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Abstract: A variety of insect and arachnid species are able to remain submerged in water 

indefinitely using plastron respiration. A plastron is a surface-retained film of air produced 

by surface morphology that acts as an oxygen-carbon dioxide exchange surface. Many 

highly water repellent and hydrophobic surfaces when placed in water exhibit a silvery 

sheen which is characteristic of a plastron. In this article, the hydrophobicity of a range of 

commercially available water repellent fabrics and polymer membranes is investigated, and 

how the surface of the materials mimics this mechanism of underwater respiration is 

demonstrated allowing direct extraction of oxygen from oxygenated water. The coverage 

of the surface with the plastron air layer was measured using confocal microscopy. A 

zinc/oxygen cell is used to consume oxygen within containers constructed from the 

different membranes, and the oxygen consumed by the cell is compared to the change in 

oxygen concentration as measured by an oxygen probe. By comparing the membranes to 

an air-tight reference sample, it was found that the membranes facilitated oxygen transfer 

from the water into the container, with the most successful membrane showing a 1.90:1 

ratio between the cell oxygen consumption and the change in concentration within  

the container. 
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1. Introduction 

Certain hydrophobic surfaces will retain an air layer, known as a plastron, on their surface when 

submerged underwater which signifies the Cassie-Baxter state of wetting [1]. The plastron is easily 

recognizable due to a silver sheen resulting from the reflections at the air-water interface. A variety of 

insect and arachnid species have been observed to support a plastron around part of their body while 

underwater. The plastron serves two purposes; firstly it acts as an oxygen reservoir allowing the 

creature to breathe whilst submerged and secondly it forms a physical gill enabling the creature to 

draw dissolved oxygen from the water around it. There is a water-vapour interface between the air 

layer and the surrounding water which allows gaseous diffusion to take place, by oxygen moving from 

the water to the air layer and carbon dioxide escaping out into the water [2,3]. This phenomenon was 

first observed by Chomstock in 1887 [4], where he found that the Corisa genera of the water-boatman 

was able to remain underwater far longer than would be expected, and was described in more detail by 

Crisp et al. [5]. Plastron respiration has also been observed in non-tracheate arthropods [6]. The Diving 

Bell Spider (Argyroneta aquatic), Figure 1, is unique amongst spiders as it is thought to live its entire 

life underwater [7,8]. The spider uses hydrophobic hairs to create a plastron around its abdomen and 

legs; it is then able to use this air layer to survive whilst moving around underwater. The name Diving 

Bell Spider comes from the way the spider will use its web to build an air pocket amongst submerged 

plants by bringing air down from the surface. This air pocket can vary in size from large enough to 

contain the entire spider to so small only the abdomen will fit inside it. 

Figure 1. (a) Image of submerged diving bell spider reproduced from [8]; (b) submerged 

hydrophobic fabric, both showing the silvery sheen of a plastron. 
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In the field of biomimetics the use of hydrophobic surfaces are common [9] and used for a variety 

of applications such as fog harvesting and transportation [10] and buoyant cargo carriers [11]. Much 

work has gone into studying plastron respiration [2,12–14] with some attempts at recreating it, such as 

the work done by Shirtcliffe et al. [15]. They produced a sol gel foam using methyltriethoxysilane, 

creating a hydrophobic structure with micron sized pores which when submerged underwater retained 

a plastron on its surface. A zinc/oxygen cell was used as a method of consuming oxygen and sealed 

within a cavity made from the sol gel. They found that the hydrophobicity of the material, coupled 

with a small pore size, kept the water out, while allowing for the exchange of oxygen between the 

cavity and the water. Many fabrics have been developed that are highly water-resistant with some 

exhibiting hydrophobic and superhydrophobic properties [16–18]. In this article a selection of fabrics, 

as well as porous polytetrafluoroethylene (PTFE), are investigated to determine their hydrophobicity, 

whether they are plastron bearing and the efficiency with which they transport oxygen across  

their surface. 

2. Experimental Method 

2.1. Materials  

In order to mimic plastron respiration a range of porous, hydrophobic materials were used to mimic 

the effects of a physical gill. These included two types of porous PTFE, a PTFE thread seal tape  

(No Nonsense Ltd., Yeovil, UK) and expanded PTFE as used in Gore-Tex (Gore and Associates Ltd., 

Livingstone, Scotland). There were also a number of hydrophobic woven fabrics, including a 

hydrophobized nylon (Toray Textiles, Mansfield, UK), a hydrophobized polyester (Toray Textiles, 

Mansfield, UK) and a hydrophobized deep pile polyester fabric (Furtech, Glynneath, Wales, UK), all 

of which were treated with Granger’s Extreme Wash-in (Granger’s, UK), plus another polyester which 

had been hydrophobized (Furtech, Glynneath, Wales, UK). Several samples were also provided by 

Speedo (Speedo International, Nottingham, UK) from their swimwear range, including Speedo 

Aquablade
®

, Speedo LZR Pulse
®

, Speedo Fastskin
®

 and Speedo Endurance
®

.  

2.2. Characterisation of Materials 

To categorize the materials the static, advancing and receding contact angles were measured. Using 

a Kruss Drop Shape Analysis System (Kruss, Hamburg, Germany) 5 μL of water was dispensed onto 

the surface of each material, the static contact angle was then measured. The droplet was increased in 

volume up to 20 μL and then decreased back to 5 μL. As the droplet changes in size, the contact point 

will initially stay static before eventually moving to a new contact point. The contact angle was 

measured immediately prior to the contact point moving as the droplet increased or decreased in 

volume, giving the advancing and receding contact angles respectively. Due to the rough nature of 

some of the surfaces, a precise contact angle can be hard to achieve. This is due to the difficulty in 

finding the exact contact point of the water on the surface. 

Samples of the materials were imaged using a scanning electron microscope (SEM). To prepare 

them for imaging a 75 nm layer of gold was applied using an Emitech K575X sputter coater (Qourum 

Technologies Ltd. East, Grinstead, UK). The samples were then imaged using a Jeol JSM-840A SEM 
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(Jeol Ltd., Tokyo, Japan). Where possible image processing was used to measure the pore size of the 

material, this was done using ImageJ [19].  

Images were taken of the plastron layer using a confocal microscope (Leica DM-IRBE inverted 

confocal microscope). For this the samples were submerged in water and the focal plane of the 

microscope was moved from the surface of the sample to above the top of the plastron layer. This 

allowed the coverage of the plastron to be measured. 

2.3. Preparation of Samples  

In order to test the effectiveness of the membranes for plastron respiration a box was constructed 

from each material with a volume of 16.57 cm
3
 and a surface area of 23 cm

2
, Figure 2. First a frame 

was made from Perspex sheets using a laser cutter (40W M-300, Universal Laser Systems, Scottsdale, 

AZ, USA) which the membrane could be attached to. The material was attached to four sides of the 

frame using Araldite
®

 two part epoxy (Bostik, Leicester, UK). The bottom of the box was solid 

Perspex with two holes cut out to pass wires through, which was sealed around using Araldite. The top 

was sealed over with a balloon, also attached using Araldite
®

, to provide a water tight seal for an 

oxygen probe. A zinc/oxygen cell (DA13 Zinc-air Coin Cell, Duracell, UK) was held within the box. 

The cell generates electricity by using oxygen from the air to oxidize the zinc, and so would consume 

the oxygen within the box. Wires coming from the box connected the cell into a constant current 

circuit (CCC), consisting of an LM334 adjustable current source (RS Components, Corby, UK) in 

parallel with a 10 Ω resistor and a 200 Ω resistor in series with both. A voltmeter was used to measure 

the voltage across the cell and an ammeter to measure the current through the CCC. In order to 

measure the oxygen concentration inside the box an Extech 407510 oxygen meter (Extech Instruments, 

Nashua, NH, USA) was used. The sensing end of the probe was sealed inside the box using the balloon 

to make a water tight seal. Data from the three measurement devices was logged to a computer, using 

proprietary software from Extech for the probe and LabView (National Instruments, Austin, TX, USA) 

for the voltmeter and ammeter.  

Figure 2. Diagram of respiration box. 
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2.4. Measurement of Oxygen Levels 

To investigate the effectiveness of each material the box, with cell connected into CCC and oxygen 

probe sealed inside, was submerged 10 cm underwater. A silvery sheen would indicate the presence of 

a plastron. The current and voltage of the cell and the oxygen concentration within the box were 

measured over the course of 6 h. During this time a Tetratec APS100 air pump (Tetra, Melle, 

Germany) was used to keep the water equilibrated with the atmosphere and to provide some stirring. 

The oxygen consumption rate could be directly calculated from the current supplied by the cell, 

finding the total consumed by the cell over the 6 hour experiment. This was then compared with the 

change in oxygen partial pressure in the container, as measured by the oxygen probe. Therefore, by 

monitoring the oxygen levels within the box, it can be determined whether or not the oxygen levels 

within the box get replenished from plastron respiration across the membrane. As well as running this 

experiment underwater the experiment was also performed in air to see if the oxygen replenishment 

rate is affected by the fabric alone. 

3. Results and Discussion 

3.1. Characterisation of Materials  

3.1.1. SEM 

Figure 3 shows SEM images of the tested materials. The materials used consisted of either woven 

fabrics or porous polymer sheets. The PTFE tape and Gore-Tex are both single sheets with pores 

through which gas can pass. The PTFE tape has a maximum pore size of 14.8 μm
2
 and the pores 

making up 10.1% of the surface area. The Gore-Tex has a maximum pore size of 12.0 μm
2
 and the 

pores make up 6.2% of the surface area. The other materials are made up of several fibres woven 

together. The Furtech Polyester appeared to have a loose weave with a fibre diameter of 13.6 μm. The 

Toray Nylon had the most regular and tight weave of the fabrics and a fibre diameter of 14.5 μm. The 

Deep Pile Polyester Reverse had a fibre diameter of 13.9 μm, which would also be the case for the 

Deep Pile Polyester. The pile on the Deep Pile Polyester was made up of 18.1 μm fibres. The Toray 

Polyester is less tight weave than the Toray Nylon but has a similar fibre diameter 14.0 μm. All of the 

Speedo fabrics appear to be a more irregular weave, with the Fastskin and Aquablade having fibre 

diameters of 5.92 μm and 5.75 μm respectively and the LZR Pulse and Endurance having diameters of 

10.30 μm and 10.99 μm respectively.  
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Figure 3. SEM images at 2000× magnification of (a) Gore-Tex; and (b) PTFE Tape. SEM 

images at 150× magnification of (c) Furtech Polyester; (d) Toray Nylon; (e) Deep Pile 

Polyester Reverse; (f) Toray Polyester; (g) Deep Pile Polyester; (h) Speedo Fastskin
®
;  

(i) Speedo Aquablade
®

; (j) Speedo LZR Pulse
®

; and (k) Speedo Endurance
®

. The 20 μm 

scale bar is for images (a) and (b). The 300 μm scale bar is for images (c–k). 

 

 

3.1.2. Contact Angles, Thickness and Density 

Table 1 shows the static, advancing and receding contact angles for the materials tested. A material 

is considered hydrophobic if it has a static contact angle ≥90° and super-hydrophobic if the contact 

angle is ≥150°. None of the materials had contact angles high enough to be considered 

superhydrophobic, with the highest being just short at 144° for the Deep Pile Polyester and the Furtech 

Polyester, but all were well within the range to be considered hydrophobic, the lowest value being for 

the Gore-Tex fabric at 117°. The difference between the advancing and receding contact angles shows 

the range of angles a droplet on the surface can take and gives a measure of the mobility of water 

across the surface of the material [16]. Contact angle hysteresis is the difference between the 

advancing and receding contact angles. The materials showed a wide range of hysteresis values, the 

lowest of which being the Deep Pile Polyester at 20°, suggesting a material with high water mobility 

across the surface, and the highest being the Furtech Polyester at 144°, suggesting a material with low 

water mobility across the surface. The high hysteresis values are due to the water being pinned to the 

surface. This means that the contact point did not recede during the retraction of water.  
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Table 1 also shows the thickness and densities of the fabrics. The thickness of the materials was 

measured using the same side on microscope as was used to take the contact angle images (Kruss, 

Hamburg, Germany). The mass of the sample was measured by cutting out a 100 cm
2
 piece of each 

sample and weighing it using a set of laboratory scales. The thinnest sample was the Toray Nylon with 

a thickness of 0.07 mm. This was closely followed by the PTFE tape and Toray Polyester at 0.10 mm 

and 0.11 mm respectively. The thickest sample was the Deep Pile Polyester at 2.18 mm thick. The 

PTFE tape has the highest density at 1200 kg/m
3
 and the least dense sample was the Deep Pile 

Polyester with a density of 90 kg/m
3
. 

Table 1. Measurements of the static, advancing and receding contact angles and the 

contact angle hysteresis for the materials used in the study. P in the receding contact angle 

column denotes that the water was pinned to the surface of the material. The thickness and 

densities of each fabric are also shown. 

Material Thickness (mm) 
Density 

(kg/m
3
) 

Static 

Contact 

angle (°) 

Advancin

g Contact 

Angle (°) 

Receding 

Contact 

Angle (°) 

Plastron 

visible on 

surface 

Gore-Tex 0.29 ± 0.03 380 ± 20 115 ± 2 117 ± 2 P Yes 

Furtech Polyester 0.100 ± 0.003 1200 126 144 P Yes 

Toray Nylon 1.21 ± 0.05 180 103 129 P Yes 

Toray Polyester 0.36 ± 0.05 210 83 106 P Yes 

Deep Pile Polyester 2.18 ± 21 90 111 127 107 ± 2 Yes 

Deep Pile Polyester Reverse 2.18 ± 21 90 116 144 77 Yes 

PTFE Tape 0.07 ± 0.01 720 127 139 79 Yes 

Speedo Aquablade® 0.11 ± 0.02 940 112 123 P Yes 

Speedo LZR Pulse® 0.67 ± 0.04 360 115 120 88 Yes 

Speedo Fastskin® 0.62 ± 0.04 360 122 133 101 Yes 

Speedo Endurance® 0.55 ± 0.03 390 110 118 P Yes 

3.1.3. Plastron Properties and Final Oxygen Level 

All of the materials exhibited a visible plastron when submerged underwater. This was confirmed 

with confocal microscopy that showed plastrons of various thickness and varying coverage for the 

samples. As many of the materials were challenging to image, Table 2 includes a number that is 

representative of the coverage of the plastron as seen by the confocal microscope with full plastron 

coverage being the best at 5 and no visible plastron at 1. No plastron was visible on the confocal 

microscope images of PTFE tape which is most likely due to the low reflectivity of any thin plastron 

layer and the high reflectivity of the white tape. However, it is possible to visually observe a large 

reflective layer across the whole surface of the PTFE tape and for this reason we have given PTFE tape 

a numerical value of 5. An ideal fabric would be one with a low density, low thickness and large 

plastron coverage. It is expected that the plastron breathing properties of a material should be 

proportional to the plastron coverage of the surface and be inversely proportional to the thickness and 

the density of the material. This result is shown in Table 2 for each material tested. The material with 

the highest Plastron coverage/(Density × Thickness) was the Speedo LZR Pulse
®

 fabric. This came out 

with a value of 45 ± 10 and was also the material with the highest %O2 after the plastron breathing 
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experiments. The material with the lowest Plastron coverage/(Density × Thickness) value was the 

Speedo Aquablade
®

 fabric. This had a value of 4 ± 1 and had the second lowest %O2 after the plastron 

breathing experiments. 

Table 2. Values for the plastron coverage of the samples, the plastron coverage/(density × 

thickness) values and the %O2 levels in the box after 6 h submerged. 

Material 

Proportion of plastron 

covering the surface as imaged 

by confocal microscope 

Plastron 

coverage 

numerical 

value 

Plastron 

coverage/ 

(Density × 

Thickness) 

%O2 for 

box in 

water after 

6 h 

Speedo LZR Pulse® Covering surface 5 45 ± 10 12.4 ± 0.1 

PTFE Tape None visible 5 42 ± 3 12.3 

Gore-Tex Covering surface 5 23 ± 5 11.6 

Furtech Polyester Plastron between fabric weave 3 40 ± 14 11.6 

D P Polyester Covering surface 5 25 ± 12 11.6 

D P Polyester Reverse Partial surface coverage 4 20 ± 10 11.4 

Toray Nylon None visible 1 20 ± 5 10.6 

Toray Polyester Bubbles on surface 2 19 ± 6 9.3 

Speedo Fastskin® Covering surface 5 21 ± 3 5.7 

Speedo Aquablade® None visible 1 4 ± 1 5.0 

Speedo Endurance® Partial surface coverage 4 19 ± 3 4.3 

3.2. Measurement of Oxygen Levels  

The fabric boxes were ran in air to see how well the oxygen could be transported through the 

fabrics. The lowest value of %O2 after 6 h was 19.7% for the Furtech Polyester sample. The highest 

value was 20.5% for the Speedo LZR Pulse
®

 box. This shows that all of the boxes had similar oxygen 

mobility when tested in air and that this is not a limiting factor in the plastron breathing experiment. 

Figure 4 shows the oxygen concentration changes with time both within the boxes formed by the 

various membranes and an air-tight container acting as a reference sample (solid line). For most of the 

materials tested there is a clear difference in the rate at which the oxygen level decreases compared to 

the air-tight sample. The Speedo Aquablade
®

, Speedo Fastskin
®

 and Speedo Endurance
®

 materials are 

the closest to the air-tight result and therefore represent the lowest oxygen transference from the 

surrounding water. The other materials all show a considerably slower rate of oxygen decrease than the 

air-tight container, with the Speedo LZR Pulse
®

 showing the slowest oxygen decrease, representing a 

greater amount of oxygen transference. The oxygen partial pressure/percentage in the air-tight 

container had reached 4.7% by the end of the experiment. The zinc cell in the air-tight container 

consumes the fixed amount of oxygen sealed within and would be expected to continue until the  

zinc-oxygen reaction is no longer able to power the circuit, this would be expected to reach zero given 

a longer experiment. Oxygen partial pressures/percentages in plastron bearing fabric containers largely 

reached values higher than 4.7%. The Speedo Endurance
®

 reached a final value of 4.3%, taking into 

account experimental errors this is comparable to the air-tight container. The Speedo Aquablade
®

 and 

Fastskin
®

 had final values close to the air-tight box at 5% and 5.7% respectively. The Speedo LZR 

Pulse
®

 and PTFE Tape had the highest final values at 12.4% and 12.3% respectively. The difference in 
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the O2 decrease shows that the containers are able to draw oxygen from the dissolved oxygen within 

the water, and are therefore working as an external gill.  

Figure 4. The change in oxygen concentration with time measured with the oxygen meter 

for the materials tested and for an air-tight container (solid line). 

 

The zinc cell was calculated to consume oxygen at a rate of approximately 500 µL·h
−1

. Figure 5 

shows the ratio of the oxygen consumed by the zinc cell to the oxygen decrease as measured by the 

probe for each individual sample. This allows us to compare the various materials and their ability to 

support plastron respiration. The Air-tight container shows a ratio of 1.02:1, this is close to 1:1 which 

is to be expected as there is no replenishing of the oxygen from the water. In agreement with the data 

shown in Figure 4, the Speedo Endurance proved the worst material for oxygen transfer with a ratio 

comparable to the Air-tight box. The PTFE tape proved to be the best material for plastron respiration, 

showing a ratio of 1.90:1 when comparing the O2 used up by the zinc cell and O2 decrease measured 

by the probe. This shows that over the course of the experiment the O2 within the container was being 

replenished by the dissolved O2 in the water. Of the woven fabrics the Speedo LZR Pulse
®

 performed 

the best. Only the Speedo Endurance
®

 appeared to allow no oxygen to transfer across the membrane, 

showing a ratio comparable to the Air-tight container. The other materials showed varying degrees of 

oxygen exchange, all of them showing some evidence of oxygen transfer with ratios falling between 

the air-tight container and the PTFE tape.  

Figure 6 shows the %O2 in the sample boxes after 6 h and the Plastron coverage/(Density × 

Thickness) value for each sample arranged with the highest %O2 first then in descending order. The 

graph confirms that a higher Plastron coverage/(Density × Thickness) value is an indicator to a good 

sample for plastron respiration with Speedo LZR Pulse
®

 coming out with the highest value and the 
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highest %O2 after 6 h and the lowest value for the Speedo Aquablade
®

 fabric which had the second 

lowest %O2 after 6 h. 

Figure 5. The ratio of oxygen consumed by zinc cell to the decrease in oxygen 

concentration as measured by the oxygen probe.  

 

Figure 6. The %O2 in the fabric boxes after 6 h (blue bar and left y-axis) and Plastron 

coverage/(Density × Thickness) (red bar and right y-axis) of the fabrics. 

 

4. Conclusions  

We have shown that hydrophobic fabrics and porous polymers can be used to mimic underwater 

breathing. Of the materials tested the best oxygen transfer rates were shown by the PTFE tape and the 

Speedo LZR Pulse
®

. We have shown that by knowing the thickness, density and plastron coverage of a 

sample, an estimate of its performance in the plastron breathing experiment can be achieved.  
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The effectiveness of the material for oxygen transfer is related to the physical dimensions of the 

material itself. This is supported by looking at the two different types of PTFE, the tape and the  

Gore-Tex. Both membranes showed very different levels of oxygen transfer. The lower transfer rate of 

the Gore-Tex may be due to the smaller pore size and the lower percentage of the surface made up of 

pores. The nature of the fabric samples made measuring the pore size and porosity of the materials 

unsuccessful and no clear link was found between fibre size and oxygen transfer. 

In the work of Shirtcliffe et al. [15], after a period of 6 h their sol gel container had reached an 

oxygen concentration of ≈14% and eventually reaches an equilibrium value of ≈12%. The materials in 

this study reach a lower concentration after the same 6 hour period. However, the oxygen consumption 

rate in their experiment was 246 μL·h
−1

, much lower than the ≈500 μL·h
−1

 consumption caused by the 

cell in this study.  
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