Northumbria Research Link

Citation: Odunlami, Benjamin Oladipo (2009) The role of sugars and sugar metabolism genes (sucrose synthase) in arabidopsis thaliana seed development. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link: https://nrl.northumbria.ac.uk/id/eprint/1687/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

ABSTRACT

Seed development in *Arabidopsis thaliana*, has been studied at several levels. However, little has been done to study the role of sugar metabolism genes in seed pod development in this species. As the fertilized egg progresses to a mature seed, the sugars composition during different stages of the developing changes. These changes are related to metabolic processes in the developing seeds, but also to the activity of sucrose- converting and transporting genes, active at the interphase between the maternal tissue and the endosperm. Sucrose synthase (SUS) is one of these genes; it catalyses the reversible reaction of sucrose breakdown in the presence of UDP to form fructose and UDP-glucose.

In this study we looked at glucose, fructose and sucrose concentration at different time points during seed pod development. These changes in sugar concentrations were analysed in both Colombia wild type and WS (Wassilewskija) ecotypes. By comparison of the sugar composition of these ecotypes, and linking these data with phenotypic observations in both ecotypes during development, we are able to comment on the possible role of sugars in seed pod development. Also, the sugar composition of wild type seed pods were compared with those of *Atsus* mutant seed pods, and possible effects sucrose synthase mutations on the phenotype of the developing *Arabidopsis thaliana* seeds were analysed. The effect of sucrose synthase knockouts in developing seed pods were studied by comparing biochemical and phenotypic characteristics data of the *Atsus* mutants within Colombia wild type plants.

Salk line plants were screened to identify plants carrying a homozygous insertion for T-DNA in five of the sucrose synthase genes. The developing seed pods of each of the homozygous mutants were characterized biochemically via High-Performance Anion-Exchange Chromatography (HPAEC). Furthermore, seed weight, number of seed per pod, germination rate and the morphological development of the embryo were closely analysed.

The study found out that there were some biochemical effects of *Atsus* knockout mutants, and some phenotypic effects of *Atsus* knockout mutants on the developing seed pods. However, in general the effects were not as pronounced as those that were seen in maize seed, pea seed and potato tuber as a result of sucrose synthase knockout. The general pattern of glucose, fructose and sucrose were similar to the Colombia wild type, although in mature seed pods the sucrose levels in *Atsus1*, *Atsus2*, *Atsus3* and *Atsus6* were slightly, but significantly lower than in the Colombia wild type.

Table of Contents

Chapter and	Content	Page
Section number		
	Abstract	i
	Table of Contents	ii
	Table of Tables	xi
	Table of Diagrams/Figures	XV
	Acknowledgments	xxii
	Dedication	xxiii
	Declaration	xxiv
	Abbreviations	XXV
Chapter 1	Introduction	
1.1	Introduction	1
1.2	Seed Development	2
1.3	Arabidopsis thaliana the model plant	4
1.4	Arabidopsis seed	7
1.5	Embryo development	7
1.6	Development and functions of endosperm	9
1.7	Suspensor	12
1.8	Sugar Transport in Developing Seeds	13
1.9	Sugar Metabolism in Developing Seed	15
1.10	Sucrose Metabolism Enzymes: Invertase and	
	Sucrose Synthase	17
	1.10.1 Invertase	17
	1.10.2 Sucrose synthase	18
1.11	Sucrose Synthase in Arabidopsis thaliana	19
1.12	Sugar regulation in seed development in Arabidopsis	
	thaliana	22
1.11	Hypothesis and Aims	26

Chapter 2

Materials and Methods

2.1 Growth Conditions 27

2.2	Plant Material			
2.3	DNA Extraction	31		
	2.3.1 Edwards's Method	31		
	2.3.2 Msc Method	32		
2.4	Polymerase Chain Reaction (PCR)	32		
2.5	Agarose Gel Electrophoresis	35		
2.6	Gel Photographs	36		
2.7	Determination of Age of the Pods	36		
	2.7.1 Tagging by cutting	36		
	2.7.2 Artificial Pollination	37		
2.8	Harvesting	37		
2.9	Seed Clearing	38		
	2.9.1 Potassium hydroxide clearing	38		
	2.9.2 Chlorohydrate clearing	38		
	2.9.3 Acetic acid and chlorohydrate clearing	39		
	procedure			
2.10	Microscopy and photography	40		
2.11	Germination Assay			
2.12	Seed Weight			
2.13	Seed Count			
2.14	Abortion Ratio	42		
2.15	Whole Seed and Embryo Measurement	42		
2.16	Sample Preparation for Sugar Analysis	47		
	2.16.2 Standard Curve Sample Preparation	49		
	2.16.2 Calculation of Sugar Content	49		
2.17	Data Analysis	50		
	Genotyping			
3.1	Introduction	51		
3.2	Identification of Homozygous Mutant Plants	54		
3.3	Genotyping AtSUS1	61		
3.4	Screening for Homozygous AtSUS1 plant	61		
3.5	PCR with T-DNAF ₃ and T-DNAR ₃	61		
3.6	PCR with BR151 and LBB1 primers	64		

Chapter 3

3.7	PCR with BR151 and BR151r primers	66
3.8	AtSUS1 Genotyping Conclusion	68
3.9	Genotyping AtSUS 2	69
3.10	Screening for homozygous AtSUS2 plant	69
3.11	PCR with T-DNAF ₃ and T-DNAR ₃	69
3.12	PCR with NR200 and LBA1 primers	71
3.13	PCR with NR200 and NR200r primers	73
3.14	AtSUS2/N576296 Genotyping Conclusion	75
3.15	Salk Line N550900	76
3.16	Screening for Homozygous AtSUS2 plant Salk line	
	N550900	76
3.17	PCR with T-DNAF ₃ and T-DNAR ₃	76
3.18	PCR with NR212 and LBB1 primers	80
3.19	PCR with NR212 and NR212r primers	83
3.20	AtSUS2 Genotyping Conclusion	86
3.21	Genotyping AtSUS3	87
3.22	Screening for homozygous AtSUS3 plant	87
3.23	PCR with T-DNAF ₃ and T-DNAR ₃	87
3.24	PCR with NR201 and LBA1 primers	89
3.25	PCR with NR201 and NR201r primers	91
3.26	AtSUS3 Genotyping Conclusion	93
3.27	Genotyping AtSUS5	94
3.28	Screening for Homozygous AtSUS5	94
3.29	PCR with T-DNAF ₃ and T-DNAR ₃	94
3.30	PCR with NR203 and LBA1 primers	96
3.31	PCR with NR203 and NR203r primers	98
3.32	AtSUS5 Genotyping Conclusion	100
3.33	Genotyping AtSUS 6	101
3.34	Screening for Homozygous AtSUS6	101
3.35	PCR with T-DNAf ₃ and T-DNAr ₃	101
3.36	PCR with NR204 and LBA1	103
3.37	PCR with NR204 and NR04r	105
3.38	AtSUS6 Genotyping Conclusion	107

3.39	9 Discussions		108
	3.39.1	Selection and screening of AtSUS1	
		T-DNA insertion line	110
	3.39.2	Selection and screening of AtSUS2	
		T-DNA insertion line	110
	3.39.3	Selection and screening of AtSUS3	
		T-DNA insertion line	115
	3.39.4	Selection and screening of AtSUS4	
		T-DNA insertion line	115
	3.39.5	Selection and screening of AtSUS5	
		T-DNA insertion line	115
	3.39.6	Selection and screening of AtSUS6	
		T-DNA insertion line	116

Chapter 4	Biochemical analysis of Arabidopsis thaliana seed		
4.1	Introduction	117	
4.2	The Sucrose -Cleaving Enzymes	117	
4.3	Effect of Change in Sugar Status in Developing Seed	118	
4.4	Sugar as Gene Expression Regulator	119	
4.5	Analysis of Sugars	120	
4.6	Principle of HPLC	121	
4.7	Wild type Arabidopsis thaliana sugar analysis	125	
4.8	Glucose Analysis in Colombia wild type	127	
4.9	Fructose Analysis in Colombia wild type seeds	129	
4.10	Sucrose Analysis in Colombia wild type	129	
4.11	Sugar Concentration at the Developmental Stages	129	
4.12	Hexose Sucrose Ratio Analysis	132	
4.13	Discussion of sugar content in developing wt Col		
	seeds	134	
4.14	Sugar metabolism in sucrose synthase mutants seeds	136	
4.15	Biochemical Analysis of Sugar in Arabidopsis		
	thaliana SUS1-mutant Seeds	136	
4.16	Glucose levels in developing seed pods of Atsus1-		

	mutants	137
4.17	Fructose levels in developing seed pods of Atsus1-	
	mutants	140
4.18	Sucrose levels in developing seed pods of Atsus1-	
	mutants	143
4.19	Biochemical analysis of sugar in Arabidopsis	
	thaliana sus2 mutant seeds	146
4.20	Glucose levels in developing seed pods of Atsus2-	
	mutants	146
4.21	Fructose levels in developing seed pods of Atsus2-	
	mutants	149
4.22	Sucrose levels in developing seed pods of Atsus2-	
	mutants	152
4.23	Biochemical analysis of sugar in Arabidopsis	
	thaliana sus3 mutant seeds	156
4.24	Glucose levels in developing seed pods of Atsus3-	
	mutants	156
4.25	Fructose levels in developing seed pods of Atsus3-	
	mutants	158
4.26	Sucrose levels in developing seed pods of Atsus3-	
	mutants	161
4.27	Biochemical analysis of sugar in Arabidopsis	
	thaliana sus5 mutant seeds	164
4.28	Glucose levels in developing seed pods of Atsus5-	
	mutant	164
4.29	Fructose levels in developing seed pods of Atsus5-	
	mutants	168
4.30	Sucrose levels in developing seed pods of Atsus5-	
	mutants	171
4.31	Biochemical Analysis of Sugar in Arabidopsis	
	thaliana sus6 mutant seeds	174
4.32	Glucose levels in developing seed pods of Atsus6-	
	mutants	174
4.33	Fructose levels in developing seed pods of	

	Atsus6mutants				
4.34	Sucrose levels in developing seed pods of Atsus6-				
	mutants				
4.35	Bioche	mical Analysis of Sugar in Arabidopsis			
	thalian	<i>a</i> Ws ecotype	183		
4.36	Glucos	e levels in developing seed pods of Ws	184		
4.37	Fructos	se levels in developing seed pods of Ws	187		
4.38	Sucros	e levels in developing seed pods of Ws	190		
4.39	Hexose	e/Sucrose Ratio Analysis of Ws Discussion	193		
4.40	Discus	sions	195		
	4.40.1	Methodology used in sugar analysis	195		
	4.40.2	The material analysed in sugar analysis	196		
	4.40.3	The effect of AtSUS1 knockout on the			
		sugar level of developing seeds	197		
	4.40.4	The effect of AtSUS2 knockout on the			
		sugar level of developing seeds	199		
	4.40.5	The effect of AtSUS3 knockout on the			
		sugar level of developing seeds	201		
	4.40.6	The effect of AtSUS5 knockout on the			
		sugar level of developing seeds	203		
	4.40.7	The effect of AtSUS6 knockout on the			
		sugar level of developing seeds	205		
	4.40.8	The effect of AtSUS knockout on developing			
		seeds	206		

Chapter 5Phenotypic Characterization of Sucrose SynthaseMutants Seeds

5.1	Introduction	209
5.2	Endosperm dependent phenotype	209
5.3	Phenotypic effect of sucrose synthase mutants	211
5.4	Sugar Determines Phenotypes	212
5.5	Gene Expression	212

5.6	Results		
	5.6.1	Seed Weight in Wild Type and Mutant	215
		plants	
	5.6.2	Number of seed per pod	217
	5.6.3	Phenotypic Analysis of sus Mutants	
		relative to wt Segregate	219
	5.6.4	Germination Ability of sus Mutants	223
		seeds	
	5.6.5	Percentage Plump and Shrivelled sus	227
		Muant Seeds	
5.7	Discuss	ion	230
	5.7.1	Seed weight	230
	5.7.2	Numbers of seeds per pod	231
	5.7.3	Seed Germination	232
	5.7.4	Plump vs Shrivelled Seeds	235

Chapter 6 Internal Structure of Mutated Sucrose Synthase Seeds

6.1	Introduction			
6.2	Overview of Arabidopsis thaliana seed development			
6.3	Seed Cl	earing Techniques	237	
6.4	Results			
	6.4.1	Colombia wild type Seed Development	239	
	6.4.2	Analysis of Atsus1 internal structure	244	
	6.4.3 Analysis of <i>Atsus2</i> internal structure6.4.4 Analysis of <i>Atsus3</i> internal structure		248	
			252	
	6.4.5	Analysis of Atsus5 internal structure	256	
	6.4.6	Analysis of Atsus6 internal structure	260	
6.5	Discussion		264	
	6.5.1	The internal structure of Atsus1 seed	265	
	6.5.2	The internal structure of Atsus2 seed	266	
	6.5.3	The internal structure of Atsus3 seed	267	

6.5.4	The internal structure of <i>Atsus5</i> seed	267
6.5.5	The internal structure of Atsus6 seed	267
6.5.6	General effect of AtSUS knockout on	
	seed size and embryo development	268

Chapter 7		General Discussion, Conclusions and Further	
		Work	
	7.1	Sugars content of Colombia wild type and Ws	
		ecotypes of Arabidopsis thaliana	269
		7.1.1 Colombia wild type sugars content	269
		7.1.2 Ws wild type sugars content	270
		7.1.3 Sugars content of Colombia wild type vs	
		Ws wild type	270
		7.1.4 Hexoses /sucrose ratio of Colombia and	271
		Ws ecotype	
		7.1.5 Physical characteristics of Colombia wild	274
		type seeds	
		7.1.6 Colombia wild type and wild type segregate	276
	7.2	Sugar Analysing technique	279
	7.3	The effect of <i>AtSUS</i> knockout of developing seeds	282
	7.4	Summary of the effect of AtSUS knockout of	
		developing seeds	286
	7.5	Relevance and redundancy of <i>AtSUS</i> during seed	
	,	development	293
	7.6	Conclusions	294
	7.7	Further works	296
		7.7.1 Comparison of sugar analysis in seeds and	
		pod walls	296
		7.7.2 Comparison of sugar analysis in <i>Arabidospsis</i>	
		and Oil seed rape	297

Section 8	References	299
	7.7.4 Down regulation of sucrose synthase gene	298
	segregate	297
	7.7.3 Further analysis of Columbia wild type	

Section 9	Appendices	308

Table of Tables

Chapter and Section		Content	Page
Chapter 2		Materials and Methods	
	2.1	The list of seeds used and their sources	30
	2.2	Gene and the primers used in screening for plant	
		carrying T-DNA insertions and their Sequences	34
Chapter 3		Genotyping	
	3.1	AtSUS genes and different primers combination used in	
		the screening process with the expected sizes.	58
	3.2	Predicted PCR result for each of the three possible T-	
		DNA insertion genotypes	60
	3.8	The number of AtSUS2 Salk line screened.	114

Chapter 4		Biochemical analysis of Arabidopsis thaliana seed	
	4.1	Sugar content (ng / g pod) in wild type seed pod and	
		corresponding p-value of comparison between the	131
		developmental stages	
	4.2	Glucose content (ng / g pod) in wild type and Atsus1	
		seed pod and corresponding p-value of comparison	139
		between mutant and wild type seed pods	
	4.3	Fructose content (ng / g pod) in wild type and Atsus1	
		seed pod and corresponding p-value of comparison	142
		between mutant and wild type seed pods	
	4.4	Sucrose content (ng/g pod) in wild type and Atsus1	
		seed pod and corresponding p-value of comparison	145
		between mutant and wild type seed pods	
	4.5	Glucose content (ng / g pod) in wild type and Atsus2	
		seed pod and corresponding p-value of comparison	148
		between mutant and wild type seed pods	
	4.6	Fructose content ($ng / g pod$) in wild type and Atsus2	
		seed pod and corresponding p-value of comparison	151

between mutant and wild type seed pods

4.7	Sucrose content (ng / g pod) in wild type and Atsus2	
	seed pod and corresponding p-value of comparison	154
	between mutant and wild type seed pods	
4.8	Glucose content (ng / g pod) in wild type and Atsus3	
	seed pod and corresponding p-value of comparison	157
	between mutant and wild type seed pods	
4.9	Frucose content (ng / g pod) in wild type and Atsus3	
	seed pod and corresponding p-value of comparison	160
	between mutant and wild type seed pods	
4.10	Sucrose content (ng / g pod) in wild type and Atsus3	
	seed pod and corresponding p-value of comparison	163
	between mutant and wild type seed pods	
4.11	Glucose content (ng / g pod) in wild type and Atsus5	
	seed pod and corresponding p-value of comparison	167
	between mutant and wild type seed pods	
4.12	Fructose content (ng/g pod) in wild type and <i>Atsus5</i> seed pod and corresponding p-value of comparison between mutant and wild type seed pods	170
4.13	Sucrose content (ng / g pod) in wild type and Atsus5	
	seed pod and corresponding p-value of comparison	173
	between mutant and wild type seed pods	
4.14	Glucose content ($ng / g pod$) in wild type and Atsus6	
	seed pod and corresponding p-value of comparison	176
	between mutant and wild type seed pods	
4.15	Frucose content (ng / g pod) in wild type and Atsus6	
	seed pod and corresponding p-value of comparison	179
	between mutant and wild type seed pods	
4.16	Sucrose content (ng / g pod) in wild type and Atsus6	
	seed pod and corresponding p-value of comparison	181
	between mutant and wild type seed pods	
4.17	Glucose content ($ng / g pod$) in wild type and Ws seed	
	pod and corresponding p-value of comparison between	186
	mutant and wild type seed pods	
4.18	Fuctose content ($ng / g pod$) in wild type and WS seed	

pod and corresponding p-value of comparison between189mutant and wild type seed pods

4.19 Sucrose content (ng / g pod) in wild type and WS seed
pod and corresponding p-value of comparison between 192
mutant and wild type seed pods

Chapter 5 Phenotypic Characterization of Sucrose Synthase Mutants Seeds

corresponding *p* values

5.1	The weight of 100 seeds and % differences between the	
	means of the wt and the sus mutants with their	
	corresponding p values	216
5.2	The genotypes, the number of seed/pod and %	
	differences with their corresponding p values	216
5.3	The weight of 100 seeds and % differences between the	
	means of the wt segregate and the sus mutants with their	

5.4 The number of seed/pod and % differences between the segregate wild type and the *sus* mutants with their corresponding p values 222

Chapter 6		Internal Structure of Mutated Sucrose Synthase Seeds	
	6.1	The Average length (μ m) of <i>Atsus1</i> seeds at different	
		DAP	246
	6.2	The Average width (μ m) of <i>Atsus1</i> seeds at different	
		DAP	246
	6.3	The length of developing embryo from DAP4 to DAP6	
		of Atsus1 seed	247
	6.4	The Average length (μ m) of <i>Atsus2 seeds</i> at different	
		DAP	250
	6.5	The Average width (μm) of <i>Atsus2</i> seeds at different	
		DAP	250
	6.6	The length of developing embryo from DAP4 to DAP6	
		of Atsus1 seed	251

220

6.7	The Average length (μ m) of <i>Atsus3</i> seeds at different	
	DAP	254
6.8	The Average width (μm) of <i>Atsus3</i> seeds at different	
	DAP	254
6.9	The length of developing embryo from DAP4 to DAP6	
	of Atsus1 seed	255
6.10	The Average length (μ m) of <i>Atsus5</i> seeds at different	
	DAP	258
6.11	The Average width (μ m) of <i>Atsus5</i> seeds at different	
	DAP	259
6.12	The length of developing embryo from DAP4 to DAP6	
	of Atsus1 seed	259
6.13	The Average length (μ m) of <i>Atsus6</i> seeds at different	
	DAP	262
6.14	The Average width (μ m) of <i>Atsus6</i> seeds at different	
	DAP	262
6.15	The length of developing embryo from DAP 4 to DAP6	
	of Atsus6	263

Chapter 7 General Discussion, Conclusions and Further Work

7.1	Overview of Atsus mutants' parameters and point of	
	significant difference with Colombia wild type of	
	Arabidopsis thaliana	289

Table of Diagrams/Figures

Chapter and	l	Content	Page
Figure			
Chapter 1		Introduction	
	1.1	Fertilization in wild type Arabidopsis thaliana	3
	1.2	An adult Arabidopsis plant	5
	1.3	Sucrose metabolism path way	16
Chapter 2		Materials and Methods	
	2.1	Seedlings growing in a Petri dish	28
	2.2	Seedlings growing in individual pot after 14 days of sowing	28
	2.3	Arabidopsis thaliana plants in growing cabinet	29
	2.4	Olympus BX 40 microscope	41
	2.5	Plump seed and Shrivelled seed	43
	2.6	The schematic diagram of a developing seed	44
	2.7	The schematic diagram of a developing seed	44
	2.8	The graticule	46
	2.9	The picture of a graticule ruler taken under microscope	46
	2.10	Dionex DX500 chromatograph	48

Chapter 3 Genotyping

3.1	Possible results of T-DNA insertion in different locations in a gene	53
3.2	Schematic diagram of PCR with two T-DNA primers	55
3.3	Schematic diagram of PCR with left border primers and gene	55
	specific primers	
3.4	Schematic diagram of PCR with two endogenous primers	55
3.5	Schematic diagram of Salk line T-DNA and it primers	57
3.6	Agarose gel under UV light and PCR product with F_3 and R_3	

	primers	63
3.7	Agarous gel under UV light and PCR product with LBB1 and	
	BR151 primers	65
3.8	Agarous gel under UV light and PCR product with BR151 and	
	BR151r primers	67
3.9	Agarous gel under UV light and PCR product with F_3 and R_3	
	primers	70
3.10	Agarous gel under UV light and PCR product with NR200 and	
	LBA1 primers	72
3.11	Agarous gel under UV light and PCR product with NR200 and	
	NR200r primers	74
3.12	Agarous gel under UV light and PCR product with F_3 and R_3	
	primers	78
3.13	Agarous gel under UV light and PCR product with F_3 and R_3	
	primers	79
3.14	Agarous gel under UV light and PCR product with NR212 and	
	LBB1 primers	81
3.15	Agarous gel under UV light and PCR product with NR212 and	
	LBB1 primers	82
3.16	Agarous gel under UV light and PCR product with NR212 and	
	NR212r primers	84
3.17	Agarous gel under UV light and PCR product with NR212 and	
	NR212r primers	85
3.18	Agarous gel under UV light and PCR product with F_3 and R_3	
	primers	88
3.19	Agarous gel under UV light and PCR product with NR201 and	
	LBA1 primers	90
3.20	Agarous gel under UV light and PCR product with NR201 and	
	NR201r primers	92
3.21	Agarous gel under UV light and PCR product with F_3 and R_3	
	primers	95
3.22	Agarous gel under UV light and PCR product with NR203 and	
	LBB1 primers	97
3.23	Agarous gel under UV light and PCR product with NR203 and	

		NR203r primers	99
	3.24	Agarous gel under UV light and PCR product with F_3 and R_3	
		primers	102
	3.25	Agarous gel under UV light and PCR product with NR204 and	
		LBA1 primers	104
	3.26	Agarous gel under UV light and PCR product with NR204 and	106
		NR204r primers	
Chapter 4		Biochemical analysis of Arabidopsis thaliana seed	
	4.1	Schematic diagram of HPLC	124
	4.2	Sugar profile of wild type Arabidopsis thaliana developing seed	
		pods at different days after pollination (DAP)	128
	4.3	The sugar changes in the seed development process of <i>Arabidopsis</i>	
		thaliana Colombia wild type.	131
	4.4	The hexose /sucrose ratio was calculated with the mean	
		concentrations of hexose (glucose and fructose) and sucrose	133
	4.5	Glucose profile of <i>Atsus1</i> and Colombia wild type <i>Arabidopsis</i>	
		thaliana developing seed pods at different days after pollination	
		(DAP)	138
	4.6	Changes in glucose amount during seed development of	
		Arabidopsis thaliana sus1 mutant	139
	4.7	Fructose profile of Atsus1 and Colombia wild type Arabidopsis	
		thaliana developing seed pods at different days after pollination	
		(DAP)	141
	4.8	Changes in fructose amount during seed development of	
		Arabidopsis thaliana sus1 mutant	142
	4.9	Sucrose profile of Atsus1 and Colombia wild type Arabidopsis	
		thaliana developing seed pods at different days after pollination	
		(DAP)	144
	4.10	Changes in sucrose amount during seed development of Arabidopsis	
		thaliana sus1 mutant	145
	4.11	Glucose profile of Atsus2 and Colombia wild type Arabidopsis	

xvii

	thaliana developing seed pods at different days after pollination	147
4.12	Changes in glucose amount during seed development of	
	Arabidopsis thaliana sus2 mutant	148
4.13	Fructose profile of Atsus2 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	150
4.14	Changes in fructose amount during seed development of	
	Arabidopsis thaliana sus2 mutant	151
4.15	Sucrose profile of Atsus2 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	153
4.16	Changes in sucrose amount during seed development of Arabidopsis	
	thaliana sus2 mutant	154
4.17	Glucose profile of Atsus3 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	156
4.18	Changes in glucose amount during seed development of	
	Arabidopsis thaliana sus3 mutant	157
4.19	Fructose profile of Atsus3 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	159
4.20	Changes in fructose amount during seed development of	
	Arabidopsis thaliana sus3 mutant	160
4.21	Sucrose profile of Atsus3 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	162
4.22	Changes in sucrose amount during seed development of Arabidopsis	
	thaliana sus3 mutant	163
4.23	Glucose profile of Atsus5 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	167
4.24	Changes in glucose amount during seed development of	
	Arabidopsis thaliana sus5 mutant	
4.25	Fructose profile of Atsus5 and Colombia wild type Arabidopsis	

	thaliana developing seed pods at different days after pollination	
	(DAP)	169
4.26	Changes in fructose amount during seed development of	
	Arabidopsis thaliana sus5 mutant	170
4.27	Sucrose profile of Atsus5 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	172
4.28	Changes in sucrose amount during seed development of Arabidopsis	
	thaliana sus5 mutant	173
4.29	Glucose profile of Atsus6 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	175
4.30	Changes in glucose amount during seed development of	
	Arabidopsis thaliana sus6 mutant	176
4.31	Fructose profile of Atsus6 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	178
4.32	Changes in fructose amount during seed development of	
	Arabidopsis thaliana sus6 mutant	179
4.33	Sucrose profile of Atsus6 and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	181
4.34	Changes in sucrose amount during seed development of Arabidopsis	
	thaliana sus6 mutant	182
4.35	Glucose profile of Ws and Colombia wild type Arabidopsis thaliana	
	developing seed pods at different days after pollination (DAP)	185
4.36	Changes in glucose amount during seed development of	
	Arabidopsis thaliana Ws ecotype	186
4.37	Fructose profile of Ws and Colombia wild type Arabidopsis	
	thaliana developing seed pods at different days after pollination	
	(DAP)	188
4.38	Changes in fructose amount during seed development of	
	Arabidopsis thaliana Ws ecotype	189
4.39	Sucrose profile of Ws and Colombia wild type Arabidopsis thaliana	

	developing seed pods at different days after pollination (DAP)	191
4.40	Changes in sucrose amount during seed development of Arabidopsis	
	thaliana Ws ecotype	192
4.41	The hexose /sucrose ratio of Ws wild type	194

Chapter 5 Phenotypic Characterization of Sucrose Synthase Mutants Seeds

5.1	Mature seed of Arabidopsis thaliana	210
5.2	Comparison between the germination percentage of Colombia wild	
	type and the SUS mutant at 2 days after 48 hours incubation	224
5.3	Comparison between the germination percentage of Colombia wild	
	type and the SUS mutant at 4 days after 48 hours incubation	225
5.4	Overview of germinating Colombia wild type seeds at 2 days after	
	48 hours incubation in dark room	226
5.5	Overview of germinating Colombia wild type seeds at 4 days after	
	48 hours incubation in dark room with the first cotyledon leaves	228
5.6	Comparison between % plump seeds and % shrivelled seeds of	
	Colombia wild type and the SUS mutants	229
5.7	Picture A shows a plump seed and B a shrivelled seed	292

Chapter 6

Internal Structure of Mutated Sucrose Synthase Seeds

6.1	The pictures show that some pods contain seed of different		
	embryonic stages	241	
6.2	Length and width of developing Colombia ecotype of Arabidopsis		
	thaliana seed	242	
6.3	Seeds from the same pod but different embryonic stages	243	
6.4	Sequential pictures of Atsus1 seed development	245	
6.5	Figures A and B compare Atsus1 and Colombia wild type length		
	and width during development respectively	246	
6.6	Embryo length from DAP 4 to DAP 6 of Atsus1 and Colombia wild		
	type	247	

6.7	Sequential pictures of Atsus2 seed development		
6.8	Figures A and B compare Atsus2 and Colombia wild type length		
	and width during development respectively	250	
6.9	Embryo length from DAP 4 to DAP 6 of Atsus2 and Colombia wild		
	type	251	
6.10	Sequential pictures of Atsus3 seed development	253	
6.11	Figures A and B compare Atsus3 and Colombia wild type length		
	and width during development respectively	254	
6.12	Embryo length from DAP 4 to DAP 6 of Atsus3 and Colombia wild		
	type	255	
6.13	Sequential pictures of Atsus5 seed development	257	
6.14	Figures A and B compare <i>Atsus5</i> and Colombia wild type length		
	and width during development respectively	258	
6.15	Embryo length from DAP 4 to DAP 6 of Atsus5 and Colombia wild		
	type	259	
6.16	Sequential pictures of Atsus6 seed development	261	
6.17	Figures A and B compare Atsus6 and Colombia wild type length		
	and width during development respectively	262	
6.18	Embryo length from DAP 4 to DAP 6 of Atsus6 and Colombia wild		
	type	263	

Chapter 7 General Discussion, Conclusions and Further Work

7.1	The initial steps in sucrose	e metabolism pathway	281

ACKNOWLEDGEMENT

I am really grateful to God for seeing me through my education, particularly this programme.

I wish to express my profound gratitude and heartfelt appreciation to my dear supervisor Dr. Rinke Vinkenoog, for his support and invaluable contribution to the success of this work. I also thank Professor Gary Black for all his assistances and especially for reading through this thesis. I appreciate all the advices and guidance of Dr. Caroline Orfila during the course of this research.

What would I do without the technical support of all the technicians in the School of Applied Sciences? I say a big thank you to Dave Thomas, Beth Lawry, Vivien Brindley, Gary Askwith, Karen Walker, Gordon Forrest and Jennifer Stone.

I own a great deal of gratitude to my colleagues in A307 lab; those that had finished their PhD (Dr. Anna Lindsay, Dr. Obaidur Rahman, and Dr Meng Zhang) and those that are still busy with their programme (Vatsalaa, Lakshmy, Claire, Caroline, Lee, Alexis, Andrew, Paul and Felicia). And to those in chemistry labs, I thank you for your love and concern.

Finally, I thank my family especially my loving wife Ayosola for her financial and emotional support throughout this programme. I thank my parents for giving me a foundation to build on. And to all kindred and friends - thanks for your love.

DEDICATION

I dedicate this work firstly to God, who gives freely to all. To my wife (Ayosola) and son (Ajibola). And lastly, to all those who dream and pursue their dreams.

Wisdom is the principal thing in all your Getting get understanding –King Solomon.

DECLARATION

I declare that the work contained in this thesis has not been submitted for any other award and that it is all my own work.

Name: Benjamin Oladipo Odunlami

Signature:

Date: 19/10/2009

Abbreviations

ANOVA-Analysis of variance

AtSUS-Arabidopsis thaliana sucrose synthase

DAP- Day after pollination

DNA- Deoxyribonucleic acid

 0 C – degree centigrade

Col- Columbia

EF- Elongation factor

el- embryo length

g- gram

GC- Gas chromatography

GSP –gene specific primer

h- hour

HPAEC-High performance anion exchange chromatography

mA- milliamplitude

Min -minute

ml- millilitre

mM - millimolar

mRNA -messenger ribonucleic acid

 $M\Omega/cm$ - ohm meters per centimetre

NASC -Nottingham Arabidopsis stock centre

ng- microgram

PCR-Polymerase chain reaction

PTGS- Post transcription gene silencing

%- percentage

RAM- root apical meristem

RNAi - RNA interference

TAIR - The Arabidopsis Information Resource

T-DNA- transfer DNA

TIAG- the Arabidopsis genome initiative

TES-

s- second

sd- standard deviation

sl- seed length SUS- sucrose synthase sw- seed width T-DNA- transfer DNA TLC- thin layer chromatography T3- third generation SAM – stem apical meristem SPS- sucrose phosphate synthase UDP- Uridine diphosphate µeq - microequivalents µl- micro litre µg- micro gram µM- micro molar UNEP- United Nation Environmental Protection UTR- untranslated region UV- ultraviolet light

v/v- volume per volume

Ws- Wassilewskija