atherton D.P., 1982; Richard R.J., 1993; Jacobs O.L.R., 1993). However, in
the supply chain there are asymmetric consequences, for example, negative and positive
inventories are asymmetric and thus introduce non-linearity in the system. Recent
research suggests that non-linearity in the supply chains may lead to chaotic behaviour
(Thomsen et al/., 1992; Mosekilde, 2002; Sice, French et al/., 2000). Control theory is
generally linear in nature, and in order to consider effective application in supply chain
analysis, it needs to be complemented by non-linear dynamics analyses (Ortega and Lin,

2005; Sice, French et al/., 2000).

Forecasting plays an important role in the decision making process of the supply
chains. Typically, sales forecasts are quantitative forecasts based on historical data plus
managerial judgment within a forecasting support system (Robert, 2005). The research
included in this thesis concentrates on the quantitative forecasting of the market sales

series.

Traditionally, the short-term load forecast employs statistical models to analyze and
predict the time series. The Autoregressive and Moving Average (ARMA) model is one
of the most popular dynamic load shape models (AD, 1990). However, linear
forecasting techniques have limited ability to capture nonlinearity in the series.
Artificial intelligence methods for forecasting have received considerable attention as
means to deal with nonlinearity and other difficulties in modelling of the time series
(Grundnitski & Osburn, 1993). Artificial neural networks have been widely applied in
the area of time series forecasting owing to their flexible data modelling (Ping-Feng
Pai, 2006, Chiang, 1996). Combining neural network with wavelet analysis allows the
approximating of the time series at different levels of resolution using multiresolution

wavelet decomposition (Bai-Ling, 2001). In subsequent chapters, the neural wavelet



forecasting model is built and applied to the forecasting of the Draeger Safety UK sales
series. The forecasting performance of 4RMA model and wavelet neural network model

are examined and compared.

Traditionally, system dynamics models of the supply chain focus on identifying the
structure that generates behaviour in relation to inventory levels and the supply line
(Sterman, 2000). In this research, it is also considered important to evaluate the

sensitivity of different methods of forecasting to the performance of the supply chain.

1.4 Outline of the Thesis

An overview of this thesis structure is shown below:

Chapter One examines the current challenges to supply chain management and

introduces the background and focus of the research.

Chapter Two explores the current approaches to modelling and simulation of the supply
chain. It evaluates existing system dynamics and the contribution of control theory to
model development and analysis. The amplification and uncertainty in the multistage
supply chain that lead to complex behaviour, are discussed and the decision heuristics

introduced. The research approach and the modelling process are developed.

Chapter Three describes the Draeger Safety UK case and develops the simplified model
of Draeger centralised supply chain. Dynamic analysis of the behaviour of inventories

and backlogs are performed, and the sensitivity of the decision parameters is tested.

Chapter Four introduces an additional two month manufacturing lead time and
production constraint to simulate the effect of possible production hold-ups. The

primary route to instability in the factory is identified and further explored.

Chapter Five presents the effect of an additional information delay between the hub and
the factory. The primary route to instability in the hub is identified and further

explored.



Chapter Six uses the ARMA (autocorrelation and moving average) model to analyse and
forecast Draeger sales. The forecast error is estimated as the absolute difference

between forecast and real data.

Chapter Seven applies wavelet neural networks to sales forecasting. This allows the
taking into account of the nonlinear characteristics built in the series. The performance

of different forecasting techniques is compared.

Chapter Eight develops Management Microworld to explore ‘what-if” scenarios in
decision strategies. The performance of different forecast strategies is measured as

inventory and backlog costs.

Chapter Nine reflects the modelling process and outlines the major findings of the

research. It develops recommendations for further investigation.



Chapter 2:

Supply Chain Management and
Uncertainty in the Supply Chain

The majority of current single stage production inventory models or multi-stage supply
chain systems are based on steady state conditions analysis (Suri and Desiraju 1997).
However, the present business situation is quite different. Companies need to respond
quickly to changes in customer demand and adapt to changes in technology. This
requires a modelling approach that takes into account the dynamic behaviour of the

supply chain and the factors influencing the dynamics of its performance.

Recently, such an approach has been developed and applied within the fields of control
theory and system dynamics. Existing generic models from these traditions are
reviewed in this chapter. The key elements of supply chain management are also
examined, including the decision making heuristics. The final section explains the

epistemological assumptions and the modelling process of the research approach.

2.1 The Key Components of Supply Chain

Management

A supply chain is defined thus by Stevens (Stevens, 1989) as “A supply chain is a
system whose constituent parts include material suppliers, production facilities,
distribution services and customers linked together via a feedforward flow of materials
and the feedback flow of information”. The definition emphases are on the material and
information flow between each element of the supply chain. Complex interactions
occur inside of the supply chain system. The management of the supply chain is
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accomplished through logistics. The British Standard Institute defines logistics thus,
“Logistics is the planning, execution and control of the movement of people, goods and
related support in order to achieve an objective within a system” (British Standards
Institute, 1997). The application of logistics optimises the material and information
flows and positioning of goods. Jones and Riley (1985) suggest three fundamental
elements in supply chain management: first, recognising customer service level
requirement; second, defining the position of the inventory along the supply chain and
the quantity of the stock at each point; third, developing the appropriate policies for
managing the supply chain as a single entity. Jones (1989) argues that by focusing on
the end customers’ requirement, the improvements made on each echelon will improve
the overall performance of the supply chain. Achieving “supply chain synergy” benefits
the management of the supply chain as a whole rather than the individual echelon. In
summary, supply chain management is characterised by focusing on the end customer

and the integration of systems, policies and inventories within the supply chain.

2.2 Control Theory Applications to the Single Stage

Production Inventory Model

Control theory is applied to reduce inventory variation, reduce demand amplification
and optimize ordering rules. Control tools such as the block diagram, algebra, Mason’s
gain formula, Laplace transform, Z transform and optimal control have been

implemented in the analysis of supply chain dynamics and modelling.

Wikner (1994) has presented a rigorous implementation of control theory applied to the
one stage supply chain model. He considered three main activities in the single stage
manufacturing system: forecasting, lead times, and inventory replenishment rules. The
Laplace transform of the first order exponential smoothing forecasting is adopted. The
lead time and inventory replenishment rules are represented in the same way. The

representation of Wikner’s system is shown in Figure 2.1.



Demand

Forecasting

Order Production

4
e : Rate Rate -
ggze{ Lead Time /@ j
L (& "
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Figure 2.1 Block diagram representation of a production inventory system (Wikner,

1994)

According to the simplified block diagram in Figure 2.1, the general format for the

order policy transfer function adopted is written as:

Order policy= U (s) =(Kp +KDS+&] (2.1)
s

Wikner identifies U(s) in equation (2.1) as a proportional, integrative and derivative
(PID) controller. The proportional control K, adjusts the inventory. The derivative
controller Kp adjusts the rate of change of the inventory and the deviation of the

production rate from the sales rate.

The order decision rules are based on three fundamental information flows: the
demand, the current inventory level and the product work in progress. These
information flows are classified as feedforward and feedback in control systems. In
general, the inventory level and the products work in progress are transmitted as
feedback information, whereas the demand has a feedforward character (Grubbstrom
1996). Figure 2.1 shows the feedback information flow from integral to inventory and
back to order policy. It carries the information about the effect of previous decisions,
coming from within the system, while feedforward conveys information about what to
expect in the future, coming from outside the system. It can be concluded that

feedforward is preventive and feedback is remedial.
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The PID control algorithms are also applied by White (1999) to a simple inventory
management with more detail. He illustrates that the PID control could reduce stock

levels by 80 per cent. The block diagram of his system is shown in Figure 2.2.

SALES
AVCON i l
1+ T8
CONTROL
DINV . EINV Y oRATE COMRATE F.’ ANV
o) J L (o7} : ! 1\;‘} 1
N T e 1+ Tps R B

=
1
|
i

Figure 2.2 Inventory and order based production control block diagram (White, 1999)

In the model, the inventory error (EINV) is defined as the difference between the
desired inventory level (DINV) and the actual inventory (AINV). Exponential
smoothing is used to obtain the forecasting (FORES) as a function of the sales. The
forecasts are used to obtain the order rate (ORATE). There is a production delay
inherent in the manufacturing process between order rate and completion production
rate (COMRATE). It was defined in exponential smoothing in White’s model. Sales are
regarded as a disturbance with feedforward action in the control system. By using

Mason’s gain formula, the transfer function between sales and actual inventory is:

T,7,s* +(T,+T,)s
AINV _g| LT ( . ») 22)
SALES (T,s+D({T,T,s* +Ts+1)

Equation (2.2) involves three parameters T,, T; and T). T, is the smoothing constant
used in the exponential smoothing forecasting technique. T, produces a forecast that
‘damps’ the effect of demand changes. With regard to T,,, Wikner et a//.. (1992) noted
that the inverse of T, represents how fast the production unit adapts to changes in the
order rate. In the same literature, the inverse of T represents the fraction ordered of the
actual inventory deviation from the target level. With equation (2.2), the author

quantifies the reduction in stock level achieved with the application of PID.
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These models take into account a single stage of supply chain. They represent the
process of supply chain management as a set of forecasting activities. Lead time and

inventory replenishment rules are described objectively.

Further work builds on this generic model to include multi nodes supply chains and use
of decision making heuristics derived from the specific characteristics of the managers.

This work is described in the following section.

2.3 Decision Making and Amplification and
Uncertainty in the Multistage Supply Chain

Collaboration between the sectors in the supply chain system has been the major field
of work in global logistics. Beamon (1998) defined a supply chain as an integrated
process where various business entities, such as suppliers, manufactures, distributors
and retailers work together. The suppliers provide the raw material to the factory. The
factory converts the material into the final product and delivers it to the distributor. The
basic character of the multi-sector supply chain is the forward flow of material and

feedback flow of planning information.

The most frequent and harmful phenomenon in supply chains is upstream order

amplification. This effect is called the ‘Bullwhip Effect’. It was defined by Lee (1997)
as the phenomenon of orders to suppliers tending to have larger variance than sales to
buyers. While customer demand does not vary much, the inventory and backlog levels

fluctuate considerably across the supply chain.

The work which forms the foundation of most current research about the amplification
and uncertainty of supply chain management is Forrester’s original Industrial
Dynamics (Forrester, 1961). He analyses the behaviour of a four echelon supply chain
consisting of retailer, distributor, wholesalers, and factory. His approach is built on the
principles of control theory as described in the previous section; however, he introduces
terminology suitable for managers. His approach to modeling a feedback system is
referred to as system dynamics. Forrester defines a feedback system thus, “An
information-feedback system exists when the environment leads to a decision that

results in action which affects the environment and thereby influences future decisions”
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(Forrester, 1961). There are three key characteristics of an information feedback
system: the structure of the system, the delay in the information or material flows, and
amplification in the entity of the system. The structure shows the general relationship
of different parts. Delay always exists between the available information and the
decision making. Both system structure and delay could lead to the amplification of a
certain entity in the system. All the effects combine to determine the behaviour of the

system.

The information required to create Forrester’s supply chain model with feedback
information includes organisational structure, delays in decisions and material flow and
policy on compiling orders and inventories. The orders compiling principles focuse on:
the order to replace goods sold, the order to adjust inventories, and the order to fill
supply pipelines with in-process orders and shipments. The sales order goes through
each echelon of the supply chain. The retailer receives a sales order and then, after a
sales analysis and information lag, orders are placed on the next level echelon. The
order placed on the supplier level includes items compensating for sales consumption
on the inventory level. A proportion of orders accounts for the items in process; for
example, the orders in transportation and backlogs in the suppliers. Forrester’s work
demonstrates how various types of business policy create disturbances. It has been

developed into a management training known as the Beer Game.

Beer Game

The ‘Beer Game’ is a simplified realization a brewerie’s production-distribution
system, based on Forrester’s model. To allow role-playing experiments to be
performed, only a single inventory (beer) is considered. It has been developed by MIT
and has been used since the 1960s. Thousands of students of management and
experienced managers from major US companies have been asked to operate the four-
stage production-distribution beer game consisting of a factory, a distributor, a
wholesaler and a retailer (Jarmain 1963). Each stage holds an inventory. Once the
retailer receives a demand, it ships the required number of units out of its local
inventory. The retailer then subsequently orders beer from the next stage, the
wholesaler, who ships out beer on request and submits orders to the distributor. The

order is passed through the supply chain to the factory. The object of the game is to
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minimize stock holding costs across the entire chain by keeping invetories as low as

possible while avoiding out of stock conditions.

The game is started in an equilibrium situation. The order placed is equal to the
incoming shipment. The inventories in each level remain stable. The demand for beer
remains constant in the first four weeks to allow the participants to become familiar
with simulation procedures. From week five, the demand doubled, the participants are

required to react to the change in demand.

Sterman analysed the rules used by players and built simulations based on the heuristics
used by the players (Sterman, 1989a; Sterman, 1989b). He points out that by virtue of
the built in delays and nonlinear constraints, many players found that they were unable
to secure a stable operation of the system and that, consequently, large- scale
fluctuations developed (Mosekilde,Sterman, 1992). Some typical behaviours have been
witnessed in the simulation; large amplitude oscillations in inventories, and the steady
amplification of the order placed on the next level supplier from retailer to factory. The
players generally try to keep the stock in the initial level. Most of them do not take

account of the supply line, which consists of the next level backlog and out shipment.

The players want to maintain the inventory at a particular level. However, the stock can
not be changed directly; the manager can only change the stock by controlling the
inflow and outflow rate. The inflow rate will compensate the loss of inventory for
feeding the demand and recover the inventory to the desired level. Delay always exists
between the change of inventory and the realization of the decision maker’s action.
Therefore, the decision rules within the supply chain focus on three key aspects. First,
feeding the expected demand, i.e. forecast; second, reducing the discrepancy between

the actual inventory level and desired level; third, maintaining an adequate supply line.

The ‘Beer Game’ was demonstrated to the Draeger planning staff. Given the
complexity of the system, it is not surprising that the participants could not minimize
costs. Orders and inventory were dominated by large fluctuations. The amplitude and
variance of order rose steadily from retailer to factory. Moreover, these phenomena
have also been observed in the results of previous research studies (Sterman, 1988a);
and it has been concluded that the majority of players use a common anchoring-

adjustment heuristic in placing orders. The mechanism for this anchoring-adjustment
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heuristic is articulated by Sterman (1988a): the anchor is the expected demand, ED, the
subjects forecast of expected orders. Replacing the incoming orders, ceteris paribus,
maintains inventory at its current value. The asymmetric cost function means subjects
should maintain their inventory at a non-negative value DS. Thus an adjustment to the
anchor arises from the discrepancy between the desired stock DS and the actual stock 1.

Subjects may also consider a fraction £ of the supply line of unfilled orders. The

supply line SL is the accumulation of orders placed but not yet received. Finally, orders

OP must be non-negative (order cancellations are not allowed). Thus,
OPt:MaX(O,EDt+a (DSt- It-ﬂSLt)) (23)

where the stock adjustment parameter « (which lies in the range 0-1) represents the
fraction of any discrepancy corrected between the desired stock (DS) and the effective

inventory to be ordered each time period.

The adjustment term o (DS - I; - #SL,) creates two negative feedback loops which
regulate the stock. Discrepancies between the desired and actual stock induce
additional orders until the inventory reaches the desired value. Likewise, an insufficient
quantity of goods on order induces additional orders until the pipeline is filled,
depending on f (again in the range 0-1). It is the fraction of the supply line which is
taken into account. If £ =0, then orders placed are forgotten, causing overordering and

instability. If =1, then subjects fully recognize the supply line and do not double

order.

The expected demand (ED) represents each participant’s forecast of incoming orders.It
forms the main motive or the anchor in the ordering heuristics. In the equilibrium state,
the inventory, and the supply line are at their desired level. The supply chain managers
need to order enough to cover future demand. Failure to secure a sufficient supply will
cause the reduction of the inventory, which leads to limitation to cope with unexpected

change in demand. Adaptive expectations are assumed:
ED=6 10, +(1-0)EDy, (2.4)

where ED; and EDy.; are the expected demand at time t and t-1, respectively. 1O is the

incoming order. 8 represents the rate at which the expectation is updated. =0
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corresponds to a constant expectation, and =1 describes a situation where the
immediately previous value of incoming orders is used as an estimate of future
demand. In addition, participants are found to adjust orders above or below the

expected demand in order to keep their inventory and supply line at the desired levels.

If combining the beer game ordering heuristics with control theory, the order policy

with parameter , # and € is a proportional derivative (PD) controller which is very

similar to Wikner’s single stage supply chain. Wikner’s model is continuous, while the

beer game is a discrete time simulation.

The beer game exhibits complex behaviour. Mosekilde& Larsen (1988) investigated
whether chaos could be generated from the decision making processes of the system.
They demonstrate that stable, periodic, quasi periodic and chaos exist with different
values of the planning coefficients in certain regions of the model. A further discussion
of chaos in human decision making is carried out in their later research. Their results
show that chaos can be produced by the decision making behaviour of real people in
simple managerial systems (Mosekilde, Larsen, & Sterman, 1991). Therefore, these
types of behaviour could occur in real industrial and management environments.
Complex chaos system behaviour is observed when a low safety stock, little
consideration of the supply line and rapid correction of discrepancies between the
desired inventory and the actual inventory apply. This reflects the over ambitious
manager’s aggressive planning policy, neglecting the supply line and keeping low
safety stock. Zhanybai and Erik (2003) also conclude that the instability observed in the
Beer Game is connected with the delays in the system. For a significant increase in
demand, the manager needs to wait to find out whether the change is permanent and
hesitate to adjust the supply order to the full amount. On top of this, the delivery delay
would also lead to a deduction in inventory and increase in backlog. Thus, the original
demand has been amplified and delayed. Similar mechanisms can be identified in the
real economic world. They are believed to play the major role in forming the general

business cycle (Sterman and Mosekilde, 1994).

Sterman (1994) states that oscillations can arise only when there are time delays in at
least one of the causal links in a negative feedback loop. The time delays between the

correction actions and their effects create the supply line that has been initialised but
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not yet had any impact. The managers continue to execute the correction action by
perceiving the gap between the desired and the actual state of the model, even through
the sufficient correction order they placed to close the gap is coming into the pipeline.
The ignored or partially ignored time delay forms the origin of the oscillation. Previous
research (Diehl and Sterman, 1995) also shows that the players’ behaviour is quite
systematic and explained well by the simple ordering heuristic. The tendency to ignore

the time delays and the supply line is clear.

One of the key issues in the research is about the cost implications of the chaos. The
experiments show that stable solutions are relatively lower cost while chaotic solutions
lead to costs 500 times higher. In the management system, apparently random system
behaviour could be produced by simple and deterministic structures. It is important to
distinguish between internal processes and random external effects. The lack of
understanding of the internal process makes the manager attribute unstable phenomena

to external causes.

Other researchers, such as Wikner (1991), Jones and Towill (1996), Disney and Towill
(2002) have also developed multi echelon supply chain models and make
recommendations for improving performance through free information flow between
all echelons. However, no suggestions are made about how to select the decision

parameters to avoid system oscillation.

To study the influence of forecasting on supply chain performance requires quantitative
analysis and detailed examination. Statistical models for time series analysis and
forecasting, such as exponential smoothing and auto-regression and moving average
(ARMA) (Box and Jenkins, 1976), have been widely applied in supply chain
management. However many studies have demonstrated that the real financial time
series varies in a highly nonlinear dynamic manner (Blank,1991). To deal with the
embedded nonlinearity and increase the reliability of forecasting, neural networks have
received considerable attention (Hsiao, 2006, Xie, Zhang and Ye, 2007; Grudnitski &
Osburn, 1993). Neural networks provide universal function approximations to map
nonlinearity, without making prior assumptions about data properties (Haykin,1999).
Traditionally, system dynamics models of the supply chain focus on identifying the

structure that generates behaviour in relation to inventory levels and the supply line
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(Sterman, 2000). In this present research, it has also been considered important to
evaluate the sensitivity of different methods of forecasting to the performance of the

supply chain.
2.4 The Research Approach

It could be argued that the basic elements of any research approach include process and
methods, theoretical perspective(s) and epistemology (Crotty, 1998). Thus, it is
essential for any rigorous research attempt to clarify and explore the epistemological
assumptions, which will underpin the use of methods and tools, and the design of the

process of inquiry (in this case, the modelling process).
2.4.1 Epistemological Assumptions and Research Approach

The most basic cognitive operation we perform as observers is the operation of
distinction. It is through the operation of distinction that the observer specifies a unity
as an entity distinct from its background (Maturana & Varela, 1987). If the observer
applies the operation of distinction recursively and, thus, distinguishes the components
within the unity, he redefines it as a ‘composite unity’, i.e. a system. It is through our
human way of being that we perceive the world in terms of systems. Thus, systems are
epistemological qualities and not definitions of how things actually are or occur.
Different observers perceive or describe systems, and, therefore, their boundary and
their structure, differently. The observer has to be accounted for as part of any
explanation. Nevertheless, systems have become the means by which we explore and
describe the consistency of situational behaviour. Therefore, descriptions of system
structures are useful tools and, if some form of agreement can be reached about ‘what a
system does’ then it is possible to communicate about its structure and boundaries with
greater (in relative terms) coherence (Winograd & Flores, 1986). Language needs to
take account of a systemic vocabulary. The Systems Approach has proven its merits
(Flood and Jackson, 1981; Wolstenholme, 1990; Mosekilde, 2002). It is not the
purpose of this report to discuss them. What is important to reflect on is that

developing systemic language to address a problem situation is likely to be beneficial.
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The epistemological perspective outlined above suggests that it is important to consider
different world views and perspectives of a situation considered problematic. Thus, the
use of communication practices that will allow, at least transiently, the coexistence of
different understandings (Bohm, 1999) is important in the process of enquiry (i.e. the

modelling process).

In the context of Draeger Safety UK, the enquiry took place at a group level (the
Planning Department). The researcher was part of the group. There is a felt need to
explore and learn how human decision making could impact on the performance of the
supply chain. For an enquiry to be effective, and thus lead to a valid analysis of the
situation, it is required that it takes place as a collaborative and participative process,
i.e. as action research (Shein, 1996). Action research is an iterative process where
research leads to action and action leads to evaluation and further research (Baskerville,
1996). The details of implementation of the action research approach are embedded in

the modelling process used by Systems Dynamics (Sterman, 2000).
2.4.2 The Modelling Process

This research follows the discipline of the modelling process of the system dynamics
theorists (Sterman, 2000). However, the use and implementation of this process is
compatible and complies with the epistemological perspectives outlined above. The
outcome of the modelling process is an in-depth case study of the centralised supply-
chain at Draeger Safety, UK. The findings of the case study will have some generic

validity to the dynamics of the supply chain in other organisations.

Modelling does not take place in isolation. It is embedded in an organisation and in a
social context. Before the modelling process begins the researcher must gain access to
the organisation. Also, to be effective (enhance insight and learning) the modelling
process must be focused on the client’s’ needs. Very often, clients are involved in
organisational politics and this needs to be taken into consideration as there may be a
danger that clients may choose to use the model as a tool to defend their own position

or interests. Modellers have the responsibility to require their clients to justify their

! Clients are the people whose behaviour influences the problem situation and, thus, they may need to
change (Sterman 2000).
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opinions, ground these in data, and be willing to consider alternative views. Thus, the

modeller has the responsibility for both rigour and integrity in the modelling process.

As argued in the epistemological perspectives outlined above, research into
management systems inevitably involves and relies on human communication.
This will require an approach that allows for organisational actors to be engaged as
researchers in addressing and improving a problem situation. Thus, there is a need
to deviate from the paradigm of action research conducted by a third party (the
researcher) to participative action research, i.e. research conducted by the
organisational actors themselves, with the researcher as part of the research team

(Robson, 2002).

The modelling process requires an understanding of the causes and implications of a
problem situation, and a commitment to learning and improving. Alternative views are
important in developing understanding and challenging assumptions. Defensive
routines may occur and this can be damaging to the success of the modelling project.
Successful modelling requires that organisational actors (in this case, the clients)

participate in the process as researchers, together with the modeller.

There is no prescription for successful modelling. However, successful modellers
follow a disciplined process that involves the following steps (Figure 2.3): articulating
the problem to be addressed, and the purpose of the model; formulating a dynamic
hypothesis/theory about the causes of the problem; formulating a simulation model to
test the dynamic theory; testing the model until satisfied it is suitable for purpose;
designing and evaluating policies of improvement (Sterman, 2000). Modelling is
iterative; in any modelling project, one will iterate through these steps many times.
Modelling is an ongoing process of cycling between the virtual world of the model and

the real world.
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Figure 2.3 The Modelling Process (adapted from Sterman, 2000, pp. 87)
Articulating the problem to be addressed and the purpose of the model

Every model is a representation of a group of functionally interrelated elements, i.e. a
system. However, for a model to be useful, it must address specific problem issues,
this will allow simplification of the complexity of the entire situation and thus allow
some meaningful analysis. The model will thereby act as a logical knife (Sterman,

2000; Morecroft, 1994; Morecroft & Sterman, 1994).

The methods that allow the eliciting of information within the research team (the clients
and the modeller) include: interviews, discussion, observations, reflection on archival

data (referred to as reference mode), and the time horizon® of the problem situation.

? Modellers must guard against accepting the client’s initial assessment of time horizon. Often this is
based on milestones, planning issues, etc. that have little to do with the dynamics of the problem. A
longer time horizon is likely to reveal the full dynamics.
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Formulating a dynamic hypothesis

Once the problem situation has been identified, the research team, and the modeller in
particular, must begin to develop an explanation of the problematic behaviour over
time, i.e. a dynamic hypothesis. A dynamic hypothesis is a working theory of how the
problem arose from within. Each member of the research team is likely to have a
different explanation (mental model). The discussion may be painful and damaging if
they turn it into a field for defending one mental model against another. It is important
that the modeller act as a thoughtful listener and facilitator and create conditions for
dialogue (Bohm, 1999) rather than discussion, where the purpose of the enquiry and

conversation is to explore different mental models and the assumptions behind them.

Causal loop diagrams, boundary charts, etc. can be used as facilitative tools to allow
the team to develop a shared understanding of the problem issues and conceptual

model of the problem situation (Sterman, 2000, Wolstenholme, 1990; De Geus, 1988).
Formulating a simulation model to test the dynamic theory

In order to test the dynamic implications of the conceptual model, normally difficult to
assess through qualitative analysis only, it is important to develop a simulation model.
Developing a simulation model and formalising the relationships between variables
often generates important insights even before the full simulation model is ready. Itis
possible, and in fact desirable, to involve the research team in devising simple
equations and links between variables and estimated parameters. However, the

modeller should take responsibility for the rigour and integrity of the model.
Testing the model

Part of testing involves comparing simulated behaviour with actual behaviour.
However, there is much more to testing than this. Testing begins as soon as the first
equation has been written. Every variable corresponds to a meaningful concept in the
real world. Equations are checked for dimensional consistency. Extreme conditions
tests (conditions unlikely to occur but still possible), etc. reveal inconsistencies in

understanding and measurement. The sensitivity of model behaviour is assessed.
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Designing and evaluating policies of improvement

Once the research team has developed confidence in the structure and behaviour of the
model, it can be used to design and evaluate policies of improvement. The robustness
of policies and their sensitivity to uncertainties must be assessed. The interaction of
different policies must also be considered. Because management systems are highly
non-linear, the impact of combination policies is different from the sum of their impact

alone.

The five step modelling process represents an iterative learning cycle. The effective
implementation of this cycle requires the intimate involvement of the researcher in the
day to day activities of the client in order to gain relevant experience in relation to the
problem situation. It also requires communication practices such as dialogue and co-
creative discussion (Senge, 1990), allowing for an understanding of the mental models
and motivation of the clients. The validity of the model depends on these factors. Thus,
equal attention should be paid to the process of building the model and to validating the

outcome through comparison with the existing situation.
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Chapter 3:

The Centralised Supply Chain at Draeger
Safety Ltd

Like many other industries, Draeger makes use of a cascaded distribution system, with
inventory holders at several different levels. Draeger’s previous model consisted of
sales and distribution units in 44 countries around the world, each with its own stock. In
the reorganised structure, three main worldwide distribution hubs have been
constructed to consolidate finished goods: Lubeck as the German hub, Pittsburgh as the
USA hub and Singapore as the Aisa hub. In its simplest form (Figure 3.1), the primary
hub, based in Germany, receives stock from the UK factory and ships this to the main
EU markets and to the Pacific and US hubs. Each of the hubs acts as a business unit
and maintains a warehouse. The hub receives orders from Draeger sales agencies
linked to them. The sales agencies do not keep any inventories or receive shipments
from the hub. The role of the agencies is to receive orders from the customer and make
regional sales forecasts. The orders and forecasts are forwarded to their local hub. The
hub ships the goods directly to the customer and communicates with the production

units to help establish production requirements.

The basic structure of this supply chain is shown in Figure 3.1.
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Figure 3.1 Schematic representation of the centralised supply chain proposed by
Draeger Safety Ltd.

The process is based on a two month ahead forecast. That is, based on the current
trends in orders and stock levels, the hub forecasts its requirements for two months
ahead. This hub requirement is produced by the factory in the current month so that it
can be shipped to the hub next month; in time to meet the expected demand. The
relationships that exist between the Central hub and the Secondary hubs are similar to
those that exist between the factory and the Central hub. The research was conducted at

the Draeger factory in Blyth.

3.1 The Production Planning System at Draeger UK

Draeger uses the ERP software SAP as its enterprise resource planning system. This
includes a Material Requirement Planning process in sales, production and inventory
planning (this process is shown schematically in Figure 3.2) and a Master Planning

System (MPS). The MPS has 4 primary inputs: the forecast, the current sales orders,

the time fence and, the current stock.
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Figure 3.2 Flow chart of the production planning process.

3.1.1 Forecast

Product managers make monthly forecasts (based on a 15-month horizon) for the
products that they are responsible for, using the GPS (Global Planning System). These
monthly forecasts are then uploaded into SAP by the planning managers. The MPS is
run to generate the suggested production plan for the coming month. The suggested
plan is then subject to ‘MPS control’. This is a form of manual override on the
requirements planning process, since the MRP itself is considered to be a simple
calculation engine. Thus, it is at this point that management influences the response of
the production system to firm and anticipated demands. The tentative MPS results are
then tested against capacity and a rough-cut capacity test is performed to check
availability of resources. If successful, the planning manager can agree the master
planning schedule for that particular month and run MRP to generate the detailed
production plans and raw materials purchase orders for each product. Alternatively, the

planning manager needs to adjust the MPS before running the MRP.

3.1.2 Safety Stock

Within the production/planning process, so-called ‘safety stock’ is used to smooth the
impact of the variability of demand and to allow the manufacturing system to respond

within some predefined lead time.
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3.1.3 Time Fence

The time fence defines the minimum planning horizon for the MPS for a particular
product. It is required because of material constraints in terms of material purchase and
production lead times. Since component item orders must be completed before the
parent item orders can be started, purchase and production lead times resultin a
cumulative lead time. Thus, product managers cannot change the forecast within the
time fence. On the other hand, to satisfy some urgent (unexpected) demand, the
product managers can decrease the master production schedules for some MPS items in
order to create space or increase other master production schedules. ‘Sometimes, some
parts of the products are similar. The components from other part numbers can be used
to compensate the stock requirement. All of the orders that cannot be satisfied will be

put into the next time fence.’

3.1.4 Problem Situation

After a series of discussions with product managers Lynn Kennedy and Ian Bell, the
planning manager Mel Hedley and the purchase manager Peter Kirby, some potential
problems were identified within Draeger’s supply chain: managers were needed to
manually adjust the planned orders quite often. This, then, caused difficulties in the
master planning and purchase planning schedules. The perception within the team was
that the current forecasting mechanism could not meet the requirements of the sales

orders.

The current software system used by Draeger for forecasting (GPS) is based purely on
sales data history. Thus, product managers will often come up with different forecasts,
based on additional information and their experience. Product managers forecast the
sales each month; however, every night SAP downloads transaction data into the GPS.
Thus, GPS could compare the actual sales with the forecast and cater for forecasting
consumption. However, faults in the software lead to inaccurate information; thus,

planning managers often need to intervene manually.

The company is equipped with a sophisticated MRP environment for sharing
information and enhancing communication between production and marketing.

However, the performance of the supply chain is still perceived as problematic as it is
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not unusual that high inventories mount up and backlogs develop, causing disruption,
as production hasa to deal with the crisis of overcoming these. A centralised supply
chain system was recently implemented with the purpose of diminishing costs and
avoiding backlogs. This made Draeger’s planning managers even more worried as it
was difficult to predict what the consequences of centralised inventories would be for

the manufacturing plant in Blyth.

3.2 Developing the Dynamic Hypothesis

In order to investigate the problem situation, as perceived by Draeger, it was decided
(in consultation with the planning department) to use a combination of system
dynamics, control theory and non-linear analyses in order to model and explore the
behaviour of the centralised supply chain at Draeger Safety, Blyth, UK. A team
consisting of the planning department at Draeger Safety, UK and researchers from
Northumbria University was formed to study the impact of different decision strategies
on the behaviour of the supply chain. The boundaries of the model and the dynamic
hypothesis emerged as a result of numerous discussions within the research team
(primarily between the researcher and the planning manager, but also, within the wider
Draeger team). The model includes the customer, the production plant and the hub in
Germany. The purpose of the study was to model the material and information flows
including the decision processes, to provide explanations and insights into the link
between decision strategies and inventory and backlog oscillations, and to develop a
simple microworld that managers could use to conduct what-if scenarios and learn

about the behaviour of the supply chain.

A considerable body of research in supply chain dynamics has already been conducted
at MIT (Massachusetts Institute of Technology). Indeed, The Beer Game (Sterman,
2000) has been used for decades to help managers understand the dynamic interactions
that can influence the behaviour of these systems. Consequently, simplified equations
have been developed, that reasonably represent the decision-making processes used by
the thousands of participants that have played the game. Our work incorporates the
generic decision heuristics of the beer game. However, the structure of the supply

chain, and the information flows are modelled to represent Draeger Safety UK.
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To better understand the operation of the supply chain, a simplified system dynamics

model was constructed representing the relationships between the factory and the

Central hub. The boundaries of the model were chosen based on discussions with

Draeger Safety, UK staff. These determined that the model should include the

customer, the production plant, the hub in Germany and the relevant decision making

processes. The structure of this portion of the supply chain is illustrated in Figure 3.3.
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Figure 3.3 Schematic diagram showing relationships between factory and central hub.

The figure represents a ‘way it’s meant to work’ model of the supply chain at Draeger

Safety, UK.

The figure represents a ‘way it’s meant to work’ model of the supply chain at Draeger.

However, interviews with the planning and production managers suggested that

additional delays and constraints were often present. This was especially true in

periods of high demand or when the forecast information was untimely or inaccurate.

Thus, the reality implies that there are at least three scenarios that should be considered,

namely:

e ‘the way it’s meant to work’;

e ‘the way it’s meant to work’ plus additional manufacturing delays;

e ‘the way it’s meant to work’ plus additional planning delays.
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There are basically two parts in the ‘meant to work’ model. Those squares that appear
in the top of Figure 3.3 are the planning parts, including ‘Hub Forecast’, ‘Hub
Requirement’, and ‘Factory Production’. The lower part of the diagram represents the
warehouse and transporting parts. All the planning components work in one time unit.
For example, when the customer places a sales order on the hub, it takes one single
time unit (one month in the simulation) for the sales input into ‘Hub Forecast’. At the
same time the production plan is generated as the output from ‘Factory Production’. A
two month forward prediction strategy was applied in the planning process. Assuming
that in the current month of January the hub received the hub order, the hub forecast
would make a two month ahead forecast, which is the forecast of the sales in March,
based on the incoming order in January and the forecast history. Still in January, the
hub generates the ‘Hub Requirement’ for March and forwards these to the factory. The
factory will make their production plan in January and start producing. Following the
diagram in Figure 3.3, the work flow will then go through ‘1 month manufacture’. The
production plan will be finished in February. The finished goods are kept in ‘inventory’
and waiting to be shipped in ‘Factory shipment’. The shipping takes one month. It will
then be March when the products arrive at hub inventory. The work flow is just in time.
In Figure 3.3, all the solid arrow lines represent that a delay existed between the two
squares. The broken line indicates that there is data flow between the two squares,

without any time delay.
3.2.1 Causal Loop Diagram

The dynamic structure of the centralised supply chain is captured in the causal-loop
diagram in Figure 3.4. In this case, the demand is considered as exogenous. The hub
requirements are determined by the sales orders (demand) and also the hub effective

inventory.

The causal loop diagram suggests numerous feedback loops. Some of the negative and

positive feedback loops that are perceived to influence the dynamics are defined below.

Loop A. Hub Requirements-Production-Factory Effective Inventory-Factory Shipment
Capacity - Factory Out Shipments- HUB Effective Inventory-HUB Inventory Gap-

Hub Requirements, negative feedback loop
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Loop B. HUB Requirements- Production-Factory Effective Inventory-Factory
Shipment Capacity-Factory Out Shipments- Hub Requirements, negative feedback loop

Loop C. Production-Factory Effective Inventory-Factory Inventory Gap-Production,

negative feedback loop

Loep D. Factory Effective Inventory (when negative, i.e. backlog)- HUB

Requirements- Production - Factory Effective Inventory, negative feedback loop

Loop E. HUB Requirements - Factory Effective Inventory (when negative , i.e
backlog) — HUB requirements, negative feedback loop

Loop G. HUB Requirements- Desired Factory Shipments- Factory Out Shipments-
HUB Requirements, negative feedback loop
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HUB T Fact Irvertary
invertory  HUB \\g actory
Desired Effective
Orders placed _ _..-=» Effective {‘* - ) Inwentary
(sales) J Inventory B A (red tines mpphy when
%, Hib Desmeﬁ = "_’» E?Wt\r \a’smx)
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Hub @ ot shipm ertsm
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Huk Sh|pm <]y QR Capsicity
Capecity
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Red ines applywhen Efecthwe oananeli & thare Io 3 baskiog

Figure 3.4 Causal Loop diagram of the centralised supply-chain.

As can be seen in the figure, management decisions are represented by the three
corrective (negative) feedback loops. An initial estimate of factory production is made

based on the forecast for the hub sales in two months’ time. This estimate is then
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corrected (feedback A) based on the discrepancy between the current hub inventory and
its desired level multiplied by a ‘correction factor’, a. This modified estimate is then
re-corrected (feedback B) to take into account any previously placed hub orders (based
on previous attempts to correct the hub inventory discrepancy) that have not yet arrived
and are thus still in the pipeline; in this case, the multiplying factor is B. The final
correction to factory production (feedback C), is made based on the discrepancy
between current factory inventory and its desired level; once again, this is multiplied by
a. In this férm, the ‘management policy’ appears to be, primarily, one of stock control
in the presence of external disturbances (actual product sales), and the feedback
structure that is in place bears a strong similarity to the classical ‘cascade control’

structure, which is familiar to many engineers.
3.2.2 The Draeger Model

After in-depth discussions with Draeger representatives, the qualitative relationship
between different variables in the causal loop diagram was quantified. The equations
that are used to describe the inventories, backlogs and shipments are discrete (using a 1
month sample interval) and based loosely on those of the Beer Game (Sterman 1989;
Thomsen et al/., 1992). The hub requirements, facotory production, inventories,
backlogs and shipments which are included in loop A and B are formulated from
equations (3.1) to (3.9). As in the causal loop diagram, the inventories are updated by

adding incoming shipments and subtracting outgoing shipments.
Hiny(t) = max(0, Hiny(t-1) + Fship(t-l) - Hship(t)) (3.1)
Fin(t) = max(0, Finy(t-1) + 1:prod(t'l) - Fship(t)) (3.2)

To the extent that inventory plus incoming shipments are sufficient, outgoing
shipments are existing backlog plus incoming orders. Otherwise, outgoing shipments

are incoming shipments plus inventory, and the new inventory is empty.
Hship(t) = min(Horders(t) + Hblk(t_l)a Hinv(t'l) + Fship(t'l)); (33)

Fship(t) = min(Heq(t+1) + Fyn(t-1), Finy(t-1) + Fproa(t-1)); (3.4
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In a similar way, backlogs are updated by adding incoming orders and subtracting
outgoing shipments. If incoming orders plus backlogs are completely covered by
incoming shipments plus existing inventory, the new backlog is empty. From the
negtive feedback loop D and E, the factory effective inventory has a negative link to
the hub requiment and a positive link to the factory production. Since the factory
effective inventory is negative when it becomes factory backlog, the equation (3.6) has

a negative sign for Hyeq(t+1) and Fyroa(t-1).
Hblk(t) = maX(O, Hblk(t'l) + Horders(t) - (Hinv(t"l) + Fship(t'l)); (35)
Fou(t) = max(0, Foi(t-1) + Hreq(t+1) - (Finy(t-1) + Fproa(t-1)); (3.6)

The hub requirements and factory production are based on a simplified anchoring and
adjustment heuristic (Thomsen et al/., 1992). Expected demand is formed from
incoming orders in an adaptive manner based on a simple first-order exponential

prediction.
Hforcast(ﬁ'z) = (1 - 9) Horders(t) +0 Hforecast(t+1) (37)

Here, 6 represents the rate at which the forecast is adapted. 6 = 1, corresponds to a
constant forecast, and 6 = 0 describes a situation where the immediately previous value

of hub requirements is used as an estimate of future demand.

Provision for this expected demand is taken to be the cornerstone of the
order/production policy. Orders/Production is adjusted above or below this expected
demand Value to maintain current inventory and supply lines at their desired levels. In
the causal loop diagram, the hub requirments are linked and defined by hub forecast,
hub inventory gap, factory shipment, and factory effective inventory. On the other
hand, the factory productions are linked and defined by factory inventory gap and hub
requirements. Thus, the overall ordering policy (hub request & factory production) may

be characterised by the expressions:

Hieq(t+2) = max(0, o (Q — Hiny(t) + How(t))

=0 B (Foi(t) + Fship(t) + Heorcast(t+2)); (3.8)

Fproa(t) = max(0, 0. (Q — Finu(t) + Fou(t)) + Hreg(142)); (3.9)
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where, o, (which lies in the range 0-1) defines the fraction of the discrepancy between
the desired inventory Q and the effective inventory (Inventory — Backlog) that needs to
be ordered each month. B (which, again, lies in the range between 0 — 1) is the fraction
of the supply line (requests or production already ordered but not yet received) that is
taken into account. If B = 1, decision makers fully recognise shipments already in the
pipeline and do not double order. If B = 0, requests (orders) are immediately forgotten

and new requests to cover the same lack of inventory are placed in the next month.

During simulation, the initial value for hub and factory inventory, hub requirement,
production, and shipment is 400 and the initial backlog is zero. Figure 3.5 is a Simulink
block diagram representing the system equations. It is clear from Figure 3.5 that the
system comprises four primary elements: These are, the production and hub dynamics
(with their inherent saturations and constraints), the external disturbances or demands,
and the management decision making policies. In the study presented here, the
dynamics of the infrastructure (factory and hub) are assumed to be fixed and the
analysis concentrates on an assessment of the influence of management decisions on

overall system behaviour. The equations are programmed in Appendix A.
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Model Testing

The model testing briefly includes model structure test and equation formulation tests.
The boundary adequacy and model structure assessment are examined as the model
structure test. After discussions with the project team in Draeger, the model boundary
was agreed as including the factory in Blyth and central Europe hub in Germany. The
finished model formulated these two business units’ actions. The structure assessment
checked whether the model consisted with and followed the physical realities and
decision rules. Compared with the actual working process in Draeger, the model
focused on the planning process, the detailed material requirement planning (MRP)
process was out of model boundary. Throough the researcher’s working with the
planning manager, the model could be confirmed as representing the overall working

process at Draeger.

Parameter verification and extreme conditions are the main part in equation formulation
tests. The four parameters Q, 6, a and B have real life meaning. Each parameter
represents the weight of the factors in decision making. In the simulation, 6 was kept as
constant most of the time. It was estimated from a previous study (Diehl and Sterman
1995) that most people form forecasts by smoothing the history of past orders. The
model should be robust in extreme conditions. Extreme conditions were tested as
equilibrium states and enormous sales input. In the equilibrium state, the sales inputs,
forecast and production are at the same level. The inventory has no oscillation and is
stable at the desired stock level. The enormous sales input was tested with and without
production constraint in the model. In the case of no production constraint, factory
production can always satisfy the hub demand. Therefore, the factory inventory is
stable while the hub inventory oscillates, depending on the planning parameter. If there
is a constraint in the production, when a big sales order comes in, the backlog order

will accumulate. Detailed figures are shown in further sections.

The model reflects the project team’s mental model. However, perfect validation or

verification of the model is impossible.
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3.3 Hub Analysis

A brief inspection of Equations 3.1 to 3.9 indicates that the primary nonlinearities
present in the model are of a saturation form. Because of this, the initial analysis of the
model is based on a locally linear representation in which all backlogs are assumed to
be zero. Such an analysis will allow the soundness (or otherwise) of the basic feedback
(or management) structure to be assessed and will also provide an insight into the
various transitions towards instability, without this information being lost in the added
complications introduced by nonlinear behaviour. The eigenvalues plot in z plane and
block diagram analysis have been applied to the exploration of the hub behaviour (D.P.
Atherton, 1982; R.J. Richards, 1993; O.L.R. Jacobs, 1993). Thus, for a constant hub

order there is a fixed point at:

Fship = Fprod = Hreq = Hrorecast = Hship = Horders (3.10)
Hinv = Q - B Horders (3 1 1)
Finv = Qs (3.12)

Defining the general discrete state space representation as:
X(k)y=AX(k-1)+BU(k) (3.13)
Y(k)=CX(k) (3.14)

the state vector X(k) as:

Ha (0
Hinv (t)
H  (t+2)

X(k) = | Hp et +2) (3.15)
Foip )
Fyy (®
F, (1)

and the input U(k) as:
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H orders (t)
Uk) = Qx(® (3.16)
Qr (V)

then the system matrices with zero backlogs can be written as:

0 O 0 0 0 0 0
0 0 0 1 0 0
0 —a, —oyfy 6 —ay O 0
A=10 0 0 6 0 0 0 (3.17)
0 0 1 0 0 0 0
0 0 -1 0 0 1 1
10 —ay op-oyfy O —ay —op —op |
1 0 0]
-1 00
l+ay -0 a4 0 1 000 0O00O0
B= 1-0 00}; C=01 00 00O (3.18)
0 0 0 000O0O0T1®O
0 0 0
1+ay -0 ayag

Considering the model is a discrete time system, the general state space equation is z

transformed (Golten and Verwer, 1991). It becomes

X(z) = AX(z)z"' + BU(z) (3.19)
X__Bz (3.20)
U (zZI-A)

where ‘I’ is an identity matrix of dimension A. The inverse of a matrix is obtained by

dividing the adjoint by the determinant:

_ —1_adj(ZI"A)
[z - A] u_lzl-—A! (3.21)
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Therefore, the denominator of the transferred function is determined by the determinant
of the matrix [zI - A]. The system characteristic equation is obtained by equating this

determinant to zero
lzI- Al =0 (3.22)

The transient characteristics of the system are thus determined solely by matrix A in the
state space equation. The roots of the characteristic equation in this form are the
eigenvalues of matrix A. An n' order characteristic equation has n roots, each giving
rise to a term in the transient response. The total transient is thus the sum of these terms.
In this model, seven eigenvalues are produced in total. The eigenvalues of the

characteristic equation will either be real or complex.
A =a+bi (3.23)

Each root of the discrete time system characteristic equation at z= A4, gives rise to a

transient response term of the form
y(jH)=CH (3.24)

where j is discrete time and C is an arbitrary constant. When A is real, with 4 >1 the
terms in equation (number) become successively larger with increasing ‘j° and so the
transient increases exponentially without limit. The eigenvalues in this region
correspond to an unstable system. When -1< 1 <1, the transient is decaying as the
increase of *j” and finally arrive at constant value. These eigenvalues correspond to a
stable system. With A <-1, the transient no longer dies away but increases in amplitude

with time; again, corresponding to an unstable system.

Considering A as a complex number, with Euler formula the complex eigenvalue can

be expressed as a point located at a radius, », and an angle ¢ in a complex plane.

A=re" (3.25)

Il

where » =+/a” +b* and tan(f) = b/ a . Then the transient term can be written as

() =C(rey (3.26)
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The exponential terms give rise to a sinusoid of frequency € rad per sample. The

constant C produces a constant phase shiftg .

Y(j)=P-r’! cos(jO +¢) (3.27)

The transient response is, therefore, a sinusoid of frequency & rad per sample which
decays, or increases, at a rate governed by the radius r. P is a constant. In order to
develop an understanding of relating the roots of the characteristic equation to the
transient, a graphical representation of the roots is appropriate. The roots can be plotted
on a complex plane, which is z plane in this research. The axes of the z plane are the

real and imaginary parts of the eigenvalues.

Im(z)

Unstable

Figure 3.6 The stability of the z plane

The oscillatory transient produced by the complex eigenvalues decays in exactly the
same way as for the real eigenvalues at radius » =4 . The eigenvalues at a radius of less
than 1.0 will produce a decaying (stable) transient, whereas a radius of greater than 1.0
produces an increasing (unstable) response. The region of stability on the z plane is
thus inside a circle of unit diameter (Figure 3.6). For a discrete time system to be stable,
all the system poles must lie inside the unit circle |r] <1.0. The eigenvalues which
appear on the unit circle correspond to a marginally stable system. The system will
oscillate continuously with a frequency of @ radian per sample, where fis the angle of

the eigenvalue around the unit circle.

In analysing system behaviour, two performance related parameters are generally

explored, the natural frequency, w,_ , which relates to the speed of oscillation and the
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damping ratio, ¢, which is a dimensionless representation of the amount of damping in
the system. Given an eigenvalue A = re'’, the damping ratio A and natural frequency w,

can be calculated as
e (3.28)
O=w,y1-¢°T (3.29)

where T is the time between each sample of the discrete time system. It is accounted as
plus one in the calculation. Lines of the damping factor (¢ ) and natural frequency (w, )
are drawn within the unit circle in Z plane. These spiral contours with different

¢ values are called Jury contours (Golten and Verwer, 1991). Jury contours are useful
in that they give an idea of the decay rate of the transient. By inspecting the position of

a system eigenvalue and the nearest Jury contours, the damping factors can be

predicted and the corresponding decaying ratio of the system.

Figure 3.7 Jury contours- lines of constant damping ratio on z plane

As shown in Figure 3.7, the ¢ value on the spiral decreased from 0.9 to 0.1 from the
inside of the circle to the edge of the circle. When ¢ = 0, the system has no damping.

Based on the spiral in the figure, the related eigenvalue locates on the unit circle. Then
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the transient of the system is a continiuous sinusoid of frequency w, which neither
increases nor decays with time. The natural frequency, w, , is the frequency at which
the system oscillates with no damping. When 0<¢ <1.0, which are those spirals shown
in the circle, the eigenvalue locates in the unit circle. The system will oscillate with a
damped natural frequency w, which is always lower than the natural frequency, w, ; the
difference becoming more pronounced with larger¢ . With ¢ = 1, the system is

critically damped. As seen in the figure, the eigenvalue moves to the real axis. There is

no oscillation at all.

By applying ¢, the percentage overshoot and the decay ratio of the oscillation can be

calculated. For the oscillatory systems, the amount of oscillation can be specified by the

percentage peak overshoot; it is defined as

%overshoot = L 100 = exp % — 7 In(r)

m, rg2)=e><p(——9 )

where my is the absolute magnitude of any peak. The percentage overshot is the ratio of

(3.30)

the wave peak at my and the previous wave peak at my.+;. It can be expressed as the
function of ¢ .The decay ratio is given by the ratio of two successive peaks of the
oscillation, my and my.,. The ratio of any two peaks separated by 2 half periods of

oscillation will thus be

Decay ratio = Pz exp( 275 —2zln(r)

)= exp (
m, /1—g2 g

In linear system analysis, the relationship between behavioural modes and the location

) (3.31)

of the eigenvalues of A is well established. Consequently, it is clear that a plot of the
trajectories of the eigenvalues in response to the variation of a specific parameter is a
good indication of the influence that the parameter has on system behaviour.
Inspection of equation 3.17 indicates that matrix A contains 3 variable parameters: o, B
and 6. In studies of the Beer Game (Thomsen er al/. 1992), it is generally accepted that
for the majority of players (a large proportion of whom are managers) the value of 6
tends to remain constant at 0.75. This was confirmed by findings at Draeger Safety,

UK, where conversations with managers suggest that forecasts were amended with a
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smoothing time of 4 months (6 = 0.75). In addition, inspection of Figure 3.5 indicates
that 6 is presented only in the disturbance section of the model. Thus, 6 only affects the
dynamics of the feedforward (or disturbance) signal and can be considered to be
outside of the feedback structure. o and B, on the other hand, clearly lie inside the
feedback loops and, consequently, will significantly influence the dynamic behaviour
generated by the system itself. For these reasons, in the study presented here, 6 will

remain fixed at 0.75 and the analysis will concentrate only on variations in o and B.

For conditions specified, the ‘constellation’ of eigenvalues of the matrix A, calculated
as the solution to det(zI - A) = 0 (where ‘I’ is an identity matrix of dimension A), can
now be plotted in the z plane (each eigenvalue, represented by an ‘x’) as both « and
are incremented from 0 to 1 in steps of 0.1. Figure 3.8 shows this constellation plotted

on a Jury map.

Figure 3.8 The constellation of eigenvalues plotted on z plane when 6 = 0.75, a = 0 to
linstepsof 0.1 & = 0to I insteps of 0.1.
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Nine sets of eigenvalues are plotted with unit circle when « and f change from 0
tol. All of these eigenvalues have effects on the dynamics of the system.
However, those eigenvalues located on the x axis do not have imaginary part.
They do not contribute to the oscillation of the inventory. Furthermore, the

damping ratio¢ is 1.0 in this case. The system is critically damped. Hence, the

research focus was on analysing those plots sitting out of the x axis. It clear from
the Figure 3.8 that the plots above the real axis and under the axis are

symmetrical. These eigenvalues appear in pairs. Their effects on the dynamics of

system are similar.
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Figure 3.9 Expanded view of I* quadrant, ignoring those eigenvalues located along the

real axis.

By expanding the first quadrant of the constellation, the relationship between the
eigenvalue movement and parameter chang is explored. Inspection of Figure 3.9
suggests that o has a destabilising influence, whilst § appears to be stabilising. As «
decreases from 1 to 0, the corresponding eigenvalues move from the edge toward the

inside of the circle. The system becomes heavily damped. In contrast, when f decreases
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from 1.0 to 0, the eigenvalues move from the inside to the boundary of the circle. The

damping ratio becomes smaller.

The condition 0. = 1, § = 0, generates a pair of complex eigenvalues that lie on the unit
circle at a position 0.5 + 10.866. Damping ratio ¢ is zero. These are responsible for the
‘linear looking’ (input dependant amplitude) oscillatory behaviour seen in Figure 3.10.
The period of these oscillations is predicted by the angle to be 27/1.047 (approx 6)
distinct samples, where 1.047 is the angle of the eigenvalue. This is confirmed by the

inspection of the expanded section, presented in Figure 3.11.
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Figure 3.10 Hub effective inventory for 8 = 0.75, a = 1, § = 0 & Q = 800. The figure
shows the response of the hub effective inventory over a 250-month period. The initial
hub inventory is 400 and the hub orders are held constant at 400 for the first 100

months. Tthese are then increased to 800 for the remainder of the simulation.

The desired inventory Q is 800 units through the whole simulation. In the first 100
months, the hub inventory oscillates around the desired inventory Q with amplitude at
400 units, which equals the incoming order. The inventory oscillation peaks at 1200
units. From 100 to 250 months, the incoming orders increase to 800 units, and the
variation amplitude increases to the same level. The peak of the oscillation becomes
1600 units. When a =1 and = 0, the eigenvalus lie on the unit circle. The dynamics of
the system are marginally stable. If external disturbances such as the incoming order or
the desired inventory are fixed, the hub inventory will oscillate with fixed amplitude.
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In real manufacturing, the oscillation of the inventory will cause major problems with

regard to fulfilling the demand and managing store costs.
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Figure 3.11 Expanded section of hub effective inventory confirming 6 sample period of

oscillation.

By closer inspecting the hub effective inventory plotting, it is very clear that there are
six distinct samples in each wave. The first point of each single wave repeats itself after
six plottings. This frequency or period of the oscillation does not vary with changes in
the desired inventory or incoming orders. Frequency is only defined by the eigenvalues

of the model. The external disturbances can only affect the oscillation amplitude.

Figure 3.12 shows the time response of the hub effective inventory when 6 =0.75, o =
0.5, B =0 and Q = 800 units. It can be seen from Figure 3.9 that the eigenvalues are
located inside of the unit circle in this condition. The corresponding damping ratio is
around 0.4 (approximately 25% overshoot in the system step response). These clearly
dominate the initial (linear) transient seen in Figure 3.12. The second transient, after
100 months, is produced by the ‘nonlinear’ disturbance caused by an increase in

customer orders.
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Figure 3.12 Hub effective inventory for @ = 0.75, a = 0.5, f = 0. The figure shows the
response of the hub effective inventory over a 250 month period. All initial values are
set to 4 and the desired hub inventory (Q) set to 8. Again customer orders are

increased to 8 after 100 months.

Clearly, when operating linearly the basic hub model tends to be stable. Also, it
behaves as expected, since, as can be seen in Equations 3.8 and 3.9, a is a measure of
the aggressiveness with which inventory differences are corrected (B, is a measure of

the weight with which inventory ordered but still to arrive is taken into account).

3.3.1 The Influence of

Figure 3.13 shows a plot of the eigenvalue locus when § = 0 and a is varied from 0 to
1. Inspection of the figure suggests that o has a destabilising influence, since the

complex eigenvalue pair moves towards the edge of the unit disc as o increase.
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Figure 3.13 Locus of eigenvalues plotted on the z plane for 6 = 0.75, f = 0 and a varied
from 0 to 1. Clearly, the complex pair migrate toward the edge of the unit circle as a

increases.

As can be seen, the condition a = 1, § = 0 generates a pair of complex eigenvalues that
lie on the unit circle at a position 0.5 + j0.866. These are responsible for the ‘linear
looking’ (input dependant amplitude) oscillatory behaviour seen in Figure 3.14(a). By
decreasing a, the oscillations become smaller. For example when a = 0.8, B = 0, the
complex eigenvalue pair locate at a position 0.5 + j0.745 and the relevent damping ratio
is approximately 0.2. The time response of the hub effective inventory is shown in
Figure 3.14(b). When o = 0.5, B = 0, the damping ratio increases to approximately 0.4.
The hub inventory oscillates with approximately 25% overshoots and 15 sample
settling times in Figure 3.14(c). Finally, when o = 0.1, B = 0 all of the roots lie only on

the real axis and the inventory oscillation is purely exponential in Figure 3.14(d).
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period. The initial hub inventory is 400 and the hub orders are held constant at

400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.

Clearly (equations 3.8 & 3.9), when B = 0 the ordering decisions are made based on the
current stock levels only. Under these conditions, the management policy is basically

integrating and acts to drive inventories to the desired value: in this case Q = 800 units.

This is clearly seen in Figure 3.14 (b), (¢), (d).
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3.3.2 The Influence of

Unlike the stablising effects of o,  has a destablising effect on the dynamics of the
system. Figure 3.15 shows a plot of the eigenvalue locus when a = 1 and B is varied
from 0 to 1. It is clear from the figures that the eigenvalues move toward the centre of
the unit disc and the oscillations reduce as B is increased. Figure 3.16 shows the

corresponding time response when B = 0.2, 0.5 and 1.

! 08 06 04 02 0 02 0.4 0.6 08 1

Figure 3.15 Locus of eigenvalues plotted on the z plane for 6 = 0.75, p varied from 0 to
Land o = 1. Clearly, the complex pair migrate toward the centre of the unit circle as f§

increases.
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Figure 3.16 Hub effective inventory for 6 = 0.75, a =1, = 0.2, 0.5, 1

Q = 800. The figure shows the response of the hub effective inventory over a 250
month period. The initial hub inventory is 400 and the hub orders are held constant at
400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.

It is clear from Figure 3.16 that when J is increased the oscillations diminish faster and
the hub inventory steady state level decreases as a function of  and the incoming
order. Thus, the increase of B enlarge the gap between the desired hub inventory (Q =
800) and the actual hub inventories. For example, in Figure 3.16b B = 0.5, the hub
inventory settles at a value of 600 units when the order level is 400 units/month, it then

reduces to a steady value at 400 units when the order level increases to 800

51



units/month. This effect can be easily predicted from Equation 3.11 where the term
BXHsorecast clearly acts as a load disturbance at the input to the previously described
integration mechanism (inspection of Equations 3.11 & 3.12 shows that this will not be

the case for the factory in which the inventory settles at Q).

3.3.3 The Primary Route to Instability

To obtain a greater understanding of the behaviour observed, the structure of the
system block diagram (Figure 3.17) needs to be examined. Inspection of the figure
reveals that the factory and the hub have ‘isolated” feedback structures. The feedback
loops in hub and factory are separate. There is no global feedback loop to link hub and
factory. Therefore, by considering their individual characteristic equations, these can be

analysed independently.

The system block diagram with zero backlogs in hub and factory has the form:

»
Uit Defay1 Unit Delay2

Hub

alph: Factory

Figure 3.17 Small signal block diagram representation of the unmodified model of the
supply chain at Draeger Safety, UK.
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Thus, for the condition B = 0 (depicted in Figure 3.13), the factory characteristic

equation is:
(z+op)z-1)+ar=0 (3.32)

This has two eigenvalues, one at z = 0 and a second, which is always real and which

liesintherangez=1—0asa=0— 1.
The hub characteristic equation is:
(2> +ag)(z-1) +ag=0 (3.33)

This has three eigenvalues. Again, one of these is at z = 0, the other two form a second
order pair that become complex when o > 0.25. It is this pair that is clearly identified
in Figure 3.13. Moreover, it is the hub’s dynamics and not the factory’s that are the

potential source of unstable behaviour.

3.4 The Model with Production Constraint

In real industry, factory production capability is not infinite. Production constraints are
introduced into the factory production in this section. Inventory behaviour varies
depending on the magnitude of the constraint. With a constraint, the factory production

formula changes to
Fproa(t) = min(Constraint, o (Q — Finy(t) + Foi(t)) + Hreq(t+2)); (3.34)

The inventory response is illustrated in three occasions according to the magnitude of

the constraint.
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Figure 3.18 The response of hub and factory effective inventory over a 150 month
periodwhen 8 = 0.75, a = 0.8, f = 0, Q = 800, production constraints = 700. The
initial hub inventory and factory inventory is 400 and the hub orders are held constant
at 400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.

If the constraints are smaller than the incoming order, for example, the production
constraints are 700 and incoming orders are 800 in Figure 3.18, the factory production
cannot meet the demand. In this case, both hub inventory and factory inventory are
exhausted, while the hub backlog and factory backlog keep increasing in each round of
the simulation. As shown in Figure 3.18 (a), both hub and factory effective inventory,
which are inventory minus backlog, decrease exponentially. The decreasing speed of

the hub inventory and the slope of the curve are defined by a and B.

If the constraint is greater than the incoming order, two kinds of behaviour could be
generated depending on the size of the constraints. To obtain better understanding of
the variation in the inventory, the hub requirements need to be analysed. When o =1, 8
= 0, the hub requirements only consist of two parts: hub inventory replenishment and
hub forecasting. The factory supply line is ignored by multiplying zero B. The hub
requirements oscillate around the quantity of the incoming order plus the actual hub
inventory. The peak of the oscillation is greater than the incoming order. If there is no
production constraint or the constraint is great enough to cover the hub requirement, the

hub inventory will swing with great amplitude, while the factory inventory is stable at
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the desired level, as shown in Figure 3.19 (c) and (d). In this case, the constraint has no

effect on inventory behaviour.
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Figure 3.19 The response of hub and factory effective inventory over a 250 month
period when 8 = 0.75, o =1, = 0, Q = 800, production constraints = 1000 in (a) and
(b) and no constraint in (c) and (d). The initial hub inventory and factory inventory is
400 and the hub orders are held constant at 400/month for the first 100 months. These

are then increased to 800/month for the remainder of the simulation.
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However, if the constraint is not great enough, i.e. greater than the incoming sales order
but smaller than the amplitudes of the hub requirement variation, the hub and factory
effective inventory is impacted by the constraint. Figure 3.19 (a) and (b) show the
inventory behaviour of the model with 1000 production constraints when a =1, 3 = 0.
Comparing these with Figure 3.19 (c) and (d), the amplitude of the hub effective
inventory variation is 1400 units in Figure (a), which is smaller than the amplitude of
1600 units in Figure (c). When the production constraint is smaller than the amplitude
of the hub requirement variation, the factory cannot provide enough shipments to make
the hub inventory oscillation reach its peak. In this way, the scale of the hub inventory
oscillation is reduced. For the same reason, the factory production does not meet the
hub requirement. The hub will consume the factory inventory first to meet the hub
demand. If the requirement still cannot be satisfied, the additional hub requirement will
be backlogged in the factory inventory. Therefore, these factory backlogs caused the
oscillation in Figure 3.19 (b).

When the constraints are equal to the incoming order, the situation is more complicated.
The inventory behaviour is closely related not only to the production constraints and
incoming orders but also to the system parameters a, . In the follwing, the dynamics of

the model are analysed according to different values of f3.
When f is greater than zero, the hub requirement are calculated as

Hreq(t+2) = max(0, 0. (Q — Hiny(t) + Hoi(1)) (3.35)

-Q B (F blk(t) + Fship(t)) + Hforecast(t+2));

The hub requirements are determined by three factors, ‘o (Q — Hiyy(t) + Hoi(t))’, the
hub inventory replenishment, ‘- o B (Fou(t) + Fsnip(t))’, the factory supply line, and
‘Hiorecast(t+2)’ the hub forecasts. o represents how fast the hub inventory can be
recovered to the desired level Q.  defines the weight of the consideration about the
previous order sent to the factory. Since the production constraint is equal to the
incoming order, factory production is only able to fulfil the sales order, but not be to
keep the factory inventory and hub inventory at their desired level. According to the
different value of o and B, the hub inventory and factory inventory are stable at

different levels.
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Figure 3.20 The response of hub and factory effective inventory over a 250 month
period for 8 = 0.75, Q = 800, production constraints = 800. The initial hub inventory
and factory inventory is 400 and the hub orders are held constant at 400/month for the

first 100 months. These are then increased to 800/month for the remainder of the

simulation.

In Figure 3.20 (a) and (b), the hub inventory is stable at 400 units and the factory
inventory is stable at 75 units when a =0.4, = 0.5. Increasing a to 1 and keeping B at
0.5 in Figure 3.20 (c) and (d), the hub inventory is stable at the same level; however,
the factory inventory’s stable level increases to 200 units. Fixing a and increasing B to
1 in Figure 3.20 (e) and (f), the hub inventory stable level decreases to 0 and the factory
inventory level increases to 400 units. It can be concluded that when f is increased, the
factory inventory stable level is increases, while the hub inventory stable level is
decreased. When B = 1, the hub management policy take into full consideration
previous decisions, which are the requirements the hub placed before. In the hub
requirement formula, the previous requirements are expressed as ‘- o (Fyi(t) + Fenip(t))’
corresponding to the factory shipment and factory backlog. When the hub inventory is

consumed, the hub requirement are calculated as
Hreq(t+2) =4 Q - O (Fblk(t) + Fship(t)) + Hforecast(t+2); (336)

The hub inventory replenishment is o Q. The factory shipment is the production

constraint 800 units, which equals the hub desired inventory Q. Hence, the new Hub
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Factory Inventory

x 10"

Hub inventory

considers the supply line in the factory and ignores their previous hub requirements and
the backlog in the factory. In this case, the production constraint has a huge influence

order. In this case, the model keeps the factory inventory at the current level and
When B is 0, the heuristics are simulated as that the hub planning manager never

consumes the hub inventory, which is shown in Figure 3.20 (e) and (f).

requirement is the hub forecast Heyrecast(t+2), which is the same as the incoming sales
on both hub and factory inventory.
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Figure 3.21 The response of hub and factory effective inventory over a 250 month
period for 6 = 0.75, Q = 800, production constraints = 800. The initial hub inventory
and factory inventory is 400 and the hub orders are held constant at 400/month for the

first 100 months. These are then increased to 800/month for the remainder of the

simulation.
When B = 0, the hub requirement formula changes to
Hreq(t+2) =a (Q - Hinv(t) + Hblk(t)) + Hforecast(t+2)); (337)

The minus part ‘- a (Fy(t) + Fsnip(t))” in equation 3.35 has disappeared in equation 3.37.
The hub requirements are dependent on the sum of hub inventory replenishments and
hub forecast, which equal the incoming sales order. The production constraint allows
the factory to fulfil the incoming sales order only. In this case, the hub starts to

consume the factory inventory to recover its own inventory. The recovering speed is
relevant to o. The extra requirements are backlogged. The factory production formuia is

redefined as
Forod(t) = 0 (Q — Finy(0) + Fp(t)) + Hieg(t42); (3.38)

Integrating formula (3.37) and (3.38), it is clear that as a is increasing, the factory
accelerates increasing their production to the constraint level. When a is smaller than
0.75, factory production cannot be improved from 400 units to 800 units within one

month. Both hub and factory inventory have been consumed. In this case, the hub keeps
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sending requirements to satisfy the sales demand and recover its own inventory to the
desired level. However, the factory cannot afford to replenish the hub inventory and
have to backlog the extra order. The hub does not take account of the factory backlog
and keeps sending requirements to replenish its own inventory. The requirements
double, then triple.... Both hub and factory are got caught in a vicious circle. The
inventory performance is shown in Figure 3.21 (a) and (b). The hub inventory cannot
be replenished to the desired level of 800 units, but is stable at lower level 600 units.

The factory inventory decreases exponentially as the simulation is runing.

When a is greater than or equal to 0.75 and less than 0.99, factory production can be
improved to the constraint level in one month. In this case, the factory still has the
opportunity to compensate the hub inventory to the desired level Q with improved
production and its own inventory. In this situation, the hub does not send extra orders
and does not generate the factory backlog. However, the factory cannot recover its own
inventory owing to the production constraint. The inventory behaviour is shown in
Figure 3.21 (c) and (d). The hub inventory is stable at the desired level of 800 units,

while factory inventory is stable at zero level.

When a is greater than or equal to 0.99, as in Figure 3.21(e) and (f), the whole system
becomes unstable. When the incoming orders increase to 800 units in month 101, the
hub effective inventory oscillates at an amplitude over 800 units. Considering the
formula 3.37, the large hub inventory leads to a small hub requirement. In this way,
even if a is large enough compared with the case in Figure 3.21 (a) and (b), the hub
requirement is still relatively small. factory production still cannot be improved to the
constraint level within a month. As a result of this, the same vicious circle emerges
between hub and factory. As shown in Figure 3.21 (e) and (f), the hub inventory is
stable at 500 and the factory inventory decreases exponentially. The inventory
performance in this case is similar to that in Figure 3.21(a) and (b) when o is smaller

than 0.75.
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3.5 Discussion

Within the context of this specified ‘management policy’, the two correction factors o
and B, can be thought of as representing the psyche of the decision maker: o =1 and
B= 0, represents one extreme; an aggressive manager thinking only within the confines
of his area of control and not recognising the impact of previous decisions (no account
of history). In the simulations, this resulted in persistent oscillations (Figure 3.14a),
generated purely by the decision making strategy and not as the result of some external
influence (as is often claimed by managers with such tendencies). Such oscillations,
while not impacting on customers (as inventories are, in general, maintained at positive
levels) would require larger than necessary warehouse space. Decreasing a, and thus
being less rigorous in terms of stock maintenance, produces a stabilising effect: Figures
3.14b & 3.14c. However, if a is too small (representing a very cautious manager) the
response becomes too slow and can thus lead to significant backlogs and the potential

for customer dissatisfaction: Figure 3.14d.

>0, represents a manager that thinks outside of the immediate area of control and takes
some or full account of history. Taking into account the impact of previous decisions
has a stabilising effect: Figures 3.16a, 3.16b & 3.16¢c. a =1, =1 would seem to
represent the ideal case (just in time, or deadbeat, management — with the eigenvalues
lying at the origin of the z plane: Figure 3.16¢). It is well known, however, that such
control policies often prove unreliable as they tend to be intolerant of unexpected

events, such as unforeseen production hold-ups.

By introducing production constraints to the factory, the oscillation becomes more
complicated. The dynamics of the system are not only impacted by the parameter o and
B, but also depend on the degree of constraint and the quantity incoming orders. The
vicious circle could occur at a particular range of o and § when the production
constraints equal the sales order. Since the hub order can never be fulfilled, the factory
effective inventory is backlogged forever: Figure 3.21 (e) & (f). However, by selecting
the right value of decision parameters, these destructive vicious circle could be avoided:

Figure 3.21 (c) & (d).
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From the analysis given here, it is clear that the dynamics of the supply chain are
intimately dependent on the decision making strategy of the manager. A purely
aggressive strategy without considering the history of the system, will usually lead to
undesired behaviour. Indeed, this message can be extended towards management
decision making in a more general context: effective management decisions should take

into account the previous history of the situation and the impact of previous decisions.

What is more interesting, however, in terms of the analysis presented in this chapter is
that it is possible to establish a relationship between the two major feedback loops (the
factory loop representing factory management policies and the hub loop representing
hub management policies) and potential system behaviours. For example, in the ‘as it
is’ arrangement (represented by Equations 3.32 & 3.33) the route toward instability is
via the complex eigenvalue pair which are generated via the hub management policy.
More importantly, however, because the systems are ‘isolated’, poor management
decisions in the hub cannot be corrected by good decisions in the factory. On the other
hand, a good manager in the hub may be able to mitigate poor management decisions in

the factory.
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Chapter 4:

Hub Model with Two Additional

Production Delays

To help better understand the factory/hub interaction, in this section the effects of

adding an additional two months’ delay into the production process are investigated.

This additional delay brings the model into line with the classical Beer Game

representation. However, unlike in the Beer Game, where the delay occurs naturally

owing to the nature of the brewing process, here, such an additional delay would tend

to be the result of some unforeseen external influence: perhaps a lack of material

supply (due to industrial action by a supplier) or a prolonged upturn in business that

outstrips the ability to produce.
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Figure 4.1 Schematic diagram showing relationships between factory and central hub.

The figure represents a ‘Production Delay’ model of the supply chain at Draeger

Safety, UK.
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The basic model operates on a one month sample rate, therefore, the two month
additional delay in production is represented by the inclusion of two additional factory
states, Fpq1 and Fpgy. To clarify the working progress of this delayed model, it is
assumed that the hub receives the sales order and makes a forecast for March in
January. As discussed in the previous chapter, the factory makes the production plan
and starts manufacturing in January. The work flow moves into Fpq1 in February and
Fpa2 in March. The production is finished in April and the finished goods are placed in
the factory inventory ready to ship. After one month’s transport, the finished goods
arrive at the hub inventory in May. In other words, the hub requirements for March

have been delayed for two months.

4.1 The Draeger Model

The equations for the factory part have been modified by the two extra production
delays. The rest of the formulas remain the same as for the original model. The

equations representing the factory inventory thus become:
Finy(t) = max(0, Finy(t-1) + Fpaa(t-1) — Fanip(t)) 4.1)

The factory inventory is updated by the incoming shipment from the second stage of

production dez(t—l), and subtracting from the outgoing shipment Fgpip(t).
Fanip(t) = min(Hreq(t+1) + Fou(t-1), Finy(t-1) + Fpaa(t-1)) (4.2)

If the factory inventory plus the incoming shipment of F,q(t-1) are sufficient, the
outgoing shipment is the hub requirements plus the factory backlog. Otherwise, the
outgoing shipment is the factory inventory plus the incoming shipment. The updated

factory inventory becomes empty.
Fou(t) = max(0, Foi(t-1) + Hreg(t+1) - (Finy(t-1) + Fpaa(t-1)) (4.3)

The factory backlog is calculated in the same way as the factory out shipment. If the
hub requirements plus backlogs are completely covered by the incoming shipments
plus existing inventories, the new backlog is empty, otherwise the extra requirements

are backlogged.
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Foroa(t) = max(0, @ (Q - Finy(t) + Fyult))
* Hreg(t+2) — B (Fpai(t) + Fpaa(t))) (4.4)

factory production is adjusted above or below the expected demand to maintain the
current inventory, o (Q - Fin(t) + Fpi(t)), and supply lines, - (Fpqi(t) + Fpaa(1)), at the
desired levels. In this production delayed model, the supply line has been extended,
since the two extra production delays Fpq1and Fyq» have been introduced. The factory
needs to consider the supply line by employing B as ‘— a B (Fpa1(t) + Fpaa(t))” when they

make decisions on the production plan.

del(t) = Fprod(t"l) (45)

Fpax(t) = Fpai(t-1) (4.6)

The first delay term Fpq; equals the last step production. The second term Fpq; equals
the last step of the first delay term. The production process is delayed for two months.

The equations are programmed in Appendix A.

4.2 Hub Analysis

The nonlinearity existing in the equations of the delayed model are of a saturation form.
The initial analysis of the model is based on a locally linear representation in which all
backlogs are assumed to be zero. The same discrete system analysis methods as with

the original model are applied. The general discrete state space representation is

defined as
Xk)=AX(k-1)+BUk) 4.7
Y(k)=CX(k) (4.8)

Therefore, the new state vector X(t) is:
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Inspection of equation (4.9) indicates that matrix X(t) consists of nine elements. The
system matrix A is a nine times nine matrix. There are two extra elements in matrix X(t)
and two additional rows in system matrix A (compared with the original model with a
seven times seven system matrix). Those two additional elements and rows express the
extra delay Foq1 and Fy. After Z transform of the state space equation (4.11), the
eigenvalues of the characteristic matrix A are calculated. These extra elements and

rows produce two more eigenvalues. As discussed in the last chapter, in the study
presented here, 8 will remain fixed at 0.75 and the analysis will concentrate only on the

variations in o and .

For the conditions specified, the ‘constellation’ of eigenvalues of the A matrix,
calculated as the solution to det(zl - A) = 0 (where ‘I’ is an identity matrix of dimension
A), can now be plotted on the z plane (each eigenvalue, represented by an ‘x’) as both a
and f are incremented from O to 1 in steps of 0.1. Figure 4.2 shows this constellation

plotted on a Jury map.
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Figure 4.2 The constellation of eigenvalues of A plotted on the z-plane for 6 = 0.75, 0. =
Otolinstepsof 0.1 & =0to Iinstepsof0.1.

Nine sets of eigenvalues have been plotted together in constellation as changing a and

from 0 to 1. The damping ratio curve ¢ and natural frequency w, are marked within the

constellation so that the details of the eigenvalue related variations become easier to
predict. Inspection of Figure 4.2 shows the overall shape of the eigenvalue constellation
is symmetrical. Compared with the original model, there is one more ‘shark fin’ that
appears on both sides of the real axis. Ignoring the effects of the eigenvalues located on
the real axis, which have no effects on the oscillation these four fins contribute to the
dynamics of the production delayed model. Given a set of a and B, four complex
eigenvalues are produced to represent the state of the system. The dynamics of the
inventory become more complicated. As the cigenvalues plots are symmetrical, the

analysis concentrates on the upper half of the quadrant.
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Figure 4.3 Expanded view of 1° quadrant

By expanding the first quadrant of the constellation, the correlation between eigenvalue
movement and changing of parameters is explored. Fixing f = 0 and increasing a, the
eigenvalues on the left fin move toward the corner on the edge of the unit circle, while
the eigenvalues on the right fin move to the corner located outside of the unit circle. It
can be concluded that the parameter o has a destabilising effect. On the other hand,
keeping a at one and increasing B, both eigenvalues on the left fin and right fin move
toward the inside of the unit circle. Therefore B has a stabilising effect on the delayed
model. Given a = 0.8, § = 0, two eigenvlaues are produced on the map. One on the left
fin locates inside of the circle; the other on the right fin sits outside of the circle. Once
there is an eigenvalue locating outside of the circle, the system will be unstable and the
inventory starts oscillating. Hence, even though a = 0.8, f = 0 indicates stable system
behaviour in the original model, the same management policy still produce oscillations

in the inventory in the production delayed model as shown in Figure 4.4.
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Figure 4.4 Hub effective inventory and factory effective inventory for 6 = 0.75,

a=0.38 p=0and Q= 800. The figure shows the response of the hub effective
inventory and factory effective inventory over a 250-month period. The initial hub
inventory is 400 and the hub orders are held constant at 400/month for the first 100

months. These are then increased to 800/month for the remainder of the simulation

In Figure 4.4, the hub inventory is stable in the first 100 months, while the factory
inventory starts oscillating from the beginning of the simulation. The factory inventory
level is positive. After the first 100 months, the sales order is doubled. The amplitude
of the factory inventory oscillation becomes much bigger and starts to generate
backlogs, as seen in Figure 4.4 (b). The factory backlog leads to shortage of the
outgoing shipment to the hub and makes the hub inventory oscillate. In Figure 4.4 (a),

the hub inventory becomes unstable and oscillating after the first 100 months.

When the eigenvalues on both fins locate outside of the circle, the inventory displays
huge variations. For example, when o = 1 and B = 0, the eigenvalues locate on the two
corners of the two fins in Figure 4.3. The inventory behaviour resulting from an
extremely aggressive policy is illustrated in Figure 4.5. Both hub and factory
inventories are oscillate from the begining of the simulation. The amplitudes of the
oscillations keep expanding after the incoming order doubles after 100 months. Closer
inspection of the Figure 4.5 (a) and Figure 4.4 (a), the hub inventory behaviour in the

first 100 months is essentially different. A detailed analysis is carried out below.
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Figure 4.5 Hub effective inventory and factory effective inventory for 6 = 0.75,

a=1,p=0and Q= 800. The figure shows the response of the hub effective inventory
and factory effective inventory over a 250-month period. The initial hub inventory is

400 and the hub orders are held constant at 400/month for the first 100 months. These

When the eigenvalues both locate within the unit circle, for example o = 0.5 and =0,

are then increased to 800/month for the remainder of the simulation

the inventory behaviour is stable, as in Figure 4.6. The hub inventory increases to the

desired level and remains at the stable state in the first 100 months. After the incoming

order increases, the hub inventory is consumed and backlogged. Then the hub recovers

its inventory to the desired level again, with an exponent rise. The factory inventory

behaves in a similar way and gains little oscillation.
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Figure 4.6 Hub effective inventory and factory effective inventory when 0 = 0.75, a=

0.3, = 0 and Q = 800. The figure shows the response of the hub effective inventory

and factory effective inventory over a 250-month period. The initial hub inventory is
400 and the hub orders are held constant at 400/month for the first 100 months. These

are then increased to 800/month for the remainder of the simulation.

To clarify the difference between the unmodified original model and the production

delayed model, the constellation plots in the first quadrants for both models are listed.

(a)Original model without delay  (b) Model with two steps production delays

Figure 4.7 Eigenvalues of model without delay and with production delays

Inspection of the figures indicates that the most obvious difference between Figures 4.7

(a) & (b) is the appearance of a second ‘shark fin’ of potentially unstable, complex
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eigenvalues. After closer inspection, the fin in Figure 4.7 (a) is revealed as exactly the
same as the left fin in Figure 4.7(b). It can be deduced that the original set of complex
eigenvalues (seen in Figure 4.7(a) and as the right “shark fin’ in Figure 4.7(b)) must be
attributable to the hub only, since their behaviour and locations are totally unaffected
by the introduction of the two additional factory states. Moreover, it must be the
factory, with its two additional delays, that is the source of the potentially unstable

behaviour.

As evidence of the statement above, the eigenvalues constellation for the hub and
factory have been plotted separately. At first, the parameters in the factory are fixed at

a=0.8 and $=0. The production equation becomes
Forod(t) = max(0, 0.8 (Q - Finu(t) + Fou(t)) + Hieq(t142) ) (4.13)

The system eigenvalues are then calculated as both o and B incremented from O to 1 in

steps of 0.1 for the hub planning equation. The system matrix A has changed.

0 0 0 0 0 0 00 0 |
0 0 0 0 00 O
0 -a -af 6 -0 0 0 0 O
0 0 0 6 0 0 00 0
A=|0 0 1 0 0 0 00 0 (4.14)
60 0 -1 0 o0 I 00 1
0 -08 08 6 -08 -08 0 0 -08
0 0 0 0 0 0 1.0 0
0 0 0 0 0 0 01 0 |

The hub eigenvalues are plotted and compared to the original model in Figure 4.8. The
eigenvalues are plotted with a unit circle on Z-plane (each eigenvalue, represented by

an ‘x’).
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Figure 4.8 The constellation of eigenvalues of A plotted on the z-plane for 6 = 0.75,

a=0to linstepsof 0.1 & = 0to I insteps of 0.1 for the hub planning equation and
fixed at a =0.8, p=0 for factory production.

In Figure 4.8, the eigenvalues constellation is represented by a stable ‘shark fin’, which
appears in the same location as the ‘left fin’ in Figure 4.3. If the crosses located outside
of the circle and those on the negative x-axis are ignored, the constellation of Figure 4.8
is exactly the same as the constellation for the unmodified original model in Figure
4.7(a). Those three crosses seperate from the ‘fin’ are the three eigenvalues generated
by the factory. Therefore, it can be concluded that the stable fin represents the
dynamics of the hub only. According to the above analysis, the hub in the production
delayed model could achieve a stable inventory performance through the same decision
policy as in the original model. In other words, hub dynamics are not influenced by
factory production delay. This sounds contradictory. However, further analysis

supports this finding.

The factory eigenvalue constellation is produced in a similar way to which o =0.8, =0

are fixed in the hub planning. The hub requirement equation becomes
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Hieq(t+2) = max(0, 0.8 (Q — Hiny(t) + How(t)) + Heorecast(t+2));

(4.15)

The eigenvalues are plotted with a unit circle on the Z-plane (each eigenvalue,

represented by an ‘x”) as both a and B are incremented from 0 to 1 in steps of 0.1 in the

factory production equation. The system matrix A changes to

<

OO O O O O o O

0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
—-0.8 0 6 -08 0 0 0 0
0 0 6 0 0 0 0 0
0 I 0 0 0 0 0 0 (4.16)
0 -1 0 0 1 0 0 1
-a a-of 06 —-a -a —-of —-of -a
0 0 0 0 0 1 0 0
o 0 0 0 0 0 1 0
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Figure 4.9 The constellation of eigenvalues of A plotted on the z-plane for 6 = 0.75,

a=0to linsteps of 0.1 & B = 0to I in steps of 0.1 for the factory production equation

and fixed at o =0.8, f=0 for hub requirement
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In Figure 4.9, the eigenvalues constellation is the same as the “unstable fin’ or ‘right
fin’ in Figure 4.3. As the parameters for the hub planning have been fixed, the figure
represents the dynamics of the factory part only. The hub eigenvalues at a =0.8, =0

have been plotted within the circle but covered by the factory eigenvalues.

4.2.1 The Influence of ‘Saturation’ Effects

Since Figure 4.3 predicts an unstable factory eigenvalue and a stable hub eigenvalue for
the condition, 8 = 0.75, 2= 0.8, f = 0.1 & Q = 800, the ‘unstable’ transient
phenomenon observed after the first 100 months of the response in Figure 4.10(a) is
somewhat puzzling. However, as it has been suggested that the unstable eigenvalue pair
can be related to the factory section of the model (and not the hub whose response is

seen in Figure 4.10(a)), then it is in the factory’s responses that we need to look for an

answer.
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Figure 4.10 Hub effective inventory and factory effective inventory for 8 = 0.75,

a=038=01and Q= 800. The figure shows the response of the hub effective
inventory and factory effective inventory over a 250-month period. The initial hub
inventory is 400 and the hub orders are held constant at 400/month for the first 100

months. These are then increased to 800/month for the remainder of the simulation

As can be seen in Figure 4.10(b) the factory effective inventory response is oscillatory

over the whole timeframe. This oscillation is the result of the large signal (saturation
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type) nonlinearities defined in Equations 4.1 to 4.4 limiting the growth of the small
signal instability defined by the eigenvalues. What is interesting, however, is that prior
to the increase in customer orders (from 400 units to 800 units) the factory effective
inventory is always positive and, therefore, the hub demand can be met. After the
increase in hub orders the factory is no longer able to meet the required demand when
the desired safety stock (Q) is 800 units. Hence, the oscillations seen in the factory
response cascade down to the hub. Figures 4.11(a) and (b) show the equivalent

response when Q is doubled to 1600 units.
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Figure 4.11 Hub effective inventory and factory effective inventory for 6 = 0.75,

a=038 p=201and Q= 1600. The figure shows the response of the hub effective
inventory and factory effective inventory over a 250 month period. The initial hub
inventory is 400 and the hub orders are held constant at400/month for the first 100

months. These are then increased to 800/month for the remainder of the simulation

As can be seen in Figure 4.11, when Q = 1600 the factory effective inventory remains
positive over the whole time frame. Hence, when viewed from the ‘isolation’ of the

hub, the system appears perfectly stable and hub stock is able to settle to a steady value.

Furthermore, according to the eigenvalues analysis, both the factory and hub should
display a stable inventory behaviour when 6 =0.75, a = 0.5, f =0 & Q = 800. However

in Figure 4.12, the plots of the inventory response show unstable behaviour.
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Figure 4.12 Hub effective inventory and factory effective inventory for 6 = 0.75, a =

0.5, p = 0 and Q =800. The figure shows the response of the hub effective inventory

and factory effective inventory over a 250-month period. The initial hub inventory is
400 and the hub orders are held constant at 400/month for the first 100 months. These

are then increased to 800/month for the remainder of the simulation

Both the hub and factory inventories are stable at the desired level of 800 units in the
first 100 months and start oscillating thereafter. Closer inspection of the factory
inventory in Figure 4.12 (b) reveals that the oscillation goes down to a negative value,
implying backlog. For the safety stock Q at 800 units, the factory cannot satisfy the hub
demand when the sales orders are doubled. To clarify this saturation effects in different
safety stock scenario, keep the hub inventory safety stock (or desired inventory) at 800
units and double the factory inventory safety stock to 1600 units. In this case, the hub
will place the same amount of requirement on the factory as before, but the factory
inventory has improved its safety stock level. When the hub demand increased, the
factory inventory gained more inventory space to respond to this increase. Production is
also improved to compensate the factory inventory for this increased safety stock level.
Increased factory inventory level and production have the effect of diminishing facotry

backlog.
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Figure 4.13 Hub effective inventory and factory effective inventory for 6 = 0.75,

a = 0.5, p =0. The figure shows the response of the hub effective inventory and factory
effective inventory over a 250-month period. The initial hub inventory is 400 and the
hub orders are held constant at 400/month for the first 100 months. These are then

increased to 800/month for the remainder of the simulation

The factory effective inventory remains positive over the whole simulation in Figure
4.13(b) when Q =1600 units. The hub requirement could be fully satisfied. The hub
inventory becomes stable at its desired level of 800 units as it should be based on the
eigenvalue analysis. Conversely, increase the hub safety stock to 1600 units and keep
the factory safety stock at 800 units and the hub will require more incoming shipments
to compensate its inventory on the safety level and feed the increased sales order. In
this case, the factory may get into an even worse situation. They have to react very
quickly to feed the increasing sales demand and the increased hub inventory

replenishments.
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Figure 4.14 Hub effective inventory and factory effective inventory for 6 = (.75,

a = 0.5, p =0. The figure shows the response of the hub effective inventory and factory
effective inventory over a 250-month period. The initial hub inventory is 400 and the
hub orders are held constant at 400/month for the first 100 months these are then

increased to 800/month for the remainder of the simulation

On the other hand, if we keep the factory desired inventory is kept at 800 units and the
hub safety stock increased to 1600 units, both the factory and hub inventory as shown
in Figure 4.14 oscillate in a similar pattern to that in Figure 4.12. After the sales order
increases, the factory does not have enough inventories to cover the demand. The
system produces a negative factory effective inventory. As a result of the factory
backlog, the hub inventory starts oscillating around the safety level of 1600 units, as in

Figure 4.14 (a).

To sum up, the backlogs in the factory are expressions of saturation effects. They are
the key to illustrating the oscillations, which cannot be explained by eigenvalue
constellation. To avoid such saturation effects, the safety stock can be increased and
more inventory space created in the factory in order to remove oscillations and

backlogs.
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4.2.2 The Influence of a

With two extra production delays, the system generates two more eigenvalues and more
complicated eigenvalue movements. Figure 4.15 shows the eigenvalue locus when =
0 and varying a varies from 0 to 1. There are three sets of eigenvalues in the figure,
which are represented by green, black and red. When a=0 and B = 0, the corresponding
green eigenvalues start from the original. Both of the red and black eigenvlaues have
two points. One is on the original (0, 0) and the other with a coordinate (1, 0) at the end

of the positive real axis.
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Figure 4.15 Locus of eigenvalues plotted on z-plane for § = 0.75, f = 0 and a varied
from 0 to 1. Clearly, the complex pairs migrate toward the edge of the unit circle as o

increases.

As a increases, the green points move left along the negative real axis; the red points
start moving toward each other from both sides of the positive axis. These two red

points meet each other when o = 0.14. Then with little increment of a, the eigenvalues
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jump out of the real axis and dive into the first and fourth quadrants above and below
the real axis. As discussed, the red eigenvalues represent the factory inventory
dynamics. Since the complex value of red point gain an imaginary part when o is
bigger than 0.14, the factory effective inventory starts oscillating with decreasing
amplitude and finally becomes steady. Keep increasing a to 0.6 and the red points
follow the red curve in the figure toward the edge of the unit circle. When the points
locate on the circle, the factory inventory oscillates with a fixed rate of amplitude.
When a=1, the points arrive at the end of the red curve. The oscillation amplitude of the
factory inventory is expanding. The oscillation hit the saturation effects boundary. The
inventory oscillates with different amplitude thereafter. On the other hand, the black
points representing the hub dynamics follow the same movement pattern as the red
points. The two black points meet each other on the positive real axis when o = 0.25.
They reach the edge of the unit circle when o = 1. To achhieve a better understanding
of eigenvalue and saturation related nonlinear dynamics, phase plots of the hub and

factory inventory are used to analyse the inventory dynamics.
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Figure 4.16 Quasi-periodic solution obtained for a. = 0.5, f =0, 6 = 0.75, Q =800.The
phase plot shows corresponding values of hub and factory effective inventories afterr

ten thousand iterations of the production delayed model
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Figure 4.16 shows the phase plots obtained at a = 0.5, § =0.The eigenvalues locate
within the unit circle. The hub effective inventory is plotted as a function of the factory
effective inventory over ten thousand simulation iterations. The points in the phase plot
fall along a two-dimensional curve and are indicative of quasi-periodic behaviour on
the surface of a torus. What can be seen in the figure is a cross section of this torus. In
the case of a and B, the hub and factory effective inventory always follow around this
cross torus during the simulation and are never stable at any point. By calculating the
natural frequency for this set of eigenvalues, there are ten points in one period of the
oscillation for both the hub and factory inventory. The ten pairs of the inventory
quantity locate on the cross torus in different positions. After ten iterations, the hub and
factory inventory move back to the old value with a tiny shift. After a very large
number of iterations, the cross torus is filled by enormous points projecting the hub and

factory effective inventory.
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Figure 4.17 Periodic solution obtained for o. = 0.6, f =0, 8 = 0.75,
Q =800.The phase plot shows corresponding values of hub and factory effective

inventories afier ten thousand iterations of the production delayed model

By increasing o to 0.6 and fixing f at zero, the eigenvalues are plotted on the edge of
the unit circle, as shown in Figure 4.15. The phase plots of the hub effective inventory

against the factory effective inventory are shown as a periodic map in Figure 4.17. In
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this case of a and B, each period of oscillation for the hub and factory inventory
includes 11 points. Compared with quasi-periodic behaviour, the inventory points shift
in a larger distance after one period. After a number of iterations, the simulation repeats
the same quantity of hub inventory and factory inventory. Therefore, this periodic map
is built up by many disconnected points. However, the overall shape of the periodic

map is still similar to the quasi-periodic behaviour map in Figure 4.16.

Keep increasing a to 1, and the eigenvalues locate on both corners of the two fins. The
corresponding phase plot is shown in Figure 4.18 as chaotic behaviour. Compared with
Figure 4.17 and 4.16, the behaviour in Figure 4.18 is obviously not periodic or quasi-
periodic. The points no longer follow a two dimensional curve, but the iterations

produce a folded band, somewhat like a bird.
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Figure 4.18 Chaotic behaviour observed in the production delay model for

a=1p=0 0=0.75 Q =800. The phase plot shows corresponding values of hub and
factory effective inventories after ten thousand iterations of the production delayed

model. More detailed simulations show that the Lliapunov exponent is positive.

The chaos in physics is defined as “aperiodic long term behaviour in a deterministic
system that exhibits sensitive dependence on initial conditions.” (Steven, 2001).
“Aperiodic long term behaviour” means that there are trajectories, which do not settle

down to fixed points, periodic orbits, or quasi-periodic orbits. “Deterministic” means
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that the system has no random or noisy inputs or parameters. For example, the input
matrix in equation (4.10) is a unit step input and parameters a , 3, 6 and Q are constant.
There are no noisy inputs. Hence, the irregular behaviour arises from the system’s
nonlinearity, rather than from noisy driving forces. Finally, “sensitive dependence on
initial conditions” means that nearby trajectories separate exponentially fast. To prove
this statement, the initial value of the state factors in equation 4.9 are changed with very
small excursions and the simulation then run for ten thousand iterations. The hub
inventory level is recorded in each round. The logarithm hub inventory difference
between the model with old initialization and the model with changed initialization in

each iteration is plotted in Figure 4.19.

The Logarithm of the difference

Il i 1 ] 1
0 200 400 600 800 1000

Figure 4.19 Logarithm difference of hub effective inventory between the production
delayed model starting with initial value and the model starting with very small

excursions of the initial value for o = 1, f =0, 6 = 0.75, O =800.

The curve is never exactly straight. It has wiggles because the strength of the
exponential divergence varies along the chaotic map. The divergence between two
models with slightly different initialization increases linearly in the first 200 time units,
oscillating around 9 thereafter. The oscillation is never over 10 because the trajectories
obviously cannot become any further apart than the diameter of the chaos map. The
slope of the first 200 time units is called the Liapunov exponent ( 1 ). According to the

statement “sensitive dependence on initial conditions”, the chaos system should have a
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positive Liapunov exponent. Suppose the state starting with unchanged initialization is

hinv (t) and the state starting with excursion initialization is hinv(t)+&(¢) , for a chaotic

behaviour, 5(r) grows like §(t) =&, e* . Then the A can be calculated as

| (4.17)

The Liapunov exponent A for a = 1, =0, 6 = 0.75, Q =800 in the production delayed
model is 8.18 x 10 which is positive and conforms to the definition of chaos. This
chaotic behaviour is the result of eigenvalues and saturation effects, corresponding to a,
B and Q. By removing any of the nonlinearity effects such as changing o and p to make
the eigenvalues locate inside the circle, or increasing Q to eliminate the saturation

effects, the system will not behave as shown in this section.
4.2.3 The Influence of

Figure 4.20 shows a plot of the eigenvalue locus when B = 0 and o varies from 0 to 1.
Similar to the effect of o, three sets of eigenvalues are plotted. However, the movement
of the eigenvalues with changing P is different. All of these three eigenvalues start from
the original in coordinate (0, 0). With little decrement of B, both of the black points and
red points jump into the first and fourth quadrant immediately. Keep decreasing B3 to
0.32, the red point arrive at the unit circle. The factory effective inventory oscillates
with fixed amplitude. When B = 0, the eigenvalue locates at the end of curves outside of
the unit circle. The green points’ movements follow the same pattern as introduced in

the last section with decreasing .
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Figure 4.20 Locus of eigenvalues plotted on z-plane for 6 = 0.75, f varied from 0 to 1
and a. = 1.Clearly, the complex pair migrate toward the centre of the unit circle as 8

increases.

It is clear from analysis of the figure that by keeping a = 1 and B smaller than one, both
the hub and factory effective inventory have oscillations. With big B, the oscillations
decay and the model finally arrives at a stable level. With small B, the inventory
oscillates with great amplitude. Managers cannot avoid oscillation of the inventory if
they want to replenish to the desired inventory level fast. However, they can control the
speed and amplitude of oscillation by considering their supply line, which is hub

incoming shipment and factory backlog and production delay.

88



1400

1200 -

1000 -

800

600 -

400 -

200+

Hub effective inventory

[} S

-200+

-400

-600 L L 1 L ! 1 L
-1500 -1000 -500 0 500 1000 1500 2000 2500
Factory effective inventory

Figure 4.21 Periodic solution obtained for a =1, f =0.4, 8 = 0.75, Q =800.The phase
plot shows corresponding values of hub and factory effective inventories after ten

thousand iterations of the production delayed model

Figure 4.21 shows the phase plot of the hub inventory against the factory inventory. It
is a quasi-periodic solution for the eigenvalues locating within the unit circle at o =1
and  =0.4. The overall shape of the cross torus in Figure 4.21 is quite similar to that in
Figure 4.16. However, as a is one, the model will generate backlogs in both hub and
factory. Since both the hub and factory effective inventory have negative value in the

plane, the bottom left part of the plane is negative.
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Figure 4.22 Quas-iperiodic solution obtained for 8 = 0.75, 0. = 1, § =0.32,

O =800.The phase plot shows corresponding values of hub and factory effective

inventories after ten thousand iterations of the production delayed model

When the eigenvalues locate on the unit circle at a = 1, § =0.32, a periodic phase plot is
produced for the hub and factory effective inventory. Compared with the periodic plots
in Figure 4.17, these short strings in the plots are more dispersive. The distance
between each string is very great. The corresponding inventory behaviour is unstable.
The inventory oscillation switches its amplitude and frequency in a large ratio within a

short time.
4.2.4 The Primary Route to Instability

To better understand the behaviour observed, the structure of the system block diagram

will be examined (Figure 4.23). The system block diagram has the form:
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Figure 4.23 Small signal block diagram representation of the model of the supply chain
at Draeger Safety UK, including additional production delays.

From the figure, it is clear that the factory and the hub still retain their ‘isolated’
feedback structures. Moreover, closer inspection reveals that the additional production
delays only have an effect on the factory ‘loop’. There are more feedback loops
generated in the factory part, which might produce more complex eigenvalues and
complex behaviour compared with the original model. Thus, the complex pairs of
eigenvalues previously identified as being associated with the hub remains unaffected

and are still clearly visible in Figure 4.15 and Figure 4.20.

Turning our attention to the factory, the characteristic equation for the factory part of

the system with additional production delays, for the condition f = 0, is:
(2 +op)z-1) +ar=0 (4.18)

Clearly, Equation 4.18 has four eigenvalues. One of these is at z = 0, one exists on the
negative real axis and lies in the range z= 1 — -0.755 as a = 0 — 1 and the other two
form the second complex pair seen in Figure 4.15 and Figure 4.20 (red curve). These

become complex when o > 0.148 and intersect with the unit circle at a position 0.809 +
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j0.5878, for the condition a = 0.618. It is obvious, therefore, that it is now the factory

that has become the primary route to instability.

4.3 Production constraint on production delayed

model

The dynamics of the model with production delay and production constraint are very
complicated. To clarify the effects of production constraint on system behaviour, five
different quantities of constraints are applied in the model with fixed planning
parameters a = 0.9, B = 0. The corresponding system eigenvalues locate outside of the

unit circle. The relevant inventory behaviour with no constraint is chaotic.

Applying 5000 units as the production constraint on the factory, the time response of
hub and factory effective inventories are plotted respectively (Figure 4.24). The
oscillations in both hub and factory inventory appear very random. Figure 4.24 (a)
shows that the peak of the oscillation in hub effective inventory is around 3800, which
is smaller than the production constraint. Therefore, the constraint has no effect on the

dynamics of the system. Figure 4.25 shows the chaotic solution.

92



Hub inventory Factory Inventory
T 9000 — =& — —T— = S R Sy g g o o N

| i i
3500} - - : 8000 —a-
i H | 1
3000 ~ = - - o - . 7000 o Ji* Y
1 i ‘ t
25007 6000 1 \4'%_ .
| 1 ! i
200! - - 5000 : ﬁ r a
% 1500& _____ E 4000 HJLF - H
= ! %000 ;sé i “h ] LLH [l
1000 {3t 2000 ik Il v i :Li;l*
flbdails LT TR TR TK
soo 151 o R k H‘!IJ
:‘ i 001@ i i | _:_( Sl 1 k ! l__T l.IU
0 - - o AR T
I i i
50017 10008 R i un ki
1 i L ] i 1 1 1 ! L i 1
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Month Month
(a) Hub effective inventory (b) Factory effective inventory

Figure 4.24 Hub effective inventory and factory effective inventory for production
constraint = 5000, 6 = 0.75, o = 0.9, =0, Q =800. The figure shows the response of
the hub effective inventory and factory effective inventory over a 500-month period.
The initial hub inventory is 400 and the hub orders are held constant at 400/month for
the first 100 months. These are then increased to 800/month for the remainder of the

simulation

10000 ,
22
8000 - A :
@ 8 ..
& .c.: o
6000 - .o, M3 .:}
o s ®
L og ® ° ° @° ‘
; Y oty
£ 4000} EXCALTA L
E :o.‘ ot -
3 e
[
2000 .
ot ]
-2000  oull L i { ( L 1
1000 500 0 500 1000 1500 2000 2500 3000 3500 4000

Hub Inventory

Figure 4.25 Chaotic solution obtained for Production Constraint = 5000, 0 = 0.75,

o =09 B =0 Q =800.The phase plot shows corresponding values of hub and factory

effective inventories afier five thousands iterations of the production delayed model
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If the production constraint is decreased to 3000, which is smaller than the peak of hub
oscillation amplitude in Figure 4.24(a), the hub and factory inventories oscillate with

regular amplitude.
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Figure 4.26 Hub effective inventory and factory effective inventory for production
constraint = 3000, 6 = 0.75, a = 0.9, =0, Q =800. The figure shows the response of
the hub effective inventory and factory effective inventory over a 500-month period.
The initial hub inventory is 400 and the hub orders are held constant at 400/month for
the first 100 months. These are then increased to 800/month for the remainder of the

simulation

Figure 4.27 shows the periodic solution of the system by plotting the hub effective
inventory against factory effective inventory. These discrete points in the plots
represent the different state of the hub and factory inventories. After a certain period of
simulation, the hub and factory inventory move back to the same state and repeat a

similar oscillation.
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Figure 4.27 Quasi-periodic solution obtained for Production Constraint = 3000, 6 =
0.75, a = 0.9, f =0, Q =800.The phase plot shows corresponding values of hub and
factory effective inventories after five thousand iterations of the production delayed

model

By continuing to decrease the production constraint to 1000 units and 900 units, a
quasi-periodic solution is produced which looks like a ‘bird’s wing’ in both cases

(Figure 4.28, Figure 4.30).
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Figure 4.28 Periodic solution obtained for production constraint = 1000, 6 = 0.75,

a=0.9, B =0 Q =800.The phase plot shows corresponding values of hub and factory

effective inventories after five thousand iterations of the production delayed model
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Figure 4.29 Hub effective inventory and factory effective inventory for production
constraint = 1000, 8 = 0.75, a = 0.9, =0, O =800. The figure shows the response of
the hub effective inventory and factory effective inventory over a 500-month period.
The initial hub inventory is 400 and the hub orders are held constant at 400/month for
the first 100 months. These are then increased to 800/month for the remainder of the

simulation.
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Figure 4.31 Hub effective inventory and factory effective inventory for production

constraint = 90
The initial hub inventory is 400 and the hub orders are held constant at 400/month for

the first 100 months. Tthese are then increased to 800/month for the remainder of the



Close inspections of two figures show that the ‘wing’ in Figure 4.28 has 12 ‘fingers’
while the ‘wing’ in Figure 4.30 has 24 ‘fingers’. The effects of the ‘fingers’ are
illustrated in Figure 4.29 and Figure 4.31. The inventory oscillations in Figure 4.29 are
denser compared with those in Figure 4.31. There are 14 and 18 points in a single wave
of hub and factory oscillations in Figure 4.29, while there are 25 and 28 pointsin a
single wave of hub and factory oscillations in Figure 4.31. The oscillation frequency

had become higher in this case.

If the production constraint equals the sales order, the factory can only supply the sales
demand. The hub inventory can never be compensated to the desired level. In this
situation, the hub keeps sending the hub requirements to replenish the hub inventory.
The hub requirements are backlogged in the factory. The factory effective inventory

become negative and keeps decreasing as the simulation runs (Figure 4.32).
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Figure 4.32 Chaotic solution obtained for Production Constraint = 800, 8 = (.75,

a =029 B =0 Q =800.The phase plot shows corresponding values of hub and factory

effective inventories after five thousands iterations of the production delayed model.
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4.4 Conclusion

Based on the analysis given above, it is clear that the replenishing inventory rate o has
a destabilising effect, while consideration of the past decision rate B has a stabilising
effect on the dynamics of this production delayed supply chain model. The extra
production delay has made the system more sensitive to management decisions.
Compared with the original model, the production delayed model could be unstable
owing to the influence of the saturation effect even the local eigenvalues locating inside
the unit circle. Instead of employing conservative management policy and sacrificing
the customer service and on time shipping to eliminate oscillation, managers have the
flexible option of improving the safety stock Q to stabilize the supply chain and
achieve on time delivery. However, the warehouse has then to pay higher costs for
holding the extra mount of safety stock. It is a trade off for planning managers: risk on
time delivery or have a high volume of warehouse stock. Decisions can be made which
reflect different occasions and objections in order to maximise the benefits and

minimise the costs.

Production constraint impacts can be explored when the model is unstable. With a
different degree of constraint, the model can display chaotic, quasi-periodic and
periodic behaviour. With the introduction of the two additional lead time states, it is the
factory which provides the primary route toward instablility. In this situation, the hub

can do little against poor management decisions in the factory.
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Chapter 5:

Hub Model with One Additional Delay in

Planning

In this chapter, the effects of introducing an additional information delay into the

communication between hub and factory are investigated. In terms of the present

analysis, the delay represents two likely scenarios of ‘getting the forecast wrong’ and

‘compatibility problem with different planning systems’. In the case of Draeger, the

factory in the UK and the hub in Germany use different versions of SAP as their

planning tool. The compatibility problem of the planning software causes

communication problems so that they cannot fully share planning information.

Discovering and sorting out these compatibility problems will delay the planning

¥
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Figure 5.1 Schematic diagram showing relationships between factory and hub

including I month additional communication delay.
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In this modification, an additional information delay state, Info delay l4c(t), is
introduced between the hub requirement and the factory production. Figure 5.1 shows
the schematic diagram of the planning delay model. By introducing this one step
planning delay, hub planning factory production planning are not working in
synchronization. The factory production planning is delayed. Assuming the hub
receives sales orders in January and generates two month ahead forecasting; two month
ahead hub requirements are produced. The info delay is introduced after generating hub
requirements. Therefore, the hub requirements for March are kept in the I4(t) for a
month. When the hub requirements for March move into the factory, the simulation has
moved to February already. In this way, the factory makes a production plan and starts
producing the March hub requirements in February. Now it can be seen that the two
month ahead planning in the old model has been changed to one month ahead planning.
After one month production, the finished goods stored in the factory are ready to be
shipped in March. The transportation from the factory to the hub consumes another
month. Therefore, when the hub requirement for March arrives at the hub, the
simulation calendar has moved to April. The factory fails to achieve the hub demand on

time.

As can be observed in the factory in Figure 5.1, the information delayed state is
actually last month hub requirement. Hence, the factory part is exactly the same as the
factory in the original model without any delay. The hub supply line is the same as in
the original model. The only effect is that the whole factory works one month behind
the hub. Therefore, the factory inventory behaviour should be similar to the original

model.
5.1 The Draeger Model

With the modification, the additional information delay state, 14(t) is defined as the last

month hub requirements.
Lie(t) = Hyeg(t+1) (5.1

To the extent that the inventory plus incoming shipments are sufficient, the factory

outgoing shipments can satisfactorily deal with the existing backlog and the incoming
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demand. If the demand is too great to satisfy, factory outgoing shipments becomes

incoming shipments plus inventory.
Fship(t) = min (Ide(t-l) + Fblk(t-l), Finv(t-l) + Fprod(t-l)) (52)

The factory backlogs are updated by adding the information delay state and subtracting
outgoing shipments. If the information delay state plus backlogs are covered by the

incoming shipments plus existing inventory the new backlog is empty.
Foi(t) = max(0, Fou(t-1) + Lge(t-1) - (Finu(t-1) + Fproa(t-1))) (5.3)

Factory production is calculated based on the current information delay state, following

the same anchoring and adjusting heuristics as in the original model.

Fprod(t) = max(0, a (Q - Finy(t) + Foult)) + Lae(t)) 5.4)

Unlike the production delay model, there is no factory supply line in the planning delay
model. Most equations are identical to the original model. Since there are no production
limits and production delays, the factory can always satisfy the hub demand and does
not have any backlog. The factory inventory is always stable at the desired level. The
delayed shipments are only due to inaccurate hub requirements information. The

equations are programmed in Appendix A.

5.2 Hub Analysis

A similar dynamics analysis to that in previous model is applied. All backlogs are
assumed to be zero. To construct the system characteristic matrix and calculate the
eigenvalues, all of the system equations are grouped together and expressed as the

general discrete state space representation
X(k)y=AX(k-1)+BUk) (5.5)
Y(k) = CX(k) (5.6)

Thus, the state vector X(k) becomes:
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(H,, )
H,,®

L. (©)

Hreq t+2)

X(t) ) Hforecast (t + 2) (57)

Fship (t)
E inv (t)
_Fprod (t)

the input U(k) as:
Horders (t)
Uk) =| Qu (1) (5.8)
Qr®

The system matrices are:

0 0 0 0 0 O 0 0
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0
A 0 ~a, -—-aupy 0 68 —-a, O 0 (59
0 0 0 06 0 0 0
0 0 1 00 0 0 0
0 0 -1 00 0 1 1
o 0 Or 10 0 -az —a]
B 0 0]
-1 00
0 00
1 00 00000
I+o,-0 a4 0
B= ; C=101 0 0 0 0 0 O (5.10)
1-6 00
0 000CO0CO0CT10
00
00
| 0 0 o |

Inspection of equation (5.7) and (5.9) indicates that the extra information delay unit

I4¢(t) has been added to the state vector X(t) and the system matrix A. An extra
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eigenvalue is generated, compared to the original model. In the research presented here,
8 will remain fixed at 0.75 and the analysis of dynamics will concentrate only on

variations in o and [3.

With the state vector and system matrix, the eigenvalues of the A matrix are calculated
as the solution to det(zl - A) = 0. The constellation is plotted on z-plane (each
eigenvalue is represented by an ‘x’) as both o and P are incremented from 0 to 1 in

steps of 0.1. Figure 5.2 shows this constellation plotted on a Jury map.

Figure 5.2 The constellation of eigenvalues of A plotted on the z-plane for 8 = 0.75, a =
Otolinstepsof 0.1 & =0to 1l instepsof 0.1.

Eight sets of eigenvalues have been plotted within the constellation, changing a and
from 0 to 1. Inspection of Figure 5.2 shows that the overall shape of the planning delay
constellation is symmetrical. It is neither similar to the original model without any

delay nor the model with production delay.
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Figure 5.4 Expanded view of I quadrant, ignoring eigenvalues located on the real

axis.

However, the expanding of the first quadrant in Figure 5.3 shows that the shape of
eigenvalues plot for planning delay model in Figure 5.3 a is the same as the red
quadrangle in Figure 5.3 b. The points on the corner of the two red quadrangles in

Figure 5.3 (a) and (b) P1, M1 and P2, M2 have the same complex value.
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The symmetry allows the analysis focusing on the upper half of the eigenvalues
constellation to explore the detail of the dynamics of the whole model. Figure 5.4
indicates the existence of pairs of potentially unstable complex eigenvalues. The
damping ratio curve ¢ (curve 0.9 to 0.1) is marked within the constellation. As o
decreases from one to zero, the eigenvalues move vertically from outside of the circle
to the inside of the circle. They cross the damping ratio curve from ¢ = 0.1 near the
edge of the circle to the curve at ¢ = 0.9 near the real axis. As a result of the increasing
damping ratio, the system becomes more damped and the inventory oscillations
become smaller. On the other hand, decreasing B, the corresponding eigenvalues
migrate from inside to outside of the unit circle. For example, by fixing a atl and
decreasing B from 1 to 0, the eigenvalues start moving from the edge of the circle
toward the outside of the circle horizontally. Therefore as long as a =1, the
corresponding eigenvalues are always located outside of the unit circle. By changing f,
the eigenvalues do not cross as many damping ratio curves as a does. However, the

corresponding natural frequency w, plotted from 0.1/ 7 T to 0.4/ # T along the edge of

the circle, has been changed significantly by this relative horizontal eigenvalues

movement. As discussed before, the natural frequency w, represents the oscillation
frequency. In decreasing B, the relevant w, becomes smaller and leads to small

frequency oscillation. It is clear that, just as in the two previous cases,  has a

stabilising influence, whilst « is destabilising.

5.2.1 The Influence of a

Figure 5.5 shows a plot of the eigenvalue locus when § = 0 and « is varied from 0 to 1.
There are two sets of eigenvalues in the figure, represented by green and black points.

The green point locate at the origin of Z-plane with coordinates (0, 0) when o =0 and

B=0.
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Figure 5.5 Locus of eigenvalues of A plotted on the z-plane for 6 = 0.75, = 0 and a
varied from 0 to 1. Clearly, the complex pair migrate toward the edge of the unit circle

as o increases.

Increasing o, the eigenvalues (represented by the green point) move left along the
negative real axis to -0.75. The black eigenvalues z = 0 & z =1 locate on the real axis
with coordinates (0, 0) and (0, 1) when o =0 and B=0. Increasing a, these two black
points move toward each other on the real x axis. When a = 0.14, they collide in the
real axis. With further increments of a, the black eigenvalues jump into the first and
fourth quadrant of the plane. Once the eigenvalue obtain the imaginary part, the
inventory starts oscillating, as shown in Figure 5.6 (b). The black curve crosses the
circle at o = 0.62. If a continues to increase, the black point moves out of the unit

circle. The inventory behaviour becomes unstable in Figure 5.6 (d).
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Figure 5.6 Hub effective inventory for 6 = 0.75, a = 0.1, 0.4, 0.62, 1, f = 0 and Q =
800. The figure shows the response of the Hub effective inventory over a 250 month
period. The initial Hub inventory is 400 and the hub orders are held constant at
400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.

It is clear from Figure 5.6 that as o increases the inventory responses become more
oscillatory. When o. is greater or equal to 0.62, the response exhibits continuous
oscillation. The ratio between the two successive wave peaks becomes greater. This is

defined as m,,,/m, x 100, where m, is the absolute value of the wave peak at time k

and m, ,, is the peak of the neighbour wave at time k+1. In Figure 5.6 (a), there is no
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oscillation at all. The ratio is considered as 0. Increasing o to 0.4 as shown in Figure 5.6
(b), the inventory oscillates with decreasing amplitude. The ratio can be calculated
from the relevant eigenvalues as 48.2%. In Figure 5.6 (¢) with a equal to 0.62, the ratio
is equal to 99.8%. This means the hub inventory oscillates with nearly fixed amplitude.
When the eigenvalues move to the outside of the unit circle, the system becomes
unstable. The calculation of the eigenvalues for a equal to 1 shows the ratio should be
187%, which indicates the oscillation amplitude is expanding. However, Figure 5.6 (d)
shows that the inventory maintains constant oscillation amplitude. The hub inventory
follows the same oscillation pattern as Figure 5.6 (c) and greater amplitude. When the
oscillation amplitude is great enough to meet the saturation form boundary that is
defined in the model equations, the oscillation cannot expand over the limits.
Therefore, the eigenvalues for a equal to 1 do not indicate the inventory behaviour

properly as in Figure 5.6(d).
5.2.2 The Influence of 3

Figure 5.7 shows a plot of the eigenvalue locus when a = 1 and varying § from 0 to 1.
The eigenvalues have been plotted in two groups in green and red in the plane. The
green points move left along the negative real axis as f decreases. The red points locate
on the edge of the circle when o=1 and B=1. Decreasing B, the red point moves further
outside of the unit circle (red curve). As long as 0=1, the whole red curve always
locates outside of the circle. It is clear that the stabilising effect of P is not as strong as

the destabilising effect of a, which has been strengthened by the information delay.
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Figure 5.7 Locus of eigenvalues plotted on z-plane for 8 = 0.75, f varied from 0 to 1
and o = 1. Clearly, the complex pair migrates toward the centre of the unit circle as [

increases.

Figure 5.8 shows hub inventory behaviour whena =1, =1and a =1, f = 0.3. After
100 months the overall hub inventory behaviour of the two cases is very similar.
However, in the first 100 months, Figure 5.8 (a) is stable at 400 units, while Figure 5.8
(b)is oscilléting with fixed amplitude. In both cases, the eigenvalues locate outside of
the unit circle. The relevant system behaviour is expected to be unstable. Therefore, the
stable inventory behaviour in the first 100 month is not expected to be seen in

Figure5.8 (a).
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Figure 5.8 Hub effective inventory for 0 = 0.75, o= 1, p =1, 0.3 and Q = 800. The
figure shows the response of the hub effective inventory over a 250 month period. The
initial hub inventory is 400 and the hub orders are held constant at 400/month for the
first 100 months. These are then increased to 800/month for the remainder of the

simulation.

To explain this puzzling stable system behaviour, the hub requirement equations need

to be reviewed.

Hreq(t+2) = maX(O, a (Q - Hinv(t) + Hblk(t))

-G B (Fblk(t) + Fship(t)) + Hforecast(t+2)); (51 1)
When a = 1, B = 1, the equation changes to
Hieq(t+2) = Q — Hinv(t) + How(t) —Foi(t) = Fnip(D)+ Heorecast(t+2) 5 (5.12)

If there is no backlog in both hub and factory, the initial hub inventory and factory

incoming shipments are 400 units, while Q is 800 units; the equation can be written as
Hreq(t+2) = Hforccast(t+2) 5 (513)

In the first 100 months, the incoming order is 400 units, which is equal to the initial
value of the inventory and shipment. In this situation of equilibrium, a backlog does not

exist. The hub requirement is always equal to the forecast whose initial value is the
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same as the order. The planning delay cannot have any effect on this equilibrium
model. Therefore the hub inventory is stable at the initial level. However, after 100
months the orders increase to 800 units. An inventory backlog is produced in the hub.
The planning delay starts to impact the system, as the hub cannot receive the shipment

on time and the hub inventory oscillates.
On the other hand, if B is smaller than 1, the hub requirement is
Hieq(t+2) = 400-BFship(t)+ Hrorecast(t+2) ; (5.14)

The hub requirement is not the same as the initial value. The planning delay keeps the
right information for a month and forwards the last month hub requirements to the
factory. In this way, the factory shipment cannot be delivered to the hub on time. The

hub inventory starts oscillating from the beginning of the simulation in Figure 5.8 (b).

After the first 100 months, the inventory shown in Figure 5.8 (a) and (b) behaves in a

similar way. However, closer observation shows that the oscillation details are still
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Figure 5.9 Expanded section of hub effective inventory for two periods, where 6 = 0.75,
a=1,p=1 03and Q = 800.

Figure 5.9 shows that the oscillation has been expanded into two waves whena =1, =

I and a =1, p = 0.3 respectively. The eigenvalue is 0.7203 +10.7848 whena =1, =1,
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where the period of the oscillation can be predicted by the angle to be 2 1/0.84
(approximate 7). It has been confirmed in Figure 5.8 (a), one period of the wave
include seven distinct points. On the other hand, the eigenvalues for a =1, and B = 0.3
are 0.7889 +10.7676, where the oscillation period can be predicted by the angle to be
2m/0.7(approximately 9). The result has been confirmed, as shown in Figure 5.8 (b):
there are nine distinct points in the wave when a = 1, = 0.3. It is clear that with
smaller values of B, the period of the oscillation is extended, while the frequency

becomes lower.
5.2.3 The Primary Route to Instability

To understand fully this behaviour, the structure of the system block diagram needs to
be examined; which, in this case, is shown in Figure 5.10. Here it can be seen that
additional planning state modifies only the hub loop, the factory loop reverting to the

structure originally seen in the original model.

Figure 5.10 Small signal block diagram representation of the model of the supply chain
at Draeger Safety UK, including additional planning delay.
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Thus, the factory characteristic equation is:
(z+a)z-1)+a=0 (5.15)
It has only real eigenvalues.
However, for the condition when B = 0, the hub characteristic equation becomes:
(2 + o)z -1) + oy =0 (5.16)

This is identical to the characteristic equation for the system with additional production
delays, for the condition § = 0 (Equation 4.18). Thus, the complex eigenvalue pair seen
in Figure 5.5 lie at identical locations to the ‘similar’ pair seen in the eigenvalue plots

for the production delay model when § = 0 (Figure 4.15). Further, in the case when =

1, the hub characteristic equation becomes:
(2 +opz +a)z-1)+og=0 (5.17)

This has two eigenvalues at the origin, together with a complex pair whose locations
are identical to those given by the hub characteristic equation in the original model
when § = 0 (Equation 3.33). Thus, it becomes clear that the locations of the eigenvalues
seen in Figure 5.7 and Figure 5.5 are bounded by the two pairs of complex eigenvalues
for the production delay model when 3 = 0 (Figure 4.15) . Consequently, it is the hub
that is once again the primary route to instability, the structure of the hub feedback
loop, under the influence of the planning delay, becoming identical to that seen in the

factory with additional production delays, when B = 1.
5.2.4 The Influence of ‘Saturation’ Effects

The saturation effects which are the impact of desired inventory Q is measured in this
section. Figure 5.11 shows inventory behaviour when Q = 800, o =1 and = 1. The
hub inventory is stable in the first 100 months and starts oscillating from -500 to 500

units after. The factory inventory is always stable at the desired level of 800 units.
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(a) Hub effective inventory Q=800 (b) Factory effective inventory Q=800
Figure 5.11 Simulation when 8 = 0.75, a = 1, f = 1 and

QO = 800. The figure shows the response of the Hub and factory effective inventory over
a 250 month period. The initial hub and factory inventory is 400 and the hub orders
are held constant at 400/month for the first 100 months. These are then increased to

800/month for the remainder of the simulation.

If the desired inventory Q is doubled to 1600 units, the hub inventory shown in Figure
5.12 (a) oscillates from 800 units to 1600 units in the first 100 months. After the
incoming sales order increase, the hub inventory oscillates at the lower level from 300
units to 1300 units. The factory inventory is still stable at the desired level of 1600 units
in Figure 5.12 (b). The increase of Q does not eliminate the oscillation. However, the

increase of Q leads to oscillation in the first 100 months, as in Figure 5.12 (a).
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(a) Hub effective inventory Q=1600 (b) Factory effective inventory Q=1600
Figure 5.12 Simulation when 8 = 0.75, oo = 1, f = 1 and

QO = 1600. The figure shows the response of the hub and factory effective inventory
over a 250 month period. The initial hub and factory inventory is 400 and the hub
orders are held constant at 400/month for the first 100 months. These are then

increased to 800/month for the remainder of the simulation

To explain the oscillation in the first 100 months, the hub requirement equation (5.12)

is recalled. When Q =1600, the equation changes to
Hreq(t+2) = 800+ Heorecast(t+2) ;

The order is constant at 400 in the first 100 months. The hub requirement is 1200 units
when o =1, B =1 and Q =1600 units. It is greater than the initial value of the
information delay state of 400 untis. Since the planning delay postpones the transfer of
the hub demand, the factory shipment arrives at the hub one month later. Then the hub
inventory oscillates around 1200 with an amplitude of 400. The oscillations in Figure
5.12 (a) after 100 months are at a positive level (300 to 1300), while the oscillations
shown in Figure 5.11(a) generate backlogs (-500 to 500). It can be concluded that
changing safety stock Q in the planning delayed model cannot eliminate oscillation.
However, it will influence the backlog level of the inventory. The oscillation analysis in
this section relates to the disturbance which in our case, is incoming order. Therefore, if
the initial situation or incoming order is changed, the system behaviour will be

different.
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5.3 The Influence of Production Constraints

To measure the influence of production constraints on the dynamics of the planning
delay model, the planning parameters o and  are fixed at 1 and 0.5 so that the relevant
eigenvalues sit outside of the unit circle. Hence, according to the previous eigenvalue
analysis the model should be unstable. However, by applying different degrees of

production constraints in the factory, the model exhibits variety dynamics behaviours.

Applying the production constraint as 2000 units on the planning delay model, factory
inventory response remains stable, while the hub inventory oscillates, with a peak at

1800 (Figure 5.13).
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(a) Hub inventory (b) Factory inventory

Figure 5.13 Simulation when production constraint=2000, 6 = 0.75, a =1, f =
0.5 and Q = 800. The figure shows the response of the hub effective inventory
over a 250 month period. The initial hub inventory is 400 and the hub orders are
held constant at 400/month for the first 100 months. These are then increased to

800/month for the remainder of the simulation.

Since the factory production constraint is greater than the Hub inventory oscillation
amplitude, the factory can always produce enough inventories to meet hub demand. To
clarify the dynamics of the inventory, Figure 5.14 plots the hub inventory against the

factory inventory after the transient state of the first 100 months.
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Figure 5.14 Periodic solution obtained for Production constraint=2000, 0 = 0.75, a =
1B =05, 6 =0.75 Q =800.The phase plot shows corresponding values of hub and
Factory effective inventories afier ten thousand iterations of the planning delayed

model with production constraint.

The factory inventory remains constant, while the hub inventory oscillates between
eight levels. After one period of oscillation, the hub inventory moves back to the start

point.

Decreasing the production constraint to 1500 units, the factory inventory starts
oscillating after 100 months. Inspection of Figure 5.15 (a) shows that hub inventory
oscillation is below 1500 in the first 100 months. Factory production can cover hub
requirements and keep its own inventory stable. However, after 100 months, the hub
inventory generates backlogs and the amplitude of the oscillations is larger than the

production constraint, which leads to oscillations in the factory (Figure 5.15 (b)).
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Figure 5.15 Simulation when Production constraint=1500, 8 = 0.75, .= 1, B = 0.5 and

QO = 800. The figure shows the response of the hub effective inventory over a 250 month
period. The initial hub inventory is 400 and the hub orders are held constant at
400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.
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Figure 5.16 Periodic solution obtained when production constraint=1500, 8 = 0.75, a
=[5 =0.5 6=0.75 Q =800.The phase plot shows corresponding values of hub and
Jactory effective inventories after ten thousands iterations of the planning delayed

model with production constraints.
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Figure 5.16 represents the phase plots of the factory effective inventory against the hub
effective inventory with production constraint at 1500 units. Since the factory inventory
start oscillating after the first 100 months, those points in the phase plots locate at

different factory inventory levels.

Keep decreasing the production constraints to 900 units, the hub inventory and factory
inventory behaviour are then similar, as shown in Figure 5.16, in the first 100 months.
However, after the incoming order doubles the hub inventory oscillation produces a
backlog. As a result, the factory inventory starts oscillating (Figure 5.17(b). When the
production constraints become smaller, the hub inventory is oscillates in a smaller
amplitude. The hub inventory against factory inventory phase plot is a quasi-periodic

solution, as in Figure 5.18, when the production constraint is 900 units.
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Figure 5.17 Simulation at Production constraint=900, 8 = 0.75, a = 1, f = 0.5 and

Q = 800. The figure shows the response of the hub effective inventory over a 250 month
period. The initial hub inventory is 400 and the hub orders are held constant at
400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.
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Figure 5.18 Quasi-periodic solution obtained at Production constraint=900, § = 0.75,

a=1, =05 0=075 Q =800.The phase plot shows corresponding values of hub and
factory effective inventories after ten thousand iterations of the planning delayed model

with production constraints.

Decreasing the constraint to 800 units (the level of sales demand), the production can
only feed the demand and cannot compensate for the hub and factory inventories. In
Figure 5.19 (a) and (b), the hub and factory effective inventories are stable at backlog
level. Since both the hub and factory are in their steady state, there is only one dot in

the phase plot in Figure 5.18.
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Figure 5.19 Simulation at Production constraint=800, 8 = 0.75, a = 1, f = 0.5 and

Q = 800. The figure shows the response of the hub effective inventory over a 250 month
period. The initial hub inventory is 400 and the hub orders are held constant at
400/month for the first 100 months. These are then increased to 800/month for the

remainder of the simulation.
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Figure 5.20 Periodic solution obtained at Production constraint=800, 8 = 0.75,

a=1 =035 0=0.75 Q=800. The phase plot shows corresponding values of hub
and factory effective inventories after ten thousand iterations of the planning delayed

model with production constraints.

122



5.3 Conclusion

The third scenario presented looks at the effect of an additional one-month information
delay between the hub and the factory. In this situation, it is, again, hub management
policy that is the primary route to instability. Also, just as in the two previous cases, o
has a destabilising influence, whilst B is stabilising. However, with the additional
information delay, the hub’s route to instability now follows the more severe path
defined by Equation 5.16. Moreover, in the presence of the one month information
delay, even the stabilising influence of f only lessens the severity of the route to
instability; in this case, to the route defined in Equation 5.17 (for the case when B =1).
Change of the safety stock Q which measures the saturation effects cannot influence the
stability of the system, but change the scale of the variation to reduce the costs. Thus, in
this situation, good management and management policies are crucial if significant
problems are to be avoided. Therefore, accurate forecasting is essential to improve

supply chain performance.
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Chapter 6:

Forecasting Implemented with the ARMA
Model

Forecasts play a key role in supply chain management. Forecast accuracy is an
important component in the delivery of an effective supply chain. The basic principle
of time series forecasting is to use a model to predict future data, based on known past
data. This chaptér introduces the forecasting methods implemented with the 4RMA
(auto-regression and moving average) model. The auto-regression and moving average
model is a kind of technique for time series analysis and forecasting which has been

adopted by many economists (Duc, 2008, A.D., 1990, Suri, 1988).

However, forecasting with ARMA is a linear method that is only suitable for the
stationary time series. Preprocessing is required to remove some of the variation built
within the original data and analyze the interrelationship between the observed values.
The structure of the ARMA model can then be constructed and applied to make one step
forward forecasting. The model parameters are optimized by using recursive least
square algorithm during each round of forecasting. After processing the whole time
series, the ARMA model structure is changed and the same procedure is applied again.

These processes involve five steps:
1) Data preprocessing;

2) Constructing the structure of the ARMA model;

3) Applying the model to the original data, to make forecasts the model parameters
are updated and optimised during the prediction;

4) Changing the structure of the model and going back to step three;

5) Selecting the model with minimum forecasting error.

A performance function, which measures the absolute difference between forecast and

real data, was employed to record the forecasting error for each different structured
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ARMA model. The model with best performance was selected. The corresponding

forecasting results are compared in the later sections.

The original data for making the forecast is sixty-four months of sales history data of a
valuable product from Draeger Safety, UK Ltd. Draecger managers authorized the use of

data in this research. It can be seen from Figure 6.1, that the overall trend is of growth

and the oscillation intervals are not regular.
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Figure 6.1 The 64 months sales history

6.1 Autocorrelation

The foundation of our time series analysis is built on the interrelationship between the
observed values of a series at different points in time. Calculating the autocorrelation

coefficients is the first step in time series research. The formula of autocorrelation

coefficients is listed below:
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5, = 20 =W V)

B - (6.1)
Zt(y_r _y)Z

e
y_?Zyz > (62)

where ‘ p,’ is the sample data. © y ’ is the mean of samples. k£’ is the lag and * p, ’ is

the autocorrelation coefficient at lag k. The correlation coefficients need to be tested for
their statistical significance before any reasonable conclusion can be drawn. The

following hypotheses were tested:

H, : p =0 the null hypothesis, the correlation is not significant;

H, : p# 0 the alternative hypothesis, the correlation is significant.

The standard error is:

SE(p) = | —Lr (6.3)

Thus, a z test would be appropriate to test the hypothesis with respect to significance of

such statistics. The test statistic is given as:

5,
S/ B 6.4
TTSE(p) 4

The table values of z distribution at a 5% level of significance are approximately -
1.96 and +1.96. If the computed z is numerically larger than this, the null hypothesis is
rejected and concludes the relationship is significant, and vice versa. In the program,
the process of the hypothesis has been executed inversely. The 5% level of significance
related autocorrelation coefficient is 0.25. The coefficient has been calculated from
lag1 to lag20. The correlation values have been plotted in Figure 6.2 and compared
with the significance level at 0.25. If the coefficient is bigger than 0.25, the null

hypothesis 1s rejected and concludes the autocorrelation is significant.
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Sample Autocorrelation Function (ACF)
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Figure 6.2 Autocorrelation coefficients for lag I to 20 plotted in red node, the

significance level is plotted in two blue horizontal lines

Most of the autocorrelation coefficients from lag one to lag twenty are located between
the two significance lines. The coefficient at lag two and lag eleven is a little greater
than 0.25. However, the difference is not very significant. Therefore, it can be
concluded that there is no significant autocorrelation in the original data. Based on the
test result, most of the seasonal forecasting models are not suitable for the original data.
Alternatively, the general auto-regression integral moving average model ( ARMA) is

applied in the research.

6.2 ARMA Model

Box and Jenkins (1976) developed the heuristics of the 4RMA model, typically applied

to time series data in statistics. Given a time series y,, ARMA models are developed to

predict future values. The model consists of two parts, the autoregressive ( AR ) part

and the moving average ( MA ) part. The model is referred to as ARMA(p,q) where pis

the order of the autoregressive part and ¢ is the order of the moving average part.
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For example, the equation (6.5) shows the ARMA(1,])model. y, is the forecast of the
series at time period t. ‘¢, - y,_,” is the AR part, ¢, is the first order autoregressive
parameter, ¢, 1s the stochastic error at time t. “ 6, - ¢, ,* is the (M4) part. 6, is the first-

order moving average parameter. J is the constant term.

yt:¢l'yt—1+5_91'8t—l+gt > (65)

E =Y~V (6.6)

However, one step back regression is not sufficient in most circumstances when dealing
with realistic data sets. Hence, the higher order 4RMA model is required to improve

performance.

Vi =0y st +by ,tdy,  +6-0 -0 +&; (6.7)

Equation (6.7) represents an ARMA(8,7) model which regress eight steps back to y,

and includes seven moving average sectors. The parameters are calculated and
optimized by the least square algorithm program to make the minimum sum of the
squared differences between forecast and actual series value. Detailed calculations are

presented in the next section.

Differently structured 4RMA models were tested against the original data. The best
combination of autoregressive part and moving average part were selected. There are
two ways to change model structure: first, varying the order of AR and M4 ; second, for
the same order model, different regressed sectors are chosen to form the AR and MA

part. For example, compared with ARMA(8,7) in equation (6.7), in the second case, the
model only picks y, ,, ¥,., asthe AR part and 6,¢, | as the M4 part. Then, the

expression changes to equation (6.8):

Vi=®hV st hy ,+0-0¢&,  +e (6.8)

To choose the best structure of 4RMA model, the autocorrelation of the time series
need to be calculated. Those data sets which have high correlation with the forecast

target are chosen to construct the model. However, as shown in Figure 6.2, no
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significant correlations existed in the data sets. In such circumstances, all combinations
of AR and MA sectors need to be tested to construct different models. The forecasting
error of each model, which is the accumulative absolute difference between forecast
and real data, is recorded and compared. The model with minimum forecasting error is
applied to carry out the prediction. This process is time consuming. A huge loop
program was developed to perform this task. The program regresses eight steps back to

form the autoregression part and seven steps back to form the moving average part.

It is important to note that whatever the model coefficients may be, the forecasting

value y, must be finite for the time series model. This leads to two conditions of the

ARMA model, the stationarity condition for the autoregression coefficients and
invertibility condition for moving average coefficients (Sufi, 1988). Considering an

ARMA(1,1) model in equation (6.9)

V=@ Y, +6-0 -¢_ +¢ (6.9)
Letting ¢ = ¢+, the equation can be expressed as

V=@ Y, +06—6,-6,_,+¢,_, (6.10)

Substituting y, ,iny,, y,is rewritten as

Y. = ¢12yz—2 +A+¢)0+(p -6, — b, +¢ (6.11)

The successive elimination of y,_,, ¥, ;... y,., will result in the removal of the

autoregressive term and produces the final form of the model. Finally, by summing the

infinite series and eliminating the negligible term, y, can be expressed as below:

Y VR S PR N U VLo S P
1-¢, (6.12)

+ ¢1i(¢1 —0)E it +E

i

The expression is a pure moving average model with a constant term §/(1—¢,) and

moving average coefficients of (4, —6,),¢,(4,—9)), 6. (4 —6,) ... of first , second , and
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third order respectively. It can be noted from the coefficient that y, can only be finite if
both the constant term and the different orders moving average coefficients

ZZ o ¢1i (¢, — 6,)¢, are finite. This finite condition can only be met when [¢1l <1. Finally,

it can be concluded that I¢1} <1 is the stationarity condition for the regressive term.

The invertibiltiy condition works on the moving average coefficients 6. Starting with

the same ARMA(1, 1) model, the error term ¢, can be expressed as:

& ==y, —0+y +0¢ (6.13)
And, by analogy,
E ==V ,—0+Y  +0E, (6.14)

Similarly, by substituting ¢, ,, and through successive substitution of¢, ,, ¢, 5... »,, this

t-1°

can be written as:

Y = (1+91 +912 +"')5+(¢1 _‘91)371—1 '“91 (¢1 "91)3’1—2

2 i (6.15)
+O(h =0y 5+ +0 (B -0y i+ +g

The ARMA(1, 1) model has changed into being purely autoregressive, containing only

the past observations y, , and the current error term ¢,. The model includes
autoregressive parameters (¢, —6,),6,(¢4,—6,), 9]2 (¢, —6,) ... providing relative weights.
The model y, can be finite only if both the sum of the parameter ZZO 0, (¢, — 6,)p, and

the constant term are finite. To satisfy these conditions, the numerical value of ¢, must
be less than unity or '91, <1, the invertibility condition is |91| <1 for a time series process.

Conforming to the invariability and stationarity condition, the time series need to be
stationary. However, the time series observed did not meet the necessary condition of
stationarity, and in such circumstances mathematical transformations must be
performed to change the series to fulfil this requirement before further analysis can be

undertaken. Without such transformation, further analysis would be inappropriate.
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6.3 Stationary and Nonstationary Time Series

The concept of stationarity is best explained in terms of probability distribution. In a
stationary time series, the probability distribution does not change over time. However,
in the real world, there are as many nonstationary series as there are stationary ones
(Gould, 2008, Suri, 1988). Most economic and business time series are, in fact,
nonstationary, which is the nature of economic phenomena, containing growth and

decay.

ARMA time series models are estimated only if the series is stationary and conforms to
stationary and (inevitability) conditions. Nonstationary series needs to be processed to

be stationary time series.

A series could be nonstationary in two ways, its mean and variance. The most common
form of nonstationarity exists in the mean of a series, which is usually referred to as
“trend in the mean”. A series of this nature can easily be converted to a stationary series

simply differencing the original series. The observed series, y,, y,... y, is sampled

from a nonstationary time series process. If this series is differenced successively, a

new series is then created, w;, w, ... w,_,, which is expressed as

t-12

W =Y, =V
Wy, =)= ¥, (6.16)
W =V =Y

By differencing the original series, the trend has been removed and the mean of new

series w 1s around zero.
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Differenced Sales history data
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Figure 6.3 Differenced sales history data

As shown in Figure 6.3, the growing trend in the original data has been removed.
However, the oscillations are even bigger. The negative values in the differenced series
have no physical meaning. After making the forecast based on the processed data, the

final result will be post processed to the original scale with de-differencing.

On the other hand, the logarithmic transformation is applied to remove the variability
from the series. The processing is shown in equation (6.17). However, normally the
variability cannot be completely removed. Such a transformation generally removes a

substantial part of the variability but rarely removes it completely.

w, =Ln(y,); (6.17)
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Logarithm of Sales data
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Figure 6.4 Logarithm of sales history data

Figure 6.4 show the logarithm processed time series data. The variation scale in Figure
6.4 has become smaller. The range of the oscillation is from 6 to 7.5. The overall shape
of the logarithm data remains the same as the original. The growth trend still exists in

the data and the mean is not zero. After logarithm processing, the processed data is still

not stationary.

Applying the logarithm first and then differencing, both the trend and variation can be
partially removed. Figure 6.5 shows the preprocessed data. The oscillation range
becomes much smaller, and the growth trend is removed. The mean of the processed
data is nearly zero. The series has become the stationary time series data. Forecasting

methods were then applied to these data. The results are compared in later sections.
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Logged and Differenced Sales history data
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Figure 6.5 Logarithm and differenced sales history data

Such pre-processing makes the time series data have zero mean and smaller oscillation.
However, in some cases, the data might still be very nonstationary. It needs
ofdifferencing and logarithm processing further steps. However, after too much
stationary processing, the data may loose much of its information. When the data is
converted back to the original scale, the result could be a nonsensical forecast.
Generally, two or three times of stationary processing is the maximum. In our case, one

step stationary processing was performed.
6.4 Least Square

The optimization algorithm Least Square is applied to calculate and optimise the
parameters of the ARMA model. The least square technique was originally developed
by Gauss and Legendra in the early 19" century. It is thus defined by Gauss: the most
probable value of the unknown quantities will be that in which the sum of the squares
of the differences between the actually observed and the computed values multiplied by

numbers, which measure the degree of precision is a minimum.
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Suppose our original data ¥, can be produced from a stochastic process for which the

mean value is a linear function of a parameter vector 4, i.e.
E[Y1=x/0 (6.18)

where x, is a known vector fort =1, ... ,r. The aim is to obtain a good estimation of &

denoted by @ . Values of @ are calculated which minimise the sum of the squares of

the deviations between the observation, y,, and the mean of the predicted model,

namely, x” 6 , we attempt to minimise
s=2 (v, =% 0); (6.19)
1=1

s is the difference between real data y, and prediction x/ 6 . Differentiating the function

of s with respect to @ gives

(j; = 2"y +x"x0+(x"x) 6, (6.20)

Equating as/ 88 to zero yields

0=[x"xI""x"y; \ (6.21)

When 65/ 80 is zero, s in equation (6.19) reaches the minimum value and the solution

of@ in equation (6.20) is the parameter to make this least squared difference in

equation (6.19). In our case, y,and x,are both the original time series data with

different lags. g is the parameter matrix forg, ¢ and &, which is used in the ARMA

model. The ARMA(2,1) model is shown in equation (6.24). 3, is the forecast of y,

x:[”*} y=ll; (6.22)

yt—2

0=[x"xI"x"y=[¢ ¢, & 6] (6.23)
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Y, = x'0 =¢ VatP Yy ,+6-0 & +é&; (6.24)

The &, generated from the equation (6.23), can only minimise the square difference
of , . If the forecasting target changes to be y,,, or y,_, , the parameter @ is not suitable

to produce the forecast. The logic of our forecasting with the ARMA model was using
least square methods to generate the best parameters which could minimise the squared
error for all the history data, and then applying these parameters to the forecasting

model to predict one step forward future data. The hypothesis is, if the parameters
@ can minimise the square error for all the history, it might work for the immediate
future. & needs to be updated for each round of calculations. The classic least square,

discussed previously, is inefficient to perform this task. If the estimated parameter 8 is
made from r observations, then it is not possible to make use of this prior knowledge
subsequently. It is necessary to update the estimates having obtained one more
observation, making a total of r+/ observations. Suppose the inputs matrix and target

matrixes are as below

Vi Y2 r
X = yr Ve Y= Yrs : (6.25)
yr+n—1 yr+n—2 yr+n

Setting x, = [y,_1 Vs ] , then the inputs matrix becomes

Y= (6.26)

The forecast is y,,,,,. The estimated parameter 0, is calculated recursively based on the

history data and previous & . The recursive least square is employed as the optimisation

method to produce @ . The algorithm is explained in the equations below:
6r+1 = gr + kr+] (yr+1 - er+1ér )7 (627)
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- _fi;xr_ﬂ__; (6.28)
1+ X PrXin

r+l1

Furthermore, p, can be computed recursively from:

X
Pra=|I-——1p; (6.29)
1+ X PrXiq

. -1 . .
p,is defined as p, = [xf x,] . After executing the recursive process, the parameter

én is generated and applied to the forecast.

- T A .
Yiina = xr+n+16r+n = ¢l Veen T ¢2 Vyena T 6 - 01 Chin T E s (630)

This theoretical procedure was programmed and implemented in Matlab as follows:

Matke forecast for t month sales y, and process till the end of original series at y,,

Construct the ARMA(p,q) model, with p<t and q<t
While t < size of original data

Construct input matrix X and target matrix ¥

X = I_yz—z yt—p—lJ; Y= [yt—l];

Calculate P, K,according to recursive least square algorithm
Update 6,_as 6,_, = é,_z +k,_ (y,_l - x,T_Ié,_z)

Constructing the forecast matrix Xras

X, = b’t-l y,_,,];

Produce the forecast y,as y, =X ;é,hl

Calculate the difference between 3, and y, , ¢,

Add the absolute difference to the performance function

Update t as t+1
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After setting p and ¢, the frame of the regression part and the moving average part are

constructed. The forecast produced by this 4RMA(p,q) model will be ., or

¥,+2 -depending on the value of p and g. Assuming p> ¢, the first forecast generated in
the first loop will be y ., , which is the y, in the program. The data before 7, i.e.

Y, po1s Y 5 and successive terms become components of the autoregression terms in

the model. These data also form the input matrix X [y R 78 j The data y,,, which

is y,., becomes the result or target of the ARMA(p,q) equation. It is on the left side of

the model equations (6.31).
yp+i =4V, t P+, — 0,8, 0 T E L (6.31)

Then the variables of the recursive least square can be calculated from the equation.

The coefficient matrix 9, is computed from Pp.2, Ky
0,0=0,+k [y, ~x".6) (6.32)

There are two parts in the calculation (6.32) for é,m . The first factor is the last step ép .
The other is a polynomial of y . The last step @ is inherent from the last round of the

loop. In the initial situation, 0 is a zero matrix. In the second part, K+, can be

calculated from equation (6.28). The xzﬂ is the same as the transpose of the input

matrix X [y o T y1J. It is quite clear that the second part considers y,,, — xgﬂé e

7

»a0, 1s the expression of

the difference of the last step forecast and real value, where x

yp+1'

Using 6

.1 » the forecasting for the time series before p+2 achieved minimum squared

error. It can be assumed that this parameter could be suitable for one step ahead

future y ., . With these parameters ép combining with the forecast matrix Xy

+1 2

[y il Yo N J , the next step forecast y,, is calculated as:

yp+2 = x;T7+2ép+l (633)
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The difference between y,,, and real value y,,, will be recorded to use as the
component of the future ARMA model and count as the accumulative forecasting error
in performance function. the ARMA(p,q)’s forecasts arrive at the minimum square error

for y,.,,. Finally, the program moves back to the start to run the whole process for the
prediction 3, ;. The program loops until generating j, . The program code is provided

in Appendix B.

6.5 Forecasting Program and Results

Based on the analysis of the data preprocessing, four different forms of preprocessing
are illustrated. Our forecasting program tested the performance of the forecasting in the
following sequence: data without any preprocessing; applying logarithm to the data;
differencing the original data; applying both logarithm and differencing to the data.
Since the differenced series had some minus numerical value, which could not be
processed with logarithm, the differencing and logarithm preprocessing was not applied.

For each of these four branches, the same procedure was followed.

Since there was no significant correlation within the original data, during the
constructing of the ARMA(p,q) model, all the combinations of the autoregression terms
[ ¥, g V.1 ] and moving average terms [ &,_, ... &,_, ] were tested to form the structure
of ARMA(p,q). The absolute value of the difference between forecast and real data for
each particular (p,g)structured model were summed. This summed difference was
treated as the forecasting error in order to measure their forecasting performance.
Forecasting with minimum forecasting error was selected and the results are

documented in the following sections.
6.5.1 Data without Any Preprocessing

Without any preprocessing, the operational data for forecasting is the original data. The

program generated the best ARMA model with autoregression [ y,, ¥,, ¥, s ¥,.¢]and

no moving average. It can be written as:
j}t :¢1 Y2 +¢2 " V4 +¢3 “Viss +¢4 Vi +5+51 (634)
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The coefficient matrix & (4, &, ¢, ¢, 5 ]isproduced and updated after the eighth

sample in the original data. The forecast is plotted in green while the original sales

history data is in blue in Figure 6.6.
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Figure 6.6 The plots of forecast accompany with original sales

The green and blue curves are perfectly matched in the first eight months. This is
because the first eight months’ data were required to construct the model and calculate

the model parameters. The forecast in this period is set to be the same as the original.

The coefficient matrix @ is updated recursively to fit the data pattern. The programs
need to learn the data pattern from the previous data history. Hence, forecasting error
were calculated for the last 15 months’ forecasts only, which are the data sample in the
range of 50 - 64 (Figure 6.6). The overall forecast performance is poor. The green
curve reluctantly follows the overall trend of the blue curve. There is significant
difference in the details of the variation. The accumulative absolute difference is 11806
units. The average forecasting error for these 15 months is 787 units. In the next step,

more testing was done to improve the forecasting performance.
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6.5.2 Logarithm Preprocessing

In this section, logarithm processing is applied to the original data. The preprocessed
series are programmed to generate the forecasting model. After producing the forecast
result, exponent processing is required to counteract the effects of logarithm
preprocessing. The program that generates the best ARMA model for logarithmic data

has three autoregression factors at [ w,_, w,_; w,_,] and a single moving average factor

at [ &,_5 . It can be written as:
W, =G W, th W+ W+ —OiE 5+, (6.35)
where

w, = Ln(y,) (6.36)

Logarithm processing diminishes the variation scale, but does not remove the growth
trend from the original. Since the regression parts of the model constitute the termw, ,,
the coefficient matrix 6 [@, @, ¢, & 6,]is computed and updated from month 10

onwards. The first nine months’ data are used as initializing and building the structure
of the model. The forecasting results are plotted in green against the processed original

data in blue in Figure 6.7.
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forecast of logged sales history
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Figure 6.7 Plots of forecast against logarithmic data

It is obvious that there is a huge discrepancy between forecasting and processed
original data from the beginning of month 10 to month 20, when the model is

initializing the parameters. It is wise to ignore the forecasting error of this large

oscillation when the program is still accommodating the coefficient matrix 8 .
Therefore, concentration is still on the last 15 months’ forecasts. From month 50 to
month 60, the forecast increases and follows the logarithmic data pattern; the difference
of the detail variation is still great. However, after month 60, the forecast cannot track
the movement of the logarithmic data. Neither the trend nor the variation pattern can be

followed.
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forecast and sales history
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Figure 6.8 Plots of exponent forecast and original data

The exponential function is applied to the forecasting results (equation (6.37)) as
postprocessing. The exponential forecasting result is plotted against the original data in

Figure 6.8.

¥, =exp(i,) (6.37)

The exponential forecast results do not match the overall shape of the original data, and
show a greater variation scale. The accumulative absolute difference for the last 15
months is 11535 units. The average forecasting error is 769 units. Compared with the
forecasting without any preprocessing, logarithm preprocessing improved the
forecasting performance on a small scale. The accumulative forecasting error becomes

smaller. However, the overall performance is still not good.
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6.5.1 Differencing Preprocessing

Differencing processing is the successive subtraction between two continued series.

The model generates minimum forecasting error when the autoregression part is

[w,_, W,_, W,_,W_s W_g],and the moving average partis [&,_,] . It can be written as:
W, =@ W+ W+ W, +d, W s+ -w_+0—0,5,, +&, (6.38)
where

W =V~ (6.39)

The differencing has changed the overall shape of the original. The mean of the new
series is around zero. The forecasting results in green are plotted against differenced
original data in blue in Figure 6.9.
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Figure 6.9 Plots of differenced data and forecast
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Since the furthest regressive part isw,_,, the coefficient matrix 0 [¢, @, ¢ ¢, ¢; 6 6,]

is initialized in the first 10 months data. Ignoring the starting stage and the last 15
months, forecasts are selected to measure the performance. It can be seen from Figure
6.9 that the forecast essentially matches the variation pattern in the last 15 months.

However, an enormous gap still exists in some details of oscillation amplitudes.

During the postprocessing illustrated in equation (6.40), the first original data y, is kept
as the origin. The forecast for the second original data y, is the sum of the forecast of
the first differencing data and this origin y,. The rest of the postprocessed data can be

calculated recursively according to the formula
Yo =0 +w (6.40)
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Figure 6.10 Plots of forecast and original

The postprocessed forecast is plotted against original data in Figure 6.10. Comparing
Figure 6.10 to Figure 6.9, the postprocessed forecast does not perform as well as the
forecasting for the differenced original data. The discrepancy in the amplitude has been

enlarged so that this forecast is not reliable. The accumulative differences are 10219
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units from month 50 to 64. The average forecasting error is 681 units. The error is
smaller than both preprocessing methods discussed before. However, the forecasting

performance has not improved significantly.
6.5.3 Logarithm and Differencing Preprocessing

In this section, the original series are processed by the logarithm function first to
diminish the variation, and then the logarithmic data are differenced to remove the

trend. In this case, the model generating the minimum forecasting error has the
autoregression partas [ y,_, ¥,., ¥,_s V.5 | and [ ¢, ] for the moving average part. The

equation expression is
W, =@ W_ +¢ W, +¢ W s+, -w_+5-0 s +¢, (6.41)
where

Z, =Y =V w, = Ln(z,) (6.42)

Figure 6.11 plots the preprocessed data against forecasting. The data scale becomes
smaller (from -1.5 to 2). The mean of the processed data is around zero. In the last 15
months, from month 50 to month 64, the forecast can basically match the variation
pattern of the original data. However, the differences between the oscillation

amplitudes are still very great.
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forecast of logged and differenced sales history
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Figure 6.11 Plots of logarithm and differenced original data and forecast

The postprocessing in this case includes two steps, adding the origin to the forecast
value and then calculating the exponent of the result. The postprocessing results are
plotted against the original data in Figure 6.11. The forecast predicts neither the trend
nor the variation pattern. The ARMA model works well only for the stationary
preprocessed data with a mean of zero and small variation. But if the results are

converted back to the original scale, the forecast results are not acceptable.
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forecast and sales history
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Figure 6.12 Plots of forecast and original data

In the logarithm and differencing model, the accumulative difference is 11258 units and
the average forecasting error is 750 units. The forecasting error is greater than
difference preprocessing but still smaller than the model without any preprocessing. It
can be concluded that forecasting with logarithm and difference preprocessing is not

reliable.

6.6 Effect of Different Forecasting Methods on the
Supply Chain Model

In this section, the forecasts generated by the first-order exponential prediction formula
(the forecasting equation with ©) and ARMA are compared to the hub forecasting in the
original supply chain model. The performance of each forecasting method is measured

by the cost of holding inventory and backlog orders. It is calculated in equation (6.43).

Cost = Finy(t) + Hiny(t) + 2 x Ho(t) (6.43)
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The 64 months’ sales history of the lung demand valve in Draeger is applied as the
sales demand series. The safety stock is fixed at 150 units (the same as the real safety
stock in Draeger). Different forecasting methods need different training periods to track
and learn the data pattern of the time series. In order to avoid the effects of training

periods, the last 15 months’ forecasting data are chosen to measure their performance.

The last 15 months’ sales demands are shown in Figure 6.13

Sales history
i | ﬁ A I
§

: : : A

3500 -~ = m o = o B i

! ! 1 [ i

| ‘ A N O
3000F - - ------ b e e

/‘1 ]\ | A | \ |

i o H t |

.w\ [ : A : | \‘ i i |

I i i J [ i :
N\ A AL ;

g 2500 ;rﬂ\ 7775 1/\ ARRE R :
g !\ i { 3 |/ i r‘ L | i }
N A A :
20000 ~f- b - - e f -~ = = | 00 . W [N N S U S [
N Y :

P 1 y 1 \|,; ‘;\;’ 1

o z ! \A"! <
1500 F - = - m oo [ S N R .
/ | i q ' i Y 1

| I Lo | |

i
. | o |
1000H - o m oo PR \4774-T ———————————— -
| [ / 1 |
1 I H L
50 55 60 65

Month

Figure 6.13 The Last 15 Month Sales History

In the ideal case, the forecast perfectly matches the incoming sales orders. The factory
production can always deliver the right amount of inventories to satisfy the demand
without any backlog order. Both factory and hub inventory are stable at the safety stock

level. In this situation, holding safety stock in the hub and factory inventory becomes

the major cost.
Costs =150x 15+ 150x 15 = 4500

However, as perfect forecasting does not exist, the costs are always higher than 4500
units. In the first test, the first-order exponential forecasting formula was applied to

minimise the cost of holding inventory and backlog order. The forecasting formula is

Hforecast(t+2) = (1 - 9) Horders(t) + 0 Hforecast(t+1) (644)
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Changing o, B and 6 from 0 to 1 in 0.1 step, the supply chain model achieved the

minimum cost at 22427 units when a=0.2, = 0 and 6= 0. The forecasts are plotted in

red against sales inputs in blue in Figure 6.14.
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Figure 6.14 First-order exponential forecasting result (red) and original sales data

(blue)

When 6= 0, the forecast in formula (6.44) is equal to the actual sales of two months ago.
Inspection of Figure 6.14 shows the forecast (in red) is delayed by two months
compared to the sales curve (in blue). Since there is no production limitation, the
factory production can meet any hub requirements. The factory inventory in Figure

6.15 is stable at the safety stock level. However, the hub effective inventory displays

great oscillations, with a peak of 1500 units and a low of -2000 units.
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Factory Inventory
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Figure 6.16 ARMA forecasting result (green) and original sales data (blue)
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Figure 6.17 Inventory response with ARMA forecasting

The hub inventory plotted in Figure 6.17 still displays large scale oscillations, with the

lowest backlog at —2000 units and the inventory peak at 1600 units. The hub inventory

varies in a similar range to that in Figure 6.15. The system performance has apparently

not been improved. The relevant supply chain costs are 18524 units, which is much

bigger than the ideal cost.

After testing the ARMA model with four type of preprocessing, it can be concluded that

the overall forecasting performance is not reliable. The absolute accumulative and

average error of these four forecasting methods has been listed in Table 6.1. The

minimum cost is generated by the ARMA [ ¢, ¢, ¢, ¢, ¢s 0 6,] model with

differencing preprocessing. However, the cost is still too high to be acceptable.

No Logarithm Differencing Logarithm and
Preprocessing Differencing
Accumulative | 11806 11535 10219 11258
error
Average error | 787 769 681 750
Supply chain | 24313 23176 18524 22109
costs

Table 6.1 The costs of the forecast
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From the analysis given here, the ARMA model could produce a good forecast on the
stationary preprocessed data which has a mean of zero and small variation (Figure 6.11
and Figure 6.9). However if the forecasts were converted back to the original series
scale, the post processed data could not track the data pattern and predict the trend or
variations (Figure 6.10 and Figure 6.12). The ARMA model is a linear forecast model
which is suitable for analyzing the stationary series only. However the research sample
data is quite nonstationary and has inbuilt nonlinearity. Thus, other nonlinear forecast

techniques are required to handle this problem.
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Chapter 7:

Neural — Wavelet Forecasting

Financial time series forecasting has become one of the biggest challenges in the
application of forecasting. Francis and Cao (2001) have explained that the financial
time series is nonstaitionay and inherently noisy. Previous studies have demonstrated
that market price and sales movements vary in a highly nonlinear, dynamic manner,
rather than purely randomly (Blank,1991). To deal with the embedded nonlinearity and
increase the reliability of forecasting, neural networks have received considerable
attention (Hsiao, 2006; Xie, Zhang and Ye, 2007; Grudnitski & Osburn, 1993). Neural
networks provide universal function approximations to map nonlinearity, without

making prior assumptions about data properties (Haykin,1999).

Discrete wavelet decomposition is applied to divide the original financial time series
into multi level approximate and detailed coefficients so that the neural network can
then be applied to the denoised data and improve prediction accuracy. The main idea of
wavelet decomposition is to transform the original data into a different wavelet basis,
where the large coefficients mainly describe useful information, such as trends, and the
small coefficients represent noise and variations. By modifying the coefficients in the
new basis and suitable threshold reconstructing back to the original data domain, noise
can be removed and different data characteristics can be achieved. Wavelet
decomposition and reconstruction methodology developed by Donoho and Johnstone
(1998) for estimation. It has been implemented in many applications, e.g. wavelet

toolbox in Matlab (Gao,1997).

The idea of combining the neural networks with multiscale wavelet discrete
decomposition has been proposed by previous research (Bai, 2001, S.J.Yao, 2000,
AM.Azoff, 1994).The properties of wavelet transforms emerging from the multiscale
decomposition of time series allow the study of both stationary and non-stationary time

series. Moreover, the simple wavelet neural network requires shorter computing time to
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process the data as compared to the multi layer feedforward neural network
(T.Yamakawa, 1994). Hence combining wavelet and neural network is a powerful data
analysis method to solve nonstaionary time series forecasting. The proposed neural
wavelet model for time series prediction is shown in Figure 7.1. Given the limited time

series g(¢), the aim is to predict one sample forward, g(¢+1). The first oval in the figure

represents the wavelet processing. The circle ‘NN’ stands for neural networks. This
hybrid scheme includes three stages. In the first stage, the time series were decomposed
with a wavelet function into three sets of coefficients. After the threshold
reconstruction of the decomposition coefficients, three new time series were
reconstructed. In the second stage, each of these three new time series were predicted
by a separate NN. The prediction results were used as inputs for the third stage, where

the next sample of g(¢) was derived by NN4.

Wavelet Thresh 1d “
g@ { avele esho NN 2 M4 Prediction
Decompose Reconstract f' i : Z
‘w\\ P

Figure 7.1 Overview of the neural-wavelet forecasting model
7.1 Data Preprocessing

To make the neural networks more efficient, some preprocessing needs to be done on
the inputs and targets of the neural network. In the research, the target was the sales
data g(t), and the inputs were the wavelet decomposition of g(t). The sales g(t) needed
to be normalized and fall into the range between minus one to plus one. The algorithm

used in this conversion is below.

s=ox—STmin@®) oo, (7.1)
max(g(¢)) — min(g(?))
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where s is the data element in g(?), min(g(t)) is the minimum data in g(t) and max(g(t))
is the maximum data in g(t). It is important for the preprocessing to avoid losing any
information built in the old time series. After preprocessing, the new time series keeps
the same shape as before (Figure 7.2). The detail characteristics such as trend and

oscillation in the old series have been preserved.

The outputs of neural networks have the same scale as the input, which is the
preprocessed g(t). Therefore, post processing is required to convert the output forecast

back into the scale of sale series.

Sales Data
1 T T T T T T

70

Figure 7.2 Preprocessed sales data

7.2 Wavelet Analysis

The preprocessed original series need to be transformed to remove the noise and reduce
the complexity. There are many ways to decompose or transform the data. Wavelet
transform and Fourier transform are two of the most famous. The Fourier transform is
very useful, as the frequency content can be efficiently expressed. However, the
drawback is that it has only frequency resolution and no time resolution. The time

series samples contain numerous nonstationary or transitory characteristics: drift,
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trends, abrupt changes, and beginnings and ends of events. Fourier analysis is not

suited to detecting them (C.Sidney, 1998).

Alternatively, wavelet analysis is a kind of time-frequency joint representation. It can
provide the frequency characteristics and time information at the same time. By
decomposing the original data into many levels with wavelet function, different levels
of approximation and variation detail can be extracted from the original data. Wavelets

provide the way to estimate the underlying function of the data.
7.2.1 Discrete Wavelet Transform

Discrete wavelet transform (DWT) was chosen to perform the decomposition. For a set

of time series data g(¢) € L*(R) 3 it can be expanded as below:

g)y= Zckp, O+ X Xd(.ky, .0 (7.2)
k=—o0 j=0k =~

In this expansion, the first summation gives the coarse approximation of g(¢) . For the
second summation, as the increasing of index j , a higher resolution function is added.

In equation (7.2) ?; (1) 1is the scaling function, y/j k(t) is the wavelet function. The

scaling function is defined in terms of integral translates of the basic scaling function

by
P (1) =@ - k), keZ (7.3)

A two dimensional family of functions is generated by scaling and translating the basic

scaling function (equation (7.4)).

P, 6)=2""p 1 -k), (7.4)

* This is the space of all functions with a well-defined integral of the square of the modulus of the
function. ‘L’ signifies a Lebesque integral, the ‘2’denoctes the integral of the square of the modulus of the
function, ‘R’ states that the independent variable of integration t is a number over the whole real line.
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By the definition, the scaling function can be expressed in terms of a weighted sum of

shifted @ (2t)as:

9, ()= Zh(n20Qt -n), neZ, (7.5)
N

while the wavelet function can be represented by a weighted sum of shifted scaling

function P (2t)

w(t) =L h(MV2pQ2t -n), neZ; (7.6)
n

the function generated by (7.6) gives the prototype wavelet w(¢) for a class of

expansion functions:

v, (0 =2"y@2t~k), (7.7)

where 27 is the scaling of t, 2° Tk is the translation in t, and 2/ /2 maintains the norm

of the wavelet at different scales. The wavelet coefficient h1 (n) is required by

orthogonality to be related to the scaling function coefficients h(n) by
() = (1) h(1 =) (7.8)

Once given the prototype or mother wavelet iy (¢) , the scaling function and wavelet
functions can be generated and summed to form the original data. The ‘db2’ wavelet
has been applied as mother wavelet (Figure 7.3), which is the Daubechies family
wavelet. ‘2’ is the order of the wavelet (Raghuveer, 1998). These wavelets have no

explicit expression except ‘dbl’, which is Haar wavelet.
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Figure 7.3 ‘db2’ prototype wavelet

The coefficients c(k)and d(J,k)in the wavelet expansion equation (7.2) are called the
discrete wavelet transform (DWT) of data g(¢). These wavelet coefficients can be used
as description, approximation, and filtering of the original series. c(k)and d(j,k) can
be calculated by the inner products of original data g(¢)and wavelet scaling function

D (t) (equation (7.9) & equation (7.10))

¢, (k) =g, (1) =g, (D)dt (7.9)
and

d; (k) ={g(n).y ,, () =[ gt ,(D)dt (7.10)
7.2.2 Wavelet Decomposition

Based on the recursion equation from (7.5), the time variable was scaled and translated

to give

(271 —k) =S h(nW20(2" t =2k —n) (7.11)
7

After changing m = 2k + n, this becomes

0271 —k) =3 h(m -2k 202" t = m) (7.12)
m

Now, by considering the discrete wavelet transform of the g(¢), which is equations
(7.9) and (7.10),
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¢, (k) ={g(0),p,, () =[g0)2" p, ,(H)dt (7.13)
by using (7.12) and interchanging the sum and integral, this can be rewritten as

¢, (k) =T h(m-2k)[ g(t)2V""? (2" t — m)dt (7.14)
m

In this formula, the integral is the inner product with the scaling function at a scale of

j+1, giving

¢, (k)= h(m—2k)c,, (m) (7.15)
m

The corresponding relationship for the wavelet coefficient is

d, (k) = Sy (m~2k)c ., (m) (7.16)
m

Equation (7.15) and (7.16) show that the scaling and wavelet coefficients at different

levels of scale (¢, (k) andd (k) ) can be obtained by convolving the expansion
coefficient at scale j +1 (c,,,(m)), the coefficientc ,,(m) time h(-n), h,(-n) and
down sampling to give the expansion coefficients at the next level of ;. In other words,
as Figure 7.4makes clear, €, (k) are filtered by two filters with coefficient A(—n) and
Iy (—n) , after which, down sampling gives the next coarser scaling coefficient ¢, and

wavelet coefficient d I

down sample riml

down sample
a) —pl 2 P x(2n)

i

hl(‘n) ' g 12 E—— d

G

L i) |l b .

down sample

Figure 7.4 Discrete wavelet decomposition
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In the top right of Figure 7.4, the down sampler takes x(n) as input and produces output
y(n) as x(2n) . In our case, the output y(n) is the odd index term x(2n +1) . This is

defined by the filtering process. When convolving the input coefficients with filters, the
convolution ‘smears’ the inputs and introduce some extra samples into the results

(Jeruchim, 2000).

The filter implemented by A(—n) is a low-pass filter (i.e. low frequency passed) and the
one implemented by A, (—n)is a high-pass filters (i.e. high frequency passed). Those
high pass filter coefficients, which are wavelet coefficients, consist mainly of high
frequency noise and represent a detailed variation of the original. These low pass filter
coefficients, which are scaling coefficients, are called approximation coefficients. They
are the identity of the data, and express the overall shape and trend of the original. They
contain less noise information, compared with the original data. In Figure 7.5, ‘db2’
wavelet is used as the mother wavelet to decompose the data s into two levels. Two
detail coefficients d; and d, and one approximation coefficient a, are produced.

high fo! i
igh pass own sample detall coef

s D1(-0) o 12 e A detail coefs
Ll hien) ol 1z a .
approxmation coefs
low prass down sample » hi-1) e A2

Figure 7.5 Two stages two bands decomposition

As shown in the schematic figure above, in the first stage, the two filters divide the
original data into a low pass and high pass bands, and produce detail coefficients d; and
approximation coefficients a;. In the second stage, the approximation coefficients a; is
decomposed again to generate the second detail coefficient d; and second level
approximation coefficient a,. The first stage divides the original data into two equal
parts; the second stage divides the lower parts into quarters. In the program, the original
data‘s’ comprises 64 sets. After first stage decomposition, the detail coefficient d;
consists of 33 sets. In the second level approximation a, has 18 sets, the same as detail

d,. Figure 7.6 shows the original ‘s’.
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Figure 7.6 Preprocessed original data S

The results of decompositiona,,d,,d, are plotted on Figure 7.7. The overall trend of
the series can be observed from a, , which is the ‘identity’ of s. However, by observing
d,andd,, it is still hard to clarify the detail of the variation or frequency of 5. On the
other hand, the quantities of the samples for each of the coefficients are so small (a,

has only 18 sets, d,has 18 sets and d, has 35 sets). It is hard to make a forecast based

on this short history data. To solve this problem, the wavelet reconstruction was

implemented and is introduced in the next section.
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Decomposition at Level 2 g(¢) =a, +d, +d,

approximation coefficient a2
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Figure 7.7 Decomposition of original data
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7.2.3 Wavelet Reconstruction

Wavelet decomposition breaks input series data into different levels of detail and
approximation coefficients. It is then important to assemble these components into a
new series, which is suitable for forecasting. This process is called wavelet
reconstruction. Since it is the postprocess of decomposition, the reconstruction can be
made from a combination of the scaling function and wavelet coefficients. Considering

a set of data g(¢) in the j + 1 scaling function, this can be written in terms of the scaling

function as:

gt)y=Y ¢, (k)2U" o2/t — k) (7.17)
k

and

¢ a(k)= ¢ (mhtk—2m)+ S d (m)h (k —2m) (7.18)
m m

where ¢ is the scaling or approximation coefficient and d, is the wavelet or details

coefficient. This combining process can be carried out at any level as long as there are
appropriate scale and wavelet coefficients. In Figure 7.7, the inputs ay, d; and d, are the
coefficient generated from wavelet decomposition in the previous section. A sequence
of first up sampling followed by the filtering process was applied in the reconstruction.
As shown in the top left of Figure 7.8, the up sampling means that the input to the filter
has zeros inserted between each of the original terms. The output

y(2n)is x(n) and y(2n + 1) is zero, where the input data is stretched to twice its original

length and zeros are inserted.
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Figure 7.8 Two stages two band reconstruction

By up sampling and combining different coefficients, the output s will be the same as

the original data. However, it does not make any sense to decompose the original

dataset into a,,d, ,d, and then construct back to itself again. Alternatively, the inputs

series are simply ‘denoise’ or threshold reconstructed. A two stage reconstruction is

carried out on a; and zero coefficients ford|, d,. The reconstruction result is shown

below.
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Figure 7.9 Threshold reconstruction with a,
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coefficient a, in Figure 7.7. However, the size of the data is still 64, which is the same

as the original. Reconstruction increases the size of the data set and makes forecasting

7.10 and Figure 7.11. The oscillations of the reconstructions are more frequent than the

coefficients oscillations in Figure 7.7. Thus, it is easier for neural networks to pick up
coefficient d1

The overall pattern in Figure 7.9 is similar to the pattern of the approximation
more feasible. The threshold reconstruction based on d, and d, is shown in Figure

the oscillation characteristics.
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Figure 7.11 Threshold reconstruction with d,

Some researchers (Bai, 2001, S.J. Yao, 2000, Xie, 2006) have used decomposition
coefficients directly to make forecasts. However, this is only suitable for large size data
sets, which can generate numerous wavelets coefficients. In our case, the size of the

series was not large enough.

7.3 Neural Networks

A neural network is an interconnected assembly of simple processing elements, units or
neurons, whose functionality is loosely based on the animal neuron (Robert, 1999). The
processing ability of the network is stored in the inter-unit connection strengths, or
weights, obtained by a process of adaptation to, or learning from, a set of training
patterns. The network function is largely determined by the connection between their
elements. The neural network can be trained or the weights of the connection between
each element can be adjusted to perform a particular function. In Figure 7.12, the neural

networks are trained to generate particular outputs based on inputs and targets.
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Figure 7.12 Neural networks training

The network is adjusted, based on a comparison of the output and the target, until the
network output matches the target. There are generally four steps in applying and

training neural networks:

= Assemble the training and testing data;
= Create the network object;
= Train the network;

= Simulate the network response to the testing inputs.

In the first step, the training and testing data is assembled as the wavelet processed
sales series. In the next step, the network object or the architecture of the network needs
to be designed. After building up the network, an efficient training algorithm is chosen
to train the network and update the network weights. If the training result is not
acceptable, the network needs to be redesigned and trained again. Finally, the trained
neural network is tested by the testing data which is not used in training. This process is
also called network simulation. After examining the testing results, it is possible to

decide whether to use this network or redesign it again.

7.3.1 Feed Forward Networks

In designing network architecture, three basic rules are considered, the pattern of
connectivity which is the structure and levels of the network, the rule for combining

inputs, and the rule for calculating the outputs.

The pattern of connectivity refers to the way in which the units are connected. The

neural network used in the research is a feed forward network. The feed forward
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network structure is illustrated in Figure 7.13. The inputs series is always fed forward

and no information feedback is presented.

Input Hidden Layer Qutput Layer
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Figure 7.13 Feedforward neural networks

There are two layers in our feed forward neural networks: hidden layer and output
layer. The series x;_ xg are the inputs to the hidden layer. Here ‘R’ is the size of the
input; ‘I'W’ represents the input neurons and their weights in the hidden layer; ‘S’ is the
amount of the neurons; ‘b;” determines the bias weights. The nonlinear transfer
function ‘ransig’(Figure 7.15) in the hidden layer allows the networks to learn both the
linear and nonlinear characteristics of the inputs. ‘O, is the output of the hidden layer
and input for the output layer. ‘LW’ presents the neurons and their weights in the
output layer; ‘by’ is the bias weight; ‘purelin’ (Figure 7.16) calculates the neuron
outputs ‘O;’. In the program, ‘O;’ is a single value which indicates the one step forward

forecast.

These two layers have different amounts of neurons, related weights and rules for
calculating outputs. During this research, the quantity of the neurons in the output layer
was kept as one and the numbers of neurons in the hidden layer were changed to
improve the forecasting performance for different inputs. The details of hidden layer

are shown in Figure 7.14. Figure 7.14 (a) is the expansion of Figure 7.14 (b).
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Figure 7.14 Expansion of the layer diagram

In the input layer, each input vector ‘x’ is connected to each hidden layer neuron
through the weight matrix ‘# ’. The pattern of the connectivity is described in the

weight matrix ‘W °. The weight “ wg, * is specified by three parameters: the first

subscript ‘S’ shows the neuron S where the weight connects to; second subscript ‘R’

shows the input R where the weight connects from; and the value of the weight * wg, .

A negative weight value will inhibit the activity of the neurons connected to, while a
positive weight value will serve to excite the neurons connected to. The absolute
magnitude of the weight specifies the strength of the connection. The weight matrix is

the network’s memory that stores the knowledge about how to solve a problem.

W“ W12 WIR
W=|wy Wy ... Wy
Woi Wsp oo Wi

The way of combining the inputs is summation, as shown in Figure 7.14.The inputs are

combined by summing their weight values and bias.

Two functions are applied as the rules for calculating output value in the neurons:

‘tansig’ in the hidden layer and ‘purelin’ in the output layer. These are known as
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activation functions. The ‘tansig’ function is a tangent sigmoid transfer function (Vogl,

1988). It maps the input to the interval (—1,1) with the algorithm below:

2
a=
1+e”

-1 (7.19)

2n

‘n’ is the input to the function and ‘a’ is the result.

tansig

Y, _

-1.5

Figure 7.15 Schematic graph of ‘tansig’

The ‘purelin’ function is the linear transfer function that calculates the neuron output

by simply returning the value passing to it.

purelin

Figure 7.16 Schematic graph of ‘purelin’
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7.3.2 Weights Adapting Rule

Widrow-Hoff Law or Delta Rule

Once the network structure is constructed, the neural network needs to be trained to
adapt the weights. At the start of the training, the initial weights are set at a small
random number. When the inputs are presented for the first time, it is unlikely that the
network could produce the correct output. The discrepancy between what the network
actually outputs and what it is required to output constitutes an error. This error can be
used to adapt the weights. One of the error correcting rules for adapting weights is the
Widrow-Hoff law or delta rule (Kevin, 2003). Consider Figure 7.17, the output neuron

has an activation output of o, and a target output?, .

Figure 7.17 Single weight connecting two neurons: the signal i multiplied by the

weight v j .
The error, d,, is given by
6, =t,~o, (7.20)
0, =) xw, (7.21)
J

X; is the input to the output neuron j. The delta rule states that the adjustment to be

made 4%, connecting neuron i and j, is

Aw, =16 %, (7.22)
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where 7 is a real number that stands for the learning rate (by how much to adapt the

weight).

The new weight is the sum of the adjustment and the old weight
w, =Aw, +w, (7.23)

During the training, the weights and biases of the network are iteratively adjusted to
optimize the network performance function. This performance function in our

feedforward network was a mean square error; the average squared error between the

networks outputs o, and the target outputs?, . The overall squared error can be defined

as:

E:%Z(t, -0,)’ (7.24)

J

The chain rule can be used to express the derivative of the error with respect to a
weight as a product that reflects how the error changes with a neuron’s output and how

the output changes with an impinging weight.

OE  OE 0o,

= (7.25)
ow, 0o, ow,
From (7.24) and definition of o, in (7.21),
22 =-4, (7.26)
do,
0o,
— =X, (7.27)
ow,
Substituting (7.26) and (7.27) back into (7.25) obtained
OF
—G—W_ = -‘5])61 (728)
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Considering the equation (7.28), to minimize the error the weights need to change in a

direction that is opposite to the gradient vector.
Backpropagation

The weight adaptation rule in feedforward networks is backpropagation. This was
created by generalizing the Widrow-Hoff learning rule to multiple-layer networks.
Backpropagation is a gradient descent algorithm, as is the Widrow-Hoff learning rule,
in which the network weights move along the negative of the gradient of the

performance function.

Backpropagation defines two sweeps of the network. The forward sweep of the
feedforward network is from input layer to output layer. The backward sweep is similar
to the forward sweep, except the error values are propagated back through the network
to determine how the weights are to be changed during training. During the backward
sweep, data pass along the weighted connections in the reverse direction. The neurons
will receive error signals from every neuron in the output layer. This double sweep

process is illustrated in Figure 7.18.
Input Hidden Layer Output Layer

~ o) o
(—:} '\\ J& "%“ }

i B O P,

N
¥ Feedforward sweep “’(g S

*  Feedbackward sweep

Figure 7.18 Feedforward and feedbackward sweep

The hidden neuron sends activation to the output neuron (solid line). In the backward

sweep this hidden neuron receive error signal from the output neuron (dash line).

During the training process, each input pattern has an associated target pattern, once all
outputs fall within a specified tolerance with respect to their target values, the training
is at an end. This tolerance value can be changed for different circumstances.

Backpropagation uses a generalization of the delta rule. The simplest implementation
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of backpropagation learning updates the network weights and biases in the direction in
which the performance function decreases most rapidly, the negative of the gradient.

One iteration of this algorithm can be written below as
Aw, (n+1) = Aw, (n) +ng(n) (7.29)

where Aw, (1) is the current weight change or bias change, 77is the learning rate,

g(n) is the current gradient. The procedure for backpropagation training is as follows:

Jfor each input vector associate a target output vector
while not STOP
STOP =TRUE
Jor each input vector
perform a forward sweep to find the actual output
obtain an error vector by comparing the actual and target output
if the actual output is not within tolerance set STOP = FALSE
perform a backward sweep of the error vector

use the backward sweep and training algorithm to determine

gradient and weight changes

update weights

When an input is presented to the network, the performance function which is the mean
square error is calculated. The gradient vector is computed by the training algorithm.
Then the neural networks determine how the weights should change. The process is
then repeated for each input pattern. An epoch is a complete cycle through each input.
The inputs are continually presented to the network, epoch after epoch, until during one

epoch all actual outputs for each input are within tolerance.

In the program, the Levenberg-Marquardt algorithm was adopted to calculate the
gradient of the performance function and determine how to adjust the weights to
minimize performance. It is a fast algorithm to calculate the adjusting weight. The

gradient g(n) and adjusting weight is shown in equation (7.30) and (7.31)
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gy =J'e (7.30)
Aw,(n+1) = Aw,(n)—(J"J + ul) " g(n) (7.31)

where J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights and biases, and e is a vector of network errors. The Jacobian
matrix can be computed through backpropagation. The performance function which is

the squared error will be reduced after each iteration of the algorithm (Kevin, 1997).
7.3.3 Training and Simulation

Approximation Level Two (a2) Reconstruction Prediction

After wavelet decomposition, the original time series g(r) were decomposed into three

coefficients at two levels. Then the time series were reconstructed with coefficient ay

and generated a, reconstruction series. The neural networks ‘NN1° in Figure 7.19 are

a?
reconstruction
Prediction

developed to predict the a; reconstruction series.

7 Wavelet Threshold x NNz a2
g(t) Decompose | Reconstruct reconstruction
Prediction
\\.m,«f'
—
dal
reconstructon
Prediction

Figure 7.19 Coefficient reconstruction prediction

‘NN’ is a two layer feedforward network, as introduced in previous sections. The
structure is detailed in Figure 7.20. It has 12 input vectors and 24 hidden neurons with
‘tansig’ transfer function in the hidden layer and a single output neuron with ‘purelin’
transfer function in the output layer. The output is the one step ahead prediction of the

a2 reconstruction series.
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Figure 7.20 Expansion of NN1

‘NN1’ was trained with the backpropagation Levenberg-Marquardt algorithm. The
whole series of a2 has 64 data sets. The first 49 data sets were used as training data and
the last 15 data sets as testing data. The input matrix X and target matrix T can then be

written as below

X X% X33
x x X
2 3 39 )
X = T=[x, x, - x40 (7.32)
X X3 X49

After training, this trained network was applied to simulate the one step ahead forecast.

The simulation input matrix was X;.The forecast was x,, distinguished with real

datax;, .
%39
X -

X, =" forecastX =[#,] (7.33)
%50

After the prediction, x; and x;; were moved out from the input matrix X and target
matrix 7. The new series xs9 and x5; were inserted into the inputs and targets matrix.

The network was trained again. The matrices X and target 7 changed to be:
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T=[x, x5 . x4; (7.34)

Based on the updated input matrix X and target 7, the forecast for x,, was produced.
This training-simulating process was iterated until predicting the last data x, in a,

reconstruction series. The forecasting result is shown in Figure 7.21. The blue curve

stands for the real data of the a, reconstruction series. The red curve is the forecasting

result X generated by neural network NN1. As discussed in section 7.2.2, the
coefficient a, represent the overall trend of the original data. It is very obvious that the
trend is going up with regular variation from month 30 to the end. The shape of the two
waves from month 30 to 45 and month 45 to 60 are very similar. The red curve follows

the trend and the movement of real data (Figure 7.21).

a2 reconstruction and forecast
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Figure 7.21 Comparison between forecast and a; reconstruction series. The blue curve

shows the a2 series, the red curve shows the forecast for the period 51 to 64 months.
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However the forecast cannot be entirely perfect. The neural network learns to follow
and repeat the pattern of history data which could result in deviations in the prediction,

such as the ‘red horn’ in month 51.

The neural network training and simulating program generates different results at each
round of simulation owing to random initial conditions. To minimize this effect, the
program was run fifty times and calculated the mean for each ten rounds. The results

are given in Table 7.1 and 7.2.

Real value 110 round | 2" 10 round | 3" 10 round | 4™ 10 round | 5% 10 round
at month 50

-0.026 0.031 0.03 0.021 -0.001 -0.033

Table 7.1 Mean forecast value for each ten rounds. The difference between the means

is always less than 0.06.

Real value | 110 round | 2" 10 round | 3" 10 round | 4™ 10 round | 5™ 10 round
at month 51

0.085 0.031 0.18 0.179 0.046 0.03

Table 7.2 Mean forecast value for each ten rounds. The difference between the means
of the second and third ten rounds and real value is less than 0.15. The difference

between the means of the first, fourth and fifth rounds and real value is less than 0.035.

Regarding the results in Table 7.1, the mean forecast value is relatively determined.
The difference between the different rounds is very slight. The mean zero was chosen
as the forecast. However, regarding the results in Table 7.2, the mean forecasts are
clustered around two numbers: 0.04 and 0.18. The decision has to be made by

considering other factors.

Detail Level Two (d2) Reconstruction Predictions

The prediction of detail coefficient at level two d, follows the same procedure as the
prediction of a;. While a; represents the trend of the data, d; shows oscillation details.
The character of the data pattern in a; and d; is different. Therefore a different

structured neural network is required. Based on a large number of training experiments,
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the feedforward neural network NN2, which has 9 input vectors, 18 neurons in the
hidden layer and single output neuron in the output layer, achieves a better

performance. The detail structure of NN2 is explained in Figure 7.22.

Prediction
\_ J »

Figure 7.22 Expansion of NN2

The forecasting result is shown in Figure 7.23. The blue curve is real data of d;

reconstruction series. The red curve is the forecasting result X generated by neural
network NN2. The prediction approximately varies on the same pattern as the d2
reconstruction series, but there is a big discrepancy in the amplitude existing in some of

the wave.
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Figure 7.23 Comparison between forecast and d reconstruction series. Blue curve

shows the d, series. Red curve shows the forecast for the period 51 to 64 months.

Detail Level One (d;) Reconstruction Prediction

The reconstruction series of detail coefficient d; represents the oscillation details in the
original sales series. The neural network NN3 was applied to predict the d,

reconstruction series.

%]
. Prediction
ESTURY S 24

0,24\

Figure 7.24 Expansion of NN3
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In Figure 7.24, NN3 has 10 input vectors, 24 neurons in the hidden layer and one
output neuron in output layer. During the testing of trained networks, experiment
showed that training and simulation can achieve better performance when the size of

input vector 1s less than half of the number of the neurons.

The forecast performance is shown in Figure 7.25. The last ten month forecast follows
the pattern of the real series. Closer observation shows that the inaccurate prediction
occurs between month 51 and 54. However, the real data in this period also exhibits a

strange pattern, compared with neighbor data sets.
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Figure 7.25 Comparison between forecast and d; reconstruction series. Blue curve

shows the d; series. Red curve shows the forecast for the period 51 to 64 months.

Forecasting of the original series

In order to produce a final forecast, the three predictions of the reconstruction

coefficients were grouped together by NN4.
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Figure 7.26 Neural network for final forecast

The feedforward neural network NN4 was designed to perform the task. There were
only three input vectors in NN4, 12 neurons in the hidden layer and one neuron in the

output layer. The output is a one step forward forecast of the original time series g(¢) .

The detail structure of NN4 is shown in Figure 7.27.

Prediction

Figure 7.27 Expansion of NN4

The coefficient reconstruction series was used as the input vectors of training NN4. The

input vector matrix and the target matrix are shown in equation (7.35).

a2, a2, .. a2l
X=|d2, d2, d2,, T=[s, s, . 54l (7.35)
di, di, dl,,

During the training process, 4000 epochs (iterations) of training were executed to
minimize the mean square error between target and forecasting. As seen in Figure 7.28,
the error diminishes to 10™'%. The exact error value is 7.6161 times 107, which

indicates a good performance of the neural network.
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Figure 7.28 Training results for mean square error

After training, the mean square error performance was acceptable; the trained network

was tested with a, d, and d, reconstruction series to produce the forecast of the original

time series g(¢). The input vectors matrix X is:

al,, aly, ... a2
X=|d2, d2 a2, (7.36)
dly, dlg dlg

The output is forecast of g(¢)

A

forecast - g(t) = [551 (7.37)

52 e S64];

Ly

After generating the output forecast, post processing is required in order to fit the

forecasts into the original sales series data scale. The post processed data is plotted in

Figure 7.29.
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Figure 7.29 Comparison between forecast and original time series g(t). Blue curve
shows the original time series g(t). Red curve shows the forecast for the period: 51 to

64 months.

The accumulative absolute difference of the forecast and real data from month 50 to 64
is 5822 units. The average absolute difference is 388 units per month. The forecasting

performance has been greatly improved.

7.4 Application of Wavelet Neural Network
Forecasting to the Supply Chain Model

In this section, wavelet neural network forecasting is adopted to produce forecast
results for the supply chain model. The best performance was achieved at cost = 6354

units, when 6=0.4 and = 0. The forecasts are plotted in red, against sales inputs in blue,

in Figure 7.30.
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Figure 7.30 Wavelet neural network forecasting result (red) and original sales data

(blue)

In Figure 7.30, the red forecast curve is very close to the blue sales curve over a period

of many months. These accurate forecasts resulted in better inventory performance in

the simulation. The hub inventory varies from 500 units to -100 units throughout the

time period in Figure 7.31. The system performance has obviously improved. The

simulation costs of 6354 units are quite close to the ideal costs of 4500 units, as

discussed in equation (6.44).
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Figure 7.31 Inventory response with wavelet neural network forecasting
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In comparison with the 4RMA forecasting model, the wavelet neural network could
pick up the nonlinear characteristics, such as trend and varation frequency, and produce
better forecasts. The forecasting error for wavelet neural network forecasting

and ARMA methods with different preprocessing are listed in Table 7.3. The error is
calculated as the absolute accumulative difference between the forecast and real data in
periods of month 51 to month 64. The corresponding supply chain costs are also
provided in the last row. It is clear that the neural wavelet forecast exhibits a
significantly better performance. The neural wavelet average error is only 388 units
compared to 681 units for the best ARMA model. 388 units, are 9% of the upper
boundary and 25% of the lower bound for the original data range from 1500 to 4000
units. This forcasting error is within the tolerance range. The minimum supply chain
costs of 6354 units generated by neural wavelet forecasting are much less than the
18524 units produced by the differencing ARMA model. It can be concluded from the
above analysis that wavelet neural network forecasting brought a remarkable

improvement to the overall supply chain performance.

No Logarithm | Differencing | Logarithm | Neural
Preprocessing and Wavelet
Differencing
Accumulative | 11806 11535 10219 11258 5822
error (units)
Average error | 787 769 681 750 388
(units)
Supply chain | 24313 23176 18524 22109 6354
Costs (units)

Table 7.3 The costs of the forecast using different methods
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Chapter 8:Learning Microworld

The supply chain microworld developed in this chapter enables the planning manager
to test planning strategies in a virtual environment. Different forecasting methods, first-
order exponential prediction (the forecasting equation with ©), ARMA (autoregressive
and moving average) and wavelet neural networks are applied as the forecasting
function in the original supply chain model to evaluate the impact of forecasting on

supply chain performance.

The term “microworld” is defined as a computer-based learning environment for
children, in which they could program the environment, see how it responded, and
draw out their own understanding of the principles of mathematical relationships
(Seymour Papert, 1972). Gradually, it has come to mean any simulation in which
people can run experiments, test different strategies and build a better understanding of
the real world which the microworld depicts. It is the explorative learning
environments that allow a free combination of possible and impossible conditions and

concepts.

Simulation as defined by Roberts et al/. (1983) or Pidd (1997) has been used on
computer for many years. It imitates the real world by using a model which simplifies,
but maintains the essential characteristics of the situation. The models may take
different forms i.e. computer or mathematical models. They will facilitate experiment
or risk free play. The experiment may take the form of enacting scenarios which may

assist the user to develop new mental models (Senge et al/.,1994).

The heart of the learning microworld will be a case depicting a problematic business
situation. The business situation is represented by a dynamic model enabling the user to
test different strategy policies to measure business performance. These models may
also enable users to create their own simulations. Feedback is provided on
performance. Finally, the Internet potentially provides an opportunity to encourage

communication between learners.
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The computer based training and simulations microworld was developed with Visual
Basic for Draeger internal use. A subsequent Java version microworld was also built

for wide usage on the Internet for research on the supply chain.

8.1 The Design of the Microworld

The microworld is constructed based on the discrete time supply chain model described
in the previous chapters. Since the components in the discrete mathematics model are
assumed to update at regular intervals, the corresponding microworld is developed
using the next-event technique (Preece Jenny, 1994). In this case, the system is only
examined when it is known that a state change is due. These state changes are the
events. Therefore, the time in the simulation is moved from event to event. This makes
possible to clearly and accurately identify when significant events occurred in the
simulation. With the implementation of the next event technique, all the elements of the
supply chain in our microworld are updated at regular intervals, which is one month in

the simulation.

The microworld is developed for clients’ direct use, rather than use by an analyst on
behalf of clients. The client will take his or her own control over the analysis. Thus, it
is necessary to adopt a user friendly graphic display of analysis and results. The supply
chain structure in the microworld has been programmed into a dynamic work flow. The
display clearly shows the product moving from element to element. This graphic design
gives a representation of the logical flow of materials and information. The user can
quickly gain an idea about whether the model is right or wrong. This logical clarity also
provides the modeller with an opportunity to develop the model with the client. The
dynamic graphic interaction can easily reveal the errors of logic when entities are seen

to change state wrongly.

8.2 User interface

The completed software is programmed as an .exe extension file that can be run by
users. The user interface is programmed as a window form, as shown in Figure 8.1.The
user interface consists of six parts. The menu at the top of the window provides some

options for different models and basic controls of the software. The ‘Work Flow Panel’
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in the centre shows the structure and details for different supply chain models. The
dynamics of each component can be perceived from this panel. Users can apply
different planning policies by operating the sliders and text box to change the planning
parameters in ‘Strategy Panel’ in the bottom right. The hub inventory and incoming
order can be visualised as a dynamic curve in ‘Inventory Graphic Panel’, bottom left.
The ‘Index Panel” shown on the top right offers users flexible control. Users can
observe any details at any time unit point during the simulation. The costs label on the
right of the window shows the accumulative costs of the current simulation. More

details of each of the panels and menus are provided in the following sections.
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Figure 8.1 The main interface for learning microworld
8.2.1 Menu

There are three items in the menu bar. The drop down menu ‘Select Model’ provides
three options for the user to choose a differently structured supply chain; the default is
the model without delay. The model with production delay and the model with

planning delay are optional. By clicking the options in the menu, the corresponding

190



supply chain model will turn up in the work flow panel. For the new user to our supply
chain system, it is necessary to list the meaning of each control parameter. The
‘Parameter Instruction’ gives further details to explain parameters a, B, © and Q. As
defined in previous chapters, a is the fraction of the discrepancy between desired and
actual inventory. B is the fraction of the supply line taken into account. © is the demand
expectation update rate. Q is the desired inventory or safety stock. The last menu item
is ‘Exit’. It will terminate the program and close all the relevant windows in the supply

chain system.

wi. Supply Chain Nodel

LA R PN Parameter Instruction Exit

supply chain without delay
supply chain with Production delay
supply chain with Planning delay

Figure 8.2 The menu and corresponding items in the Microworld

8.2.2 Work Flow Panel

The overall structure of the model has been programmed in the working flow panel
(Figure 8.3). Each work unit in the supply chain, such as forecasting, production,
outshipment and inventory has been represented by a square box with a title on the top.
The content in the square is the quantity of that title unit. The text box ‘Order Feed’ on
the top left corner provides users with the option of making an incoming sales order.
The default value is 400. The user can change this number according to his sales
assumption. After entering the sales quantity for the next month, clicking the button
‘Run’ next to the text box will send this customized order into the box labelled ‘Order’
in the upper left of the ‘HUB Germany’ frame, and the calculation for the whole model
is executed once. The number in each component is updated. The calendar of the
simulation goes forward for a month. The box labelled ‘Month’, next to the button

‘Run’, shows the time (current month) of the simulation.

The structure of the supply chain model in this microworld is similar to that discussed
in the previous chapter. It comprises two main frames, ‘HUB Germany’ and ‘Factory
UK’. The ‘HUB Germany’ frame consists of six components, ‘Order’, ‘Forecast’, ‘Hub

Requirement’, ‘Hub Backlog’, ‘Hub Outship’ and ‘Hub Inventory’. The ‘Factory UK’
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frame consists of four components, ‘Production’, ‘Factory Backlog’, ‘Factory
Inventory’ and ‘Factory Outship’. Each of the corresponding supply chain working
units can be found in the previous model specification chapters. The observer can track
the movement of the sales order from the beginning of hub planning, forecasting, and
generating requirements to factory production and shipment. The whole working

process of the supply chain has been clearly represented and is easy to follow.

- Oeder g"“‘““sm - s |
 Besd § - L i
HUB Germany ! Factary Blyth
Trder & Foregast —— +Hub Request ~Production —
f 500 : j 769 . 889 88
~Hub Backlog — ~Factory Backl’og’tm
o E} ;
b |
gwliluiship o Hab TInventors ;«wl}utshxp : gwfaﬁtérﬁi(ﬁventm
< =0 . 5o & — 808 | 800
E . f 4; ;
| L | T

Figure 8.3 The work flow panel for the model without delay in the Microworld

For the model with additional production delay, the working flow panel changes
(Figure 8.4). It is clear that two additional boxes ‘Delayl’ and ‘Delay2’ representing
the production delays have been inserted between ‘Production’ and ‘Factory
Inventory’. By pressing the button ‘Run’, the user can observe that the number
representing the products moves from ‘Production’ down to ‘Delayl’, ‘Delay2’ and

‘Factory Inventory’ step by step.
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Figure 8.4 The work flow panel for the model with two additional production delays in

the microwrold

The model with planning delay introduced another ‘Info Delay’ in the planning process

in Figure 8.5. A solid arrow line representing shipping delay appears between hub and

factory.
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Figure 8.5 The work flow panel for the model with planning delay in the Microworld

Given different sales feeding, the user can perceive every change in detail within the
supply chain. Some of the strange behaviour of the inventory plot curve can be
explained by inspecting the dynamics in the flow panel. Furthermore, potential

solutions can be found to fix the planning problem.

8.2.3 Strategy Panel

In the ‘Strategy Panel’, an aggressive or conservative planning policy can be simulated
by changing the system parameters a, B, © and Q. The meaning of these four

parameters has been given in Parameter Instruction. The changing of a, B, and © is
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implemented with three sliders. By moving the cursor on the slider, the values of the
parameters are varied from zero to one. The initial value for a is 0.26 and 0 for B. © is
initialised as 0.75. Instead of using the slider, the text box can be employed to edit the
safety stock. The default desired inventory is 800. Clicking the button ‘Safety Stock’

will change the configuration of the desired inventory in the model.
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WW,E_. 015
safety
stock

Figure 8.6 The strategy panel in the Microworld

g

8.2.4 Inventory Graphic Panel

Once the user presses the button ‘Run’, the supply chain model is actived. The detailed
information is calculated and all supply chain components are updated. The hub
inventory data and incoming order is recorded and plotted in this graphic panel (Figure
8.7). The x-axis in the chart represents the time units in a month. The y-axis denotes the
quantity of the inventory level. The zero inventory level is highlighted in red. The
inventory point above the red line is the positive inventory. The inventory below the
red line is the hub backlog. To clarify the influence of the incoming order on the
inventory dynamics, the hub inventory is plotted in green against the incoming order in

yellow in the Figure 8.7.
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Figure 8.7 The graphic panel in the microworld

This graphic expression of the hub inventory and sales orders allow the user to observe
the trend or variation pattern from long-term inventory history plots. Comparing with
the zero inventory level in red, the user can easily recognize the hub backlog and

positive inventory.
8.2.5 Index Panel

After a long-term simulation, the user may need to go back to a particular time slot to
inspect the change of detail in the supply chain. The index panel has been introduced to
manage the model more flexiblely. By clicking the button ‘Back One Step’ shown in
Figure 8.8, the whole system state moves one step backward and each supply chain
component shows the last month’s quantity in the unit box. At the same time, a blue
triangle is plotted as in Figure 8.9 to indicate the current inventory level. Keep pressing
the back button, and the blue triangle pointer will move left until the start of the
simulation. The box labelled ‘Index’ shows the month which the user is observing. The
default Index label value is the same as the box labelled ‘Month’. Each times the user

presses the ‘Back’ button, the Index box shows the observed month.

Figure 8.8 The Index panel in the Microworld
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Conversely, by clicking the ‘Forward’ button the model will move one step forward.
One step is added in the Index label. The blue triangle in Figure 8.9 moves forward to
the month shown in the Index box. The details for each component are updated until

the Index arrives at the end of the simulation.

In some cases, the user needs to move to one particular month from the current state. It
may take a lot of clicking, using the ‘Back’ or ‘Forward’ button to achieve the target
state. Alternatively, the ‘Go To’ button and relevant text box shown in Figure 8.8, are
provided to simplify this task. The user can enter the month which he/she wants to
observe and press the ‘Go To’ button next to the text box. The model will backward or
forward to that particular month. All the relevant supply chain detail information is
updated to match that month. Simultaneously, the blue triangle pointer appears in the

graphic panel and points at the corresponding hub inventory.

Figure 8.9 Plots of hub inventory with index pointer

8.2.6 Performance

After the discussion with the planning manager, the performance of the simulation is
examined considering two factors. From the customer service aspect, failure to deliver
to the customer on time should be counted as a major cost in measuring system
performance. This delay in shipping may lead to the lose of potential customers. In the
simulation model, those sales orders that cannot be shipped on time are backlogged in
hub. Therefore, the hub backlogs become one part of the cost function. Each hub

backlog is accounted as two units in cost function.
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Figure 8.10 Numeric expression of the cost for measuring supply chain performance

On the other hand, the warehouse managers may concentrate on the cost of storing the
product in the warehouse. In the simulation model, each unit of inventory scored one
point per month in the cost function. Hence, the total costs of the supply chain are the
sum of hub backlog cost and inventory costs (equation (8.1)). Decision making that

produces lower costs is regarded as achieving better performance.
Cost = Finy(t) + Hiny(t) + 2 x Hpe(t) 8.1

The user can click the ‘New Simulation’ button to clear the current result. The system

moves back to the initial situation and is ready for a new simulation.
8.3 Applications of the Microworld

The microwrold was tested with different types of sales input. The simulation results
with the wave shaped sales inputs are illustrated in the graphic panel in Figure 8.11.
The simulation lasts for 40 months. The sales order is 400 for the first 10 months and
then oscillates around 400, 600 and 800 until the end of the simulation. The planning
manager decides planning policy in terms of o = 0.3, p=0.25, ©=0.75 and Q=800. The
yellow curve in the Figure 8.11 shows the variation of the incoming order. The green

curve represents the hub effective inventory.
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Figure 8.11 Simulation results for o = 0.3, f = 0.25 with wave sales inputs around

400,600 and 800.

From Figure 8.11, it is clear that with the variation demand the hub inventory cannot be
stabilised at the desired level. The hub inventory follows the oscillating pattern of the
sales input, but the variation of curves does not match. The peak of the green wave is
nearly of the same level as the yellow wave. The cost is calculated, as discussed in the
performancé section. The results are accumulated after each round of the simulation.

The final costs were 52851 units in 40 months’ simulation.
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Figure 8.12 Simulation results for a. = 0.7, f = 0.1 with a wave sales inputs around

400,600 and 800.

Increasing o. to 0.7 and decreasing B to 0.1, a more aggressive planning policy is
applied to hub and factory planning. Both the hub and factory want to replenish their
local inventory to the desired level or safety stock level in very short periods. In the
oscillating sales inputs scenario, the hub inventory in green, in Figure 8.12, varies in a
similar pattern but with greater amplitude compared to the inventory performance
under the conservative policy in Figure 8.11. The peak of the green wave reaches 1000
units, which is bigger than the peak of the sales at 800 units. The large amount of
inventory cost more for the warehouse. The final score for this simulation was 59314
units, which is higher than the previous case. Therefore, it can be concluded that the
conservative planning policy with a = 0.3, B = 0.25 achieved a better supply chain

performance than the aggressive planning policy with a = 0.7, 3 = 0.1.
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8.4 The Java Version of Microworld on the Internet

The simplified three sector supply chain model has been programmed for the web
Microworld on the Internet and for university research. It was developed by Java
Applet and embedded in a webpage which is accessible from any web explorer. The
web microworld is open to any kind of users on the Internet. By working with this web
microworld, users can observe and experience the effects of decision making in supply

chain management. The three sector model is shown in Figure 8.13.

Dol Week:

Figure 8.13 The interface of the web Microworld

The user can compare the different behaviour of the three sector web microworld and
the two sector offline microworld. The similarities are that both models behave in an
unstable manner with aggressive planning policies. The three sector model gains
greater inventory oscillations and needs a longer time to remove the oscillation. This
web microworld is based on the Beer Game equations. It does not represent the
behaviour of the Draeger centralised supply chain. However, it is still very helpful for
the users and developers to explore further research. It was a preparation and rehearsal
for constructing the three stages Draeger model and a good way to communicate with

the client. The program code is provided in Appendix C.
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8.5 Reflections

Once this prototype of the software is available, a user based assessment can be carried
out. This is a very important development activity, which can confirm the extent to
which user and organizational objectives have been met, as well as provide further
information for refining the design. It is important to consider the characteristics of the
users (or predicted users) of the microworld who take part in the testing. As the
microworld was developed based on Draeger heuristics, the Draeger planning
department manager Mel Hedley, who has many years of supply chain management
experience, was invited to be involved in the pilot testing following heuristic aspects of

usability:

(1) Visibility of system status;

(2) Match between system and the real world;

(3) User control and freedom;

(4) Recognition rather than recall,

(5) Flexibility and efficiency of use;

(6) Aesthetic and minimalist design;

(7) Help users recognize, diagnose and recover from errors;

(8) Help and documents.

The state of the system is made visible on the graphic panel that displays the
inventories. The work flow panel shows the information and material movement. The
Draeger planning manager confirmed that the behaviour of the model met his
expectations. The behaviour is influenced by the variety of planning parameters: o

(the fraction of the discrepancy corrected between the desired stock and the effective
inventory), £ (the fraction of the supply line taken into account), and & (the rate at
which the expectation is updated). The user can observe and learn the dynamics of
different scenarios. The planning parameters are clearly explained. However, the
description of the supply chain costs need to be further developed in the help

documents. The controllability of the system is complicated for the new user. The
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Draeger manager suggested an extra tabular format of supply chain components to help

the user who familiar with Excel operation.

By working with the Learning Microworld, managers could have a better
understanding about the working principles of their supply chain system. Practically,
they can test different planning strategies in different kinds of sales inputs by
examining the inventory performance. Compared to traditional tools, like Excel
spreadsheets and critical path management, that focus on the solutions, the microworld
allows for developing the managers’ understanding and intuition about the problem
situation (Robert, 1999). By varying the demand, the manager can explore the impact
of the planning parameters on the model. However, the success of the microworld
depends on the validity of the model and on the suitability of the user interface.
Feedback from the clients suggests the user found the current user interface rather
complex. Future developments could focus on research implementation of a user

friendly interface. Table 8.1 lists the advantages and disadvantages of the microworld.

Advantages Disadvantages
Builds a dynamic understanding of The interface is not very user friendly;
supply chain management; Too many inputs in one screen;
Experiments with the supply chain The explanation of supply chain costs are
without making changes to the real not clear;
system;
Predicts system behavior under Introducing an extra tabular format of
conditions not previously experienced; supply chain components which is similar

to Excel will be more helpful;

Allows observation of the dynamics of Users need supply chain background
the supply chain from different knowledge to understand the system.
perspectives.

Table 8.1 Advantages and disadvantages of the microworld as perceived by the user
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Chapter 9: Conclusion

The overall aim of the research was to model and analyse the behaviour of a centralised
supply chain and provide explanations and insights into the link between decision
strategies and performance. It was also envisaged that the application of a combination
of theories, i.e. system dynamics, control theory, nonlinear dynamics and forecasting
analysis would lead to a more effective exploration and new insights into the behaviour
of the supply chain with regard to decision policies. This conclusion will reflect on the
modelling aspects and summarise the findings in relation to the use of the combined
theories. These insighst could not have been achieved through the use of a single

theoretical approach.

The context of the study was the breathing equipment manufacturer Draeger Safety,
Blyth. Thus, the modelling process was embedded in the organisation and was focused
on the client’s needs. The client was an active participant in developing, testing and
validating the model. It is, however, important to emphasise that the purpose of the
approach undertaken in this study was to use the model as a vehicle for understanding
and learning about the problem situation, i.e. supply chain management at Draeger
Safety UK. This required the effectiveness of communication with the client to be
facilitated and monitored throughout the process in order to ensure that the meanings,
assumptions and insights were shared and validated within the research team
(researcher and members of the planning department). This was achieved not just
through conversations with individual members of the team but through numerous team
discussions. All discussions included achieving consensus with regard to the issues that
were considered within each stage of the modelling process. This included shared

understanding and learning about:

e The dynamic behaviour of the intended (ideal) supply chain model at Draeger
Safety UK;

e The impact of manufacturing delays on the performance of the supply chain;

e The impact of information delay and inaccuracies in planning on the supply chain

performance and the effect of different forecasting methods.
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The simplified model of Draeger centralised supply chain was developed based on the
Beer Game heuristics (Sterman, 2000). The modelling approach followed the system
dynamics process of model development and validation. The findings suggest that
management decisions are based on two parameters: « is the correction factor of the
discrepancy between the current inventory and its desired level; § takes into account
any previously placed orders that have not yet arrived and are thus ‘still in the
pipeline’. a and B determine the corrective feedback within the hub and within the
factory. The different psyches of decision makers could be simulated by different
values of o and B. Big a and small 8 represent the thinking of an aggressive manager
focusing on his local sector, ignoring the impact of previous decisions. Analysis shows
that a purely aggressive strategy, without considering the history of the system, will
usually lead to unwanted behaviour, i.e. large oscillations of inventories. Decreasing o
in terms of slow stock recovery produces a stabilising effect. Small a and big 8
represent a manager that thinks outside of the immediate area of control and takes some
or full consideration of the history. Taking into account the impact of previous
decisions by increasing P has a stabilising effect. These findings were validated within
the research group and the labelling and meaning of ‘aggressive’ and the “full
consideration’ strategy were derived as a shared understanding in group discussions

with the planning department.

The use of control theory analysis and, in particular, block diagrams and eigenvalue z-
plane plots, leads to the understanding that the two systems, hub and factory, are
isolated as there is no corrective feedback loops that cover both sectors. Moreover,
since the systems are ‘isolated’, the complex eigenvalues generating oscillations are
produced from hub management decisions only. Therefore, poor management decisions
in the hub cannot be corrected by good decisions in the factory. On the other hand, a
good manager in the hub may be able to mitigate poor management decisions in the

factory. The hub becomes the primary route to instability.

The production delay model was built by adding two production delays in the factory
within the original model. In this situation, o and B have similar overall effects on the
performance. The system becomes more sensitive to management decisions. The same
values of a and B which led to stable behaviour in the original model could produce big

oscillations in the production delay model. The extreme conservative management
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policy with small a and big B could stabilise the system. However, as pointed out in the
discussions of the research group, this will delay on time delivery and harm customer
satisfaction. Alternatively, increasing the safety stock could eliminate the oscillation.
However, holding a large amount of safety stock will increase inventory costs. With the
extra production delay state, the previous roles, which lead to the instability, are
changed. Control theory analysis and the existence of non-linearities due to the
accumulation of backlog, suggest that the factory becomes the main route toward
instability. Chaotic behaviour occurs from aggressive strategies taking no account of
the supply line. It is the hub that can do little about poor management decisions in the

factory.

The planning delay model introduces a planning delay between the hub and the factory
to mimic the scenario of ‘getting the forecast wrong’ and ‘compatibility problem in
different planning software’. Control theory and non-linear analysis suggest that the
hub management policy is the primary route to instability and follows a more severe
path. The dynamics of the system are mostly dependent on a, the stabilising influence
of B only lessens the severity of the route to instability. Thus, as discussed in the
research team, good management and management policies are crucial in this situation.
Planning delay and the scenario of ‘getting the forecast wrong’ and ‘compatibility
problem in different planning software’ could be minimised in reality. The forecast
accuracy needs to be improved to avoid these circumstances. The need to improve the

forecast was emphasized wihin the research group.

In order to improve forecasting accuracy, the classic statistical forecasting model
ARMA was applied to predict the sales series data collected from Draeger Safety, UK.
The autocorrelation of the original data was calculated to explore the interrelationship
within the time series. However, no significant autocorrelation was found; up to 8 auto-
regression and moving average parts were compiled in different combinations to form
different structured models. Three kinds of data preprocessing of logarithm of original
series, differencing series and logarithm differencing series were applied to preprocess
the time series. Part of the original series was used in training and in constructing the
best structure of the model. Analysis shows that the model with two regression parts

and one moving average part achieved a better performance when the original series
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was processed with differencing. However, the forecasting result is not good enough; it

cannot follow the basic trend of the original series.

Like most of the financial time series in the real world, Draeger sales data is
unstationary. The traditional statistical forecasting methods cannot track the data
characteristics from these nonlinear time series. Therefore, wavelet neural network
forecasting was adopted to analyze and forecast the unstationary time series. The
‘Daubechies two’ wavelet was chosen as the mother wavelet to perform the discrete
wavelet decomposing and reconstructing of the original time series. After wavelet
processing, the data characters as overall trend and oscillation period has been
seperated in different level of time series. Forecasting with neural networks was carried
out on each level of time series. The trend, variation prediction were grouped together
to produce the final forecast for the original time series. This led to better forecasting
accuracy. However, it is very time consuming to find out the optimized neural networks
structure for different data sets. No fixed procedure for optimizing the neuron quantities

and connectivity was developed.

The microworld was programmed for supply chain managers to explore the effects of
different management policies. Different planning parameters, such as safety stock, Q,
recovering inventory speed, a, and consideration of incoming orders, B, have been
programmed as sliders and editable components for the user to simulate different
planning heuristics. By working with the microworld, managers could have a better
understanding of Draeger’s supply chain structure and planning policy and test
different management policies and not worry about the impact in the real world. The
feedback from Draeger managers shows that the mircorworld was helpful for their
decision making; however, the interface is a little confusing. Users could get lost

among too many buttons and sliders.

Different forecasting methods were evaluated in the supply chain model. Performance
was measured in the cost of holding inventories and backlog. The research shows that
wavelet neural network forecasting achieved the best performance. The better

forecasting accuracy led to better supply chain performance.
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9.1 Contribution to Knowledge and Significance of

Study

The contribution to knowledge of this research can be identified as:

- Development and application of a combined approach to modelling and
simulation of the supply chain, including system dynamics, control theory

and non-linear and forecasting analysis;

- Modelling and simulation of a the supply chain in a real life context at the

breathing equipment manufacturer Draeger Safety UK;

- Innovative insights into the behaviour of the supply chain that identify the
route to instability and the impact of the forecasting on the efficiency of the
system,;

- Development and evaluation of a learning microworld allowing for the

exploration of different decision strategies.

The findings have been published in two journal papers, two conference papers and

one invited poster presentation, as listed below:

Niu M.,Sice P.,French 1., Mosekilde E., (2007): The Dynamics Analysis of Simplified
Centralised Supply Chain, The Systemist — Journal of the UK Systems Society, Oxford,
UK, Nov.2007.

Niu M.,Sice P.,French I., Mosekilde E., (2008): Exploring the Behaviour of Centralised
Supply Chain at Draeger Safety UK, International Journal of Information system and

Supply Chain Management, USA, Jan. 2008.

French L., Sice P., Niu M., Mosekilde E.,(2008): The Dynamic Analysis of a Simplified
Centralised Supply Chain and Delay Effects, System Dynamic Conference, Athens,
July.2008.

Sice P., French L., Niu M., Mosekilde E., (2008): The Delay Impacts on a Simplified
Centralised Supply Chain, UK Systems Society Conference, Oxford, UK, Sep.2008.
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Niu M, Sice P., French L., (2008): Non-linear Forecasting Model, Northumbria
Research Forum 2008, Newcastle upon Tyne, UK, Apr.2008.

9.2 Future Research

The research presented here represents only the initial stages of an investigation into
Draeger’s supply chain. Moreover, in the results presented decision policies have been
applied and maintained over an extended (and, in real world terms, unrealistic) period
of time. Never the less this analysis has found favour within Dreager Safety, UK and
has proven itself to be a powerful decision support tool. It has become obvious that in
our investigations so far we have only just scratched the surface of the rich variety of
possible behaviours that can emerge. For forecasting research, combined multivariate
linear models, such as dynamic regression and neural networks, could be a fruitful area
in the future. It is the intention, therefore, to continue this research and to further

investigate:

e The effect of using independent decision strategies (having different values of a

and B at the factory and the hub) at different levels in the supply chain.
e The impact of the secondary hubs.

e Potential nonlinear or chaotic behaviour analyzed using in-depth tools such as

the bifurcation diagram and Liapunov exponent.

e The modification of decision strategies (perhaps to a full state variable feedback
form or production control in response to forecast) to improve supply chain

performance.

e A systematic way to choose a suitable length of window for training the neural

networks for forecasting.
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Appendix A: Program for Three Models

Model Without Delay

clear

alpha = 1;
beta = 0;

g = 800;
theta = 0.75;
tstop = 250;

i

heff
feff

[1;
[1;

% Hub
horders_n

= 400;
horders_n_1 =

400;

hblk_n 1 = 0;
hinv_n_1 = 400;
hforecast_£_1 = 400;
hregq £_1 = 400;
hreg n = 400;
hship_n_1 = 400;

hship n = 400;

finv_n_1 = 400;
fprod_n_1 = 400;

fship_n_1 = 400;
% LoOn

for i = l:tstop
if 1 > 100

horders_n = 800;
end % Lf

hship_n = min(horders_n + hblk n_1, hinv.n_1 + fship n_1};
hinv_n=max(0,hinv_n 1 + fship_n_1 - hship_n);

hblk_n =max(0,hblk_n_1 + horders_n - (hinv.n_1 + fship n 1));
heff(i) = hinv_n - hblk_n;

% Factory

fship_n = min(hreg £ 1 + fblk n_1, finv.n_1 + fprod_n_1);

finv_n = max(0,finv.n_1 + fprod_n_1 - fship_n);
fblk_n =max(0,fblk_n_ 1 + hreq £ 1 - (finv.n_1 + fprod_n_1));
feff(i) = finv_n - fblk_n;

hforecast_f_2 =
hreg £ 2 = max(
+ hforecast_£f_2
% Factory i

fprod_n = max(0, alpha*(gq - finv_n + fblk_n) + hreg f_2);

(1 - theta)*horders_n + (theta)*hforecast_f_1;
0, alpha*(g - hinv_n + hblk n) - alpha*beta* (fblk_n + fship_n)
)
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hblk_n_1 = hblk_n;
hinv_n_1 = hinv_n;
horders_n_1 = horders_n;

hreg n = hreg f_1;

hregq £ 1 = hreq f_2;
hship_n_ 1 = hship_n;
hforecast_f_l=hforecast_f_2;

% PacLory
fblk n_1 = fblk n;
finv_n_1 = finv_n;

fprod_n_1 = fprod_n;

fship_n 1 = fship_n;

Model with Production Delays

alpha = 0.8;
beta = 0.1;

g = 800;
theta = 0.75;
tstop = 250;

% Define store variables
heff = [
feff = [

7

]
1;

hblk n 1 =0

hinship_n 1 = 400;
hinv_n_ 1 = 400;
horders_n = 400;
horders_n_1 = 400;
hforecast_f_1 = 400;

hreq f_1 = 400;
hreg n = 400;
hship n = 400;
hship_n_1 = 400;

v

B Factory
folk n 1 = 0;

finv.n 1 = 400;
fprod_n_ 1 = 400;

frequest_n_1 =400;

fship n_ 1 = 400;

fpdl_n = 400;

fpdl_n_1 = 400;

fpd2_n = 400;

fpd2_n_1 = 400;
5 Loop

for i = 1l:tstop
if i > 100
horders_n = 800;
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[

end % i
% Invenitories

% Hub

hship_n = min(horders_n + hblk_n_1, hinv.n_1 + fship n_1);
hinv_n=max(0,hinv_n_1 + fship_n_1 - hship_n);

hblk_n =max{0,hblk_n_1 + horders_n - (hinv_n_1 + fship_n_1));
heff(i) = hinv_n - hblk_n;

fshlp n = minthreg f_1 + fblk_n_1, finv_n_1 + fpdl_n_1);
finv.n = max(0,finv.n_1 + fpdl_n_1 - fship_n);

fhlk_ n =max(0,fblk_ n 1 + hreq £ 1 - (finv.n_1 + fpdi_n_1));
feff(i) = finv_n - fblk_n;

3
o ey o 3y
BL e FrOGUCTION

fpd2_n=fprod_n_1;
fpdl_n=fpd2_n_1;

(1 - theta)*horders_n + (theta)*hforecast_f_1;
0, alpha*(g - hinv_n + hblk_n) - alpha*beta*(fblk_n + fship_n)
) .

hforecast_f_2 =
hreg f_2 = max(
+ hforecast_£f_ 2

Factory i
fprod_n = max(0, alpha*{(g - finv_n + fblk n) + hreq f 2 - alpha*beta*{(fpdl_n +
fpd2_n));

S L
A

Step

% Hub

hblk n 1 hblk_n;
hinv.n_1 = hinv_n;
horders_n_1 = horders_n;

hregq n = hreg f_1;

hreg f_1 = hreqg f_2;
hship_n_1 = hship_n;
hforecast_£_l=hforecast_£f_2;

fpd2_n_1l=£fpd2_n;
fpdl n_l=fpdl_n;
¥ Factory
fblk n_1 fblk_n;

finv.n 1 = finv_n;

fprod_n_1 = fprod_n;
fship_n_1 = fship_n;

t

figure(l);
plot (heff);
xlabel ('¥
vlabel (°
title(
grid;

> Inventory');

figure(2)
plot(feff);

vlabel (¢
title('®
grid;

figure(3)

plot (feff(200: end
xlabel ( ‘Fac
ylabel ('}

heff(200:end),'.");

tive inventory 7')

entorv');
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Model with Planning Delay

alpha = 0.62;
beta = 0;
q = 1600;
theta = 0.75;
tstop = 250;

% Define store wvariables

heff = [];
feff = [1;

%

hblk_ n_ 1 =0

hinship n_1 = 400;
hinv_n_1 = 400;
horders_n = 400;
horders_n_1 = 400;
hforecast_£f_1 = 400;

hreq £ 1 = 400;
hreg n = 400;
hship_n = 400;
hship_n_1 = 400;

oot oy
FARCLOIY

fblk_n_1 = 0;
finv_n_1 = 400;
fprod_n_1 = 400;
freguest_n_1 =400;
fship_ n_1 = 400;

% Loow

for i = 1l:tstop
if i > 100
horders_n = 800;
end % if

hship_n = min(horders_n + hblk n_1, hinv.n_ 1 + fship_n_1);
hinv_n=max(0,hinv_n_1 + fship_n_1 - hship_n)};

hblk_n =max(0,hblk _n_1 + horders_n - (hinv_n_1 + fship_n_1));
heff(i) = hinv_n - hblk_n;

ip.n = min(hreg n + fblk_n_ 1, finv_n_1 + fprod_n_1);
finv_n = max (0, finv_n_1 + fprod_n_1 - fship_n);

fblk_n =max(0,fblk_n 1 + hregq n - (finv_.n_1 + fprod_n_1)};
feff(i) = finv_n - fblk_n;

% Hul

hforecast_f_2 = (1 -~ theta)*horders_n + (theta)*hforecast_f_1;

hreq £ 2 = max(0, alpha*(g - hinv_n + hblk_n) - alpha*beta*(fblk_n + fship_n)
+ hforecast_£f_2);

% Factory i

max (0, alpha*(q - finv_n + fblk n) + hreg f_1);

% Hub
hblk_n 1 = hblk_n;
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hinv_n_1 = hinv_n;
horders_n_1 = horders_n;
hreg n = hreg_f_1;
hreq f_ 1 = hreq f_2;
hship_n_1 = hship_n;
hforecast_f_l=hforecast_f_2;
% Factory

fblk_n_1 = fblk_n;
finv_.n 1 = finv_n;
fprod_n 1 = fprod_n;
fship_n_1 = fship_n;

end % for Lo

£
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Appendix B: ARMA Program

function [items costs] = call2( 1lg,diff );
lg = 1g;
diff = diff;
span = 8;
erro=7;
pas=2;
for nu = l:exrro
ne = nu-1;
for s =l:span
if s ==1;
for i =1:span
cost (i+ne*255,1) = ex3(i,ne,lg,diff);
po{i+ne*255,1l:s+pas)=[1i 99 nel;
end
end
1f s==2;

m=i+ne*255+1;
for i1 = 1l:span
for jl = 1l:span
1f il<3j1
cost (m)=ex3([1il jl],ne,lg,diff);
po(m,l:s+pas)=[1il jl1 99 ne]l;

m=m+1;
end
end
end
end
if s==3;
ml=m;
for 12 = l:span
for j2 = 1l:span
for k2 = l:span
if i2<j2&j2<k2
cost(ml)=ex3([i2 j2 k2],ne,lg,diff);
po(ml,l:s+pas)=[1i2 j2 k2 99 ne]l;
ml=ml+1;
end
end
end
end
end
if s==4;
m2=ml;

for i3 =l:span
for j3=1:span
for k3=1:span
for 13=1:span
if 13<j3&733<k3&k3<13
cost(m2)=ex3([13 33 k3 13],ne,lg,diff);
po{m2,l:s+pas)={i3 j3 k3 13 99 ne]l;
m2=m2+1;
end
end
end
end
end
end
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if s==5;
m3=m2 ;
for id4=1l:span
for j4=1l:span
for ké4=1:span
for 14 =l:span
for o4 = 1:span
if id<jd&jd<kdskd<léi&li<od
cost(m3)=ex3([14 j4 k4 14 o4],ne,lg,diff);
po(m3,l:s+pas)=[14 j4 k4 14 o4 99 ne};
m3=m3+1;
end
end
end
end
end
end
end
if s==6;
md=m3;
for i5=l:span
for j5=1:span
for kb=1l:span
for 15=1:span
for o5=1l:span
for p5=l:span
if i5<j5&j5<k5&k5<15&15<05&05<p5
cost(md4)=ex3([1i5 35 k5 15 o5
p5],ne,lg,diff) ;
po(m4,l:s+pas)=[i5 j5 k5 15 o5 p5 99 nel;
md=md+1;
end
end
end
end
end
end
end
end
if s==7;
mS5=m4 ;
for i6=1:span
for jé6=1:span
for ké6=1:span
for 16=1:span
for o6=1:span
for pé=1l:span
for gé=1:span
if 16<36&]6<k6&k6<16&16<06&06<P6&PE<H
cost(mb)=ex3([1i6 j6 k6 16 06 pb6
g6] ,ne,lg,diff);
po{m5,l:s+pas)=[i6 j6 k6 16 06 p6 gb6 99
nel;
m5=mb+1;
end
end
end
end
end
end
end
end
end
if g==8;
m6=mb;
for i7=1:span
for j7=1:span
for k7=1:span
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for 17=1:span
for o7=1:span
for p7=1:span

r7],ne,lg,diff);

for g7=1:span
for r7=1:span

if 17<37&77<k7&k7<17&17<07&07<pT7&pT7<q7&g7<r7
cost (m6)=ex3 ({17 j7 k7 17 o7 p7 q7

po(m6,1l:s+pas)=[{17 j7 k7 17 o7 p7 q7 r7 99

nel;
mb6=m6+1;
end
end
end
end
end
end
end
end
end
end
end
end
[y,i]1 = min{(cost);
po(i,:);
items = po(i,:)
costs = vy

function[cost]
co = CO;

ne = nej;

alpha = 0.99;
loog=1lo09g;
diff=aiff;

itm =max( co);
num = max{ne,itm)+1;

max(size{co));
szl + ne +1; Show

szl =
sz =

1519
1526
1002
1011
2227
1862
1368

1930 1272
964 1407
1582
1524
1632
3074

3982

d =[
1937
1320
1419
1416
2138
3308
1:
cu= max(size(d));
if loog ==1;

z =log(d) ;.

else

2106

2040
1932

1:max(size(w))-1
1) = w(i+l)

max(size(z));

1149
1069

933 2902

- w(i);

=ex3 (co,ne, loog,diff);

v Che parameters

568 3085 1623 1552 1177 459

1104 1118 1505 1626 1711
1161 1119 1348 943 1656 1250

2376 1720 1117 2727 2069
2306 1411 1225 2551 1017 3108
2184 2614 2366 706 2735 1500

2689 0 0
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for i=1:num

ee(i) = 0;

end

for i=1:num
yp(i) = z(i);

end

yp(l-1) = z(1-1);
yp(l) = z(1);

for i =1l:num+l
ypl(i) = z(i);

end
ypl(l) = z(1l);
yp2(1) = z(1);

yp2(2) = z(2);
yp2(3) = z(3);

yp2(4) = z(4);
yp2(5) = z(5);
yp2(6) = z(6);
yp2(7) = z(7);
Jj = num;

theta = zeros(sz,l1);
I = eye(sz);
p = 1000000*I;

while j < 1-2

j=3+1;
for i=l:szl
x(i,1)=z(j-co(i));
end
for i =l:ne
x(i+szl,1l)=ee(j-1i);
end
x(szl+ne+l,1)=1;

k = p*x/(alpha + x'*p*x);
p = (I-k*x')*p/alpha ;

theta = theta + k*(z(j) - x'*theta);
yp(j) = x'*theta;
ee(j) = z(J) - yp{(j);

for i=l:szl
x1(i,1)=z(j+1l-co(i));

end

x1(szl+1,1)=1;
vpl(j+1l) = x1'*theta([l:sz1 sz],1);
end

if diff==1&loog==
es(l) = w(l);
for i=1:1
es(i+l)=w(i)+ypl(i);
end
c = exp(es');
else
1f loog==0&diff==
es(l) = w(l);

for i=1:1
es(i+l)=w(i)+ypli(i);

end

c = es;

end

end
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if loog ==1&diff==0
c = exp{ypl');

else

if diff==0&loog==

c = ypl;

end
end
cost = 0y
for 1 = l:cu-2
cost = cost + abs(c(i) - d(i));
end
cost;
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Appendix C: Web Based Java

Microworld

Factory

public class Factory

{

double dop;

double dopt;

double fio;

double fiot;

double fi;

double fit;

double fpd2;

double fpd2t;

double fpdl;

double fpdlt;

double fb;

double fbt;

double fpr;

double fprt;

double fos;

double fost;

double fed;

double fedt;

double as=0.45;

double B=0.075;

double H=0.25;

double Q;

//double [] dis={8,8,8,8,8,8,8,8,8,8};
public Factory(double iOrder ,double delay2 ,double delayl ,

double oShip, double back, double expect, double

request, double inventory )
{
fio=iOxder;
fpd2=delay?2;
fpdl=delayl;
fos=oShip;
fh=back;
fed=expect;
fpr=request;
fi=inventory;

}

public void Exchange()
{
fiot=fio;
fit=£i;
fpd2t=£fpd2;
fpdit=£fpdl;
fost=fos;
fht=fb;
fedt=fed;
fprt=~fpr;
dopt=dop;
}

//first step

public double fosMin(double a, double b)
{
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double s;
if (a>b)
s=b;
else
s=a;
return s;
}
public void adOrder (double a)
{
dop=a;
}
public double Inventory()
{
double x=fit+fpd2t-fbt-fiot;
if (x>0)
{
fi=x;
}
else
£fi=0;
return £i;

}

public void forwardFpd()
{
fpd2=fpdlt;
fpdl==fprt;
}
public double Fos()
{
double a= fit+fpd2t;
double b= fbt+fiot;
fos=fosMin{(a,b);
return fos;
}
//second step
public void adFio()
{
fio=dopt;
}
public double Backlog()
{
double x=fbt+fiot~-fit-fpd2t;
if(x>0)
fh=x;
else
fb=0;
return fb;
}
public double Expect/()
{
fed=0.25*fiot+0.75*fedt;
int c=(int) fed;
if (fed>c)
fed=c+1;
else fed=c;
return fed;
}
//fourth step
public double Request()
{
Q=17;
System.out.println{""+Q) ;
doubkle t=as*{(Q-fi+fb)-as*B* (fpd2+fpdl)+fed;

if(t>0)

{
int p=(int)t;
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if(t>p)
t=p+1;
//else
//t=p;
fpr=t;
}
else fpr=0;
return fpr;
}
//fifth step
3

class FactoryModel

{
public FactoryModel ()
{
int c¢;
}

public double[] runFactory(double iOrder ,double delay2 ,double delayl ,
double oShip, double
back, double expect, double request, double inventory, double distributor)
{
double fio=iOrder;
double fpd2=delay2;
double fpdl=delayl;
double fos=oShip;
double fb=back;
double fed=expect;
double fpr=request;
double fi=inventory;
double dr=distributor;
Factory f= new Factory(fio, fpd2, fpdl, fos, £b, fed, fpr, £i);

int 1i;
double [] Inv=new doublel[40];
double [] Back=new double[40];

double [] Request=new double[40];
for(i=0;1i<1;i++)

//first step

f.adOxrder (dr) ;

f.Exchange () ;

double e=f.Inventory();

f.forwardFpd() ;

System.out.println("the fit isg:"+f.fit);

double x=f.Fos{();

System.out.println("the fos is:"+f.fos);

System.out.println{"the inventory is:"+f.fi);

//second step

f.adFio();

double y=f.Backlog();

System.out.printlin("the backlog order is:"+f.fb);

double z=f.Expect();
System.out.println("the fiot is:"+f.fiot);

System.out.println("the fed is:"+z);

//third step
Inv[i]=£f.£fi;
Back([i]=£f.fb;

//fourth step

double k=f.Request();
//fifth step

Request([il=f. fpr;

System.out.println("the request is:"+Request[il+"\n");
System.out.println(f.fio+" "+f.fpd2+" "+f.fpdl+" "+f.fos+" "+f.fb+" "+f.fed+"
t+f . fpr+" "+£.f£1i+"\n");

}
doublel[] a={f.fio,f.fpd2,f.fpdl,f.fos,f.fb,f.fed, f.fpr, £.£1};
return a;
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1}

Distributor

public class Distributor
{
double wop;
double wopt;
double dio;
double diot;
double di;
double dit;
double dis;
double dist;
double fos;
double fost;
double db;.
double dbt;
double dop;
double dopt;
double dos;
double dost;
double ded;
double dedt;
double as=0.45;
double B=0.075;
double H=0.25;
double Q;
public Distributor (double iOrder ,double incomingS ,double FoutSt ,
double oShip, double back, double expect, double
request, double inventory,double FoutS )
{
dio=iOrder;
dis=incoming$S;
fos=Fouts;
fost=FoutSt;
dos=0Ship;
db=back;
ded=expect;
dop=request;
di=inventory;
}
public void Exchange()
{
diot=dio;
dit=di;
dist=dis;
//fost=fos;
dost=dos;
dbt=db;
dedt=ded;
dopt=dop;
wopt=wop;
}
//first step
public double dosMin(double a, double b)
{
double s;
if (a>b)
s=b;
else
s=aj;
return s;
}
public void adOrder (double a)

222



{

wop=a;
}
public double Inventory()
{
double x=dit+dist-dbt-diot;
if(x>0)
{
di=x;
}
else
di=0;
return di;
}
public void forwardDpd()
{
dis=fost;
//fos=dopt;////////
}
public double dos({()
{

double a= dit+dist;
double b= dbt+diot;
dos=dosMin(a,b) ;
return dos;
}
//second step
public void adbio()
{
dio=wopt;
}
public double Backlog ()
{
double x=dbt+diot-dit-dist;
if (x>0)
db=x;
else
db=0;
return db;
}
public double Expect()
{
ded=0.25*diot+0.75*dedt;
int c¢=(int)ded;
if (ded>c)
ded=c+1;
else ded=c;
return ded;
}
//fourth step
public double Request ()
{
Q=17;
System.out.println(""+Q) ;
double t=asgs* (Q-di+db)-as*B* (dis+fos)+ded;
if(t>0)
{
int p=(int)t;
1f(t>p)
t=p+1;
//else
//t=p;
dop=t;
}
else dop=0;
return dop;
}
//Efifth step
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class DistributorModel

{
public DistributorModel ()
{
int c¢;
}

public double[] runDistributor (double iOrder ,double delay2 ,double delayl
double oShip, double
back, double expect, double request, double inventory, double wrequest,double
Fout$S)
{

’

double dio=iOxder;
double dis=delay?2;
double fos=delayl;
double dost=oShip;
double db=back;
double ded=expect;
double dop=request;
double di=inventory;
double dos=Fout$S;
double wh=wrequest;
Distributor d= new Distributor(dio,dis, fos,dost,db,ded,dop,di,dos);

int 1i;

double [] Inv=new double[40];
double [] Back=new double[40];
double [] Request=new double[40];
for(i=0;1i<1;i++)

{

//first step

d.adOrder (wh) ;

d.Exchange () ;

double e=d.Inventory():;

d. forwardDpd() ;

System.out.printin("the dit is:"+d.dit);

double x=d.dos{() ;

System.out.println("the inventory is:"+d.di);

//second step

d.adDio() ;

double y=d.Backlog();

System.out.println("the backlog order is:"+d.db);
System.out.printlin("the dist is:"+d.dist);
System.out.printin("the dis is:"+d.dis):
System.out.println{("the fost ig:"+d.fost);

double z=d.Expect():;
System.out.println("the diot is:"+d.diot);

System.out.println("the ded is:"+z);

//third step
Inv[il=d.di;
Back[i]=d.db;

//fourth step

double k=d.Request();
//fifth step

Request[i]=d.dop;

System.out.println("the request is:"+Request[i]+"\n");
System.out.printin(d.dio+" "+d.dis+" "+d.fos+" "+d.dos+" "+d.db+" "+d.ded+"
"+d.dop+" "+d.di+"\n");

}
double(] a={d.dio,d.dis,d.fos,d.dos,d.db,d.ded,d.dop,d.di};
return a;
}
}
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Wholsalor

public class Wholesalor
{
double rop;
double ropt;
double wio;
double wiot;
double wi;
double wit;
double wis;
double wist;
double dos;
double dost;
double wb;
double wbt;
double wop;
double wopt;
double wos;
double wost;
double wed;
double wedt;
double as=0.45;
double B=0.075;
double H=0.25;
double Q;
public Wholesalor(double iOrder ,double incomingS ,double DoS ,
double oShip, double back, double expect, double
request, double inventory,double DoSt)
{
wio=iOrder;
wis=incoming$;
dos=DoS;
dost=DoSt;
wos=0Ship;
wb=back;
wed=expect;
wop=request;
wi=inventory;
}
public void Exchange()
{
wiot=wio;
wit=wi;
wist=wis;
//dost=dos;
woSt=wos;
wbt=wb;
wedt=wed;
wopt=wop;
ropt=rop;
}
//first step
public double dosMin(double a, double b)
{
double s;
if (a>b)
s=b;
else
s=a;
return s;
}
public void adOrder (double a)
{

rop=a;
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}
public double Inventory()
{
double x=wit+wist-wbt-wiot;
if (x>0)
{
wi=x;
}
else
wi=0;
return wi;
}
public void forwardDpd()
{
wis=dost;
//fos=dopt;////////
}
public double dos ()
{
double a= wit+wist;
double b= wbt+wiot;
wos=dosMin (a,b) ;
return wos;
}
//second step
public void adDio()
{
wlo=ropt;
}
public double Backlog()
{
double x=wbt+wiot-wit-wist;
if (x>0)
wbh=x;
else
wh=0;
return wb;
}
public double Expect ()
{
wed=0.25*wiot+0.75*wedt;
int c=(int)wed;
if (wed>c)
wed=c+1;
else wed=c;
return wed;
}
//fourth step
public double Request()
{
Q=17;
System.out.println(""+Q);
double t=as* (Q-wi+wb)-as*B* (wis+dos) +wed;
1£(t>0)
{
int p=(int)t;
if(t>p)
t=p+1;
//else
//t=p;
wop=t;
}
else wop=0;
return wop;
}
//fifth step
}
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class WholesalorModel

{ .
public WholesalorModel ()
{
int c¢;
}

public double[] runWholesalor(double iOrder ,double delay2 ,double delayl ,
double oShip, double
back, double expect, double request, double inventory, double retailer,double
delaylt)
{
double wio=iOrder;
double wis=delay2;
double dos=delayl;
double dost=delaylt;
double wos=oShip;
double wb=back;
double wed=expect;
double wop=request;
double wi=inventory;
double re=retailer;
Wholesalor d= new Wholesalor(wio,wis,dos,wos,wb,wed,wop,wi,dost) ;

int 1i;
double {] Inv=new double[40];
double [] Back=new double[40];

double [] Request=new double[40];
for(i=0;i<1l;1i++)
{
//first step
d.adOrder (re) ;
d.Exchange () ;
double e=d.Inventory();
d. forwardDpd () ;
System.out.println("the wit is:"+d.wit);
double x=d.dos () ;
System.out.println({"the inventory is:"+d.wi);
//second step
d.adDio{() ;
double y=d.Backlog();
System.out.println("the backlog order is:"+d.wb);
System.out.println("the wis is:"+d.wis);
System.out.println("the wit is:"+d.wit);
System.out.println("the wiot is:"+d.wiot);
double z=d.Expect();
System.out.println("the wiot is:"+d.wiot);
System.out.println("the wed ig:"+z);
//third step
Inv{il=d.wi;
Back[i]l=d.wb;
//fourth step
double k=d.Request();
//fifth step
Request[i]=d.wop;
System.out.println("the w request is:"+Request[i]l+"\n");

System.out.printin{(d.wio+" "+d.wis+" "+d.dos+" "+d.wos+" "+d.wb+" "+d.wed+"
"+d.wop+" "+d.wi+"\n");
}
double[] a={d.wio,d.wis,d.dos,d.wos,d.wb,d.wed,d.wop,d.wi};
return a;
}
}
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Main

class linkTestl
{
public static void main(String argsi{] )
{
//for factory
double iOrder =4;
double delay2 =4;
double delayli=4;
double back=0;
double expect=4;
double request=4;
double inventory=4;
double b[]l= new doublel8];
FactoryModel f=new FactoryModel () ;
//1link point
double FoutS=4;
double FoutSt;
double drequest=4;
double diOrder =4;
double dincomingS =4;
double dback=0;
double dexpect=4;
double dinventory=4;
DistributorModel t=new DistributorModel () ;
//for link point
double wrequest=4;
double doShip=4;
double doShipt;
//for wholesalor
double wiOrder=4;
double wincomingS=4;
double wback=0;
double wexpect=4;
double winventory=4;
double woShip=4;
double retailer=8;
WholesalorModel h=new WholesalorModel () ;
double
orderList{]={(8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8 8
,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
double d[]= new double[8];
double w{]l=new double([8];
for(int j=0;3<8;j++)

1 O

8,8,8,8,8,8,8,8,8,8,8,8

//for factory
FoutSt=FoutS;
b=f.runFactory(iOrder,delay?2,delayl, FoutS, back, expect, request, inventory
,drequest) ;//shallow copy

i0rder=bi{0];

delay2=bl1l];

delayl=b[2];

FoutS=b[31}];

back=b([4];

expect=b[5];

regquest=b(6];

inventory=bl[7];

//distributor=orderList[j+1];

//for distributor

doShipt=doShip;
d=t.runDistributor (diOrder,dincomings, FoutSt, doShip, dback, dexpect, drequ
est,dinventory,wrequest, FoutS8);//shallow copy

diOrder=d4[0];
dincomingS=4d[1];
FoutS=d[2];
doShip=d{3];

228



dback=d[4];
dexpect=d{5];
drequest=d(6];
dinventory=di{7];

//forwholesalor
w=h.runWholesalor (wiOrder,wincomingS,doShip,woShip, wback, wexpect,wrequest,winv
entory, retailer,doShipt) ;

wiOrder=w[0];
wincomingS=w([l];
doShip=w[2]};
woShip=w{3];

wback=w{4];
wexpect=w[5];
wrequest=w[6];
winventory=wi{7];
retailer=orderList[j+1];

//end
for(int i=0;i<6;1i++)
{
System.out.print ("the value is"+b[i] +" ");
}
}
}
}
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