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Abstract

Matching networks are widely used to enhance active power transfer when radio
frequency generators drive complex loads. The tuning of the network for varying
loads typically involves searching for optimum matching conditions.

However, improving the matching condition of the network does not necessarily
indicate an increase in active power transfer. As an example, a 7 network with
three adjustable elements may achieve comparable matches for a variety of elements’
settings, each matching triple exhibiting a different transferred active power.

Furthermore, the influence of the transmission lines used to connect the matching
network to its source and load is rarely taken into account.

The purpose of the work is to optimise the power gain of a narrowband matching sys-
tem in the frequency range of 1.8 —30 MHz. The system consists of a source, a match-
ing network, a load and two interconnecting lines whose characteristic impedance
is complex. The optimisation process involves optimum choice of the transmission
lines’ lengths and development of a matching strategy. Its objective is to ensure
automatic and continuous adjustment of the matching network for optimum ac-
tive power transfer to its load while matching the network’s input impedance to a
resistive source.

The network topologies employed are limited to the most common 7 and T networks
consisting of two variable capacitors and one central inductor. Losses are assumed
to be mainly caused by the inductor. An appropriate simple and synthetic model
of the losses is proposed — which is suitable for active power transfer optimisation.
The model is validated against losses of inductors derived by different works.

After choosing a proper network parametrisation and exact inclusion of the losses
during network design, the losses of a network terminated by a resistance and de-
signed to match (exactly) a source resistance at its input are derived. Then its power
gain is optimised by a proper choice of the network’s parameter and the impact of
changing the purely resistive termination to impedances exhibiting capacitive or in-
ductive imaginary parts is considered. An explicit solution is calculated for networks
with a constant @) factor central inductor, its differences from the approximate solu-
tion (network elements designed as if the network would be lossless) are considered.
Example diagrams are given illustrating those differences and power gain contour
Smith charts are drawn for typical ranges of the L, 7, and T networks’ elements.
Combining the results of the different approaches yields an optimum matching strat-
egy.

The losses of transmission lines connecting source and network of load and network
are determined, where the lines’ complex characteristic impedance is taken into
account. Those losses are included in a power gain optimisation of the complete
matching system.

Finally, an experimental setup is designed under which the matching strategy of the
network is tested and validated.
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Notations

*

Im{...}
Max{...}
Min{...}
Re{...}
P...
(#.#)

Indices

i,,0
inma

4

i1
llcapdes
lides

L

M

MB

outma

Complex variable (or constant), e. g. V is the complex amplitude of a voltage

Per-unit-length variable (or constant), e.g. R’ is the per-unit-length resistance of a trans-
mission line
Complex conjugate, e.g. Z* is the complex conjugate of Z

Absolute value of ...

Imaginary part of ...

Maximum of ...

Minimum of ...

Real part of ...

Phase of ...

The right hand side of the equation was derived by applying Equation (#.#)

If used with an impedance/resistance/reactance/admittance/conductance/susceptance,
it denotes a characteristic value of a transmission line, if used with a voltage/current, it
denotes the (complex) amplitude of an ideal voltage/current source

If used with an impedance/reflection coefficient/active power, it denotes a value at the
input of a transmission line or a network as first index or the line number as second index

If used with an impedance/reflection coefficient/active power, it denotes a value at the
load of a transmission line or a network as first index or the line number as second index
Active power (index used only in conjunction with a power)

Axial

Arnold

Coil

If used with an impedance/resistance/reactance/admittance/conductance/susceptance/re-

flection coefficient, it denotes a value of a source impedance, if used with a volt-
age/current, it denotes an incident value in a transmission line

Either index i or £ is used in all variables with index ; ¢ throughout an equation
Either index i, £, or 0 is used in all variables with index ; ¢ ¢ throughout an equation
network (exactly) matched at its input

Load

Lossless

Network designed as if all capacitors were lossless

Network designed as if all elements were lossless

Transmission line

Medhurst

Matchbox (matching network)

network (exactly) matched at its output

Parallel

Reflected

xXvi
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rad Radial

s Series

t T network (the lower case letter was chosen to avoid confusion of gy (power gain of a
T network), with gt (transducer power gain))

tp Two-port

T Transducer

T Turn

Reference impedance of a reflection coefficient, e.g. Z

I
o

7 network

3

Latin letters

arctan() Arc tangens function

arsinh() Inverse hyperbolic sine function

B Susceptance, imaginary part of admittance Y.
co Speed of light in a vacuum

cos() Cosine function

cosh() Hyperbolic cosine function

C Capacitance

e Exponential constant (base of natural logarithms)
() Exponential function of ...

f Frequency

g Power gain (named as usual, although it's a ratio of active powers (an active power gain))
ar Transducer power gain

G Conductance, real part of admittance Y

Gp Parallel conductance

I Complex amplitude of a current

j Imaginary unit v/ —1

! Length of a transmission line

1g() Logarithm function to base 10

In() Natural logarithm function

L Inductance

R Set of real numbers

IRaL Set of real numbers greater or equal than zero
R Resistance, real part of impedance Z

R Series resistance

sin() Sine function

sinh() Hyperbolic sine function

tanh() Hyperbolic tangens function

\4 Complex amplitude of a voltage

X Reactance, imaginary part of impedance Z
Y Admittance (Y = —é—)

V// Set of whole numbers (integers)

Z Impedance

Greek letters

a Attenuation constant of a transmission line
Jej Phase constant of a transmission line

y Propagation constant of a transmission line
Iz Permeability

Ko Permeability constant (in a vacuum), often approximated as 4 10‘7%
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T Number pi
e Resistivity
w Angular frequency (w = 2n f)

Abbreviations

(1.4) Equation number of an equation in a chapter, e. g. equation number # in Chapter 1

(A.#) Equation number of an equation in a chapter of the appendix, e. g. equation number #
in Appendix A

[#] Citation number #

AC Alternating current

DC Direct current

MMIC Monolithic microwave integrated circuit
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Chapter 1

Introduction

1.1 Introduction

Matching networks are widely used to enhance active power transfer when radio
frequency generators drive complex loads. The tuning of the network for varying
loads typically involves searching for optimum matching conditions. A number of
interesting algorithm and techniques were developed to search for optimum matching
condition (see e.g. [1], [2], [3] for continuously variable elements or [4], [5], [6], [7],
and [8] for binary switchable elements).

However, improving the matching condition of the network does not necessarily
indicate an increase in active power transfer. As an example, a 7 network with
three adjustable elements may achieve comparable matches for a variety of elements’
settings while each matching triple exhibits a different transferred active power.

Another important aspect in developing an optimum matching strategy is a proper
choice of the network’s parametrisation. In effect, during the last decades, a couple
of m and T network parametrisations were developed for lossless networks suiting
different needs. A more filter theoretical approach involving hyperbolic functions was
summarised in [9¢] and examined in more detail in [10]. The so called Q-based design
was used in [11], [12] and further developed in [13], [14], [15], [16], [17], and [18]. The
problem of exact loss inclusion in network design was introduced by [3]. However,
the authors in the previous mentioned works assumed that the losses are low enough
so that the same element values are used as in the lossless case whenever deriving
analytical solutions. This obviously is not valid for the entire parameter range or for
badly chosen element values. Additionally, although realistic loads are often complex
loads, the element values were calculated for resistive loads only. In [13] and [1§],
absorption and resonance methods are used for complex load matching, but both
works do not systematically describe the impact of complex loads on the chosen
parametrisation. However, [19], [20], and [21] graphically visualise the complex
load range for a given tunable range of the network’s components. In addition, the
required minimum 7 network component values’ range to acquire a match for a given
magnitude of the load reflection coefficient is calculated in [21], assuming a lossless
network and using no explicit parametrisation (it’s done implicitly by variation of
the components in their tunable range).
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Furthermore, in all the above work the losses are described by a constant @) factor
only.

On the other hand, it is important to realise that in practice, the source and the
load are connected to the matching network via transmission lines which also have
some influence on active power transfer. However, the influence of the transmission
lines used to connect the matching network is rarely taken into account in various
research works.

The purpose of the work is to optimise the power gain of a matching system in
the frequency range of 1.8—30MHz. The system consists of a source, a match-
ing network, a load and two interconnecting lines whose characteristic impedance
is complex. The optimisation process involves optimum choice of the transmission
lines’ lengths and development of a matching strategy. Its objective is to ensure
automatic and continuous adjustment of the matching network for optimum ac-
tive power transfer to its load while matching the network’s input impedance to a
resistive source.

Its application is restricted to carrier based applications, thus only narrowband
matching is considered. The overall system can be applied to radio broadcast, ham
radio, and industrial applications (as plasma deposition systems).

The network topology is limited to the most common 7 and T networks consist-
ing of two variable capacitors and one central inductor, including the four possible
L networks derived by omitting one of the capacitors.

In the desired frequency range the total loss of such networks is mainly determined
by the losses of the inductor while the capacitors’ losses can be neglected. Thus, a
simple and synthetic model for the losses of the inductor is proposed. One of the
main features of the proposed model is that it describes the general case of non
constant ¢) and includes the case of constant ) as well as a special case. It applies
to different variable inductor realisations, compared to losses derived in different
works (examples for a solenoidal variable air-core inductor are [22] and [23] for a low
number of turns, [24] for a high number of turns, and [25] for any number of turns).

Next, the losses due to the inductor are included exactly in the network’s parametri-
sation.

The choice of a proper parametrisation suiting the needs of active power transfer op-
timisation is especially important, because it determines the characteristic behaviour
of the system. This in turn simplifies considerably the analysis of the system.

Within this work, the initial parametrisation of [13] (based on the graphical design
method of [11]) is employed. Its extension to exact loss inclusion by [3] is used for
7 and T network design and the influence of complex loads on the parametrisation
and the transferred active power is derived systematically.

Furthermore, additional losses of the feedlines between generator, matching network,
and load are taken into account using the lines’ complex characteristic impedance,
which results in a system description enabling active power transfer optimisation of
the complete system.

Finally, the optimum matching strategy of the network is tested and validated ex-
perimentally by designing a prototype system.
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1.2 The aims of the thesis

The main aims of the thesis are:

e To develop a narrowband matching strategy which is suited for automatic and
continuous adjustment of L, w, and T matching networks for optimum active
power transfer to their load while matching the network’s input impedance to
a resistive source applicable in a frequency range of 1.8-30 MHz.

e To investigate the influence of the transmission lines’ lengths (which connect
the matching network to source and load) on power gain of the matching
system and derive optimum line lengths, where the transmission lines’ charac-
teristic impedance is complex.

e To design a prototype system to test and validate the matching strategy of
the network experimentally.

1.3 The objectives of the thesis

The main objectives of the proposed research work are:

e To propose a simple model for the losses in the central inductor of w and
T networks in the given frequency range and validate it by comparison to
existing loss models for different types of variable inductors used in matching
networks.

e To choose a proper network parametrisation suitable for the needs of power
gain opimisation.

e To derive optimum network settings with exact inclusion of the network’s
central inductor’s losses for matching of a purely resistive load to a purely
resistive source.

¢ To extend the method to complex loads.

¢ To solve explicitly for the central inductor’s loss resistance in case of a constant
Q factor inductor.

e To apply optimum network settings using the general loss model and appro-
priate results of the constant @ factor inductor calculations to develop an
optimum matching strategy for the network.

e To optimise the load impedance of a transmission line whose characteris-
tic impedance is complex for optimum power gain and the according source
impedance for maximum active power input.
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e To examine the impact of common sub-optimal source impedance
choices/matching network input impedance design on the power gain of the
matching system for low-loss coaxial transmission lines.

e To investigate the influence of common sub-optimal source impedance choices
on optimum matching strategy for low-loss coaxial transmission lines.

e To derive optimum line lengths in a matching system for lossless and lossy
matching networks, thus optimising the power gain of the complete matching
system.

e To test and validate the matching strategy of the network experimentally.

1.4 Scope of the thesis

The majority of research work in narrowband 7 and T matching network design
focus on constant () factor central network inductors and apply ¢ based design
to parametrise those networks. Exceptionally, the work in [3] exactly includes the
variable inductor’s losses. On the other hand, whenever analytical solutions are
given and parameter’s limits are derived, the networks are assumed to be designed
as if all elements were lossless. Moreover, the impact of complex loads on the chosen
parametrisation is usually not systematically described. In particular, the possibility
that the resulting load related element of the equivalent circuit is an inductor instead
of a capacitor is usually not considered.

Additionally, when losses in the connecting transmission lines are taken into ac-
count, their complex characteristic impedance is approximated by a real character-
istic impedance, despite the fact that its complex propagation constant is used.

The present work uses a general loss model that is applicable to different types
of variable inductors. The chosen parametrisation is particularly suited for power
gain optimisation of 7 and T matching networks because, unlike ) based design,
the power gain’s derivative with respect to the parameter exhibits a unique sign
over the entire parameter range for purely resistive and capacitive complex loads
if the general loss model is applied. The losses of the central inductor are exactly
included in network design and the design formulae are systematically extended
to complex loads. Analytical solutions and parameter limits are given for 7 and
T matching networks with a constant () factor central inductor and any types of
complex loads. The results obtained from the general loss model and those from
the constant @ factor inductor are combined to derive a general optimum matching
strategy for L, w, and T networks.

The losses in the connecting transmission lines are taken into account by their
complex characteristic impedance and attenuation.
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1.5 Contributions

The contributions resulting from this work are as follows:

o A simple and synthetic general loss model applicable to different types of
variable inductors used in matching networks is derived.

e Applying the loss model to L, w, and T networks, an analytically proven
matching strategy which optimises the networks’ power gain if purely resistive
or capacitive complex loads are matched to a purely resistive source is given. In
addition, an adaptation to match purely resistive/capacitive complex sources
to purely resistive loads is presented.

e An analytical solution for the L, w, and T networks’ central inductor’s loss
resistance as a function of the chosen parametrisation and the appropriate
parameter’s limits if the inductor’s ) factor is constant is provided.

e An optimum matching strategy suitable for automatic and continuous adjust-
ment of L, w, and T matching networks obtained by combining general loss
model and constant () factor results is derived.

¢ An optimisation of the complete matching system including optimum splitting
of the connecting lines’ total length is achieved.

e Finally, an experimental setup is designed under which the matching strategy
of the network is tested and validated.

1.6 Thesis structure

The thesis is broken down in seven chapters. Chapter 1 gives a brief introduction
to matching network system design, the scope of the thesis, and summaries of each
chapter.

Chapter 2 describes basic transmission line properties and gives a motivation as to
why the complex characteristic impedance of coaxial transmission lines has to be
considered although its imaginary part is much lower than its real part. Furthermore,
it includes definitions, basic equations used in subsequent chapters, and a derivation
of the complete matching system’s power gain.

Chapter 3 considers the losses in 7 and T matching networks, proposes a simple loss
model suitable for different types of the networks’ central inductor, and validates
the model by comparing to existing loss models for different types of variable induc-
tors. A proper network parametrisation is chosen suiting the needs of power gain
optimisation. Application of the general loss model to 7 and T networks designed
including the losses exactly yields the optimum parameter’s (and load resistance’s)
value for maximum active power transfer in case of resistive sources and loads.

Since realistic loads are usually complex, Chapter 4 extends the method presented
in Chapter 3 to complex loads, thereby obtaining the first part of the optimum
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matching strategy which applies to purely resistive or capacitive complex loads. To
implement a matching strategy for inductive complex loads, an explicit solution is
calculated for networks with a constant @ factor central inductor, its differences
from the approximate solution (network elements designed as if the network would
be lossless) are considered. Example diagrams are given illustrating those differences
and power gain contour Smith charts are drawn for typical ranges of the L, 7, and
T networks’ elements. Combining the results of the different approaches yields an
optimum matching strategy for L, m, and T matching networks suitable for any
types of loads.

Chapter 5 determines the losses of transmission lines connecting source and network
or load and network. The impact of the complex characteristic impedance on both
lines is considered. Splitting of the total line length is optimised for highest power
gain, and a power gain optimisation of the complete matching system is derived.

Chapter 6 describes the experimental setup designed to test the network’s matching
strategy. The performed measurements are explained and results are given validating
the matching strategy for optimum power gain of the network.

Chapter 7 presents final conclusions, discusses optimum matching strategies, and
suggests possible directions for further work.

Note: In order to facilitate the readability of Chapters 2—5, lengthy calculations or
proofs were moved towards the appropriate appendices.



Chapter 2

RF Basics

2.1 Introduction

In this chapter, we derive all the neccesary equations that describe the active power
transfer in a system consisting of a matching network embedded in two lossy trans-
mission lines — described by their attenuation and complex characteristic impedance
— between source and load.

In effect, the calculation and optimisation of active power transfer in matching
systems using matching networks involves lossy transmission lines. This is due to
the fact that generally the matching network is embedded in two lines connecting
it to source and load. Both lines introduce impedance transformation and losses.
Although lossy transmission lines are usually described by their attenuation and
an approximately real characteristic impedance, the small imaginary part of the
characteristic impedance of the mismatched line between matching network and
load needs to be taken into account.

We start by recalling some basic definitions and notations that are used throughout
the thesis.

2.2 Definitions/notations

From this chapter on, the following definitions/notations will be used:

Latin letters

a Attenuation of a transmission line

a4B/100 m Attenuation of a transmission line in dB/100m

c’ Per-unit-length capacitance of a transmission line

Jtot Power gain of the complete matching system

gtp Power gain of a two-port

gip(z Etp,£0tp2) Power gain of a two-port as a function of reflection coefficient T ttp, Z gupe

gL Power gain of a transmission line

gLi Power gain of a transmission line 1

gLi(r 1:p,Z01) Power gain of a transmission line 1 as a function of reflection coefficient 7 1tp, Z oy

7



CHAPTER 2. RF BASICS 8

gL2 Power gain of a transmission line 2

gra(r A 02) Power gain of a transmission line 2 as a function of reflection coefficient r 62 gy
gr,L Transducer power gain of a transmission line

gT, L1 Transducer power gain of a transmission line 1

gr,L1(r; 2 o’ L1tp, Z m) Transducer power gain of a transmission line 1 as a function of the reflection coefficients

Eiv_Z_(n and tltP,Z(n

gTtot Transducer power gain of the complete matching system

15 Length of transmission line 1

123 Length of transmission line 2

Pact1 Active power transferred to the input of a transmission line

Pacio Active power transferred to the load of a transmission line

Paciit Active power transferred to the input of transmission line 1

P12 Active power transferred to the input of transmission line 2

Pact1tp Active power transferred to the input of a two-port

Paci21 Active power transferred to the load of transmission line 1

Pacioo Active power transferred to the load of transmission line 2

P.cie Active power transferred to the load impedance Z,

Pacten Active power transferred to the load of transmission line 1

Pycteo Active power transferred to the load of transmission line 2

Pacresp Active power transferred to the load of a two-port

Pictmaxi Available power of source with source impedance Z;

T (Complex) reflection coefficient (without reference index referred to Z )

(%) Reflection coefficient as a function of reflection coefficient 7 (both reflection coefficients
referred to Z )

r(Z) Reflection coefficient of Z (without reference index referred to Z )

Ty Reflection coefficient at the beginning of a transmission line (at its input, referred to Z )

T, 2, Reflection coefficient at the beginning of transmission line 1 (at its input) referred to Z ¢,

T12,Z 4, Reflection coefficient at the beginning of transmission line 2 (at its input) referred to Z ;,

Litp, Z g4p1 Reflection coefficient at the input of a two-port referred to Z g;,q

L1tp, Z g4y (Eetp,gmpz) Reflection coeflicient r 16p, Z gppy 35 2 function of reflection coefficient T etp, Z gups

Ty Reflection coefficient at the end of a transmission line (of its load, referred to Z ;)

21,24, Reflection coefficient at the end of transmission line 1 (of its load) referred to Z ¢,

22,2, Reflection coefficient at the end of transmission line 2 (of its load) referred to Z ¢,

r; Reflection coefficient of source impedance Z; (referred to Z )

T, Z¢, Reflection coefficient of source impedance Z ; referred to Z ¢,

Li1,24, Reflection coefficient of the source impedance of transmission line 1 referred to Z ¢;

Litp, Z ¢, Reflection coefficient of the source impedance of a two-port referred to Z ¢,

Titp, Z o5 Refiection coefficient of the source impedance of a two-port referred t0 Z g4y

Ty Reflection coefficient of load impedance Z , (referred to Z )

TLe.2,, Reflection coefficient of the load impedance of Z , referred to Z g,

Letp, Z g, Reflection coefficient of the load impedance of a two-port referred to Z o,

Tetp, Z gipo Reflection coefficient of the load impedance of a two-port referred to Z g¢,9

’Z, (Complex) reflection coefficient (reference index indicates that it’s referred to Z o)

Ty O(Z) Reflection coefficient of Z referred to Z o

R Per-unit-length resistance of a transmission line

Rg Real part of Z 5, the complex characteristic impedance of a transmission line

Roy Real part of Z,, the complex characteristic impedance of transmission line 1

Roa Real part of Z 45, the complex characteristic impedance of transmission line 2

Vo Complex amplitude of an ideal voltage source

Xo Imaginary part of Z ,, the complex characteristic impedance of a transmission line

Xo1 Imaginary part of Z,,, the complex characteristic impedance of transmission line 1

Xoz Imaginary part of Z ,,, the complex characteristic impedance of transmission line 2
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Zy Complex characteristic impedance of a transmission line

Zoy Complex characteristic impedance of transmission line 1

Zoo Complex characteristic impedance of transmission line 2

Zoy Real characteristic impedance of a lossless transmission line, nominal (real) characteristic
impedance of a transmission line

Z()tpl Reference impedance of the reflection coefficients at a two-port’s input

Z_()tpg Reference impedance of the reflection coefficients at a two-port’s output

Z; Source impedance

Z, Load impedance

Greek letters

ay Attenuation constant of transmission line 1
a Attenuation constant of transmission line 2
51 Phase constant of transmission line 1
B2 Phase constant of transmission line 2

2.3 Basic definitions

e The active power transferred to an impedance is the real part of the product
of the voltage at the impedance times the complex conjugate of the current
flowing through the impedance.

e As usual, a power gain is the ratio of active powers, although “active power
gain” would be a more precise terminology.

e The @ factor of an impedance is the ratio of its reactance to its resistance.

2.4 Properties of lossy (coaxial) transmission
lines

In the system under consideration, lossy coaxial transmission lines connect the source
and the load to the matching network. These lines exhibit a nominal characteristic

impedance of
Zou = 50 Q, (21)

a per-unit-length capacitance C’ and an attenuation a at the frequency of interest,
usually specified as aqp/100m in dB/100m.

In this work, matching network and connecting lines will be operated within the
short wave frequency range of about 1.8 -30 MHz. It is well known that the coaxial
line’s losses in this frequency range are dominated by its series resistance charac-
terised by the per-unit-length resistance R’ ([26a], [26h], [27a], [27b], and [27c]).
Thus certain approximations apply, in particular for the calculation of the attenua-
tion constant a T, the phase constant 37, and the line’s characteristic impedance Z,,

tDespite their names, o, 3, and thus 7 are not constant, but depend on the operating frequency.
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([26h], [26D], [26¢] or [27a]). Additionally the ratio of attenuation to phase constant
may be assumed to be much less than unity, % < 1, and « is approximately propor-
tional to the square root of the operating frequency f or angular frequency w = 27 f,
respectively; i.e. a ~ /w.

More specifically,

ik [ R .
2 100m 2701 ‘
B = wZulC', (23)
a\ (23) «
Lo = Zoull—j=) = Zoyy—j—. 2.4
Ly ou( Jﬂ) oll JwC’ (2.4)
Since % < 1, the worse approximation

Zo = Zo , (2.5)

is usually employed.

The error introduced by this approximation is low for transmission lines terminated
by its characteristic impedance. Conversely, it may be quite high for terminations
strongly deviating from its characteristic impedance. This issue is discussed in
Section 5.4.1 in detail.

Thus in the following sections all formulae will be derived for a complex characteristic
impedance. To use the real characteristic impedance instead, we just have to put
Xo=Im{Z,} =0.

As usual, the transmission line’s propagation constant!
y=a+jf (2.6)

is always assumed to be complex.

2.5 Rewriting of some circuit parameters as func-
tions of their reflection coefficients

All equations derived in the following sections will depend solely on reflection coef-
ficients, S-parameters, and power gains. Thus, as a first step, some of the original
circuit parameters have to be rewritten as functions of their reflection coefficients;
namely, the real and imaginary part of the impedance or admittance, the change of
the reference characteristic impedance of a reflection coefficient, and the reflection
coefficient of the conjugate complex impedance.

In this section, the “reflection coefficient” is used as a conformal mapping with
parameter Z . Its physical relevance for transmission lines is delayed to Section 2.6.
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The “reflection coefficient” r of a complex impedance

Z=R+jX (2.7)
referred to a reference impedance
Zg = Ro + jXo, (2.8)
is defined by [26¢]:
Z—Zy
o= 212, (2.9)

Conversely, the complex impedance Z may be calculated as a function of r as

Z=2,7 5 (2.10)

Solving for the real part R of the impedance yields

1+7) _1(, l+r 141
= = s=\Z, —= 4+ 7 =

or equivalently,

Zo(l+r—r" = e+ Zy(Q—r+1* — %)

ft= |1 —rl?

SN Y

can be shown that
_ Ro(1—rf?) — 2X, Im{r}
~ 1-2Re{r} +]r?

Similar derivation of the imaginary part X of the impedance gives

X=Im{201+£}=—1—<2 l%f-—z*li@-)

_ 2RoIm{r} + Xo (1 —|r]?)

By applying (2.8), i

R = Re{Z}. (2.11)

or

X = Im{Z}. 2.12
IR+ & (212)
In some cases we will use the admittance
1
Y ==-=G+jB (2.13)

YA

rather than the impedance Z.

Rearranging (2.9) as —r = (3 — ZLO)/(JZ— + Zio) and applying (—r)* = —r*, one can
solve, in a similar fashion as above, for the real part G and the imaginary part B of
the admittance:

_ B(-—rf)-2XoIm{r} _ o 1
¢ = 1Z,Z(1+2Re{r} + ) R {Z} : (2.14)
— _2R0 Im{f} + Xo (1 — ]ﬁ]z) — Im _l
b= IZOP (1+ ZRG{E} + |r|?) I {_Z_} . (2.15)
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Sometimes we may need to change the reference characteristic impedance from a
given reflection coefficient 1 referred to Z, to a reflection coeflicient r Z, referred to

_Z o, Which is equivalent to a transformation of the coordinates from parameter Z,
to parameter Z .

Both reflection coefficients describe the same impedance, hence combining of (2.9)
and (2.10) yields

o (141) 20— (1-1)2,  t—15(Zy)  r+rz(Zo) (2.16)

e (140)Zo+(-0Zy  1-rrg(Zy)  l+rrz(Ze)

where 1, (Z,) = ég__Zo = _Zo_%o = —r5 (Zy) (2.17)
= Lo+ Zy Lot <o =0

In what follows the reflection coefficient r(Z*) of the impedance’s Z conjugate com-
plex Z* will be derived.

Starting from the reflection coefficient’s definition in (2.9)

(2= 2L
ST 2T+ Zo

and applying (2.10) yields

vz = BotE — 2o Zy(4r) — Zy(1 - )
T ZhiE A4z Zo(l+r) +Ze(1-1)
In other words:
T(Z*) — (—Z—O +_Z_B)_7: - (Z_O - ZT))
T Zo+Zo—(Zo—Zo)r*
Ror* —jXo
= o 2.18
Ry — jXor* (2.18)

We may conclude from (2.18) that r(Z*) equals r* for any r for a real characteristic
impedance (Xg = 0) only?.

If Z=2, thus Z* = Z}, (2.18) becomes

r(Z%) = —i R (2.19)

tHowever, two r(Z) exist where r(Z*) = r(Z) = r*(Z), in particular r(Z) = £1. They describe
an impedance of Z — oo and Z = 0, respectively, which are idealised impedance limits.
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2.6 Active power in a transmission line and its
transducer and power gain

I)actl })act2 = I)acw
7. v Vs =r
=i 21 2 ¢
2
| — A

IN

— a5 IL|E>
_V_OLQ:D Zy,00 B |z

Figure 2.1: Basic transmission line with source and load

In Figure 2.1, a transmission line with input reflection coefficient r; connected to a
source V , and load with impedance Z, is depicted.

In what follows we are going to derive the transmission line’s power gain gr..

All the necessary formulae that are given below are presented in detail in Ap-
pendix A.2 and Appendix A.3.

From (A.3), the reflection coefficient 7, at the input of the line is obtained as

ry=r,e e (2.20)

The transducer power gain gr 1, of the line is given in (A.10) by

— —|r;|?)—2Xo1 JH[Ro (1-]r ,|?)—2Xo 1
gL = FE_@C_M_ — 20l [Ro (1—|r;] )|_Z_20|20|1H—1{££i1r_}1£-025¥11elfi£2|m)|22 0 m{u}], (2.21)

actmaxi

where Pieymaxi 1S the available power, defined in (A.1) as

Pactmaxi = LV-O]Q . (222)
8Re{Z;}
The power gain gy, of the line is described in (A.12) as
Pacte ~2al Ro (1= [ryl*) = 2Xo Im{r,}
= — =e —.  (2.23
9L Pt € Ro (1 —e~%l|r,|?) — 2Xoe 2 Im{r, e —i28} ( )

A similar formula is derived in [28] and [29].
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a) 12 b) gf 20

A

K

8 20

5

4 i 1. § __40 L el i
0 25 5 15 10 0 25 5 75 10
1[m] 1[m]

Figure 2.2: a) Power gain gy, of the line and b) percentage error for a RG-213/U
coaxial transmission line at 30 MHz

To illustrate the magnitude of the error in mismatched transmission lines, an ex-
ample for (2.23) was calculated in Figure 2.2. Numerical values employed are:
Zon = 509, C' = 101 E{g, adB/100m = 3.7 I‘go%ﬁv a = 0.004260 %, B = 0.9519 }lﬁ’
Ry = Re{Z,}, Xo = Im{Z,}, and the line’s length {. The transmission line was
terminated by 5€ in series to 1.06 uH (equal to 5§ + j20042).

Although § = 0.004475 < 1, using (2.5) instead of (2.4) causes a deviation of up to
33% for the line’s power gain!

Despite the impressive result, we should keep in mind that the error depends on
line length and termination impedance. Additionally, even the “more accurate”
calculation using (2.4) relies on cable data which might be erroneous due to changes
of its characteristic impedance caused by bending, connectors, etc.

However, regarding the system under consideration, we might conclude that cal-
culations should always be done using the complex characteristic impedance (2.4),
enabling calculation of its influence on the optimisation’s results and estimation of
the errors introduced by using (2.5).

2.7 Transferred active power in a source, line 1,
two-port, line 2, and load system

Pct2l =P el = Pactllp Pactltp = Pac(lz

a acl

o120 Lig, 24y Lop. 2oy > Liz 2,y

Pz = FPewa

Pact]l _ fitp, Zo? Eitp. Zopi ac -
7 Linzy Linzy = Liv.z_m Iz, = va.z.m
L; “
L= = &1 | two-port(tp) [T =
Kol Zy» oy, By 8 (Lf‘ﬂ Zop ) Zy, 0y, By, Z,
Litp. Zo (letp,zo.pz O

Figure 2.3: Definitions and setup of a system consisting of a source, transmission
line 1, two-port tp, transmission line 2, and load
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As shown in Figure 2.3, the input of a two-port (tp) is connected to a source (source
impedance Z,) using transmission line 1 of length {1. Its output is connected to a load
Z , using transmission line 2 of length l5. The complex characteristic impedances of
the lines are Z g, ,, their attenuation constants oy o, and their phase constants (.

The two-port will be characterised by its power gain

P, actltp
= =P 2.24
I P, actltp ( )

and its input impedance, which depend on its load impedance.

However, for our purpose it’s more convenient to replace the two-port’s input
impedance with its reflection coefficient 7y, Zowr? which is referred to Z g, and
1 £.0tp
the two-ports load with its reflection coefficient 4, 5, which is referred to Z g;p.
1 £.0tp

Choosing Zg,; = Zg; and Zgpy = Zg, simplifies calculations, but such choice
might be impossible if measured values are used. For example, the network analyser
measurement results will typically be referred to Z g1 = Zgpy = 502 However,
Z 12 might be complex.

If Zowpr # Zoy OF Zowpy # Zgo, then L 14p, Z oo has to be rewritten in ry, 5 =

- = —200ly o —j26202 i
To1,20, O Totp 20, = L1229y = L0,24, € e 0 Tpep, 200 by changing the
reflection coefficient’s reference characteristic impedance using (2.16).

Finally, the active power delivered to the load Z, in the system of Figure 2.3 is
given by

Pa/ctf = Pactmaxi gTtot (225)

where grio is the transducer power gain of the complete system.
The system’s transducer power gain gy, might be computed using (2.21) and (2.23):

P, actl

P, actmaxi

JTtot += =gr,L1 (.711, Zo' Litp, Z o, ) Gtp (r 2D, Z g1pn ) gLz (Ee, Zoo ),
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Chapter 3

Lossy L, w, and T Matching
Networks

3.1 Introduction

The following chapter addresses the losses in L, 7, and T matching networks. Firstly,
we propose a simple and synthetical loss model, which will be validated using the re-
sults of [22], [24], and [25]. Next, after chosing a proper parametrisation, we consider
the networks’ behaviour if source and load are purely resistive. Application of the
model yields the optimum parameter’s (and load resistance’s) value for maximum
active power transfer.

3.2 Definitions/notations

From this chapter on, the following definitions/notations will be used:

Latin letters

a Real coefficient of the series loss model

agldd $y Constant linearisation coefficient of ‘% Pum

agr Constant linearisation coefficient of rpg

apL, Constant linearisation coefficient of series inductance Lg
QON® 5 Constant linearisation coefficient of Np ®5

agr Constant linearisation coefficient of series resistance Rs
apd 5 Constant linearisation coefficient of &4

aA0dyg Constant linearisation coefficient of ®p

a1ldddy Linear linearisation coefficient of fi{? dm

air Linear linearisation coefficient of r;)S

aiL Linear linearisation coefficient of series inductance Lg
AI1Nd A Linear linearisation coefficient of Np &4

airR Linear linearisation coefficient of series resistance Hg
1P, Linear linearisation coefficient of &,

a1dy Linear linearisation coefficient of &)

a2r Quadratic linearisation coefficient of series resistance Rs

17
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an n-th real coefficient of the series loss model
an, n~th real coeflicient of the parallel loss model

Real exponent of the series loss model

bn n-th real exponent of the series loss model (sorted in ascending order with increasing n)

b n-th real exponent of the parallel loss model

by Real exponent of the series loss model with the highest index, thus the highest real
exponent of the model

Cmi1 Capacitance calculated from imaginary part of parallel-to-series transformed G; and C}
in a 7 network

Cm1 Capacitance calculated from imaginary part of series-to-parallel transformed R; and Cy
in a T network

Cm2 Capacitance calculated from imaginary part of parallel-to-series transformed G, and C»
in a 7 network

Cm2 Capacitance calculated from imaginary part of series-to-parallel transformed R; and Cs
in a T network

Ch Parallel capacitance

Cs Series capacitance

d Diameter of round wire used to make the windings of a solenoidal coil

de Mean diameter of a solenoidal coil

D Distance of wire centres (winding centres) in a solenoidal coil (pitch)

gt Power gain of a T network

gt,inma Power gain of a T network which is (exactly) matched at its input

gn Power gain of a 7 network

g ,inma Power gain of a m network which is (exactly) matched at its input

Gy Source conductance

Gy Load conductance — “special” definition in matching networks: in case of a m network,
load conductance (real part of load admittance) of that network, in case of a T network,
G = Flz_’ where R, is the load resistance (real part of load impedance)

Gm “Virtual” conductance, the parameter describing the degree of freedom in a T network

Gm1 Real part of series-to-paralle] transformed R; and Cy in a T network

Gma Real part of series-to-parallel transformed R, and C3 in a T network

Gmlim Limit of G derived by solving (3.34) — may yield several solutions — without additional

index the highest valid solution of (3.34) (T network exactly matched at its input) or
(B.16) (T network exactly matched at its output)

Gp Parallel conductance of parallel inductance Lp

Gpo Constant conductance term of the parallel loss model

Gpo Constant parallel conductance of constant parallel inductance Lpo

Iy Complex amplitude of an ideal current source

K (Tabulated) factor to derive the inductance of an air core single-layer solenoidal coil

K(..) (Tabulated) factor to derive the inductance of an air core single-layer solenoidal coil as a
function of ...

lax Axial length of rectangular wire used to make the windings of a solenoidal coil

lrad Radial length of rectangular wire used to make the windings of a solenoidal coil

lo Mean length of a solenoidal coil

Ly Parallel inductance

Lo Constant parallel inductance

Lpy Parallel inductance of the left L network if a T network is separated in two L networks

Lp2 Parallel inductance of the right L network if a T network is separated in two L networks

L Series inductance

Lso Constant series inductance

Lg1 Series inductance of the left L network if a m network is separated in two L networks

Ls2 Series inductance of the right L network if a 7 network is separated in two L networks

Lsng One series inductance of switchable series connected inductors (sorted in ascending order

of inductances)
Lyng Last series inductance of switchable series connected inductors (highest inductance)

n Natural number
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nc Number of one switchable series connected inductor

nr Partial number of turns

N Natural number

N¢ Total number of switchable series connected inductors

Nt Total number of turns

Pactp Active power transferred to the parallel conductance Gp

Phacts Active power transferred to the series resistance Rs

Q Q@ factor of the central inductor of a 7 or T network

Tpg Ratio of the per-unit-length resistance including proximity effect to the per-unit-length-
resistance calculated for a pure skin effect

Tfps(. cey ) Ratio of the per-unit-length resistance including proximity effect to the per-unit-length-
resistance calculated for a pure skin effect as a function of ... and ...

R; Source resistance

Ry Load resistance — “special” definition in matching networks: in case of a T network,

load resistance (real part of load impedance) of that network, in case of a m network,

R¢ = A, where G is the load conductance (real part of load admittance)

Gy’
Rm “Virtual” resistance, the parameter describing the degree of freedom in a 7™ network
R Real part of parallel-to-series transformed G and C1 in a 7 network
Ruo Real part of parallel-to-series transformed Gy and C3 in a 7 network
Rulim Limit of Ry, derived by solving (3.21) — may yield several solutions — without additional

index the highest valid solution of (3.21) (7 network exactly matched at its input) or (B.7)

(7 network exactly matched at its output)

Ry Series resistance of series inductance Lg

Rso Constant resistance term of the series loss model

Ry Constant series resistance of constant series inductance Lgo

Rsn Series resistance of one of the series inductances of switchable series connected inductors
Rsng Series resistance of the last series inductance of switchable series connected inductors
Sng Switch shorting one of the series inductances of switchable series connected inductors
Sne Switch shorting the last series inductance of switchable series connected inductors

St Abbreviation for a sum in Section 3.5.3.2

Sr Abbreviation for a sum in Section 3.5.2.2

Y Admittance of source and first L network as defined in Figure 3.15

Yo Admittance of source, first L network, and parallel conductance as defined in Figure 3.15
Y, Admittance of load, second L network, and parallel conductance as defined in Figure 3.15
Y, Admittance of load and second L network as defined in Figure 3.15

Z 4 Impedance of source and first L network as defined in Figure 3.14

Z 1 Impedance of load, second L network, and series resistance as defined in Figure 3.14

Z o Impedance of source, first L network, and series resistance as defined in Figure 3.14

Z e Impedance of load and second L network as defined in Figure 3.14

Greek letters

A An abbreviation for the reactance of the parallel-to-series transformed lossy inductor of

1
a T network (A = G—zw—%——)
p.*-wil,p2

da Ratio of an inductor’s AC resistance to a straight wire’s AC resistance at w — oo derived
by [25] (straight wire is uncoiled windings’ wire)

Daleey ooy Ratio of an inductor’s AC resistance to a straight wire’s AC resistance at w — oo derived
by [25] as a function of ..., ..., and ... (straight wire is uncoiled windings’ wire)

Py Ratio of an inductor’s AC resistance to a straight wire’s AC resistance at w — oo derived
by [24] (straight wire is uncoiled windings’ wire)

(., ..n) Ratio of an inductor’s AC resistance to a straight wire’s AC resistance at w — oo derived
by [24] as a function of ... and ... (straight wire is uncoiled windings’ wire)

[N Implicit function of parallel conductance G in a T network

P Implicit function of series resistance Rs in a m network
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3.3 Considered types of networks, losses involved

a) ) b) : .
variable variable
yarlable ' .
! inductor ! capacitor capacitor
i —
% .‘2 _%) .g O ‘5
S 3 S 8 s 5
5 & 5 g =
o P > E
o—rt - o ] o

Figure 3.1: Considered types of network, a) w, and b) T network

If a matching network is used where radio frequency generators drive complex loads,
it isusually a L, w, or T network with a “central” inductor as indicated in Figure 3.1.
The four possible L networks are just limits of 7 or T networks if one of the two
variable capacitances is set to zero or tends to infinity, respectively.

Thus consideration of 7 and T networks includes all networks we are interested in.

Variable capacitors and inductors used in those networks are not ideal. They exhibit
a couple of parasitic elements as indicated in [30b] or [9b], for example. This is also
true for any connection made between them. However, some parasitics may be
neglected.

In the frequency range of 1.8—30MHz variable capacitors are usually high-Q) air
or vacuum variable types, especially in high power applications. Both exhibit very
low (dielectric) losses which are small and negligible compared to the losses of the
variable inductor. Additionally (high power) variable capacitors are usually em-
ployed for connections of high cross-sectional area. Thus parasitic inductances and
resistances of those connections may also be neglected.

These assumptions hold even for switchable automatic antenna matching units, de-
veloped in [4], [5], [6], [7], and [8]. Their tuning procedure is enhanced in [1] and
“quiet” tuning is considered in [31], [2]. Useful element values are proposed in [32],
[3]. For example, a realisation is given in [33] for a frequency range of 1.8-30MHz.
Such automatic antenna matching units use switchable capacitors, whose dielec-
tric losses are higher than those of air or vacuum variable capacitors, but still low
compared to the losses of the switchable inductors due to the relatively low fre-
quency. However, care has to be taken because the nonzero minimum inductance
and capacitance steps may prevent exact matching.

Compared to variable capacitors, the variable inductor involves relatively high losses
of different origins (which are indicated in detail in the following section). Thus the
number of variable inductors is usually reduced to a minimum — as in the networks
of Figure 3.1 which use only one.
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The losses of the inductor may be described by a series resistance, but variable
inductors additionally have a parasitic parallel capacitance which may be estimated
according to [34b], [35], [36], [37], and [38]. An approach more focused on air
core single-layer solenoidal coils is given in [24], [39], and [40]. It limits the useful
frequency range of the coil. However, for a useful variable inductor the parallel
capacitance should be negligible in the frequency range it’s used.

Parasitic inductances and resistances of the variable inductor’s connections may
simply be added to its inductance and loss resistance.

a) Rs LS b) Cl C2

N|
K
e
e
N|
1N

1%, 0 O O

Figure 3.2: Simplified equivalent circuit of a) a 7 and b) a T network

Combining all preceding considerations yield the 7 and T network’s simplified equiv-
alent circuits of Figure 3.2, which are quite common in literature (see e.g. [9c] and

[18]).

3.4 Losses of a variable inductor

3.4.1 Modeling losses of a variable inductor

Losses in inductors have different origins (refer to [30c] for a thorough review!).
Losses are introduced by finite conductance of the wire, skin effect, proximity effect,
or core losses (whenever a core is used); all of which may be described by series
resistors, and a parallel resistor describing losses by finite resistance of the wire’s
insulation. The latter may be neglected for variable inductors used in matching
networks, because usually there is a certain gap between adjacent wires to ensure a
low parasitic parallel capacitance.

In our application the bandwidth of the generated signal is low compared to its
mean frequency and we are interested in narrow band matching only — we simply
intend to match at some given angular frequency w. We therefore need to know the

However, all formulae used in [30c] cannot be applied unless their references are checked to
be valid within the frequency range of interest. For example, the formula describing eddy current
losses assumes that the current flows through the complete cross-section of the wire, which would
require much lower frequencies than those in our application or moderately lower frequencies and
the use of litz wire.
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losses’ dependence on the number of turns, hence on the inductance, rather than its
dependence on frequency. Due to the fixed matching frequency, we also may use the
inductor’s reactance wLg instead of its inductance L.

The equivalent resistance of all types of losses indicated above is entirely positive
and increases with an increasing number of turns. Thus the simplest model would
consist of a sum of functions of the type a (wLs)® where a > 0 (positive losses) and
b > 0 (increase with increasing number of turns or inductance). Each term (or a
sum of several terms) would then describe the different types of losses.

Then the total equivalent series resistance is given by

N
R, = Ry + Zan (wLS)b", where Ry, an, >0, by > by—1>...>b; >0. (3.1)

n=1

Ry, a,, and b, are real and may all be frequency dependent.

Theoretically the model given by (3.1) is mainly restricted by the assumption
Ry, a, > 0, in particular if we describe the losses by several terms of a Taylor
series (however, since real coefficients b, are used (3.1), it generally differs from a
Taylor series employing integer exponents). Although R has to be entirely positive
in the range of wl the series applies, Ky or some a, could be negative provided
the sum of all terms is still positive. However, the proofs in the following sections
require Ry, a, > 0, and at least we may use real b, > 0 to further improve the series
approximation.

Of course the restriction to Ry, a, > 0 is only useful if the losses of the inductor
may be described by the model, which will be proved in the following sections for
different types of inductors used in matching networks.

The model also allows piecewise description of the losses, provided each line segment
can be described by (3.1) and R; exhibits no steps at the segments’ limits (Section 4.6
addresses the impact of such steps).
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3.4.2 Application and validation of the proposed model to

different types of inductors used in matching networks

3.4.2.1 Variable air inductors

d D

e e

D\ O\ kL
C el LALAGAY

o\ @

le |
I gl

lrad T

le—>
[

Figure 3.3: a) Air core single-layer solenoidal coil of round wire b) Simplified
equivalent circuit of the inductor according to Section 3.3

ax

In Figure 3.3 a), an air core single-layer solenoidal coil is shown. Its windings consist
of round wire whose diameter is d, or of rectangular wire, whose radial length is [;,4
and axial length is l.x. As an example, the figure is drawn for a number of turns
Nt = 3. D denotes the distance between centres of adjacent wires, dc the mean
diameter of the coil, and lc = Ny DT the mean length of the coil.

Variable air core inductors usually look like a single-layer solenoid as illustrated
in Figure 3.3. Additionally, they have a rotating contact which slides along the
windings and provides a tap for the required amount of inductance.

As indicated in the previous section, we need to derive the coils’s series loss resistance
R, as a function of its inductance Lg or its reactance wlLs. However, R, is usually
calculated as a function of Np, the number of coil’s turns. Thus at first we have to
derive the coil’s inductance as a function of its number of turns.

tCare has to be taken regarding the definition of the coil’s mean length, because it might differ if
inductance or loss resistance are calculated. As in [41¢], the inductance is usually calculated using
lec = Ny D. However, to calculate its series loss resistance, the helical coil is often approximated by

(D
parallel circular rings ( @ @ ), whose dimensions are similar to those of Figure 3.3 (except
<

lc), but the coil’s mean length is then defined by (Nt —1) D.

Fortunately we do not have to distinguish between both definitions in the following sections,
because [23] and [25] use the number of turns (and never its length) in all calculations and [24]
defines the coil’s length similar to Figure 3.3, although it examines coils of many windings, where
Nt = N7 — 1 would hold.
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The inductance of air core single-layer solenoidal coils is given by [41b]

s dc 2 lc lc
s = - jp— e .]( - 3 .
L M4dC(D>dc (@) (3:2)

where g &~ 4w 1077 H and lg = NpD. The factor K is a function of the shape ratio

m

! : fe given ~ 1 l 1o

& Note that an estimate of K is given in [30a] as K =~ el for & > 3 with a
C

< 1% error?.

In order to cater for different wire topologies, such as wires of circular or rectan-
gular cross-section, some correction in (3.2) has to be made (see [41d], [41e], and
[41c]). However, those corrections are usually small. Additionally, [41f] introduces
a frequency correction, but it’s also small and negligible.

Hence, using the basic inductance value of (3.2) provides sufficient accuracy. To
gain insight in the inductance’s dependence on the number of windings, we simply

have to draw fl% K ((li%) as a function of fi—z because all other factors do not depend

on the number of turns and fi—% ~ Nr.

a) 1.8 . r . b) 100
_yf;g’ 1.2¢ b _L)T.g
v 2 50t
&5 06 2|S
O A L i 0 L 1 i
0 0.5 1 1.5 2 0 25 50 75 100

Ie I
dc dc

Figure 3.4: fi—% K ((—%) as a function of (lz_(é if a) é% € [0, 2] or b) é% € [0, 100]

Inspection of Figure 3.4 reveals a linear function if zli_?; > 1, but a nonlinear function
if fo < 1.

Depending on dimensions and maximum number of turns of the used variable air
core inductor we may assume a linear function in the range of interest, provided its
accuracy suffices. If the approximation’s accuracy is too poor, it’s better to perform
a piecewise linearisation which also may include all correcting terms mentioned
above.

Performing the linearisation yields a functional description of the inductance L
depending on the inductor’s number of turns N,

Ly ~ agp, + ayy, NT, (33)
from which we obtain by solving for the number of turns
L -
NT ~ ———-——-—aOL. (34)
a1L

2[30a] indicates (11% > %, but compares the approximation to an inductance formula given in a
different reference instead of comparing it to the tabulated values of [41b].
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By analysing Figure 3.4 it can easily be observed that aqr, < 0 and a;, > 0.

In the next step we calculate the loss itself.

In air-core inductors several different types of losses occur. As indicated in [34a], the
current in the wire causes a current crowding in that wire towards its surface. This
is the skin effect and is also observed in straight wires. The currents in adjacent
wires lead to additional current crowding — the proximity effect. Both effects raise
the inductor’s AC resistance above its DC resistance.

Although losses caused by a pure skin effect may be calculated quite easily, descrip-
tion of the combined losses including the proximity effect is quite complicated and
may be performed for round wires only.

Besides early approaches in [42] and [43] (corrected in [44]), the basis of the most
common loss formulae are given in [45], [46], [47], and [48] — which derive the series
loss resistance for short coils (I < dg) or coils with a large number of turns. These
works are summarised in [49] and [9a]. In addition, [24] checks the formula for coils
with a large number of turns by measuring the losses of solenoidal air-core inductors
of 30-50 turns and uses the results to correct that formula empirically. In [25],
the formulae for short coils and coils of many turns given in [47] are combined and
verified. The resulting (unrestricted) single formula is compared to several measure-
ments of different works including [24]. In [39] a summary of all different existing
formulae is given and the limiting conditions for their applicability is indicated.
Note that in particular [47] does not state those limits explicitly. Furthermore,
[39] confirms the results of [25] by additional measurements (in the range of 10kHz
to 23 MHz, all measurements are included in [50]) and derives a transmission line
model of the coil incorporating parasitic capacitances. Finally, in [40] the preceding
results are used to design optimum @) factor coils, which is described a little bit
more detailed in [51a].

Additionally, [22] and [23] derive the series loss resistance of short coils using a
different method involving fourier series, apply the results to multiturn loop antennas
and check them by appropriate measurements. However, [22| and [23] assume the
skin depth to be much lower than the wire’s radius, but this assumption also holds
for typical wire diameters of several millimeters used in solenoidal air-core inductors
if the frequency is in the range of 1.8 -30 MHz.

Regarding the publication dates of the preceding citations it should be noted that
they apparently quite completely solve the problem of deriving losses of air-core
inductors. “Modern” authors seem to focus on objectives applicable to integrated
circuits (in particular losses of spiral inductors in MMICs, e. g. described in [52], [53],
and [54]) or to coils in switching power supplies, e.g. considered in [55], [56], [57]
— compared in [58] — and [59]. The former is not applicable due to the different
shape of the inductor, the latter due to the assumption that the entire magnetic field
is parallel to the coil’s axis. Although there are also new techniques to calculate
parasitic capacitances as those derived in [60], this work assumes that adjacent wires
touch, but this winding style is not used for solenoidal air-core inductors to keep
parasitic capacitances low and to ensure a high self resonance frequency.
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Now the main question is:
If we compute all applicable loss formulae indicated above, can Ry be described by
(3.1) including all proposed restrictions?

First, we consider short single-layer solenoidal air-core inductors. In [23], rpg, the
ratio of the per-unit-length resistance including proximity effect to the per-unit-

length-resistance calculated for a pure skin effect, is defined. Assuming d < D,

d [wp i 2 12 2 b .
d < dg, 54/ %5 > 1 (hence W < 1), NiD* <« d§ (which in our ap
plication limits the maximum number of turns the following formula applies to),
and Np & %Q <& 1, where ¢q is the speed of light in vacuum. Then the series loss

resistance Ry is obtained in [23] as

dc [wpe D
RS = —E T NT (1 -+ T{:’S (NT, E . (35)
Tps is tabulated in [22] as a function of Ny and % for Np € {2,...,8}and 2 €[1, 4].
a) b) 30
2
20 ¢
+
T{: 10 b
7 d
0 o
0 2 4 6 8
NT NT
Figure 3.5: a) rpg and b) Nrp (1 + 7hg) as functions of Np for £ € {1.05, 1.1,

1.15, 1.4, 2.2, 4}.

The resulting rpg is shown in Figure 3.5 a). rpg = 0 was added for Nt € [0, 1]
(approximately assuming a pure skin effect). It’s interesting to note that the devi-
ation from the formula for short coils given in [47] is < 5% in its applicable range
(£ <060r2>17).

Performing a piecewise linearisation of rpg,
Tps & Gor + a1x Nr, (3.6)
we obtain by combining with (3.5)

d
R, ~ 7" ggg ((1 + agr) N + aie N2). (3.7)
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Figure 3.6: a) 1 + ao and b) ay, for £ € {1.05, 1.1, 1.15, 1.4, 2.2, 4}. (Dots at
Nt =0,1,...,7 are calculated values of a piecewise linearisation
within the interval [Ny, Np+1). Dashed lines illustrate the tendency
of values.)

Inspection of Figure 3.6 yields 1+aq, > 0 and ay, > 0 if % > 1.1. Taking into account
the tendency of the linearisation coefficients, we would expect those relations to hold
if Ny > 8. However we cannot predict the behaviour for 1 < D < 1.1 due to lack
of data, but £ = of useful single-layer solenoidal air-core mductors are never within
this range because it would involve high parasitic capacitances.

Next, we consider single-layer solenoidal air-core inductors with a large number of
turns.

In [24], @y is defined as the ratio of the inductor’s AC resistance to a straight wire’s
AC resistance at w — 00, where the straight wire’s length equals the length of the

coiled wire. Assuming £,/ L >> 1, the series loss resistance R; is obtained in [24]
as

dc

NTD d dc dc lc lc d
= ¢, juee Dy G
b= 2 = Mo (DM< de D) dV 2 Ddc (dc D) (38)

In [24], @y is tabulated as a function of é% and 4 for ;li% € [0, 00) and & € [0.1, 1].
An indication for the range of 4 and fiﬁc the formula is valid in is given in [39).

a) 6 ——— b) 36
24 D S
! 7 ] <[¥ 1

i
0 — 0
0 2 4 6 8 10
Ic
dc

Figure 3.7: a) @y and b) -fi—% &y as functions of fi—z for 5 € {0.1, 0.4, 0.6, 0.7,
0.8, 0.9, 1}.
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If we perform a piecewise linearisation of R as follows:

D“'O

a8

/@EE dc lo lo :
D do <a0<I>M + Q1dy dc) if q
Wlip { ;
NEZE (a01dd<I>M + A11dddy g%) if

doy
d(’—Q

do

dém
(’g_

dc

)
)

>0

<0
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we obtain aos,, @18y, Goldddy, Q1ldddy > 0 (as indicated in Table 3.1 and Table 3.2).
If fi—z > 10, the first type of linearisation applies, because ®); moderately increases
in this case (check [24]). It’s interesting to note that the practically relevant case

% < 0.6 also involves only the first type of linearisation.

Applying lc = N1 D yields the required functional desription. (In [24], an additional
frequency correction would be performed, but usually the skin depth is much lower
than the wire’s diameter in variable single-layer solenoidal air-core inductors in our
frequency range of interest, thus it’s small and negligible.)

Table 3.1: Calculated values of ags,, Or @gidas,, (in boldface) as a function of fi—‘é

with parameter £ after a piecewise linearisation as given in (3.9). The
values of each column are valid between é% of that column and fl—g of
the next column to the right.

apdy, cl{_g

G0idd®y [02]04J06J08] 1T [ 2] 471 6 [ 8710
10 [[5.31]5.25[5.35[5.80 [ 1.00 | 2.90 | 2.24 | 2.76 | 2.64 | 3.08 | (na)
0.9 || 3.73 369|375 |393|0.28 | 1.48 | 1.24 | 1.56 | 0.48 | 2.78 | (na)
08 | 2.74 | 2.69 | 2.71 | 2.80 | 0.12 | 0.86 | 0.56 | 2.60 | 2.54 | 2.50 | (na)
0.7 | 212|212 208|220 232 |0.30|0.20 | 2.23 | 2.14 | 2.22 | (na)

4| 06 || 174|171 | 1.71 | 1.80 | 1.84 | 1.90 | 1.95 | 1.97 | 1.88 | 2.00 | (na)

D| 05 | 144|142 |142| 148 | 1.52 | 1.60 | 1.70 | 1.74 | 1.77 | 1.73 | (na)
04 | 1.26 | 1.25 | 1.23 | 1.26 | 1.30 | 1.40 | 1.46 | 1.50 | 1.53 | 1.53 | (na)
03 | 116 {117 | 1.19 | 1.19 | 1.19 | 1.20 | 1.24 | 1.28 | 1.34 | 1.30 | (na)
0.2 |[1.07 | 1.08 | 1.04 | 1.10 | 1.10 | 1.07 | 1.11 | 1.13 | 1.16 | 1.12 | (na)
01 || 1.02]1.01)1.03|1.03)|1.03 | 1.02 | 1.04 | 1.04 | 1.04 | 1.04 | (na)
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Table 3.2: Calculated values of a14,, Or @11ade,, (in boldface) as a function of (li%
with parameter % after a piecewise linearisation as given in (3.9). The

values of each column are valid between é—‘é of that column and cll% of
the next column to the right.

A1dy s Lo

Guddéy 70 02040608 1 [ 2 4 [ 6 [ 8 ] 10
1.0 [[0.70 [ 1.00 [ 0.75 [ 0.00 | 4.55 [ 2.65 [ 2.980 [ 2.850 [ 2.870 [ 0.015 | (na)
0.9 | 0.55|0.75 | 0.60 | 0.30 | 3.82 | 2.62 | 2.740 | 2.660 | 2.840 | 0.015 | (na)
0.8 | 0.45 | 0.70 | 0.65 | 0.50 | 3.05 | 2.31 | 2.460 | 0.000 | 0.010 | 0.015 | (na)
0.7 || 0.40 { 0.40 | 0.50 | 0.30 | 0.15 | 2.17 | 2.220 | 0.010 | 0.025 | 0.015 | (na)

4| 06 ||0.15]030(0.300.15|0.10 | 0.04 | 0.015 | 0.010 | 0.025 | 0.010 | (na)

D} 05 [ 0.20]0.30]030]0.20] 015 | 0.07 | 0.020 | 0.010 | 0.005 | 0.010 | (na)
04 | 0.15|0.20 [ 0.25 | 0.20 | 0.15 | 0.05 | 0.020 | 0.010 | 0.005 | 0.005 | (na)
0.3 | 0.15{0.10 | 0.05 | 0.05 | 0.05 | 0.04 | 0.020 | 0.010 | 0.000 | 0.005 | (na)
0.2 || 0.05 | 0.00 | 0.10 | 0.00 | 0.00 | 0.03 | 0.010 | 0.005 | 0.000 | 0.005 | (na)
0.1 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 | 0.01 | 0.000 | 0.000 | 0.000 | 0.000 | (na)

Finally, we consider single-layer solenoidal air-core inductors with any number of
turns.

In [25], an (unrestricted) formula was derived based on [47] and a large amount of
measurements including those of [24].

The resulting formula describes the ratio of the inductor’s AC resistance to a straight
wire’s AC resistance, where the straight wire’s length equals the length of the coiled

wire. The formula depends on %, / ﬂg’i, %, —g—, and Nt.

To reduce the number of parameters, we define the funcion ®, as the limit of the
formula from [25] mentioned above for w — co. In order to keep the values of ®4
close to the formula’s values in our frequency range of interest, d > 2 mm has to hold
(ensuring the value of the function ¢ defined in [25] is less than 5% lower compared
to its value for w — oo which is used with powers up to two in the formula, hence
the error is estimated to stay within 10%.) which is likely to be satisfied by the
“high power” inductors under consideration. Then the losses are given by

_dc [wpe D d
Ry= =1/ NTéA(dC,D,NT) (3.10)

Compared to the previous loss descriptions, the resulting ® (2, 4, Nr) still in-
volves one additional parameter, Nt. Thus its diagrams cannot be drawn as simple
as those of the previous loss descriptions and the parameters have to be limited to
useful ranges.

Firstly, typical variable “high power” inductors do not have more than 3040 turns.
Thus Nt < 50 is assumed. Secondly, 0.1 < % < 1is considered as [24] did (although
it’s typically close to 0.5). Finally, the diameter of typical variable “high power”
inductors does not exceed 200mm. Since d > 2mm and —g— < 1 was assumed,
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01 < = o < 0.5 is chosen — at the lower limit, d¢ = 200mm if d = 2mm and

0.
% 1, the upper limit is introduced by one of the parameters’ limits in the tables
of [25] (m our notation, [25] defines ¢ as 22, whose range is 0 < ¢ < 1 in the tables).

a) 6 E——— b) 300
4 D, . <200
< =4
o =
2t Z 100}
0l 0 e
0 10 20 30 40 50 0 10 20 30 40 50
NT NT
Figure 3.8: a) ®4 and b) Ny @4 as functions of Ny for £ € {0.1,0.2, ..., 0.9, 1}
and d% = 210.

An example for the obtained ®, is shown in Figure 3.8 a) for % = & (a variable

inductor with d = 2mm and % = 0.5 would have a dg = 80mm). 5 = 1 was
added for Nt € [0, 1] (approximately assuming a pure skin effect).

If we perform a piecewise linearisation as follows:

%\/%QNT(a0¢A+G,1¢ANT) if %20
R, ~ ) (3.11)
o /B2 (agna, + aine, Nr)  if fi%g <0

we obtain aps,, @16,, GoNe,, GiNe, = 0 within the limits given above®.

Figure 3.9: a) CL()<pA and b) a;e, as functions of Ny for €{0.1,0.2,...,009, 1}
and £ 2 = 3 (Dotsat Ny =0, 1, ..., 49 are calculated Values of a
piecewise linearisation within the interval [Ny, N+ 1). Dashed lines

illustrate the tendency of values.)

3Calculations were performed with a% et .. 85 5 %5 5 1ag) Since 4 may

be quite flat in some regions, care has to be taken if it is intended to get “smooth” linearisation
coefficients, involving usage of the tabulated values of u; and uy instead of the approximate for-
mulae, calculation of additional u,, vy, and wy, from the formulae given in [47], and application of
the interpolation proposed in [47] for un, vn, and wy,. Furthermore, u; may be computed directly
as a function and it seems advantageous to interpolate u; uniformly against NLT (u1, U2, Un, Un,
and wy, are defined in [25].)
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a) 15 b) 45 . } . . .
< 5 B < 3 i L S L R S LT PRt
&
2 g d
< 25 < 15} b
0 0 . . 1 .
30 30 34 38 42 46 50

Nt
Figure 3.10: a) aons, and b) ains, as functions of Ny for % € {0.8,0.9} and
% = 515. (Dashed lines illustrate the tendency of values.)
Figure 3.9 and Figure 3.10 are examples for such a linearisation performed for ®4
of Figure 3.8 a). Dots at Nt = 0, 1, ..., 49 are calculated values of a piecewise
linearisation within the interval [Ny, Np+ 1). The type of linearisation changes for

Nt > 33 in case % € {0.8, 0.9}, which is clearly visible in Figure 3.9 a).

Summarising all preceding calculations, we may conclude that performing a piece-
wise linearisation of single-layer solenoidal air-core inductors’ series loss resistance
Rs, which was computed according to [22] for a small number of turns, [24] for a
large number of turns, or [25] for any number of turns, yielded functions of the kind

R = aor + air N1 + asr N3, (3.12)
where agr, air, aor > 0.

Applying (3.4) gives

—agL, —aoL, 1 —agl, AR, 9
Ry =~ agr + (alR + CLQR) + — (alR +2 a2R> Ls + —5— LZ,
ai, L a1 aiL

or, using new abbreviations,

Ry ~ Rg+aiwls+ ay (wLs)?, (3.13)

—agL —AagL
where Ry = agr + 2 <a1R + aoR |,
a

1L iL
1 ~agL
ay = air + 2 asr | ,
waiy, a1L
G = a2R
2 — T o
w2a?,

As indicated above, Ry, a1, ag > 0, hence (3.1) is a valid model for the (piecewise
linearised) series loss resistance of (variable) single-layer solenoidal air-core induc-
tors.

Alternatively we may perform a series expansion of Ry as a function of wLg (without
the temporary use of Nt), which also may be piecewise linearised.
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3.4.2.2 Switchable inductors

Modern automatic antenna matching units (developed in [4], [5], [6], [7], and [8],
a realisation given in [33] for a frequency range of 1.8—30MHz) use switchable
inductors (and capacitors).

NEEN NG
Rsl le R82 Ls2 RsNC LsNC
Figure 3.11: Simplified equivalent circuit of series connected switchable in-
ductors

Switchable inductors in such matching networks are built as illustratated in Fig-
ure 3.11, wherein the inductances are sorted in ascending order. The first inductor
(nc = 1) has the lowest inductance Lg; and the Ng-th inductor (the last one,
nc = Ng) has the highest inductance Lgy,. Unused inductors are shorted by closing
the appropriate switches.

Usually the inductances increase by powers of two, hence the inductance of the nc-th

inductor may be computed from the first (and lowest) inductance as

Lene = Ly 2™

Then the total inductance is changeable in inductance steps of Lg; and stays con-
stant (likewise the losses) between two adjacent values — inductance and series loss
resistance are piecewise constant,

Lo = > L = L, (3.14)
all ne used

R = Y PRue = R (3.15)
all ng used

The resulting piecewise constant series loss resistance can be described by (3.1)
(application to T networks is similar to those described at the end of Section 3.4.2.3),
but it involves steps at the line segments’ limits (Section 4.6 addresses the impact
of such steps).

Due to nonzero minimum inductance and capacitance step size we usually cannot
tune the network for exact input matching. Then the transferred active power has to
be computed using different formulae than those given in Sections 3.5.2.1 and 3.5.3.1.
However, if the minimum inductance and capacitance step is sufficiently small, we
may approximately use the inductance and capacitances required for exact input
matching and the series loss resistance of the closest (switchable) inductance value.
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3.4.2.3 Inductor in series/parallel to a variable capacitor

Another possible realisation of a variable inductor is a variable capacitor in series
to a (fixed) inductor for usage in a 7 network or a variable capacitor in parallel to
a (fixed) inductor for usage in a T network.

a) CS RsO LsO b)

O%W_JW\_O o o o °

VaN
Cp7é — Cpaél‘w%ngO

O 4 (o, O

Figure 3.12: Simplified equivalent circuit of a) a variable capacitor and a serial
(fixed) inductor (for use in a m network) and b) a variable capacitor
and a parallel (fixed) inductor (for use in a T network).

Inspection of its simplified equivalent circuit in Figure 3.12 reveals its advantage — if
the elements’ values are chosen properly, the total inductance at matching frequency
may be reduced to zero in a) or increased to infinity in b), which is difficult to achieve
by “real” variable inductors if the matching frequency is high — and disadvantage
— the series loss resistance in a) and the parallel loss conductance in b) are constant
for any total inductance. Thus even low total inductances involve the “high” losses
of the maximum inductance value. However, the losses may be reduced by using a
switchable tapped inductor as proposed in [3].

The series loss resistance in a) is just a constant loss resistance Ry, hence included
in (3.1). The constant loss conductance in parallel to a variable inductance in
b) is fortunately one of the exceptions mentioned in Footnote ” (at the end of
Section 3.5.3.1), where 7 and T network are exactly equivalent (this issue is also
addressed in Section 3.5.3.4). Thus all relations derived in the following sections
for m networks whose central inductor’s series loss resistance is constant apply to
T networks whose central inductor’s parallel loss conductance is constant. Hence
the model proposed in (3.1) is suitable to describe an inductor in series/parallel to a
variable capacitor used as central variable inductor of a 7 or T network, respectively.

3.5 Matching of a resistive load to a resistive
source (matching at the network’s input)

3.5.1 Definition of the objectives and suitable parametrisa-
tions for m and T networks

The basic objective of the following sections is to match a (real) load resistance
Ry = G% > 0 to a (real) source resistance R; = é > 0 at a given frequency using a
7w or T network as indicated in Figure 3.13.
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The T network contains an inductance L, in parallel to a conductance G}, to sim-
plify its parametrisation and the matched network’s element values’ equations. The
element values of the “original” network, L and R, are then computed by applying
a parallel-to-series transformation according to (A.20) and (A.19).

a) G, b) R, C G,

Figure 3.13: Considered lossy a) 7 and b) T network matching a (real) load resis-
tance Ry = &- to a (real) source resistance R = .

7 and T networks consist of three (independent) elements, which have to be tuned to
transform the load resistance to the source resistance, hence achieving a (conjugate
complex) match of the load to the source at the network’s input. Conjugate complex
matching involves two independent equations to be solved, one for the real part and
one for the imaginary part of the network’s input impedance, yielding two conditions
for the network’s element settings. Since three independently adjustable elements
are available, one may be chosen arbitrarily.

However, if a lossless L network is considered, two conditions yield unique settings
of its elements, because it consists just of two independently adjustable elements.
In a lossy L network, there may exist more than one distinct settings depending on
the loss model applied (for example consider the capacitive solution in the right half
of Figure 4.8 b)), although usually only one solution remains valid, in particular if
network elements’ limits are taken into account.

The degree of freedom in 7 and T networks is described by a parameter of those
networks. To simplify calculations and optimisation proofs, it’s especially impor-
tant to choose a proper parametrisation suiting the needs of active power transfer
optimisation.

During the last decades, a couple of 7 and T network parametrisations were devel-
oped for lossless networks suiting different needs. A more filter theoretical approach
involving hyperbolic functions was summarised in [9¢] and examined in more detail
in [10]. @-based design was used in [11], [12] and further developed in [13], [14], [15]
(corrected/extended in [16]), [17], and [18].

Common to all preceding parametrisations is the difficulty to include the series loss
resistance. Thus calculations of the losses of the inductor are usually performed using
lossless network elements’ values (assuming those values are not changed significantly
by low losses), e.g. in [9¢c| or [18]. Then the power losses involved may be computed
exactly, but the network’s input is never matched to the source — the higher the
losses, the worser the match.

It’s interesting to note the loss calculation method of [61] using Tellegen’s theorem
[62] — it includes the losses of all network elements, but considers constant ¢) factors
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only, assumes elements of the same type having similar ¢) factors, and designs the
network using lossless network elements’ values.

However, the parametrisation derived in [11} and [13] is extendable to exact loss
inclusion (introduced by [3]), e.g. if the m network’s equations for Cyq and L are
rewritten in resistances and the loss resistance is taken into account when choosing
the parameters of the two L networks the 7 network was split in. For a single
L network, the exact loss inclusion is given in [3] (and rewritten for Q-based design).

Then the network’s input is exactly matched within the entire parameter range.
After deriving the network’s power gain, it’s optimised by applying (3.1) and the
implicit function theorem:.

To gain more insight in the network’s behaviour, its power gain is derived in a
little bit more complicated manner. The method described in [51b] is simpler and
especially useful if the losses of the capacitors have to be included, too. It’s used
in Appendix B.3 where design and power gain of 7 and T networks are considered
including losses of all network’s elements.

3.5.2 m network

3.5.2.1 Elements’ values and losses involved

.Z_li Zl@ _Z_.Zi ZZZ

R, Cm L, R L, Gw

ml S

W ofir

IO RAERENE 15

Fg
"

Fo Y
-

Figure 3.14: Resulting (transformed) 7 network’s equivalent circuit for matching
of a (real) load conductance Gy = Ri[ to a (real) source conductance

1
Gi=%

To derive the elements’ values for matching of a (real) load conductance G, > 0 to
a (real) source conductance G; > 0 if a 7 network with a lossy “central” inductor
L is used as shown in Figure 3.13 a), we initially split Ls in two parts, Ls and L.
We then may consider the 7 network to be composed of two lossless L networks (C},
Lg; or Cy, Ly, respectively), and Rs, which takes the (total) losses into account.

Applying Thevenin’s theorem [63] to the voltage source of (complex) amplitude

V, and (real) source resistance R; = G% in parallel to the capacitance C; yields
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a Thevenin equivalent voltage source of (complex) amplitude V , and a (complex)
source impedance consisting of a resistor Ry,; in series to a capacitor Ci,;.

Finally G, = R% in parallel to C, is parallel-to-series transformed in R, in series to
Cha using (A.19) and (A.20).

We then obtain Figure 3.14 from Figure 3.13, where
1

_y o wa G Vo
0Tl LT TG 4wl 14 jwRCY
G i 1 Jw ity

<t

(3.16)

jwCi

(The formulae obtained for Ry 2 and Cp 2 will not be needed later on and thus are
not shown here.)

Which conditions will cause matching in the circuit of Figure 3.147

Firstly, capacitive and inductive reactances have to cancel at the matching frequency.
If an approach similar to [13] (derivation for a lossless 7 network) is used, reactive
cancellation applies to each of the two L networks — Cy,;1 cancels Ly and Chp
cancels Lgy at the matching frequency.

Secondly, the remaining resistances have to be equal. For a lossless inductor, choos-
ing of Ry = Rme = Ry, would yield Z 1, = Z 1, = Z o = Z 9 = Ry at the matching
frequency (R, is the independent parameter referred to in Section 3.5.1, denoted by
“virtual resistance” R in [13]), thus providing a (conjugate complex) match of the
source resistance to the load resistance and vice versa.

However, a lossy inductor involves an “asymmetry” Rs, which urges us to decide
whether we want to match the load to the source or the source to the load. In the
first case, we may choose Ry = Ry, (as before, Ry, is the independent parameter).
At matching frequency, Z,, = Ry, holds and thus Z,, = Z, + Rs = Ry + Rs.
To achieve a (conjugate complex) match of the load to the source, Z,;, must be
equal to Rp, hence Ry = Ry + R (for a L network, where 'y = 0 and thus
Rumi = R;, this condition was given in [3]). Conversely, Z; = Rm1 = Ry + Rs and
Z o = Z1;+ Rs = Ry, + 2R, at matching frequency, which is not equal to Ryo = Ry
as it would be for a conjugate complex match of the source to the load.

Different choices of Ry, 2 are also possible, but those shown above are ideally suited
for the extension to complex loads.

For our purpose, matching of the load to the source is needed. However, matching
of the source to the load is quite similar and derived in Appendix B.4.1.

Using the preceding choice for Ry, 2, we would obtain C 2 (and Cpy,2) from parallel-
to-series transformation equations for Ry12. Applying reactive cancellation would
then yield Lg o (and Ls). The calculations are not shown here because we alterna-
tively may use the formulae from [13] if they are rewritten in our resistance notation
and if we use Ry = Ry + R, for the left L network and R, = R, for the right
L network ([13] derives the lossless case, where Ry = Rms = Rn).

Since Ry 2 was obtained from parallel-to-series transformation of passive compo-
nents (source resistance R; > 0 and load resistance Ry > 0), Rn12 2> 0 holds. Then
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the calculations described above yield the capacitances Ci o and the inductance Lg
of the original 7 network in Figure 3.13 a), where

1 [Ri—Rp-— 1 [R;— Rn
C =0 — \/ yr— RSRS’ (3.17) Cy =4 o ‘R , (3.18)
L. = (i-)\/ (Rm + Rs) (Rl - Rm - RS) [i] \/Rm (Rf - Rm) (3 19)

w

(The negative signs in parentheses/square brackets would apply if we would use

(lossless) variable inductors Ly o = — (ﬁ” Then a negative Lg might occur, which

would be just equal to a variable capacitor Cy = —;gl—L—s. As indicated by using

parentheses/square brackets, reactive cancellation causes a negative sign of the first
square root in Ly, if L; is used instead of C}, or a negative sign of the second square
root in Ly, if Ly is used instead of Cy, respectively. We will need these changes
during the extension to inductive loads.)

In order to get valid solutions, all square roots must be real (if not, the 7 network
of Figure 3.13 a) wouldn’t be able to match). Thus, certain restrictions to the
parameter R, must apply. Since Ry > 0, only 0 < R, < Ry yields Ry, (R;—Rn) > 0.
Similarily, Rs > 0 and R; > 0 imply 0 < R, + Rs < R;.

Hence, for valid Ry, the designability conditions are

0< Rum <Ry and 0< Ry + R, < Ri. (3.20)

As Rs > Ry (from (3.1)), we immediately obtain that Ry is limited by Ry < R;.
If Ry would be higher, the 7 network would not be able to match any load.

However, both inequalities mainly describe the upper limit of the parameter R,.
This issue is best understood if we initially compute its limit for the lossless case
(Rs = 0). Since both inequalities apply, the upper limit of Ry, is given by R, if
Ry < Ry or by R; if Ry > R;, respectively. The change in the upper limit occurs at
R, = R;, where a match would not need any additional components (Ls = 0 and
C1,2 = 0 would match).

The lossy network behaves quite similarily. The upper limit of Ry, is given by K,
if Re < R; — Ry or by Ryum if Ry > Ry — Rg, respectively. Ryyum is the highest
parameter R, which solves

leim = Ri - Rs(leim) (321)

for 0 < Ruiim < Re and involves valid network elements. The change in the upper
limit occurs at R, = R; — Ry, where, as before, a match would not need any
additional components (Ls = 0 and C} 5 = 0 would match). It’s interesting to note
that (for a resistive load) there is no other solution where Ls = 0%.

ITheoretically Ls = 0 might additionally occur for Ry, = 0 if Rs(Ry, = 0) = 0, which would be
possible for Ryg = 0. However, since Ls = 0, the load resistor would not be transformed. Hence
matching would be impossible unless Ry = R; — Ryg = R; = Ry, = 0 — this solution is already
described by (a limit of)} Rpjim.
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Depending on the particular Rs used (given as a function of wLs or Ry), addi-
tional restrictions to Ry, might apply, limiting Ry, even further or involving intervals
within the limits derived above where matching is impossible. However, (3.20) holds
throughout the valid range of Ry,.

Additionally, the upper limits in (3.20) separate 7 and L networks — C; = 0 if
Ry = Rmiim or Cy = 0 if R, = Ry, respectively.

After designing the 7 network’s input impedance to match the source resistance R;,
we compute the active power P, delivered to its load resistance R,. Since the
capacitive and inductive reactances in Figure 3.14 cancel at matching frequency, we
obtain

Vol

1 IV ol @316) 1 Trw? RECT
-Pacté = a Rm2 2 = 5 flm 2
2 ™2 (R T Re + Rung) 2™ 4 (R + Ry)
11 Vo> Rm @2 1
Pac — = Pac axi TR . 3.22
t 8 Rl Rm + RS tm 1 + ]?:1 ( )

Conversely, due to input matching the active power P, delivered to the loss resis-
tance Ry is given by

(3.22) 1
="' P, - .
actmaxi 1 + %:L

Pacts = Pactmaxi - Path (323)

For optimisation, we will need the power gain g, inma Of the matched 7 network.
Since its input impedance is matched to R;, the active power delivered to the net-
work’s input i8S Paes1 = Pactmaxi (refer to Figure A.4). Thus we obtain

On i _ Path _ Pactl (3222) Rm _ 1
e Pactl Pactmaxi Rm + Rs 1 -+ 'Ri"

(3.24)

(Alternatively we could derive g inma from (A.15) if we put Cowor = Co. However,
we gain more insight in the circuit’s behaviour if it is computed as shown above.)

3.5.2.2 Optimum value of parameter R, for maximum power gain

Minimising “losses of the 7 network” is achieved by transferring the highest portion
of the active power delivered to the network’s input to its load R, = 51; Thus neither
P,.s has to be minimised nor P,.s to be maximised, but we have to maximise
Or inma- However, Pacimaxi 1S independent of Ry and Pacte = Gr,inma Pactmaxi holds
(input matching), hence the highest g. inma Occurs for maximum Piee.

To derive the value of Ry, for maximum g¢r inma, We compute its derivative with
respect to Ry,.

Using (3.24) yields

(3.25)

- R, dR,

dgw,inma . Rm ( Rs dRs )
dRn  (Rm+ Rs)? ‘
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Since Ry, Rs > 0, the first term is always > 0. Thus we need to check the sign of
the second term only.

As R; is a function of L, which itself is a function of R,, and implicitly* of R
according to (3.19), we define the implicit function 1, = 0 from (3.1),

N
Yr = Reo + (Z an, (wLS)bn> — R, =0.
n=1

Then we compute the implicit function’s partial derivatives with respect to R, and
RS’

MWr bt OwLs)
OR. ; anbn (WLs) R,
Oy _ N bn~1 O(wLs)
8Rs = (nzzlanbn((.ULs) _8{ —1.

Applying the implicit function theorem [64] gives

N
Om by (WLt O(wlLs)
dRs _ 8%,,, - ngl n( ) OB
dR, &= N ‘
" Ok, 1— > anby (wLs)on—1 %ERLTS)
n=1

If we multiply numerator and denominator by wLg, put the result in the second term
of (3.25), and rearrange it, we obtain

N
R dr, [Tawle= X anb(wl)™ (R % + R %)

- = . (3.26)

m d m w

AR R <wL - z Qb (wLe)tn 9%,—%-))
Replacing of wLg with (3.19) yields the missing partial derivatives,

O(wLs) _ 2(Rn + Rs) + R, — 2R, 327
ORm 2\/R +R)( — Ry) 2\/Rm(Re-Rm)

O(wLg) _ (Rm + R ) . (3.28)
OR; 2v/ (R + Rs) (R — Ry)

To check which value of R, yields the highest gr inma, We need to know the sign of

R% — jﬁ;, the second term in (3.26), throughout the valid range of Ry, given by

(3.20).

4In particular, Rs and L are both functions of Ry, only. However, we usually may not be able
to solve for R explicitly after applying (3.19) to (3.1).
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For ease of understanding, an overview of the following proof is given below. The
proof itself is quite lengthy and thus performed in Appendix B.2.1.1.

The idea is that RS — 51}12?.5 remains > 0 for all valid Ry,. Then the highest possible
value of R, Would yleld the highest gr, inma.

To prove it, we will derive the highest by which still yields a numerator > 0 and
simultaneously a denominator > 0. This approach involves more restrictions than
necessary, because the ratio of a negative numerator to a negative denominator would
also be positive, but the proof is then quite “easy” and straightforward. However,
we should keep in mind that due to the additional restrictions yoia éigs might

remain positive even for a higher by than those derived.

N
If we abbreviate S; = Y anb, (wLs)b", we obtain from (3.26)
n=1

R, dR, RiwLg— S (Rs st) + R auéLs))

Rm  dRm By (wEs — S, 2220

To prove that numerator and denominator are > 0 for certain by, we firstly assume
S, = 0or R, = Ry and calculate 3{—%— - diigi, which will be > 0 throughout the valid
range of Rp,.

Secondly, we assume S, # 0, hence S, > 0 (according to (3.1)), and check numerator
and denominator separately:

1. Since wlg, Ry, Rs are > 0, and S; > 0, the numerator will always be > 0 for
Ry =5 6(st + Ry, a(“’L 22 < 0. Conversely, if Ry a(wL ) + R, —a%lﬁl > 0, we have to
use certaln 1nequaht1es to prove that (at 1east) for by < 2 the numerator will
be > 0.

2. Since wlg, Ry > 0, and S, > 0, the denominator will always be > 0 for
8(“’};“ 22 < (0. Conversely, if a(st > 0, we will have to use certain inequalities
to prove that (at least) for bN "< 2 the denominator will be > 0.

We then know that for all possible values of Ry, a,, and b, according to (3.1),
gﬁ—ﬁnmﬁ > 0 if (at least) by < 2.

Hence the highest gr inma is obtained for the highest valid value of Ry, which is Ry if
R; < Ry — Ry or Rpyim defined in (3.21) if Ry > R; — R, respectively. If we choose
Ry, accordingly, the particular type of network involved is one of the two L networks
where Cy =0 or Cy = 0.

However, we should keep in mind that the restriction 0 < by < 2 aroused after
applying inequalities to get upper estimates for certain terms. If by > 2, the method
used in the preceding proof gives no indication of the network’s behaviour®.

5Tt’s not obvious that by using the method applied within the proof 0 < by < 2 is the utmost
obtainable range for byy. However, it can be achieved by performing it in a slightly different manner.
Unfortunately the proof is then much more complicated and harder to understand.
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It’s interesting to note that usually the highest g. inma does not coincide with the
lowest Rs (or, according to (3.1), the lowest Lg). This issue may be illustrated by
comparison of Figure 4.11 to Figure 4.15.

3.5.2.3 Optimum value of load resistance R, for maximum power gain

In Section 3.5.2.2 we derived which value of R, maximises ¢y inma. However, the
highest g, inma Still depends on R, (R; is fixed in our application of matching the
load to the source).

Thus further investigations are required to determine which R, yields the highest
gr,inma if the parameter R,, was chosen for maximum g inma according to Sec-
tion 3.5.2.2.

Ry is variable because the connecting line between matching network and load trans-
forms the load depending on the line’s length. As transformation usually involves
additional susceptances even for a purely resistive load, optimisation of g, inma With
respect to Ry is only part of the solution, “complete” optimisation needs application
of Sections 4.3.1.1 and 4.3.2.1, too.

The derivation of the optimum value of R, is quite similar to Section 3.5.2.2, but
lengthy and thus performed in Appendix B.2.1.2.

Summarising Appendix B.2.1.2, we may conclude that if 0 < by < 2 and Ry, is
chosen according to Section 3.5.2.2, Ry = R; — Ry would yield the highest g, inma-
g inma decreases for higher or lower R, with exception of the constant R case (all
a, = 0, hence Rs = Ry), where g, inma Stays constant for higher R,.

Unfortunately the optimisation gives no indication for which of the two load resis-
tors Ry > Ry — Ry, Reo = W < R; — Ry, exhibiting similar reflection coeffi-
cients referred to R; — Ry, we would achieve the higher g. inma (reference R; — Ry
is not related to the interconnecting transmission lines’ characteristic impedances,

but was used to obtain equal “transformation distances” from optimum value

R; — Ry).

As mentioned before, “complete” optimisation involves taking into account of Sec-
tions 4.3.1.1 and 4.3.2.1. However, at least we may conclude that minimising losses
of the matching network will always require consideration (and optimisation) of the
length of the transmission line connecting it to the load.
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3.5.3 T network

3.5.3.1 Elements’ values and losses involved

_Kli Ylf _X.2i Y2€

=l g L ] g L
_I:O Gmlg - le Lpl Gp Lp2§ Cm2 T 2 Gm2

e S
~ v 7

Figure 3.15: Resulting (transformed) T network’s equivalent circuit for matching

of a (real) load resistance Ry = é; to a (real) source resistance R; = &
1

To derive the elements’ values for matching of a (real) load resistance R, > 0 to a
(real) source resistance R; > 0 if a T network with a lossy “central” inductor Ly is
used as shown in Figure 3.13 b), we initially split T}—; in two parts, L%ﬂ and 'LIE We
then may consider the T network to be composed of two lossless L networks (C1,

Ly or Cy, Ly, respectively), and G, which takes the (total) losses into account.

Applying Norton’s theorem [63] to the voltage source of (complex) amplitude V

and (real) source resistance R; = —Gl~ in series to the capacitance C yields a Nor-
1

ton equivalent current source of (complex) amplitude I o and a (complex) source
admittance consisting of a conductor G,; in parallel to a capacitor Cp,;.

Finally Ry = G% in series to () is series-to-parallel transformed in G2 in parallel to
Cme using (A.16) and (A.17) (or [34c]).

We then obtain Figure 3.15 from Figure 3.13, where

~ YV, wC jwGiCh
Lo= R + — Vo 1 +jwRC Vo G; + jwCy’ (3.29)

jwCh

(The formulae obtained for Ry 2 and Cpy 2 will not be needed later on and thus are
not shown here.)

Which conditions will cause matching in the circuit of Figure 3.15%

Firstly, capacitive and inductive susceptances have to cancel at the matching fre-
quency. If an approach similar to [13] (derivation for a lossless T network) is used,
susceptive cancellation applies to each of the two L networks — Cy,; cancels Ly
and Cps cancels Lyy at the matching frequency.
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Secondly, the remaining conductances have to be equal. For a lossless inductor,
choosing of Giyy = G = G would yield Y, =Y, =Y, =Y, = Gy, at the
matching frequency (G, is the independent parameter referred to in Section 3.5.1,
which would be equivalent to a “virtual conductance” G — however, [13] uses a
“virtual resistance” instead), thus providing a (conjugate complex) match of the
source resistance to the load resistance and vice versa.

However, a lossy inductor involves an “asymmetry” Gy, which urges us to decide
whether we want to match the load to the source or the source to the load. In the
first case, we may choose Gyo = Gp, (as before, Gy, is the independent parameter).
At matching frequency, Yo, = Gp holds and thus Y, = Y, + G, = G + Gp.
To achieve a (conjugate complex) match of the load to the source, ¥ ;, must be
equal to G, hence Gy = Gy + Gp. Conversely, Y ; = G = G, + G, and
Y=Y ,+ G, = G +2G, at matching frequency, which is not equal to Gio = Gy
as it would be for a conjugate complex match of the source to the load.

Different choices of Gy,1,2 are also possible, but those shown above are ideally suited
for the extension to complex loads.

For our purpose, matching of the load to the source is needed. However, matching
of the source to the load is quite similar and derived in Appendix B.4.2.

Using the preceding choice for Gy 9, we would obtain Ci 5 (and Cpy2) from series-
to-parallel transformation equations for Gni19. Applying susceptive cancellation
would then yield Lp1o (and L,). The calculations are not shown here because we
alternatively may use the formulae from [13] if they are rewritten in our conductance
notation and if we use Gy = Gp + Gp for the left L network and Gy = Gy
for the right L network ([13] derives the lossless case in resistive notation, where
Gm1 = Gma = Gy and - is denoted by R).

Since G2 Was obtamed from series-to-parallel transformation of passive compo-
nents (source conductance G; > 0 and load conductance Gy > 0), G1,2 > 0 holds.
Then the calculations described above yield the capacitances C) 5 and the inductance
L, of the original T network in Figure 3.13 b), where

. Gm + Gy Gy Gm
=t _.\/ o (3.30) C’Q—{] G _C (3.31)

1
Ly = . (3.32)

W ((i)\/ (G + Gy) (Gi — G — Gyp) 15y \/Gm (Ge — Gm))

(The negative signs in parentheses/square brackets would apply if we would use
(lossless) variable inductors L o = —;Q—C,—l— Then a negative L, might occur, which
would be just equal to a variable capacitor C}, = —w2—1Lp. As indicated by using
parentheses/square brackets, susceptive cancellation causes a negative sign of the

first square root in Ly, if L; is used instead of (', or a negative sign of the second
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square root in Ly, if Lo is used instead of Cs, respectively. We will need these
changes during the extension to inductive loads.)

In order to get valid solutions, all square roots must be real (if not, the T network
of Figure 3.13 b) wouldn’t be able to match). Thus, certain restrictions to the
parameter Gy, must apply. Since Gy > 0, only 0 < G, < Gy yields G, (Ge — Gr) >
0. Similarily, G, > 0 and G; > 0 imply 0 < Gy + G, < Gi.

Hence, for valid Gy, the designability conditions are

0< Gm<Geand 0<Gn+G, <G (3.33)

Both inequalities mainly describe the upper limit of the parameter G,. This issue
is best understood if we initially compute its limit for the lossless case (Rs = 0 and
thus G, = 0). Since both inequalities apply, the upper limit of Gp, is given by G,
if Gy < G; or by G, if G, > G, respectively®. The change in the upper limit occurs
at Gy = G}, where a match would not need any additional components (Ls — oo,
hence L, — oo (from (A.18)), and C} ¢ — oo would match).

The lossy network behaves quite similarily. The upper limit of Gy, is given by G;
if Go < G or by Guum if Ge > Gj, respectively. Guiim is the highest parameter Gy,
which solves

G’mlim = G’i - Gp(Gm]im) (334)

for 0 < Guim < G and involves valid network elements. The change in the upper
limit occurs at G, = Gj, where, as before, a match would not need any additional
components (Ls — oo, hence L, — oo, and C} 2 — oo would match). It’s interesting

to note that (for a resistive load) there is no other solution where Ly, — oo or
L1 = qft
=0,

Lp

6Usually there is no restriction to Ry similar to those in Section 3.5.2.1. The reason is that Gy,
is usually not equal to 72-1:0 + ... due to series-to-parallel transformation of Rs and Ls, where R is
given by (3.1). This issue is also addressed by the last two paragraphs of this section dealing with
the differences of T and 7 network and by the exceptions mentioned in Footnotes 't and 7.

tt Theoretically LL,, = 0 might additionally occur for Gy, = 0 if Gp(Gm = 0) = 0. However,
since Lgp — 00 (Lip = 0 and G, = 0 is case (ii) in (A.18)), the load conductor would not be
transformed. Hence matching would be impossible unless Gy = G; = G, = 0 — this solution is

already described by (a limit of) Gpiim.
Unique to the T network case (i) b) in (A.18) describes a second point where L =0or L, — oo,

but Ly = 0, if G; > 5 for Ry > 0 and Gy, = Gmiim = Gi —R——Gg,hencerz—Eand
Ch,2 — 0. Compared to Ls — oo, which was lossless, Ly =0 1nvolves losses in Ryp.
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Depending on the particular R, used, hence the particular G, used (given as a
function of wL, or Gy ), additional restrictions to G, might apply, limiting Gp,
even further or involving intervals within the limits derived above where matching
is impossible. However, (3.33) holds throughout the valid range of Gy,.

Additionally, the upper limits in (3.33) separate T and L networks — C; — oo if
Gm = Gulim or Cy — o0 if Gy, = Gy, respectively.

After designing the T network’s input impedance to match the source conductance
G, we compute the active power P, delivered to its load conductance Gy. Since the
capacitive and inductive susceptances in Figure 3.15 cancel at matching frequency,
we obtain

~ N Terie
Pue = G Lol oz 1, Wl grocy
e R (A Gp+Gm2)? 2 " 4(Gm+Gp)?
330) |Vol? G (2.22) 1
P, = =" Pactmaxi . 3.39
cté g Ri Gm T Gp ctm 1 N g& ( )

Conversely, due to input matching the active power P, delivered to the loss con-
ductance G, is given by

3.35 1
Pactp = Lactmaxi —~ Picte ( = ) Pictmaxi G- (336)
1+%n

For optimisation, we will need the power gain ¢ inms 0Of the matched T network.
Since its input impedance is matched to Gj, the active power delivered to the net-
work’s input i8 Paet; = Pactmaxi (refer to Figure A.6). Thus we obtain

) _ Pacte _ Pacté (3-_:15) C:rn . 1
gt’ e Pactl Pactma.xi Gm + Gp ]. -+ -C—;ﬁ' .

(3.37)

(Alternatively we could derive g inma from (A.23) if we put Cyor = Co. However,
we gain more insight in the circuit’s behaviour if it is computed as shown above.)

Comparing the preceding formulae to those derived for the 7 network, we may
conclude that 7 and T network would be equivalent if we would use an inductor L
with a parallel loss conductance G}, which could be described as a function of ﬁ
similar to the series loss resistance’s R, function of wL for the m network.
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Unfortunately, the same inductor is used in both networks, thus exhibiting the same
Ry as a function of wLs. If it is rewritten in G}, as a function of ﬁ;, its functional

description usually changes’.

Thus the properties of lossy 7 and T networks with a lossy “central” inductor are
usually not equivalent. Hence the following derivation of the optimum value of the
parameter G, or Gy, respectively, differ from those for the 7m network, involving
additional restrictions within the proofs.

3.5.3.2 Optimum value of parameter G,, for maximum power gain

Minimising “losses of the T network” is achieved by transferring the highest portion
of the active power delivered to the network’s input to its load G, = 721',_?‘ Thus neither
P,.p has to be minimised nor P, to be maximised, but we have to maximise
Ot,inma- However, Pitmaxi 1S independent of Gy, and Pty = gt,inma Factmaxi holds
(input matching), hence the highest g; inma Occurs for maximum Pyt

To derive the value of Gy, for maximum ¢ inma, We compute its derivative with
respect to Gp,.

Using (3.37) yields

dgt, inma __ Gm & _ dGP
= ( =) (3.38)

dGy, (G + Gp)?
Since G, Gp > 0, the first term is always > 0. Thus we need to check the sign of
the second term only.

As Ry is a function of Lg, and both are functions of G, and L, according to (A.19),
(A.20), and G, according to (3.32), where G, itself is a function of Gy, and implic-
itly® of G, we define the implicit function ¥ = 0 from (3.1), (A.19), and (A.20),

N 1
G wkL
= + E an A | = ——2 — =0, where A = —2 .
¢t RSO ( ) Gg + wzng Gg + w21LZ
P P

n=1

7 One exception is the case of a coil with a constant Q factor, where R; = %st can be

i i =1_1
rewritten in Gp = 5 51—

There is another equivalence if the “variable inductor” consists of a fixed inductor Ly = const. in
series to a variable capacitance for the 7 network or in parallel to a variable capacitance for the
T network. Neglecting the losses in the variable capacitor yields R; = Rqo for the 7 network and

G, = EET‘F(%’IT)Q = Gpo for the T network. Similar to the m network in Section 3.5.2.1, matching
80 8

in the T network requires Gpo < Gi.
8In particular, R, Ls, Gp, and L, are all functions of G, only. However, we usually may not

be able to solve for G}, explicitly after applying (A.19), (A.20), and (3.32) to (3.1).
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Replacing of —— Wlth (3.32) yields the missing partial derivatives,

a(;};) . Gl (G + G ) GZ -2 Gm (3 40)
0Gn 21/ (GatGp)(Gi—Cu—Gp) 2/ GCm(Ge—Gm)
ozr;) Gi— (Gm )

9Gy 2 V (Gn + G) (G - Gp). (341

To check which value of Gy, yields the highest g; inma, We need to know the sign of
g—: — adg—r:, the second term in (3.39), throughout the valid range of Gy, given by

(3'33).

For ease of understanding, an overview of the following proof is given below. The
proof itself is quite lengthy and thus performed in Appendix B.2.2.1.

The idea is that - ggp remains > 0 for all valid Gp,. Then the highest possible
value of G, would yleld the highest g inma-

To prove it, we will derive the highest by which still yields a numerator > 0 and
simultaneously a denominator > 0. This approach involves more restrictions than
necessary, because the ratio of a negative numerator to a negative denominator
would also be positive, but the proof is then quite “easy” and straightforward.
During the proof, we will limit the inductor’s () factor to @ > 1, which just indicates

that wLs > R, or ;%; > G, and is likely to assume for useful variable inductors.

However, we should keep in mind that due to the additional restrictions —gi jgm

might remain positive even for a higher by or lower () than those derived.

If we abbreviate Sy = Z anbn, AP~ we obtain from (3.39)

n=1

9( ) a( )
1 1 i 2 ot 9
Gp de Gp (szg ~G}+2Gp wip St) - (2 Gp 515 ( 22 -¢ ) > (GP acy— T0m g, )
G dG 1 1 1 1 (w )

m m G g ~CB+2Go 5t 5 (2Go oty (S ~CB) S A

To prove that numerator and denominator are > 0 for certain by and @), we firstly
assume S; = 0 or Ry = Ry and calculate gm dG , which will be > 0 throughout
the valid range of Gy,.

Secondly, we assume S, # 0, hence S; > 0 (according to (3.1)). We then prove
that 2 Gp oL szz G?‘) S; > 0if 0 < by < 2. If we further 1imit the variable
inductor’s @ factor to @ > 1, hence —~ > Gy, it is obvious that —7= 02 >0,
thus 2Gp b > 26y 2 - (g - G2) S, > 0 and s — G2 +2G L5 20
We then check numerator and denominator separately:

1. Since wLy, Gm, Gp are > 0, Sy > 0, and the preceding estimates apply, the

numerator will always be > 0 for G =2~ ((,,G + Gm 6“(’;") < 0. Conversely, if
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m 5@
inequalities to prove that then the numerator will be > 0.

(or3) ot . . .
Gp "Ec,pr +G (—Lj > 0, we have to use the preceding estimates and certain

2. Since wLy, G, Gp are > 0, S; > 0, and the preceding estimates apply, the

6(wLp) uLp)

denominator will always be > 0 for < 0. Conversely, if > 0, we
will have to use the preceding estimates ‘and certain inequalities to prove that
then the denominator will be > 0.

We then know that for all possible values of Ry, a,, and b, according to (3.1),

ﬂ%—:—“—a > 0 if (at least) by < 2 and @ > 1 (hence wLs > R; or ;}; > G,p).

Hence the highest g inma is obtained for the highest valid value of Gy,, which is G,
if G¢ < G or Guym defined in (3.34) if G, > Gj, respectively. If we choose Gy,
accordingly, the particular type of network involved is one of the two L networks
where Cy — 00 or C; — oo.

However, we should keep in mind that the restrictions 0 < by < 2 and @ > 1 (hence
wLs > Rs or wlTp > G,) aroused after applying inequalities to get upper estimates
for certain terms. If by > 2 or 0 < @) < 1, the method used in the preceding proof
gives no indication of the network’s behaviour. To illustrate this, it should be noted
that if all a,, = 0, hence Ry = Ry, the proof involved no restrictions to the ¢ factor
of the variable inductor®.

It’s interesting to note that usually the highest g; inma does not coincide with the
lowest R (or, according to (3.1), the lowest Lg), where R,, Lg are the elements
yielded by parallel-to-series transformation of Gy and L.

3.5.3.3 Optimum value of load conductance G, for maximum power gain

In Section 3.5.3.2 we derived which value of G, maximises g; inma. However, the
highest g; mma still depends on G, (G is fixed in our application of matching the
load to the source).

Thus further investigations are required to determine which G, yields the high-
est gy inma if the parameter G, was chosen for maximum g inma according to Sec-
tion 3.5.3.2.

G is variable because the connecting line between matching network and load trans-
forms the load depending on the line’s length. As transformation usually involves
additional reactances even for a purely resistive load, optimisation of g inma With

9Similar proofs without any restrictions to the @ factor of the variable inductor could also be
performed for different single loss terms, e.g. Ry = a; (st)%, R, = ést, and R, = a3 (wLg)?,
which also holds for the two cases equivalent to the m network, Gp = Gpo and G, = % ;i—p
(described in Footnote 7). However, each term generates a different solution for G, and usually
the sum of the single loss terms does not generate a Gy, equal to the sum of the single terms’ Gy,
Thus these proofs do not help to extend the proof for (3.1).
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respect to Gy is only part of the solution, “complete” optimisation needs application
of Sections 4.3.1.2 and 4.3.2.2, too.

The derivation of the optimum value of G, is quite similar to Section 3.5.3.2, but
lengthy and thus performed in Appendix B.2.2.2.

Summarising Appendix B.2.2.2, we may conclude that if 0 < by <2, Q > 1 (hence
wLg > R, or i > Gp), and Gy, is chosen according to Section 3.5.3.2, G, = G;
would yield the highest g; inma- gt,inma decreases for higher or lower G,.

Unfortunately the optimisation gives no indication for which of the two load con-

2
ductors Gp > G, Ggp = G%; < (G}, exhibiting similar reflection coefficients referred
to iy = é—i, we would achieve the higher g inma (reference R; = G% is not related to
the interconnecting transmission lines’ characteristic impedances, but was used to

obtain equal “transformation distances” from optimum value R; = &).
1

As mentioned before, “complete” optimisation involves taking into account of Sec-
tions 4.3.1.2 and 4.3.2.2. However, at least we may conclude that minimising losses
of the matching network will always require consideration (and optimisation) of the
length of the transmission line connecting it to the load.

3.5.3.4 Approximate equivalence of m and T network for a high-Q cen-
tral inductor L,

Usually the T network behaves different than the 7 network because the losses of the
inductor are of a serial type in both cases (some remarks at the end of Section 3.5.3.1
already addressed this issue). Thus, if we perform a series to parallel transformation
of Ls and Rs in L, and G, as shown in Figure 3.13 b), we may rewrite (3.1), the
functional description of the losses, using (A.19) and (A.20), obtaining

N

G
.___p—2 = S0 + Z an Abn’
a2+ () =

N n
which, if solved for G, is usually not equal to Gy = Gpo + ) @n (;—};) (with

n=0
some exceptions indicated in Footnote 7).

Although the proofs for the T network did not need any approximation, we might get
some hint why they also involved a constraint of by < 2 if we consider an inductor
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with wls > R, (or @ > 1). Hence wlTp > G, holds, allowing us to approximate

1 2 N 1 2—b,
Gy~ o (1) +2 an )

Assuming 0 < by < 2, the powers are simply “mirrored” at b, = 1. If we define
Oy = Oy, Bn = 2 — b,, we get an equation in G, and wlTp similar to those in R;
and wls. If by = 2 for the R, used, a Gpp = ay would occur, involving additional
restrictions similar to those involved by Ry for the m network.

Thus, if @ > 1 for the central inductor Ls, the T network is (approximately)
equivalent to the m network.



Chapter 4

Extension of the Method to
Complex Loads

4.1 Introduction

In the previous chapter, the optimum parameter’s (and load resistance’s) value for
maximum active power transfer was derived for resistive sources and loads.

Since realistic loads are usually complex, the method presented in the previous
chapter is extended to complex loads in the following chapter. Then exact analytical
solutions for a constant () factor central inductor are derived. Thereby the power
gain of different types of networks may be compared and its increase introduced by
a suitable matching strategy may be estimated. Important characteristics of the
exact solution help to derive an optimum matching strategy for any types of loads.
Finally its applicability to switchable matching networks is considered.

4.2 Definitions/notations

From this chapter on, the following definitions/notations will be used:

Latin letters

Bstot Total load susceptance (including Cy of the network and the load’s (equivalent) induc-
tance)

Cotot Total load capacitance (including Ca of the network and the load’s (equivalent) capaci-
tance or inductance)

Cep Load capacitance in parallel to load conductance Gy

Chs Load capacitance in series to load resistance R,

Gt,inma,maxind+ Maximum g¢,inma (of solution Gpind+ if Gy < Gy)

9w,inma,maxind+ Maximum gr inma (of solution Rgina4 if Re < Ry)

9w, lldes Power gain of a m network designed as if it would be lossless

GrlimofGmlim Load conductance for which the maximum of C; tends to infinity (solution Gpcap+)

Gm1/Lp0 Gm which yields L—l,, = 0 in the case of an inductively loaded T network (equal sqare

roots in Ly formula)

Gy G which yields Cagor = Cis

52
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Gmgmaxind+
Gmiim1
Gmlim2
Gy,
GmuOl
Gmu02
Gmvo1
Gmvoz
GpeapF

GpindZF
Latot

L¢p
Les

Lpind+
Lsind+
Lsind+

RolimofRmlim
Rmclp

ngmaxind

ngmaxind+
Rlim1
Runlim2
RumL,,
RmLSO

Rimuo1
Rmu02
Rval
Rpvos

Rscapq:
Rsind:F

Ut
U
V¢

Un

Xatot

Greek letters

AGm

ARy

Gm which yields the maximum g inma (solution Gpinay)
Lower pole of C1 (solution Gpcap+)

Upper pole of C1 (solution Gpcap+)

Gm which yields Latot = Ly

Lower zero of uy

Upper zero of ug

Lower zero of v

Upper zero of v

Exact solutions of Gp for a constant @ factor central inductor and
capacitive/resistive/(over-)compensated inductive loads, distinguished by the sign
in front of /uy

Exact solutions of Gy, for a constant Q factor central inductor and undercompensated
inductive loads, distinguished by the sign in front of /vt

Total load inductance (including Co of the network and the load’s (equivalent) induc-
tance)

Load inductance in parallel to load conductance Gy
Load inductance in series to load resistance Ry (T network)

Parallel inductance derived from the exact solution Gpinq+ for a constant Q factor central
inductor and undercompensated inductive loads

Series inductance derived from the exact solution Rginq4 for a constant Q factor central
inductor and undercompensated inductive loads (7 network)

Series inductance yielded by parallel-to-series transformation of Gpinay and Lpinds4
(T network)

Load resistance for which the minimum of C; equals zero (solution Rscap+)
Ry which yields Cotot = Cyp

Ry which yields the maximum gx jides (constant Q factor central inductor and under-
compensated inductive load)

R which yields the maximum gr inma (solution Rgnd+)
Lower zero of C (solution Rscap4)

Upper zero of Cy (solution Rscap+)

Ry which yields Lotot = Lep

Rm which yields Ls = 0 in the case of an inductively loaded T network (equal sqare roots
in Ls formula)

Lower zero of ur
Upper zero of ux
Lower zero of vy
Upper zero of vy

Exact solutions of Rs for a constant @ factor central inductor and capacitive/
resistive/{over-)compensated inductive loads, distinguished by the sign in front of \/uzx

Exact solutions of Rs for a constant @ factor central inductor and undercompensated
inductive loads, distinguished by the sign in front of \/vx

Argument of “large” square root in Gpcaps
Argument of “large” square root in Rscapy
Argument of “large” square root in Gpinax
Argument of “large” square root in Rgjnay
Total load reactance (including Cz of the network and the load’s (equivalent) inductance)

Step in G accompanied by a resistance step due to switching to next inductor value in
a T network with switchable elements
Step in Rm accompanied by a resistance step due to switching to next inductor value in
a 7 network with switchable elements
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4.3 Matching of a complex load to a resistive
source (matching at the network’s input)

4.3.1 Complex load exhibiting a capacitive imaginary part
4.3.1.1 = network

G

1

vl

Figure 4.1: Resulting 7 network’s equivalent circuit for matching of a (complex)
load admittance consisting of a conductance G, in parallel to a ca-
pacitance Ce, to a (real) source conductance Gj

If the load impedance Z,, hence the load admittance —Zl;, exhibits a capacitive

imaginary part, thus Im{Z,} < 0 and Im {—Z%} > 0, we may describe the load

admittance at matching frequency by a conductance G, in parallel to a capacitance

Cp, where
Ge=Re{i}, (4.1) oep=11m{zi}. (4.2)

Z,y W Ly

If we combine the 7 network’s capacitance Cy and the load capacitance Cy, (refer
to Figure 4.1), and denote the total capacitance by Cot, wWe obtain

Cotor = Ca + Cp.

The resulting equivalent circuit’s components are similar to those of the 7 network
in Section 3.5.2.1. Thus all results obtained in Sections 3.5.2.1 and 3.5.2.2 are
applicable if we put R; = Gii, R, = Gie, and replace Cy with Cyt in all formulae
derived!, in particular in (3.18). Then the remaining capacitance C, of the 7w network
is given by

1 Ry — Ry,
ng Rm
However, C, is a variable capacitance, thus the lowest value of Coo is Cpp, which
differs from the case of a resistive load, where the minimum value was (theoretically)
zero (but a “real world” variable capacitor’s minimum value wouldn’t be zero).

Cy = Chtor — Cp = — Cop. (4.3)

To illustrate the impact of the preceding restriction to the minimum Coq,
we compute the derivative of Cyq with respect to R, from (3.18), %%mf =

'We should note that there is a slight inconsistency in the definition of Ry because
Ry # Re{m} as we would expect it to be according to the definitions in (2.7) and (2.13).
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_ 1
2wRm \/ Bm (Re—Rum)’
in (3.20). Thus Ry, has to be lower than or equal to

which is < 0 for the (utmost) valid range of R, indicated

1
_ R Re{7 }
anCgp - 1+ (WRZCép)z - 2 - Re{.Z_é} ) (44)

IL
Z,
ensuring Cooy > Cpp. For AC excitation w > 0, hence R, < R holds (which

is easy to understand because Cyo = 0 if Ry = Ry, but Chior > Cpp > 0 due to
Cep > 0 for a complex load exhibiting a capacitive imaginary part).

Differing from a purely resistive load, the (utmost) limits of the parameter R,, are
given by 0 < Ry, < Rig,, if By < Ry~ Ry or by 0 < Ry < Min{RmCEP, Rolim} if
Ry > R; — Ry.

Similar to Section 3.5.2.2, gr inma increases (or stays constant) with increasing Ry.
Thus the highest valid Ry, yields the maximum ¢, inma, hence Ry, = Rmcgp if Ry <
Ri — Ry or Ry = Min{Runc,,, Rulim} if Re > Ri — Ry, respectively. In both cases,
the resulting matching network is a L network, because Cyor = Cpp and Cy = 0
for Ry = Ruc,,, or C1 = 0 for Ry = Ruim. In particular, for Ry, = Rpyg,, the
resulting circuit is a 7 network, but the type of the external matching network is
a L network?.

4.3.1.2 T network
R, G, C, G R,
l I | |
| |

v,| ) R, & v, 1,33G,3R,

s

Figure 4.2: Resulting T network’s equivalent circuit for matching of a (complex)
load reactance consisting of a resistance R, in series to a capacitance
Cis t0 a (real) source resistance R;

If the load impedance Z, exhibits a capacitive imaginary part, thus Im{Z,} < 0,
we may describe the load impedance at matching frequency by a resistance R, in
series to a capacitance Cy, where

1

R( = Re{Zg}, (45) Cgs = —m

(4.6)

2 However, due to parasitic capacitances, a “real world” matching network would always be
a 7 network and could not be set to Ry = Ruim, although these parasitic capacitances might
be remarkably small, e.g. for switchable capacitors in a network similar to [33]. But within this
section we investigate the networks’ principal behaviour, the impact of minimum and maximum
values of Cy, Ls, and Cy will be considered in Section 4.5.1.
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If we combine the T network’s capacitance Cy and the load capacitance Cy, (refer
to Figure 4.2), and denote the total capacitance by Cagt, We obtain

1
Cotot = T 71

C Cis

The resulting equivalent circuit’s components are similar to those of the T network
in Section 3.5.3.1. Thus all results obtained in Sections 3.5.3.1 and 3.5.3.2 are
applicable if we put G; = ,—,};, Gy = 1-21—2, and replace Cy with Cy; in all formulae
derived®, in particular in (3.31). Then the remaining capacitance C; of the T network

is given by
1 1

Cy = - . (4.7)
1 _ 1 w Gy—Gn 1
Catot Cos e G Cn

However, C; is a variable capacitance, thus the highest value of Coo is Cis, which
differs from the case of a resistive load, where the maximum value tended (theoret-
ically) to infinity (but a “real world” variable capacitor’s maximum value would be
finite).

To illustrate the impact of the preceding restriction to the maximum Cloyy,
we compute the derivative of Chyy with respect to Gy, from (3.31), gaCG%_[:t =
G}
2w (Ge~CGm) A/ Gm (Ge—Cm)’
in (3.33). Thus Gy, has to be lower than or equal to

e = 1+ F}Ti)Q <: Rle_Zfe—Zl;} = fe {.Z.ie}) ’ (48)

ensuring Coot < Cys. For AC excitation w > 0, hence Gpe,, < Gy holds (which
is easy to understand because Caor — 00 if Gy = Ry, but since Cy € (0, 0o) and
0< CQtot _<_ C[s, CQtot € (0, OO) hOldS)

which is > 0 for the (utmost) valid range of Gy, indicated

Differing from a purely resistive load, the (utmost) limits of the parameter Gy, are
given by 0 < Gy < Gy, if G < Gior by 0 < G, < Min{Gmc,ys Gmiim} if Ge > Gi.

Similar to Section 3.5.3.2, g, inma increases (or might stay constant) with increasing
Gm. Thus the highest valid G, yields the maximum g; inma, hence G, = G,
if G¢ < Gj or Gy, = Min{Gnq,,, Gmim} if G¢ > Gi, respectively. In both cases,
the resulting matching network is a L network, because Coo, = Cps and Cy — 00
for Gy = Gme,,, or C1 — oo for Gy = Guiim. In particular, for Gy, = G, the
resulting circuit is a T network, but the type of the external matching network is
a L network®.

3We should note that there is a slight inconsistency in the definition of G, because

G¢ # Re Tﬂl_é— as we would expect it to be according to the definitions in (2.13) and (2.7).
wCes

4 However, due to finite capacitances, a “real world” matching network would always be a
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4.3.2 Complex load exhibiting an inductive imaginary part

4.3.2.1 = network

Figure 4.3: Resulting 7 network’s equivalent circuit for matching of a (complex)
load admittance consisting of a conductance G, in parallel to an in-
ductance Ly, to a (real) source conductance G;

If the load impedance Z,, hence the load admittance —Zl—e, exhibits an inductive

imaginary part, thus Im{Z,} > 0 and Im {Z%} < 0, we may describe the load

admittance at matching frequency by a conductance G, in parallel to an inductance
Lyp, where

GezRe{Zle}, (4.9) Lgp=—m. (4.10)

Z,

To achieve matching of the 7 network’s input admittance to the source conductance,
two completely different solutions arise.

1. (Over-)Compensation of Lg, by Cy, hence Bgyor > 0 in Figure 4.3 and thus
may be described by a capacitance Cy, at matching frequency.

Similar to Section 4.3.1.1 Cy is given by (3.18). For the remaining capaci-
tance Cy of the m network we obtain

1 1({ 1 1 [R,—Ra
L= I LN 4.11
¢ WLy Coor = 3 (wLép Ry R ) (4.11)

C, is a variable capacitance and thus > 0, in particular, Cy > wz}dp > 0. If the

susceptance of Cy cancels the susceptance of Ly, Baior and Chior may be zero

— just equivalent to the case of a purely resistive load with exception of the

value of Cy, which is shifted by wT}:T All results obtained in Sections 3.5.2.1
P

and 3.5.2.2 are applicable, but we have to put R; = G%’ Ry = c%’ and replace

T network and could not be set to G, = Gim, although the maximum capacitances might be
remarkably high, e. g. for switchable capacitors in a network similar to [33]. But within this section
we investigate the networks’ principal behaviour, the impact of minimum and maximum values
of Cq, Ls (from parallel-to-series transformation of G, and L), and C3 will be considered in
Section 4.5.2.
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Cy with Cye in all formulae derived®. However, compared to Section 4.3.1.1,

there is no additional limit to R,,, but a minimum value of Cy given by w22£ .
P

Similar to Section 3.5.2.2, gr,inma increases (or stays constant) with increasing
Rp,. Thus the highest valid Ry, yields the maximum ¢, inma, hence Ry, = Ry
if Ry < R — Ry or Ry, = Ry if Re > R; — Ry, respectively. For R, = Ry
the resulting type of the external matching network is a m network, whose
capacitance (3 cancels Ly, at matching frequency, hence 7 network and Ly,
build up a L network. For R, = Rpnm, C1 = 0 holds, and the resulting type
of the external matching network is a L network?.

We already might assume that the case of (over-)compensation does not guar-
antee the lowest losses, because the equivalent circuit’s lossless load inductance
is “wasted” by (over-)compensation and all inductance needed for matching
has to be supplied by the lossy inductor of the matching network.

2. Undercompensation of Ly, by Co, hence By, < 0 in Figure 4.3 and thus may
be described by an inductance Loy at matching frequency.

According to (3.18) and the notes regarding the signs in parentheses/square

brackets we obtain
2ot = fl——uﬂCQ N W V Rg—Rm.
£p

The remaining capacitance Cy of the 7 network is then given by

1 1 1 [/Ry— Rn
C, = — ] ==, 4.12
2 w <WL£p RZ lzm > ( )

As before, we have to put R; = Gil and Ry = —Gl—g in all equations derived®.

Additionally, according to (3.19) and the notes regarding the signs in paren-
theses/square brackets we obtain for the inductance Lg of the m network

Ls=\/(Rm‘f'Rs)(Ri—'Rm;Rs)‘_\/Rm(RZ_Rm). (4.13)

The preceding changes of the equivalent network’s elements also involve
changes of the limits of parameter R,,.

One additional limit occurs because Cs is still a capacitance and > 0. Thus
Loyt > Lyp holds. Since Loy, increases with increasing Ry, (square root similar

5 We should note that there is a slight inconsistency in the definition of R, because

Ry # Re { Gngl_ as we would expect it to be according to the definitions in (2.7} and (2.13).
j“’Llp
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to those of Coyey in Section 4.3.1.2), Ry, has to be higher than® or equal to

1
R Re *Z—Z
RmLep = ¢ = {_2 } = Re{_Z_e} . (4.14)

2
1+ (szP>

For AC excitation w > 0 and Ry, < R, holds.

Another additional limit, Ry 7.0, may occur because Lg is still an inductance
and > 0. In the resistive and capacitive cases, the sum of the square roots
in Ls could never be lower than zero, but equal to zero if both square roots
would be zero. However, the inductive case involves a difference instead of a
sum, thus Ls might be lower than zero, if the absolute value of the first square
root is lower than the absolute value of the second square root (then we would
have to replace the inductance with a capacitance in order to match). In
particular, a valid Ry,1,o might occur only if R, > R; — Ry and if additionally
Ruro > Rngp- Since this result is not needed further, all derivations are
performed in Appendix C.1.1.1.

The major difference between resistive/capacitive and inductive cases is the
different behaviour with respect to the highest gr inma. Although all estima-
tions performed in Section 3.5.2.2 and Appendix B.2.1.1 apply, we have to

use
OwLs) R —2(Ry + ) B R, — 2Ry
ORm 2y/ (R + Rs) (Ri — R — Rs) 2/ Rn (Re — Rm)
d(wLs) Ri — 2 (Rum )
OB 2\/(Ru+ Ra) (Ri — B — Ra)

during replacement of 3(‘}’{’*’) and 6%"; *2 in the final checks for numerator and

denominator in the case “at least one a, > 07, yielding a difference of the
same two terms instead of a sum compared to the resistive/capacitive case.
Since we proved that both terms are > 0 if 0 < by < 2, their difference might
be positive or negative. Thus the method applied gives no indication for the
sign of ———~dg§§:“a.

We could try to reconsider the method used, but would not succeed, because
calculation of gr inma for e.g. a constant @ inductor (Rs = %wLS) yields a
maximum of gr inma Within the valid range of Ry, if Ry < R; (R = 0 for
R, = 9 L wLs). In particular, it is a “real” maximum, where —d—-g—(’i“R‘ﬂi = (0, and
which is not located at one of the range’s limits — however, if Q) is sufficiently
high, it is very close to Ry, = R, and itS gr inma does not differ much from
Gr.inma(Re). Unfortunately such a maximum’s g inma and the value of its

6But Ry, < Ry, because Ry, = Ry would yield Bgior = 0, which is part of the case addressing
(over-)compensation where Caior = 0. Conversely, Ry, = Rnr,, yields Co = 0 (undercompensa-
tion). However, each of those limits may not be within the valid range of Ry, if it is limited further
by additional conditions, e.g. by minimum/maximum network element values.
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location R, cannot be computed by using inequalities and estimations. Even
worse, the constant @ inductor involves two solutions for Rs(Ry,) if Ry > R;,
whose according dg—c’i’l’!}i‘m‘—“ﬁ exhibit opposite signs and thus no single inequality
or estimation would apply.

It’s interesting to note that if such a (single) maximum would occur, it would
always be higher than the highest ¢, inma in the case of (over-)compensation,
because both cases join at R, = Ry, provided that Ry, is not limited further
when solving for Ry(Rp,).

Summarising the preceding results we may conclude that obviously the maxi-
UM Gr,inma 15 yielded if the type of the external network is a 7 network.

4.3.2.2 T network

R G G L, R, G
!
L
§ A
Kol R, = Kol L,
RS

Figure 4.4: Resulting T network’s equivalent circuit for matching of a (complex)
load impedance consisting of a resistance Ry in series to an inductance
Lys to a (real) source resistance R;

AN
A%
_UQ

=

If the load impedance Z, exhibits an inductive imaginary part, thus Im{Z,} > 0,
we may describe the load impedance at matching frequency by a resistance R in
series to an inductance Ly, where

Re=Re{Z,}, (4.15) Les = i—lm{ze}. (4.16)

To achieve matching of the T network’s input impedance to the source resistance,
two completely different solutions arise.

1. (Over-)Compensation of Ly by Co, hence Xgor < 0 in Figure 4.4 and thus
may be described by a capacitance Caot at matching frequency.

Similar to Section 4.3.1.2 Cy is given by (3.31). For the remaining capaci-
tance Cy of the T network we obtain
1 1
Cy=— — = . (4.17)
CLet g w(wle+ & /%)

Gm

C, is a variable capacitance and thus > 0, but additionally Cs < wzngs holds.
If the reactance of Cy cancels the reactance of Ly, X0t may be zero and
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Caot may tend to infinity — just equivalent to the case of a purely resistive
load with exception of the value of 1 = which is shifted by w?Ls. All results
obtalned in Sectlons 3.5.3.1 and 3. 5 3.2 are applicable, but we have to put
G; = Ri’ Gy = Re’ and replace Cy with Cao: in all formulae derived”. However,
compared to Section 4.3.1.2, there is no additional limit to G, but a maximum
value of Cy given by leLT

Similar to Section 3.5.3.2, g; inma increases (or might stay constant) with in-
creasing Gp,. Thus the highest valid Gy, yields the maximum g inma, hence
Gn = Gpif Gy < Gjor Gy, = Gmiim if Ge > G, respectively. For G, = Gy
the resulting type of the external matching network is a T network, whose
capacitance Cy cancels Lps at matching frequency, hence T network and Ly
build up a L network. For G, = Gmiim, C1 — 00 holds, and the resulting type
of the external matching network is a L network®.

We already might assume that the case of (over-)compensation does not guar-
antee the lowest losses, because the equivalent circuit’s lossless load inductance
is “wasted” by (over-)compensation and all inductance needed for matching
has to be supplied by the lossy inductor of the matching network.

2. Undercompensation of Ly by Cs, hence Xt > 0 in Figure 4.4 and thus may
be described by an inductance Loy at matching frequency.
According to (3.31) and the notes regarding the signs in parentheses/square
brackets we obtain

L2tot LZs

The remaining capacitance Cy of the T network is then given by

1

Cy = . (4.18)
w (Wl %%)
As before, we have to put G; = ﬁ and Gy = & in all equations derived”.

Additionally, according to (3.32) and the notes regardlng the signs in paren-
theses/square brackets we obtain for the inductance L, of the T network

1
L,= . (4.19)

w (VCn ¥ G (G = G = Gy) ~ v/ Cu (Ge = G )

The preceding changes of the equivalent network’s elements also involve
changes of the limits of parameter Gy,.

One additional limit occurs because () is still a capacitance and > 0. Thus
Lowot < Ly holds. Since Lo, decreases with increasing Gy, (square root similar

7 We should note that there is a slight inconsistency in the definition of G, because
Gy # Re {E_ﬂl&ﬁ} as we would expect it to be according to the definitions in (2.13) and (2.7).
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to those of Cyoy in Section 4.3.1.1), Gy, has to be higher than® or equal to

Cmte = 77 (wCZng)2 (= RZi;} = fe {ZLeD ' (420

For AC excitation w > 0 and G, < G holds.

Another additional limit, Gmi/1,0, may occur because Ly, is still an inductance
and > 0, hence - > 0. In the resistive and capacitive cases, the sum of the

square roots in —L—p could never be lower than zero, but equal to zero if both
square roots would be zero. However, the inductive case involves a difference
instead of a sum, thus fl; or L, might be lower than zero, if the absolute
value of the first square root is lower than the absolute value of the second
square root (then we would have to replace the inductance with a capacitance
in order to match). In particular, if Ry < R, as it would be for the usual
R; = 508, due to (3.33) no valid Gmi/r,0 occurs. Since this result is not
needed further, all derivations (including that for Rg > R;) are performed in
Appendix C.1.1.2.

The major difference between resistive/capacitive and inductive cases is the
different behaviour with respect to the highest ¢ inma- Although all estimations
performed in Section 3.5.3.2 and Appendix B.2.2.1 apply, we have to use

0Gr) Gi— 2 (G +G) G~ 2Ga
G 2/ (Gu+tGp)(Gi—Gum—Gy) 2/ Gu(Ge—Gu)
o) Gi —2(Gm + )

Gy 2/(Gm + Gp) (Gi — G — Gp)

1
during replacement of ———“’3’—) and (a;c;?) in the final checks for numerator and
denominator in the case at least one a,, > 07, yielding a difference of the same
two terms instead of a sum compared to the resistive/capacitive case. Since
we proved that both terms are > 0 if 0 < by < 2 and @ > 1, their difference
might be positive or negative. Thus the method applied gives no indication

: dgt inma
for the sign of B Temat

We could try to reconsider the method used, but would not succeed, because
calculation of gy, inma for e.g. a constant ¢ inductor (Rs = é—st, hence G, =

é ;i—) yields a maximum of g; inma Within the valid range of G, if G, < Gi. In
particular, it is a “real” maximum, where % = 0, and which is not located
at one of the range’s limits — however, if @) is sufficiently high, it is very close to
Gm = Gy and its g, inma does not differ much from g inma(Ge). Unfortunately

such a maximum’s g, inma and the value of its location G, cannot be computed

8But G < Gy, because Gy, = G would yield Xq0t = 0, which is part of the case addressing
(over-)compensation where Coior — 00. Conversely, Gm = GmL,, yields Co — oo (undercompen-
sation). However, each of those limits may not be within the valid range of Gy, if it is limited
further by additional conditions, e. g. by minimum/maximum network element values.
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by using inequalities and estimations. Even worse, the constant ¢ inductor
involves two solutions for G,(Gn) if G¢ > Gi, whose according d—gc';(’% exhibit
opposite signs and thus no single inequality or estimation would apply.

It’s interesting to note that if such a (single) maximum would occur, it would
always be higher than the highest g inma in the case of (over-)compensation,
because both cases join at Gy, = Gy, provided that Gy, is not limited further

when solving for Gp(G).

Summarising the preceding results we may conclude that obviously the maxi-
UM gt inma i yielded if the type of the external network is a T network.

4.4 Exact analytical solutions for a constant Q
central inductor

4.4.1 Explicit analytical solutions, their valid parameter
ranges, and important characteristics

4.4.1.1 = network

To derive an optimum matching strategy, it is important to know more about the
solutions’ behaviour. Since any inductor can be approximated by an inductor with
piecewise constant losses as a function of its number of turns, it is advantageous
to derive the exact solutions for the case of a constant ) central inductor which is
described by (3.1)if Ro =0, N =1,a; = %, and b; = 1. Furthermore, this approach
enables comparison with several works which derived approximate solutions for this
case (assuming the network’s elements to have the values of a lossless network).

Although the exact solution is derived quickly, it’s much more complicated to find
the range of the parameter R, where it’s valid within.

The exact solution is computed by solving R, = ést for Lg, putting it in Equa-
tion (3.19), and solving the resulting equation for Ry, yielding two possible solutions
for capacitive/resistive/(over-)compensated inductive loads,

R =2 (B~ QR (Re— Fa) ) ¥ /Ur

sCa) = N 4.2
R P+ 2 (1 + QQ) ( ]‘)
where
Ugp = 4(1 + Q2) (Ri - Re) R,
2
+ (Ri_'2 (Rm_Q\/Rm (RZ_ Rm))) )
and two possible solutions for undercompensated inductive loads,
Ri—2(Rm+Q\/Rm(Rg—Rm)):F,/—v,r -
Rsind:F - 2(1 + Q2) ? ( " )
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where
ve = 4(14+Q% (Ri— Re) Ry

+(Ri-2 (Rm+Q\/Rm(Rg—Rm)))2.

Which solution is valid in which range of the parameter Ry, ¢

Searching of those ranges involves a certain search for zeroes of different terms
and comparison of the limits found, but only within the utmost limits derived in
Section 3.5.2.1 (applying Ry = 0 which holds for R, = éwLS), hence 0 < Ry, <
Min{R;, R;}. It is simple math, but very lengthy and thus may only be sketched
here.

e The first step is to check which parameter range yields real solutions, in par-
ticular, in which parameter range is u, > 0 or v, > 0, respectively.

By a careful inspection of u,, v, it’s quite obvious that u, and v, are always
> 0if Ry, < R;.

If Ry > Ry, it is somewhat more complicated.

IfR < Ry < }1 (/14 Q2—Q)?+4) R, uy > 0 within the intervals 0 < R, <
Ry and Rpuoe < B < R;, where

Re=Q (/TFQ2+Q) Rimf (Re— B (Ret(y/THQ2+Q)? )

Rpwor = S+ )

Ro—Q (\/ 14+Q2%+Q) RH-\/(Re—Ri)(Re-F(\/ 14+Q2%2+Q)? Ri)

Rmu02 = 2(1+52) .

If Rp > 1 ((v/ 14 Q% — Q)*+4) R;, only the first interval applies.

If R < Re < 1((+/1+@Q*+Q)*+4) R;, vr > 0 within the intervals 0 < Ry, <
Rval and Rmv02 S. Rm S R17 where

Re—Q(v/TH@-Q) R~ (Re=R) (Re+(V/T7Q2-Q)* )
Rval = 2(1+Q?) s (423)

Re=Q (/T4 @-Q) Rty (Re-R) (Re+(/T+G7-Q) R))

Rovor = 2(1+Q?) .

If Ry > % (v/ 14+ Q2?+ Q)%+ 4) R;, only the first interval applies.

e The second step is to check which parameter range yields positive solutions.
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If Ry < Ry, Rycap— is never positive. If Ry = R;, Rscap— 1S never positive, too,

. . v/ 1+Q%24+Q . ..
but Rseap— is zero if 0 < Ry, < WRi. If Ry > Ri, Rscap— is positive
within 0 < Ry, < Ryuo1 only.

If Ry < R;, Rgcapy is positive for 0 < Ry, < R,. However, if Ry = R; it should

. . 1+Q%+Q .
be noted that Rscapy is zero if % Ri < Ry, < R;. If Rg > Ri, Rycapy is

positive within 0 < Ry, < Ryuo1 only.

If Ry < R;, Rsina— is never positive. If Ry = R;, Rgnq— 1S never positive, too,
but Rgna— is zero for 0 < Ry < Ruwor- If Ry > R;, Rsing— is positive within
0 S Rm S Rval OnIY‘

If Ry < Ry, Rgnas+ is positive for 0 < Ry, < Ry. If Ry = R;, Rgina+ is positive
for 0 € Ry < Rpwor and zero for Ryvor < Ry < Ry If Ry > Ry, Rsinat is
positive within 0 < Ry, < Ry only.

e The third step is to check in which parameter range the solutions are valid with
respect to the equation which was solved for. This is performed by putting
each solution in Equation (3.19) and checking in which parameter range the
resulting %wLS is equal to the solution itself.

In those cases where the solutions are zero throughout an interval of the pa-
rameter Ry, which always involve R, = R;, it is quite obvious from Equa-
tion (3.19) that a zero inductance, hence a valid capacitive solution can only
be obtained for R, = R;, whereas a valid inductive solution exists throughout
that interval.

In the remaining cases it is possible to rewrite (Ry + Rs) (Ri — Rm — Rs) as

(ORI (.)<0,v/(.)2==(.)if(.)>0,+v/(.)2=(..). However,
for each of the four possible solutions, only one sign yields a valid solution.
Hence the parameter’s interval(s) in conjunction with the intervals found in
the previous steps limit the applicable range of each solution. The results of
the check combined with the limits derived previously are given below:

Rycap— 1s never a valid solution.

If 0 < R¢ £ RaimofRmiim, Where

RplimotRmiim = 2Q (Vv 1 + Q? — Q) R;, (4.24)
Rscap+ is a valid solution for 0 < Ry, < Re. If RpimotRmiim < e < Bi, Rscap+
is a valid solution for 0 < Ry, < Ruiim: and Rmjime < Rm < Ry, where
R = Re+2Q°R; — \/ R? + 4Q?Ri(R. — R))
2(1+@?) ’
R+ 2Q°R; + \/ R + 4Q*Ri(R; — R;)

leim2 = 5 (1 i QQ) . (426)

(4.25)
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/ 2
If Ry = R;, Rutim1 < -Eij%? R;, hence Rycaps is positive throughout the first

interval, and the second interval contracts to a single dot at Ry, = Rmjime = R;.
If Ry > Ri, Rulim1 < Rmuo1 and Recap+ is a valid solution for 0 < Ry < Rulim1
only.

If Ry > R;, Rgna- is a valid solution for 0 < Ry, < Ruyvor-

If 0 < Ry £ Ry, Rgingy is a valid solution for 0 < Ry, < Ry. If Ry > R;, Rsina+
is a valid solution for 0 < R, < Ruvor-

It should be noted that the intervals with Rgpg+ = O in the case of R, = R;
simply describe a parallel resonance of C'y and Logog.

Within their valid parameter ranges, the network element values could be calculated
using (3.17), (3.19), and (3.18). However, it is much easier to use the defining
equation of a constant @) inductor,

L=9n, (4.27)
w

to compute Ls, and to solve (3.19) for +/(Ru + Rs)(Ri — Rm — Rs), to put the
solution in (3.17), and to apply (4.27), yielding

. 1 QRSZF\/Rm(RK_Rm)
Ci=-g i (4.28)

to compute Cy. (The minus sign in the numerator applies to Rscap+, the plus sign
t0 Rsind— and Rgngy.) Then, as usual, Cy is computed from (3.18).

The power gain of the m network matched to R; at its input is easily calculated by
(3.24).

Finally, the answers to two important questions regarding the 7 network are given.

What is the physical meaning of the (applicable) limits derived above?

If Ry < RuimofRmlim; C1 0f Recap+ has a minimum, whose value decreases with in-
creasing R, until it is zero at Ry = RaimofRmlim- For higher Ry, it decreases further
to negative values. Thus one limit to the left (Rpnum1) and one limit to the right
(Rumlima) exists where C; = 0 until the right limit reaches its maximum valid value
of Rutim2 = Ry = Ry at Ry = R;. If Ry > R;, only the left limit (Rpym;) falls within
the (utmost) valid range of Ry,. (Decreasing of Ruyjim1 and increasing of Rpjime with
increasing Ry will be derived in Section 4.4.2.)

If R, > R;, two inductive solutions exist. At Ryvo1, the upper limit of the valid
interval of Ry, both inductive solutions join.

Furthermore, if Ry < Ri, Rscap+ and Rsind+ join at Ry = Ry, where Coiy = 0 or
Loy — o00. They would also join at Ry, = 0, but due to minimum/maximum
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element values and finite load susceptance it is outside the parameter’s valid range
in practice.

Minimum and solution joining may be observed in the example diagrams depicted
in Section 4.4.3.1.

How does the power gain of the matched m network depend on Ry, for the different
(valid) solutions?

Since the case of a constant ) factor inductor is included in the loss model (3.1) and
the conditions of the proof in Section 3.5.2.2 apply, dggﬁ‘:“a > 0 for Rgeap+ throughout
its valid range of Ry,.

For the two inductive solutions, dgg’T‘:‘"’ has to be computed, numerator and denom-

inator checked for zeroes, and the derivative’s sign checked to the right and left of
those zeroes. This procedure is quite lengthy and thus only its results are given.

. . d i
If Ry < R;, there exists a maximum of ——ggg‘nﬂ for Rgind+ at

Ry (Rg +(14+2Q%) R ++/(Re + B + 4Q° R )

Rm maxin = , 4.29
& dr 2(1+ Q% (Re+ Ry) ( )
where the according power gain’s maximum value is given by
Re (Re+ (1+2Q%) R+ /(Re+ B2 + AQ7ReR; )
gr inma,maxind+ — (430)

R (Ri +(1+20) Re+ v/ (Re+ B)? + 4Q2RgRi) '

1.05
- b) o
=
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Figure 4.5: Power gain grpdes Of a lossy m network designed as if it would be
lossless (thin lines) and g, inma Of a lossy 7 network exactly matched
at its input (thick lines), capacitive (solid) and inductive (dashed)
— employing Rgnqy for the exactly matched network — solutions at
7.35 MHz, R; =509, @ =50, and a) R, =5, b) R, =302

The closer Ry to R; or the higher @, the flatter the maximum will be (approximately).
Those dependencies are quite obvious when comparing Figure 4.5 and Figure 4.15.
Furthermore, the maximum is compared to the highest power gain of the capacitive
solution in the last paragraph of Section 4.4.2.

If R[ = Ri, 9rjinma = 1 = const. for Rsind— if 0 S Rm S Rval and for Rsind+ if
Ruvor < Ry < R; (pure parallel resonance of Cy and Lot ). If 0 < Ry < Ruywor,

dgr ;
ﬁ’:ﬁﬁ > 0 for Rsind-
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If Ry > R;, dggé““‘a < 0 for Rgnq— and dg" ame > 0 for Rgndas throughout its valid
range of Ry,.

The behaviour of grinma in the different cases may be observed in the example
diagrams depicted in Section 4.4.3.1.

4.4.1.2 T network

Since the case of a constant ¢} central inductor is one of the rare cases mentioned
in Footnote ” (at the end of Section 3.5.3.1), where m and T network are exactly
equivalent, the solutions for G, of the T network may easily be derived from those
for Rg of the m network by replacing Rn, Ri, Re, ur, and v, with G, Gi, G, uy,
and vy, respectively.

In a similar manner, Guuot, Gmuoz2, Gmvor, Gmvozy GolimotGmlimy Gmiimi, and Gmlime
are derived. The solution’s valid ranges are similar to those of the m network if the
previously derived limits are used instead.

However, the intervals with Gpina+ = 0 in the case of Gy = G now describe a series
resonance of C; and Loget.

Furthermore, there are two more network element values which may be interesting.
As with the 7 network, (3.30), (3.32), and (3.31) could be used to calculate the
network element values, but the defining equation of a constant ¢} inductor,

1 1

Ly = — —, 4.31
P (.UQ Gp ( )
is more convenient to compute L,. However, the inductor model (3.1) describes a
loss resistance R as a function of an inductor Lg in series. Thus their values are

interesting, too. Applying (4.31) to (A.19) and (A.20) yields
1 1

_ @ 1
L = s o (4.33)

Solving (3.32) for v/ (Gm + Gp)(Gi — Gm — Gp), putting the solution in (3.30), and
applying (4.31) gives

o=8 G + G (4.34)

w QGp + \/Gm(GZ — Gm)

to compute C;. (The minus sign in the denominator applies to Gpeap+, the plus sign
t0 Gpind— and Gpinda+.) Then, as usual, Cy is computed from (3.31).

C1, Ly, and C; may also be derived from the m network’s element values C, L,
and Cy if they are inverted (except w) and Ry, R;, and R, are replaced with Gy,
G}, and Gy, respectively.

The power gain of the T network matched to Gj at its input is easily calculated by
(3.37).
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Finally, the answers to two important questions regarding the T network are given.

What is the physical meaning of the (applicable) limits derived above?

If G¢ < Guimofcmlims C1 0f Gpeapt has a maximum, whose value increases with
increasing G, until it is a pole at Gy = Glimofamiim- For higher Gy, two poles occur
with sign changes (the inverse of the maximum decreases further to negative values).
Thus one limit to the left (Gmimi1) and one limit to the right (Gpim2) exists where
C7 — oo until the right limit reaches its maximum valid value of Gpim2 = G = Gj
at Gy = G;. If Gy > G, only the left limit (Gpiim:1) falls within the (utmost) valid
range of Gy,. (Decreasing of Gpim1 and increasing of Guime with increasing G, will
be derived in Section 4.4.2.)

If Gy > Gj, two inductive solutions exist. At Guyo1, the upper limit of the valid
interval of G, both inductive solutions join.

Furthermore, if Gy < Gj, Gpeap+ and Gpina+ join at Gy, = Gy, where Cyoy — 00 o
Lot = 0. They would also join at Gy, = 0, but due to minimum/maximum element
values and finite load reactance it is outside the parameter’s valid range in practice.

How does the power gain of the matched T network depend on Gy, for the different
(valid) solutions?

Due to the exact equivalence of 7 and T networks in the case of a constant @) factor
inductor, the results derived for the m network apply if Recap+, Rsind—» Rsind+» Gr,inma,
ngmaxind+a Gr,inma,maxind+> Rma Ria and R@ are replaced with Gpcap-}-; Gpind—a Gpind+;
gt,inma> Gmgmaxind—{—’ Gt,inma,maxind+» Gm, Gi> and GZ, respeCtiVelY-

However, there is a slight difference between 7 and T network. In the case of
Gy = Gi, Gtinma = 1 = const. for Gpipa— if 0 < G < Guyvor and for Gpina+ if
Guvo1 < G < Gj as with the 7 network, but a pure series resonance of C] and La
occurs instead of the parallel resonance with the = network.

4.4.2 Dependency of the valid intervals’ limits on Q and R,
or Ge

To understand the practical importance of the valid intervals’ limits derived above
their dependency on @ and Ry or G, has to be investigated. This simply involves
calculation of their derivatives with respect to @) and R, or G, and checking the sign
of those derivatives. Since 7 and T network are exactly equivalent here, only the 7
network derivatives are calculated in the following paragraphs, but the results are
given for both types of networks.

O Ratimotimiim _ 2(v/ 1+ Q% — Q)? R.
80 J1+@Q2 1
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RpimofRmiim OF Gaimofcmiim increases with increasing ) and tends to R; or Gj for
Q) — 0. (They do not depend on R, or G,.)

2
ORmiim1,2 . Q (ZRi — R+ \/Rg +4Q*Ri(R, — Ri))
oQ 2(1+Q?)?y/ R} + 4Q*Ri(Re — Ry)

Rtim1 or Guiimi increases with increasing (), whereas Rim2 decreases with increas-
ing Q. Both tend to R; or G;j for Q — oo. (Note that the range of R, or Gy where
those limits exist decreases with increasing ) since RaimofRmiim OF GolimofGmlim in-
creases. To compare the limits for increasing @, R, or G, has to be chosen high
enough to be valid for those Q.)

ORmlim1,2 - Rotim1,2
8R€ \/R% -+ 4Q2R1(Rg - R,)

Ritim1 or Guim1 decreases with increasing Ry or Gy, whereas Ryjime or Guiims in-
creases with increasing Ry or Gy. Hence Rpjima or Guiime are valid only till B, = R;
or Gy = G}, where the highest possible Ruyjim2 = R; or Guiime = Gj is obtained.

Since BJ%%‘M itself and the following the sign check is quite lengthy, only the results
are given here. R0 or G decreases with increasing @. It tends to zero for

Q — oo.

8Rmv01 _ Rval

et R) (R (VTF @ - QR R)

Riwo1 or Guyor decreases with increasing Ry (> R;) or Gy (> Gj). Thus its highest
value is given by

_VIH@EHQ (4.35)

Rval(RZ = R:) = 9 1 T Q2

or

2
Gowor (G = Gi) = Vzl\;_l%_g? G (4.36)

For those limits to be valid, Ly, < w(\/%—buQ) must hold with the 7 network and

2
Ly > ——% with the T network, respectively.
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To understand whether those limits are observed in practice additionally the accord-
ing values of the network’s central inductor Lg have to be considered.

In a 7 network, it is obvious from (4.27) and (4.22) that Lgjna+, the central induc-
tance of the inductive solution employing Rgn4+, is always greater than that of the
solution employing R4, except at Ry = Ruvor, where both solutions join. The
highest Lgind+ 18 Leinda+ (Rm = 0) = (1%%; (to prove this simply compute %),
although R,, = 0 is never reached if realistic loads and element values are considered.
For useful @ factors of @ > 1, Lgna+(0) decreases with increasing @ and w.

Similarily, in a T network, the lowest Lpina+ 18 Lpina+(Gm = 0) = gifc'—zi, which in-
creases with increasing () for useful @ factors of @ > 1 and decreases with increasing
w (to fit the inductor’s series model, the parallel inductance needs to be transformed
in a series inductance Lgng+(Gm = 0) = L%“-’ but both differ only slightly for suffi-
ciently high @ factors). l

Knowing the dependencies given above, which limits are likely to be observed in
practice?

If Re < R; or Gy < Gj, even for a quite low Q = 5, RpimotRmlim ~ 0.99 R; or
Gaimof(;mlim =~ 0.99 Gi, yielding valid leiml,z for 0.99 Ri < Re < Ri or valid Gmlim1,2
for 0.99 G; < G, < Gj. Loads that close to the source resistance or admittance would
not require matching, except for a compensation of their susceptance or reactance
in case of a complex load. For higher Q, RaimofRmlim 0F GelimofGmlim are even closer
to R; or Gj. Thus, for the majority of such loads, Rmiim1,2 0 Gmiim1,2 do not occur.
However, if R, > R; or G, > G}, in principle Ruylim1 of Gmim: are valid, but since
C, is zero (m network) or tends to infinity (T network) at that limit, minimum or
maximum element values provide tighter limits to Ry, or Gp,.

Regarding Ryvo1 or Gmyor, it is very unlikely to observe those limits in practice, too.
In a 7 network, Lgnqy < 100nH for @ > 44.2 and 0 < R, < Rpvor at 1.8 MHz
— inductances that low may not be realised by an ordinary variable inductor, but
only by a variable capacitor in series to a fixed inductor (Figure 3.12 a)), which is
disadvantageous with respect to its losses (although the losses may be reduced by
using a switchable tapped inductor as proposed in [3]). In a T network, Lpina+ of the
equivalent region may be within the range of variable inductors at high frequencies,
e.g. Lping+ > 26.5uH for @ = 100 and 0 < G, < Guvor at 30 MHz, but moving
the lower limit of the valid parameter range below G0 would require such high
series inductances of the load, e.g. Ly > 53.1 uH for ) = 100 at 30 MHz, that even
a parasitic parallel capacitance of 1 pF would overcompensate those Lys, yielding for
sure an effective series capacitance of that load.
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Besides the intervals’ limits, it’s also interesting to compare the inductive maximum
obtained for Ry < R; or Gy < Gj to highest power gain of the capacitive solution
at R, = Ry or G, = Gy, where capacitive and inductive solutions join and the
inductive load is fully compensated.

a( 97,inma maxind+ ) ( 9t inma maxind+ )
. e indt (Rm=Rg) o inda (Cm=Gg) ) . )
Computing —minm "(,;‘E RTEL or ~-thinm "3}{2’; =t~ yields a maximum ratio of

(1+VB+4Q%+/2 (3+VB+4(VE-1)Q?) ) (1+(VE-1) Q%+, 1+4(V3-2)Q2)

97 ,inma,maxind4

91r,inma,ind+(Rm=Re) max = 9 (1+Q2)(1+\/—5_+2(\/E—I)Q2+\/2 (3+\/§+4(\/g_1)(22))
— [k_l .o~ . 3 3 3 : 9t,inma,maxind4
at Ry = Y5 R; = 0.618 R; or a similar maximum ratio of T O | at

Gy = ‘/32'1 G; = 0.618G; ~ T.’G‘lls'ﬁ’ respectively®.
The maximum ratio itself has a maximum value of approximately 1.059 at ) ~ 2.058
and quickly approaches 1 for (lower or) higher @) factors. In particular, the maximum
ratio is about 1.026 at ¢ = 10, 1.014 at @ = 20, 1.006 at @ = 50, and 1.003
at ¢ = 100. Thus fully compensating an inductive load does not significantly
reduce the power gain compared to the inductive maximum provided the matching
network’s variable inductor’s @ factor is sufficiently high.

4.4.3 Example diagrams

4.4.3.1 Solutions of a w network including comparison to the approxi-
mate ones

To gain more insight in the solutions’ behaviour, important characteristics of the
lossy m network matched exactly at its input are illustrated below in appropriate
diagrams. Additionally, the diagrams include the solutions of a lossy m network
designed as if it would be lossless, which are quite common in literature — its
network elements may be obtained by putting Ry = 0 in (3.17), (3.19), and (3.18).
Then R, is given by the definition of a constant ) factor inductor, Ry = %st.
Finally, the formula of its power gain is similar to (3.24), but of course with the
previously calculated Rg being put in. It should be noted that there is only one
inductive solution if R, < R;, whereas there is no valid inductive solution if R, > R;.

9The derivative of the ratio given is best suited to derive the extremum due to its numerator’s
simplicity, whereas e. g. the derivative of the inverse ratio is much more complicated.
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The 7 network was chosen as an example because it exhibits zeroes instead of poles
for different network element values, thus the diagrams are easier to understand.
The relatively low ¢) = 5 ensures better visibility of the exact solutions’ different
“special” characteristics.

At first Cy is considered.

3 270 === ~ 57 : 0.31
- ~
a) b) ,’ TS \\\
] ~
’%‘ 2 %., 2.20 \\\ 10.30
Ml [Sand] \\‘
Ot G L70f 029
1.20 L b — -4 . 0.28
0 0.3 0.6 294 297 30

0 7.5 15 22,5 30
Rm [2] Ry, [Q]

Figure 4.6: C of a lossy m network designed as if it would be lossless (thin lines)

and of a lossy m network exactly matched at its input (thick lines),

capacitive (solid) and inductive (dashed) — employing Rgna+ for the

exactly matched network — solutions, a) full range, b) details at

7.35MHz, R; =509, Q =5, and R, = 30Q

If Ry < R;, Cp of the lossy 7 network designed as if it would be lossless is similar
for the capacitive and inductive solution and has a pole at R, = 0. As indicated
in Figure 4.6 b) (note the different scale), the lossy 7 network exactly matched at
its input behaves different. C) of the inductive solution (employing Rgnqs) has a
maximum. If Ry, < ReimofRmlim, C1 Of the capacitive solution has a minimum. At
R, =0, both solutions join without a pole.

Y T T 4.10 T T T 0.09
a) 45 b) N\
’I ~\\
'%" 3 - 3.10 -// ‘\\\ 10.06
O“ | 2.10 F “' 0.03
) = 1.10 — 5—.-—2 0.00
0 123 24,6 369 492 ' '

Ry [€1] Rp [Q]

Figure 4.7: C; of a lossy m network designed as if it would be lossless (thin lines)
and of a lossy 7 network exactly matched at its input (thick lines),
capacitive (solid) and inductive (dashed) — employing Rginq+ for the
exactly matched network — solutions, a) full range, b) details at
7.35 MHZ, Ri = 50 Q, Q = 5, and Rg = RZlimomelim = 49.510Q)

Ci [nF]

If R, increases, the value of the minimum decreases until it reaches zero at R, =
RylimofRmlim (refer to Figure 4.7 b) — note the different scale).
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Figure 4.8: Cy of a lossy 7 network designed as if it would be lossless (thin lines)

and of a lossy 7 network exactly matched at its input (thick lines),

capacitive (solid) and inductive (dashed) — employing Rginqy for the

exactly matched network — solutions, a) full range, b) details at

7.35MHz, Ry =50, @ =5, and R, = 49.6Q2

If Ry increases further, the value of the minimum decreases below zero, yielding
two limits of the parameter’s valid range (which guarantee that C; > 0 within),
Rulim1 to the left and Ryime to the right of the minimum. (An example is given in
Figure 4.8 b) — note the different scale).
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(5 1.7 O 230 \ 40.04
0 1.00 . = —\ . 0.00

0 06 12 476 488 50

0 12.5 25 37.5 50

R [€2] Ry [Q]
Figure 4.9: C} of a lossy = network designed as if it would be lossless (thin lines)
and of a lossy 7 network exactly matched at its input (thick lines),
capacitive (solid) and inductive (dashed) — employing Rsna— (long
dashes) and Rgnqas (short dashes) for the exactly matched network —
solutions, a) full range, b) details at 7.35 MHz, R; = 50Q2, @ = 5, and
R,=R; =500

If R, = Ri, Rulimo reaches its maximum value, Ryime = Re = R;, and the second
valid interval of the capacitive solution contracts to a single dot (Figure 4.9 b) —
note the different scale). Capacitive and inductive (employing Rsnd+) solution join
at Ry = 0 and Ry, = R, (as they did for lower Ry).

Additionally, the second inductive solution (employing Rgina—) becomes valid. Its
C1 tends to infinity if R, approaches zero. Note that both inductive solutions

(employing Rsind-}—a Rsind——) jOil'l at Rm = Rval-

If 0 < Ry < Rpvoi, the inductive solution employing Rgnga- and, if Rpvo1 < Ry <
R;, the inductive solution employing Rgnas is equal to the inductive solution of the
lossy 7 network designed as if it would be lossless, resulting from the pure parallel
resonance of Cy and Lo in this case (Rs and Lg are zero).
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Figure 4.10: C} of a lossy 7 network designed as if it would be lossless (thin lines)
and of a lossy m network exactly matched at its input (thick lines),
capacitive (solid) and inductive — employing Rsnq- (long dashes)
and Rgnat+ (short dashes) — solutions, a) full range, b) details at
7.35MHz, R; =508, @ =5, and R, = 702

If Ry, > R;, the capacitive solution’s valid range is limited by Rmjim1 only (an example
is given in Figure 4.10 a)). Capacitive and inductive (employing Rgnd+) solution
join at Ry, = 0.

The second inductive solution (employing Rgna—) remains valid. Its C) tends to
infinity if Ry, approaches zero. Note that both inductive solutions (employing Rsind.,
Rgina-) join at Ry, = Ruyvor and that there is no valid inductive solution for the lossy
7 network designed as if it would be lossless (refer to Figure 4.10 b) — note the
different scale).

Next Lg is considered. (Since Rs = = wLs, R is not shown separately.)

1
Q

a) 04 » b)
T 03 e o
= =
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Figure 4.11: Lg of a lossy 7 network designed as if it would be lossless (thin lines)

and of a lossy m network exactly matched at its input (thick lines),

capacitive (solid) and inductive (dashed) — employing Rging+ for the

exactly matched network — solutions at 7.35 MHz, R; =508}, Q) = 5,

and a) R, =5%, b) R, =300Q

If Ry < R;, L of the lossy 7 network designed as if it would be lossless is zero for the
capacitive and inductive solution and Ly of the capacitive solution has a maximum.
As indicated in Figure 4.11, the lossy 7 network exactly matched at its input exhibits
a nonzero Lg then and Lg of the capacitive/inductive (employing Rginda+) solution has
a maximum/minimum. Since ¢ > 1 in the example, Ls(Rm = 0) < Ls(Rm = Ry)
for the capacitive and inductive (employing Rgna+) solution if R, < % R;. Two
examples are given in Figure 4.11.
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Since %;‘_L—i increases with increasing () and is higher than 0.98 if ¢ > 10, yield-

ing loads which do not need to be matched (except for a compensation of their

susceptance, if present), it should be noted that even for moderate @ factors
Ls(Rm = 0) < Ls(Rm = Ry) is usually observed if R, < R;.

. %0 12 2 36 48
R [£] Rm [Q]

Figure 4.12: L of a lossy 7 network designed as if it would be lossless (thin lines)
and of a lossy 7 network exactly matched at its input (thick lines),
capacitive (solid) and inductive (dashed) — employing Rga, for the
exactly matched network — solutions at 7.35 MHz, R; = 50}, QQ = 5,
and a) R, = 82—“:} R; = 46.15 ) (horizontal dashed line indicates equal

Ls)a b) Ré = RﬂimomeIim ~ 49.51 ()
If R, increases, Ls(Ry = 0) and Lg(Ry = R,) come closer until Ly(R, = 0) =
LRy = Ry) at R, = %;%Ri (@ > 1 in the example) for the capacitive and
inductive (employing Rginas) solution (refer to Figure 4.12 a)).

If Ry increases further, Ls(Ry = 0) > Ls(Rm = Ry) for the capacitive and inductive
(employing Rgina+) solution (refer to Figure 4.12 b)).

b)

OO 12.5 25 375 50 OO 03 0.6 0.9 1.2
Ri [] Ry [€1]

Figure 4.13: L of a lossy m network designed as if it would be lossless (thin lines)
and of a lossy 7 network exactly matched at its input (thick lines),
capacitive (solid) and inductive (dashed) — employing Rgnda— (long
dashes) and Rgina+ (short dashes) for the exactly matched network —
solutions, a) full range, b) details at 7.35 MHz, R; = 50€), @ = 5, and
R; = R; = 5042 (horizontal dashed line indicates equal L)

If Re = Ry, L(Rm = 0) = Lg(Rm = Rumumi) for the capacitive solution (Fig-
ure 4.13 b) — note the different scale). Since Ruyime = R; = R;, the second valid
interval of the capacitive solution contracts to a single dot. Capacitive and inductive
(employing Rsing+) solution join at Ry, = 0 and R,, = R, (as they did for lower Ry).
Additionally, the second inductive solution (employing Rgng—) becomes valid. Note
that both inductive solutions (employing Rgind+, Rsind—) join at Rm = Ruyvor.
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If 0 < Ry £ Ruvor, the inductive solution employing Rgna— and, if Rpvor < B <
R;, the inductive solution employing Rgna4 is equal to the inductive solution of the
lossy 7 network designed as if it would be lossless, resulting from the pure parallel
resonance of Cy and Lgge in this case (Rs and Ly are zero).
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=
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Figure 4.14: L of a lossy 7 network designed as if it would be lossless (thin lines)
and of a lossy m network exactly matched at its input (thick lines),
capacitive (solid) and inductive — employing Rgnd- (long dashes)
and Rsnga+ (short dashes) — solutions, a) full range, b) details at
7.35MHz, R; =501, @ =5, and R, = 70Q

If Ry > Ry, Ly(Ry, = 0) < Lg(Ry, = Ruim1) for the capacitive solution. Capacitive
and inductive (employing Rgna+) solution join at Ry, = 0 (an example is given in
Figure 4.14 b) — note the different scale and that the lossy 7 network designed as
if it would be lossless has no valid inductive solution if R, > R;).

The second inductive solution (employing Rgnq—) remains valid. Its L tends to
zero if Ry, approaches zero. Note that both inductive solutions (employing Rgind.,
Rginda-) join at Ry, = Ruyor and that there is no valid inductive solution for the lossy
7 network designed as if it would be lossless.

Next g, is considered. (Since the value Cy depends on the load susceptance, it was
moved towards the end.)
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Figure 4.15: Power gain g, jdes of & lossy m network designed as if it would be
lossless (thin lines) and g inma of a lossy 7 network exactly matched
at its input (thick lines), capacitive (solid) and inductive (dashed)
— employing Rginq+ for the exactly matched network — solutions at
7.35MHz, R; =50, @ =5,and a) Re =5, b) R, =300
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If R, < R;, the power gain of the capacitive solution increases with increasing R,
(refer to Figure 4.15).

For the lossy m network designed as if it would be lossless, there exists a maximum
of gr l1des for the inductive solution at Rmgmaxind = RIEQRI‘% (the capacitive solution has
its maximum Lg at this Ry,). For the lossy 7 network exactly matched at its input,
G inma,maxind+, the maximum of grinma in case of the inductive solution employing

Rgina+, was given in (4.29).

R,
R¢+Rs (1+R2 B3,

and Cagot Or Logoy are similar at a given Ry, for a lossy 7 network matched exactly at
its input or a lossy m network designed as if it would be lossless, gr iides > Gr,inma if
the according L is lower (easily seen by comparison of Figure 4.11 and Figure 4.15).
Thus, (for low @ factors) the exactly matched network may be worse, it matches at
the expense of power gain!

Since g, = 5> where Baioi = wCoior = —_I_/—lz—t-:t.’ holds for any 7 network,
O

w

Considering this result, which may seem surprisingly at a first glance, one should
keep in mind that the concept of maximum transferred active power by achieving
a complex conjugate match applies only to lossless matching networks! Depending
on the losses, lossy matching networks may behave different. However, the match
at the network’s input involves other advantages, e. g. reducing of the losses in the
line connecting the network to the source.
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Figure 4.16: Power gain g, qes 0f a lossy m network designed as if it would be
lossless (thin lines) and grinma of & lossy 7 network exactly matched
at its input (thick lines), capacitive (solid) and inductive (dashed)
— employing Rgnq- (long dashes) and Rgnq+ (short dashes) for the
exactly matched network — solutions, a) full range, b) details at
7.35MHz, Ry =500, Q =5, and R, = R; = 502

If R, = R;, the power gain of the capacitive solution increases with increasing Ry,
(refer to Figure 4.16 b) — note the different scale). This also holds for the inductive
solution (employing Rsind+) if 0 < Ry < Rpvor. Since Rmiime = Ry = R;, the second
valid interval of the capacitive solution contracts to a single dot. Capacitive and
inductive (employing Rsngy) solution join at Ry, = 0 and Ry, = Ry (as they did for
lower Ry).

Additionally, the second inductive solution (employing Rsnda—) becomes valid. Note
that both inductive solutions (employing Rsind+, Rsind—) join at Ry = Rmvor-
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If 0 < Ry < Ruwo1, the inductive solution employing Rgng— and, if Rpvor < R <
R;, the inductive solution employing Rgnq4 is equal to the inductive solution of the
lossy 7 network designed as if it would be lossless, resulting from the pure parallel
resonance of C; and Ly, in this case (Rs and Ls are zero and thus the power gain

is unity and constant).
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Figure 4.17: Power gain griq4es of a lossy m network designed as if it would be
lossless (thin lines) and gy inma of a lossy 7 network exactly matched at
its input (thick lines), capacitive (solid) and inductive — employing
Rgna- (long dashes) and Rgngy (short dashes) — solutions, a) full
range, b) details at 7.35 MHz, R; = 50§2, @ = 5, and R, = 702

If Ry > R;, the power gain of the capacitive solution and the inductive solution
(employing Rgings ) increases with increasing Ry, (refer to Figure 4.17 b) — note the
different scale and that the lossy 7 network designed as if it would be lossless has no
valid inductive solution if R, > R;). Capacitive and inductive (employing Reind+)
solution join at Ry, = 0.

The second inductive solution (employing Rgnq—) remains valid. Its power gain
decreases from % at Ry, = 0 with increasing R,. Note that both inductive solutions
(employing Rgindy, Rsind—) join at Ry = Ruyvor and that there is no valid inductive
solution for the lossy 7 network designed as if it would be lossless.

Furthermore, Figures 4.15 to 4.17 illustrate the huge advantage of R,, parametri-
sation in case of a constant () factor inductor — d—gd’-%’;—m—a- of all solutions except the
inductive solution employing Rgnq+ for Ry < R; exhibit a unique sign over the entire
valid parameter range, yielding an optimum network at one of the range’s limits!
(The second exception, the pure parallel resonance of Cy and Lo, Where the power
gain stays constant, would require a Ls = 0 and Ks = 0, which is not realisable.
Anyhow, it still would fit the concept because the constant gain is achieved at the

parameter range’s limits, too.)

Finally Cy is considered. Its value C; depends on the load susceptance, thus only
some useful examples are given below. For the chosen R,, parametrisation, Cs at
a given Ry, for a lossy m network designed as if it would be lossless and a lossy
7w network exactly matched at its input is equal. However, the applicable valid

parameter ranges differ.
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Figure 4.18: C; of a lossy m network designed as if it would be lossless (thin lines)

and of a lossy 7 network exactly matched at its input (thick lines)
at 7.35 MHz, R, =500, @ =5, R, = 302, and a) capacitive (solid)
solutions for Cy, = 100 pF, b) capacitive (solid, (over-)compensated)
and inductive (dashed, undercompensated) — employing Rgina4 for
the exactly matched network -— solutions for Lg, = 1 uH (horizontal
dashed line indicates wCy =

1
wlep )

As illustrated in Figure 4.18 a) for an example where Ry < RpimofRmlim, Cep lim-
its the maximum possible R, (the upper limit is below R, in this case). If the
load has an inductive imaginary part, (depending on the minimum value of Cy,)
(over-)compensation (capacitive solution) or undercompensation (inductive solution
(employing Rgna+ in the example)) may occur, refer to Figure 4.18 b). If valid, ca-
pacitive and inductive (employing Rgnqs) solution join at Ry, = Ry if Ry < R;.
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Figure 4.19: Cj of a lossy m network designed as if it would be lossless (thin lines)
and of a lossy 7 network exactly matched at its input (thick lines),
capacitive solutions at 7.35 MHz, R; = 502, @ = 5, R, = 7082, and
a) Cyp = 100 pF, b) Cpp, = 300 pF

If Ry > R;, the upper limit in case of the capacitive solution is given by R; for a lossy
7 network designed as if it would be lossless and by Rpm1 for a lossy m network
exactly matched at its input. Thus a load capacitance may be lower (Figure 4.19 a))
or higher (Figure 4.19 b)) than Cy at this limit, thus the valid parameter range is
not changed or lowered, respectively.
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Figure 4.20: C; of a lossy 7 network designed as if it would be lossless (thin lines)
and of a lossy m network exactly matched at its input (thick lines),
capacitive (solid, (over-)compensated) and inductive — employing
Rsina— (long dashes) and Rgpngy (short dashes) (both undercompen-
sated) — solutions, a) full range, b) details at 7.35 MHz, R; = 50,
@ =5 R, =701, and Ly, = 60nH

If R, > R;, quite low Ly, are required for the inductive solutions (employing Rsind+,
Rging- with similar Cy) to be valid (an example is given in Figure 4.20). Note the
different scales and that there is no valid inductive (undercompensated) solution for
the lossy m network designed as if it would be lossless.

4.4.3.2 Power gain’s contour line Smith charts for L, w, and T networks

In the following diagrams, power gain’s contour line Smith charts for different L, m,
and T networks are shown. Their central inductor has a range of 0.1 xH—-40 uH,
a constant @ factor of 100, the matching frequency is 7.35 MHz, and the variable
capacitor’s range is 5 pF — 500 pF. The contour lines were calculated from the result-
ing matching networks of 100x 100 equally spaced load reflection coefficients whose
Re{r,}, Im{r,} € [-1, 1], where only those with |r,| < 1 were used.

To gain more insight in the networks’ behaviour, a full set of diagrams is given in
Appendix C.2.1.1, where the matching frequency is either 1.8 MHz, 7.35 MHz, or
30 MHz and the variable capacitances’ ranges resemble different “typical” variable
capacitors (a cheap 5pF—-250pF, a better 5 pF—-500pF, and an expensive 25 pF -
4000 pF vacuum variable).

In case of m and T networks, best and worst networks’ power gain is shown.

In case of L networks, it is assumed that the network topology enables implemen-
tation of both “complementary” L networks (C; only or C; only), e.g. by using
appropriate switches.
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Figure 4.21: Simplified equivalent circuit of L networks derived from m networks
with parasitic parallel capacitance a) Cs or b) C and from T networks
with parasitic series capacitance ¢) Cy or d) C4

N

Additionally, the impact of a parasitic capacitance replacing one variable capacitance
of a 7 or T network is considered (refer to Figure 4.21) — the resulting networks yield
a more realistic description of “real world” L networks. Based on [3], the value of that
parasitic capacitance was chosen to be equal to the minimum/maximum value of the
remaining variable capacitance for L networks derived from 7 networks/T networks.

Since lossy L networks may theoretically exhibit more than one distinct solutions
for a given load, it has to be noted that

e the pure L networks (without parasitic capacitances) and the L networks with
a parasitic parallel capacitance derived from 7 networks yielded only a single
valid solution throughout all complete Smith charts for the given network
element ranges

e the L networks with a parasitic series capacitance derived from T networks
yielded more than one solution within some region of the Smith charts for the
given network element ranges, but the differences in power gain of best and
worst solutions were low — for the chosen contour line values both diagrams
were merely similar — thus only the best diagrams are shown.

Regarding the latter — a more detailed review of the differences between best and
worst L networks’ power gain is given in Appendix C.2.1.1.

Figure 4.22: a) Best and b) worst g, inma at 7.35 MHz, R; = 5092, Q = 100, 5 pF <
C1,2 < 500pF, and 0.1 pH < Lg < 40 puH, undercompensation shaded
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Figure 4.23: giotr,inma at 7.35 MHz, R; = 502, @ = 100, 5 pF < (2 < 500 pF, and
0.1 uH < Lg < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded

Figure 4.24: a) Best and b) worst g inma at 7.35 MHz, R; = 50, Q = 100, 5pF <
Ci,2 <500 pF, and 0.1 uH < Ly < 40 pH, undercompensation shaded

0.1uH < Lg < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded
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From the preceding diagrams (and those shown in Appendix C.2.1.1), it’s quite ob-
vious that the matching range of 7 and T networks is always greater than that of the
derived L networks which seems to be particularly true for L networks derived from
T networks at lower frequencies. However, their matching range can be enourmously
extended if the omitted variable capacitor is replaced with a fixed capacitance sim-
ilar to the variable capacitor’s minimum/maximum value for L networks derived
from 7 networks/T networks as proposed by [3].

Comparison of 7 and T networks yields that in our frequency range of interest,
the matching range of m networks is lower than that of T networks. Furthermore,
7 networks require high maximum values of the variable capacitances to obtain a
“reasonable” matching range at all. But best and worst m networks’ power gains are
much closer than T networks’ — thus T networks are more vulnerable to careless
tuning. As an extreme example, consider the left upper region in Figures 4.24 a)
and b) — the best T network’s power gain is between 0.95 and 0.98, the worst T net-
work’s between 0 and 0.1 which is at least 0.85 lower! The 7 networks’ differences
are much lower, although increasing if higher maximum capacitance values are used.

Checking the difference between the networks’ best and worst power gains is also
useful regarding estimation of the gain’s increase due to a proper matching strategy.
Depending on the load, frequency, and maximum capacitance values, values well
above 10 % are possible. As indicated above, even about 85 % may occur in extreme
cases. It’s important to note that it’s impossible to distinguish matched networks’
power gains by simply searching for a good match — all network settings which lie
within the region defined by the outer contour line(s) (all settings able to match)
yield (theoretically) perfect matches!

Regarding best and worst T networks, approximations were given in [65] for the loads
at which highest losses of best T networks occur for a given |r,| — approximately
at Gy = iflfj: G;. Footnote 3 of [65] contains further approximations for the lowest
losses of best T networks. In [65], no indication was given how the formulae were
derived and how the contour Smith charts were calculated. However, using the
solutions of Section 4.4.1.2, the values of Table 1 and of Table 2 for ¢ = 100 in
[65] (load impedance only tabulated for @ = 100) were verified and a Smith chart
equivalent to Figure 2 of [65] was drawn. Unfortunately the contour line values
chosen by [65] are not suited for comparison — e. g. it’s impossible to decide whether
undercompensation was included in case of loads exhibiting an inductive imaginary
part, although it’s not likely because the lower bound for best T networks’ losses
given in Footnote ® of [65] applies only if that case is not taken into account. For
the network element ranges used to derive all Smith charts above (including a set
comparable to that used by [65]), it seems that the lowest losses occur at a circle’s
section which describes best T networks with C; and Lg at their maximum values
and varying Cs. (That locus may be calculated analytically, but the formulae are
quite lengthy — since it was not proven that these are indeed the lowest losses, the
formulae are not given herein.) Furthermore, using the solutions of Section 4.4.1.2, it
could be proven that if G, > G; and G, is limited by the maximum value of (%, the
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highest losses for a given |r,| occur at Z, = G, = ififﬁi G;i. Calculating numerical

examples for the remaining cases yielded highest losses of best T networks close to
the approximations given in [65].

4.5 Impact of minimum/maximum elements’ val-
ues on power gain, optimum networks

4.5.1 7 network

In Sections 3.5.2.2 and 4.3.1.1 we observed that the optimum 7 network of a purely
resistive load or a load exhibiting a capacitive imaginary part is an (external) L net-
work. However, minimum/maximum elements’ values were not considered. Anyhow,
the L network was obtained because the optimisation yielded a maximum power gain
if the 7 network’s parameter R,, was at its maximum value.

Which changes have to be made if minimum/mazimum elements’ values have to be
taken into account?

The optimisation remains unchanged. Thus the optimum power gain is still achieved
for the highest possible R,. However, unlike before, it may be limited by the
minimum/maximum value of one of the m network’s elements instead of the limits
derived so far.

How may we ensure that Ry, is at its highest value?

In Section 4.3.1.1 we proved that d—f}%@ < 0 (which also holds for purely resistive
loads if Coe is replaced with Cy). Thus the value of Coator has to be at its lowest
value for highest R,. Since Coyop is the sum of Cy and the (given) parallel load
capacitance, this condition holds if C, is at its lowest value.

Hence the the optimum 7 network of a purely resistive load or a load exhibiting a
capacitive imaginary part is obtained if Cy is set to the lowest value where matching
is still possible.

However, if the parameter’s range is limited rather by the minmum/maximum value
of Ly or C instead of Cy, there may occur gaps in the range of Cy where no match-
ing is possible (Ls and C; depend on R, and may exhibit a minimum/maximum
throughout the valid range of Ry). Thus if we manually try to find the lowest Cy
where matching is still possible we should initially use the lowest value of C; and
increase it till a match is achieved.

According to Section 4.3.2.1, the situation changes if loads exhibiting an inductive
imaginary part are considered. In case 1 ((over-)compensation), Cy decreases if Ry,
increases, whereas in case 2 (undercompensation), Cy increases if Ry, increases —
both cases join at R, = Ry, which is an (internal) L network if it’s within the
parameter’s valid range given by (3.20) (in particular, if at least R, < R; — Ry) and
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if those range is not further limited by the minimum/maximum value of one of the
7 network’s elements.

How may we distinguish case 1 ((over-)compensation) from case 2 (undercompen-
sation)?

Comparison of (4.11) and (4.12) yields that except of the intersection Cy = 2}%

(at Ry, = Ry as indicated above), Cy > =3 L - in case 1 and (5 < L in case 2.
Furthermore, by considering the derivative of Cy with respect to R we obtain
that Cy continuously decreases if in case 1 the parameter Ry, is increased up to
the intersection at R, = R, (if within the parameter’s valid range) and decreases
further if Ry, is decreased from R, = R, in case 2. Hence if we decrease Cy and
try to match, the transition from case 1 to case 2 is observed for Cy = ;zi—ep if
R; < Ry — Ry and R, = Ry is not excluded by the minimum/maximum value of
one of the 7 network’s elements. If R, = Ry is not within the parameter’s valid
range, both cases are still distinguishable by comparison of C3 to — Lz

With respect to the m network’s power gain case 1 behaves like the case of a purely
resistive load or a load exhibiting a capacitive imaginary part. Thus the highest
power gain is obtained if Cs is set to the lowest value where matching is still possible.

Conversely, case 2 behaves different. As indicated in Section 4.3.2.1, it may involve
a maximum which is not located at maximum R,,. In conjunction with the consid-
erations regarding the values of Cy and its derivatives with respect to R, we may
conclude that if such maximum exists, we should not decrease Cy beyond the value
where the power gain maximum occurs. Thus the highest power gain may not be
observed for the lowest Cy where matching is still possible.

4.5.2 T network

In Sections 3.5.3.2 and 4.3.1.2 we observed that the optimum T network of a purely
resistive load or a load exhibiting a capacitive imaginary part is an (external) L net-
work. However, minimum/maximum elements’ values were not considered. Anyhow,
the L network was obtained because the optimisation yielded a maximum power gain
if the T network’s parameter G, was at its maximum value.

Which changes have to be made if minimum/mazimum elements’ values have to be
taken into account?

The optimisation remains unchanged. Thus the optimum power gain is still achieved
for the highest possible Gy,. However, unlike before, it may be limited by the
minimum/maximum value of one of the T network’s elements instead of the limits
derived so far.

How may we ensure that Gy, is at its highest value?

In Section 4.3.1.2 we proved that dcgj“ > 0 (which also holds for purely resistive
loads if Cyiey is replaced with Cy). Thus the value of Cayot has to be at its highest
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value for highest Gy,. Since Cogy is the reciprocal of the sum of the reciprocal of Cs
and the reciprocal of the (given) serial load capacitance, this condition holds if Cy
is at its highest value.

Hence the the optimum T network of a purely resistive load or a load exhibiting a
capacitive imaginary part is obtained if Cj is set to the highest value where matching
is still possible.

However, if the parameter’s range is limited rather by the minmum/maximum value
of Ly (from parallel-to-series transformation of G, and L) or C; instead of C, there
may occur gaps in the range of Cy where no matching is possible (L, and C; depend
on G and may exhibit a minimum/maximum throughout the valid range of Gy,).
Thus if we manually try to find the highest Co where matching is still possible we
should initially use the highest value of Cy and decrease it till a match is achieved.

According to Section 4.3.2.2, the situation changes if loads exhibiting an inductive
imaginary part are considered. In case 1 ((over-)compensation), Cs increases if Gy,
increases, whereas in case 2 (undercompensation), Cy decreases if Gy, increases —
both cases join at Gy, = Gy, which is an (internal) L network if it’s within the
parameter’s valid range given by (3.33) (in particular, if at least G, < Gj) and if
those range is not further limited by the minimum/maximum value of one of the
T network’s elements.

How may we distinguish case 1 ((over-)compensation) from case 2 (undercompen-
sation)?

Comparison of (4.17) and (4.18) yields that except of the intersection Cy =

(at G = G as indicated above), Cy < leLZ in case 1 and Cy > 'J'Z’—III in case 2.
Furthermore, by considering the derivative of Cy with respect to G, we obtain
that Cy continuously increases if in case 1 the parameter Gy, is increased up to
the intersection at G, = G, (if within the parameter’s valid range) and increases
further if Gy, is decreased from G, = Gy in case 2. Hence if we increase Cy and
try to match, the transition from case 1 to case 2 is observed for Cy = L%LZ if
Ge < Gy and G, = Gy is not excluded by the minimum/maximum value of one of
the T network’s elements. If G, = Gy is not within the parameter’s valid range,

both cases are still distinguishable by comparison of Cj to wzie .

With respect to the T network’s power gain case 1 behaves like the case of a purely
resistive load or a load exhibiting a capacitive imaginary part. Thus the highest
power gain is obtained if Cy is set to the highest value where matching is still
possible.

Conversely, case 2 behaves different. As indicated in Section 4.3.2.2, it may involve
a maximum which is not located at maximum G,. In conjunction with the consid-
erations regarding the values of Cs and its derivatives with respect to G, we may
conclude that if such maximum exists, we should not increase Cy beyond the value
where the power gain maximum occurs. Thus the highest power gain may not be
observed for the highest Co where matching is still possible.
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4.5.3 Conclusion

Deriving a matching strategy for optimum power gain is particularly easy for all
cases considered above except for case 2 (undercompensation) if the load exhibits
an inductive imaginary part.

For purely resistive loads, load impedances exhibiting a capacitive imaginary part, or
if due to the minimum/maximum network elements’ values only (over-)compensation
is applicable to load impedances exhibiting an inductive imaginary part, the follow-
ing matching strategy ensures highest power gain of the network:

e For m networks set Cs to its lowest value and try to match. If no match is
achievable, increase the value of Cy until matching is possible.

e For T networks set Cs to its highest value and try to match. If no match is
achievable, decrease the value of C5 until matching is possible.

Conversely, if the load exhibits an inductive imaginary part and the minimum/
maximum network elements’ values are suitable for undercompensation to apply
we need to know the network elements’ values and the frequency to compute their
settings for highest power gain by applying the solutions derived in Section 4.4.1.1
or Section 4.4.1.2 to a piecewise constant approximation of the inductor’s measured
() factor and choosing the optimum settings of the best segment.

It should be noted that pure (external) lossy L networks may exhibit some distinct
settings for a given load (for example consider Figure 4.8 b)), although usually only
one solution remains valid, in particular if network elements’ limits are taken into
account. Thus the matching strategy of the type of network the L network was
derived from has to be applied, even if both “complementary” L networks (C only
or Cy only) are realisable (e.g. with a switch) and able to match.

Is it likely to observe case 2 if the load exhibits an inductive imaginary part?

Table 4.1: Transition from case 1 ((over-)compensation) to
case 2 (undercompensation) at Cy = — Lle for
P,s

loads exhibiting an inductive imaginary part.
1.8 MHz 7.35 MHz 30 MHz

1 1 1
Lép,s WL, Lép,s w2 Leps Lép,s szﬂp,s

19 88nH | 88nF | 22nH | 22nF | 5.3nH | 5.3nF
20 || 180nH | 44nF | 43nH | 11nF | 11nH | 2.7nF
5Q | 440nH | 18nF | 110nH | 4.3nF | 27nH | 1.1nF
100 || 880nH | 8.8nF | 220nH | 2.2nF | 53nH | 530 pF
200 || 1.8uH | 44nF | 430nH | 1.1nF | 110nH | 270 pF
509 || 44pH | 1.8nF | 1.1pH | 430pF | 270nH | 110 pF
1009 || 8.8uH | 880pF | 2.2uH | 220pF | 530nH | 53 pF
20082 18uH | 440pF | 4.3uH | 110pF | 1.1p4H | 27pF
500Q || 44uH | 180pF | 11pH | 43pF | 27uH | 11pF
10009 || 88uH | 88pF | 22uH | 22pF | 53uH | 5.3pF
20002 || 180uH | 44pF | 43pxH | 11pF | 11uH | 2.7pF

whip s
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To get a first hint, the values of Cy = Ele‘e_ at the transition from case 1 ((over-)
P,S

compensation) to case 2 (undercompensation) were computed in Table 4.1 for dif-

ferent reciprocals wLyg, of the load’s susceptance (7 network) or reactances w Ly of

the load (T network) at different frequencies.

Assuming that good vacuum variable capacitors offer an adjustable capacitance
range of about 5 pF —500pF, expensive ones up to 25pF-4nF (or 100 pF-5nF),
and parasitic parallel capacitances of about 5 pF may occur, we may conclude that
case 2 (Cy < ;ﬁ;;) is applicable to a 7 network over a wide range of wL, up

to 7.35 MHz provided that minimum/maximum values of Lg or Cy do not involve
additional limitations. For higher frequencies, it may be restricted to somewhat
lower w Ly, but its range is still broad, which even holds for a minimum capacitance
of 30 pF.

1

However, the applicable range of case 2 in a T network (C; > — Les) is severely
restricted by the maximum capacitance of Cy. If it’s 5nF, the restrictions are
comparable to those of a 30 pF minimum capacitance in a m network, but limit w L,
to somewhat higher values at lower frequencies. If the maximum capacitance Cs is
500 pF, or, as in “cheaper” T networks, only 250 pF, the minimum w L required for
case 2 to apply is significantly increased, even at 30 MHz.

Another limit is quite obvious if the variable inductor’s @) factor is assumed to be
reasonably high, say ¢ > 100. Then, according to Section 4.4.2, a “real world”
7 or T network!® is not able to match a R, > R; — Ry (7 network) or G, > G;
(T network) in our frequency range of interest due to limitations introduced by
parasitic elements. (Note: Lossless networks (for which also Rs = 0 holds) are not
able to match these cases at all).

Summarising the preceding considerations yields that the simple matching strategy
proposed above is applicable to the majority of load impedances. However, if the
load impedance’s imaginary part is inductive, B, < R; — Ry in a 7 network or
Gy < G in a T network, and case 2 (undercompensation) is not excluded by the
minimum/maximum values of the network’s elements, explicit knowledge of the
network’s elements, the matching frequency, and (e. g.) magnitude and phase of the
network’s input reflection coefficient is required to obtain the network’s settings for
highest active power transfer. Then it’s also possible to compute the load impedance
for any setting and to determine which case applies.

It’s interesting to note that the “simple” part of the matching strategy was already
proposed for T networks by [66], where the variable inductor was assumed to have
a constant @) factor of ) = 200, ()-based lossless network design was used, and
an iterative calculation algorithm was applied to change the numerical values of L,
and C according to the losses introduced by the inductor’s finite @) factor. Due
to restriction of the T network’s variable capacitances range'! to 20 pF -240pF,

10 Although “real world” inductor’s @ factor is not constant, it can always be approximated by
piecewise constant @ factors. The results of Section 4.4.2 apply to any segment and thus to the
whole inductor.

"Depending on the results, the program used by [66] may further limit the T network’s variable
capacitances range to 25 pF — 235 pF or 30 pF - 230 pF.
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case 2 was not observed by [66], although it should have been obtainable at higher

frequencies (at least at 30 MHz) for G, < g5 or &= > 50Q.

If we compare the power gain achieved by n or T networks using the (complete) op-
timum matching strategy described above to those of the popular (external) L net-
works assuming continuously variable network elements (switchable elements will
be considered in Section 4.6) and a switch to realise both complementary L net-
works, we may conclude that according to Sections 4.3.1.1 and 4.3.1.2, an (external)
L network is the optimum choice for purely resistive loads or loads exhibiting a
capacitive imaginary part, but its matching range is lower compared to the appro-
priate 7 or T network made of similar network elements (refer to Section 4.4.3.2 (and
Appendix C.2.1.1) where also a “cure” is given based on [3]). If the load exhibits
an inductive imaginary part, it is still the optimum choice if R, > R; — Ry for the
L network derived from a m network or Gy > G for the L network derived from a
T network, the variable inductor’s () factor is assumed to be reasonably high, say
) > 100, and the lossy networks’ “inductive” case 2 solutions are not realisable as
indicated above. Then case 1 (overcompensation) applies and the highest power gain
is obtained for Ry, = Rpiim of Gm = Ghlim, respectively, which yields an (external)
L network. However, if Ry < R; — Ry or Gy < Gj, case 2 (undercompensation)
applies and the external L network is obtained for Ry = Ruyr,, or G = Gur,.
Unless Ry <« wly, or Gy < w—i@;, the resulting (external) L network’s power gain
may be close to or far away from the optimum. In particular, considering a variable
inductor of a reasonably high constant @) factor, say ¢ > 100, yields a flat, broad
maximum whose power gain is < 0.3% higher (derived in the last paragraph of
Section 4.4.2) than the power gain of the internal L network (C, set to compensate
Legps, and Lgy, and C tuned to match) where case 1 and case 2 join. Depending
on Lgps, the external L network’s Ry, , may be higher or lower than the optimum
Ry,. If it is higher, its power gain is close to the maximum, if it is lower, its power
gain may be much lower than the maximum, although the maximum’s flatness helps
to increase the range of Ly, s where the external L network does not waste too much
active power. The advantages of using an external L network are its low number
of network elements and its simple tunability by measuring the magnitude of the
network’s input reflection coefficient.

If the variable inductor’s @) factor is sufficiently high, say ¢ > 100, a matching
strategy may be proposed based on the considerations regarding external L net-
works which is somewhat simpler than the optimum strategy given above. If the
network’s load impedance is purely resistive, exhibits a capacitive imaginary part,
or an inductive imaginary part if Ry > R; — Ry for the m network or Gy > G for the
T network, the “simple” part of the matching strategy described above is used. If
the network’s load impedance exhibits an inductive imaginary part if R, < R; — Ry
(which is approximately R, < R; if Ry = 509 and @ is high) for the m network
or Gy < G for the T network, we set the network’s elements as close as possible
to the applicable internal L network (C, is set to compensate as much as possi-
ble, but not to overcompensate the inductive part of the load, and Ls, and C} are
tuned to match). Then a magnitude and phase measurement of the network’s in-
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put reflection coefficient suffices if we (approximately) determine the network’s load
impedance by setting all elements of a 7« network to their minimum value or all
elements of a T network to their maximum value and, if required, compensate the
load’s inductive part using Cy. The disadvantages of this matching strategy are that
the minimum/maximum values may not be low/high enough at the upper/lower end
of our frequency range of interest to determine the load impedance with sufficient
accuracy and that in case no match gaps occur in the network’s settings there is
no indication which limit of the gap would yield the higher power gain. Addition-
ally, “steps” in time varying loads would require a restart from minimum/maximum
element values. All disadvantages vanish if we know the network’s elements ex-
plicitly and measure the matching frequency, but then the amount of simplification
compared to the optimum strategy is lowered.

Thus, depending on the affordable effort, the optimum matching stragtegy or its
simplified descendant should be applied to a 7 or T network to obtain a high power
gain. External L networks (which are somehow equal to using only the “simple”
part of the optimum matching strategy in 7 or T networks) do not guarantee high
power gains for certain loads, but are a good choice for the majority of loads.

4.6 Applicability of the optimisation method to
switchable matching networks

4.6.1 Simplifying assumptions for matching networks using
switchable elements

To check if the optimisation method presented above is applicable to matching
networks using switchable elements instead of continuously variable elements we
need to consider which simplifying assumptions may apply and what the differences
are compared to continuously variable networks. (The other remaining case of a fixed
inductor in series or in parallel to a continuously variable capacitor is completely
described by (3.1) at matching frequency and thus part of the solution derived
above.)

Firstly we assume that high-Q) capacitors are used in the switchable network, whose
losses are small and negligible compared to the losses of the inductor losses, which
are usually made of ferrite or iron powder toroidal cores involving additional core
losses.

Secondly we assume that the minimum step size of the network’s capacitances and
inductances is low enough to allow approximation of those capacitances and in-
ductances by continously variable ones at matching frequency. In particular, this
assumption implies the possibility of an “exact” match at the switchable network’s
input.

However, the losses involved do not change continuously and still exhibit resistance
steps. This behaviour is clearly visible if we consider combinations of low inductance
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coils, where the connecting wires’ losses may not be small and thus not be negligible
— e. g. switching from 80 nH+ 160 nH+320 nH = 560 nH (three coils) to 640nH (one
coil) will definitely cause a loss resistance step. Since we cannot predict the step’s
direction unless we know which cores and wiring are used, switchable networks
behave different than continously variable ones, because the latters’ losses could
be described by (3.1), indicating that for an increasing inductance the losses stay
constant or increase, but never decrease!

4.6.2 7 network

If the parameter R, is increased by AR, <« Ry, thus changed from R, to
Ry + ARp, the (switchable) inductance also changes, which is accompanied by
a resistance step in K.

We have to distinguish two cases:

L. Rs(Rm) < RS(Rm + ARm):
ARy, < Rup, thus Belfmillm) RS(R";;;AR‘“) holds. Hence felfml -

Ryn+ARn Ry
Rs(Rm+ARm) or 1 > 1
R 1+ RsRﬁan 1+ Rs(anR+ARm) :

Then g, inma(Rm) >n.lg7r,inma(Rm +mARm)

2. Rs(Rm) > Rs(Rm + ARp):

AR, < R, thus Rs}(zR,:-Z%J:m) ~ Rs(RmRtlARm) holds. Hence %}:‘m) S
Rs(Bm+ARm) 1 "

1
Fen F TR < [ Rlpiak -

R

Then g, inma(Rm) < gﬂ,inma(Rm + ARm)

Choosing the optimum value of R, for continuously variable networks by the method
presented above involved proving of gx inma(Rm) < gr,inma(FBm + ARn). Since case 2
exhibits similar behaviour of g, inma, the method would be applicable to it. However,
case 1 is critical because gr inma Steps downward for a certain Ry, and we do not know
if gr inma Will be as high or even higher than its value prior to the step within the
remaining range of Ry, unless we know the exact functional description of Ry(Rp,)
and the load and source admittance.

Usually both cases are possible — in a continuously variable matching network with
a constant () inductor and a resistive load the inductance would have a maximum
throughout the (utmost) valid range of Ry, indicated in (3.20) — thus it’s quite likely
that for increasing R, the switchable network’s inductance may pass a certain value
twice for increasing and decreasing inductances, and both resistance step directions
occur.

Hence there is no common optimisation for 7 networks using switchable elements.
However, if we know the losses involved and load and source admittances, we may
optimise the network elements’ values for minimum losses in this particular case.
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Ouly if the resistance steps would be small compared to the total loss resistance for
a minimum inductance step between any two possible total switchable inductance
values, the continuously variable network’s optimisation method would be approxi-
mately applicable for the switchable network — but this assumption might not hold
for small inductance values where the losses in the connecting wires might not be
small and thus not be negligible.

4.6.3 T network

If the parameter Gy, is increased by AG, < G, thus changed from G to
Gm + AGy, the (switchable) inductance also changes, which is accompanied by
a resistance step in K, hence an admittance step in Gy,

According to (A.16) Gp = Tzﬁ&ﬁ— holds. Since we assumed that Ls might be
approximately descibed by a continuously variable inductance, the inductance steps
are small enough to simplify calculations by using Ls(Gm) = Ls(Gm+AGy,). During
optimisation, we additionally restricted the inductor’s @ factor to @ > 1 (which is
equal to wLs > Ry), thus 3GP = L ?Rf j_L(Z“ZL;)J"RS) > 0 holds. Hence if there is a step
in Ry, there is a step of 81m11ar direction in Gp.

Again we have to distinguish two cases:

1. Rs(Gm) < Rs(Gm + AGhy), hence Gp(Gm) < Gp(Gm + AGr):

AGn, < Gp, thus G"éi'f&%i"‘) R GR(G‘&:AG’“) holds. Hence ———G"éi'“) <
Gp(Cm+AGm) 1 i
e or 17 G2 Cn) > 17 Gl T AT
Then gt,inma(G ) > G, 1nma(G + AG )
2. Rs(Gm) > Rs(Gm + AGhn), hence Gp(Grm) > Gp(Gm + AGw):
AGL <K Gp, thus G*’éi‘fg%i“‘) R GP(G“&:AG'“) holds. Hence —(;LG(—%“l >
Gp(Gu+AGm) 1 1
G’m or 1+GE(Gm) < 1+GE(Gm+AGm)

Then gt’ inma(G ) < gt mma(G + AG )

Choosing the optimum value of Gy, for continuously variable networks by the method
presented above involved proving of g inma(Gm) < Gt,inma(Gm + AGr,). Since case 2
exhibits similar behaviour of g; inma, the method would be applicable to it. However,
case 1 is critical because g, inma Steps downward for a certain G, and we do not know
if g¢,inma Will be as high or even higher than its value prior to the step within the
remaining range of G, unless we know the exact functional description of Gp(Gn)
and the load and source impedance.

Usually both cases are possible — in a continuously variable matching network with
a constant ) inductor and a resistive load the inductance would have a minimum
throughout the (utmost) valid range of Gy, indicated in (3.33) — thus it’s quite likely
that for increasing G, the switchable network’s inductance may pass a certain value
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twice for decreasing and increasing inductances, and both resistance step directions
occur.

Hence there is no common optimisation for T networks using switchable elements.
However, if we know the losses involved and load and source admittances, we may
optimise the network elements’ values for minimum losses in this particular case.

Only if the resistance steps would be small compared to the total loss resistance for
a minimum inductance step between any two possible total switchable inductance
values, the continuously variable network’s optimisation method would be approxi-
mately applicable for the switchable network — but this assumption might not hold
for small inductance values where the losses in the connecting wires might not be
small and thus not be negligible.



Chapter 5

Transmission Lines’ and Total
Losses in a Source, Line 1,
Matching Network, Line 2, and

Load System

5.1 Introduction

The active power transfer of a transmission line (Figure 2.1) or of a system consisting
of a matching network enclosed by two transmission lines (Figure 2.3) was already
derived in Section 2.6 or 2.7, respectively.

In the following chapter, we optimise the active power transfer of those systems.

Firstly we consider a transmission line, secondly the matching system involving
lossless and lossy matching networks to distinguish different loss origins. Optimi-
sation of the matching system includes optimised splitting of the total line length
(although the total line length is usually fixed by a given distance between source
and load, the position of the matching network may be optimised). Finally an op-
timum compromise is proposed which is applicable to unknown or changing load
impedances.

Throughout the chapter, all transmission lines are considered to have a complex
characteristic impedances. Based on the equations derived, we will be able to dis-
tinguish parts of the system where we may approximately use real characteristic
impedances instead from parts where we always have to use complex ones.

5.2 Definitions/notations

From this chapter on, the following definitions/notations will be used:

95
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Latin letters

Cltot

Cep, MB
Ces, MB

Gtot, 1], inma
Gtot, inma
Gtot, t,inma
Jtot, 7, inma
g Lopt

9MB, inma

gMB, 'mma(f eMB)
9IMB, 1], inma

gMB, 1t, inmalT eMB)
g T,Lopt

gTtot, inma

GI
GOS
Ge,MB

lz,m,ﬂ:

ltot

LI
thot
L¢p, MB
Lgs, mB
m

Pact (z)

Pactlopt
r 1t,inma
T 1w, inma

T1MB

r 1MB, inma
T ¢opt

T ¢MB
Rop

Load susceptance of a matchbox

(Equivalent) parallel capacitance calculated from the imaginary part of -ZIT.'

(Equivalent) series capacitance calculated from the imaginary part of Z 4

Total source capacitance (including Cy of the network and the source’s (equivalent) ca-
pacitance)

(Equivalent) parallel load capacitance of a matchbox, calculated from By mp (7 network)
(Equivalent) series load capacitance of a matchbox, calculated from X, mp (T network)

Power gain of the complete matching system whose lossless matchbox is exactly matched
at its input

Power gain of the complete matching system whose matchbox is exactly matched at its
input

Power gain of the complete matching system whose T network is exactly matched at its
input

Power gain of the complete matching system whose 7 network is exactly matched at its
input

Power gain of a transmission line with Xo # 0 whose load is the optimum load impedance
Zeop‘c

Power gain of a matchbox exactly matched at its input

Power gain of a matchbox exactly matched at its input as a function of r ;g

Power gain of a lossless matchbox exactly matched at its input

Power gain of a lossless matchbox exactly matched at its input as a function of r ;g
Transducer power gain of a transmission line with Xo # O whose load is the optimum
load impedance Z g4

Transducer power gain of the complete matching system whose matchbox is exactly
matched -at its input

Per-unit-length conductance of a transmission line

Inverse of the real part of Z

In case of a n network, load conductance (real part of load admittance) of that network
(matchbox), in case of a T network, G¢ mB = Ee_l_m_é’ where R is the load resistance

(real part of load impedance of that network (matc'hbox))

Length of transmission line 2 where (depending on sign ) the m-th maeximum or mini-
mum of e 2@!tot Jtot, ll, inma OCCUTS

Total length of lines in a complete matching system (ltot = I1 + l2)
Per-unit-length inductance of a transmission line

Total source inductance (including Cy of the network and the source’s (equivalent) in-
ductance)

(Equivalent) parallel load inductance of a matchbox, calculated from Bg, mp (7 network)
(Equivalent) series load inductance of a matchbox, calculated from X, mp (T network)
Whole number (integer)

Active power transferred to the “load” of a transmission line at location z

Active power transferred to the input of a transmission line whose Xg # 0 terminated
with Z 450

Reflection coefficient at the input of a T network exactly matched at its input (referred
to Zg)

Reflection coefficient at the input of a 7 network exactly matched at its input (referred
to Zg)

Reflection coefficient at the input of a matchbox (referred to Z )

Reflection coefficient at the input of a matchbox exactly matched at its input (referred
to Zg)

Resulting valid reflection coefficient of the optimum load impedance of a transmission
line with Xo # 0 (referred to Z )

Reflection coefficient at a matchbox’s load (referred to Z )

Inverse of the real part of %0
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R, mB In case of a T network, load resistance (real part of load impedance) of that network
(matchbox), in case of a 7 network, Ry mp = L__ where Gy, MB is the load conduc-

Gy, MB
tance (real part of load admittance of that network (matchbox))

Xe, MB Load reactance of a matchbox

z Location along a transmission line, range 0 to length of transmission line

Z oMB1 Reference impedance of the reflection coefficients at a matchbox’s input

Z oMB2 Reference impedance of the reflection coefficients at a matchbox’s output

Z, Impedance at the beginning of a transmission line (at its input)

Ziopt Optimum source impedance for a transmission line with Xo 7 0 whose load is the opti-
mum load impedance Z

Z omB Load impedance of a matchbox

Zgopt Resulting optimum load impedance of a transmission line with Xo # 0

Greek letters

Pr, Phase of reflection coefficient r,

5.3 Losses and matching in a source, transmission
line, and load system

The power gain g;, of a source, transmission line, and load system (depicted in
Figure 2.1) is given by (2.23),

g, = e~ Ro (1 — |r*) — 2Xo Im{r,}
. Ro (1 — e~ |r,|2) — 2Xpe 2 Im{r, e 281}
g = e~ Ro (1 —r,ery) +Xo(r, —1%)

Ro (1= eIz, 13) +Xoe 2z, 62 — 1} M)

which will be optimised for a fixed! length [ > 0 by changing r,. If the method
described in [26g] is applied (as mentioned at the end of Appendix A.3, calculation of
P,c+(2) in [26g] does not include all dependencies on 1, and, furthermore, then Py (2)
is optimised in [26g] instead of g1, where P,.(2) is the active power transferred to
the “load” of a transmission line at location z as defined in (A.8)), we obtain

gL
or’%

— [.]ROXO e—2al (e—2al _ e—j?ﬂl) £2Z

= (R(Q) (1 _ e-—4al) + X02€~2al (ej2ﬂl _ e——j2,6l)) T,
- jRoXo (1 - e"2al eﬂﬁl)]

e —2al

. . 2
(Ro(1—e—4ed 1, 15)+iXo e =20 (1 @ =281 1% €1261)) "

! An optimisation with respect to the transmission line’s length [ is impossible because lossy
transmission lines are passive. Thus %‘77‘“ < 0, causing gj, to decrease from g, = 1 at [ = 0 for
increasing ! and a given (constant) r,. %"—ZL— = 0 may indicate a (single) maximum if = 0, but

only an inflexion point if [ > 0.
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9 : e —2a j *
0 [ iRaXpe ™ (ot - o) (1)
Te

_ (Rg (1 . e—4al) + Xg o 20l (e—j2m _ ej2ﬁl)) fz
+jRoXo (1 — e 2 e 9% o

R R 2
(Ro(1—e=tal 1, r4)+iXo e —20l (r o ~1261—r% e1261))

The ratio following the term in squared brackets never equals zero, thus an extremum
exists only if the term in squared brackets equals zero. Since the terms in squared
brackets of g% and %‘;’% are just the conjugate complex of each other, both partial

derivatives are simultaneously zero, hence the extremum of gr, requires gf& =0= -g%
- ~¢

to hold and only one of both partial derivatives has to be considered — %ﬁ—% is more
(A

convenient for optimisation with respect to r,.

Since derivation of the optimum load and source impedance is quite lengthy, it is
performed in Appendix D.2. The results are summarised below.

The solution involves two different cases, in particular:

1. Xo=0
If « > 0, the transmission line is either Heaviside’s distortionless transmission
line obtained for ﬁ'—, = u% > 0 and Z, = Zoy (where G’ is the per-unit-

length conductance and L' = Z2,C’ the per-unit-length inductance of that
line, defined in [26a]) or the approximation (2.5) is used. Then r, = 0 uniquely
solves the equation, thus Z, = Zy) yields the maximum gj,. If we terminate the
line accordingly, its input resistance Z,; = Zg), hence the source’s impedance
has to be Z; = Zg to achieve maximum active input power. In particular,
optimum source and load impedance is independent of (frequency and) line
length.

If @ = 0, the transmission line is lossless, hence ;Rf/, = w%:, = (. Then g, =1
for any Z,. However, according to (2.20) only a choice of Z, = Z, = Zn
combined with Z, = Zg yields a source impedance for maximum active power
input which is independent of (frequency and) line length — thus no other

choice is appropriate.

9. Xo#0
In (D.1), (D.2), and (D.3), the optimum load reflection coefficient is given by

ﬂRa cosh(2al)+X2 cos(2ﬂl))2—|,_Z_0(4—R(2) sinh(2ad) —j X2 sin(281)

Teopt = TRoXo e 3281 (1—o —281 ¢ T257) y (5.1)
yielding an optimum load impedance of
\/ (Rg cosh(2ad)+ X2 cos(25l))2—|_Z0|4——jRoXo(cosh(2al)—cos(2ﬂl))
—Z—Zopt = Ro sinh(2al)+Xg sin(261) (52)
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and an optimum power gain of

RZ cosh(2ad)+X3 cos(Qﬁl)—\/ (Rg cosh(2ad)+ X2 cos(2ﬁl))2_|_z_0[4

Jlopt = 1Z,2 (53)

[f the transmission line is terminated by its optimum load impedance, its input
impedance is the complex conjugate of the optimum load impedance.

To achieve maximum active input power, the source impedance has to be equal
to the complex conjugate of the line’s input impedance, hence Z ;. = Z gopy- If
the source impedance is chosen accordingly, the active input power is Pa1ops =
Pictmaxi, thus g1 ropt = gropt. Additionally, the line’s output impedance is
equal to the complex conjugate of its optimum load impedance. Optimum
active power input and transfer involves complex conjugate matching at the
line’s in- and output.

But, compared to a transmission line whose characteristic impedance is real
(Xo = 0), the optimum load in case of a complex characteristic has a severe
disadvantage — it depends on frequency and line length — thus, depending
on frequency and line length, different load and source impedances would have
to be used.

To choose a useful length independent load impedance close to the optimised
load, the limits for [ — 0 and [ — oo were considered in Appendix D.2.
Those limits give us a hint which length independent choice of source and
load impedance is recommendable. Z, = Z§5 = Z; (which is still frequency
dependent), is far from the optimum value if the line’s length is short, but
increasingly close to the optimum value?, if the line’s length increases, in par-
ticular, if al > 1.5 holds.

Considering a coaxial transmission line whose complex -characteristic
impedance is given by Z, =~ Zoy (1 —j %) according to (2.4) where 5 <1
the typical choice of Z, = Z; = Ry = Zy; (which is independent of length and
frequency!) slightly differs from the preceding one®.

Nevertheless, since al should be low to ensure low line losses, it’s not obvious
that the choice indicated above is truly recommendable, but we should keep

?However, if source and load impedances are chosen accordingly, a complex conjugate match at

the line’s input can only be achieved for high values of [ because Z ; # Z (except for I — oo}, hence

_ 1Zo1* —2ad g; _ R{1Z | ~2al
9L = RITXTe T (2cos(@B—s 7°T) © differs from 7,1 = FrERIXTeTIT cos(aA) TR T o507 ©
(except for | — o0).

3 However, if source and load impedances are equal to Rp, thus r, = r;, = 3—1%_%0, a
complex conjugate match at the line’s input cannot be achieved for any value of’ ! because
Z, # Ro, hence = 2Ro|Z," e
4, 0, NENCe gL = FRITXZe 24l (Ro(sinh(2al)+2 cos(2A1))— Xo sin(2B1))

16R3 | Z,|° —2al
(4Rg+xg)2+xg e 21 (8 Ro(Ro cos(281)— Xo sin(260))+ X (e ~221-2 cos(261)))

—2 differs from g1, =
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in mind that the goal is not to choose source and load impedances as close
as possible to its optimum impedance values, but to achieve a power gain as
close as possible to its optimum value.

The latter holds for coaxial transmission line whose complex characteristic
impedance is given by (2.4) and § < 1. Then either a choice of source and
load impedances equal to Z7j or equal to Ry ensures a low deviation of power
gain and transducer power gain from its optimum values, which would be 1.6%
higher at 1.8 MHz and 0.4% higher at 30 MHz if e. g. a RG-213/U coaxial cable
would be used.

5.4 Losses and matching in a source, line 1,
matching network, line 2, and load system

5.4.1 Power gain of the system

In the preceding section, we investigated the active power transfer in transmission
lines whose characteristic impedances were complex. We derived the optimum load
impedance for maximum active power transfer and its according optimum source
impedance for maximum active input power, which were both equal and depended
on line length and frequency.

Compared to a (lossy) transmission line whose characteristic impedance is real or is
approximated as real, it’s not obvious that the insertion of a two-port, a matching
network which is designed to match the line’s characteristic impedance at its input,
is suited to optimise the active power transfer to the load.

However, in our application all transmission lines have a complex characteristic
impedance of the kind Z, =~ Zg; (1 —j %‘), where % <& 1, and the source impedance
is real and equal to Zg =~ Rp.

At the end of the preceding section, we discovered that the active power transfer in
such transmission lines is close to maximum if source and load impedances are equal
to Ry. Hence we suppose that the insertion of a matching network as indicated above
is recommendable, decreases line losses, and increases the active power transfer to
the load. Another advantage is that the network may be tuned quite easily by
measuring its input reflection coefficient.

Besides network element values, the position of the matching network is variable.
Thus we have to consider a matching network embedded in two transmission lines
of variable lengths connecting to source and load. Both lines have complex charac-
teristic impedances to investigate its impact on active power transfer.

To derive the power gain giot, inma Of the complete system depicted in Figure 2.3
consisting of a source (source impedance Z;), a transmission line 1 connecting it
to the input of a matching network, a transmission line 2 connecting the output
of the matching network to the load (load impedance Z,). The matching network
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is tuned to match the characteristic impedance of line 1 at its input. To denote
network specific variables, the index “MB” (matchbox) is used instead of the index
“tp” (two-port) which was used in Section 2.7.

To simplify calculations, we assume line 1 and 2 to be similar, hence both complex
characteristic impedances, attenuation constants, and phase constants are equal,
and we define Zy = Z; = Z gy, @ = @1 = g, and 3 = [y = P2. Then the matching
network’s reference impedances should also be similar and equal to the characteristic
impedance of the lines, Zy = Z oup1 = Z omBa-

The lengths of the transmission lines, I; and [, may be chosen arbitrarily, but the
total length

liot =11 + 1o (5.4)
is given.
We (usually) also need to know Z, or r,, respectively, which is transformed to
Tovmp =T 1g = Tpe 222 ¢71282 gt the input of line 2 according to (2.20).

It’s further transformed by the matching network, which is designed (or tuned) to
match the characteristic impedance of line 1 at its input, hence

T1MB = T 1MB, inma = O-
The matched network’s power gain is given by

9MB, inma(T MB) = 9MB, inma (E ¢ e 20l e-ﬂﬂlz) _

From (2.27) we obtain

—2adiot

Gtot, inma = € ~2alze—J2ﬁl2)

-1 9MB, inma (T_e €
. Ro (1 = [r,]*) = 2Xo Im{r,}
Ry (1 — el |2) — 2Xge—20k2 Im {1, e —12k2}’

(5.5)

which has to be maximised in the following sections.

However, prior to the optimisation we have to consider the source impedance Z;
because the active input power will depend on it. The matching network is designed
to match the characteristic impedance of line 1 at its input, ryg =79 = 0. Then
ry; =0o0r Z,; = Z, according to (2.20). If r; is chosen arbitrarily, application of
(2.26) gives

Ro (Ro (1 — |r;]?) — 2Xo Im{r,
9Ttot,inma = e—2alt°t * 2 ( O( |_IIZ)I2 2 {u }) * gMB, inma (T_z €
0

Ry (1 = |r,]*) — 2Xo Im{r,}

—2als e —j2ﬂl2)

: . . 5.6

Ro (1 — e—4al2 |1 2) — 2Xg e 20 Im {7, e —32i2} (5.6)

Maximisation of the active input power requires Z; = Z7, which is equivalent to
r,=—j %3 as indicated in (2.19) and yields an active input power of Pactmaxi. Then

the source and load related “correction factor” of line 1 in griot,inma becomes

Ro (Ro(l—lgilz)—2X0 Im{zi}) =1
1Zol? o
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However, in our application the line’s characteristic impedance is Z , &~ Zoy (1 — j %)
and the source impedance is Z, = Zo; (= Rp).

: - —iXo o 3B L a(i_a
From (2.9) we obtain r; = THonks ~ 5 55 (J — 35)- Then the source and
load related “correction factor” of line 1 in griot, inma 1S given by

Ro (Ro(1-Irs[?)-2Xo Im{r,}) _ 4233 HPONES NEPON IS
1Zol? 4R5+X§ 1+ZC_!EZ 462

which is close to 1 because § < 1, e.g. for a RG-213/U coaxial cable it’s 0.999927
at 1.8 MHz and 0.999995 at 30 MHz.

The situation changes if the matching network is designed to match Zgy, which is

. —jX i3 : o
approximately equal to Z,. Then r; = riyp = 35255 & 2(13%) ~ 55 0~ 35)
and the matching network’s input is not (exactly) matched to the line’s charateristic
impedance.

According to (2.27) and gp, in Footnote 3, the load related “correction factor” of
line 1 in giot, inma changes from 1 to

Ro(1-|r ;mp?) ~2Xo0 Im{r 15}
Ro(1-e=4ol1|r\p|?)~2Xo e =22l Im{r yyyp e 72711}
2Ro|Z 4|?
2R3+ X2 e ~2¢l1 (Ro(sinh(2ad1)+2 cos(2611))~Xo sin(2801))

1+%§
1+§§g e =211 (sinh(2al1)+2 cos(2611)+§ sin(2601))

~1- % (e 72 lhor=t2) (4c08(23 (Lot — lp)) ~ e 2 (kerl2)) — 3)

where [; = lioy — l2 was applied. Since % & 1, the “correction factor” is still close
to 1, e.g. for a RG-213/U coaxial cable it’s between 1 and 1.0003 at 1.8 MHz and
between 1 and 1.00004 at 30 MHz.

According to (2.26) and gr, 1, in Footnote 3, the source and load related “correction

. . Rol Ro 1—|1~|2 —2XoIm{r;}
factor” of line 1 in grot, inma changes from (Bof IlZc))Iz ) to

2
(Ro (1-|r;[?)~2X0 Im{z;})
[Z o2 [1—r2e—20l ¢ 328012

16RZ|Z)?
(4Rg+xg)2+xg e =221 (8Ro(Ro cos(28l1)— Xo sin(28l1))+ X3 (e =221 ~2cos(2811)) )

o

1+
2

1+2—B—g(1+e'2°‘ll (cos(2ﬁll)+—g— sin(2ﬂl1))+§’27 (1+e'2°“1 (e —2aly 9 cos(2ﬁll))))
2

%_2_ (e—za(ltot—l2) COS(Q,B (ltot _ 12)) _ 1) ,

~ 1-

where [; = l;oy — lo was applied. Since % < 1, the “correction factor” is close to 1,
e.g. for a RG-213/U coaxial cable it’s between 1 and 1.0006 at 1.8 MHz and between
1 and 1.00002 at 30 MHz.
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Regarding the values of the “correction factors” of line 1, we should keep in mind
that both are multiplied by e 2%, thus the “complete” factors are always < 1.
Surprisingly the approximate design is slightly better than exact matching and its
according source impedance choice, but that just reflects that both cases differ from
the optimum derived in the preceding section (since gropt = gr,1Lopt, the “correction
factors” of the optimum are equal, e.g. for a RG-213/U coaxial cable they are
between 1 and 1.016 at 1.8 MHz and between 1 and 1.0042 at 30 MHz, which is also
quite close to 1).

Nevertheless we may conclude that in our frequency range of interest, the “matched”
line 1 behaves as an idealised matched line (source impedance Zy, characteristic
impedance Zg of line 1, matching network’s input matched to Zgy) would do, in
particular if low loss coaxial cables are used. This holds either for termination by an
exactly matched network and a source impedance of Z§ =~ Zoy (1 +j ) or Zoy or for
termination by a network matched to Zg; and a source impedance of Zy;, where the
latter is usually applied. Hence the active power transfer of the “matched” line 1
does not necessarily involve complex characteristic impedance calculations because
the mismatch introduced is small. However, the impact of the small mismatch
caused by the source impedance Zg; on the matching network’s design will have to
be considered later.

Conversely, depending on the load impedance Z,, the mismatch of line 2 may be
large, thus active power transfer of line 2 requires complex characteristic impedance
calculations.

5.4.2 Lossless matching network

A lossless matching network is characterised by a power gain equal to unity for any
load impedance attached (and any source impedance it is designed to match to),
hence

gMB, 11, inma (T_e € ~2als e_ﬂﬁlz) = 1.

Then (5.5) becomes

—2aliot Ro (1~ ll".e|2) ~2XoIm{r,}

ot. 1L inma = - . 5.7
Gto, 11, e RO (1 _ o —dal ‘Z@IQ) _ 2X0e_2al2 Im {T__ge~‘]2’3l2} ( )

According to (5.4), l;r seems to depend on l;. However, in our application the total
length lio: is given, thus [; is chosen to keep the total length constant and e ~20ler
does not depend on Is.

To optimise G, 11,inma by varying ly, we have to solve

2ad
d(e Htot Gtot, 11, inma)

dly =0

for [o.



CHAPTER 5. LINES’ AND TOTAL LOSSES IN A MATCHING SYSTEM 104

Application of (5.7) yields
d(e2o‘lmt Gtot, ll,inma> — _48—2al2 Ry (1 — l£2‘2) — 2Xo Im{fe}
di, (Ro (1 — e~4elz |1 ,|2) — 2X( e~2002 Im {r, e =262} )?
[Roa|r,|* €72 + Xo (aIm {r,e "} + B Re {r, e 7* })]

The derivative equals zero only if the term in squared brackets equals zero, because
—4e~% < ( and applying (2.9), (2.8), and (2.7) to numerator and denominator of
the second term yields

Ro (1~ [rof*) — 2XoIm{r,}
4Re{Z,}|Z,)
(Re{Z,} + Ro)®> + (Im{Z,} + Xo)*

Ry (1—e™p, %) — 2Xge 2 Im {r e %"}

— 4Re{Zpn} |Z,/* >0
(Re{Z B} + Ro)* + (Im{Z pvp} + X0)2

)

which hold since Ry > 0 according to [26c], Re{Z,} > 0 because the load is passive
and it should be possible to transfer active power to the load*, and Re{Z g} > 0
if Re{Z,} > 0 since line 2 is lossy and passive (Z g may be computed from
Toup = o€ 222 712 if (2.10) is applied (r g Was derived in Section 5.4.1)).

Using the definition .
Lo = |r,|el¥re (5.8)

we obtain for the term in squared brackets

Roar|z fe 72" + X, (alm {r e %2} + fRe {z 0721}
= Roa|r,|*e 2% + X, (a|r | sin(p,, — 26l2) + Blr,| cos(p,, — 281s)) ,

which may be rewritten to
Raalr 2o + Xo (alm {r, 74} + SRe {r 0% ))

= Roar|r,l>e 2% + Xo |1, 7] cos (gou — 201y — arctan (%))

if we take into account that 8 > 0 if w > 0 according to [26b].
Then we have to distinguish two different cases.

Ifr, =0, et g i 1 inma = 1 = const. OF Gio 11,inma = € 2*%t holds, causing

d(e 2aliot Gtot, 1], inma

a ) =0 although no extremum occurs.

4Re{Z,} = 0 would apply if the load is a pure capacitance, a pure inductance, or an ideal short
circuit. Although those loads would be entirely passive, no active power could be transferred to
such loads.
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If r, # 0 we have to consider two subcases:
1. Xo=0

Then we have to solve
0 = Roar|r|* e 2252,

According to [26¢] Ry > 0. Additionally, [26b] indicates that o > 0.

If a > 0, the transmission line is either Heaviside’s distortionless transmission
line obtained for w%, = w%', > 0 and Z, = Zyy (where G’ is the per-unit-
length conductance and L' = Z2,C’' the per-unit-length inductance of that
line, defined in [26a]) or the approximation (2.5) is used. Since r, # 0if [y €

Ry, Roa|ry|?e~22 > 0 holds. Combined with the preceding considerations
d(e 2adtot Gtot, 11, inma)

regarding the sign of the remaining terms yields TR < 0, thus
the maximum e?*t g, | i1ma is obtained if I = 0.

. . . . / 4
If « = 0, the transmission line is lossless, hence % = % = 0.
Then e2*het gt 1 inma = 1 = const. O Gior,ninma = 1 holds, causing
d(e?®!tot gy v 11
(e gl‘z”’”"“"“) = ( although no extremum occurs.
2. Xp#0

We assumed lio; > 0 and, according to [26¢], Ry > 0. Additionally, [26b]
indicates that o > 0, but in conjunction with [26c] we may conclude that
Xo # 0 is accompanied by « > 0, hence we have to consider o > 0 only.

Then we have to solve

—2als
cos <()0£z — 201y — arctan (%)) = _Roa_%oe:jl )

Due to periodicity and symmetry of the cosine function and the applicable
range of the arc cosine function (which is [0, 7]) we obtain

! Roa |1 4| e ~20t2m.+ )
+{ ., —20ly .+ — arctan [ — | + 27m | = arccos | — ,
(= 2t () ) = sson (B

where m € 7Z.

Numerical solution® of

Roa|r le >*'2m

©r, — arctan (%) F arccos ( XoTAl ) +2mm
! = =
2,m,:l: 2/8

yields the line length [, + of each extremum, where lg 1+ € [0, Liot)-

Roa|r,|e ?>'2m +

5 A (positive) real solution requires ‘— o < 1 to hold. Since Iy < lios, at least

one extremum might exist only if iy > —2% ln(%%%l—l) — then the initial numerical value is given

by Max{O, = ln(%’%‘l—') }
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If the sign of Roa |r,|>e ™% + Xo |r,| || cos(¢r, — 281y — arctan(§)) changes
at lgm+ from — to + or from + to —, a maximum or minimum exists at

2edtot Gtot, 1, inma)

lom+ (the product of the remaining terms of de T is always < 0
as indicated above). Additionally, the sign of this term at I, = 0 is impor-
tant, because it indicates if the first extremum is a maximum or a minimum,
provided an extremum exists within the range [0, liot]. Alternatively we may
plot e 2ot Jtot, 11, inma 85 & function of [y, which also helps to choose good initial
numerical values for the numerical solution.

However, the goal is to derive the ly € [0, lioy] which yields the highest
g2ehot g 11 inma. Hence, if one or more maxima exist within the range [0, Iy,
those (local) maxima have to be compared to the values at ly = 0 and ly = 44
Then the highest value® belongs to the optimum length of /. Conversely, if
there is no maximum within the range [0, lit], we just have to compare the
values at I = 0 and Iy = iy to determine the optimum length of I,.

If the line’s complex characteristic impedance is given by Z, = Zgy (1 — j %)
according to (2.4), we have to solve

Blrole **2m*

Pr, — arctan g) F arccos (-——-—-———-—) + 2Tm
I ~ -t B 7]
2,m,+ Qﬁ

¢r, — 5 F arccos ((1 - %27) 74| 6“2"‘12»’"’*) + 2mm
lom+ =
2, ,:t 2ﬁ

numerically” for Iy, + € [0, Liot)-

Thus the small imaginary part of Z, causes an optimum ly,, + > 0. Taking
into account “real world” coaxial cable data in our frequency range of interest
yields maximum values of e 2ot Gtot, 11, inma Which are just some percent (max.
2% at 1.8 MHz, max. 0.5% at 30 MHz for a RG-213/U) higher® than 1, the
value at I, = 0, but it depends on Iy if [, may be chosen accordingly. If not, the
maximum possible increase of power gain may be significantly lower. It’s inter-
esting to note that increasing of I to enable a choice of ly = lg ,, 4+ for maxi-

8 Although e %ot geot 1 inma > 1 is possible (e2%het geoy 11 inma = 1 at Iy = 0), the factor e =2k

causes the power gain giot, 11, inma to be always < 1.
7As indicated in Footnote , a (positive) real solution requires lyor > % ln(él—%‘—l) to hold,
Blr,le~?>t2m & N
[7]

initial numerical value is given by Max{O, % ln(%’i) }

because ( ) > 1 is possible according to Footnote 3 of Appendix D.2. Then the
max
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mum e 2ekot Grot, 11,inma. > 1 is not useful because giot, 11, inma decreases if lio in-

creases®.

Conversely, if the imaginary part of Z, would be more significant, hence
I—ﬁ—g' %« 1 (but '—;%' < 1 according to [26c]), the maximum value of
e 20dtor Gtot, 11, inma Ccould be some ten percent higher® than 1. However, as in-
dicated above and in Section 2.4, coaxial cables in our frequency range of
interest do not involve such high imaginary parts of Z,,.

5.4.3 Lossy matching network
5.4.3.1 m network

According to Section 5.4.1, the 7 network is used to transform its load admittance
(described by its reflection coefficient 1 g = 1, e 242 e 732812 in the line’s complex
characteristic impedance Z at its input (hence 7 ;yp iuma = T 17, inma = 0)-

To design such a 7 network, real and imaginary part of its load impedance have to
be known which might be computed based on the load’s reflection coefficient r g
either separately using (2.14) and (2.15) or together using the reciprocal of (2.10).

Performing the former yields

R . 1 . LZ—QP|1+£ee—2a129—j2ﬁ1212
{,MB — Gt mB = Ro(l—e ~daly |£g[2)—2Xoe‘2°“2 Im{ﬁge'jwl?}’
Bemp  _ _2Roe”?2lm{r,e i} Xg (1—e %2 |r %)
Clp, MB w WlZol2 |11 g6 2072 ¢ ~12PT2 |2
Lep B — - |Zo[? {141 pe —20!2 ¢ ~i2602)2
P, wBiMB T w(2Roe 22 Im{r, e 22} 4 Xo (1—e ~42 | ,|2))

Depending on the sign of the load admittance’s imaginary part we then apply the
optimisation given in Section 4.3.1.1 (if Cgp M > 0) or Section 4.3.2.1 (if Lgp, ms > 0)
and the appropriate inclusion of minimum/maximum element values in Section 4.5.1.
However, due to the line’s complex characteristic impedance, they might have to be
extended to complex source admittances.

To check the impact of source admittance transformation by the line on network
design, in particular the necessity of extending the optimisation to complex source
admittances, we have to consider the achieved susceptances if the source impedance
is chosen from the three “useful” cases — the line’s characteristic impedance, its
complex conjugate, or its real part — and low loss coaxial cables are used.

However, calculation of those susceptances is quite lengthy and was moved to the ap-
pendix to enhance readability. The minimum/maximum (equivalent) capacitances

8Depending on l¢o;, choosing of optimum lengths involves intervals where either !y is constant
and Iy increases if lyoy increases or Iy is constant and [ increases if o increases. Since giot, 11, inma
is continuous at the intervals’ limits, gMB 11, inma = 1 = const., and gr1,2 decreases if /; 5 increases
(as indicated in Footnote 1), geot, 11, inma decreases if lyot increases.
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or inductances obtained from transformation of the three possible source impedances
considered herein are derived in Appendix D.3.1.1. The resulting formulae were used
to compute the values below.

In our frequency range of interest, coaxial cables involve % < 1. Thus the real part
of the source admittance is only slightly changed by line transformation. Regarding
its imaginary part, we have to compute its actual values using low loss cable data
to determine its impact on optimised network design derived in Sections 4.3.1.1 and
4.3.2.1.

Performing those calculations for low loss coaxial cables (RG-213/U or better) yields:

1. If the source impedance is equal to the line’s characteristic impedance, its
(transformed) admittance at the matching network’s input is equal to the
reciprocal of the line’s characteristic impedance which exhibits a parallel ca-
pacitance of about 30—0.47 pF at 1.8—30 MHz.

2. If the source impedance is equal to the complex conjugate of the line’s
characteristic impedance, its transformed admittance at the matching net-
work’s input exhibits a maximum parallel capacitance of about 91— 1.4pF or
a minimum parallel inductance of about 26059 uH at 1.8-30MHz, respec-
tively. Compensation of those inductances would require a parallel capacitance
greater or equal than 30—-0.48 pF.

3. If the source impedance is equal to the real part of the line’s characteristic
impedance, its transformed admittance at the matching network’s input ex-
hibits a maximum parallel capacitance of about 60-0.95pF or a minimum
parallel inductance® of about 7.1-24H at 1.8—30MHz, respectively. Com-
pensation of those inductances would require a parallel capacitance greater or
equal than 1.1fF-1.2aF.

For any source impedance considered above, the maximum parallel capacitance of
the transformed source admittance or the parallel capacitance required to compen-
sate the minimum inductance of the transformed source admittance does not exceed
(typical) minimum values of variable capacitances and/or (typical) values of para-
sitic capacitances if the matching frequency is higher than 10 MHz.

But even at lower frequencies, the mismatch introduced by the parallel susceptance
is low (in theory, matching is “perfect” in case 1, better than 35dB in case 2, and
better than 40dB in case 3). Additionally, if we take into account that parasitics
change the values of the network’s elements and, if a transmission line connects the
network’s output to a load, characteristic impedance discontinuities introduced by
connectors, cable bending, etc. may change the (calculated) load of the network,

9 Exact calculation considering the spiral reveals that even for a low loss RG-213/U, the trans-
formed susceptance stays entirely capacitive. At 1.8/10/30 MHz, the maximum parallel capacitance
of 59/4.6/0.95pF is achieved for a line length of about 27.7/4.97/1.65m. Further maxima with
decreasing maximum parallel capacitances occur at odd multiples of those lengths.
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it’s always recommendable to tune the designed m network, e.g. by measuring its
input reflection coefficient using a directional coupler. However, tuning involves
measurement uncertainties which are higher than the mismatch indicated above.

In particular, in our application the matching network is designed or tuned to match
Zoy = Ry at its input, which is further transformed to the line’s input. The resulting
admittance at the line’s input is similar to that derived in case 3 (a line is a reciprocal
“network”) — in theory the match at the source would be better than 40dB — of
course it’s worse in practice.

Thus we may conclude that the 7 network may be designed to match Zg; ~ Ry at
its input — the “error” involved is low.

Which power gain is obtained then?

If the m network is designed (or tuned) to match (exactly) the reciprocal of the
line’s characteristic impedance at its input, 1B jnma = T 1, inma = 0 holds and the
7 network’s power gain is given by gus,inma = gr,inma according to (3.24). Hence
(5.5) gives

Giot m inma = €~ 200t0t 1 Ro(1-[r¢|?)=2Xo Im{r ;}
tot, 7, inma 1+£sg:Tm_) Ro(l—e—4alz lzelz)—QXO o —2aly Im{ze e—j2512} )

(5.9)

where, as indicated in Sections 4.3.1.1 and 4.3.2.1, Ry, is restricted by Re mp and
Cip,MB O Lgp Mp, respectively!®) or by the minimum/maximum values of the net-
work’s elements according to Section 4.5.1.

If the 7 network is designed to match Zg; =~ Ry at its input, (3.24) is still applicable!!
(a network’s power gain depends on its elements’ settings and its load, but not
on its source), but R; used for design is (slightly) different from the inverse of
the real part of the exact admittance to match and the susceptance of the exact
admittance to match is neglected. Then, of course, T 1mp inma = T 1r,inma 7 0- Thus
exact calculation of the total power gain would involve the load related “correction

10" As exact matching involves an extension to complex sources, R;, may be restricted further
and optimisation may be different. For example, matching the line’s characteristic impedance
(case 1) involves either a total capacitance Ciior replacing Ci in all # network design formulae,

then, using the definitions of Appendix D.3.1.1, C; = Cop + Citot = Cop + wéOP RQII)?;T}?:RS

(comparable to case 1 in Section 4.3.2.1), or a total inductance Litot, then Cy = Cop — Lllm =
Cop — 3 1%0;; Bﬁ%ﬁ%ﬁ and in (3.19) the minus in parentheses applies (comparable to case 2 in

Section 4.3.2.1).

The former does not change the range of R, or the optimisation (because the minimum capacitance
of the variable capacitor is not considered). The latter is not applicable in conjunction with case 2
in Section 4.3.2.1 {transformation of a resistor by three inductors is never capacitive), restricts R,
further by Ry, + Rs > mz%%j@,{’ changes optimisation (comparable to case 2 in Section 4.3.2.1,

but in the final checks for numerator and denominator in the case “at least one a,, > 0” the first
term is subtracted from the second term due to different signs in wlL, and its derivatives), requires
explicit knowledge of R, and may be applicable only in a certain range of R, ms.

1Tt should be noted that the index “inma” is still valid in (3.24) because it indicates that the
7 network is designed to match a certain impedance (which has not necessarily to be equal to the
line’s characteristic impedance).
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factor” of line 1, whose value is indicated at the end of Section 5.4.1. However,
it’s close to 1 due to the small mismatch. Hence the equation for g, r,inma given
above is (approximately) applicable and 7 network design is simplified because the
susceptance of the exact admittance to match to is not included (the network’s input
admittance has to resemble a conductance instead of the complex conjugate of an
admittance).

Additionally, if we would like to tune the network, e.g. by inserting a directional
coupler, the optimisation remains (approximately) unchanged — if the network is
tuned, the coupler is (approximately) matched at its input and output. Thus it just
introduces an additional, (approximately) constant loss factor.

Unfortunately, there is no common optimisation for the power gain due to several
reasons. Firstly, a load exhibiting a capacitive imaginary part may be transformed
by line 2 in a load exhibiting an inductive imaginary part and vice versa. Secondly,
optimisation involves three concurrent objectives — the optimum load resistance
(derived for resistive loads in Section 3.5.2.3) which is equal to m —~ Ry =
Zon — Rso = Zyy in all three cases considered above (Ryq < Zg for useful vari-
able inductors), the restrictions on the valid range of parameter R, (given in Sec-
tions 4.3.1.1 and 4.3.2.1) which depend on the transformed load admittance, hence
on Iy, and optimum length Iy for minimum line losses (similar to Section 5.4.2, but in
conjunction with lossy matching networks). Additionally, both objectives depending
on [, depend on frequency, too.

Thus optimum length I and its according optimum 7 network design usually apply
only to a given total line length, network characteristics (in particular, explicitly
known losses), load admittance, and frequency. Unlike lossless 7 networks, increas-
ing of the total line length may be recommendable for lossy m networks if the decrease
of the network’s losses exceeds the increase of the line’s losses. It’s interesting to
note that the maximum possible loss reduction increases if the inductor’s ) factor
decreases.

Calculations always require usage of the line’s complex characteristic impedance
with two exceptions — the matched line’s power gain may be computed using the
real characteristic impedance approximation and the m network may be designed to
match the real characteristic impedance.

5.4.3.2 T network

According to Section 5.4.1, the T network is used to transform its load impedance
(described by its reflection coefficient 1,5 = r,e ~2*2 ¢ 71282) in the line’s complex
characteristic impedance Z, at its input (hence 7 1yvp inma = T 16, inma = 0)-

To design such a T network, real and imaginary part of its load impedance have to
be known which might be computed based on the load’s reflection coefficient r ;g
either separately using (2.11) and (2.12) or together using (2.10).
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Performing the former yields

G _ 1 _ |1_££e—2a12 e—j2Bl2|2
{L,MB — Re B ~  Ry(l—e-4oh I 12 —2Xo0 e —2aly Im{r,e —j2ﬂ12} 3
1 . Il_fle_zalz e—j2512|2
Crs,MB wXe,MB w (2Roe~2a%2 Im{r ;e ~1%P12} 4+ Xo (1—e ~ 422 |1 |2) )
Lys, vB Xeomp  __ 2Roe~?*2Im{r,ei2P2}4+ Xo (1—e 422 |r ,|2)
w = wll—1,e 202 ¢ 120032

Depending on the sign of the load impedance’s imaginary part we then apply the
optimisation given in Section 4.3.1.2 (if Cps, M > 0) or Section 4.3.2.2 (if Lgs mp > 0)
and the appropriate inclusion of minimum/maximum element values in Section 4.5.2.
However, due to the line’s complex characteristic impedance, they might have to be
extended to complex source admittances.

To check the impact of source impedance transformation by the line on network
design, in particular the necessity of extending the optimisation to complex source
impedances, we have to consider the achieved reactances if the source impedance
is chosen from the three “useful” cases — the line’s characteristic impedance, its
complex conjugate, or its real part — and low loss coaxial cables are used.

However, calculation of those reactances is quite lengthy and was moved to the ap-
pendix to enhance readability. The minimum/maximum (equivalent) capacitances
or inductances obtained from transformation of the three possible source impedances
considered herein are derived in Appendix D.3.1.2. The resulting formulae were used
to compute the values below.

In our frequency range of interest, coaxial cables involve £ <« 1. Thus the real part
of the source impedance is only slightly changed by line transformation. Regarding
its imaginary part, we have to compute its actual values using low loss cable data
to determine its impact on optimised network design derived in Sections 4.3.1.2 and
4.3.2.2.

Performing those calculations for low loss coaxial cables (RG-213/U or better) yields:

1. If the source impedance is equal to the line’s characteristic impedance, its
(transformed) impedance at the matching network’s input is equal to the line’s
characteristic impedance which exhibits a series capacitance of about 100-
24nF at 1.8-30 MHz.

2. If the source impedance is equal to the complex conjugate of the line’s charac-
teristic impedance, its transformed impedance at the matching network’s in-
put exhibits a minimum series capacitance of about 34 -7.9nF or a maximum
series inductance of about 76 —1.2nH at 1.8—30MHz, respectively. Compen-
sation of those inductances would require a series capacitance lower or equal
than 100-24nF.
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3. If the source impedance is equal to the real part of the line’s characteristic
impedance, its transformed impedance at the matching network’s input ex-
hibits a minimum series capacitance of about 52—-12nF or a maximum series
inductance!? of about 2.8pH-3.0fH at 1.8-30MHz, respectively. Compen-
sation of those inductances would require a series capacitance lower or equal
than 2.8-9.5mF.

For any source impedance considered above, the minimum series capacitance of
the transformed source impedance or the series capacitance required to compensate
the maximum inductance of the transformed source impedance exceeds (typical)
maximum values of variable capacitances by at least one order of magnitude (typical
variable capacitors have a maximum capacitance of about 500 pF to 1nF, although
vacuum variables are available up to 5 nF, but those high values are usually required
only at the lower end of our frequency range of interest).

Anyhow, the mismatch introduced by the series reactance is low (in theory, matching
is “perfect” in case 1, better than 35dB in case 2, and better than 40dB in case 3).
Additionally, if we take into account that parasitics change the values of the net-
work’s elements and, if a transmission line connects the network’s output to a load,
characteristic impedance discontinuities introduced by connectors, cable bending,
etc. may change the (calculated) load of the network, it’s always recommendable to
tune the designed T network, e. g. by measuring its input reflection coeflicient using
a directional coupler. However, tuning involves measurement uncertainties which
are higher than the mismatch indicated above.

In particular, in our application the matching network is designed or tuned to match
Zon =~ Ry at its input, which is further transformed to the line’s input. The resulting
impedance at the line’s input is similar to that derived in case 3 (a line is a reciprocal
“network”) — in theory the match at the source would be better than 40dB — of
course it’s worse in practice.

Thus we may conclude that the T network may be designed to match Zg; ~ Ry at
its input — the “error” involved is low.

Which power gain is obtained then?

If the T network is designed (or tuned) to match (exactly) the line’s characteristic
impedance at its input, 7 1yp inma = T1t,inma = O holds and the T' network’s power
gain is given by gMB inma = Gt, inma according to (3.37). Hence (5.5) gives

R = e_2altot 1 R0(1—1£[l2)—2X0 Im{r,}
Gtot, t, inma 1+GEC(¥im) Ro(l—e‘4"“2 |£e|2)‘2X0 e —2aly Im{h e—jzﬁlQ} s

(5.10)

where, as indicated in Sections 4.3.1.2 and 4.3.2.2, Gy, is restricted by G, mp and

12 Exact calculation considering the spiral reveals that even for a low loss RG-213/U, the trans-
formed reactance stays entirely capacitive. At 1.8/10/30MHz, the minimum series capacitance
of 53/22/12nF is achieved for a line length of about 27.1/4.92/1.64m. Further minima with
increasing minimum series capacitances occur at odd multiples of those lengths.
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Cis MB O Lgs Mp, respectively!®, or by the minimum/maximum values of the net-
work’s elements according to Section 4.5.2.

If the T network is designed to match Zo; & Ry at its input, (3.37) is still applicable
(a network’s power gain depends on its elements’ settings and its load, but not on its
source), but G; used for design is (slightly) different from the inverse of the real part
of the exact impedance to match and the reactance of the exact impedance to match
is neglected. Then, of course, 7 1mp inma = T 1t,inma 7 0- Thus exact calculation of the
total power gain would involve the load related “correction factor” of line 1, whose
value is indicated at the end of Section 5.4.1. However, it’s close to 1 due to the
small mismatch. Hence the equation for giet,s,inma given above is (approximately)
applicable and T network design is simplified because the reactance of the exact
impedance to match is not included (the network’s input impedance has to resemble
a resistance instead of the complex conjugate of an impedance).

Additionally, if we would like to tune the network, e.g. by inserting a directional
coupler, the optimisation remains (approximately) unchanged — if the network is
tuned, the coupler is (approximately) matched at its input and output. Thus it just
introduces an additional, (approximately) constant loss factor.

Unfortunately, there is no common optimisation for the power gain due to several
reasons. Firstly, a load exhibiting a capacitive imaginary part may be transformed
by line 2 in a load exhibiting an inductive imaginary part and vice versa. Secondly,
optimisation involves three concurrent objectives — the optimum load conductance
(derived for resistive loads in Section 3.5.3.3) which is equal to m = %ﬂ
in all three cases considered above, the restrictions on the valid range of parameter
Gm (given in Sections 4.3.1.2 and 4.3.2.2) which depend on the transformed load
impedance, hence on [y, and optimum length I, for minimum line losses (similar to
Section 5.4.2, but in conjunction with lossy matching networks). Additionally, both

objectives depending on [ depend on frequency, too.

13 As exact matching involves an extension to complex sources, Gy, may be restricted further and
optimisation may be different. For example, matching the line’s characteristic impedance (case 1)
involves either a total capacitance Cyot replacing Cy in all T network design formulae, then, using

the definitions of Appendix D.3.1.2,C, = —%t——— = {comparable to case 1
Tos T Theot Eggﬁﬂ;en
Cm+Cp
in Section 4.3.2.2), or a total inductance Liot, then 01 1 L and
C—O——W thot 1w Gos—CGm—Gp
Cos Gos Gm+Gp

in (3.32) the minus in parentheses applies (comparable to case 2 in Section 4.3.2.2).

The former does not change the range of G, or the optimisation (because the maximum capacitance
of the variable capacitor is not considered). The latter is not applicable in conjunction with case 2
in Section 4.3.2.2 (transformation of a resistor by three inductors is never capacitive), restricts Gy,
further by G +Gp > —ﬁ)ﬁg— changes optimisation (comparable to case 2 in Section 4.3.2.2 with
w C

similar final checks for numerator and denominator in the case “at least one a,, > 0” although signs
are different in ;}—L—p and its derivatives), requires explicit knowledge of G}, and may be applicable
only in a certain range of Gy, MB.

141t should be noted that the index “inma” is still valid in (3.37) because it indicates that the
T network is designed to match a certain impedance (which has not necessarily to be equal to the
line’s characteristic impedance).
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Thus optimum length s and its according optimum T network design usually apply
only to a given total line length, network characteristics (in particular, explicitly
known losses), load impedance, and frequency. Unlike lossless T networks, increasing
of the total line length may be recommendable for lossy T networks if the decrease
of the network’s losses exceeds the increase of the line’s losses. It’s interesting to
note that the maximum possible loss reduction increases if the inductor’s @) factor
decreases.

Calculations always require usage of the line’s complex characteristic impedance
with two exceptions — the matched line’s power gain may be computed using the
real characteristic impedance approximation and the T network may be designed to
match the real characteristic impedance.

5.4.3.3 Optimum compromise

Summarising the preceding sections, we may conclude that optimisation usually
applies only to a given total line length, network characteristics, load impedance,
and frequency. Calculations always require usage of the line’s complex character-
istic impedance with two exceptions — the matched line’s power gain may also be
computed using the real characteristic impedance approximation and the network
may be designed to match the real characteristic impedance. Although some parts
of the optimisation procedure may yield values close to those of a real characteristic
impedance, we should keep in mind that the error in power gain calculation may
be high, in particular for the mismatched line to the load (an example is given in
Figure 2.2), and some issues (as the impact of source impedance transformation)
cannot be addressed properly by a real characteristic impedance.

Additionally, optimisation may involve increasing of the total line length if the de-
crease of the network’s losses exceeds the increase of the line’s losses. It’s interesting
to note that the maximum possible loss reduction increases if the inductor’s @ factor
decreases.

Due to the optimisation’s dependencies, an optimisation is recommendable only in
applications where frequency and load are (approximately) fixed.

Nevertheless, if a matching network is used for varying loads and/or varying frequen-
cies, it’s always a good compromise to put the 7 or T network as close as possible to
the load and set the network’s elements according to one of the matching strategies
given in Section 4.5.3.

The former ensures low, but not minimal line losses. Depending on the matching
strategy used, the latter ensures maximum or at least high power gain of the network
depending on matching strategy and effort involved.

The simplest matching strategy would be to set Cy to the lowest value where match-
ing is possible in a 7 network or to the highest value where matching is possible in
a T network. Alternatively an L network switchable to realise both complementary
types could be used. These simple approaches will require measuring the magnitude
of the network’s input reflection coefficient only and do not guarantee high power
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gains for certain loads, but are a good choice for the majority of loads if the vari-
able inductor’s @) factor is sufficiently high (which holds for “well designed” variable
air-core inductors).

However, setting 7 or T networks’ elements for highest power gain usually requires
explicit knowledge of the elements’ values, the matching frequency, and measuring
magnitude and phase of the network’s input reflection coefficient — the appropriate
optimum matching strategy is described in Section 4.5.3.



Chapter 6

Experimental Validation of the
Network’s Matching Strategy

6.1 Introduction

In the following chapter, the experimental setup designed to test the network’s
matching strategy is described. The performed measurements are explained and
results are given validating the proposed matching strategy for optimum power gain
of the network.

6.2 Experimental setup

Regarding the experimental setup, several different considerations have to be taken
into account.

Firstly, all measurements should be repeatable. Thus it’s important to reduce the
influence of the (possibly changing) environment and keep all matching elements
within a metal housing (although generally shielding would not be required for
matching networks). In addition, the motors used to turn the elements need to be
capable of setting the elements’ positions with sufficient accuracy. Hence a suitable
combination of encoder resolution and gearbox reduction is essential.

Secondly, in order to reduce unwanted losses introduced by parasitics, it’s important
to obey some general network design rules. The distance between the inductor’s
windings and any metal part (such as walls or the adjacent capacitors) has to be
at least five times of the wire’s width and that between an end of the coil and the
adjacent metal wall at least half of the coil’s diameter, or, even better, equal to the
coil’s diameter. This ensures that the magnetic fields are low enough that the eddy-
currents induced in any surrounding metal part does not increase the inductor’s
losses significantly. Furthermore, the parasitic capacitances are kept low, too. The
latter also holds for the capacitors if they are mounted not too close to the metal
walls. Additionally, the cross-section of the “wires” connecting plugs, capacitors,
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and the inductor has to be high enough to reduce their parasitic resistance and
inductance.

Thirdly, the components themselves and the connectors have to be of good quality.
In particular, it’s advantageous to use vacuum variable capacitors. They offer a high
ratio of maximum to minimum capacitance and introduce low losses. Regarding
the variable inductance, a high-power type should be chosen. Furthermore, 7 mm
connectors yield the highest measurement accuracy of the vector network analyser
obtainable in the frequency range of interest.

Finally, the experimental setup should be convertible to both network types (7 and
T network) for further measurements.

Figure 6.1: Matching compartment, T network built
with elements of high values

Figure 6.1 shows one possible realisation of a T network. It consists of two Jen-
nings Technology CMV1-4000-0005 vacuum variable capacitors (25-4000pF) and
one (IRV) RI-40 variable inductor (0.1 — 40 xH) from Surplus Sales of Nebraska
(made of wire of rectangular cross-section). As indicated above, the network is
surrounded by a metal housing made of brass.

Note that the capacitors are connected to the plug on the right side, mounted on
Teflon holders, and that the wire which makes the ground connection of the variable
inductor is not visible from the chosen point of view.

The distance from the inductor’s windings to the adjacent variable capacitors and the
surrounding walls is about 5cm (about five times the wire’s width of /;,q = 0.92 cm)
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and its ends are at least 10 cm apart from the walls (equal to the coil’s mean diameter
of d¢c = 10.2 cm).

The capacitors are mounted about 3cm apart from the adjacent wall where the
according plug is mounted. Since both capacitors (and the inductor) are mounted
at an equal height of 10cm, and the capacitor’s diameter is about 7.6 cm, their
distance to the remaining walls is even higher.

Figure 6.2: Matching compartment, 7 network built
with elements of low values

Figure 6.2 shows one possible realisation of a 7 network. It consists of two Jen-
nings Technology CSV1-500-0005 vacuum variable capacitors (5—500pF) and one
(IRV) L32017 variable inductor (0.1 — 24 gH) from Surplus Sales of Nebraska (made
of wire of rectangular cross-section). The latter contained several additional parts,
e. g. a potentiometer for position detection, which were removed completely prior to
mounting.

Note that the capacitors are connected to the plug on the left side, mounted on one
Teflon and one brass holder, and that there is no ground connection of the variable
inductor.

Since the diameter of the capacitors and the inductor is lower than those of the
T network elements of Figure 6.1, all distances checked above are even higher herein.

In both networks of Figure 6.1 and Figure 6.2, insulating backlash-free Oldham
couplings are used to connect the driving axes to the variable elements.
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Figure 6.3: Motor, motor control, and power supply
compartment

To set the network’s elements to the given values (positions), servo motors in con-
junction with position encoders and gearboxes are employed. To prevent interference
with the high frequencies of the network, they were mounted in a separate compart-
ment together with the power supply and the start/end point switches (refer to
Figure 6.3).

Figure 6.4: Gearbox, motor, position encoder, and
motor control

As shown in Figure 6.4, each motor “unit” consists (from left to right) of a Maxon
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planetary gearhead GP42C (91:6 reduction), a Maxon RE36 servo motor (24V),
and an Agilent HEDL5540 position encoder (500 cycles/revolution). The motor is
controlled by a Faulhaber MCDC2805 via a RS232 interface. Since the motor contol
uses edge detection, the resulting resolution is 4 - 500 counts - 91/6 =~ 30333 counts
per revolution or 0.012° at the output of the gearbox.

However, the gearbox has a avearge backlash (no load) of 0.4° or 33.7 counts. Thus,
if a small movement is intended, it has to be performed in two steps. At first, the
motor control has to move back beyond the backlash (plus tolerances) and then, in
a second step, forward towards the intended position.

Figure 6.5: a) Worm gear driving end point switch actuator and two end point
switches, and b) a servopotentiometer

Furthermore, start and end point switches are needed, the former to detect the
zero position with sufficient repeatability during power-up, and both after power-up
to prevent the motor from moving beyond the element’s physical limits in case of
programming errors. Those switches are Baumer Electric MY-COM GT75N types
offering a repeatability below 1 um (since the actuator employs a worm gear with
backlash, the total repeatability is worse, but still sufficiently well).

The switching itself is performed using a steel actuator driven by a worm gear (refer
to Figure 6.5 a)). Different gears are employed to accomodate for the different
total number of turns of the element to be driven. For example, the CMV1-4000-
0005 vacuum variable capacitor has about 14 turns requiring a 20:1 worm gear/gear
reduction compared to 32turns of the (IRV) RI-40 variable inductor requiring a
40:1 worm gear/gear reduction. Note the different discrete positions available at the
switch holders and the variable mounting of the switches which takes the different
gear sizes into account.

Additionally, as shown in Figure 6.5 b), the worm gear drives a servopotentiometer,
which will be used in the future to speed up the homing procedure during power-up.
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6.3 Measurements performed to test and validate
the matching algorithm for optimum power
gain of the network

6.3.1 Experimental setup used

In the following measurements, the setup of Figure 6.1 — hence a T network — is
used. Although it may seem disadvantageous with respect to the vulnerability of
its series variable capacitors to parasitics, it’s mainly the variable inductor and its
@ factor we are interested in, and on this behalf it’s advantageous that one end of
the variable inductor is connected to ground.

Furthermore, if the frequency used in the measurement is sufficiently low, nearly the
whole range of the available inductance is employed. Thus a frequency of 1.8 MHz is
used in all measurements, which, in addition, reduces the influence of any parasitics.

6.3.2 Calculation of the network elements (and the coil’s Q)

Port 1

Port 2 ‘—‘

Figure 6.6: S-parameter measurement setup used to cal-
culate network element values

VNA

To calculate the values of the network elements (and the coil’s @) at 1.8 MHz, the
matching network’s ports were connected to the ports of an Agilent 8753E vector
network analyser (VNA) (refer to Figure 6.6). The vector network analyser was set
to a source power of -10dBm, an IF bandwidth of 10 Hz, and a full 12-term adapter
removal calibration was performed using an Agilent 85031B 7mm CalKit and a
48 cm long precision cable with 7mm connectors (a Micro-Coax UFA210B). The
cable serves as an “adapter” resembling the distance of the two 7mm connectors of
the network — thus the bending of the precision cables connecting the network and
the vector network analyser is similar during calibration and measurement.

In any measurement, C'; was incremented and the basic matching algorithm tuned
the network to a match of at least -66.8dB (most times even below -75dB), which
is well below the measurement uncertainty of -55dB. Hence the overall error is
dominated by the measurement uncertainty and as low as possible for the given
setup.
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If depicted, the error of any calculation given was derived applying sensititvity
analysis. In case matched T network formulae are involved, it consists of two parts
— the measurement error and the adjustment error (taking into account that a
formula of the exactly matched T network was used although the real T network
may deviate from the exact match due to measurement uncertainties).

a)

0 i 'Y n 1 L L
0 35 7 10.5 14 0 3.5 7 10.5 14
nt nr

Figure 6.7: a) C; and b) Cy of the equivalent T network, calculated from S-
parameter measurements (solid line) and the single capacitances mea-
sured with a capacitance meter (dashed line)

Calculation of the equivalent T network’s elements from S-parameters (applying
admittance matrix to S-parameter matrix conversion) yields the capacitances C;
and Cy shown in Figure 6.7. Compared to the values of the single elements measured
previously using an AADE L/C meter IIB, they are somewhat higher — this just
resembles the parasitic series inductances of the wires connecting those capacitors
to the 7mm connectors and the central inductor.

a) 42 b) 3 . , —
o8t =2t
£t =,
14t &1t
0 : : : 0 — .
0 g 16 24 32 0 8§ 16 24 32
nr nt

Figure 6.8: a) Ls of the equivalent T network, calculated from S-parameter mea-
surements (solid line), the single inductance measured with an induc-
tance meter (dashed line), and b) Ry calculated from S-parameter
measurements and matched T network formulae

As indicated in Figure 6.8 a), the values of the equivalent inductance (calculated
in a manner similar to that of the capacitors) and of the single inductor measured
previously using an AADE L/C meter IIB differ in similar manner — this resembles
the parasitic parallel capacitances, in particular between the windings of the inductor
(the distance between the windings and the brass walls is relatively high).

However, since equivalent and measured values are quite close, the parasitics seem
to be quite low for all elements of the network.
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Regarding the accuracy of the calculated losses (and of the @ factor), the useful
range of the measurement is limited.

b) 7.5
S s
Il o
3= 25
0 ; : ; 0 : . :
0  0.00125 0.0025 0.00375 0.005 0 0.001250.0025 0.00375 0.005
Gm [1/92] Gm [1/Q]

Figure 6.9: a) Ls and b) its percentage error when calculated from S-parameters

Fortunately the inductance required to match is approximately symmetrical to the
middle (G &~ 0.01 %) of the full (theoretical) matching range and does not change
much towards the middle provided its @ factor is sufficiently high.

a) 270 : : .
180 r\\\\'\_\
o
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0  0.00125 0.0025 0.00375 0.005 0 0.00125 0.0025 0.00375 0.005

G [1/9] G [1/9]
Figure 6.10: a) @ factor of the inductor and b) its percentage error when calculated
from S-parameters and matched T network formulae

Thus the lower quarter of the full range contains nearly all possible inductance values
(Figure 6.9 a)) and yields a @ factor whose accuracy is reasonable (Figure 6.10 b)).
(If the inductor’s @ factor would be lower, the useful range would be higher.)

However, it should be noted that although the theoretical accuracy is poor, the
values of the ) factor obtained to the right of the middle are similar to those
obtained to the left as one would expect from symmetry!

Furthermore, the @ factor’s magnitude is comparable to those given in [67] — al-
though different coils were measured in this work.

From the calculated @ factors of Figure 6.10 a) and the previously computed L
and L, (which is not shown), the series resistance R; is calculated and depicted in
Figure 6.8 b). It behaves as expected.

Finally, as a cross-check, the calculated @ factors of Figure 6.10 a) were used to
compute the values of the elements and g inma Of the T network based on piecewise
constant ) factors between two measured points (equal to the arithmetic mean
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of the calculated @ factors of those points) and the minimum/maximum element
values.
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Figure 6.11: a) Comparison of g inma calculated from S-parameters (dashed line)
and gt inma calculated from the piecewise constant ¢ factors and min-
imum/maximum element values (solid line) for a load of 502 and
b) its percentage error when calculated from S-parameters

The resulting g;inma is shown in Figure 6.11 a) and agrees well with the g¢inma
calculated from S-parameters. In addition, it behaves as expected — the optimum
power gain is achieved for the highest possible Gy,.

6.3.3 Validation of the matching algorithm setting the net-
work to optimum power gain

Port 1 Artificial load

VNA

Port 2

r-=—--—--9

Active voltage probe
and oscilloscope

Figure 6.12: Additional S-parameter measurement setup used to validate the
matching algorithm setting the network to optimum power gain

To validate the matching algorithm setting the network to optimum power gain, two
measurements were performed at 1.8 MHz for each increment of Cs.

Firstly, the vector network analyser was set to a source power of 0dBm, an IF
bandwidth of 10Hz, and a 3-term reflection calibration was performed using an
Agilent 85031B 7mm CalKit. Then the network was terminated with an artificial
load as depicted in Figure 6.12 and, as before, the basic matching algorithm was
used to tune the network to a match better than -70 dB. After achieving the match,
the amplitude of the voltage at the load was measured using a LeCroy WaveRunner
104MXi oscilloscope (10GS/s, noise filter set to 11bit resolution — limiting the
bandwith to 80 MHz — and averaging set to 256) with a ZS1000 active probe.
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Secondly, the artificial load was replaced with a connection to port 2 of the vector
network analyser (similar to Figure 6.6) and all S-parameters were measured using
the settings and the according full 12-term adapter removal calibration described in
Section 6.3.2.

The second S-parameter measurement enables calculation of the load including par-
asitics, of the network element values, and of the network’s power gain. Since the
amplitude measurement’s accuracy is difficult to estimate and the absolute value of
the input power is not known sufficiently well (+1 dB), the first amplitude measure-
ment serves only as a cross-check for the measured power gain.

Two artificial loads were built — 82€2 in series to 10 pH or 680 pF. However, due
to parasitics (and depending on frequency) the actual resistance and reactance is
different. Thus the actual values were calculated from the second S-parameter mea-
surement and given in the captions of the figures below.
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Figure 6.13: a) Amplitude measured with the oscilloscope and b) comparison of
gt,imma calculated from that amplitude (dashed line) and gy inma calcu-
lated from the piecewise constant @) factors and minimum/maximum
element values (solid line) for a load of 912 in series to 9.7 uH

As shown in Figure 6.13 a), in case of the inductive load there is a broad region
where the change of the amplitude at the load is very low — it’s within 6.7 mV or
0.5% of the measured amplitude!

To compare the squared amplitudes with the g inma calculated from piecewise con-
stant @ factors of Figure 6.10 a) and minimum/maximum element values (as de-
scribed above) in Figure 6.13 b), it was assumed that both power gains are equal at
the highest Gy, (where the load’s inductance is just compensated).

Note that the values whose gt inma is higher than that of the highest G, belong to
the inductive solution (undercompensation), whereas the lower ones belong to the
capacitive solution (overcompensation).
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Figure 6.14: a) Comparison of gy inma calculated from S-parameters (dashed line)

and g¢.inma calculated from the piecewise constant ) factors and mini-

mum/maximum element values (solid line) for a load of 91 2 in series

to 9.7 uH and b) its percentage measurement error when calculated

from S-parameters

In addition, a similar comparison with g inma calculated from measured S-parameters
is performed in Figure 6.14 a).

Both figures show a that the calculation using piecewise constant ) factors of Fig-
ure 6.10 a) agrees well with the measured values, hence the matching algorithm
setting the network to optimum power gain using the best setting obtained by that
calculation will work as expected.

Note that the measured values extend the calculated values at both line’s ends — this
is related to the minimum/maximum element values used in the calculation, which
were derived from Figure 6.7 — however, parasitics of Cy changed and Figure 6.7
does not contain the lowest possible values of C; and C,.
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Figure 6.15: a) Amplitude measured with the oscilloscope and b) comparison of
Gt.inma calculated from that amplitude (dashed line) and g inma calcu-
lated from the piecewise constant @ factors and minimum/maximum
element values (solid line) for a load of 84 Q2 in series to 660 pF

As shown in Figure 6.15 a), in case of the capacitive load the amplitude at the load
continuously decreases.

To compare the squared amplitudes with the g inma calculated from piecewise con-
stant @ factors of Figure 6.10 a) and minimum/maximum element values (as de-
scribed above) in Figure 6.15 b), it was assumed that both power gains are equal at
the highest Gp,.
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Figure 6.16: a) Comparison of g iuma calculated from S-parameters (dashed line)

and g inma calculated from the piecewise constant @) factors and mini-

mum/maximum element values (solid line) for a load of 84 Q2 in series

to 660 pF and b) its percentage measurement error when calculated

from S-parameters

In addition, a similar comparison with g; inma calculated from measured S-parameters
is performed in Figure 6.16 a).

Both figures show a that the calculation using piecewise constant () factors of Fig-
ure 6.10 a) agrees well with the measured values. Furthermore, those calculations
are not necessary in the capacitive case since, as expected, the highest power gain is
achieved for the highest Gy, (which was also observed in measurements mentioned
in [68]). Hence the matching algorithm setting the network to optimum power gain
using the best setting obtained (or the highest value of 5 yielding a match) will
work as expected.

Note that once again the measured values extend the calculated values at both line’s
ends for the same reason than that given above.

6.4 Conclusion

In the measurements described above, the proposed matching strategy tuning the
network to optimum power gain was validated.

This is not surprising since it’s always possible to replace any ) factor by its piece-
wise constant approximation with sufficient accuracy provided the intervals are suf-
ficiently small.

In addition, the measurements illustrate the simpler part of the matching strategy.
For capacitive loads, the maximum power gain is achieved for the highest G, ob-
tainable with the network’s elements. For inductive loads — provided the inductive
maximum occurs — it’s flat enough due to the relatively high @ factor of the vari-
able inductor that the power gain at the highest Gy, (where compensation occurs)
is very close to the maximum power gain and thus a good compromise.



Chapter 7

Conclusions and
Recommendations for Further
Work

7.1 Conclusions

Since the optimum matching strategy and matching system optimisation are already
summarised in Sections 4.5.3 and 5.4.3.3, respectively, only a brief conclusion is given
herein.

In this work, a matching strategy was derived that is suitable for automatic and
continuous adjustment of L, 7, and T matching networks for optimum active power
transfer to their load while matching the network’s input impedance to a resistive
source applicable in a frequency range of 1.8—-30 MHz.

It is splitted in two parts — one (simple) strategy for purely resistive or capacitive
complex loads which always applies — provided the network’s losses are properly
described by the general loss model — and a more complicated strategy for inductive
complex loads which involves real-time calculations and requires knowledge of the
losses of the inductor and all network elements’ values.

Unlike other works existing in the literature, the approach of this work was proven
analytically and not limited to constant ¢ factor central inductors. The model used
was validated by comparison to models of several previous works which fit a large
amount of measurements including the frequency range of interest.

Moreover, besides using the optimisation based on the model, it’s possible to perform
an optimisation calculated from piecewise constant approximation of the inductor’s
@ factor and known elements’ values similar to the optimisation derived for induc-
tive complex loads. It never fails provided the network elements’ values and the
inductor’s @ factor were measured in advance over the network elements’ ranges in
sufficiently small steps.

The network design presented in this work can also be used to estimate the losses
in the network’s low loss variable capacitors (see Appendices B.5.1 and B.5.2).

128
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Furthermore, the influence of the transmission lines’ lengths (which connect the
matching network to source and load) on power gain of the matching system and
an optimum split of the total line length was derived, where the transmission lines’
characteristic impedance was complex.

However, an optimisation of the whole matching system is recommendable only in
case of a fixed load. Varying loads involve a compromise, putting the matching
network as close as possible to the load which is similar to the optimum position
derived from the real characteristic impedance approximation (losses described solely
by the attenuation) of lossy transmission lines.

Finally, an experimental setup was designed to test and validate the optimum match-
ing strategy of the network. The experimental results are close to those predicted
theoretically as well as they illustrate the simpler part and the proposed simpler
approximations of the matching strategy given in Section 4.5.3.

7.2 Further work

The emphasis of this work was on deriving an optimum matching strategy for 7 and
T networks suitable for any complex load. If the load’s imaginary part is inductive,
achieving the highest power gain involved a piecewise constant approximation of
the known (measured) @ factor as a function of the inductor’s reactance or its num-
ber of turns. Then the optimum network settings are computed for each interval,
from which the best settings are chosen yielding the optimum network. However,
describing the nonlinear @) factor by a piecewise constant approximation with suf-
ficient accuracy may require a large number of relatively small intervals, thereby
significantly increasing calculation time. This may be particularly disadvantageous
in real time applications where the network has to match varying loads.

If a piecewise linearisation would be used instead, a lower number of intervals should
suffice to approximate the nonlinear () factor with similar accuracy, thereby reducing
calculation time.

Thus deriving of an exact analytical solution for piecewise linearised losses, in par-
ticular for

1
Ry = Ry + a1wLs or Gp = Gpo + a1——,
wly

the former for =, the latter for T networks, may be recommendable.

However, solutions and applicable parameter ranges’ limits are much more com-
plicated than those of the constant @) factor approximation. Additional limits are
introduced as indicated in Appendices C.1.1.1 and C.1.1.2. Moreover, the network’s
power gain may stay constant in some parameter region! if a; = 0.

17f, for example, a 7 network is considered and R; = Ry, the optimum power gain for resistive
(and capacitive complex) loads is given by gr,inma = 1 — %fl = const. if Ry > R; — Ry (yielding
Ruilim = R — Ry = const.).
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Another (at least theoretically) interesting extension would be the derivation of the
exact analytical solutions if all three network elements are lossy and those losses are
described by constant @) factors as sketched in Appendices B.3.2 and B.3.3.

Unfortunately, four possible solutions are obtained instead of two, hence it may
be very complicated to prove which solution applies and to calculate the according
parameter’s limits.

Since high power applications — where an optimisation is essential — require usage
of low loss variable capacitors, whose losses can be estimated as indicated in Ap-
pendices B.5.1 and B.5.2, the question of whether their exact inclusion significantly
improves matching network design needs to be investigated.

On the other hand, there are other useful extensions of the network design presented
in this work:

The theory may be extended to networks with two (lossy) inductors and one central
capacitor (whose losses are negligible). Network parametrisation may be adapted
from those given in Appendices B.3.2 and B.3.3. For example, in a T network,
the resulting formulae are similar to those of Appendix B.3.3 except that L is
replaced with C,, whose loss G, = 0, and (5 is replaced with Ly, whose losses

R, = Ei—l—; are described by individual series loss models given by (3.1). But,

since two series loss models are involved, the problem’s difficulty is increased. In
addition, the parametrisation cannot be adapted to “remove” the losses from the
design formula of Ly or Ly to simplify the extension to complex loads or sources,
respectively.

Another possibility is that the method extended to complex loads may be extended
further to complex sources as indicated in Footnotes 1° and '3 in Section 5.4.3.1
and 5.4.3.2, respectively, yielding an extension to complex loads and sources. Since
minima/maxima of Cpyy may occur (refer to Figures 4.6 to 4.9) and additional
inductive solutions (and parameter limits) for Ly, have to be derived, this task is
also quite difficult.

Furthermore, the network design presented in this work may be employed to design
loads for optimum network efficiency. For example, if the load’s imaginary part is
considered, it’s always recommendable to keep a capacitive imaginary part as small
as possible. Conversely, an inductive imaginary part should be kept as high as
possible provided the network may be chosen arbitrarily — then either a T network
(leJ < Gj) or a 7 network (F{IZLS < R;) will be the optimum choice.

Moreover, the lossy network design theory derived in this work is not limited to the
order three networks considered herein. Higher order networks may be obtained by
splitting those networks into lower order ones — then one approach would be to
design those networks for optimum power gain depending on the impedances at the
interfaces between those (partial) networks whose optimum values would have to be
derived. Generally, this would require at least the extension to complex loads and
sources mentioned above.
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At a first glance, matching of a resistive load to a resistive source seems to be
obtainable by a combination of a second or third order network designed to match
a complex load to a resistive source and a second or third order network designed
to match a complex source to a resistive load (both derived within this work) to
generate lossy matching networks of up to fifth order — even up to sixth order if the
extension to networks with two (lossy) inductors and one central capacitor would be
derived. However, since lossy networks achieve a complex conjugate match in one
direction only, this approach would not yield the intended result. Although such a
combination would still be able to match in one direction, the part of the network
with opposite “matching design” direction would be expected to be suboptimal.

In addition, the applicable frequency range may be extended provided the (equiva-
lent) network elements still consist of lumped elements and narrowband matching is
required. In particular, the former is true for CMOS integrated RF circuits up to the
GHz range. Nowadays, as for wireless applications, integration density is increasing.
Thus matching networks are implemented within the integrated circuit. However, as
indicated in [69], the inductors employed are quite lossy. Since it’s always possible
to use a piecewise constant approximation of the losses if there would be any case
where the inductor’s losses would not fit the model, the network design presented
in this work is ideally suited to optimise the power gain of those networks.

Finally, the lossy networks’ power gain optimisation strategy derived in this work
may serve to implement an improved cost function in a broadband (or higher order)
network design optimisation (an example for a filter optimisation employing a cost
function combined with other methods is given in [70]), to enhance the parametrisa-
tion of such networks, or to find better initial values in a lossy network optimisation
like in [71].



Appendix A

RF Basics

A.1 Definitions/notations

From this chapter on, the following definitions/notations will be used:

Latin letters

gtp(ietp, 5062)
1(2)
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1itp, 50

=1
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tp, 50 2

n

= 11tp, 500
—S—12tp, 500
S1tp, 5002

S 20tp, 500
V(2)

Defined as —wC}; in Figure A.4 and subsequent calculations

Defined as U%T; in Figure A.6 and subsequent calculations

Load susceptance (in parallel to load conductance Gy)

Power gain of a two-port as a function of reflection coefficient r ttp, 50 Q2
Complex amplitude of the current in a transmission line at location z
Complex amplitude a current of flowing in a network’s input

Complex amplitude of a current flowing through the load impedance Z,
Complex variable

Complex variable

Reflection coefficient at location z (referred to Z )

Reflection coefficient at the input of a T network (referred to Z )

Reflection coefficient at the input of a two-port referred to 50 2

Reflection coefficient at the input of a 7 network (referred to Z )

Reflection coeflicient of the load impedance of Z , referred to 502
S-parameter S11 of a two-port referred to 502

S-parameter S13 of a two-port referred to 502

S-parameter Sg; of a two-port referred to 50 2

S-parameter Sag of a two-port referred to 50 Q2

Complex amplitude of the voltage along a transmission line at location z
Complex amplitude of the voltage at the beginning of a transmission line (at its input)
Complex amplitude of the voltage at a network’s input

Complex amplitude of the voltage at the end of a transmission line (at its load)
Complex amplitude of the incident voltage at location z of a transmission line
Complex amplitude of the voltage at the load impedance Z,

Complex amplitude of the reflected voltage at location 2 of a transmission line

Real variable

132
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X; Defined as —wLs in Figure A.4 and subsequent calculations

X; Defined as ;151- in Figure A.6 and subsequent calculations

Xe Load reactance (in series to load resistance Ry)

Y, Admittance at the beginning of a transmission line (at its input, (¥ { = ZlT)
Y, Input admittance of a m network

Z 1y Input impedance of a T network

A.2 Active power delivered from a source to a
load as a function of available power

Figure A.1: Definitions and setup for P, derivation

If a voltage source of complex amplitude V , and source impedance Z; is connected
to a load impedance Z,, Pae is the active power delivered to the load. It will be
compared to the available power P,cimaxi, Which equals the active power delivered
to the load for a conjugate complex match (Z, = Z7).

The available power is defined by

Vo|*

actmaxi — . Al
Pume = SR (2] A

For the setup shown in Figure A.1, the active power delivered to the load is

o o _ lp {2V 2V
Pae = ZRe(V, [} = 2Re{Zi+Ze (Zi+2) 2
[V o2 Re{Z,}

Pie = _2 (Re{Z,} + Re{Z,})? + (Im{Z,} + Im{Z,})?’

Applying (A.1) yields

P _p . 4Re{Z_1} Re{Z.é}
acté actmaxi (RG{Z_l} + Re{_Z_e})2 + (Im{Zl} + Im{ZZ})T

In the next step we will replace real and imaginary parts of source and load
impedance with their reflection coeflicient representations derived in (2.11) and
(2.12).
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A.3 Active power in a transmission line and its
transducer and power gain

actl act (O) act (Z) Bith act (l ) actf

Zi r,=r(0) r(z) r,=rl)=r,
o [ — - I
|———-—| L':>:
é) V, V(z) v, Z,
0 z lr

Figure A.2: Definitions and setup for P,.(z) derivation

Consider a transmission line of length [ in the setup depicted in Figure A.2. Its
complex characteristic impedance is Z, its attenuation constant «, and its phase
constant 3. The line is driven by a voltage source of complex amplitude V , and
source impedance Z;. it’s terminated by a load impedance Z,.

V(z), the complex amplitude of the voltage along the line at location z, may be
computed as the sum of the complex amplitude V ;(z) of the incident wave’s voltage
and the complex amplitude V (2) of the reflected wave’s voltage.

Their ratio, as indicated in [26e], is the reflection coefficient r(z) at location z,

|4 . .
_7_*(2) (= f% =7, e-2a(l——z) e—J2ﬁ(l—z) =r, e—2a(l—z) e—_]2ﬁ(l—z). (A3)
By using this relationship in conjunction with [26d] (which derives the complex
amplitude V(z) of the voltage or I(z) of the current along the transmission line at
location z), we obtain

V(z) = Vi(0)e e ™ (1+1(2)), (A4)
(0)e e3P (1 — (2
L) = L0 Gt "

The complex amplitude V ; of the voltage at the line’s input may be computed as a
function of the reflection coefficients according to [73], yielding
Vo(d—r)(d+1,)

== — = A.
1 2 1_£i£1 ) ( 6)

<

where 1, = r(0).
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Due to V., = V(0), we obtain by comparison of (A.4) and (A.6) that

Vo 1-14
V;(0) = > T—T—l (A.7)
[26g] calculates the active power delivered to location z of the line,
1
Par(2) = 5 Re{V(2) I*(2)} - (A.8)

Applying (A.4) and (A.5) yields
{@e=e 1 4r)

2 —2az 1+Z(z) _I-*(Z) — |T( )12
3 IO e e e 3

Pui(z) = =R

¢]

V3(0) e~ e (1 - 1*(2) }
Z

— BN =

H

4 Wt - (0= P Al (ot 10

Faal2) 7= 8 |1 —r;r,|? |Z ]2

e 2|1 - ri|* Ro(1 = |r(2)]*) — 2Xo Im{r(2)}
1 —rir? |Zol?

Al
Pyet(2) (:) Pactmaxi Re{zi}

(2.11) —%aqz —|r|%)— . —|r(2)}2)—2X, r(z
Put(2) =" Pactmaxi © 20z [Ro (1—|ri|?) 2Xolnlléro,|g]|[11io£(i1£ll‘_2( %) —2Xo Im{r(2)}]

A3 oas 2 " .
Pact(2) (A.3) Pt € 20 FoOlnil®)= IQZXOOIZIIIIi{—TT}]T[iO‘(;Q‘Ie(-J)ZI )I 2Xo Im{r(:)}] (A.9)

This result is partially calculated in [26g]). However, [26g] does not take into account
that the complex amplitude of the incident wave’s voltage depends on the load
impedance or its reflection coeflicient r,, respectively.

The active power delivered to the load is Paeyy = Pact(l), hence the transducer power
gain gr 1, of the line is

—%2q —lr, T T 1
grL 1= Rt = g%l [Ro (1—-|r;[? )1 20Xl20111m{r ‘,}Hf_oz(alze]_él )‘22)(0 m{re} (A.10)

Pyctmaxi

In the following sections we will additionally need the power gain g;, of the line or
P..te, the active power delivered to the load, as a function of Py = Paet(0), the
active power delivered to the line’s input at z = 0.

To derive it, we use (A.2), where r, is replaced with 7(0) = r; = r,e 2 ¢i%!
(from (A.3)), in (A.10), yielding
Pacts —2al Ro (1= |r,)*) — 2XoIm{r,}
= — = * . . A.11
IL P ¢ Ry (1 —|r,e 2 e=i2012) — 2 X, Im{r, e —22l e 28!} ( )
—2al Ry (1 - |£ZI2) - 2X0 Im{zl} (A12)

gL = ¢ Ro (1 — e~ r,|2) — 2X,e 2 Im{r, e —i20}’

A similar formula is derived in [28] and [29)].
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A.4 Input reflection coefficient and power gain of
L, w, and T networks at a fixed operating
frequency

A.4.1 Calculation using network elements’ values

A.4.1.1 7 network

Fins Vi R L ~lo =1z R

2
== C, C,= B, , = =C, GC,, ::éGe

Figure A.3: Definitions for calculation of the 7 network’s input reflection coeffi-
cient

Using the definitions of Figure A.3, the input admittance Y ,, is given by!
1

Xl = jwCi+ : 1
" RS + JWLS + Ge+jwCatot

(A.13)
where Gy = Re{ig} , Chor = Co + -};Im {Z%}

Applying the preceding admittance and (2.9), we may compute the m network’s
input reflection coefficient r,, referred to Z,, obtaining
1-Y ., 2y

= —m&0 A.l4

Zlﬂ’ 1 + )__/_1” Z.O ( )

Since the 7 network’s power gain g, is independent of the driving source’s impedance

(e.g. according to (A.26)), we may simplify its derivation by choosing the source
impedance to cancel all reactive components at the input of the 7 network.

P

actl

p_ P P

actl X actl” actl” actl

P,

actl

P

acté

Figure A.4: Definitions for calculation of the m network’s power gain and equiva-
lent circuit for X; = —wLs, B; = —w(C}

IThere is no need to distinguish Cyto; and Lao; depending on the sign of Co + % Im {%} The
calculated Y 1., 7, or gr resemble proper values although a formally negative Cyor might occur.
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All reactive components in Figure A.4, namely X;, B; ¢, C1 2, and L, are lossless.

o~
o~

Thus 15act1 = jsactl = Pt = ﬁa,ctl = P.u1 holds, which equals the incident active
power in the equivalent circuit (right half of Figure A.4).

Using the definitions of Figure A.4 yields

1 1 =
Pac = —Re{V, I} = 3 I ? 8 Gy + iwCoror
t1 2 e{_1 _0} ) Re {I—O' (R + Gy + jwc?cot) }

1 G,
P = 5 |Lol* (Rs+ e | -
o= gl ( +G§+w2cgm>

The active power delivered to the load is given by
1 1 Gy

Pow ==V, I?Ge= = |I,]? =———.

=5 [Vl Ge= 5Ll G? + w2Chy,

Thus the m network’s power gain is
P, actl GZ 1 t

Pactl B Rs (G% +w2022t0t) +G£ B 1+ “‘“‘g&_"— .

2
Ge+w C,

(A.15)

T =
2tot
Two L networks, each for C; = 0 or 3 = 0, may be viewed as limits of the 7 network.

Their input impedances and power gains are computed by putting C; = 0 or Cy = 0,
respectively.

A.4.1.2 T network

.2y C, C, X, Iy Ly, C, Coror

“:‘; | |- I_l_g IF—T—1h
S SR = L,3SG, SR,

(o >

Figure A.5: Definitions for calculation of the T network’s input reflection coeffi-
cient and its equivalent circuit after series-to-parallel transformation
of Rs and L,

Calculation of the T network’s input reflection coefficient starts by series-to-parallel-
transformation of R, and Ls in G, and Ly, (right half of Figure A.5). [34c] computes
the parallel components’ values,

751_'_—52%2— is the series resistance after parallel-to-series transformation of Gy and Cytoy {cal-
£ 2tot

culated using (A.19) after replacing G, with G, and W#LP by wCtot)-



APPENDIX A. RF BASICS 139

Ry

_ it _ R2+Wi2
= Rt = '

G
P w2l

(A.16) L, (A.17)

Additionally, we need to examine the transformed network’s element values in case
R, Lg tend to zero or infinity. However, Ry and Ly are not independently of each
other, but obey (3.1). If the limits of G}, and L, are derived using (3.1), we obtain

\
(i) If Ls = 0 then Ry = Ryo:
a) Rgo=0:

e 0<b <3 Gp—>oo,Lp—>ooorL—1p=O
(since G; — Gm — Gp < 0, matching is impossible, thus
never part of a valid solution)

2

o by =1 Gpaoo,Lp:%LorLip=§f
(since G; — Gm — Gp < 0, matching is impossible, thus
never part of a valid solution)

O§<b1<2:Gp—>oo,Lp:00rf;—>oo L
(since G; — G — Gp < 0, matching is impossible, thus
never part of a valid solution)

(A.18)

e b =2 G’p=a1,Lp=OorLip—>oo
(bi = by = 2 if by < 2)

© b1 >2 Gp=0,L,=00r ;- — 00
(impossible if by < 2)

b) Ry > 0: szR%O,LpHooorf;=O‘

(ii) If Lg — oo then Ry — oo (except Rs = Ry if Rs = const.),
Gp =0, ande—»ooor—Ll;=0.

The inverse parallel-to-series transformation is given by

1

. (A19) L= =T (A.20)

Gp .
GI2) + w2L?

RS =
2 1
GP + w2L?2

Using the definitions in Figure A.5 yields the input impedance Z,, of the series-to-
parallel transformed equivalent circuit?,
1

. + T 1
W Gt gt R (A.21)

—Z-lt =

where R, = Re{_Z.g}, Cotor = C_I _wllm{Z na
5 VA

2There is no need to distinguish Cyor and Late; depending on the sign of 31,—2- —wlm{Z,}. The
calculated Z ,,, r;, Or g¢ resemble proper values although a formally negative Cyor might occur.
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Applying the preceding impedance and (2.9), we may compute the T network’s input

reflection coefficient r,, referred to Z, obtaining

A 1t Z 0

Ty = o A.22

L1t th + ZO ( )

Since the T network’s power gain g, is independent of the driving source’s impedance

(e.g. according to (A.26)), we may simplify its derivation by choosing the source
impedance to cancel all reactive components at the input of the T' network.

~ N

P
X,

~ ~

P,

actl

P

actl

actl actl dctl acté
1 C2

I Coot 1
—

|I>

Figure A.6: Definitions for calculation of the T network’s power gain and equiva-

lent circuit for B; = —-, Xj = w—'CI

All reactive components in Figure A.6, namely B;, Xj ¢, Ci,2, and L, are lossless.

-

Thus ﬁam = ﬁactl = Piet1 = ﬁactl = ﬁactl holds, which equals the incident active
power in the equivalent circuit (right half of Figure A.6).

Using the definitions of Figure A.6 yields

1
Pit1 = 1Re{V I} = —Re{|V0|2 < +——1)}
Re - jWCQtot

R
v |<G +_€ )
B + Geeg;

The active power delivered to the load is given by

Pactl =

DO | b

Ry

—
R} + =g
2tot

1 1
Poere = 5 |L,> Ry = 5 Vol

Thus the T network’s power gain is

g = ]Ij okl Re = 1@ 2 (A.23)
actl Gp <Rg + w2cl2toc) + Rg 1 + ﬁﬁ—
¢ Wic

2tot

Two L networks, each for C; — oo or Cy — 00, may be viewed as limits of the
T network. Their input impedances and power gains are computed by putting
C1 — oo or Cy — 00, respectively.

F_Li_ is the parallel conductance after series-to-parallel transformation of R, and Coyot

“ czmc

(calculated using (A.16) after replacing Rs with R, and wLs with wcm SO )
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Appendix B

Lossy L, w, and T Matching
Networks

B.1 Definitions/notations

From this chapter on, the following definitions/notations will be used:

Latin letters

Cip)
Cus)
Cap)
Cas)
gt, llcapdes

Gt,11des
gt,outma

9r, llcapdes

g ,outma
Gircst

Ge rest
GSC 1
Gng

I

=st

Lo
Pocty
Pact2
Pyt
Q1
Q2

T 1¢, lldes, Zoy

T 1x, lldes, Zoy

Lossy capacitance C; of a m network, index p indicates usage of parallel loss model
Lossy capacitance C; of a T network, index s indicates usage of series loss model
Lossy capacitance Cg of a 7w network, index p indicates usage of parallel loss model
Lossy capacitance C2 of a T network, index s indicates usage of series loss model

Power gain of a T network including losses of all elements designed as if its capacitors
would be lossless
Power gain of a T network designed as if it would be lossless

Power gain of a T network which is (exactly) matched at its output

Power gain of a m network including losses of all elements designed as if its capacitors
would be lossless
Power gain of a 7 network which is (exactly) matched at its output

Resulting total source conductance of the “inner” T network as defined in Appendix B.3.3
Resulting total load conductance of the “inner” T network as defined in Appendix B.3.3

Series loss conductance of capacitance Cy(s) of a T network (Gsc, = R—lc—)
501

Series loss conductance of capacitance Cy(g) of a T network (Gsc, = Rlc )
5Cg

Complex amplitude of a current flowing through R, (and thus through Rpgyest) of the
T network in Appendix B.3.3

Complex amplitude of a current flowing through Rs of the m network in Appendix B.3.2
Active power transferred to the input of a network

Active power transferred to a particular part of a network

Active power transferred to a particular part of a network

Q factor of capacitor Ci of a w or T network

Q factor of capacitor C2 of a w or T network

Reflection coefficient at the input of a T network designed as if it would be lossless
(referred to Zyy))

Reflection coefficient at the input of a = network designed as if it would be lossless referred
to Zon

142
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Rirest Resulting total source resistance of the “inner” T network as defined in Appendix B.3.3
(Rirest = airlc:)

Riresr Resulting total source resistance of the “inner” 7 network as defined in Appendix B.3.2

Rerest Resulting total load resistance of the “inner” T network as defined in Appendix B.3.3
(Rerest = &, —)

Roresr Resulting total load resistance of the “inner” w network as defined in Appendix B.3.2

Ryc, Parallel loss resistance of capacitance Cy(;) of a m network

Rye, Parallel loss resistance of capacitance Cy(;,) of a m network

Rec, Series loss resistance of capacitance Cy) of a T network

Rsc, Series loss resistance of capacitance Cg(s) of a T network

Et Abbreviation for a sum in Appendix B.2.2.2

Vo Complex amplitude of the voltage at G of the T network in Appendix B.3.3

pr Complex amplitude of the voltage at the load R, (and thus at Rgpesr) of the m network

in Appendix B.3.2

B.2 DMatching of a resistive load to a resistive
source (matching at the network’s input)

B.2.1 m network

B.2.1.1 Optimum value of parameter R, for maximum power gain

As indicated in the overview of the proof given in Section 3.5.2.2, we begin the
actual proof by assuming all a,, = 0, thus Ry = Ry throughout the valid range of
R,,. We then obtain from (3.26)

(& _ dl‘.s_)
Rw ARy

Since Ry, Rm > 0, numerator and denominator of < g" - g—}%)
> 0.

RSO

an=0VYn Rm

are always
an=0Vn

If at least one a, > 0, we check numerator and denominator of (3.26) separately:

1. Since wlLs, Ry, Rs, a, are > 0, and b, > 0, the numerator will always be > 0

fOI‘ Rs 6(st + Rm au;st) < O

Conversely, if Ry 55 “LS) + Rn aL;%L N

NwLs) O(wLs) O(wLs) O(wLs)
o (R T+ R T ) 200 (e S+ a2

holds due to by > by_1 > ... > by > 0.
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N
From (3.1) we get Rs > 3" a, (wLg)b", thus obtaining
n=1

ORs ORm

O(wLy) O(wLs)
> — s \WHs)
> RswLs—by R <Rs oF, + R or. )

N
n=1

After applying (3.27), (3.28), and Ry > 0, we finally have to check

w@—ﬁN(&8S§J+J%Q%$Q>

(Bm + Rs) ((2 — by) (Ri = R — Rs) + by (B + Ry))
2/ (Bm + Rs) (R — R — Ry)
Rm ((2 - bN) (Rf “ Rm) + by Rm)
2/ R (Re — Run) ’
which is always > 0 throughout the (utmost) valid range of Ry, indicated in
(3.20) if 0 < by < 2 holds!.

2. Since wlLg, Ry, a, are > 0, and b, > 0, the denominator will always be > 0
for ‘%5"—;:‘) <0.

Conversely, if Q%"R%l >0,

anby (WL)®"
holds due to by > by_1 > ... > by > 0.

N
From (3.1) we get R > Y. a, (wLs)>", thus obtaining

n=1

N
wLy =) anba (wLs)™ 8(5‘;";:) > wL; — by R, 3%’5).

After applying (3.28), we finally have to check

O(wLs)
wLS — bN RS aR

(2 —by) (Rm + Rs) (Ri — Ry — R) + by (R (R; — Rp) + R?)
2¢ (R + Rs) (R — R — Ry)

++vVRn(Re—R

which is always > 0 throughout the (utmost) valid range of Ry, indicated in
(3.20) if 0 < by < 2 holds!.

1 The proof would still be valid if we would put by = 0, but its initial definition in (3.1) was
by >by_1>...>b; >0.
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Combining all preceding parts of the proof, we may conclude that (at least) for
0 < by < 2 numerator and denominator of R° - ;}225 in (3.26) and thus dggR‘r’;“‘a
itself remains > 0 throughout the (utmost) vahd range of Ry, indicated in (3.20).

B.2.1.2 Optimum value of load resistance R, for maximum power gain

In Section 3.5.2.2 the parameter R, was optimised for maximum g, inma. However,
the maximum gy inma Still depends on R, (for the intended aplication, R; is fixed
and known).

Thus it’s necessary to investigate which R, yields the maximum ¢, inma if Rm is
chosen for optimum ¢ inma according to Section 3.5.2.2.

Which Ry is likely to yield the mazimum gr inma?

As indicated in Section 3.5.2.1, Ly = 0 for R, = R; — Ry, the limit which separates
the two possible (utmost) upper limits of Ry,. Then the lowest R occurs (Rs = Ry).

Supposing that the highest gr inma coincides with the lowest R requires proving of
dgw,inm(;éfjm:RZ) Z 0 lf RZ S Ri _ RSO or dgr,inmag};’z:leim) S 0 lf Rﬂ > Ri - RSO,
respectively, thereby obtaining that gr inma at Rm = Re = Ri — Ry is greater (or

equal) than any other g: inma-

According to Section 3.5.2.2, the proof has to be split in two parts:
(i) Ry < Ry — Ry, hence 0 < Ry, < Ry
The highest gr inma is obtained if Ry, = Ry. gr,inma 18 given by (3.24),

R,
Ry + RS(Rm = Rg).

gﬂ,inma(Rm = RZ) =

Its derivative with respect to Ry is

dgw,inma(Rm:Re) — Ry Rs(Rm:RZ) _ dRs(Rm:RE)
dR, (Rg+Rs(Rm=Rp))? R, dR, )

Since Ry, Rs(Rm = Ry) > 0, it suffices to check RS(R]%:R@) dRB(dREZ o

Using (3.1), we define an implicit function for Rs(Rm = Ry),

N

’(Z = Iign + (Z (7% (wLS(Rm = R[))b"> - RS(Rm = Rg) =0.

n=1

Comparing the implicit function and the factor to check to those of Sec-
tion 3.5.2.2, it’s quite obvious that the proofs are similar if R is replaced
with Rg(Rn, = Re) and Ry, with R,. Regarding the derivatives, those with re-
spect to Rs or Ry, are replaced with derivatives with respect to Rs(Ry = Re)
or R,.
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Then RS(RgezR“) - dRs(g‘ij‘) is given by (3.26) if the indicated replacements

are applied.

To prove that £ R}'{‘R‘) dRS(RI;‘"RZ) > 0 the proof of Section 3.5.2.2 may be
adapted accordmgly All estimations are valid if the indicated replacements
are made, hence prior to the usage of wls and its partial derivatives the terms
to check are similar. However, wLs and its partial derivatives have changed
compared to those of Section 3.5.2.2 and are given by

WLs(Rm = Ry) = \/(Rl + Rs(Rwm = Ry)) (Ri — Re — Rs(Rm = Ry)),

O(wLs(Ry = Ry)) _ Ri — 2(Re + Rs(Ru = Ry))
R, 2/ (Bt + Ro(Rm = R2)) (B — Re — Ry(Rm = Ry))

O(wLs(Rm = Rye)) _ Ri ~ 2(Re + Rs(Ri = Ry))
ORs(Rm=Re)  2\/(Re+ Ro(Rm = Re)) (B — Re — Ro(Rm = Re))

(Ls(Rm = Ry) is obtained by putting Ry, = Ry in (3.19)).

Similar to Section 3.5.2.2, we begin the proof by assuming all a, = 0, thus
Rs = Ry throughout the valid range of R,. We then obtain

(Rs(Rm =Ry) dRy(Rm = Rg)> _Ro
Ry dR, ammovn Bt
Numerator and denominator of (RS(RE‘;R“ — 9k s(fgiR ‘)) oy, e always
> 0 because Ry, Ry > 0.
If at least one a,, > 0, numerator and denominator of (RS(REKZR‘) - dRS(fg‘lzR‘)>

are checked separately similar to Section 3.5.2.2, yielding the following terms
which have to be proved to be > (:

1. In case of the numerator Rs(R;) > 0, wLs(Ry = Ry), %E:Rm, and

I (wLs(Rm=Re))
aRs (Rm :-“RE)

wLo(Rm = Re) = by ((Ro( R = Re) Zyefm=id) - R, 2elefn=la) )
(Ret+Rs(Rm=Ry)) (2—bn) (Ri—Re—Rs(Rm=Rs))+bn (Re+Rs(Rm=1Re)))

- )

2/ (Re+Rs(Rm=Re)) (Ri—Re—Rs(Rm=R))
which is always > 0 if 0 < by < 2 holds?, because (3.20) still holds if

are applied, yielding

Ry =R,
2. In case of the denominator wLg(Ry, = Ry) and —(%‘;W are applied,
yielding
wWLo(Ru = Ry) = by Ra(Rm = Ry) Lalim=t)

(2—=bn) (Re+Rs(Rm=Re)) (Ri—Re—Rs(Rm=Re))+bny (B¢ (B Re)+R2(Rm—Re))
24/ (Re+Rs(Rm=Ry)) (Ri—R¢—Rs(Rm=Ry))

2 The proof would still be valid if we would put by = 0, but its initial definition in (3.1) was
by >by_1>...>b >0.
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which is always > 0 if 0 < by < 2 holds?, because (3.20) still holds if
Ry = Ry

Combining all preceding parts of the proof, we may conclude that (at least)

for 0 < by < 2 numerator and denominator of RS(Rg‘e:RE) — dR"(f]‘,tf‘e:RZ) and thus
Be(Bm=Re) _ dRs(Bm=Re) jteolf remains >0if Ry < Ry — Rg.

Re dR,
Ry > R; — Ry, hence 0 < Ry < Rujim

The highest gr inma is obtained if Ry, = Rplim = Ri — Rs(Rm = Rulim)- 9r,inma
is given by (3.24),
leim

R

gw,inma(Rm = leim) =
Its derivative with respect to Ry is

dgw,inma(Rm = leim) _ i dleim
dR, " R dRy

Since R; > 0, it suffices to check Q—I%‘;"l.

As Ry(Ry = Ruiim) is a function of Lg(Ry = Rmlim), which itself is a function
of Re and implicitly? of Rs according to (3.19), we define the implicit function

» =0 from (3.21), (3.1), and (3.19),

~ N
J);r = Ry + (Z an (\/leim (Rg - leim))bn> — Ri + Bpiim = 0.
n=1

Then we compute the implicit function’s partial derivatives with respect to Ry
and leim)

81?” _ ng:l anbn (\/leim (Re—Runtim) ) " Runtim
OR, N 2 v/ Rantim (Re—Renlim) ’
612 nzz:l anbn (\/leim (Re—Rmnm)) bn_l(Rz—Q Renlim)
ORmim 24/ Runtim (Re=Rontim) +1

Applying the implicit function theorem [64] and multiplying numerator and
denominator of the resulting fraction by \/ Rutim (Re — Rpnlim) gives

N b.
dleim B ngl anbn (\/ Runlim (RZ"leim)) anlim

N brs .
dR@ 2 leim (RE—leim)+ 2—;1 anbn (\/leim (RZ"leim)) (RZ‘—2 leim)

As indicated above, supposed the maximum g inmas OcCcurs at Ry = R; — Ry,
we have to prove that %}z‘t@ < 0if Ry > R; — Rg.

3In particular, Rs(Rm = Rumilim) and Lg(Rm = Rumiim) are both functions of Ry only. However,
we usually may not be able to solve for Rs(Ry, = Rmum) explicitly after applying (3.19) to (3.1).
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For ease of understanding, an overview of the following proof is given below.

To prove that numerator and denominator are < 0 for certain by, we firstly
assume all a, = 0 or K, = Ry and calculate g—glﬁll}m, which will equal zero for
any R, > R; — Ry.

Secondly, we assume that at least one a,, > 0, hence Ry > Ry (according to
(3.1)). Then the numerator of d—gﬁiﬂ is always > 0 and all terms of the de-
nominator are > 0 except Ry — 2R im. Thus, if Ry > 2 Rpiim, the denominator
is always > 0. If Ry < 2Rpim, we have to use certain inequalities to prove
that (at least) for by < 2 the numerator will be > 0. However, since by was
restricted to by < 2 in Section 3.5.2.2, it suffices to check the minimum esti-
mated value of the denominator at by = 2. The positive (or zero) numerator
and denominator yield a %"%—'ﬁm <0

We then know that for all possible values of Ry, a,, and b, according to (3.1),

30z, inmelBn=Fentim) < () if Ry > R — Ryo and (at least) by < 2.

As indicated above, we begin the actual proof by assuming all a,, = 0, thus
R, = Ry. We then obtain

dleim
dR, an=0Yn

Then Ruyim = R; — Ry for any Ry > R; — Ry independently of R,.

=0.

If at least one a,, > 0, the numerator of éﬁ‘;‘z—% is always > 0 and all terms of

the denominator are > 0 except Ry — 2Rmjim-
Thus, if Ry > 2Rmiim, the denominator is always > 0, too.
Conversely, if Ry < 2Ruim, We obtain from (3.21), (3.1) and (3.19) that

N b
Rs(leim) _RSO - Ri"_leim __RSO = E an (\/leim (RZ - leim)) . Hence,
n=1

2 leim (RZ - leim)

N
+ Z anbn (\/leim (RZ - leim))bn (Re -2 Rm]im)
n=1

Z 2 leim (RZ - leim) + bN (Rl - leim - RSO) (RZ -2 leim)

holds due to by > by_1 > ... > by > 0.
Since by was restricted to by < 2 in Section 3.5.2.2, it suffices to check if the
minimum estimated value is > 0. Its minimum occurs at by = 2, yielding
2 Rinlim (Re — Rtim) + 2 (Ri — Rulim — Rso) (B¢ — 2 Riglim)
= 2 ((Ri — Reo) (Re — (Ri — Re0)) + (B — Runtim — Rx0)?) ,
which is always > 0 if Ry, > R; — Rgo.
Combining all preceding parts of the proof, we may conclude that numerator

. . R dgr ; Ru=Ri .
and denominator of Q%%l;m are > 0 and thus %‘ﬁgm and g""“m‘“‘fj e miim) remain

< 0if Ry > R; — Ry and (at least) by < 2.
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Summarising both proofs yields a maximum g inma 8t R¢ = B; — Rgo If 0 < by < 2
and if Ry, was chosen according to Section 3.5.2.2. If R, is lower or higher, gr inma
decreases except for Ry = Ry, where it stays constant at its maximum value if Ry
increases further.

B.2.2 T network
B.2.2.1 Optimum value of parameter G, for maximum power gain

As indicated in the overview of the proof given in Section 3.5.3.2, we begin the
actual proof by assuming all a, = 0, thus Ry = Ry throughout the valid range of
Gm. We then obtain from (3.39)

Gp _dGp

Gn dGn
Applying (3.32), (3.40), and (3.41) yields
Gp (Gm+Gp)

Gy _ 4G, _
Gm dGm/|e_ovn VO (Ge=GCu)

21/ Gm (Ge=Gm) 1/ (Gm+ Gp) (Gi—Cm—Gp)+Gim (Gi=Gm—Cp+Ge—~Gm)+Gp (Ge—GCim)
Grm (Gi—Gm+Gy~Gm) v/ (CGm+Gp) (Gi~Gm—Gp)+(G; Gp+2Gm (Gi~Gm—Gp)) 1/ G (Ge—Gim)

a(5t3) a(51=)
Gp (Fﬁﬁ G2_2w}4 <GP aGLp +Gm aGL,: ))

- o(z1z)
v Gy - Gi-2o6, 58

Since Gi, G¢, Gm, Gp 2> 0, and (3.33) applies, numerator and denominator of
Gp _ dGp

( e dGm) l _ . are always > 0.
an=0¥n

If at least one a,, > 0, we begin by deriving some inequalities which we will use to
check numerator and denominator of (3.39) separately.

By thoroughly reviewing numerator and denominator, we identify two common
terms. For the second one we can prove that

N
1 1 2 bn—1
- — nbnA n—1l >
26y o1 <w2 7 Gp) n§:1ja >0

holds if 0 < by < 2.
The proof has to be split in two cases.

IfGp > J}Tp and Gp, wly, a, > 0, and b, > 0, the above estimate is valid for any
by.
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However, if G, < ﬁ, several estimates are needed. Since by > by_1>...>b; >0

N
and R, > 3 a, (wLe)b (from (3.1)), we obtain after applying (A.16) and (A.17)
n=1

N
00, — _ (L _ g2 ZanbnA”"'l
prp w2Lg p o

N
> a, Ab»
) b

1 1 =
> 9 _ 2 n=1
2 26 wLy (wQLf, G A
GE
> 26, — L _ o Cr ((Q_bN)wz_E%“FbNGg)
= p wLp w2L}% A - Zul',_p )

which is always > 0 if 0 < by < 2 holds?.

From now on we limit the inductor’s @) factor to ¢ > 1, which just indicates that
wLs > R, or ﬁ > G, (from (A.17) and (A.16)) and is likely to assume for a useful

variable inductor.

Combined with the preceding estimate, we finally obtain

1 1 1 al
2 § bn—1
2Gp_u_)fp22Gp —< —Gp) n:1anbn/\ ZO,

272
wly w?Lg

which we will use in the following proof.

After deriving all necessary estimates, we check numerator and denominator of (3.39)
separately:

1. Since wlLy, G, Gp, an are > 0, b, > 0, and the preceding estimates apply,

H(—1 d
the numerator will always be > 0 for G, (6“’5:) G %}2 < 0.

1
wLp )

Conversely, if G, <o T Gm aG > 0, the preceding estimates apply and
N
Gp (w_ﬁl_Lg -Gy +2G, w“}T Z Gnbn Ab"_1>
<2 Go oty — (m Gz) 2 anbn A”””l)

(o een )
P TOC, G 5,
Gp

8(51=) o(51=)
(W GQ) 2Gpr (GP aGL: +Gnm 8GL,:>

>

4The proof would still be valid if we would put by = 0, but its initial definition in (3.1) was
by >by_1>...>b; > 0.
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holds.

After applying (3.32), (3.40), (3.41), and G, > 0, we finally have to check

(1) 8(51s)
1 2 1 wkL wLE
w?L2 _GP—QE;(GP'BG: + G LT >

— 92 G (Gi—Gm—Gp+Gp—Gm)+Gp (G¢—Gm)
G (Gm+Gp)( N om e em sy emer e cmremeend K

which is always > 0 throughout the (utmost) valid range of Gy, indicated in
(3.33).

2. Since wlp, Gm, Gp, a, are > 0, b, > 0, and the preceding estimates apply,

1
the denominator will always be > 0 for (a‘”Gf") <0.

u)L)

Conversely, if —=2 > 0, the preceding estimates apply and

N
Gm <ﬁ - G12> +2Gp 5},— (Z by, Abn_l)
jod

) k)
- (260 st~ (ot~ 08) Z oo )

1
> Gm(W—Gz—Z L Gp awch)>

holds.

After applying (3.32), (3.41), and G, > 0, we finally have to check

3(z15)
w21Lg_G2 255, 1 Gp aG

= - - (Gi Gp+2 Gm (Gi=Gm—Gp)) y/ Gm (Ge—GCim)
= Gm (G1 Gm + G[ Grn) + \/(Gm+Gp) (Gi—.Gm_GP)

i

which is always > 0 throughout the (utmost) valid range of Gy, indicated in
(3.33).

Combining all preceding parts of the proof, we may conclude that (at least) for
0<by<2and @ >1 (hence wLs > R, or ﬁ > (3p), numerator and denominator

of g—; — gg; in (3.39) and thus 9%&“2 itself remains > 0 throughout the (utmost)

valid range of Gy, indicated in (3.33).
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B.2.2.2 Optimum value of load conductance G, for maximum power
gain

In Section 3.5.3.2 the parameter G, was optimised for maximum g inma. However,
the maximum g inma still depends on Gy (for the intended aplication, Gj is fixed and
known).

Thus it’s necessary to investigate which G, yields the maximum ¢ inma if G is
chosen for optimum g; inma according to Section 3.5.3.2.

Which G, is likely to yield the mazimum g inma ?

As indicated in Section 3.5.3.1, L, — oo for Gy = Gj, the limit which separates the
two possible (utmost) upper limits of Gp,. Then, according to case (ii) in (A.18),
the lowest G}, occurs (G = 0).

Supposing that the highest g; inma coincides with the lowest G|, requires proving of

dgt,inm;écjm=ce) Z O if Gf S Gl or dgt,inma(dGGm=Gmlim) S 0 if Ge > Gi7 respectively)

£
thereby obtaining that g inma 8t Gm = G = Gj is greater (or equal) than any other

GJt,inma-

According to Section 3.5.3.2, the proof has to be split in two parts:

(i) Ge S Gi, hence 0 S Gm _<_ Gz
The highest g inma is obtained if G, = Gy. g, inma 1S given by (3.37),

Ge
gt,inma(Gm = GZ) - G + Gp(Gm = Ge)

Its derivative with respect to Gy is

d9t,inma(Gm=Gr) _ G Gp(CGm=Gy)  dGp(Gm=Ge)
G T (Ge+Gp(Gm=Ge))? Ge Gy :
Since Gy, Gp(Gm = G¢) > 0, it suffices to check Gp(G&:Gz) _ de((?'Gml:Gg).

Using (3.1) and (A.19), we define an implicit function for R(Gp = Gy),

0.

N . b Co(Gm=Gy)
~ SLpCm=Cg) p(Gm=G
wt = RSO + Z an 2] — T — 2 — T
n=1 GP(Gm—GZ)+w2Lp2(Gm=G€) GP(Gm_GZ)+w2Lp2(Gm=Ge)



APPENDIX B. LOSSY L, n, AND T MATCHING NETWORKS 153

Comparing the implicit function and the factor to check to those of Sec-
tion 3.5.3.2, it’s quite obvious that the proofs are similar if G}, is replaced
with Gp(Gm = G¢) and Gy, with G,. Regarding the derivatives, those with re-
spect to G}, or Gp, are replaced with derivatives with respect to G,(Gm, = Go)
or (3.

Then Gm—Ge) de((?énezcé)

G,
are apphed.

is given by (3.39) if the indicated replacements

To prove that & G"‘“G‘f) dG"((jcé“:G”) > 0 the proof of Section 3.5.3.2 may be

adapted accordlngl}i All estima‘éions are valid if the indicated replacements
are made, hence prior to the usage of 511:_,, and its partial derivatives the terms

to check are similar. However, ﬁ and its partial derivatives have changed
compared to those of Section 3.5.3.2 and are given by

wLp(Glszg) = /(Ge+ Gp(Gm = Gi)) (Gi — Gt — Gp(Grm = G)),
Y orpen=ep) _ Ci—2(Co+Cp(Cm=Gy))
8Ge 2/ (Ge+Gp(Cm=Gr)) (Ci—Ge=Cp(Cm=GY))’

N orpom=cy) Gi=2(Ge+Cp(Cm=GCy))
0Gp(Gm=GCr) 21/ (Ge+Gp(Gm=G1)) (Gi—Ge—Gp(Gmu=GCr))

(Lp(Gm = Gy) is obtained by putting Gy, = G¢ in (3.32)).

Similar to Section 3.5.3.2, we begin the proof by assuming all a, = 0, thus
Rs = Ry throughout the valid range of G,,. We then obtain

Gp(GmIGg) . de(Gm=Gg) — fe (Gm=Ge)
Gy dG, an=0Vn G,
—G2%(Cm=G¢)—-2 G (G =G WLp(Gm—Gg) G 6(wLp(G1m=c[))
TL%ET 5 (Cm=C0)=2 Srga=ap | Or(Om=Ct) g (am=cy) +C0¢ — a5,

1
— )
Gp(Gm=G) __‘ﬁe_______L (Cm=Gp)

1 - — —.——..—.
w22 (Gm=Gy) —G3(CGm=G)-2 wLp(Gm=Gy) 3Gp(Gm=Cy)

Applying m and its partial derivatives gives

. Gp(Gm=G¢) (G2 Gp(Gm=Gy))
- Ge (Gi—Gy) )

Gp(Gm=Gy) _ dGp(Gm=GCy)
G, dG,

an=0Vn

which is always > 0 if G, < Gi.

If at least one a, > 0, numerator and denominator of GP(Gg‘"Ge) dGP(G’""Gl)

are checked separately similar to Section 3.5.3.2, yielding the followmg terms
which have to be proved to be > 0 if wLy(Gn = Gi¢) > Rs(Gm = Gy) or

mlmtcm > Gp(Gm = Gz) and 0 < by < 2 holds:
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B ot ey
1. In case of the numerator Gp(Gn = G¢) > 0, wLp(Glszg), (“Lpé%“;‘ce)),

P
and ‘%%f% are applied, yielding

1 2 _
w2 L2(Gm=GCy) - Gp(Gm - Gf)
Oy e ceme=resn ] N =)
1 _ wLp(Gm=Gy) GLp(Cm=Gg)
I (cherem) (Gp(Gm = Gu) a5 om=c t G~ )

= Ge (Ge + 2 Gp(Gm = G@)),

which is always > 0.

1
and erpea=ey)

2. In case of the denominator Ge > O, “’_L_p(Glm—:Gl)’ m are

applied, yielding

Nsr—rm—=m=)
1 2 _ 1 — wLp(Gm=Gy)
wrrgGa=ca ~ Go(Gm = G) = 2 o e =gy Co(Gm = Go) 5 tcn=cn)

= G(Gi—Gy),

which is always > 0 if G, < G;.

Combining all preceding parts of the proof, we may conclude that (at least)
for 0 < by < 2 and Q > 1 (hence wLs > R or ;-}; > (p), numerator and

. Co(Gm=GC dGp(Cm=C dge inma(Gm=GC¢) . .
denominator of el C?e e) _ 4Gyl df?e &) and thus %‘Zm” itself remains

>0if Gy <G

(ii) Ge > Gi, hence 0 < Gy < Gritim
The higheSt Gt,inma is Obtained lf Gm = Gmlim = Gi — Gp(Gm = Gmlim)- gt, inma
is given by (3.37),

Gmlim
Gi

G, inma(Gm = Gmlim) =

Its derivative with respect to Gy is

dgt, inma(Gm = Gmlim) _ }_ dCTleim
dGe - Gi dGl .

Since Gj > 0, it suffices to check %—'G&tm.
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As indicated above, supposed the maximum g inma OCcurs at Gy = Gj, we have
to prove that igmlm <0if Gy > G.

For ease of understanding, an overview of the following proof is given below.

To prove that numerator and denominator are < 0 for certain by, we abbre-

Bu—1
viate St Z an by, ( y/ Cniim (Ge~Ciniim) l )) and obtain

Gi _Gmlim)2+Gmlim (GZ‘G i

dGm]im _ Gmlim (2 (Gi"‘Gmlim) \/Gmlim (Gé—Gmlim)+((Gi"Gmlim)z"Gmlim (Gl mhm)) § )

dG, 2Gi(Ge—Gi) v/ Crmlim (Ge—Crmtim)+(Ge (G2 —Ge Grnlim) +2 Cratim Gi (Ge—G1) ) S

We firstly assume all a, = 0 or Ry = Ry, hence St = 0 and calculate dGL‘(”“,

which will be < 0 for any G, > G;.
Secondly, we assume that at least one a, > 0, hence Ry > Ry (according

o (3.1)) or §t > 0. We then prove that by 75 Gi“(GG“““"(‘; ) > §t and check
mlim £~ mlim

numerator and denominator separately:

1. If (Gi — Gmiim)? — Gumtim (Ge — Gulim) = 0, the numerator is always > 0.
Conversely, if (Gi — Gmiim)? — Gmitim (Ge — Gmiim) < 0, we have to use the
preceding estimate. Since by was restricted to by < 2 in Section 3.5.3.2,
it suffices to check the minimum estimated value of the numerator at
by = 2, which will be > 0.

2. If Ge (G'2 — GeGmiim) + 2Gmim Gi (Ge — G;) > 0, hence Guim <
—ée—%‘i—(;w, the denominator is always > 0. Conversely, if Guim >

(———G%Td;, we have to use the preceding estimate. Since by was re-

stricted to by < 2 in Section 3.5.3.2, it suffices to check the minimum

estimated value of the denominator at by = 2. To prove that this
value is > 0, we consider 0 < Guim < G; < Gy yielding G, > 2G; if
G, G?

Grlim > [(Ftentave:2

We then know that for all possible values of Ry, a,, and b, according to (3.1),
:—gﬁm and thus ¢ ‘"m"(dcé“”a‘“h‘“ itself is always < 0 if Gy > G| and (at least)
N < 2.

As indicated above, we begin the actual proof by assuming all a, = 0, thus
Ry = Ry for any valid G,,. We then obtain

Gt (2(G1 = Guiin) v/ Gt (Gt = Gt )

dG’mlim -
dGe an=0Vn 2 Gi (Gé - Gl) \/Gmlim (G€ - Gmlim)
Numerator and denominator of this fraction are always > 0 if Gy > Gj, hence
dG . .
—dglem o0 is always < 0.

If at least one a, > 0, we begin by deriving an inequality which we will use to
check numerator and denominator separately.
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Since by > by_1 > ... > b1 > 0,

bp—1
ZN: 4.y vV Gutim (Ge — Grnlim)
" (Gl - C;mlim)2 + Gmlim (Gé - Gmlim)

bp—1
> i ab \/Gmlim (GZ - Gmlim)
- o (Gl - Gmlim)2 + C;'mlim (GZ - Gmlim) .

holds.

Furthermore, from the definition of the implicit function we ob-

b
ta:in Gi"'Gmlim > % \/Gmhm (G’E mhm) " or
(Gi_Gmlim)2+Gmlim (GE_Gmlim) - nel (G Gmhm) +Gmhm (Gl mhm)

bp—1
Gi—Gnilim Z a \/Gmlim (Ge~Gmiim)
v/ Catim (Ge~Crmim) —~ 21 (Gi—Gmtim)?+Gmiim (Ge—Gmiim) )

Combining both estimates yields

G Gmhm
\/ Gmhm - Gmlim)

v/ Craim (Gt — G "
> nbn mlim ¢ — Umlim '
B ; ‘ ((Gi — Gulim)? + Giim (Ge ~ Gmlim))

After deriving the required estimate, we check numerator and denominator of
dcgl"“ separately:

1. If (Gi — Guiim)? — Guilim (Ge — Gutim) = 0, the numerator of %‘—‘m is
always > 0.

Conversely, if (Gi — Guilim)? — Gumlim (Ge — Gmiim) < 0, the preceding
estimate applies and

Gmlim (2 (Gl - Gmlim) \/Gmlim (GZ - Gmlim)

+ ((Gi = Gumiim)? = Griim (Ge — Gmiim)
N \/Gmlim (Gl_Gmlim) bnl
‘ nzzzl Anbn ((Gi—Gmlim)2+Gm1im (Ge—Crlim)

> Gulim <M‘)GW—YH(GZ—_G_’M.E.)_

- Gmlim (Ge—Gmlim)

N

(Gi_cmlim) —Gmlim (GC mllm)) by (G Gmllm)
\/Gmhm GZ mhm)
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As 0 < Guiim < Gi < Gy, Gulim, Gi ~ Gutim, and the denominator of the
fractions are > 0. Since by was restricted to by < 2 in Section 3.5.3.2,
it suffices to check if the minimum estimated value is > 0. Its minimum
occurs at by = 2, yielding

2 Gmlim (Gl - C';’mlim) =+ ((Gl - G’mlim)2 - Gmlim (Ge - Gmlim)) 2
= 2 (Gl - Gmlim)2>

which is always > 0 according to (3.33).

Hence the numerator of Q%glgim is always > 0 if Gy > G; and (at least)
by < 2.

2. The denominator of %gfﬂ is always > 0 if
Ge (G? — Ge Grtim) + 2 Gumiim Gi (G — Gy)
= —(Ge—G)+G)) (Gmlim -

G, G2
(Ge — Gi)g + G?

. c - . G G2
is > 0, which is equivalent to Giim < ’(‘G_e—_“’é‘j'%_,_—c‘g

Conversely, if Ge (G? - Ge Gmlim) + 2 Gmlim Gi (Ge e Gl) < 0or Gmlim >
Ge G?
(Ge—éi)2+ci !
2 C;fi (Gé - Gl) \/Gmlim (Gf - Gmlim)

+ (Ge (G? — G¢ Giim) + 2 Giim Gi (G — GY))

N bn—1
. Z a b 1Gmlim (Gl—Gmlim)
n=1 nrn (Gi"Gmlim)2+Gmlim (Gé_Gmlim)
> 2Gi(Ge=Gi) Gmiim (Ge=Cmiim)
- \/Gmlim (Gé’_Gmlim)
Ge (GG Grmlim)+2 Grmlim Gi (Ge—G1)) by (Gi—Gimiim)
V/ Cumilim (Ge—Grlim) ’

the preceding estimate applies and

N

The denominator of the fractions is > 0. Since by was restricted to
by < 2 in Section 3.5.3.2, it suffices to check if the minimum estimated
value is > 0. Its minimum occurs at by = 2, yielding

2G;(Ge — Gi) Gmiim (Ge — Gmlim)
+ (G¢ (G} — Gy Gutim) + 2 Gumiim Gi (Ge — G1)) 2 (Gi — Gratim)
= ZG? (G? + (Gl — Gmnm)2> + 2 (Gi3 + Grinim (Ge — G,)) (Ge -2 Gj),

which is always > 0 if Gy > 2G;. The latter can be proved if Gy >

G, G? .
(—G;—_%)Q‘TC—,; and 0 < Goim < G; < G, are considered, hence

i —_

G, G? Ge (Ge — Gy)?
0 < Gr—Gmim < Ge—(‘a‘,:—éij%ﬁ? T (Ge-G)E+GY
G, G? Gi (Ge— Gi) (Ge — 2GY)

0 < Gi—Gumim < Gi“m’g = (Ge — G2+ G?
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Since z—g'—?;:é‘g is always < Gy, but is < G only if G, > 2G;, a valid

Gulim > (”Gg——G,)%?C—JZ may exist® only if G, > 2 G,.
Hence the denominator of d_Ggngm is always > 0 if G, > G; and (at least)
by < 2.

Combining all preceding parts of the proof, we may conclude that numerator
and denominator of -d—c—;m‘m are > 0 and thus Q-Gagﬂm and 9% ‘“"‘“(dGC:.“_G‘“‘““) remain
<0if Gy > Gy, and (at least) by < 2.

Summarising both proofs yields a maximum g inms &t G¢ = Gi if the inductor’s
@ factor is limited to @ > 1 (hence wLs > Rs or ;71;; > Gp), 0 < by <2andif Gy
was chosen according to Section 3.5.3.2. If G, is lower or higher, g inms decreases.

B.3 Matching of a resistive load to a resistive
source (matching at the network’s input) in-
cluding the losses of all network elements

B.3.1 Introduction

As indicated in Section 3.5.1, the power gain of m or T networks may be derived
in a simpler manner than that used in Sections 3.5.2.1 and 3.5.3.1. This simpler
approach is e. g. applied by [51b] and based on taking into account that active power
may be transferred to resistive circuit elements only. Due to its simplicity, it’s ideally
suited to include the losses of all network elements.

To illustrate the method, it’s applied to 7 and T networks which are designed to
match a resistive load to a resistive source at the network’s input.

B.3.2 & network

R R L
AAA—A
Kol R 2 =G C= é Ry, g R,

Figure B.1: m network’s equivalent circuit including losses of all network elements

Consider the m network of Figure B.1 which takes into account the losses of all
network elements. Comparison to the network designed in Section 3.5.2.1 yields

6Tt should be noted that depending on the given values of Rs, G¢, and G;, Gmiim < W
may also occur if Gy > 2G;.
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that it is still applicable for the “inner” w network consisting of Ci, Rs, Ls, and Cy,

which transforms the load Rpresr = —t—1 t0 Riresr = T———1— at the network’s

R +T2} B~ Rpcy

pCo i

input.

The resulting input resistance Rjes» the “inner” 7 network is matched to is chosen to
obtain the required input resistance R; of the total network whose input resistance
at matching frequency is equal to Riesr in parallel to Ry¢;.

~

Bxctl Pact2 Pact2 Pact3 Pact3 Pacu’
i Riresn Rm + Rs Rm + Rs Rm + 2Rs Rm Réresu RZ

& N NN o | | =N |
< 5 < = = 5
Zol Rpc, é "]- ¢ G, = éRpc2 R,

Figure B.2: Definitions and setup for power gain derivation of the 7 network in-
cluding losses of all network elements

Thus the 7 network transforms its load R, to R; at the network’s input if its ele-
ments are set according to the design formulae derived in Section 3.5.2.1 where R;
is replaced with Rjesr and Ry with Ryesr. Then, at matching frequency, the 7 net-
work’s resulting equivalent circuit is given by Figure B.2. Similar to Section 3.5.2.1,
Ly is split in Lg; o to illustrate reactive cancellation in each of the two L networks
building the m network.

If the 7 network’s input is matched to R;, the voltage at its input is equal to %ﬂ
Hence the active power delivered to its input is given by

!Zo|2 2
1 =* 1 V5 @22
Pa,ct1=_ 4 ____0(—_)

2 R - g R - Pactmaxi-

1 1
P12, the active power transferred to the “inner” m network, is equal to P dimin-
ished by the active power Rpc, consumes, thus

1 lZflz R.
Poto = Pac -3 = Pactmaxi | 1 — l .
t2 t1 9 Rp01 tm ( Rp01)

Since C and Ly are purely reactive, they do not consume any active power, and
Pocio = P, act2:

a) Izcﬂ act3 b) i);lctii Fr
Rm + RS Rm Rfresn Rl
L |l I [
= L= B
SR, Vi Re, SR,
—O-

Figure B.3: Equivalent circuit to derive Pyys and Pt according to [51b]
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For our chosen parametrisation, R, is the input resistance of the partial net-
work to the right of Rs. Then, as indicated in Figure B.3a), the same current
I, ﬂows through Rs and R, Thus we obtain Py = 2 (Rm + Rs)|L,,|* and
Pacts = 5 Rm |I s7r|2

R, ~ 1 R;
Pa.c = P, =Pa,cmai 1- .
t3 Rm+Rs act2 t x1+R ( >

Again Ly and C) are purely reactive, do not consume any active power, and P,3 =
P, act3-.

Then, as shown in Figure B.3b), the same voltage V , is applied to Ryc, and Ry.
ThUS Pact3 = % |‘/p1r|2 (R Oy 'R}_l) and Pact[ = % |_V_vp7r|2 —Rl—lfa or

~ R
Pocte = ’—‘“—“_Pwt?’ = Factmaxi L] oy
ac - Rf - actimaxi _& Rf M
1+Rpc2 I+ 1+ 5

Summarising the preceding considerations yields the power gain of the 7 network
including losses of all network elements,

11—

Rpcy
. B.1
1+%1+R~_C— ( )

gr,inma =

Despite its apparent simplicity, the formula is quite complicated because usually
Ryc, , and Rg are functions of the parameter R,,.

Even for the “simple” case of constant @ factors of all network elements, hence
Rpc, = wCl( < , R = ~—st, and Ryc, = ﬁ(— explicit derivation of those functions

wC.
is somewhat dlfﬁcult

One approach is to put wQ_(i and the design formula of Cy (given by (3.18) if Ry is

replaced with Reresr) in Reresr = —r1—+1— and solve the resulting equation for Ryres:

RpCQ —RZ
— the solution has to be real, positive, and < R,.

Then we perform similar calculations for Ryc, and Riresr, put the solutions in R, =
ést, where L, is given by (3.19) if R; is replaced with Rjesr and Ry with Rpresr,
and solve for Rs. However, more than one solution is obtained. Thus we additionally
need to derive which solution is real and applies in which range of Ry,.

Since the derivations sketched are quite lengthy, time consuming, and not needed
within this work, they are not included herein.
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B.3.3 T network

R, R, Cl C2R R R.C G R,

1 sC) l I
i 1
A
Zol ~ % = Y, 15\/\1\/\/\1‘9 éGP R,

Figure B.4: (Transformed) T network’s equivalent circuit including losses of all
network elements

AN

Consider the T network of Figure B.4 which takes into account the losses of all
network elements. Comparison to the network designed in Section 3.5.3.1 yields
that it is still applicable for the “inner” T network consisting of Cy, Gy, Ly, and Cg,

. 1 _ 1
which transforms the load Gest = o = RsC’Z 7 s t0 Girest = Rmt =
sC2 [4

—L = L — at the network’s input (in the formulae, the definitions G; = -,
R R301 ‘c‘l‘—as'c—l' Rl

Gy = R , and Gec,, = ﬁw were used).

The resulting input conductance Gipes; the “inner” T network is matched to is chosen
to obtain the required input conductance G; = 7% of the total network whose input
conductance at matching frequency is equal to Girest in series to Gy -

%tl Pac!Z G G G éthG G 2G Iécﬁ 13;1013 %cté

‘ + + +

R~ i R 1rest C C €rest ¢
| | | - II
I C=1 = &l =

Y.ol Lp] 2 Gp Lp2 Re

Figure B.5: Definitions and setup for power gain derivation of the T network
including losses of all network elements

Thus the T network transforms its load G, = Rl; to Gy = .I%i— at the network’s input
if its elements are set according to the design formulae derived in Section 3.5.3.1
where G is replaced with Giest and Gy with Geest. Then, at matching frequency,
the T network’s resulting equivalent circuit is given by Figure B.5. Similar to Sec-
tion 3.5.3.1, L, is split in Ly 2 to illustrate susceptive cancellation in each of the
two L networks building the T network.

If the T network’s input is matched to R; = 1 , the voltage at its input is equal to
—T Hence the active power delivered to its 1nput is given by

1V ol?

1%

1
Pac =t = = Pacmai
t1 2 Ri 8R1 tmax:

I<
(=

and the current flowing into the “inner” T network is equal to 2.

N
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P2, the active power transferred to the “inner” T network, is equal to P, dimin-
ished by the active power Rsc, consumes, thus

_ 1 Vol? R,
Pa,ct2 - Pactl 2 Rs01 4R12 = Pa.ct,maxl 1-— Ri .

Since C; and Lg; are purely reactive, they do not consume any active power, and
Pact2 = Pact2-

a) P;lth Pact3 b) 13;108 Pacté
Gm + Gp Gm Rfrest R RE
] L, || Re
= | B
V, $G,3G, SR,
—O-

Figure B.6: Equivalent circuit to derive Pa3 and P,y according to [51b]

For our chosen parametrisation, Gy, is the input conductance of the partial network
to the right of Gp. Then, as indicated in Figure B.6a), the same voltage Vo is
applied to G, and Gy,. Thus we obtain Pacio = SV 2 (G + Gp) and Pags =
: |V il? G, or

Gm ~ 1 R,
G Pact2=Pactmaxi _(1——Cl>.

Pagg = ——0__
act3 Gm+ N 1+g_:1 Ri

Again Ly, and Cy are purely reactive, do not consume any active power, and Pz =
P, act3-

Then, as shown in Figure B.6b), the same current I flows through Rc, and R,.
Thus P = %(Rscz + Ry) ’lstl2 and P = %Rg |lst|2’ or

-~ RsC’
—_— =l
) .= P, actd 1 1 R
act{ — R = L actmaxi a R .
sC. P sC
1+ 52 I+ 1+ 52

Summarising the preceding considerations yields the power gain of the T network
including losses of all network elements,

1 loag (B.2)
G Gy :
1+5: 1+5—s—c€;

Gt,inma

Despite its apparent simplicity, the formula is quite complicated because usually
Rsc,, and Gy, are functions of the parameter Gr,.
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Even for the “simple” case of constant @ factors of all network elements, hence

Gic, = Q1wCi), Gp = g, and Gig, = QawCis), explicit derivation of those

functions is somewhat difficult.

One approach is to put Qs wCs and the design formula of Cy (given by (3.31) if G, is

replaced with Grest) In Grest = —_1—1;1— and solve the resulting equation for Girest

Gscy ' Ge
— the solution has to be real, positive, and < Gy.
Then we perform similar calculations for Gsc, and Girest, put the solutions in G, =
5—(4317), where L, is given by (3.32) if G} is replaced with Girest and G with Girest, and
solve for G,. However, more than one solution is obtained. Thus we additionally
need to derive which solution is real and applies in which range of G,.

Since the derivations sketched are quite lengthy, time consuming, and not needed
within this work, they are not included herein.

B.4 Matching of a resistive source to a resistive
load (matching at the network’s output)

B.4.1 m network

To derive the elements’ values for matching of a (real) source conductance G; = %
to a (real) load conductance G, = ng if a m network with a lossy “central” inductor
is used, calculations are based on the (transformed) m network’s equivalent circuit
in Figure 3.14.

As in Section 3.5.2.1, an approach similar to [13] (derivation for a lossless 7 network)
is used, where reactive cancellation is applied to each of the two L networks — Ciy;
cancels Lg; and Cpo cancels Lgo.

Additionally, the remaining resistances have to be equal. To match the source to
the load, we may choose Ry = Rpn. At matching frequency, Z,; = R holds and
thus Zo = Z; + Rs = Ry, + Rs. To achieve a (conjugate complex) match of the
source to the load, Z, must be equal to Rpg, hence Ry = Ry, + Rs. Conversely,
Zoyg = Rpo = Rn+ Rs and Z, = Z4 + Rs = Ry + 2R, at matching frequency,
which is not equal to Ry, = Ry as it would be for a conjugate complex match of
the load to the source.

Different choices of Ry, o are also possible, but those shown above are ideally suited
for the extension to complex sources.

Using the preceding choice for Ry 2, we would obtain C 2 (and Cp,2) from parallel-
to-series transformation equations for Rn12. Applying reactive cancellation would
then yield Lg o (and Ls). The calculations are not shown here because we alterna-
tively may use the formulae from [13] if they are rewritten in our resistance notation
and if we use Ry; = Rp for the left L network and Ry = Ry + Rs for the right
L network ([13] derives the lossless case, where Ry = Ry = Rn).
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Since Rpy1,2 was obtained from parallel-to-series transformation of passive compo-
nents (source resistance R; > 0 and load resistance Ry > 0), Ruy12 > 0 holds. Then
the calculations described above yield the capacitances C; o and the inductance L
of the original 7 network in Figure 3.13 a), where

o+ 1 Ri—Rm o+ 1 \/RZ_Rm—Rs
Cl = (= CURi Rm ) (B3) CQ = [-] CUR@ Rm+RS )

(B.4)

1 _ OV B (Bi= Ru) 1/ (R + Fe) (Be— Fon — B)

W

(B.5)

(The negative signs in parentheses/square brackets would apply if we would use

(lossless) variable inductors L; o = ~—w——g—é—l—2. Then a negative Lg might occur, which
would be just equal to a variable capacitor Cs = —-le—b. As indicated by using

parentheses/square brackets, reactive cancellation causes a negative sign of the first
square root in Lg, if L4 is used instead of C, or a negative sign of the second square
root in Lg, if Lo is used instead of (b, respectively. We will need these changes
during the extension to inductive sources.)

Comparing the formulae to those of Section 3.5.2.1 yields that they are similar except
that R;, Ry, and the indices of the capacitances are exchanged. Thus the conditions
to R, are changed accordingly. Hence, for valid R, the designability conditions are

0<Rn<R and 0< Rn+ Ry < Re. (B.6)

As Ry > Ry (from (3.1)), we immediately obtain that Ry is limited by Ry < Rj.
If Ry would be higher, the m network would not be able to match any source.

Similar to Section 3.5.2.1, there is an upper limit of R, which is given by R; if
Ry € Ry — Ry or by Ruypm if By > Ry — Rgo, respectively. Rpum is the highest
parameter R, which solves

leim = RZ - Rs(leim) (B7)
for 0 < Rmim < R; and involves valid network elements. The change in the upper
limit occurs at R; = R; — Rg, where, as before, a match would not need any

additional components (Ls = 0 and C; o = 0 would match). It’s interesting to note
that (for a resistive load) there is no other solution where L, = 0.

Depending on the particular Rs used (given as a function of wLs or Ry, ), addi-
tional restrictions to Ry, might apply, limiting R,, even further or involving intervals
within the limits derived above where matching is impossible. However, (B.6) holds
throughout the valid range of Rp,.

tTheoretically Ls = 0 might additionally occur for Ry, = 0 if Rs(Ry = 0) = 0, which would be
possible for Rgy = 0. However, since Ls = 0, the source resistor would not be transformed. Hence
matching would be impossible unless Ry = Ry — Rsp = R¢ = Ry = 0 — this solution is already
described by (a limit of) Rpylim.
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Additionally, the upper limits in (B.6) separate 7 and L networks — C; = 0 if
Ry = R; or Cy = 0 if Ry, = Rpjim, respectively.

After designing the m network’s output impedance to match the load resistance Ry,
we compute the active power P,y delivered to its load resistance R,. Since the
capacitive and inductive reactances in Figure 3.14 cancel at matching frequency, we
obtain

~ [V ol?
1 1V ol? 316 1 T+w2RIC
P,. = —-R — =" —(Ry+ — il
* 2 m2 (le + Rs + Rm2)2 2 ( RS) 4 (Rm + Rs)2
B3 Vol* Ru @2 1
Py = = Poctmexs =5~ B.8
“ = SR Bl s TR (B3)

For a given Ry, the network elements’ values C) o and Lg differ from those matching
the load to the source in Section 3.5.2.1. Since Rs # 0 prevents matching of the
load to the source if the network is designed for matching the source to the load, the
active power P, delivered to Ry is also not equal to that derived in Section 3.5.2.1.
However, the same current flows through Rs and Rn2 = Ry, + Rs, hence it’s given
by

R (B.8) B
Pacts = Pacté — = actmaxi L{j (Bg)
Rm + Rs (1 + &u)
Ry

For optimisation, we will need the power gain g outma Of the matched 7 network.
The active power delivered to the network’s input is Pacyi = Pacts + Pacte (refer to
Figure A.4). Thus we obtain

Pacte Picte (B.8),(B.9) Ry + R 1+ Rﬁj
r,outma = = = — . (B].O)
Picut Picts + Pacte Ry + 2R, 142 ﬁj

(Alternatively we could derive gr outma from (A.15) if we put Coior = Co. However,
we gain more insight in the circuit’s behaviour if it is computed as shown above.)

Comparing the preceding results to those of Section 3.5.2.1 yields that in the for-
mulae of Lg, Rpim and the limits of Ry, R;, and R, are exchanged, whereas for C o
additionally the indices have to be exchanged.

Since d R R 4R,
Gr,outma (B.10) m s
—dmoutma (825 Tm s 8 11
R, (Bt 2R.)° (Rm dRm) : (B.11)

deriving of the optimum Ry, requires simply checking of the sign of —]1%:]— — a‘%i: similar
to Section 3.5.2.2.

Conversely, deriving the optimum source resistance R; if Ry, is chosen for maximum
g, outma iDVOlves

gw,outma(Rm - Rl) - R, + 2RS(R1TI == Ri)
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and
dgﬂ',out.ma(Rm = Rl) —_ Ri Rs(Rm = Rl) _ d (Rs(Rm = Rl))
R, (Bi+ 2 Ro(Rn = B2 R R
if R; is the upper limit of R, or
R,
gr,outma(Rm = leim) - m
and
dgw,outma(Rm = leim) — RZ dleim
dR; (2R; — Rpiim)?  dR;

if Rulim is the upper limit of Rp,.

Thus, similar to Section 3.5.2.3 and Appendix B.2.1.2, the optimisation with respect
to R; requires simply checking of the sign of (B E"R i) _ d( “‘(R m=F) o 9%‘}“%1““ Hence
the proofs of Sections 3.5.2.2, 3.5.2.3 and Appendlces B.2. 1 1 B.2.1.2 apply if R;
and R, are exchanged.

Furthermore, the extension to complex sources can be performed in a similar manner
as the extension to complex loads, in particular because in addition to R;, Ry, the
indices of C) o are exchanged compared to the case of matching the load to the
source.

B.4.2 T network

1
—G—itO

To derive the elements’ values for matching of a (real) source resistance R; =
a (real) load resistance Ry, = 51; if a T network with a lossy “central” inductor is
used, calculations are based on the (transformed) T network’s equivalent circuit in

Figure 3.15.

As in Section 3.5.3.1, an approach similar to [13] (derivation for a lossless T network)
is used, where susceptive cancellation is applied to each of the two L networks —
Cmi cancels Ly and Cryg cancels Lps.

Additionally, the remaining conductances have to be equal. To match the source to
the load, we may choose Gp1 = Gp,. At matching frequency, Y ;; = G, holds and
thus Y o, = Y y; + G, = G + Gp. To achieve a (conjugate complex) match of the
source to the load, Y o; must be equal to G, hence Gy = G, + G,. Conversely,
Yu=Gn=Gh+Gyand Y, =Y+ G, = Gy + 2G}, at matching frequency,
which is not equal to Gy = G, as it would be for a conjugate complex match of
the load to the source.

Different choices of G, 9 are also possible, but those shown above are ideally suited
for the extension to complex sources.

Using the preceding choice for G2, we would obtain C 5 (and Ciy2) from series-
to-parallel transformation equations for Gp19. Applying susceptive cancellation
would then yield Lyi o (and Lp). The calculations are not shown here because we
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alternatively may use the formulae from [13] if they are rewritten in our conductance
notation and if we use Gmi = Gy, for the left L network and Gme = Gm + Gp
for the right L network ([13] derives the lossless case in resistive notation, where
Gml = Gm2 = Gm)

Since Gm1,2 was obtained from series-to-parallel transformation of passive compo-
nents (source conductance G; > 0 and load conductance G¢ > 0), G2 > 0 holds.
Then the calculations described above yield the capacitances C 5 and the inductance
L, of the original T network in Figure 3.13 b), where

G G Gy Gm+G
L Al S, — + 7t m P
G=oVa-ar B e=0 NG -6.-q ®1

1
W ((3\/ G (Gi = Gm) 614/ (G + Gp) (Ge — G — Gp))

L . (B.14)

(The negative signs in parentheses/square brackets would apply if we would use

(lossless) variable inductors Ly o = —ﬁé:. Then a negative L, might occur, which

would be just equal to a variable capacitor C, = —;g—lL—P. As indicated by using
parentheses/square brackets, susceptive cancellation causes a negative sign of the
first square root in Ly, if L is used instead of C}, or a negative sign of the second
square root in Ly, if Lo is used instead of Cj, respectively. We would need these
changes during the extension to inductive sources.)

Comparing the formulae to those of Section 3.5.3.1 yields that they are similar except
that G, Gy, and the indices of the capacitances are exchanged. Thus the conditions
to G, are changed accordingly. Hence, for valid GG, the designability conditions are

OSGmSG, and OSGm-f-GpSGg. (BlS)

Similar to Section 3.5.3.1, there is an upper limit of Gy, which is given by G if
G; < Gy or by Guiim if Gi > Gy, respectively. Guim is the highest parameter G,
which solves

Gmlim = GIZ - Gp(Gmlim) (B16)

for 0 < Gmiim < Gj and involves valid network elements. The change in the upper
limit occurs at G; = Gy, where, as before, a match would not need any additional
components (Ls — 0o, hence L, — 00, and C12 — oo would match). It’s interesting
to note that (for a resistive load) there is no other solution where Ls, — oo or
L1t
L, :

iTheoretically -Ll: = 0 might additionally occur for G, = 0 if Gp(Gm = 0) = 0. However,

since Lyp — 00 (L—lP = 0 and Gp = 0 is case (ii) in (A.18)), the load conductor would not be

transformed. Hence matching would be impossible unless G; = Gy = Gy, = 0 — this solution is
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Depending on the particular R, used, hence the particular G, used (given as a
function of wL, or Gp,), additional restrictions to Gy, might apply, limiting Gy,
even further or involving intervals within the limits derived above where matching
is impossible. However, (3.33) holds throughout the valid range of G,.

Additionally, the upper limits in (B.15) separate T and L networks — C; — oo if
Gn = Gj or Oy — 0 if Gy = Gjim, respectively.

After designing the T network’s output impedance to match the load conductance
(74, we compute the active power P, delivered to its load conductance G,. Since the
capacitive and inductive susceptances in Figure 3.15 cancel at matching frequency,
we obtain

1 o) 1 Vol i
4 (3.29) Y ol zzr2C
P, = =G 0 =) (G + Gy i
wett 272 (G + Gy + Gon)? 2 Om+Go) ey
812 |Vol* Gm @2 1
Pac = = Pac axi . B]'
t 8RR, Gm+G, I Ce (B.17)

For a given Gy, the network elements’ values C} 2 and Ly, differ from those matching
the load to the source in Section 3.5.3.1. Since G, # 0, thus Rs # 0, prevents
matching of the load to the source if the network is designed for matching the
source to the load, the active power P, = Pacts delivered to G}, or R is also not
equal to that derived in Section 3.5.3.1. However, the same voltage is applied to G,
and Gpo = G + G, hence it’s given by

G (B.17) &
G
Pa.ctp = Pacw _—p_ Pactmam L . (B18)
Gm+G Cn )’
P (1 + GP)

For optimisation, we will need the power gain g outma Of the matched T network.
The active power delivered to the network’s input is Paetr = Pactp + Pacte (refer to
Figure A.6). Thus we obtain

G
g _ Pawe  Pacw B17),B18) Gn+G, 1+5=
PO Pactt Pactp + Pacte Gm+2G, 1428

(B.19)

(Alternatively we could derive g¢ outma from (A.23) if we put Cyr = Co. However,
we gain more insight in the circuit’s behaviour if it is computed as shown above.)

Comparing the preceding results to those of Section 3.5.3.1 yields that in the formu-
lae of Ly, Gmiim and the limits of Gp,, Gj, and G, are exchanged, whereas for C 5
additionally the indices have to be exchanged.

already described by (a limit of) Gmiim.
Unique to the T network case (i) b) in (A.18) describes a second pomt where 7 L =0or L, — o0,

but Ly = 0, if G¢ > &~ for Ry > 0 and G, = Giim = Ge — R_o = G, hence Gp = —50- and
C1g9 — 0. Compared to L, — oo, which was lossless, Ly = 0 involves losses in Rg.
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Since
(B.20)

dgt, outma (B.19) Gn Gp  dGy
dGn,  (Gm+2Gp)? \Gm dGn/’
deriving of the optimum R, requires simply checking of the sign of % - % similar
to Section 3.5.3.2.

Conversely, deriving the optimum source conductance G if Gy, is chosen for maxi-
MU gy outma iRVOlves

v Gi+Gy(Gm=GY)
guoums (O = G1) = G G (G = &)

and
dgt,outma(Gm = Gl) — Gi Gp(Gm = Gl) _ d (Gp(Gm = Gl))
dG; (Gl + 2 Gp(Gm = Gi))2 G, dG;
if GG is the upper limit of Gy, or
G
gt,outma(Gm = Gmlim) = m
and
dgt,outma(Gm = Gmlim) _ GZ dGmlim
dG; (2G; — Gmim)?  dGi

if Giiim is the upper limit of Gy,.

Thus, similar to Section 3.5.3.3 and Appendix B.2.2.2, the optimisation with respect
to Gj requires simply checking of the sign of GP(Ga=Gi) — d(G"(G“‘fG‘)) or %‘5‘:&. Hence
the proofs of Sections 3.5.3.2, 3.5.3.3 and Appendices B.2.2.1, B.2.2.2 apply if G;
and G, are exchanged.

Furthermore, the extension to complex sources can be performed in a similar manner
as the extension to complex loads, in particular because in addition to Gj, Gy, the
indices of Ci 4 are exchanged compared to the case of matching the load to the
source.

B.5 Approximate matching of a resistive load to
a resistive source (approximate matching at
the network’s input), network with losses in
all elements designed as if capacitors were
lossless

B.5.1 & network

If the 7 network of Figure B.1 (which takes into account the losses of all network
elements) is designed as if the capacitors were lossless (network elements given by
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(3.17), (3.18), and (3.19)), its input is not exactly matched, but its power gain
G, licapdes May be calculated exactly by applying the method used in Appendix B.3.2
(and [51b]), yielding

2
Rs+ ( "C2) +| VTR (B R Fa) (4] (2+ "CZ) Rpy Rm (Rg=Rm)
1+(2+R%—2— Rm_ 1+(

1+ pCo 2+R;é;) P02
Rm(1+R;é;)
RpC1 RS+1+(2+.R_L_)
pC2 PC’2
. (1 LR ) e (1+(2+R-p;£;> pcz) _ __1~_ (B.21)
Rpe, (1+Fp_é—2') Rm Gr, licapdes

(The negative sign in square brackets would apply for an extension to inductive
loads if the case of undercompensation would be considered.)

Of course it’s also possible to derive the 7 network’s nonzero input reflection coef-
ficient exactly. However, the resulting formula is quite lengthy and thus not given
herein.

B.5.2 T network

If the T network of Figure B.4 (which takes into account the losses of all network
elements) is designed as if the capacitors were lossless (network elements given by
(3.30), (3.31), and (3.32)), its input is not exactly matched, but its power gain
Gs, llcapdes MaY be calculated exactly by applying the method used in Appendix B.3.3
(and [51b]), yielding

G 2

Gm(l+CsC ) + ( +CsC ) sC

Gp+ Yo +| vV @m+Cp) (G1=CGm—Gp) [-] . 2— /Gm (G¢—Cm)
+ 2+CSC2 CsC2 1+(2+CSCQ) ng

2

1+

G
om (1+52L)
m\ 1+ Cy
Gscl G +
(2 o2 ) o
LA sCq sC2

.(HGe)(H(u(uagg—z)a%)cp): L .
GsC'2

(1+ U%;) Gm Gt, llcapdes

(The negative sign in square brackets would apply for an extension to inductive
loads if the case of undercompensation would be considered.)

Of course it’s also possible to derive the T network’s nonzero input reflection coef-
ficient exactly. However, the resulting formula is quite lengthy and thus not given
herein.



Appendix C

Extension of the Method to
Complex Loads

C.1 Matching of a complex load to a resistive
source (matching at the network’s input)

C.1.1 Complex load exhibiting an inductive imaginary part
C.1.1.1 7 network

For complex loads exhibiting an inductive imaginary part, the formula of the induc-
tance L differs from that of complex loads exhibiting a capacitive imaginary part.
In particular, the second square root is subtracted instead of added, introducing
additional zeros of Lg which will be derived in the following section.

From (3.1), the definition of Rs, we obtain

Putting this result in (4.13) yields

\/(Rm =+ RSO) (Rx - Rm - RSO) - \/Rm (RZ - Rm)

w

0=

In our frequency range of interest, the angular frequency w stays finite. Thus Lg can
only be zero if both square roots are equal. In particular, both square roots may be
zero (similar to the capacitive case) or may have the same positive value.

172
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Solving the former for Ry, yields Ry as defined in (3.21) if R, = Ry — Rg. If
Ry # R; — Ry, both square roots cannot be zero simultaneously!: 2.

Solving the latter in case of Ry = 0 requires R; = R, to hold and yields all 0 <
Ry < R; = Ry (C) and Lgg; in parallel resonance), introducing no additional limits
compared to (3.20).

Conversely, solving the latter in case of Ry > 0 requires

(RmL.o + Re0) (Ri — Rir,0 — Rso) = R0 (Re — Rinry0)
to be solved for R, yielding
R; — Ry
“ Re— Ri+ 2Ry
If Ry = R; — 2Rq, there is no Ry, ,0 which solves the equation unless Ry = R;. But,

since then R, = — Ry, it would have to be < 0 which would be out of the load’s
valid range.

Additionally, Ryr.0 has to be > 0 and < Min{ Ry, Rujim} to introduce a new limit
within the (utmost) valid range of Ry,.

The numerator of Ry, is > 0 because 0 < Ry < R; as derived in Section 3.5.2.1.
If R — Ri+2Ry < 0, hence 0 < Ry < R — 2Ry if 0 < Ry < %’*, the denominator
of R0 is < 0 and thus Ry, 0 < 0, introducing no additional limit of Ry,.

If Ry — Ri + 2Ry > 0, hence Ry > R; — 2Ry > 0if 0 < Ry < & or any R, > 0 if
% < Ry < R;, the denominator of Ry is > 0 and thus R0 > 0. But we still

have to check whether Ry, stays within the (utmost) limits of Ry, given by (3.20).
Since Rs(Rmr.0) = R0, (3.20) holds only if the following inequalities hold®

RaLo=R (C.2)

R;—R;+Rs
Re - RmLSO = (Re + RSO) Rg—Ri:QR:() > 0’
R —Ri Rs
Ri - RmLEO - RsO = (Ri - RsO) R;—Ri:2R:o > 0.

Obviously both inequalities hold (under the preceding assumptions) only if R, >
R; — Ry. Since 0 < Ry < R; implies that R; — Ry > Ry — 2Ry and R; — Ry > 0, a
valid Ry .0 is introduced for all 0 < Ry < R; and real (purely resistive) loads, thus
0 < Rmro < Bmim (refer to Section 3.5.2.1). In case of a complex load exhibiting
an inductive imaginary part a valid R,z 0 would additionally require R0 > R Lep
to hold, which has to be checked separately for the given value of Ly,.

Finally it should be noted that Rnr.0 = Rmim = Ri — R if B¢ = Ry — Rq.

YAt a first glance, there seems to be another solution of Ly = 0 at Ry, = 0 if Ry = 0. However,
it’s usually no valid solution because then Ls = 0 and R, = 0, hence the matching network would
just consist of Cy — oo in parallel to Lotoy = 0. Each of those elements would act as a short, but
they may compensate each other (in a parallel resonance) if the limit of Ry, — 0 is considered and
R; = Ry. But, as R; = Ry would require no matching network at all and the indicated elements’
values cannot be realised, the possible solution at R, = 0 is not considered further.

2For real loads or complex loads exhibiting a capacitive imaginary part, Ry, = 0 is no valid
solution for Lg = 0 if Ry = 0 because the matching network would then consist of a C; — oo in
parallel to a Cy — 00 or Chget — 00 (instead of Lagor = 0). Such a matching network would be an
infinite capacitance in parallel to the load resistance Ry, which would not match R, to R;.

3Since a new limit is checked for, there are “>" in the inequalities instead of the “>” in (3.20).
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C.1.1.2 T network

For complex loads exhibiting an inductive imaginary part, the formula of the induc-
tance L, differs from that of complex loads exhibiting a capacitive imaginary part.
In particular, the second square root is subtracted instead of added, introducing
additional zeros of Lip which will be derived in the following section.

From (3.1), the definition of R, and the considerations regarding certain series-to-
parallel transformed network elements’ values in (A.18) we obtain

G(l ) 0 if Ly — o0 o
— =0 = 3
"\Lp A if Ly=0and R > 0 (©3)

Putting this result in the reciprocal of (4.19) yields

w(\/Gm(Gi—Gm)—\me(Gg—Gm)) if L, — 00

w(\/(Gm-i—R%O) (Gi—Gm——Rls—O)—ﬁJm(Gg—Gm)) if L,=0

and Ry > 0

In our frequency range of interest, the angular frequency w stays finite. Thus El; can
only be zero if both square roots are equal. In particular, both square roots may be
zero (similar to the capacitive case) or may have the same positive value.

Solving the former for G, yields Guim as defined in (3.34) if G, = G;. If G, # Gj,
both square roots cannot be zero simultaneously* ®. However, if Ly = 0 there exists
an additional solution as indicated in Section 3.5.3.1, Footnote 1.

4At a first glance, there seems to be another solution of L%, = 0 at Giy = 0. However, it’s

usually no valid solution because then —L—l;)- =0 and:

o Either Ly — oo and thus G, = 0, hence the matching network would just consist of C; =0
in series to Loy — 00. Hach of those elements would act as an open circuit, but they
may compensate each other (in a series resonance) if the limit of G, — 0 is considered
and G; = Gy. But G; = G, would require no matching network at all and the indicated
elements’ values cannot be realised.

o Or Ls =0, Ry >0, and thus G, = ﬁls—o’ hence the matching network would consist of finite

and nonzero C; and Gp, but Loy — o0, which would not match G to Gj.
Thus the possible solution at G, = 0 is not considered further.
SFor real loads or complex loads exhibiting a capacitive imaginary part, G, = 0 is no valid
solution for L%, = 0 because then:

e Either Ly — oo and thus G, = 0, hence the matching network would consist of a C; = 0 in
series to a Cy = 0 or Coior = 0 (instead of Layoy — o0). Such a matching network would be
a zero capacitance in series to the load admittance Gy, which would not match G¢ to G;.

o Or Ly =0, Ry > 0, and thus G, = 721;5, hence the matching network would consist of finite
and nonzero C; and Gp, but Cy = 0 or Cyior = 0 (instead of Lagor — ©0), which would not
match Gy to Gj.
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Solving the latter in case of Ly — oo requires G; = G, to hold and yields all
0 < Gm < Gj = Gy (Cy and Lgy in series resonance), introducing no additional
limits compared to (3.33).

Conversely, solving the latter in case of Ly, = 0 requires

\/<Gm+é—0) <Gi——Gm~ Rlso> = /Gn (Gt — Gu)

to be solved for G, where Ry > 0, yielding

1
1 Gi—p;

4
Ry Gy — Gi+2§15 (C4)

Gml/Lp

G, =G -2 *RITO’ there is no Gni/1,0 which solves the equation unless Els_o = @G or
Ry = R;. But, since then G, = _R%.o’ it would have to be < 0 which would be out
of the load’s valid range.

Additionally, Gim1/1,0 has to be > 0 and < Min{G¢, Gmiim} to introduce a new limit
within the (utmost) valid range of Gy,.

Compared to the 7 network the T network introduces no limit for Ry (refer to
Section 3.5.3.1). Thus 0 < z= < Gi and Gi > 7 have to be considered — then the
numerator of Gpi/r,0 is posmve or negative, respectlvely

1. 0< —1— < Gj or Ry > R, thus the numerator of Gy 1,0 is > 0

If Gy — G+20<Ohence()<Gg<G —31f0<—ﬁ13< , the
denominator of Gri/r,0 is < 0 and thus Gri/z,0 < 0, introducing no addltlonal
limit of Gy,.

Ing—Gi+2R—15 > 0, hence G, > Gi—zﬁls—o >0if0< 'Rls_o < %or any Gy > 0
if % < ﬁ;a < Gj, the denominator of Gi/z,0 is > 0 and thus Gui/r,0 > 0.
But we still have to check whether G,1/1,0 stays within the (utmost) limits of
G given by (3.33). Since Gp(Gmi/r,0) = R%;o’ (3.33) holds only if the following
inequalities hold®

GE—G,'-{-']—
Gf - Gml/LPO = (Ge + R—ta) Ge—Gi'f‘zRﬁ(:’o‘ > 0,
1 i Ge—GH'ﬁl;—

G;*‘Gml/Lpg— Rso = (Gi— R—sa)m;;% > 0.
Obviously both inequalities hold (under the preceding assumptions) only if
Gy > G . Since 0 < & < G implies that G; — —1— > Gi— 25 1 and
Gi— = > 0 a valid Gml/Lpo is introduced for all 0 < R < G} or Rso > R;

and purely resistive loads, thus 0 < Gmi/1,0 < Gulim (refer to Section 3.5.3.1).
In case of a complex load exhibiting an inductive imaginary part Gui/r,0
would additionally require Gmi/1,0 > GuL,, to hold, which has to be checked
separately for the given value of Lys.

6Since a new limit is checked for, there are “>" in the inequalities instead of the “>” in (3.33).
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2. g= > Gjor 0 < Ry < Ry, thus the numerator of Gii/r,0 is < 0

In this case there exists no valid Gu1/r,0 fulfilling (3.33), because the same
differences as in case 1. occur, where both fractions are similar, but under

the assumptions of case 2. the factor G, + R—lo- is always > 0, whereas G; —
1

7 is always < 0. Hence, independently of the fraction’s sign, one of both
0

insequalities in (3.33) cannot apply. Therefore no new limit of G, is introduced.

Since variable air-core inductors consist of a low number of windings and the
ferrite or iron powder cores of switchable inductors are designed for low losses,
the assumption Ry < R; usually applies if R; = 5010.

Finally it should be noted that besides the case of Ly — oo and Gy = G; there may
be another solution yielding Gi1/r,0 = Gmiim = Gi — RLSO- if Gy > RLS(), G =G — Rls—o
and L; = 0.

C.2 Exact analytical solutions for a constant ()
central inductor

C.2.1 Example diagrams
C.2.1.1 Power gain’s contour line Smith charts for L, =, and T networks

In the following diagrams, power gain’s contour line Smith charts for different L, =,
and T networks are shown. Their central inductor has a range of 0.1 uH-40 ¢H, a
constant ¢ factor of 100, and the matching frequency is either 1.8 MHz, 7.35 MHz,
or 30 MHz. The variable capacitances’ ranges resemble different “typical” variable
capacitors (a cheap 5 pF—-250pF, a better 5pF-500pF, and an expensive 25 pF -
4000 pF vacuum variable). The contour lines were calculated from the resulting
matching networks of 100x 100 equally spaced load reflection coeflicients whose
Re{r,}, Im{r,} € [-1, 1], where only those with |r,| < 1 were used.

In case of m and T networks, best and worst networks’ power gain is shown.

In case of L networks, it is assumed that the network topology enables implemen-
tation of both “complementary” L networks (Cy only or Cy only), e.g. by using
appropriate switches.

Additionally, the impact of a parasitic capacitance replacing one variable capacitance
of a 7 or T network is considered (refer to Figure 4.21) — the resulting networks yield
a more realistic description of “real world” L networks. Based on [3], the value of that
parasitic capacitance was chosen to be equal to the minimum/maximum value of the
remaining variable capacitance for L networks derived from 7 networks/T networks.
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Since lossy L networks may theoretically exhibit more than one distinct solutions
for a given load, it has to be noted that

o the pure L networks (without parasitic capacitances) and the L networks with
a parasitic parallel capacitance derived from 7 networks yielded only a single
valid solution throughout all complete Smith charts for the given network
element ranges

e the L networks with a parasitic series capacitance derived from T networks
yielded more than one solution within some region of the Smith charts for the
given network element ranges, but the differences in power gain of best and
worst solutions were low — for the chosen contour line values both diagrams
were merely similar — thus only the best diagrams are shown.

To illustrate the latter — best and worst L networks’ power gain differs by < 0.026
at 1.8 MHz, by < 0.054 at 7.35 MHz, and by < 0.0084 at 30 MHz for 5 pF < C14 <
250 pF with 250 pF parasitic series capacitance, by < 0.04 at 1.8 MHz, by < 0.017
at 7.30 MHz, and by < 0.0042 at 30 MHz for 5pF < Cj2 < 500pF with 500 pF
parasitic series capacitance, or by < 0.0063 at 1.8 MHz, by < 0.0017 at 7.35 MHz,
and by < 0.0005 at 30 MHz for 25 pF < C 5 < 4000 pF with 4000 pF parasitic series
capacitance.

Figure C.1: a) Best and b) worst gioft inma 2t 1.8 MHz, R; = 5062, @ = 100, 5 pF <
Ci2 < 500pF, and 0.1puH < Ly < 40 pH, with 500 pF parasitics,
undercompensation shaded in gray

Anyhow, a small difference can be seen in one of the examples given above. As
depicted in Figure C.1, the > 0.98 contour line is visible for the best networks in
Figure C.1 a) (above the right edge of the > 0.95 contour line), whereas there is no
> (.98 contour line at all for the worst networks in Figure C.1 b).
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Figure C.2: a) Best and b) worst g inma at 1.8 MHz, R; = 508, @ = 100, 5pF <
Ci2 < 250pF, and 0.1 uH < Lg < 40 uH, undercompensation shaded

Figure C.3: a) Best and b) worst ¢, inma at 1.8 MHz, R; = 502, @ = 100, 5pF <
Ci2 < 500pF, and 0.1 uH < Ls < 40 pH, undercompensation shaded

Figure C.4: a) Best and b) worst ¢, inma at 1.8 MHz, R; = 50§, @ = 100, 25 pF <
Ch,2 < 4000 pF, and 0.1 uH < Ly < 40 uH, undercomp. shaded
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Figure C.6: Gior inma &t 1.8 MHz, R; = 5042, Q) = 100, 5 pF < (o < 500 pF, and
0.1 uH < Lg < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded

Figure C.7: giotr,inma at 1.8 MHz, R; = 5042, @ = 100, 25pF < (2 < 4000 pF,
0.1 uH < Lg < 40 pH, a) without, b) with 25 pF parasitics, uc. shaded
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Ci2 <4000 pF, and 0.1 pH < Lg < 40 uH, undercomp. shaded
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Figure C.11: gioftinma at 1.8 MHz, R; = 5002, @ = 100, 5pF < (2 < 250 pF, and
0.1 uH < Lg < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded

Figure C.12: gjoft,inma at 1.8 MHz, R; = 50Q2, Q = 100, 5pF < C;2 < 500 pF, and
0.1 uH < Ls < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded

0.1 uH < Ly < 40 puH, a) without, b) with 25 pF parasitics, uc. shaded
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Figure C.15: a) Best and b) worst g inma &t 7.35 MHz, R; = 502, Q = 100, 5 pF <
Ci,2 < 500pF, and 0.1 uH < Ly < 40 uH, undercompensation shaded

Ci,2 <4000 pF, and 0.1 uH < Ly < 40 uH, undercomp. shaded



APPENDIX C. EXTENSION OF THE METHOD TO COMPLEX LOADS 183

Figure C.17: giofr,inma at 7.35 MHz, R; = 50}, Q = 100, 5 pF < C; 2 < 250 pF, and
0.1 puH < Ly < 40 4H, a) without, b) with 5 pF parasitics, uc. shaded

Figure C.18: Giotr,inma at 7.35 MHz, R; = 50§21, @ = 100, 5 pF < 2 < 500 pF, and
0.1 uH < Ls < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded

Figure C.19: Giofr,inma at 7.35 MHz, R; = 502, @ = 100, 25pF < C}2 < 4000 pF,
0.1 uH < Lg < 40 uH, a) without, b) with 25 pF parasitics, uc. shaded
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Figure C.20: a) Best and b) worst g¢inma at 7.35 MHz, R; = 5092, Q = 100, 5pF <
Ci2 < 250 pF, and 0.1 pH < Lg < 40 pH, undercompensation shaded

Figure C.21: a) Best and b) worst g inma at 7.35 MHz, R; = 50, @ = 100, 5pF <
Ci2 < 500pF, and 0.1 uH < Ly < 40 pH, undercompensation shaded

Figure C.22: a) Best and b) worst gy inma at 7.35 MHz, R; = 5082, Q = 100, 25 pF <
Ci,2 <4000 pF, and 0.1 pH < Ly < 40 uH, undercomp. shaded
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Figure C.23: gioft,inma at 7.35MHz, R; = 50Q, @ = 100, 5 pF < C; 2 < 250 pF, and
0.1 uH < Ly < 40 puH, a) without, b) with 5 pF parasitics, uc. shaded

0.1 uH < Lg < 40 uH, a) without, b) with 25 pF parasitics, uc. shaded
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Figure C.32: a) Best and b) worst ¢ inma at 30MHz, R; = 502, @ = 100, 5pF <
Ci2 < 250pF, and 0.1 pH < Ly < 40 4H, undercompensation shaded

Figure C.33: a) Best and b) worst g inma at 30 MHz, R; = 509, Q = 100, 5pF <
Ci,2 < 500pF, and 0.1 pH < Ls < 40 uH, undercompensation shaded

at 30 MHz, R; =501, ¢) = 100, 25 pF <
(1,2 <4000 pF, and 0.1 uH < Ly < 40 uH, undercomp. shaded
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Figure C.35: gioft,inma at 30MHz, R; = 50Q, @ = 100, 5pF < C) 5 < 250 pF, and
0.1uH < Ly <40 uH, a) without, b) with 5 pF parasitics, uc. shaded

Figure C.36: giof,inma at 30MHz, R; = 50§2, @ = 100, 5pF < C; 2 < 500 pF, and
0.1 uH < Lg < 40 uH, a) without, b) with 5 pF parasitics, uc. shaded

~ ‘\-— o!
Figure C.37: giofc,inma @t 30MHz, Ry = 509, @ = 100, 25pF < C;2 < 4000 pF,
0.1 uH < Lg < 40 uH, a) without, b) with 25 pF parasitics, uc. shaded



Appendix D

Transmission Lines’ and Total
Losses in a Source, Line 1,
Matching Network, Line 2, and

Load System

D.1 Definitions/notations

From this chapter on, the following definitions/notations will be used:

Latin letters

a

b

c

CiMBpmax
C'iMBpm'm
CiMBsmax
CiMBsmin
LiMBpmax
LiMBpmin
LiMBsmax
LiMBsmin
r lopt

r iopt
Eﬂopt:f:

Y imB

Quadratic coefficient of r fopt 1N Appendix D.2

Linear coefficient of r 4, in Appendix D.2

Constant coefficient of 1 4., in Appendix D.2

Minimum (equivalent) parallel capacitance calculated from the limiting circle of the trans-
formation spiral of ¥ ;g (7 network)

Minimum (equivalent) parallel capacitance calculated from the limiting circle of the trans-
formation spiral of ¥ ;g (7 network)

Minimum (equivalent) series capacitance calculated from the limiting circle of the trans-
formation spiral of Z ;g (T network)

Minimum (equivalent) series capacitance calculated from the limiting circle of the trans-
formation spiral of Z;sg (T network)
Minimum (equivalent) parallel inductance calculated from the limiting circle of the trans-
formation spiral of Y ;g (7 network)

Minimum (equivalent) parallel inductance calculated from the limiting circle of the trans-
formation spiral of ¥ ;yp (7 network)
Minimum (equivalent) series inductance calculated from the limiting circle of the trans-
formation spiral of Z ;j;g (T network)

Minimum (equivalent) series inductance calculated from the limiting circle of the trans-
formation spiral of Z ;g (T network)

Input reflection coefficient of a transmission line with X # 0 whose load is the optimum
load impedance Z 44 (referred to Z )

Optimum source reflection coefficient for a transmission line with X # 0 whose load is
the optimum load impedance Z ,,,; (referred to Zg)

Reflection coefficient of the two solutions for optimum load impedance of a transmission
line with Xg # 0 distinguished by the sign in front of the square root (referred to Z )

Source admittance of a matchbox (7 network)

190
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me Input impedance of a transmission line with Xo # O whose load is the optimum load
impedance Z eopt

ZmB Source impedance of a matchbox (T network)

Z[opti Two solutions for the optimum load impedance of a transmission line with Xg # 0

distinguished by the by the sign in front of the square root

Greek letters

el

Or

arsinh ( GI, )

wC
. R’
arsinh ( L.Tﬁ)

D.2 Losses and matching in a source, transmis-

sion line, and load system

To optimise g;, as described in Section 5.3, we have to solve

0 = jRoXpe 2! (e~ _ o=i28l) 2
~ (R3(1—e™) + XFe72 (eI — ¢ =2)) r,
= JRoXo (1 — e~ )
or, slightly rearranged,
0 = jRoXoe”%‘l e —i20 (1 — g2l ejwl) £2e
+2e7 % (R sinh(2al) + jX¢ sin(280)) r,
+ jRo X (1 — e 20t o280,

involving two different cases:

1.

Xo=0

Then we have to solve
0 =2e~ % R sinh(2ad) 1,

We assumed ! > 0 and, according to [26¢], Ry > 0. Additionally, [26b] indicates
that a > 0.

If o > 0, the transmission line is either Heaviside’s distortionless transmission
line obtained for w%, = % > 0 and Z, = Zy (where G’ is the per-unit-
length conductance and L' = Z2,C' the per-unit-length inductance of that
line, defined in [26a]) or the approximation (2.5) is used. Then r, = 0 uniquely
solves the equation, thus Z, = Zy; yields the maximum gi,. If we terminate the
line accordingly, its input resistance Z; = Zy, hence the source’s impedance
has to be Z; = Zy to achieve maximum active input power. In particular,
optimum source and load impedance is independent of (frequency and) line

length.

If o = 0, the transmission line is lossless, hence w%, = (%, = (0. Then g, =1
for any Z,. However, according to (2.20) only a choice of Z, = Z, = Zgy
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combined with Z; = Zyy yields a source impedance for maximum active power
input which is independent of (frequency and) line length — thus no other
choice is appropriate.

2. Xo#0

We assumed [ > 0 and, according to [26¢], Ry > 0. Additionally, [26b] indicates
that a > 0, but in conjunction with [26c] we may conclude that Xy # 0 is
accompanied by o > 0, hence we have to consider a > 0 only.

Then all coefficients of r%, r,, and r% = 1 in the equation to solve are # 0
except for | — oo (another exception would be | = 0, but we assumed [ > 0).

Solving for 1 1. if [ € (0, 00) yields two possible solutions,

2e~22( R sinh(2al)+j X2 sin(261))
féopt:i: T T jRoXge 20l g 2Bl (1 —¢ ~2al ¢i2B1)

\/ 4e =421 (R} sinh(2ad)+i X3 sin(261)) "+ 4RX3 ¢ ~2al e —1201 (1 ¢ ~2al oi261)2
:t QjRoXoe_%‘le_jzm (l_e-zaleﬂﬁl) .

Prior to deciding which solution is valid we have to check the argument of the
square root. It may be rewritten to

4e~* (R2 sinh(2al) + j X3 sin(2[3l))2 + 4R2X2 e 2l oIl (1 _ o201 oi261)2
= 4e " (R} (cosh(2al) + 1) + X¢ (cos(281) + 1))
- (R (cosh(2al) — 1) + X3 (cos(261) — 1))
= 2e " (R} (cosh(dal) — 1) + 4REXE (cosh(2al) cos(261) — 1)
+ Xg (cos(48l) — 1))
= 4! ((Rg cosh(2ad) + X2 cos(2ﬁl))2 - |ZO|4) :

To determine its sign, we check the first rearrangement.

The factor 4e % is always > 0. The first term in parentheses is also always
> 0 because R?(cosh(2al)+1) € [2R%, oo0), XZ(cos(281) +1) € [0, 2 X7,
and Rg > 0 holds (the latter according to [26¢]).

The second term in parentheses equals zero if [ = 0. To derive its values’ range
if I > 0 we compute its derivative with respect to [,

2 COs Qb ) — 2 cos -
d(RB(cosh(2al) IQ;LXO( e8)-D) _ 2 (aR2 sinh(2al) — BX2 sin(201)) .
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The derivative equals zero if [ = 0. Since we assumed o > 0 and 8 > 0
(implied by w > 0)!, sinh(2al) > 2al and sin(20!) < 261 holds if [ > 0, thus

d( R3(cosh(2ad)—1)+X3(cos(261)—1
a

) s 4 (a?R3 — 52°X2) > 0.
The latter inequality applies because we obtain from [26b] and [26¢] that
o®RE - 32°X¢

2
_{_ oL : Sp+s Sp+dg\ )2 SR=0G \ o Sr—6a )2
— (525) ((sinh (%4) cosh (%35))” — (cosh (%5%) sinh (%5%))°),
Where dr = arsinh (wL,) de = arsmh( ) L' C" > 0, and®? R, G' >

0, or? ér, g > 0, respectively. Hence |0r + 0c| > |0 — d¢] holds
thus [sinh (%F%)| > |sinh (%85%¢)|, cosh (24%2) > cosh (%85%¢) and
2R} — B2X2 > 0.

Summarising the preceding derivations, the second term in parentheses of the
first rearrangement equals zero if [ = 0 and increases with increasing [, hence
it’s always > 0 if [ > 0.

Thus the argument of the square root in 1, stays > 0if [ > 0 — then the
square root is always real.

Finally we have to check which of the possible solutions 1,4 is a valid so-
lution. Since we consider passive loads, Re{Z s} = 0 holds Addition-
ally, |7 gopte| 18 restricted according to [26f] or, even more accurately®, to

Zol+1X
L opes] < Pl <14 V2.

! Combining [26b] and [26c] yields @ > 0, 8 > 0, Ry > 0 and Ry > |Xo| or RE > X3,
respectively. Additionally, as indicated above, a?R2 — 82X2 > 0 holds, which is equivalent to
aRo - ,3 IX()‘ Z 0.

Unlike Ry and Xy, there is no common relation between « and 3, which may be proved easily if
we rewrite o, 3 (and Rg, Xo) using trigonometric functions (cos, sin, and arctan) instead of the
hyperbolic functions (cosh, sinh, and arsinh) used by [26b]. By comparison of the two different

descriptions we obtain arsinh (1) =1In (_ﬂ‘(_i)i_) for all (real) = > 0, which may alternatively

garsinh(x) 1

be applied to derive the following relatlons between a and ,6’ from [26D).

!
Then we may conclude that o < 3 if £ o < - or wc, < —-—,—, a=[ 1f = 2~ or %, = 'Fl_r—,
wc’? wh? wC’? wi

anda>ﬁ1wa,>—,—oer,>—v—(R’ G'>0,L,C, w>0)

In particular, a < 8 1f R’ > 0 and G’ =0,G >0and R =0, or wL,, wC, < 1. The latter holds for
coaxial transmission lines in our frequency range of interest, where £ o > wC,” and L,, wc, < 1.

2 Due to assuming o > 0, at least one of R’ and G’ or dg and g, respectively, has to be > 0.

3 (261] derives |r| max = 1++/2 by considering the maximum phase angle of coaxial transmission
lines’ characteristic impedances. However, a more thorough investigation of passive impedances’
reflection coefficients yields their locus in the complex reflection coefficient plane — they all lie
within a circle of radius lég—l and centre —j %. The limiting circle describes the locus of purely
imaginary impedances’ reflection coefficients. According to (2.19) its centre is the reflection coeffi-
cient of the conjugate complex of the line’s characteristic impedance. From [26¢] we obtain Ry > 0
and Ry > | X0/, hence the minimum magnitude of the reflection coefficient equals zero (matching),
the maximum magnitude equals l—'Z‘%;fol—XO—l < 1++/2. It’s interesting to note that these relations
hold for any “lines” involving transmission lines’ differential equations.
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The solution involving subtraction of the square root, 4, violates both
conditions. If we take into account that the square root in 1, is always
real for I > 0, we firstly obtain from (2.11)

. \/ (Rg cosh(2ad)+X2 COS(2ﬁl))2—lZol4
RG{ZEOpt—} - Rp sinh(2al)+Xo sin(2061) ’

which is always < 0if { > 0 since Ry sinh(2al) + X, sin(201) > Ry sinh(2al) —
| Xo sin(280)| > 2l (aRy — B|Xo|) > 0 if I > 0 (the latter inequality holds

according to Footnote '). Secondly |r gop,_| — 00 for I — oo, since the denom-
inator of both ratios in r,,,,_ tends to zero, and both numerators to —oo.

Conversely, the solution involving summing of the square root, r ;o5 yields

_ / (R3 cosh(2ad)+ X3 cos(281))*~|Z ol
Re{Zeopt+} = Ro sinh(2ad)+Xo sin(241) ’

which is always > 0 if / > 0. Additionally, | .| tends to the proper limit
for [ — oo because then az“_zfopH + b7 gopiy + ¢ = 0, where a — 0, b — Rj, and
¢ — jRpXy. Since b is real and b > 0, application of 'Hospitale’s rule gives

: —b+vVb02—4ac _ 71; —4c . _C : . s o4
,111_% R = 1111_51(1) VT = b thus Ty is a valid solution®.

Summarising the preceding considerations, we may conclude that

v/ (R3 cosh(20i)+ X3 cos(261)) | Z 4|4 ~ R3 sinh(2ad) — X2 sin(261)
Leopt = RoXoe—12AT (1—o —2al 3281 (D.1)
jReXo ( )

is the unique valid solution if [ € (0, 00).

Application of (2.11) and (2.12) yields the optimum load impedance,

\/ (R(z) cosh(2al)+X2 cos(2ﬂl))2~|Z0|4—jROXO(cosh(?al)—cos(2,8l))

Zlopt = Ry sinh(2al)+Xo sin(281) (Dz)

The transmission line’s input impedance is given by (2.20), hence r,,, =

—2al =28l If the line is terminated by the optimum load impedance

C . . . Roron,—iX0
indicated above, its input reflection coeffifient is 1., = ﬁﬁ% Then,
= fopt

flopt e

according to (2.18), its input impedance is Z ;o5 = Zjop, — if the transmission
line is terminated by its optimum load impedance, its input impedance is the
complex conjugate of the optimum load impedance!

From (2.23) we finally compute the optimum power gain,

RZ cosh(2al)+X2 cos(281)—1/ { RZ cosh(2ad)+X 2 cos(281) 2—|Z |4
_ 0 0 0 0

Glopt = 1Z,2 (D3)

However, to achieve maximum active input power, the source impedance has
to be equal to the complex conjugate of the line’s input impedance, hence

4 Application of ’'Hospitale’s rule requires —b + v/b2 — dac — 0 for a — 0, hence b = |b] or
b > 0 if b is real. Conversely, if b < 0, the proper limit would be achieved by the solution involving
subtraction of the square root.
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Ziopt = Zopt = Ziopt OF Tiopt = Teopr- 1 the source impedance is chosen
accordingly, the active input power is Pagtiopt = Pactmaxi, thus g7, Lopt = JLopt-
Additionally, the line’s output impedance is equal to the complex conjugate
of its optimum load impedance because r,,,; e ~* ¢ % in conjunction with
Tiopt = Lropy describes an impedance of Z3,,. Optimum active power input
and transfer involves complex conjugate matching at the line’s in- and output!

Comparison of the preceding optimum5 derived for a complex characteristic
impedance® where X, # 0 reveals a severe disadvantage compared to that of
a real characteristic impedance where Xy = 0 — the complex characteristic
impedance’s optimum load depends on frequency and line length — thus,
depending on frequency and line length, different load and source impedances
would have to be used.

To choose a useful length independent load impedance close to the optimised
load, we consider its limits for [ — 0 and [ — oco.

If I = 0, the equation to be solved for the optimum r, changes to
0r2+0r,+0 =0, hence any r, or Z, would involve optimum active power
transfer — which holds since there is no line at all. To ensure maximum active
input power, simply a source impedance of Z; = Z7 is required.

Conversely, T gopt OF Z o tend to particular limits for [ — 0, because they
take into account the tiny, but nonzero line length, for which an optimum still
exists.

If ﬁ—g # ———g— (more precisely, if %%‘i > —% according to Footnote !), we obtain

V|Zol? (a2R3—$2X3) —aR3—iBX3

}E% .t[opt = RoXo (B+je) 1550 Ziopty
: V120 (a2 R3-52X3) :
}i{% Zeopt = aRo+8Xo - %E%Ziopt’
lim = 1 = lim
=0 GLopt 10 gT, Lopt,
if %% =—3 (which requires § < 1 because % < 1 according to Footnote 1),
Hm 7 gop, = 1 = lmro,

Re{-Z-@opt}’ Re{_Z..iopt} — o0 for l—->0,

SConsidering Footnote ! of Section 5.3, we would suppose that gropt decreases if | increases.
aR2 sinh(2al)—BXZ sin(281)

(B3 cosh(2ad)+ X3 cos(2ﬂl))2_|£0|4

and load are entirely passive and gropt — 0 only if [ — oo) and aRZsinh(2al) — BXZsin(261) > 0

if I > 0 (as indicated above), dg—g;’*ﬁ < 0if I > 0 (where d—’%’—l‘ﬂ — 0 for | — o0). However,

2 _ 2 . .
d—g—fﬁﬂ o= -2 ﬁ%ﬂ may equal zero if a®R? — 32X = 0, which (approximately) holds
=0 <0
for coaxial transmission lines in our frequency range of interest
6It’s interesting to note that the optimum reflection coefficient’s limit for X¢ — 0 is equal to

the optimum reflection coeflicient derived for Xy = 0 and o > 0.

To prove it, we compute d—g{ﬁﬁi = —2 gLopt \/ . Since gr,opt > 0 (line
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Im{Z e}, Im{Zop} — 00 for 1—0,

lim GLopt = 1 = lim gT, Lopt-
-0 -0

In particular, the latter applies if (2.4), hence Z, ~ Zgy (1 — ] %), (approxi-
mately) describes the line’s complex characteristic impedance. Then the limit
of the optimum load impedance tends to an open circuit’.

For [ — oo the equation to be solved for the optimum r, changes to
0r% + R%r, + jRoXo = 0. Since we already proved that r topt bends to the
proper solution, we obtain by solving for r,,

. . X0 .
lim r = —j— = lim r;
oo fopt J oo iopt»

which describes a
lliglo Zlopt = Z* = l_i_glo—Z-iopt
according to (2.19).

Since we assumed «a > 0, the optimum power gain becomes

lim Jlopt = 0 = lim g1, Lopt -
{—o0 l—o0

D.3 Losses and matching in a source, line 1,
matching network, line 2, and load system

D.3.1 Lossy matching network
D.3.1.1 m network

To check the impact of source admittance transformation by the line on network
design, in particular the necessity of extending the optimisation to complex source
admittances, we have to consider the achieved susceptances if low loss coaxial cables
are used.

If the source impedance equals the line’s complex characteristic impedance, hence

Zy~ Zou (1 —j§) according to (2.4), its (transformed) source admittance ziMB at
matching frequency w is equal to
1

1 . 5 .
N — + jw —— = — + jwCp,
( + a"’) Zou wZon  Rop o

= 1 1 , 3
Yo =70~y T
£0  Zoy (1 + @) 1

IBZ

a
which describes a conductance z— = - in parallel to a capacitance Cpp = —£—.
Rop Zoy wZon

7 Although no active power may be transferred to an (ideal) open circuit, we have to keep in mind
that optimisation required ! > 0, hence at least tiny line lengths. Additionally Z, =~ Zgy (1 —j %)
approximately describes the coaxial transmission line’s complex characteristic impedance. Thus
the optimum source and load impedances are close to, but not equal to an open circuit.
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Conversely, if the source is designed for maximum active power input, its impedance
equals the complex conjugate of the line’s characteristic impedance, hence its admit-
2
s . . Zon (1+3
tance exhibits the same conductance, but in parallel to an inductance %1) ~
]
f%%_‘. However, it’s further transformed by line 1 to Y ;g at the matching network’s
input. The minimum/maximum real and imaginary part of the transformed source
admittance may be derived by considering its limiting circle® of the transformation

spiral in the complex reflection coefficient plane. We obtain

2
Min 1 ~ Zy 1- (5) . Zon
1+(g
5iMBpmin = 0>
2
s Tl 4
Oy = L2 VT8 ~ B
aepme w Zon (a)2 wZon’
T \B
2
_ Zoy (1 - (%) ) Zon
LiMBpmin = ey
B
w% 2 = — 1
1+(5)

LiMBpma.x — o0,

However, in our application coaxial cables with @ < [ are used, thus a generator
of source impedance Zoy ~ Rp is chosen which is further transformed by line 1 to
Y ,up at the matching network’s input. The minimum/maximum real and imaginary
part of the transformed source admittance may be derived in a similar manner by
considering its limiting circle® of the transformation spiral in the complex reflection

8The limiting circle, the outer limit of the transformation spiral, is obtained if all e ~2®!t coef-
ficients in the (transformed) reflection coefficient or its according admittance are replaced with 1.
Doing so yields an outer limit of the transformed source admittance given by a circle of radius

2 Xol
- 0 1 4 1 —iXo Xol o 1 :
Re [ xa)? AR and centre Re [7%a? (1 JRO). (If R AN 0.58 the circle also
R 1+< RO) R

encloses admittances exhibiting a negative real part — which indicates that in such a case involv-
ing high attenuation coeflicients the transformation spiral stays far away from its limiting circle —
source admittance, line, and hence transformed source admittance are entirely passive.)

9The limiting circle, the outer limit of the transformation spiral, is obtained if all e ~2%h
coefficients in the (transformed) reflection coefficient or its according admittance are replaced
with 1. Doing so yields an outer limit of the transformed source admittance given by

2 [ 144 Z0)? 141 ( Xo)? X
- ws L1 (%) [ () L) () ix %o
a circle of radius x5 ( Ro) = and centre #- 1-jg2). (I H >

1+(7%) (%)

72_5 \/ 2 cos ( arccos (—5)) — 1 &~ 0.95 the circle also encloses admittances exhibiting a nega-
tive real part — which indicates that in such a case involving high attenuation coeflicients the
transformation spiral stays far away from its limiting circle — source admittance, line, and hence

transformed source admittance are entirely passive.)
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coeflicient plane. We obtain

2

Moo { : } = Zou t (E) ~ Zon

Max | Re{Y ; 2 -~
L) 1+%(%) :l:%\/1+

C'iMBpmin = 0,

2 2
l (« « 1 [ a
) s i) e (8) e (5) s
MBPmE T Zon n @)2 " w Za’
B
Z 2
on | 1+ (%)
8 Z
LiMBpmin = A

LiMBpmax — Q.

D.3.1.2 T network

To check the impact of source impedance transformation by the line on network
design, in particular the necessity of extending the optimisation to complex source
impedances, we have to consider the achieved reactances if low loss coaxial cables
are used.

It the source impedance equals the line’s complex characteristic impedance, hence

Zo =~ Zou (1 —j§) according to (2.4), its (transformed) source impedance Z o atb
matching frequency w is equal to

= « 1 1 1
Zvr=2Lo0 = Zoy — iZoy = = Zoy + ——— =: +
£ iMB T 4.0 ol — J4ol on T3 1 : : )
g w o & Gos  jwCos
which describes a resistance 510— = Zgy in series to a capacitance Cps = ————wzgn =
s B

Conversely, if the source is designed for maximum active power input, its impedance
equals the complex conjugate of the line’s characteristic impedance, hence it ex-
hibits the same resistance, but in series to an inductance éZou % However, it’s

further transformed by line 1 to Z Mp at the matching network’s input. The mini-
mum,/maximum real and imaginary part of the transformed source impedance may
be derived by considering its limiting circle!® of the transformation spiral in the

10The limiting circle, the outer limit of the transformation spiral, is obtained if all e ~2%h1 coef-
ficients in the (transformed) reflection coefficient or its according impedance are replaced with 1.
Doing so yields an outer limit of the transformed source impedance given by a circle of radius

1Xgl Xo)*®
Ry 1 zé%) n (%y and centre Ro i+g§§)) (1 n %) (I J;f_gl > JLE ~ 0.58 the circle also
(7 T\ Ro

encloses impedances exhibiting a negative real part — which indicates that in such a case involv-
ing high attenuation coefficients the transformation spiral stays far away from its limiting circle —
source impedance, line, and hence transformed source impedance are entirely passive.)
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complex reflection coeflicient plane. We obtain

ﬁz{ {Re {—ZiMB}} = ZOllr@j 1+ “—*1—;2&%‘)—2“ = Zou <1i2%) )

a2
~ 1- (3) oL

C’i smi =

MBsmin 5 3w%Z011

w Zon<1+(%>> 2 =+ 1
+(3)
5iMBsmax — 00,
LiMBsmin = Oa
1 2

~ 1« + (%) 2 1«
Li smax — =7 -1 ~ — — Zol-

MB: w B oli w ,B ol

1 - (%)2 1+ (%)2

However, in our application coaxial cables with o <« 3 are used, thus a generator
of source impedance Zg; ~ Ry is chosen which is further transformed by line 1 to
Z ;g at the matching network’s input. The minimum/maximum real and imaginary
part of the transformed source impedance may be derived in a similar manner by
considering its limiting circle!! of the transformation spiral in the complex reflection
coefficient plane. We obtain

(87
MaX{Re{ZIMB}} = Zou(1+%(%)2ﬂ:%\/1+%(%N1+(%)2) ~ Zou (1:tﬁ>,
1 1
w%Zou(Wi(%)g\/1+(%)2+1+%(%)2) 2w Zou’

CiMBsmax — 0,
0

CiMBsmin -

LiMBsmin =

L; = lgZ \/ (3)2\/1+(2)2—1_l(g)2 ~ (%)3
iMBsmax w ,3 ol B i 5\ 3 8wZ011'

UThe limiting circle, the outer limit of the transformation spiral, is obtained if all e ~2*

coefficients in the (transformed) reflection coefficient or its according impedance are replaced
with 1. Doing so yields an outer limit of the transformed source impedance given by a circle

of radius Ry —é— (%)2\/1 +4 (%)2\/1 + (%)2 and centre Ry <1 + % (%)2) (1 +] %g) (It

J)é_gl > % \/ 2 cos (3 arccos (—35)) — 1 ~ 0.95 the circle also encloses impedances exhibiting a

negative real part — which indicates that in such a case involving high attenuation coefficients the
transformation spiral stays far away from its limiting circle — source impedance, line, and hence
transformed source impedance are entirely passive.)
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Publications of This Work

1. R. J. Glockner, J. K. Fidler, K. Busawon, “Exact Analytical Solutions for
Lossy L, Pi and T Matching Networks”, under preparation.

2. R. J. Glockner, J. K. Fidler, K. Busawon, “Designing Lossy Pi and T Matching
Networks for Optimum Power Gain”, under preparation.
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