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In many Wireless Sensor Network (WSN) applications, the availability of a simple yet accu-
rate estimation of the RF channel quality is vital. However, due to measurement noise and
fading effects, it is usually estimated through probe or learning based methods, which
result in high energy consumption or high overheads. We propose to make use of informa-
tion redundancy among indicators provided by the IEEE 802.15.4 system to improve the
estimation of the link quality. A Kalman filter based solution is used due to its ability to
give an accurate estimate of the un-measurable states of a dynamic system subject to
observation noise. In this paper we present an empirical study showing that an improved
indicator, termed Effective-SNR, can be produced by combining Signal to Noise Ratio (SNR)
and Link Quality Indicator (LQI) with minimal additional overhead. The estimation accu-
racy is further improved through the use of Kalman filtering techniques. Finally, experi-
mental results demonstrate that the proposed algorithm can be implemented on
resource constraints devices typical in WSNs.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Wireless Sensor Networks (WSNs) have been widely
promoted over the last decade, to monitor various environ-
mental parameters, e.g. temperature, light, and humidity.
Recent applications of WSNs have expanded to encompass
more advanced sensing demands, for example structural
health monitoring, manufacturing automation monitoring,
and multimedia sensor network. In these advanced appli-
cations, deployed WSN have to deal with the challenge of
intensive traffic load as well as the harsh RF environment.
The harsh RF environment often possesses characteristics
such as thermal cycling, and multi-path effects, due to sta-
tionary or moving metallic structures and environment RF
noise from machinery (i.e. power generator and motor) or
other RF devices. In addition, field tests [1–3] and our own
investigations have revealed that these impairments are
generally time-varying. These factors adversely affect the
quality of the wireless communication, causing challenges,
especially for WSNs with intensive traffic loads.

To understand the problems faced in advanced applica-
tions, a real life WSN project will be provided as an exam-
ple. BP has deployed a trail WSNs system aiming to
monitor the status of ship engines. It used 98 vibration
sensors attached to 28 wireless nodes to monitor engine
condition in an environment that can be considered harsh
due to the shadowing and fading effect caused by metallic
surfaces and RF interference from heavy machinery. This is
an example of a high throughput system due to the multi-
ple vibration sensors attached to each node required to
operate in harsh RF environments and is the focus of this
paper.

In recent publications, several algorithms have been
proposed to increase system performance within similar
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situations. Some of them aim at enabling concurrent
transmission to increase the network capacity through
the exchange of the margin of link quality [4–6]; others at-
tempt data rate adaptation [7–10] using an understanding
of environment variations. However, all these methods rely
on an accurate link estimation to increase the network per-
formance. As Aguayo et al. [11] showed, the raw SNR may
not be a good indicator to predict successful delivery of
data packets, due to the fading channel and device impair-
ments. In order to improve the quality of the link estima-
tion instead of using the SNR, some recently proposed
methods represented by Vutukuru et al. [5] make use of
learning algorithms to estimate the link quality, which
switch the radio transceiver into receiving state to monitor
all the wireless activities and learn the potential interfer-
ence levels from different devices. However, these learning
based methods require that the sensor node must be active
all the time to overhear all wireless transmissions, which is
not suitable for energy constrained WSNs. Other ap-
proaches calibrate the relationship between SNR and Pack-
et Error Rate (PER) by exchange probe packets. Such
operation will cause a relatively high overhead, which is
normally scalable as the size of the network increases. At
least one WSN deployment crashed due to the expected
high volume of overhead packets [12].

As specified in the IEEE 802.15.4 standard [13], all IEEE
802.15.4 compatible devices [14,15] have to provide a Link
Quality Indicator (LQI) to represent the quality of the wire-
less link. Usually this value results from the correlation of
multiple symbols within the received packet and indicates
the error performance directly. Although different vendors
calculated LQI in different ways (e.g. AT86RF231 provided
by ATMEL correlated with the packet error rate, while
CC2420 provides an indicator correlated with the chip er-
ror rate), it is believed that LQI is more accurate and reli-
able than the SNR in representing the link quality. Our
experimental results, as well as previously published re-
sults [2,16], have shown that the average LQI has a high
correlation with the error performance. This feature of IEEE
802.15.4 makes it possible to accurately estimate the link
quality without the overhead of probe based calibration.
Therefore, LQI is recommended by many standards includ-
ing ZigBee [17], IETF 6LoWPAN WG [18]. Nevertheless, the
utilisation of LQI has been challenged by many problems in
this implementation. Firstly, the LQI is related to the error
performance and yet only available within the transition
area, i.e. successful receiving ratio is less than 100%, which
means it fails to show the wider link margin. Secondly, the
instantaneous raw LQI is known to vary over a wide range.
As a result, many algorithms rely on the average of LQI
over many packets to achieve affordable accuracy and thus
fail to capture a fast changing channel. In advanced WSN
applications, although there could be sufficient traffic load
for the average operation to give adequate performance, a
fast converging indicator is usually required for high layer
optimisation.
1 The concept of using Effective-SNR was originally proposed in space–
time modulation systems [19] and OFDM systems [20] to predict the error
performance. In this work we use this name but with an entirely new
formulation for WSNs.
We are consequently motivated to exploit the redun-
dancy between the LQI and SNR to assist in providing a
better link quality indicator, which is referred to as the
Effective-SNR,1 which should be able to provide reliable
and fast estimation without additional overhead or hard-
ware support. The proposed method is expected to be not
only accurate but also easily implemented. Accordingly, sev-
eral immediate questions should be addressed. Firstly, is the
LQI good enough to express the link quality? Secondly, if so,
is there a simple but effective approach to combine LQI and
SNR to produce a trusted output? Thirdly, is the cost of such
algorithm acceptable in resource constrained WSN? To ad-
dress these questions, in this paper, we first investigate
the different relationships between SNR, LQI, and PER. Based
on the analysis of experiment results, we decompose the
link quality into multiple components and build an Effec-
tive-SNR model to represent the underlying relationship
among these components. This model enables us to make
use of mature Kalman filter techniques to reduce the mea-
surement noise and enhance the accuracy of the estimation.
To the best of our knowledge, this is the first deployment of
Kalman filter tracking of the variation of signal strength,
environment noise strength, and signal impairment at the
same time, while most pervious work only focus on the sig-
nal strength using simple average based approaches. With
the help of this framework, LQI and SNR can be combined
to generate a trustable Effective-SNR indicator, which pro-
vides an accurate estimation of the link quality margin to al-
low concurrent transmission as well as rate adaptation. In
comparison with other approaches, the main advantage of
our method is that it can avoid the overhead of probe pack-
ets or overhearing, which makes it suitable for WSNs
deployment. The proposed algorithm can be easily em-
ployed by many other higher level algorithms to increase
their performance. We also demonstrate that such a filter
is can be easily deployed with fixed-point computation
and is therefore acceptable for implementation in simple
8 bit microprocessors which are widely employed by many
WSN platforms.

We start in Section 2, by presenting an overview of re-
lated work. This is followed by Section 3, in which we for-
mulize the problem and provide the general model of link
quality based on empirical evidence. Section 4 introduces
the design of the Kalman filter and shows how to deploy
the algorithm in a resource constraint platform. In Sec-
tion 5, experimental results based on a COTS (Commercial
Off-the-Shelf) platform are provided to illustrate the per-
formance of the proposed method. The paper concludes
by discussing some key issues of potential future work in
Section 6.
2. Related works

Spatial reuse also known as the exposed terminal prob-
lem has been widely studied in the area of wireless net-
working. Most existing protocols exchange link quality
information to enable concurrent transmission and thus
increase the overall performance of the system. Indeed,
such approaches heavily rely on the link quality estima-
tion. The most recent study employed a probe-based
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approach [4]. The system monitors the delivery rate of
probe packets and thus builds the Signal to Interference
and Noise Ratio (SINR) to PER relationship for different
environments. As expected, the frequent transmission of
probe packets will cause high overheads and longer con-
vergence time. Learning based methods [5] have been pro-
posed to avoid such overhead caused by the probe and
exchange packets. However, such designs require the de-
vice to remain in the receiving state to allow it to overhear
all ongoing transmissions, which limits its potential appli-
cation in WSNs, due to the high energy consumption of RF
operation. Considering that MCU based calculations and
radio transceivers operations require different levels of en-
ergy (e.g. 4 mA for ATMEGA128 working at 8 MHz and
19.7 mA for CC2420 working in receiving mode), we are
motivated to trade more local calculation cost with less
RF operations to achieve a not only accurate but also en-
ergy efficient solution.

To enable operation in dynamic and harsh RF environ-
ment, some vendors have recently released non-standard
IEEE802.15.4 radio transceivers [15] with rate adaptation
functions. These work by changing the spreading code
length, which give WSNs the ability to select the best
trade-off between data-rate and error performance. Rate
adaptation in IEEE 802.11 based networks have been
widely investigated [7,10,21,22], which demonstrate the
reliance on accurate link quality estimation.

Several empirical studies have given us a better under-
standing of the complex correlation between SINR and
link quality. In particular, Aguayo et al. [11] have studied
several packet loss related factors including SNR, interfer-
ence, and multi-path fading effects. Based on the experi-
ment results collected from an IEEE 802.11 mesh
network, they argued that, SNR cannot be used as a reli-
able predictor of link quality. In the context of WSNs,
Son et al. [23] experimentally studied concurrent trans-
mission performance using Mica2 platforms. They con-
firmed that the assumption proposed by Aguayo et al.
[11] also exists in low-power wireless links. Our analysis
further studied why the correlation between SINR and
PER breaks down in fading channels, and proposed tech-
niques to overcome this limitation.

There are many channel estimation methods designed
for operation in wireless communication network, how-
ever most of them partly focused on improving accuracy
without concern to additional complexity. For example,
Jamieson et al. [10,24] proposed a highly accurate link indi-
cator for wireless networks named SoftPHY. SoftPHY uses a
Maximum Likelihood (ML) based approach in the decoding
step of the physical layer to directly estimate the likelihood
of error probability of tagged wireless links. However, their
approach modified the core hardware of the RF transceiver
in the GNU Radio software defined radio platform. There-
fore, unlike our solution, it cannot be deployed in existing
COTS platforms making it unsuitable for deployment in
current WSNs.

Murat et al. [25] proposed a Kalman filter based link
quality estimation scheme for wireless sensor network.
However, their approach takes Received Signal Strength
Indicator (RSSI) as the only observer parameter, thus fail-
ing to consider signal distortion caused by multi-path
and other harsh RF effects. The Kalman filter has also been
widely used in the context of wireless network for many
other purposes. For instance, Hamilton et al. [26] proposed
the utilisation of Kalman filter to achieve a better accuracy
in distributed clock synchronisation for WSNs. Bianchi
et al. [27] employed an extended Kalman filter to estimate
the number of interference source in IEEE 802.11 net-
works. However in these cases, the proposed algorithm
only focused on the theoretic analyses without consider-
ation of the complexity of implementation in real plat-
forms. In this paper, we introduce a Kalman filter based
approach specially designed for resource constrained
WSN platforms.
3. Problem formulation

According to the well known wireless communication
theory, it can be assumed that if sensor networks are de-
ployed in an ideal Additive White Gaussian Noise (AWGN)
channel, then the capacity of the wireless link can be accu-
rately estimated by the SNR. In order to validate this
hypothesis, we first designed an experiment to replicate
an AWGN channel by using an attenuator to model the
path loss of the channel. The device used in this experi-
ment is a COTS product equipped with IEEE802.15.4 com-
patible AT86RF231 transceiver [15], which, in addition,
supports four data rates modes. In this experiment, the
transmitter device works in saturation model which means
there is always a packet ready in the queue to be sent.
Thus, as shown in Fig. 1, the experimental results are fur-
ther converted to the form of BER versus normalised re-
ceived signal strength for different spreading modes. The
data shown in this experiment is collected from several
experiments, including changing the transmission power,
the path loss, and the environment noise. Without loss of
generality, all variables have been normalised to simplify
the comparison. The normalised received signal strength
is defined as ‘‘the received signal strength to achieve the
same performance without any effect of additional envi-
ronmental noise’’. Although the results show a statistical
variance, the overall trend for each mode is clear and the
thresholds are comparable to the sensitivity threshold pro-
vided by the datasheet of AT86RF231 [15], which demon-
strates that the SNR is able to estimate the capacity of
the wireless link accurately in an AWGN channel.

However, in reality the channel will include fading ef-
fects which cannot be accurately represented by the SNR,
due to the distortion of signals. It is still possible to esti-
mate the system capacity in a fading channel, but this usu-
ally requires a high complexity analytic model, which
cannot be afforded by resource constraint WSN platforms.
Therefore, we propose the estimation of Effective-SNR, by
which the channel quality in harsh RF environments is
simply mapped to a corresponding effective SNR in an
AWGN channel. Then, the channel capacity can be ob-
tained by substituting this indicator into a system perfor-
mance model for an AWGN channel. The following
section will discuss how to estimate this indicator through
the analysis of the varying RF channel and by utilising ex-
isted measurements available in COTS platforms.



Fig. 1. Empirical error performances.
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3.1. Notation

In this paper, the following notation and assumptions
have been used:

� Transmission Power (Ptx) in dBm denotes the signal
power at the antenna of transmitter.
� Received Signal Strength (Prss) in dBm denotes the sig-

nal power at the antenna of the receiver. At the same
time, the RSSI is the measurable indicator of Prss, pro-
vided by the RF transceiver.
� Environment Noise (Ne): We define the noise from

devices outside the network as environment noise,
which may be from other RF devices e.g. WiFi, or the
EM noise generated by machinery (i.e. power genera-
tor, motor, or microwave oven). In our application,
the latter tends to be a more important issue since it
is a common effect in industrial environments.
Through field trials it has been shown that such noise
can be as high as �30 dBm around 2.4 GHz in the
engine test site of Rolls Royce [28,29]. Similar effects
have been reported in [30] for a power plant site
around 915 MHz with a lower value of �64 dBm. As
with the received signal strength, there is a measur-
able indicator of environment noise, defined as NOI
(Noise Indicator).
� Internal Noise (Ni): We define all noise added to the

signal after the antenna of the receiver device as
internal noise, mainly consisting of thermal noise
and can be represented by a noise figure. Other fac-
tors include quantisation noise and impairments due
to device manufacturing. It has previously been dem-
onstrated that due to manufacturing tolerances, dif-
ferent devices may have different noise figures,
which can be easily calibrated offline. It should be
noted that, the measurements of RSSIraw and NOI will
go through the same RF chain and will be affected by
the internal noise and contributing to the measure-
ment noise.
� Interference: We define the signal from other network
devices during the current transmission as interference.
However, unlike the environment noise, the interfer-
ence signals derive from the same type of device and
can be demodulated at the receiver as the known
source. Therefore, the interference will be processed
as potential wireless link pair not a special type of noise.
The estimated results will aid the solution of hidden
terminal problems and exposed terminal problems.
� Signal Quality Degradation (SQD): Wireless channels

suffer from reflection and diffraction caused by objects
in the environment or refractions in the medium.
Such effects, usually termed fading effects, will cause
distortion of the signal at receiver device and will
further increase the error probability. Therefore, we
define SQD as the degradation of signal when com-
pared with the same signal transmitted via an AWGN
channel.

3.2. Propagation model in the harsh RF environment

There are two main types of signal propagation,
depending on their effects on the different space and time
scales:

(1) Path loss and shadowing are the largest contributors
to signal loss. One of the most common radio prop-
agation models is the log-normal shadowing path
loss model [31], which can be represented by a
Gaussian random process Xr with zero mean and
standard deviation of r.

(2) Fading effects, often termed multi-path fading or
frequency selective fading, causes distortion to the
signal. If only the strength of the received signal is
considered, then the multi-path effect can be
described with the same random process Xr.

These relationships can be expressed by Eq. (1) accord-
ing to Zuniga and Krishnamachari [31].



2 Most deployments of WSN system are static, although we understand
that some applications require mobile WSN devices.
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Prss ¼ Ptx � PLðdÞ þ Xr

¼ Ptx � PLðd0Þ � 10nlog10
d
d0

� �
þ Xr ð1Þ

where PL(d) is the path loss at the distance d, d0 is a refer-
ence distance, n is the path loss exponent and Xr is a zero-
mean Gaussian random process with standard deviation r
representing the effects of the time-varying channel fad-
ing. Therefore, the SNR (in dB) at the receiver side can be
expressed in Eq. (2) by subtracting internal noise and envi-
ronment noise.

SNR ¼ Prss � Ni � Ne ð2Þ

If the transmitter and receiver are connected through an
AWGN channel without any fading effects, the components
of Xr can be avoided, which means no variance and more
importantly no distortion to the signal. Thus the error per-
formance can be accurately estimated from the SNR, which
has also been validated by the experimental results shown
in Fig. 1.

The calculation of SNR requires both information on the
received signal strength and the noise power at the recei-
ver. However, due to constraints on cost and power, it is
not possible to integrate a separate instrument into a
WSN node to measure the received signal strength. Fortu-
nately, as a regulation of IEEE 802.15.4, Zigbee compatible
devices must provide a Received Signal Strength Indicator
(RSSI) to higher level applications. Although the RSSI is
linked to both received signal strength and the environ-
ment noise and can be used to calculate SNR, the SNR cal-
culated from the RSSI is typically inaccurate. A recent study
[7] has also reported such effect in an anechoic chamber
environment (i.e. almost AWGN channel) and therefore,
we cannot rely on pure RSSI values to obtain an accurate
SNR. Due to the effects of fading and multi-path, the rela-
tionship between RSSI and the received signal strength
(Prss) and noise (Ne) becomes a nonlinear function.

We first consider this nonlinear effect on RSSI measure-
ment. The raw RSSI (denoted as RSSIraw) provided by the RF
transceiver can be expressed as following:

RSSIraw ¼ Ptx � PLðdÞ þ Xr þ Ni þ Ne ð3Þ

The RSSI detection function of an RF transceiver detects
only the received signal strength at the antenna without
attempting to distinguish whether it is due to signal or
noise as the noise power (Ni and Ne) also contributes to
the RSSI value. In the worst case, where the environment
noise power is high, the signal strength is masked by the
noise and the value of RSSI deviates from the true received
signal strength (Prss). Therefore, to obtain an accurate value
of Prss, the effect of environment noise should be elimi-
nated first. Considering that the environmental noise Ne

still follows the propagation law of RF signals, it is possible
for the device to obtain the environment noise strength by
carry out a channel detection when there is no transmit-
ting operation in the wireless channel. The detected RSSI
value will be constituted of the environment noise and
the internal noise. We use the term of NOI to represent this
value. Such an approach is being employed by IEEE
802.11 k [32] to estimate the environment noise and inter-
ference. This nonlinear relationship between Prss, RSSI and
environment noise can now be given by Eq. (4). Let Prss de-
note the actual value of the real received signal strength
indicator, which can be obtained through the deduction
of NOI from the raw RSSI as shown in Eq. (4).

Prss ¼ 10
RSSIrawþb

10 � 10
NOIþb

10

� �
ð4Þ

where b is the base value of RSSI detection, which is nor-
mally around �91 dBm, but calibration is required for dif-
ferent devices. It should be noted that, this calculated Prss

value can be understand as Prss suffered from the measure-
ment error.

In applications without high fading effect, e.g. remote
sensing applications, if we consider that the measurement
noise has already been eliminated (e.g. a simple moving
average method like in [7]), the observed Prss and Ne can
be used to calculate SNR prior to estimating the error per-
formance by using a combination of Eq. (2) and a look up
table generated from Fig. 1. The look up table of standard
IEEE 802.15.4 mode has been provided in Table 1 as an
example. One the SNR is calculated, the algorithm can lo-
cated the correct region and use a linear regression model
to obtain an approximate BER value. For easy reference, we
use the term RSSI-SNR model to denote this relationship
for the following analysis.

3.3. Effective-SNR model

It is well known that, multi-path and other factors cause
signal distortion, which increases error probability. With-
out any doubt, such effects will make offline tested SNR-
PER measurements unreliable. For example, although a
measured SNR margin is 8 dB, the real margin may only
be 6 dB. Based on this inaccurate indicator, the higher-level
application algorithm will make an incorrect decision to
decrease the system performance, e.g. allow concurrent
transmissions which should not occur, or switch to a high
data rate which cannot be supported, causing a decrease in
capacity instead of the expected increase. In order to pro-
vide an accurate estimation of link margin, some algo-
rithms [4,7] rely on the probe packets and online
calibration to rebuild the SNR to PER relationship in vari-
ous environments, or even give an offline measurement
[5]. As discussed previously, these techniques are able to
mitigate this problem but suffer from several drawbacks
including transmission overheads and long converge time.

In this paper, a new variable Effective-SNR (denoted by
SNReffective in equations) is introduced as the equalised va-
lue of SNR to achieve the same error performance as would
be expected in an AWGN channel. Effective-SNR can be ob-
tained by including all negative effects on the signal qual-
ity as factors in the Signal Quality Degradation (SQD)
calculation, as shown in Eq. (5). Without loss of generality,
we assume SQD is a large-time scale factor, since the mul-
ti-path effect is relatively constant for a static sensor net-
work system.2

SNReffective ¼ SNR� SQD ð5Þ



Table 1
Look up table of BER in standard IEEE 802.15.4 system.

SNR (dB) 0 1 2 3 4 5 6

BER 2.76E�02 1.00E�02 3.96E�03 9.26E�04 1.47E�04 1.47E�05 7.04E�07

Fig. 2. PER-LQI relationship, empirical result.

Fig. 3. Average LQI versus instantaneous LQI.
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If we have already estimated SQD and combined it with
the SNR, the error performance PER can be simply obtained
through a look up table measured off-line with Effective-
SNR as an input which can avoid the high overhead as well
as achieve high accuracy. The only problem is how to
estimate SQD in a low cost device. The straightforward
calculation of SQD requires a very detailed specification of
the low level demodulator employed in the RFIC. This
may be possible in expensive software define radio
development kits, but is impractical for low cost COTS
products.
The acquisition of SQD in widely used WSN platforms is
not straightforward, because this variable is usually
embedded behind the complex combination of several
indicators provided by the low cost WSN system. Notwith-
standing, it is possible to obtain the Effective-SNR at a low
cost from raw LQI, one of the indicators provided by IEEE
802.15.4 system. As reported in many test reports, the out-
put of the LQI has significant correlation with error perfor-
mance. As discussed earlier, Effective-SNR is linked with
PER, which implies a correlation between LQI and
Effective-SNR. However, as indicated by the vendor [15]:



Table 2
Regression model of LQI to PER.

LQI value 0 10 30 60 90 120 106 180 220 255

Packet error rate (%) 100 99 97 85 55 24 5 3 1 0
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a reliable estimation of the packet error cannot be based on
a single or a small number of LQI values. This hypothesis
has been validated in our experiments with different
parameters and in different environments, as shown in
Figs. 2 and 3. The result in Fig. 2 was provided in the format
of PER in one second versus the average LQI per second. As
the LQI can be understood as the error probability of the
current packet, the average LQI in one second can be con-
sidered to be the best indicator of error performance for
that second. Therefore, the results provided in Fig. 2 show
very high correlations with the PER regardless of the differ-
ent packet lengths (performances of three different lengths
20 bytes, 40 bytes and 100 bytes with multiple environ-
ment including AWGN and potential multi-path scenarios
have been examined). To better understand the relation-
ship between the averaged LQI and the instantaneous
LQI, a snapshot of the experiment result (with packet
length of 20 bytes) has been illustrated in Fig. 3. As ex-
pected, only the averaged LQI shows the similar trends
with the channel capacity (i.e. successfully received packet
number per second), the instantaneous LQI varies over a
much wider range and less correlated with the error per-
formance. However it should be noted that, the averaged
LQI is only a posteriori statistical value which cannot be uti-
lised to predict the channel quality. In this context, a low
cost statistical method is required to obtain a reliable a pri-
ori indicator, which is the motivation of this work.

Similarly, a regression model has been generated to
map the LQI and PER, which has been provided in Table 2
and plotted in Fig. 2. Then, it is straightforward to convert
a recorded LQI to the corresponding PER, and use the look
up table shown in Table 1 to further convert to the corre-
sponding SNR in AWGN channel, which has been named
as Effective-SNR. However, the relationship between LQI
and Effective-SNR is segmented, resulting in values for
SQD not always being available. Such nonlinearity in-
creases the complexity in estimating Effective-SNR. Indeed,
the system cannot rely on estimating Effective-SNR di-
rectly from LQI for each transmission. Nonetheless, aware
that the SQD is mainly caused by multi-path effects, once
the locations of transmitter–receiver devices have been
fixed, the SQD for each tagged link can be approximated
as a static value. Hence, we propose to estimate SQD
through Effective-SNR in the situation where the LQI is
provided. Values of SQD can be easily calculated by apply-
ing the estimated Effective-SNR to Eq. (5) with the SNR de-
tected using the RSSI function discussed in Section 3.2. The
estimated SQD can be maintained to estimate Effective-
SNR for other situations.

Based on the analysis above, it can be concluded that a
better estimation of SNR and the link quality margin can be
achieved by using the information redundancy among
RSSI, LQI, and the measured noise power Ne. In fact, we de-
fine a new variable Effective-SNR to replace the SNR, and it
is expected that the Effective-SNR should give a better
description of the channel condition than the original
SNR directly provided by the RFIC. Furthermore, as shown
in the Effective-SNR model, the information redundancy
between SNR and LQI is accounted for in the estimation
of Effective-SNR, where the information redundancy helps
to improve the accuracy of the SNR estimation. However,
due to the nonlinearity existed in both models, it is chal-
lenging to get an accurate estimation of Effective-SNR. A
carefully designed estimator is required to deal with the
nonlinearity, segmentation and the measurement noise in
RSSIraw and LQI. Beyond that, due to the nature of resource
constraints in WSNs, such an estimator must be able to be
deployed on low cost devices. In the next section, we will
introduce the design of a Kalman filter and show that it
can be implemented to achieve higher estimation accuracy
while avoiding the transmission overheads required by
other techniques such as probe packets.
4. Kalman filter design

According to the discussion of last section, it is clear to
notice that this problem is a typical time-varying system
with measurement noise. In particular, the measurement
noise in WSNs is worse due to the low cost hardware plat-
form. It is necessary to improve the estimation of channel
quality by getting rid of the measurement noise. Since the
mature Kalman filter has been shown its promising ability
to track (estimate) the system parameters (states) from
noisy measurements, it is worth designing and deploying
a Kalman filter to track the variation of channel quality
and against the measurement noise from low cost hard-
ware platform. Other state of art approaches for similar
scenarios include the moving average filter which has been
deployed in a rate adaptation algorithm for WiFi systems
[33] and a Geometric based solution [34]. Compared with
these methods, Kalman filter can converge much faster
than the moving average filter due to a better modelling
and understanding of the signal relationship and measure-
ment noise. The Kalman filter provides quantised accurate
channel quality estimation comparing with the simple
good or bad result generated by the Geometric methods.
Therefore, the mature Kalman filter is a good tradeoffs be-
tween the performance and the computation costs and we
choose Kalman filter as our solution to solve this problem.

Based on the two models presented in the preceding
section, the algorithm will first try to remove the nonlin-
earity in the input of parameters. Then a novel Bi-KF
(meaning double Kalman filter) estimator is proposed to
deal with the measurement noise and stochastic fading ef-
fects resulting in a more reliable estimate of Effective-SNR
while tracking the time varying link quality with high
accuracy. The advantages of using KF are threefold: (1)
The link quality is a time varying variable, for example,
the shadowing effects caused by a moving object have a
dramatic affect on the link quality. Since the KF is good
at tracking time varying systems, the proposed Bi-KF esti-
mator is able to track the variation quickly (usually able to
converge in less than 10 iterations according to empirical
experience). (2) The linear KF is of low computation cost.
In comparison with probe-base and learning-based meth-
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ods, the proposed Bi-KF method can give an acceptable
estimation of Effective-SNR without the additional probe
packets or increased energy consumption. (3) The informa-
tion redundancy between signals is fully utilised by the KF.
Such information redundancy contributes significantly to
the accuracy of the estimation.

Fig. 4 illustrates the structure of the proposed Bi-KF
estimator. The first Kalman filter (KF1) filters the measure-
ment noise from the RSSI-SNR model while the second Kal-
man filter (KF2) generates Effective-SNR using SNR and
SQD as input parameters. KF2 aims at using the informa-
tion redundancy between SNR and LQI to improve the
Effective-SNR estimation. KF1 uses the RSSIraw and envi-
ronment noise reading (denoted by NOI in the rest of this
paper) from RFIC as the input. Since the RSSIraw and NOI
readings are immediately available when a packet arrives,
KF1 provides a filtered SNR value once a packet is received.
Because of the availability of SQD, KF2 only updates the va-
lue of Effective-SNR when the received packet’s LQI is less
than 255. Whereas, when the LQI is saturated (equal to
255), KF2 does not update the observe equation of KF2.
In this situation the estimation is only updated by the state
equations of KF2.

4.1. Input nonlinearity

Based on the discussion in Section 3, we note that the
object system is nonlinear. For a nonlinear system, a non-
linear Kalman filter, referred as an Extended Kalman filter
(EKF), has to be designed. However, the design of an EKF
requires higher computation costs, which is not suitable
for WSN nodes with low computation recourse. Further-
more, we observe that this is a inherently linear system.
The nonlinearity exists only in the system inputs and the
main dynamics of the system can be described by a linear
system. More specifically, by introducing two intermediate
variables Prss, Ne, the nonlinear function relating SNR to
RSSIraw, NOI can be decomposed into two parts: (a) input
nonlinearity: the nonlinear function relating Prss, Ne to
RSSIraw, NOI, which is modelled by Eq. (4); (b) linear block:
relating SNR to Prss, Ne,which is modelled by Eq. (2). For
such an input nonlinear system (referred to as the Ham-
merstein model [35]) with inherent linearity, the common
and low-cost estimation method is to separate the linear
part from nonlinear part. In the proposed method, an input
nonlinearity block is employed to convert RSSIraw, NOI into
Prss, Ne by using Eq. (4). Thus, the nonlinearity is eliminated
in the following process and only a linear Kalman filter is
Fig. 4. Architecture o
required for the linear part relating Prss, Ne to SNR. There-
fore, the system state can be easily estimated using a linear
Kalman filter at lower computation cost, instead of a com-
plex Extended Kalman filter. Meanwhile the process of LQI
is rather complex. As shown in Fig. 2, the LQI shows a sig-
nificant correlation with PER, and thus a one to one map-
ping function can be set up to obtain PER probability of
the current packet through LQI. As specified in the stan-
dard, IEEE 802.15.4 employ a Cyclic Redundancy Check
(CRC) with a length of 16 bits as the frame check to indi-
cate bit errors [15], which means a single bit error will flag
the entire packet as in the error received state.

PER ¼ 1� ð1� BERÞ8�PacketLength ð6Þ

Therefore, once the PER value is ready, a BER value can
be calculated using Eq. (6) and the packet length. The pack-
et length is also provided once a packet was successfully
received. By indexing the empirical data (shown in
Fig. 2), it will be easy to find out the equalised signal to
noise ratio in an AWGN channel, which is the expected
Effective-SNR. Hence, in the online process, once a packet
has been successfully received, the Effective-SNR can be
simply obtained through searching the look up table dis-
cussed in Sections 3.2 and 3.3 with the index of LQI and
packet length.

4.2. Kalman filter design

The design of KF1 is to address the variation of signal
strength Prss and environment noise Ne by filtering the
measurement noise. Although the function of KF1 is simi-
lar to the average filtering method, Kalman filter may give
higher accuracy with faster tracking ability. Considering
that the packet transmission and environment noise are
subjected to the fading effects, Prss and Ne can be assumed
to be slowly changing variables. Therefore, the system can
be modelled as:

Prss;k ¼ Prss;k�1 þws;k

Ne;k ¼ Ne;k�1 þwn;k

�
ð7Þ

where ws and wn represent the impact of fading on the sig-
nal and the environment noise, respectively. ws and wn are
assumed independent with zero mean Gaussian
distributions.

For the sake of compact notation, Eq. (7) can be rewrit-
ten in vector form, which gives the following state evolu-
tion equation:
f Kalman filter.
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xk ¼ A � xk�1 þwk ð8Þ

where x ¼ Prss

Ne

� �
is the state variable of the dynamic sys-

tem, A ¼ 1 0
0 1

� �
, and wk ¼

ws

wn

� �
. In the RSSI-SNR model,

it can be seen that the state variable can be observed by the
RFIC3 directly and is subject to measurement noise, which is
mainly contributed by the internal noise. Therefore, the
observation equation can be written as:

yk ¼ H � xk�1 þ vk ð9Þ

where y ¼ RSSIraw

NOI

� �
; H ¼ 1 0

0 1

� �
, and vk ¼

v
v

� �
. v is the

measurement noise.
Once the state space model has been setup by Eqs. (7)–

(9), the associated Kalman filter is straightforward [36].

PriorUpdate : x�k ¼ A � x�k�1

PriorErrorCovariance : P�k ¼ A � Pk�1 � AT þ Q

KalmanGain : Kk ¼ P�k � H
T

� �
� H � P�k � H

T þ R
� ��1

PosteriorUpdate : xk ¼ x�k þ Kk � yk � H � x�k
	 


PosteriorErrorCovariance : Pk ¼ ðI � Kk � HÞ � P�k

ð10Þ

where x�k is the a priori estimation of state, xk is the a pos-
teriori estimation of state, P�k 2 R2�2 is the a priori esti-
mated error covariance, P�k 2 R2�2 is the a posteriori
estimated error covariance. K�k 2 R2�2 is the Kalman gain,
Q is the variance of state noise and R is the variance of mea-
surement noise. Since the initial value P does not affect the
converged value of K, a non-zero matrix can be assigned to
P as the initial value, and K will automatically converge to
the final value. The appropriate values of P and Q will be
determined empirically and discussed in the next section.

Unlike the first Kalman filter, the second Kalman filter is
trigged only if the LQI of received packet is less than 255.
Once the second Kalman filter has been activated, it will
use the output of the first Kalman filter as one of its mea-
surements through a simply deduction of two states vari-
ables. As discussed in Section 3, the SQD can be
approximated to be a static variable over short time-scales.
Hence, the estimated SQD rather than Effective-SNR can be
more useful in this Kalman filter design, because the main-
tained variable could be used to estimate Effective-SNR
when the LQI is not provided. Then the state equation is gi-
ven by (11).

x2;k ¼ A2 � x2;k�1 þw2;k ð11Þ

where x2 ¼
SNR
SQD

� �
; A2 ¼

1 0
0 1

� �
, and w2 ¼

wsnr

wsqd

� �
. wsnr

and wsqd represent the variations of the SNR and SQD, from
the view of the signal strength degradation and signal dis-
tortion, respectively. Theoretically, these two noises de-
pend on the environment and channel status, but change
following different models as discussed in Section 3, which
can be assumed to be independent. However, in the imple-
3 To obtain the environment noise indicator a carefully designed MAC
protocol is required to avoid the effect of interference, especially for
applications which enable concurrent transmission.
mentation, the SQD is calculated through a linear process
from SNR to LQI, making these two noises correlated. As
a result, the independence between wsnr and wsqd is not
met to some degree, which will degraded the tracking per-
formance. However, our preliminary experiments show
that the correlation between these two noises is relatively
small. In order to reduce the computation costs, it is as-
sumed that these two noise are independent. Although
the assumption may degrade the performance, the perfor-
mance drop is slight. This is verified by our experiments
where the proposed Kalman filter system can still converge
and track the system variation.

The observation equation can be written in Eq. (12).

y2;k ¼ H2 � x2;k�1 þ v2;k ð12Þ

where y2 ¼
SNR

SNReffective

� �
; A2 ¼

1 0
1 �1

� �
, and w2 ¼

v snr

v lqi

� �
.

vsnr and vlqi are the measurement noise caused by toler-
ances in the hardware design.

In common with the evolution of KF1, the second Kal-
man filter can be solved by applying Eq. (10) to the model
described in (11) and (12). Note that, the parameter matri-
ces of KF1 (i.e., A, B, C, D, P, Q) in (10) should be replaced by
the parameter matrices of KF2, respectively.
4.3. Estimating the covariance matrices

It is well known that the performance of a Kalman filter
depends on the accuracy of the parameter matrices, partic-
ularly the process noise covariance matrix Q and the mea-
surement noise covariance matrix R. In practice, the
selection of Q and R play an important role on the evalua-
tion of Kalman filter.

Since the measurement noises are devices dependent,
different hardware platforms have different noise features
and the theoretic derivation of these covariance matrices
may not accurate enough for all platforms. This is particu-
larly true to the low cost platforms like WSN nodes. In
practice, it is more straightforward and accurate to obtain
these covariance matrices from carefully designed experi-
ments in an offline fashion. In the following sections, we
will describe the process of obtaining these parameters
(b)

Fig. 5. Statistic of measurement noise.



2MHz @Ch16 

2MHz @Ch20 

Fig. 6. Frequency selective fading channel in the experiment site.
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for one hardware platform. The same process can be ap-
plied to and works for all other platform as well.

4.3.1. Measurement noise
The variance of the measurement noise, i.e. internal

noise, can be accurately calculated through an AWGN
based experiment as shown in Fig. 1. In this experiment
the values of Ptx, PL can be manually set, external noise re-
moved and fading effect negated. Therefore, it is reason-
able to consider this as the true value of received signal
strength. This can be validated with standard measure-
ment equipment, i.e. a spectrum analyser.

We are then able to determine the measurement noise
through a comparison between the Prss and the RSSI mea-
surement produced. Using the statistic methods, it is
straightforward to calculate the variance R as shown in
Fig. 5A. As the measurement of RSSIraw and NOI are ob-
tained using the same method at different time points,
the variances should be same. Due to the manufacturing
and components tolerances, the devices used exhibit
slightly differing performance parameters. As shown in
Fig. 5B, a similar method can be employed to determine
the variance of the LQI detection and finally calculate the
measurement variance of Effective-SNR. Differing from
the RSSI measurement, the detection of LQI is only based
on the correlation of symbols inside the data frame and
thus can expect to be hardware independent.

4.3.2. Process noise
Unfortunately, the process noise in the proposed Kal-

man filter is caused by the fading channel, hence, its vari-
4 As reported in [37], High Gain Observer (HGO), an evolved form of
Kalman filter, is able to detect and estimate the change of process noise.
However, the computational cost is also expected to be higher and thus the
implementation is deferred to future work.
ance will be highly dependent on the deployed location of
the WSNs system. Similar effects have been reported in [7],
which implemented the experiment in different locations
and showed variance changes between 1.9 dB and
12.34 dB. Due to the implementation limitation, the noises
on SNR and SQD are correlated and the off-diagonal entries
of the covariance matrices are non-zero. However, accord-
ing to our implementation experience, their correlation is
relatively small which means that the off-diagonal entries
are close to zero. Thus it is convenient to assume they are
independent and adopt diagonal covariance matrices for
the purpose of reducing the computation costs of Kalman
filter.

Although some methods has been proposed to estimate
the unknown process noises,4 their computation complex-
ity make them not applicable to the WSN devices with lim-
ited computational resources. To determine an initial value
of Q to start the Kalman process, we developed an experi-
mental set up in an anechoic chamber with several metal
devices positioned to cause multi-path reflections. The pro-
cess noise can be observed by calculating the statistical dis-
tribution of the received packet number compared with the
maximum possible value (i.e. when LQI is equal to 255). The
process noise required by the Bi-KF system can be obtained
by applying PRR into system models.

4.4. Simplified implementation of Kalman filter

From our experiment, it was seen that the dynamic
range of the metric used in Kalman filter is relatively small
and bounded. Therefore, we suggest that it is unnecessary
to employ floating point numbers in this implementation.
Without significant loss of accuracy, the 16-bit fixed point
method with a scale of 128 (i.e. a measurement of 1 will be
scaled to 128, giving a resolution around 0.01 and the full-
scale of [�256256]) was employed.
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Given that the two states in Eq. (5) are independent of
each other, the vector Kalman filter can be decomposed
into two independent scalar Kalman filters, thus trans-
forming the matrix inverse operation in Eq. (10) into a sim-
ple fix point division operation that greatly decreases the
calculation cost. However, unlike the 1st Kalman filter,
the calculations used in the second Kalman filter cannot
avoid complex matrix operations, e.g. product and inverse.
This consumes most of the calculation cycles required by
this algorithm. Nevertheless, fixed point calculations can
still be used for the second Kalman filter and result in a de-
crease in the computation time from 2.14 ms to 0.2 ms in
our implementation. Considering that the normal packet
delivery time is around 10 ms, such cost of computation
and time can be well accepted in WSNs.
Fig. 7. Experiment result under indoor enviro
5. Experiment results

We have implemented the proposed estimation algo-
rithm on a COTS platform, where the MCU is an ATme-
ga128 working at 8 MHz. Such a configuration is
comparable to most low-power WSN platforms (e.g. MicaZ,
TelosB). We therefore suggest that the proposed algorithm
is capable of being implemented on almost all common
WSN platforms. The experiment has been setup in our lab-
oratory, which contains instruments and workbenches
with metal surface. As it is expected, such an environment
demonstrates relatively high fading effects, which has been
confirmed using an RF network analyser. As shown in
Fig. 6, different channels will suffers from different degree
of fading. However, the fading is highly related to the
nment with varying environment noise.
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location of two RF probes and cannot be guarantee even for
the same channel as channel quality varies significantly
with even small changes in location.

In the experiment, the transmitter was configured to
work in saturation mode, meaning there is always a packet
ready in the queue to be sent. A wideband RF source and
antenna was located near the receiver and was used to
generate noise in the wireless channel. Each packet con-
tained a 100 bytes information payload. The receiver re-
corded several metrics including: the number of packets
it received at one second intervals, the averaged LQI for
the period, instantaneous values of LQI and estimated
Effective-SNR and raw SNR at the start of the period. It
should be noted that the averaged LQI cannot be employed
in the real application as it is a posteriori statistic value, and
we provide it only as the upper-bound of the a priori
indicators.
Fig. 8. Experiment result under indoor envir
The experiment shown in Fig. 7 was undertaken in the
presence of adjustable environment noise from a wide-
band signal generator ranging from �39 dBm to
�28 dBm. As a result, the link quality of the wireless chan-
nel will inevitably be affected, which can be observed by
the decrease in the number of successfully received pack-
ets. To simplify the illustration, we normalised the received
packet number to give a Packet Receive Ratio (PRR, which
is equal to 1-PER, but easier to measure in the experiment)
by comparing each result with the maximum number of
received packet number. This can be seen to decrease stea-
dily with increasing environment noise strength as shown
in Fig. 7a. The averaged and instantaneous LQI perfor-
mance is shown in the second subplot. Both of them de-
creased nonlinearity, while the instantaneous LQI
demonstrates a very high degree of variance. In the third
subplot of Fig. 7a, we provided the raw SNR calculated
onment with varying transmit power.



Table 3
RMS/STD of the different residuals.

Average LQI Effective-SNR Instantaneous
LQI

Raw SNR

RMS STD RMS STD RMS STD RMS STD

Fig. 7 0.034 0.029 0.054 0.048 0.118 0.106 0.142 0.129
Fig. 8 0.049 0.041 0.057 0.045 0.117 0.095 0.237 0.210
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from the quantised RSSIraw and the estimated Effective-
SNR with trend lines to illustrate the averaged values.
These two indicators also decreased with increasing envi-
ronment noise, while the Effective-SNR has much less var-
iance and better linearity than the SNR. It is easy to
understand that the lower the variance, the more reliable
the estimation. To highlight the degree of variance, the
experimental data has been further processed to show
the correlation between the indicator and the PRR result,
which have been illustrated in Fig. 7b. In the figure, we
use a double arrow to briefly demonstrate the variance
margin of different indicators. Cleary, the Effective-SNR
shows the smallest variance among the three indicators,
only slightly worse than the chosen upper-bound; the
averaged LQI. The instantaneous LQI values tend to show
much wider variance than the Effective-SNR, while the
quantised RSSIraw based indicator is loosely correlated with
the PRR with lower resolution. We also presented the re-
sult of increasing the channel quality, where the transmit-
ter power was varied at transmitter from �12 dBm to
0 dBm, in Fig. 8a and b. The experimental results in Fig. 8
show almost the same trends as seen in Fig. 7, which dem-
onstrate that the indicators are independent of the cause of
channel quality change.

It is clear that in both experiments the Effective-SNR
indicator shows very high correlation with the PRR, dem-
onstrating the suitability of Effective-SNR as a channel per-
formance indicator. To further examine the accuracy of
applying indicators to estimate the channel capacity, a pro-
gram has been implemented in MATLAB, which utilised the
indicators obtained to estimate the error performance in
the corresponding time period with the help of the error
estimation model discussed in [38]. In order to better
understand the comparison between different estimated
results, a Root Mean Square (RMS) and a standard devia-
tion (STD) of the residual are proposed as performance
criteria.

Let ðPRRkÞ denotes the estimated PRR, the residual was
defined as:

rk ¼ PRRk � PRRk ð13Þ

Then the RMS and STD for N data samples can be de-
fined as:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
�
XN

k¼1
r2

k

r

STD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N � 1

�
XN

k¼1
ðrk � rkÞ2

r ð14Þ

where rk is the mean value of the N samples.
The RMS and STD of the residual error for different esti-
mation methods are provided in Table 3. In general, the
proposed Kalman estimator method (highlighted with bold
in the table) significantly outperforms other methods
approaching the averaged LQI value which is provided for
reference. These results validate the effectiveness and
improvement gained by the proposed Kalman filter based
estimation method. In which a more reliable Effective-
SNR is generated without high transmission overhead in
WSNs.
6. Conclusion

In order to utilise the maximum capacity of WSNs in
high-bandwidth and high noise applications, an accurate
and low cost estimation of link quality must be available.
This paper proposes a novel Kalman filter based algorithm
to provide an accurate estimate of the link quality. In par-
ticular, we have examined the effect of different channel
indicators including SNR and LQI, based on experiment re-
sults. We then derived a general model to describe the var-
iation of link quality through the study of the relationship
between these results. A more efficient, statistical scheme
based on the Kalman filter has been proposed. It should
be noted that it is possible to employ a higher order Kal-
man filter to further improve the accuracy of the estima-
tion. With the consideration of calculation cost for the
resource constrained WSN platform, we propose to imple-
ment a linear Kalman filter to guarantee its implementa-
tion in such platforms. The demonstrated COTS WSN
platform based implementation shows that such an algo-
rithm can be implemented in the low cost fashion. In com-
parison with other existing link estimators, our approach
focused on exploring a trade-off between accuracy and
implementation to make it compatible with the existed re-
source constraints of WSNs. Experimental results in vari-
ous scenarios have demonstrated the feasibility and
performance of our proposal.

We have provided an easy method to implement link
quality indicator, which is not only accurate in wide link
margin but also be able to converge with only few inputs.
The link quality estimator can be implemented in conjunc-
tion with a variety of the upper-layer algorithms in sensor
networks, such as exposed terminal problem and data rate
adaptation. The utilisation of our approach by existed algo-
rithms can be expected to produce higher performance,
due to the reduction of overhead caused by other estima-
tion methods and the improvement in accuracy of the pro-
posed estimator.
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