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Abstract 

Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties 

affecting the amount of power produced by the system. In the design of systems subject to 

uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a 

deterministic design approach, the designer considers the presence of uncertainties and incorporates 

them indirectly into the design by applying safety factors. It is assumed that, by employing suitable 

safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the 

multi-objective optimisation problem with two objectives of reliability and cost is reduced to a 

single-objective optimisation problem with the objective of cost only. In this paper the competence 

of deterministic design methods in size optimisation of reliable standalone wind-PV-battery, wind-

PV-diesel and wind-PV-battery-diesel configurations is examined.  For each configuration, first, 

using different values of safety factors, the optimal size of the system components which minimises 

the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the 

effect of safety factors on the reliability and the cost are investigated. In performing reliability 

analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and 

average) and mean time between failures are considered. It is shown that the traditional methods of 

considering the effect of uncertainties in deterministic designs such as design for an autonomy 

period and employing safety factors have either little or unpredictable impact on the actual 

reliability of the designed wind-PV-battery configuration. In the case of wind-PV-diesel and wind-

PV-battery-diesel configurations it is shown that, while using a high-enough margin of safety in 

sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading 

to a cost-effective system cannot be quantified without employing probabilistic methods of analysis. 

It is also shown that deterministic cost analysis yields inaccurate results for all of the investigated 

configurations.  

 

Keywords: power reliability; design optimisation under uncertainties; hybrid renewable energy 

system; wind-PV-battery; wind-PV-diesel; wind-PV-battery-diesel 

 

1 Introduction 

Ideally, a standalone hybrid renewable energy system (HRES) must be as cost effective as and as 

reliable as a grid connected HRES or its equivalent fossil fuel power system. This makes sizing of 

standalone HRES a multi-objective optimisation problem with two conflicting objectives of cost 

and reliability. The term cost may refer to either one of the traditional parameters such as total life-

span cost (TLSC), annualised cost and the levelised cost of energy (LCE) which concern investors 

and the end-users, or in an integrated design approach, a combination of one of the traditional cost 
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parameters and the life-cycle carbon foot print of the system, as the cost imposed to the 

environment.  

 

Reliability of a HRES is a general term and can be represented in different ways depending on the 

system configuration, failure modes and failure mechanisms. Section 3 elaborates on various 

measures of reliability of HRES. Reliability of a HRES, irrespective of its definition, depends on 

various uncertainties affecting the amount of power produced by the system. Stochastic nature of 

renewable resources imposes a great deal of uncertainty in the system operation and the power 

supply. Another source of uncertainty is the stochastic demand load. The demand load is under the 

influence of many parameters, most of them with a level of uncertainty. For example, in case of a 

household demand load, the unpredictable inhabitant behaviour in energy consumption is a major 

source of uncertainty affecting the actual demand load. Initial sizing of the components at 

conceptual design phase is based on many low fidelity models, mainly due to lack of solid 

information on the type, make and performance of the components to be selected. This imposes 

some uncertainty to the system modelling and predicted power and consequently impacts the 

confidence in evaluation of design candidates during the design process. Another type of 

uncertainty which affect the cost rather than the power supply is due to uncertainty in variable part 

of the operating cost (e.g. fuel price in case of systems including diesel generators) and economical 

uncertainty during the life-span of the system (e.g. inflation and interest rates).  

 

In design of systems subject to uncertainties both deterministic and nondeterministic design 

approaches are very popular. In a deterministic design approach (also called classical design), the 

designer is aware of the uncertainties involved in the design problem and he can quantify them to 

some extents. The designer considers the presence of uncertainties and incorporates them indirectly 

into the design by applying safety factors (e.g. load factor, margin of safety and factor of safety). In 

cases with known uncertainties and simple models, it is also possible to identify the worst-case-

scenarios and carry out the design based on these scenarios. In many design practices a combination 

of safety factors and worst-case-scenarios is applied. Most of the literature on design of standalone 

HRES adopt this approach (for example, see [1-10]). 

 

On the other hand, adopting a nondeterministic approach, the reliability of the system becomes 

directly involved in the design problem formulation, either as an objective or as a constraint, and 

plays a major role in design candidate assessment.  All uncertainties are considered and 

probabilistic evaluation methods are used to evaluate the relevant reliability measures. For instance, 

see Roy et al [11, 12]. 

 

In this paper, through case studies, the competence of deterministic design methods in size 

optimisation of reliable standalone HRES is examined. The rest of the paper is structured as 

follows: Section 2 details the deterministic design methods for three most popular standalone HRES 

configurations: Renewable-Battery (RB), Renewable-Diesel (RD), and Renewable-Battery-Diesel 

(RBD). In Section 3, various performance assessment criteria and the probabilistic method of 

reliability analysis are discussed. Section 4 covers the equations used for power and cost modelling. 

In Section 5, deterministic design case studies are carried out and employing Monte Carlo 

simulation method, the reliability of the designed systems are evaluated.  
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2 Deterministic Design of Standalone HRES 

Adopting a deterministic approach, size optimisation of standalone HRES is carried out for a worst-

case-scenario, while applying a load factor on the demand load. All calculations are based on the 

averaged values over a period of time. The stochastic nature of demand load and renewable 

resources as well as the possible errors in the results due to employing low fidelity models are 

ignored. No reliability measure is calculated as part of the design candidate assessment. It is 

assumed that an educated selection of the worst-case-scenario and the load factor (a wise decision 

made by the designer at the beginning of the process) will lead to reliable solutions. In fact, the 

multi-objective optimisation problem with two objectives of reliability and cost is reduced to a 

single-objective optimisation problem with the objective of cost only.  

 

In practice, normally, the size of the storage and backup/auxiliary components are determined based 

on a suitable worst-case-scenario to achieve a level of confidence in the expected power supply, 

while the remaining components are optimised for minimising the cost (i.e., TLSC or LCE). The 

worst-case-scenario is normally defined based on an autonomy period. After sizing the storage or 

backup/auxiliary components, a single-objective optimisation search can be carried out to find the 

optimum size of the renewable components.  

 

2.1 Renewable with long-term battery bank storage 

RB configuration, encompassing wind turbine and/or PV panels as renewable power supply and a 

battery bank as storage, is suitable for high penetration sites, where the availability of renewable 

resources (wind and/or solar irradiance) is high. In these systems, for a part of the day the power 

produced by the renewable resources is higher than the demand load (excess power). During this 

period the excess power is directed to the battery bank. The stored energy in the battery bank is 

used to compensate the power deficit for the rest of the day when the renewable power is 

insufficient to supply the demand load.   

 

For systems of this kind, as a standard and widely used approach, first the size of the battery bank 

Bn  is obtained for a defined worst-case-scenario. In the second step, the size of wind turbine WTA  

and PV panel PVA  are obtained by solving an optimisation problem with the objective of 

minimising the cost subject to the constraint of having the yearly-averaged renewable power RyP ,  

greater than or equal to the yearly-averaged load yL with a margin of safety: yRy LMoSP )1(,  . It 

should be noted that here )1( MoS can be interpreted as the load factor. A popular worst-case-

scenario is based on assuming that, for a period of time aT  , known as the autonomy period 

(normally in days), the daily-averaged load dL  has its maximum value max,dd LL   and the amount 

of power produced by the renewable resources is zero ( 0RP ). Assuming that at the beginning of 

the autonomy period the battery bank is fully charged, the size of the battery bank that is required to 

cover the load for the entire of the autonomy period can be calculated.  It is commonly accepted that 

the reliability of the designed system depends on the length of the autonomy period aT  used in 

sizing the battery bank and the margin of safety MoS  used for sizing the renewable components. As 

mentioned earlier, the accuracy of this statement will be examined in Section 5.   
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2.2 Renewable with diesel generator as auxiliary or backup power unit  

RD systems are normally used in (i) high penetration sites, in which the renewable power 

production is higher than the demand load all through the day and the diesel generator is used only 

as a backup power unit, and (ii) low/medium penetration retrofitted sites in which originally the 

diesel generator has been the main source of power production and renewable components have 

been added later to reduce the cost of energy and/or emission. 

   

The same deterministic approach as described above can be used for sizing RD systems.  That is, 

first the size of the diesel generator (nominal power) nomDP ,  is obtained for a defined worst-case-

scenario and then the size of the renewable components is optimised for the cost. The worst-case-

scenario used for RD systems is different from the scenario normally used for RB systems. In sizing 

the diesel generator, normally, it is assumed that the diesel generator can cover the maximum peak 

load with a reasonable margin of safety when the amount of power produced by renewable 

resources is zero. Hence, the data with the smallest available time scale is used for identifying the 

peak load and the required diesel nominal power nomDP , . Using hourly-averaged data, the constraint 

on the required nominal diesel power becomes   )1(max, MoSLP hnomD  , where hL  is the hourly-

averaged load. Moreover, in contrast to the deterministic method used for RB systems, for which 

the constraint yRy LMoSP )1(,   is required to be satisfied assuring there is enough power to 

supply the demand load, here, since there are two sources of power (renewable and diesel), no 

constraint is required to be applied on the amount of yearly-averaged produced renewable power.  

 

It should be noted that sizing the renewable components entirely driven by the traditional cost 

measures (e.g. LCE) may lead to diesel-only systems. This is due to the fact that LCE produced by 

diesel can be less than that of renewable for regions with low renewable resources. Using a HRES 

for low-renewable places is not cost effective unless an integrated cost measure which includes the 

system carbon foot print is used. A simplified integrated design can be carried out without 

calculating the system carbon foot print, but instead applying a constraint on the system penetration, 

w : design
y

Ry
w

L

P
w 

,
. The imposed constraint can be justified as a means to consider the system 

carbon foot print in the cost analysis indirectly, as the carbon foot print of renewable components is 

less than of that of fossil fuelled components.  

 

It is commonly accepted that the reliability of the designed system with respect to the power 

availability depends on the margin of safety MoS used for sizing the diesel generator. The accuracy 

of this statement will be also examined in Section 5.  

 

2.3 Renewable with diesel generator and battery bank 

RDB systems are normally used in low to medium penetration sites. Compared to RB systems, the 

size of the battery bank in RDB systems is smaller as the energy stored in the battery bank 

compensate for the marginal power deficits.  The diesel generator operates only when the power 

deficit is high or there is not enough stored energy in the battery bank to cover the power deficit.  

 



Published in Reliability Engineering and System Safety130 (2014) 159–174 Alireza Maheri 

5 

 

The same deterministic approach as described for RD systems in which the diesel generator is sized 

based on a worst-case-scenario can be used for these systems. However, due to the presence of a 

battery bank acting as storage, the worst-case-scenario defined for RBD systems is based on an 

averaged load instead of the maximum peak load:  
T

nomD dtMoSL
T

P )1(
1

, . Since, normally, the 

load distribution is given for typical days of different months or seasons, in defining the averaged 

load,  T  is usually taken as 1 day (the one with the highest demand load). This is equivalent to 

sizing the diesel for an autonomy period of 1 aTT day. After sizing the diesel, the minimum 

size of the battery bank 
minBn  must be found to make sure that the combination of diesel-battery can 

cover the demand load for the period of T in the case of 0RP . The size of the renewable 

components can be obtained through an optimisation problem with a constraint on the size of the 

battery bank 
minBB nn  and the optional constraint on the system penetration design

y

Ry
w

L

P
w 

,
.  

3 Reliability Assessment  

Performance of a standalone HRES in supplying power can be evaluated against different 

assessment criteria, such as unmet load, blackout duration, loss of load probability, blackout 

distribution and the mean-time between failures, as explained below. 

 

3.1 Unmet Load 

Unmet load, U  is an availability based parameter defined as the non-served load divided by the 

total load of a period of time (normally one year) [7]. For a standalone HRES the unmet load is 

defined as: 

 









T
a dt

tL

tP

T
U

0 )(

)(
1

1
        (1) 

 

where, aP  and L  are, respectively, the usable available power and the demand load ( LPa 0 ), 

andT  is the duration of the system operation for which the performance is evaluated (normally one 

year). Usable available power is defined as: 

 

 LPP ata ,min ,          (2) 

 

where, atP , stands for the total available power, which is the summation of the renewable, non-

renewable and stored energy.  

 

Unmet load is dimensionless and lies between zero and one. Case 0U corresponds to a system 

producing enough energy whenever there is a demand. Other forms of unmet load can be also used. 

For example, total unmet load tU : 

 


T

t dttLUU
0

)(          (3)  
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Using hourly-averaged load ( hL ) and hourly-averaged useable available power ( hP ), Equations (1) 

and (3) can be rewritten as 

 

 



8760

1

,1
8760

1

i

ihah LPU         (4) 

and  

 



8760

1i

iht LUU          (5)  

This measure is suitable when the HRES encompass a control system capable of regulating the load, 

for example, by cutting off the electricity supply to some part of a village. Unmet load is easy to 

calculate and is widely used in size optimisation of standalone HRES. However, from the end-user 

point of view, it does not provide tangible information. 

 

3.2 Blackout Duration 

Total blackout duration, tBO  is also an availability based parameter.  In case of smaller HRES 

without a power supply distributor, or when the power supply distribution is not possible, for 

example when HRES is used to supply the electricity to a single load, an unmet load leads to 

blackout.  In cases like this, the total blackout duration tBO , given by Equation (6), can be used 

instead as a measure for the performance of the system.  

 




















T
a

t dt
tL

tP
signBO

0 )(

)(
1,0max        (6)  

Sign function 1)( sign  if 0 ; 1)( sign if 0  ; and 0)( sign if 0 . Using hourly-

averaged data and a period of analysis of hyearT 87601  , Equation (6) can be rewritten as 

 

   



8760

1

,1,0max
i

ihaht LPsignBO       (7)  

 

Blackout duration is superior to unmet load from the end-user point of view as it corresponds to the 

total duration of the system downtime (e.g. in hours) rather than to the amount of power deficit. In 

contrast to the unmet load, assessment of design candidates based on blackout duration allows 

performing customer-need driven designs. 

 

3.3 Loss of Load Probability 

Loss of load probability, LLP  is defined as the proportion of time that the available power is 

expected to be unable to meet the demand load. Although this measure includes the term 

probability, in calculations no probabilistic analysis is carried out. This measure is also an 

availability based parameter. It is simply the blackout duration divided by the operation time: 

 




















T
a dt

tL

tP
sign

T
LLP

0 )(

)(
1,0max

1
       (8)  
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Alternatively, using hourly-averaged power and load, LLP  can be represented as the ratio of the 

number of blackout hours to the total number of hours in a year.    

 

   



8760

1

,1,0max
8760

1

i

ihah LPsignLLP       (9) 

 

3.4 Blackout Distribution 

Another availability based parameter which has significant effect on the assessment of a HRES but 

rarely is being used in design and evaluation of standalone HRES is the distribution of the blackout 

duration. The information that can be extracted from the blackout distribution, such as the 

maximum blackout duration maxBO and the average blackout duration avBO , play important role in 

evaluation of the system performance from the end-user point of view. For example, a total 

blackout duration of hBOt 400 , can be tolerated for some applications if it is uniformly 

distributed throughout the year. A case like this corresponds to smaller maximum and average 

blackout durations.  On the other hand, for a system in which most of the blackout occurs over a 

portion of the year only, say two months, the maximum and the average blackout duration increase. 

Such a system can be reasonably evaluated as unreliable for some applications. The distributions of 

the blackout strongly depend on the load and resource distributions, as well as the size of the 

system. Using blackout distribution and extracting parameters such as the maximum and the 

average blackout durations, more comprehensive assessment of the system performance in terms of 

the availability of the power supply can be carried out. 

 

3.5 Mean Time between Failures  

Mean time between failures (MTBF) can be also viewed as an availability-based parameter, if the 

successful system operation is defined as the case when available usable power is greater than the 

load LPa  and the failure is defined as blackout: 

 




















T
a

fail

dt
tL

tP
sign

n
MTBF

0
1

)(

)(
,0max

1
      (10) 

 

where failn  is the number of failures (the number of blackout occurrences) during period T . Using 

hourly-averaged quantities, MTBF is defined as: 

 

   

fail

i

ihah

n

LPsign

MTBF








8760

1

, 1,0max

      (11) 

 

3.6 Reliability Analysis 

Concepts such as failure rate (FR) or probability of failure (PF) are well established concepts for 

quantifying the reliability of renewable system in delivering a predefined function. For instance see 

[13-19]. Although the FR of the components and the configuration of a standalone HRES affect its 

reliability, the main cause of the system failure in producing enough power to supply the demand 

load is the stochastic nature of the renewable resources. This makes the reliability analysis of a 
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standalone HRES impossible without performing a complete probabilistic reliability analysis, e.g. 

through a Monte Carlo simulation. Monte Carlo simulation is a popular probabilistic method 

employed in design under uncertainty to evaluate system probability of failure for problems with 

multiple failure modes. The following algorithm details the reliability analysis of standalone HRES: 

 

Given:  

 iii xxx ˆ~  ; uni ,...,2,1 the set of un uncertain  parameters (demand load, resources and 

power/cost model) and their range and form of distributions. Variable ix~  is the known mean 

value of parameter ix  and ix̂  is the random variation of ix  with known distribution. For 

demand load and resources, ix  is a function of time:      txtxtx iii
ˆ~  . 

 The target performance measures over a reference period of time jR ; pnj ,...,2,1  (e.g. 

0tBO , 0tU , 8760MTBF  h, etc over one year).  

 Design candidate  BnomDPVWT nPAA ,,, ,  

1. Repeat simn times 

1.1. For each ix ; uni ,...,2,1 , select a random value ix̂  (a random vector  txi
ˆ  for time 

dependent uncertain parameters) in the range consistent with its corresponding distribution.  

1.1.1. For each assessment criterion (target performance measures), jR ; pnj ,...,2,1  

1.1.2. Assess the design candidate and assign “fail” to this design candidate if the target 

performance measure is not met.  

2. Calculate the probability of failure for this design candidate with respect to each assessment 

criterion using the following equation:  

 

simjfailj nnPF , ; pnj ,...,2,1        (12) 

 

In this study 
510simn   is used for all case studies. 

 

4 Power and Cost Modelling 

 

4.1 Power modelling and dispatch strategies 

When sizing HRES components the size and therefore the characteristics of the wind turbine are not 

known yet. Normally, approximated power curve models  hubWTWT VPP   are used instead (see, for 

instance, [11, 12, 20 and 21]).  To approximate a power curve four parameters, namely, rated power 

and cut-in, cut-out and rated wind speeds are required. These approximations are based on two 

assumptions: (i) the wind turbine operates at its maximum power coefficient for wind speeds below 

the rated wind speed, and (ii) the power curve is horizontal for wind speeds above rated wind speed. 

The first assumption is far from the reality particularly for constant-speed wind turbines and the 

second is not valid for stall-regulated wind turbines. 
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An alternative method, used in this paper, employs an approximated model for the power 

coefficient, 
PC , and an estimated value for the overall efficiency of the electrical components and 

the gearbox, EGη . The wind power produced by a wind turbine is given by: 

 

EGPWTWT ηCAρVP
hub

3

2

1
         (13) 

 

in which   is the air density and hubV  is the wind speed at hub elevation. Power coefficient, 
PC , 

varies with wind speed. The form of this variation depends on a variety of parameters, such as the 

blade design, type of wind turbine (pitch-controlled/stall-regulated, variable speed/constant speed), 

number of blades, etc; and it varies from one wind turbine to another. The power coefficient curve 

of about 60 small/medium size wind turbines up to a rated power of 500kW are selected to find an 

approximated model. Since standalone HRES are normally used to power relatively small demand 

loads (e.g. a house, off-grid villages in rural places, farms and small agricultural industries, etc.), the 

selected range of wind turbines serves well for our purpose.  Using multiple polynomial regression 

in a least squares sense (see the appendix for details), the model of Equation 14 is found as the best 

fit with a maximum relative error of about 14%.  

 

508188701620104831104217

109261100252

23244

5567

.-V.V.-V.V.

V.V.-C

hubhubhub

-

hub

-

hub

-

hub

-

P




   (14) 

 

Employing Equations (13) and (14) instead of the power curve approximation )( hubWTWT VPP   has 

two advantages: firstly, we needs less parameters (only 
PC  model and EGη ) while the power curve 

approximation needs four parameters; and secondly, it has a known error that can be incorporated in 

a nondeterministic design ( PP CC
~

)07.01(  ). 

 

Given wind speed refV at elevation refh , the wind speed at the hub elevation hubh can be calculated 

by the logarithmic law: 

  























00

lnln
z

h

z

h
V V

refhub
refhub        (15) 

 

in which 0z is the site surface roughness length. The hub height depends on the size of the wind 

turbine, which is unknown prior to the design. For small to medium size wind turbines the hub 

height can be estimated via the rule of thumb [22]: 

 

 RRhh chub 2,max          (16) 

 

where ch  is the minimum blade tip-ground clearance and R is the rotor radius. 

 

Power produced by PV panels is given by 
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PVPVPV IAP           (17) 

 

in which, I  stands for the solar irradiance and PV  is the overall PV unit efficiency.  

 

The power dispatch strategies for the battery bank and the diesel generator used in this study are 

listed in Table 1. For RBD configuration, the power stored in the battery bank is used only if it is 

greater than the power deficit or if the power deficit is greater than the nominal diesel power. The 

diesel generator, where required, operates in full load to cover the power deficit and also to charge 

the battery bank.  

 

State of charge (SOC) of the battery bank at the end of period t  is given by 

 

  B

BBB

ΔtΔt,R
tΔtt η

Vcn

t)L-P(δSOCSOC


 1       (18.a) 

maxmin SOCSOCSOC Δtt           (18.b) 

 

where  is the self-discharge rate and 
Bn , 

Bc , 
BV and 

Bη  are the number of batteries in the battery 

bank, unit nominal capacity, battery bank voltage and the efficiency of the battery in 

charging/discharging states respectively. In this equation it is assumed that the convertor efficiency 

is close to unity.  

 

 

  



Published in Reliability Engineering and System Safety130 (2014) 159–174 Alireza Maheri 

11 

 

Table 1. The power dispatch strategies for the battery bank and the diesel generator. 

Case Diesel Generator Power/Battery Status 

R
en

ew
ab

le
-B

at
te

ry
 

1 
Excess power 0,   tRt LP  :  

The excess power is used to charge the battery bank ttt SOCSOC   

2 
Power deficit less than the extractable power from the battery bank eBtRtt PPL ,,,0   :  

The power deficit is compensated by the battery bank ttt SOCSOC  . 

3 
Power deficit greater than the extractable power from the battery bank eBtRtt PPL ,,,   : 

Blackout; The battery bank is discharged to its minimum level minSOCSOC tt  . 

R
en

ew
ab

le
-D

ie
se

l 1 
Excess power 0,   tRt LP :  

No need for diesel generator power 0,  DtP . 

2 
Power deficit less than the nominal power of the diesel generator 

nomDRtt PPL ,,0   :  

The power deficit is compensated by the diesel generator RttDt PLP ,,   . 

3 
Power deficit greater than the nominal power of the diesel generator

nomDRtt PPL ,,   : 

Blackout; The diesel generator works at its nominal power
nomDDt PP ,,  . 

R
en

ew
ab

le
-B

at
te

ry
-D

ie
se

l 

1 

Excess power 0,   tRt LP  :  

The excess power is used to charge the battery bank ttt SOCSOC  ; No need for diesel 

generator power 0,  DtP . 

2 

Power deficit less than the extractable power from the battery bank eBtRtt PPL ,,,0   : The 

power deficit is compensated by the battery bank ttt SOCSOC  ; No need for diesel generator 

power 0,  DtP . 

3 

Power deficit greater than the extractable power from the battery bank but less than the nominal 

power of the diesel generator 
nomDRtteBt PPLP ,,,,   :  

The diesel generator compensates the power deficit and charges the battery

 nomDfcBtRttDt PPPLP ,,,,, ,min   ; The battery bank is charged ttt SOCSOC  . 

4 

Power deficit greater than the extractable power from the battery bank and greater than the 

nominal power of the diesel generator but less than the summation of the two 

eBtnomDRtteBt PPPLP ,,,,,,   ; eBtnomDRttnomD PPPLP ,,,,,   :   

Both the diesel generator and the battery bank compensate the power deficit; The diesel generator 

works at its nominal power nomDDt PP ,,  ; The battery bank is discharged ttt SOCSOC  . 

5 

Power deficit greater than the summation of the extractable power from the battery bank and the 

nominal power of the diesel generator eBtnomDRtt PPPL ,,,,   :   

Blackout; The diesel generator works at its nominal power
nomDDt PP ,,  ; The battery bank is 

discharged to its minimum level minSOCSOC tt  . 

 

The required power for reaching the SOC of the battery bank to its maximum value, Δt,B,fcP , can be 

calculated by the following equation in which Bη  is the charging efficiency: 
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 

B

BBBt
Δt,B,fc

Δtη
VcnSOCSOC

P


 max        (19) 

The extractable power stored in the battery bank, eBtP ,, , can be calculated by the following 

equation in which 
Bη  is the discharging efficiency: 

 

 
Δt

VcnSOCSOC
P BBBBt

eBt

min
,,


        (20) 

 

The number of required batteries to supply the power for the autonomy period aT  is given by: 

 

 
  














BBB

da

aB
VcSOCSOC

MoSLT
n

minmax

max,

,

1
       (21) 

 

in which 
Bη  is the discharging efficiency. 

 

4.2 Cost modelling 

TLSC analysis considers all costs over the life-span of the system. These costs are then discounted 

to a base year using present value analysis. Assuming there is no escalation in the price of the 

components, the formula for calculating the present value of TLSC is as follows: 

 

 

 


SN

j
j

j

t
d

C
C

0 1
            (22) 

 

where SN  is the life-span of the system, tC  is the present value of TLSC, d  is the annual discount 

rate, and jC  is the cost in year j  including capital cost cC , fixed operation and maintenance costs 

FMOC ,& , variable operation and maintenance costs VMOC ,& , and the replacement cost rC . Case 0j

represents the beginning of the life-span with its corresponding cost 0C , standing for the capital 

cost only.  

 

The capital cost of the system (including installation cost) is given by: 

 

 
comp

compinscompcompuc SCC )1( ,,           (23) 

 

in which S is the size of the component, uC is the unit cost and ins is the installation cost as a 

fraction of the total cost of the component. Cost estimation at the conceptual design phase of HRES 

can be based on either cost per unit of nominal power production or cost per unit of size. To be 

consistent with the power models used in Section 4.1, for wind turbine and PV array the cost per 

unit size is used, whilst for the diesel generator and the batteries the cost per nominal 

power/capacity is used.  
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The O&M cost includes fixed and variable parts: 

 

 
comp

compVMO

comp

compFMOMO CCC ,,&,,&&         (24) 

 

The fixed part can be represented by 

 

compccompMOcompFMO CC ,,&,,&            (25) 

 

The variable part of the O&M cost for wind turbine, PV and battery bank is zero. Using hourly-

averaged data, the annual variable part of the O&M cost for diesel generator (the cost of consumed 

fuel) is given by [23]: 

fuel

DnomD

i

iDh

DVMO C

TPP

C
1000

08145.0246.0 ,

8760

1

,

,,&





          (26) 

 

where 
DT is the total number of hours that the diesel generator operates, DhP ,  is the hourly-averaged 

diesel power and fuelC is the fuel price. 

 

For each component the replacement cost is given by: 

 


comp

compccomprr CnC ,,
            (27) 

 

where 
rn is the number of replacements during the life-span of the system. Having the nominal life 

of system ( SN ), wind turbine ( WTnomN , ) and PV panel ( PVnomN , ) in years and the nominal life of 

diesel generator DnomN ,  in hours of operation, the following equations can be used to find the 

number of replacements of these components:  

 














compnom

S

compr
N

N
n

,

,
  for wind turbine and PV panel       (28) 

 














Dnom

DS

Dr
N

TN
n

,

,
   for diesel generator        (29) 

 

For the battery bank, the number of replacements depends on the number and depth of discharges 

DOD as well as BnomN ,  the nominal life span of the batteries: 

 




























Beq

S

Bnom

S
Br

N

N

N

N
n

,,

, ,max           (30) 
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Having the number and depth of discharges, employing rain-flow counting method the equivalent 

life BeqN ,  can be calculated as: 





dn

i ifailtocycle

Beq

n

N

1

,
1

1
           (31) 

where dn  is the number of the charge-discharge cycles of the battery bank per year, 
ifailtocyclen is the 

equivalent number of cycles to fail corresponding to iDOD . Using the battery equivalent full cycles 

data reported in [24], the equivalent number of cycles to fail can be correlated to the DOD by 

 
99101540 .-

iifailtocycle DOD.n             (32) 

 

Table 2 summarises the values used for the parameters appeared in Equations (23) to (26) and (28) 

to (30): 

 

Table 2. Cost modelling parameters [23, 24]. 

 Wind turbine PV panel Battery bank Diesel generator 

S  
Rotor area

)( 2mAWT  

Panel area

)( 2mAPV  

Capacity

)(Ahcn BB  
Nominal power )(, WP nomD  

uC  2/$480 m  
2/$830 m  Ah/$5.1  nomW/$4.0  

ins  0.2 0.4 0 0 

MO&  0.03 0.01 0.01 0.15  

nomN  20 years 20 years 4 years 15000 hours 

VMOC ,&  0 0 0 lC fuel /$1   (as in Eq. (26)) 

 

TLSC is an important parameter which imposes a hard constraint in the design problem, affecting 

the configuration and the overall size of the designed HRES. LCE, on the other hand, allows 

alternatives to be compared when different scales of operation and investment exist. For systems 

with constant annual output over the life-span of the system LCE, lC , can be calculated as follows:  

 

t

a
l

P

C
C               (33) 

 

where tP  denotes the  annual energy output and aC  stands for the annualised cost, given by [23]:  

 

UCRFCC ta              (34) 

 

The uniform capital recovery factor UCRF  is given by: 
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 
  11

1






S

S

N

N

d

dd
UCRF             (35) 

 

It should be noted that the power produced by a standalone HRES excess to the demand load and, 

where applicable, charging the batteries is dumped. Therefore, in Equation (33), the usable amount 

of produced energy should be used instead of the system total energy output, tP . Using hourly-

averaged values for the demand load and renewable resources, LCE for a standalone HRES can be 

calculated as follows:  

 

  





8760

1

,,,min
j

jgarChBhhh

a

l

PLP

C
C           (36) 

 

in which  hP and hL are, respectively, the hourly-averaged power and demand load and garChBhP ,,  

stands for the hourly-averaged power used to charge the battery bank.  

 

Cost analysis can be performed using either current or constant dollar cash flows. A current dollar 

analysis requires the use of a nominal discount rate (which includes the effect of inflation) and a 

constant dollar analysis requires the use of a real discount rate (excluding inflation). Discount rates 

are related to inflation rate with the following formula [25]: 

 

1
1

1







i

d
d nom

real             (37) 

 

where i is the inflation rate and nomd  and reald  are the nominal and real discount rates respectively. 

The choice of real or nominal LCE depends on the purpose of the analysis. Most short-term studies 

are shown in current dollars, whereas long-term studies are frequently computed in constant dollars. 

It should be noted that, regardless of the method chosen, the most cost effective alternative will not 

change as long as all design candidates are evaluated using the same method [25]. In this study all 

cost analyses are based on constant-dollar cash flows. 

 

5 Case studies 

In deterministic design methods we do not evaluate the probability of failure and the actual 

reliability of the system is unknown to the designer.  However, it is assumed (hoped) that, using 

safety factors and/or carrying out the design based on worst-case-scenarios, the ideal performance 

targets with negligible probability of failure will be achieved (for example, design for an autonomy 

period of 3aT  days would lead to a reliable design solution with zero unmet load:   00 UPF ). 

In this section, using deterministic design methods, size of components in standalone HRES with 

different configurations are optimised. For each configuration a variety of safety factors and 

autonomy periods is used. For each optimal design solution a Monte Carlo simulation is also 

performed to find the probability of failure of each of the performance assessment criteria.  
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In this study, only uncertainties in resources (wind speed and solar irradiance), demand load and 

modelling (wind turbine power coefficient and PV array efficiency) are considered.  Since the aim 

of this study is to investigate the reliability of the results of deterministic size optimisation, a 

conservative approach in selecting uncertainties is adopted to ensure fair cases are considered for 

this purpose: 

 The uncertainty in the cost analysis is intentionally neglected in this study. This allows to 

investigate the effect of uncertainties in renewable resources, power modelling and the 

demand load on the system cost as well as the reliability of power supply. 

 The most conservative form of distribution is selected. Using deterministic methods for 

sizeing systems subject to uncertainties with uniform distribution is more likely to leads to 

relaible solutions,   00 UPF , with the price of over sizing. It should be noted that uniform 

distribution is not a realistic form of distriibution for wind speed, solar irradiance and the 

demand load.  

 Unless precisely known (i.e. 
PC model), low levels of uncertainties are selected. For 

example, the uncertainty in wind speed used in this study is taken as 30% for “hourly” 

averaged wind speed which is significantly lower than the 11% to 30% uncertainty in 

“yearly” averaged wind speed reported in [26]. Since solar irradiance is more predictable 

compared to wind speed the uncertainty is limited to only 10%. Uncertainty in the demand 

load is also limited to 20% which is a low level of uncertainty for domestic loads. A very 

low level of uncertainty of 10% is also considered for the PV array efficiency. PV array 

efficiency depends on the type of PV (varying between about 12% to about 16% for newly 

developed PV cells) as well as the working condition (e.g. accumulated dust can reduce the 

efficiency as large as 33% after one month of operation [27]). Table 3 summarises the 

uncertainties, whereby   represents the variation range as a fraction of the mean value.  

 

Table 3. Uncertainties in resources, demand load and modelling. 

Parameter/Model Distribution 

Wind speed Uniform ( 15.0 ) 

Solar irradiance Uniform ( 05.0 ) 

Demand load Uniform ( 10.0 ) 

PC model Uniform ( 07.0 ) 

PV array efficiency Uniform ( 05.0 ) 

 

The hourly-averaged wind speed, solar irradiance and demand load are adopted from [28] and 

shown in the appendix. 

 

A genetic algorithm (GA) was developed to find the optimal size of components.  Special care has 

been made in design of reproduction operators for this GA. Figure 1 shows a typical solution space 

obtained using an exhaustive search with a uniform fine grid. As it can be observed, although the 

design space is uniform, the solution space is clustered with multiple local optima, which can 

impact the search performance of an ordinary GA. This property of the solution space has been 

taken into account in design of the mutation operator of the developed GA. In order to increase the 

exploratory behaviour of the GA, avoiding stagnation in local optima, a high mutation rate is used. 

However, to reduce the negative effect of using a high mutation rate on exploitation of the design 



Published in Reliability Engineering and System Safety130 (2014) 159–174 Alireza Maheri 

17 

 

space, a dynamic mutation operator combined with a mixed parent selection strategy have been 

used. At earlier generations, identified by 9.0max fitfit av
 (the ratio of the average fitness of the 

population 
avfit and the fitness of the best individual in the population maxfit ), the GA explores the 

design space towards finding the cluster of the global optima by using a high mutation rate (

7.0mP ) and a random parent selection strategy (irrespective of the individual fitness). At latest 

generations ( 9.0max fitfit av
) when the GA has found the cluster of the global optima, the 

algorithm exploits the design space towards finding the global optima itself by adopting a parent 

selection based on the individual fitness.  In this stage still a high mutation rate is used but the 

mutation effect is limited. The random perturbation of the i-th design variable ix  is selected from a 

shrinking interval miI , : 

 liui

av

miiilimi xx
fit

fit
Ixxxx ,,

max

,,, 1; 









          (38) 

 

in which, mix , , lix , , uix ,  and ix  are, respectively, the mutated value, the lower limit, the upper limit 

and the random perturbation of design variable ix , and miI ,  is the mutation interval.  This is aimed 

at a refine search in the vicinity of the global optima. Fitness is defined based on LCE: 

 

l
Cfit 1              (39) 

 

In this algorithm an arithmetic crossover operator is used. The infeasible solutions are defined as 

those with nonzero total blackout duration and are rejected on creation. The algorithm terminates 

when 5

max 101  avfitfit . 

 

 
Figure 1-A typical solution space obtained using an exhaustive search over a fine uniform grid. 

Blue hollow circles represent solutions and red solid circles represent the Pareto front solutions. 

 

The developed GA searches for the optimal size of components over a bounded search space: wind 

turbine rotor radius is either zero (representing the case of no wind turbine in the HRES 

configuration) or is a real number between mR lWT 2,   and the upper limit uWTR ,  given by Equation 
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(40). The upper limit can be estimated by assuming that the wind turbine is capable of producing 

the required renewable power to supply the demand load by its own. It is estimated using the 

maximum daily-averaged load and the minimum daily-averaged wind power.  In this study, the 

minimum daily-averaged wind power is calculated at a hub elevation of mh 120   using a 

conservative value of 2.0
0
PC  for the power coefficient, as follows: 

 

 3min,

max,

,

0

2

ohhdP

d

uWT

VC

L
R






           (40) 

 

Adopting the same approach for PV size limits, the PV panel area is either zero (representing the 

case of no PV panel in the HRES configuration) or is an integer number between 
2

, 4mA lPV   and 

the upper limit uPVA ,  defined as: 

 

PVd

d

uPV
I

L
A

min,

max,

,              (41) 

 

In this study, where applicable, AhV 4024   lead-acid batteries have been used (self-discharge rate

%2.0 , 9.0Bη in charging state (independent of the charging current)   and 1Bη  in 

discharging state). It is also assumed that 1.0min SOC  and 1max SOC .  Other parameters are as 

follows: air density
3/225.1 mkg ; wind turbine electrical and gearbox efficiency 9.0EGη ; 

surface roughness length mz 03.00  ; minimum blade tip-ground clearance mhc 8 ; overall PV 

unit efficiency %12PV ; the life-span of the system 20N  years and the real discount rate 

%4reald .  

 

5.1 Case Study 1: Wind-PV-Battery Configuration 

Using deterministic optimal sizing method explained in Section 2.1, for different autonomy periods 

and margins of safety the optimal size of the system components are obtained and presented in 

Table 4. The last row of this table includes the results of optimisation without considering a margin 

of safety or an autonomy period, in which the size of the battery bank is determined along with the 

other design variables. 
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Table 4. RB configuration: Results of the deterministic optimal design. 

Design 

Case 

Battery bank sized based on aT  

and MoS  

N
o
. 
o
f 

b
a
tt

e
ri
e
s
 

W
in

d
 t

u
rb

in
e

 

 r
o
to

r 
ra

d
iu

s
 (

m
) 

[r
a
te

d
 p

o
w

e
r 

(k
W

)]
 

P
V

  

p
a
n
e

l 
a
re

a
 (

m
2
) 

 

[n
o
m

in
a

l 
p
ic

k
  
p
o

w
e
r 

(k
W

p
)]

 

P
e
n

e
tr

a
ti
o
n
 (

%
) 

T
L
S

C
  
($

) 

L
C
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n

t/
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W

h
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)(daysTa  (%)MoS  )1( MoSTa   

D1 1 20 1.2 146 9.7 [117] 12 [1.0] 351 289,500 50.0 

D2 3 20 3.6 428 9.5 [112 25 [2.1] 341 364,860 63.0 

D3 10 20 12 1460 10.1 [127] 0 [0] 380 599,730 103.6 

D4 1 100 2 244 10.0 [125] 0 [0] 371 311,540 53.8 

D5 3 100 6 730 9.8 [120] 11 [0.9] 359 429,110 74.1 

D6 10 100 20 2432 10.3 [132] 0 [0] 398 836,400 144.5 

D7 1 200 3 366 10.0 [125] 0 [0] 371 339,940 58.7 

D8 3 200 9 1096 10.1 [127] 0 [0] 380 515,000 89 

D9 10 200 30 3648 10.4 [135] 0 [0] 408 1,124,750 194.3 

D10 Battery bank size optimised for cost 70 9.7 [117] 12 [1.0] 351 271,810 47.0 

 

In this table and Tables 6 and 8 of Sections 5.2 and 5.3, the wind turbine rated power is calculated 

as the maximum of the power obtained using Equation 13 for wind speeds between 3 and 25 m/s. 

PV nominal pick power is calculated using Equation 17 based on standard test condition solar 

irradiance of 1000W/m². 

 

Figure 2 shows TLSC and LCE of the designed systems versus the overall safety factor  

)1( MoSTa   used for sizing the storage. This figure shows that TLSC and LCE are almost linearly 

proportional to )1( MoSTa  . This behaviour was expected since, according to Equation (21), the 

size of the storage is proportional to )1( MoSTa   and the battery bank has a major contribution in 

the overall cost of the system. Beside the significant effect of the safety factor  )1( MoSTa   on the 

size of the storage and consequently cost of the system, this parameter also affects the optimum size 

of the renewable components as well as the system configuration (i.e. the optimal configuration in 

designs D3, D4 and D6-D9 do not include PV panel).  
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Figure 2-RB configuration: Cost versus )1( MoSTa  .  

 

For each design case, a Monte Carlo simulation is carried out to quantify the probability of failure 

of the system with respect to three system reliability measures which are expected to be achieved by 

using aT and MoS in a deterministic design. The reliability measures which are considered are 

0tU , 0tBO  and hMTBF 8760 . These goal values represent a reliable system in supplying 

the power when required. Extending the Monte Carlo simulation for cost analysis, the probability of 

failure in achieving a cost less than or equal to the calculated cost within a deterministic design (

det,ll CC  ) is also calculated. These results are shown in the second and third columns of Table 5.   

Some system performance characteristics at 99% level of confidence (LOC), equivalent to a 

probability of failure of %1PF , are also extracted from the results of the Monte Carlo simulation 

and are presented in this table.  

 

Table 5. RB configuration: Probability of failure of design cases with respect to the reliability 

and cost criteria. 

Design 

Case 

Probability of Failure (%) 
System performance characteristics @ 99% LOC 

(PF=1%) 

0tU  

0tBO  

8760MTBF  

det,ll CC   tBO  

(h) 

maxBO  

(h) 

avBO  

(h) 

tU  

(kWh) 
MTBF (h) 

lC  

(cent/kWh) 

D1 40.2 68.4 20 5 3 59.5 960 50.2 

D2 6.7 72.8 8 4 2.5 19.9 2190 63.2 

D3 8.3 68.7 11 4 3 29.5 1750 114.3 

D4 1.5 65.2 4 3 2 6.0 4390 53.9 

D5 9.9 70.0 11 3 2.6 31.4 1470 79.5 

D6 0.3 82.2 1 0.5 0.2 0.2 8750 162.5 

D7 2.4 70.4 4 3 2.5 11.5 2940 58.8 

D8 1.1 29.9 2 2 1.5 3.2 4400 96.7 

D9 3.8 99.9 6 4 2.5 16.6 2910 246.1 

D10 100 100 107 9 2 297.4 150 47.7 

 

Comparing the probability of failure with respect to the expected reliability measures ( 0tU , 

0tBO  and hMTBF 8760 ) and expected cost ( det,ll CC  ) of designs D1 to D9 with design D10 

40 

80 

120 

160 

200 

250,000 

500,000 

750,000 

1,000,000 

1,250,000 

0 5 10 15 20 25 30 

L
C

E
 (

c
e
n
t/
k
W

h
) 

T
L
S

C
 (

$
) 

Ta(1+MoS) 

TLSC ($) 

LCE (cent/kWh) 



Published in Reliability Engineering and System Safety130 (2014) 159–174 Alireza Maheri 

21 

 

(in which the battery bank is sized along with other design variables), it is evident that using safety 

factor )1( MoSTa   in sizing the storage enhances the reliability of the system to some extents. In 

order to quantify this effect, the probability of failure of the system with respect to the expected 

reliability measures and cost versus )1( MoSTa   are shown in Figure 3. It can be observed that (i) 

irrespective of the length of the autonomy period and the margin of safety, high probability of 

failure in either of the expected reliability or cost or both is expected, and (ii) while )1( MoSTa   

directly affects the size of the storage and consequently the cost of the system, there is no 

predictable pattern representing the effect of this parameter on the reliability of the system. For 

example, comparing designs D4 and D9, while the size of the storage and the cost of design D9 are, 

respectively, 15 times and 3.6 times of those of design D4, this design is less reliable than design 

D4 in supplying power. Considering D3 and D9, one can conclude that large battery banks, 

surprisingly, may lead to less reliable systems, if not accompanied by the right size for renewable 

components (e.g. in case of D6). This behaviour is due to significant loss of renewable energy in 

charging larger battery banks (re-simulating D9 with a charging efficiency of 100% instead of 90% 

leads to a probability of failure of zero for this design).   

 

 

 
Figure 3-RB configuration: Probability of failure of the system with respect to the expected 

reliability and cost criteria versus )1( MoSTa    

 

Figure (4) to (5) show the system reliability characteristics ( tBO , maxBO , avBO , tU and MTBF ) at 

99% LOC. For all of these reliability measures, more or less the same unpredictable pattern against

)1( MoSTa  can be observed. 

 
Figure 4-RB configuration: Blackout duration at 99% LOC versus )1( MoSTa   
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Figure 5-RB configuration: Total unmet load at 99% LOC versus )1( MoSTa   

 

  
Figure 6-RB configuration: MTBF at 99% LOC versus )1( MoSTa   

 

Figure (7) shows the solution space for designs D1 to D10 in LCE-total blackout duration plane, 

both calculated at 99% LOC. As it can be observed only designs D1, D4, D6, D9 and D10 (marked 

by solid circles) are Pareto solutions. Having in mind that LCE is proportional to the overall safety 

factor )1( MoSTa  , this figure confirms that there is no predictable correlation between  the overall 

safety factor )1( MoSTa   and the reliability of the system and challenges the suitability of this 

parameter in design of reliable RB systems. 

 

 
Figure 7-RB configuration: Solution space for design cases D1 to D10 
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of the power supply, will not produce energy at a levelised cost of 144.5 cent/kWh (calculated via a 

deterministic method) but at a levelised cost of 162.5 cent/kWh instead. This challenges the validity 

of the results of deterministic optimisation for the objective of cost as well.  

 
 

Figure 8-RB configuration: Levelised cost of energy calculated based on deterministic optimisation 

and the levelised cost of energy obtained by Monte Carlo simulation at 99% LOC.   

 

With reference to Table 5, comparing designs D3 ( 12)1( MoSTa ) with D5 ( 6)1( MoSTa ), 

the advantages of using the blackout distribution instead of the unmet load can be explained. Since 

the unmet load for design D3 is less than the unmet load in design D5 (29.5 versus 31.4 kWh), one 

can conclude that design D3 is more reliable in supplying power. However, comparing the average 

and maximum blackout durations of design D3 to design D5 (respectively, 2.6 versus 3 and 3 versus 

4), from the end-user point of view design D5 is preferred to design D3 as the domestic end-users 

clearly prefer shorter blackout durations. 

  

5.2 Case Study 2: Wind-PV-Diesel Configuration 

For different margins of safety the optimal size of the system components are obtained and 

presented in Table (6). The last row of this table includes the results of optimisation without 

considering a margin of safety, where the size of the diesel generator is determined along with the 

other design variables. 

 

Table 6. RD configuration: Results of the deterministic optimal design. 
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Figure 9 shows the system cost and LCE versus the margin of safety used in sizing of the diesel 

generator. Comparing Figures 9 and 2, the same behaviour as in RB configuration is observed here, 

but for a different reason. In RB configuration the battery bank has a major contribution in the 

overall cost of the system, while in RD configuration the share of the cost of the diesel generator is 

much less. The reason for observing the same behaviour can be explained as follows. As the 

nominal size of the diesel generator increases, the time at which the generator operates at its 

nominal power and consequently its highest efficiency decrease. This makes producing power less 

cost effective compared to the renewable power.  

 

 
Figure 9- RD configuration: Cost versus MoS . 
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Table 7. RD configuration: Probability of failure of design cases with respect to reliability and 

cost criteria. 

Design 

Case 

Probability of Failure (%) 
System performance characteristics @ 99% LOC 

(PF=1%) 

0tU  

0tBO  

8760MTBF  

det,ll CC   tBO  

(h) 

maxBO  

(h) 

avBO  

(h) 

tU  

(kWh) 
MTBF (h) 

lC  

(cent/kWh) 

D11 100 100 29 1 1 4.1 310 42.8 

D12 0 100 0 0 0 0 8760 45.7 

D13 0 100 0 0 0 0 8760 50 

D14 0 100 0 0 0 0 8760 56.5 

D15 0 100 0 0 0 0 8760 68.6 

D16 100 100 55 1 1 13.9 160 41.9 

 

 
Figure 10-RD configuration: Probability of failure of the system with respect to the expected 

reliability and cost criteria versus MoS .  
 

Figure 11 compares the deterministically calculated LCE with the LCE at 99% LOC obtained by 

Monte Carlo simulation. The deviation between the two curves becomes more significant as the size 

of the diesel generator increases. That is, as MoS  (and consequently the size of the diesel 

generator) increases, the system is more likely to fail at producing energy at the predicted cost by 

deterministic methods. This, challenges the validity of the results of deterministic optimisation for 

the objective of cost for this configuration too. 

 

 
Figure 11-RD configuration: Levelised cost of energy calculated based on deterministic 

optimisation and the levelised cost of energy obtained by Monte Carlo simulation at 99% LOC. 
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5.3 Case Study 3: Wind-PV-Diesel-Battery Configuration 

For different margins of safety the optimal size of the system components are obtained and shown 

in Table 8. The last row of this table includes the results of optimisation without using a margin of 

safety, where the size of the diesel generator and the battery bank are optimised along with the other 

design variables.  

 

Figure 12 shows the system cost and LCE versus the margin of safety used in sizing the diesel 

generator. Comparing this figure with Figures 2 and 9, a different behaviour is observed. While in 

both RB and RD configurations the cost increases with safety factors ( )1( MoSTa  and MoS ), in 

the case of RBD configuration the cost initially reduces with the safety factor ( MoS ). It should be 

noted that in case of RD configuration, the nominal size of the diesel generator is determined based 

on the maximum hourly-averaged peak load, while in case of RBD configuration it is found based 

on the maximum daily-averaged load. This leads to smaller nominal sizes. Reduction in the cost as 

MoS  (and consequently the size of the diesel generator) increases is due to (i) more usage of diesel 

as the source of power (which is more cost effective than the renewable resources) and (ii) less 

usage of the battery bank which leads to fewer  and shallower discharges and consequently less 

replacement cost. Increase in the cost for MoS  beyond a certain value is due to longer periods of 

time at which the generator does not operate at its nominal power (at its highest efficiency).  

 

Table 8. RBD configuration: Results of the deterministic optimal design. 
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D17 0 8.7 [94] 33 [2.8] 62 4.86 282 262,620 45.4 

D18 20 4.7 [28] 89 [7.4] 40 5.84 116 255,180 43.2 

D19 50 6.5 [53] 43 [3.6] 34 7.29 159 225,070 38.9 

D20 100 6.0 [45] 10 [0.8] 34 9.73 119 210,519 36.4 

D21 200 6.0 [45] 0 [0] 14 14.59 113 180,860 31.2 

D22 500 5.0 [31] 0 [0] 28 29.18 76 199,460 34.5 

D23 Diesel generator optimised for cost 6 [45] 0 [0] 14 14.0 113 179,980 31.1 
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Figure 12-RBD configuration: Cost versus MoS . 

 

Similar to Case Studies 1 and 2, for each design case, a Monte Carlo simulation is carried out to 

quantify the probability of failure of the system with respect to the system reliability measures as 

well as the cost obtained via the deterministic design method. The system performance 

characteristics at 99% LOC are also extracted from the results of the Monte Carlo simulation and 

are presented in Table 9.  

 

Probability of failure of the system with respect to the expected reliability measures ( 0tU , 

0tBO  and hMTBF 8760 ) and cost ( det,ll CC  ) versus MoS  are shown in Figure 13. It can be 

observed that for lower MoS , irrespective of the value of MoS , high probability of failure in both 

the expected reliability and the cost are expected. As MoS  increases, the probability of failure in 

the expected reliability measures reduces to zero. This is due to having a lower renewable 

penetration and more contribution of the diesel generator, as a reliable source, in generating power. 

In other words, the deterministic method can be used to design reliable RBD systems in terms of 

supplying the power if a suitable (large enough) MoS  is used.   

 

Table 9. RBD configuration: Probability of failure of design cases with respect to reliability and 

cost criteria. 

Design 

Case 

Probability of Failure (%) 
System performance characteristics @ 99% LOC 

(PF=1%) 

0tU  

0tBO  

8760MTBF  

det,ll CC   tBO  

(h) 

maxBO  

(h) 

avBO  

(h) 

tU  

(kWh) 
MTBF (h) 

lC  

(cent/kWh) 

D17 100 100 93 2 1.4 96.6 123 46.4 

D18 100 100 150 2 1.6 86.4 85 44.9 

D19 100 100 67 2 1.2 44.0 142 40.3 

D20 100 100 79 3 1.3 59.4 131 37.9 

D21 96.2 100 9 1 1 1.3 1092 32.6 

D22 0 100 0 0 0 0 8760 36.3 

D23 99.5 100 12 1 1 2.6 787 32.4 
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Figure 13-RBD configuration: Probability of failure of the system with respect to the expected 

reliability and cost criteria versus MoS . 

 

The variation of reliability measures at 99% LOC versus MoS  are shown in Figures 14 to 16. These 

figures show how the unpredictable fluctuating behaviour of the reliability measures at lower 

margins of safety (here, 1MoS ) becomes a predictable trend towards enhancing the reliability of 

the system at higher margins of safety (here, 1MoS ).   

 
Figure 14-RBD configuration: Blackout duration at 99% LOC versus MoS . 

  

 
Figure 15-RBD configuration: Total unmet load at 99% LOC versus MoS  
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Figure 16-RBD configuration: MTBF at 99% LOC versus MoS  

 

Figure 17 shows the solution space for designs D17 to D23 in LCE-total blackout duration plane, 

both calculated at a LOC of 99%. It can be observed that only designs D21 and D22 (with highest

MoS ) and D23 (optimised without using a margin of safety) are Pareto solutions. This highlights 

the importance of having a criterion to distinguish between low and high margins of safety in 

performing a reliable deterministic design.  

 

   
Figure 17-RBD configuration: Solution space for design cases D17 to D23. 

 

Figure 18 compares LCE calculated deterministically with the LCE obtained via Monte Carlo 

simulation at a LOC of 99%.  The deviation between the two curves becomes more significant as 

MoS  (or equivalently the size of the diesel generator) increases. This shows that, as for the other 

two studied configurations, the results of deterministic optimisation for the objective of cost are not 

reliable for the RBD configuration.  

 

 
Figure 18-RBD configuration: Levelised cost of energy calculated based on deterministic 

optimisation and the levelised cost of energy obtained by Monte Carlo simulation at 99% LOC. 
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6 Summary and Conclusion 

Size optimisation of standalone HRES is a multi-objective optimisation problem with two 

conflicting objectives of cost and reliability. Uncertainties in renewable resources and demand load 

affect the reliability of the system in supplying power whenever demanded. In deterministic design 

methods, the uncertainties in renewable resources and demand load are ignored; instead it is 

assumed that by employing safety factors and considering worst-case-scenarios, reliable systems 

can be designed. By doing this, the objective of reliability is eliminated from the original 

optimisation problem. The design problem reduces to a single-objective cost-driven optimisation. 

Generally, selection of safety factors is highly subjective, depending on the designer experience and 

judgment. In case of standalone HRES, the optimum safety factors, if there are any, depend on the 

renewable resources and load profile as well as the distribution and level of uncertainties.  

 

In order to evaluate the reliability of deterministic design methods for three standalone HRES 

configurations (wind-PV-battery, wind-PV-diesel and wind-PV-battery-diesel), first, deterministic 

design methods are employed to find the optimal size of the system components for different values 

of safety factors. Then, for each design case, using Monte Carlo simulation (
510simn ), the effect 

of safety factors on reliability and cost of the system are investigated.  

 

The probability calculated using Monte Carlo simulation has random errors due to limited sample 

size. To ensure the accuracy of the Monte Carlo simulation results, examining 
610simn   for two 

design cases D9 and D12, it was found that either the difference between the results is negligible 

(for D9) or the results are the same (for D12). Zero probability of failure for design D12 is due to 

the presence of diesel in the system configuration as well as using bounded uniform distribution for 

uncertainties. 

 

In performing reliability analysis, the reliability measures unmet load, blackout durations (total, 

maximum and average) and mean time between failures are considered. Only few sources of 

uncertainties with uncertainties lower than the expected levels in practice are used to define 

conservative case studies in favour of deterministic methods. However, results show that 

deterministic methods fail to serve as reliable methods in sizing cost-effective and reliable systems. 

Exploiting the obtained results the following conclusions are drawn: 

 

1. Calculated costs via a deterministic optimisation methods deviate from the costs obtained by 

employing Monte Carlo simulation even without having any uncertainty in the cost modelling.  

This deviation is due to the presence of uncertainties in power modelling, demand load and 

renewable resources which affect the replacement cost (batteries and diesel generator) and 

variable O&M cost (fuel consumption). This deviation becomes more significant as the size of 

the battery bank/diesel generator increases. Deviation between the cost calculated 

deterministically and the cost obtained using Monte Carlo simulation challenges the validity of 

the results of deterministic optimisation for the objective of cost.  

 

RB configuration  

2. The overall safety factor )1( MoSTa   has significant effect on the size of the battery bank and 

consequently the cost of the system. Both increase linearly with )1( MoSTa  .  
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3. While parameters such as autonomy period and margin of safety used in deterministic designs 

are considered to have a direct influence on the reliability of the system, no predictable pattern 

representing the effect of these parameters on the reliability of the system could be found. This 

challenges the usability of these parameters in design of reliable systems of RB configuration. 

4. Using large battery banks with charging efficiency of less than 100%, if not accompanied by the 

right size for renewable components, may lead to less reliable systems.   

5. For this configuration, the results of deterministic optimisations are not trustworthy neither with 

respect to the reliability nor the cost of the system.  

 

RD configuration  

6. Similar to RB configuration, the system cost increases almost linearly with MoS . 

7. In contrast to the RB configuration, parameter MoS  used in deterministic design of RD 

configuration has a direct influence on the reliability of the system. That is, employing high-

enough MoS  leads to reliable systems in supplying power. However, as the cost of the system 

is directly proportional to the selected MoS , deterministic design methods cannot be used for 

multi-objective optimisation unless “high-enough” is quantified. For this configuration there 

exists an optimum value for MoS  which cannot be quantified via deterministic methods, as it 

depends on the level and distribution of uncertainties. A procedure including both deterministic 

and probabilistic analyses is required to find MoS which corresponds to a desired reliability 

with minimal cost.  

 

RBD configuration  

8. Parameter MoS  has a mix effect on the cost of the designed systems. There exists a MoS  

which minimises the cost and can be found via deterministic methods for a given site. 

9. The reliability of the system shows little sensitivity to lower margins of safety. Higher margins 

of safety have direct influence on the reliability of the designed system. A high-enough MoS  

guarantees the reliability of the system in supplying power. Quantification of the MoS , which 

leads to a reliable system, or the border separating low and high margins of safety, cannot be 

carried out via deterministic methods as it depends on the distribution and level of uncertainties 

corresponding to renewable resources and demand load.  

 

Using different values for the parameters defined in Table 2 would obviously lead to different 

optimal sizes and therefore different system costs. Using different values and forms for the 

uncertainties defined in Table 3 would lead to different values for the reliability measures. 

However, the general conclusions above, which are based on the results of conservative case 

studies, will be still valid. Incorporating more realistic uncertainties would obviously lead to similar 

conclusions, demanding the development of robust nondeterministic or hybrid 

deterministic/nondeterministic methods for sizing standalone HRES. 
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Appendix 

 

Renewable Resources and Demand Load Profiles [28] 

It is assumed that the wind speed measurement station elevation above the ground, refh  in Equation 

(15), is 3 m. The demand load used in this study has the same profile as that of in [28] but it is 

scaled up by a factor of 3. 

 

 
Figure A1-Seasonal hourly-averaged wind speed. 

 

 
Figure A2-Seasonal hourly-averaged solar irradiance. 

 

0 

1 

2 

3 

4 

5 

6 

7 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

W
in

d
 S

p
e
e
d
 (

m
/s

) 

Hour of Day 

Jan-March April-June July-Sept Oct-Dec 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

S
o
la

r 
Ir

ra
d
ia

n
c
e
 (

W
/m

2
) 

Hour of Day 

Jan-March April-June July-Sept Oct-Dec 



Published in Reliability Engineering and System Safety130 (2014) 159–174 Alireza Maheri 

33 

 

 
Figure A3-Hourly-averaged demand load. 

 

Multiple polynomial regression in a least squares sense 
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N be the number of observed wind turbines and V

N (the number of wind speeds between cut-

in and cut-out velocities:  
VNVV  1 ) be the number of predictors at each of WT

N observations. In 

descending powers, the 1q coefficients (    11 qC ) of the q -order polynomial model: 
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where, 
jiPC

,
 is the power coefficient of the i-th wind turbine at the j-th wind speed, and A  is defined 

as: 
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Nomenclature 

A    Area ( 2m ) 

BO    Blackout duration  

C    Cost ($) 

uC    Unit cost ($/unit) 

c    Battery capacity ( Ah ) 

DOD   Depth of discharge (-) 

d    Discount rate (-) 

FR    Failure rate (-) 

ch     Ground-blade tip clearance ( m ) 

i    Inflation rate (-) 

I    Solar irradiance ( 2/ mW ) 

L    Demand load  (W )  

LLP    Loss of load probability (-) 
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MoS    Margin of safety  

MTBF   Mean time to failure 

N    Nominal life-span (years; hours of operation) 

n    Number 

Bn    Number of batteries in battery bank 

dn    Number of battery discharges per year 

pn    Number of performance measures 

un    Number of uncertain parameter 

P    Power (W ) 

PF    Probability of failure (-) 

S    Size (various units) 

SOC    State of charge (-) 

T    Period of time  

aT    Autonomy period (days) 

U    Unmet load (-) 

tU    Total unmet load (Wh ) 

UCRF    Uniform capital recovery factor 

BV    Battery bank voltage (V ) 

w    Penetration (-) 

0z    Site surface roughness ( m ) 

 

    Cost as a fraction of initial cost (-) 

PV     Overall PV unit efficiency (-) 

  Self-discharge rate (-); Variation range of uncertain parameters with uniform 

distribution (-) 

    Air density (
3/ mkg ) 

EGη
   Wind turbine electrical and gearbox efficiency (-) 

 

Subscripts 

a    Autonomy; Available; Usable available; Annualised 

av    Average 

B    Battery 

c    Capital 

comp    HRES component (WT, PV, B, D) 

D    Diesel 

d    Daily  

design    Design 

e    Extractable  

F    Fixed 

fail    Failure 

fc    Fully charged 

h    Hourly 

hub    Hub elevation 

ins    Installation 

max    Maximum 

min    Minimum 
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nom    Nominal 

MO &   Operation and maintenance 

PV    Photovoltaic 

p    Performance measures 

R    Renewable 

r    Replacement 

real    Real  

S    System 

sim    Simulation 

t    Total; Time 

u    Unit, Uncertain parameter 

V    Variable 

WT    Wind turbine 

y    Yearly 

 

Symbols 

T    Averaged value of quantity  over time period T  

~    Mean value of uncertain parameter   

̂    Random part of uncertain parameter   

 

Abbreviations 

HRES   Hybrid renewable energy system 

LCE   Levelised cost of energy 

LOC   Level of confidence 

O&M   Operating and maintenance 

RB   Renewable-battery 

RD   Renewable-diesel 

RBD   Renewable-battery-diesel 

TLSC   Total life-span cost 
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