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Abstract

Due to the PV module simulation requirements as well as recent applications of model-based controllers,
the accurate photovoltaic (PV) model identification method is becoming essential to reduce the PV power
losses effectively. The classical PV model identification methods use the manufacturers provided maximum
power point (MPP) at the standard test condition (STC). However, the nominal operating cell temperature
(NOCT) is the more practical condition and it is shown that the extracted model is not well suited to it. The
proposed method in this paper estimates an accurate equivalent electrical circuit for the PV modules using
both the STC and NOCT information provided by the manufacturers. A multi-objective global optimization
problem is formulated using only the main equation of the PV module at these two conditions that restrains
the errors due to employing the experimental temperature coefficients. A novel combination of a genetic
algorithm (GA) and the interior-point method (IPM) allows the proposed method to be fast and accurate
regardless the PV technology. It is shown that the overall error, which is defined by the sum of the MPP
errors of both the STC and the NOCT conditions, is improved by a factor between 5.1% to 31% depending
on the PV technology.

Keywords: Photovoltaic (PV), PV Model identification, Genetic algorithm (GA), Interior-point method
(IPM), Maximum power point (MPP)

1. Introduction

Advances in PV technologies during the last decade have increased the share of the solar energy in the
growing electricity market. The PV modules are nonlinear and complex still very popular components [1],
[2] since they are easy to install and operate. However, it is essential to model the PV module accurately to
be able to predict its behavior at different operating conditions. This PV behavioral prediction is necessary
for the system design and the PV module simulation purposes (e.g. see [3]). Moreover, having an accurate
model for the PV modules, it is also possible to develop the model-based MPPT algorithms (e.g. see [4])
besides the classic methods (e.g. see [5, 6, 7]).

A PV cell is a P-N junction that is typically modeled with an equivalent electrical circuit [8]. Although
there are prior researches focused on non-electrical models based on either artificial neural network (ANN)
[9] or adaptive neuro-fuzzy inference scheme (ANFIS) [10], the equivalent electrical circuit is the most
popular PV model. The core advantage of the electrical models is that unlike the other models it does not
necessarily require measured data samples to be trained. Moreover, it can easily be simulated with other
components as an integrated electrical circuit. Fig. 1 illustrates a single-diode equivalent electrical circuit
of the PV cell, which is also applicable to model a PV module. The PV module consists of several PV
cells connected together in series. Although the double-diode circuit provides better modeling of the loss
in the depletion region caused by the recombination of carriers [11]- [12], the single-diode model still offers
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Figure 1: Single-diode equivalent electrical circuit of PV cell, module, and array.

a good compromise between accuracy and simplicity [13]. A PV array, which is a combination of several
photovoltaic modules in series and parallel arrangement, can be modeled with the same circuit, too. There
are six parameters in this model, namely, the stray capacitor C, the ideality factor of the diode nd, the
photocurrent Iph, the reverse saturation current of the diode I0, the series resistor Rs, and the shunt resistor
Rsh. While the stray capacitor C is neglected [14], there are still five unknown parameters for each PV
module, which require being determined with an identification method.

To the best of the authors knowledge, the prior researches on the PV electrical equivalent model identi-
fication methods can be categorized into three groups. Each of these methods can also be applied to either
a simplified model taken the shunt resistor as infinite [15], [16] or the normal circuit leading to a four- or
five-parameter estimation problem, respectively.

In the first group, the authors in [17, 18, 19, 20, 21] presented analytical methods to calculate the
parameters. The identification method proposed in [17] attempts to approximate and solve analytically the
equation of the PV as a polynomial of the first order. Even though a simple parameter estimation method
is demonstrated, the method does not provide enough accuracy. The works of [18, 19, 20, 21], however,
introduced a system of five equations to resolve the five model parameters. Three of these equations are
extracted from three remarkable points [13], i.e., the short- and the open-circuit points coupled with the
MPP. While the forth equation is constructed based on the fact that the derivative of the power at the
MPP is zero, the fifth equation is more challenging. The authors in [18] employed an approximation for the
temperature coefficient as the fifth equation, however, the others adopt the equation introduced in [19] as a
simplified approximation of the shunt resistor. Although these analytical methods are straightforward and
only need the nominal values from datasheets, they still need sophisticated numerical or even optimization
methods to solve the resulting nonlinear and transcendental system of equations. Moreover, the accuracy is
deteriorated as a result of using simplified approximation of either the temperature coefficient or the shunt
resistor.

Alternatively, there are prior researches focused on identifying a PV current-voltage (I − V ) curve (Fig.
2) being the best fit to the empirical data [22, 23, 24, 25]. The authors in [22] and [23] proposed a genetic
algorithm as the curve fitting procedure to identify the circuit in Fig. 1. The main issue of this approach
is that it relies on measured data rather than information available in datasheets. Moreover, it requires
measuring the cell temperature of the PV module, which is not an easy task. With the aim of avoiding
the need to measure points on the different I − V curves, the authors in [24] introduced a set of equations
to calculate the remarkable as well as two intermediate points at different values of the insolation and the
cell temperature. This method is adopted by Sandia national laboratories (SNL), USA [26] as the reference
method in PV model identification. The equations rely on several empirical parameters, which need to be
extracted for each type of the PV module. The national institute of standards and technology (NIST), USA
[27] provides these empirical parameters for different PV module technologies [18]. The procedure needs to
be repeated for any new PV module type.

Finally, in order to avoid issues of these approaches, i.e., the needs for measuring points on the I−V curves
and degrading the accuracy caused by the simplifications, the authors in [13], and [28] proposed methods
based on optimization techniques. The identification method proposed in [13] employed an exhaustive search
algorithm to explore all values of the ideality factor and the series resistor. It calculates the value of the
shunt resistor iteratively. Although it is an effective algorithm, it requires checking all possible values of the
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Figure 2: The I − V and P − V curves of the PV module for the STC and the NOCT conditions.

ideality factor and the series resistor before determining the optimal ones as well as calculating a complete
I − V curve at each iteration. These two issues make the procedure quite slow. Furthermore, the speed of

the procedure is sensitive to the resolution of the parameters with the order of O

((
resolutionnew

resolutionold

)2
)

. The

authors in [28] reformulated the problem as an unconstrained optimization problem. Then they employed
the particle swarm optimization (PSO) technique to solve it at different values of the cell temperature.
Although the formulation and the employed algorithm increase the speed of the procedure, it still requires
solving the I −V as well as two other transcendental equations at each iteration, which degrade the speed.

The main limitations of these methods are that they either require experimental measurements or use
only the STC information available in datasheets. In order to fit the experimental points to a mathematical
presentation of an I−V curve, it requires measuring the cells temperature, i.e. the P-N junction temperature
of packed PV cells, and keeping them constant during the test which both are not easy to handle. Mean-
while, the STC information estimates parameters with good accuracy for the MPP at the STC; however,
as shown in subsection 3.3, it introduces a considerable error for the MPP at the NOCT. Furthermore, the
methods based on the optimization techniques solve repeatedly the nonlinear transcendental I − V curve
for the whole range of the PV voltage and it causes them to be slow. To overcome these limitations, this
paper proposes a novel PV model identification method to estimate the electrical parameters with minimum
overall error, namely, the overall optimum solution. The overall error is defined by the sum of the STC and
NOCT errors, which are the MPP estimation errors for the STC and NOCT curves, respectively. In this
paper, the proposed method is applied for extracting the electrical parameters of the equivalent single-diode
circuit; however, with some modifications it is also applicable to the double-diode model of a PV module.
The proposed method relies on a multi-objective optimization problem (MOOP) using either any empirical
inaccurate equations or any assumptions on the parameters. A novel combination of a Genetic algorithm
(GA) and the interior-point method (IPM) is introduced to solve the resulting MOOP in considerably short
time. It is shown that the overall error is improved for three PV technologies, i.e. thin film, polycrystalline,
or monocrystalline technologies. The results are also compared with the results of two prior researches
[13, 28] that shows improvement in terms of overall and STC errors. Moreover, by employing IPM, the
proposed method is faster than the method introduced in [13].

This paper is organized as follows: the next section provides a summary of the PV mathematical model.
Section III presents a formulation of the MPP estimation and parameter identification problems as well as
the proposed procedure. The identified electrical parameters for three different PV technologies coupled
with their validation are given in Section IV. Finally, Section V presents a conclusion of the study. Fig. 3
provides a summary of the manuscript indicating different stages of the proposed PV model identification
and validations procedure. As it is depicted, the available STC and NOCT information provided by man-
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Figure 3: An outline of the manuscript indicating different stages of the proposed procedure.

ufacturers are used by the proposed algorithm to identify the {nd, Rs, Rsh} parameters of the PV module
equivalent electrical circuit. The identified electrical model is then validated against available I − V curves
and MPPs information provided by manufacturer. The differences between the simulated PV curves and
MPPs and those from datasheets, i.e. modeling errors, are also compared with the similar results reported
by prior researches.

2. PV module mathematical modeling

Fig. 1 illustrates a single-diode equivalent electrical circuit of a PV module. Among the electrical param-
eters, the series resistor Rs is the sum of structural resistances [13] and the shunt resistor Rsh representing
the leakage current [13]. Applying the Kirchhoff current law (KCL) to the junction point of these two
resistors gives the characteristic equation of the PV module, which is a nonlinear transcendental equation,
as follows:

Ipv = Iph − I0
{

exp(
Vpv +RsIpv

ndNs

q

KTc
)− 1

}
− Vpv +RsIpv

Rsh
. (1)

where Vpv and Ipv are, respectively, the output voltage and current of the PV module and all other symbols
are defined as follows:

q The electron charge (1.60218× 10−19)

K The Boltzman constant (1.38066× 10−23)

Ns The number of the PV cells in series constructing the PV module (-)

Tc The current amount of the PV cell temperature (K)

The photocurrent Iph and the reverse saturation current of the diode I0 for the STC and the NOCT
conditions are calculated using available parameters in the datasheets [13], [29]:

Iph =

(
Rs +Rsh
Rsh

Isc,X + kI (Tc − Tc,X)

)
S

SX
. (2)

I0 =
Isc,X + kI (Tc − Tc,X)

exp(
Voc,X + kV (Tc − Tc,X)

ndNs

q

KTc
)− 1

.
(3)

4



Isc,X The short-circuit current of the PV module at condition X (A)

kI The temperature coefficient of the short-circuit current (A/◦C)

kV The temperature coefficient of the open-circuit voltage (V/◦C)

S The current amount of the solar irradiance (W/m2)

SX The standard amount of the solar irradiance at condition X (W/m2)

Tc,X The standard amount of the cell temperature at condition X (K)

Voc,X The open-circuit voltage of the PV module at condition X (V )

X The operating condition that is either the STC or the NOCT (-)

where the parameters are defined as follows:
Manufacturers provide all the above parameters, i.e., the empirical values of the remarkable points for

each operation conditions as well as the cell temperature at the NOCT. Table 1 illustrates these information
for the PV modules studied in this paper.

Under the STC and the NOCT conditions, Eqs. (2) and (3) can be rewritten as follows:

Iph =


Rs +Rsh
Rsh

Isc,stc For the STC-curve,

Rs +Rsh
Rsh

Isc,noct For the NOCT-curve.

(4)

I0 =



Isc,stc

exp

(
Voc,stc
ndNs

q

KTc,stc

)
− 1

For the STC-curve,

Isc,noct

exp

(
Voc,noct
ndNs

q

KTc,noct

)
− 1

For the NOCT-curve.

(5)

By substituting Eqs. (4) and (5) into Eq.(1), one obtains the equations of the two I − V curves in Fig.
2, which their stationary points are the MPPs.

There are other equations to model the deviation of the photocurrent, the short-circuit current, and the
open-circuit voltage due to a variation in the cell temperature [18], [28]. None of these equations are used
in the proposed method and it only uses Eq. (1) under the STC and the NOCT conditions to increases the
accuracy of the method.

Table 1: PV modules studied in this paper and their datasheet information.

Polycrystalline Thin film Monocrystalline

Parameters KC200GT (Kyocera) ST40 (SHELL) E20/333 (Sunpower)

Impp,stc 7.61(A) 2.41(A) 6.09(A)

Vmpp,stc 26.3(V ) 16.6(V ) 54.7(V )

Pmpp,stc 200.143(W ) 40.00(W ) 333.123(W )

Isc,stc 8.21(A) 2.68(A) 6.46(A)

Voc,stc 32.9(V ) 23.3(V ) 65.3(V )

Impp,noct 6.13(A) 1.88(A) 4.91(A)

Vmpp,noct 23.2(V ) 14.7(V ) 50.4(V )

Pmpp,noct 142.216(W ) 27.7(W ) 247.64(W )

Isc,noct 6.62(A) 2.2(A) 5.22(A)

Voc,noct 29.9(V ) 20.7(V ) 61.2(V )

kI 3.18× 10−3(A/◦C) 0.35× 10−3(A/◦C) 3.5× 10−3(A/◦C)

kV −1.23× 10−1(V/◦C) −100× 10−3(V/◦C) −176.6× 10−3(V/◦C)

Ns 54 36 96

Tc,noct 47◦C 47◦C 45◦C

Tc,stc 25◦C 25◦C 25◦C
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3. Problem formulation

PV model identification is an optimization problem to find the optimum parameters for the equivalen
electrical model of a PV module in terms of minimizing some identification errors. However, there are two
main challenges. First, this section shows that PV model identification is an optimization problem with
multiple local optima points that must be solved to find its global optimum point. Moreover, it is shown that
estimating the electrical parameters, in the way that the MPPs of both STC and NOCT curves are matched
with manufacturers data, are conflicting objectives. Therefore, the PV model identification is formulated
as a global MOOP with two constraints on the MPPs of the STC and the NOCT curves. A specific GA is
proposed to solve this global MOOP. It relies on a fast MPP estimation algorithm, explained below, that
employs the IPM.

3.1. Formulating the MPP estimation problem

The MPP is the point (Vmpp, Impp) on the I − V curve that maximizes the produced power of the PV
module. As a result, the problem of estimating the MPP for either the STC- or the NOCT-curve can be
formulated as follows:

[Vmpp, Impp] = arg minimize
vpv,ipv∈<

{
1

vpvipv

}
(6a)

subject to:

ipv = iph − i0
{

exp(
vpv +Rsipv

ndNs

q

KTc
)− 1

}
− vpv +Rsipv

Rsh
(6b)

iph =
Rs +Rsh
Rsh

Isc (6c)

i0 =
Isc

exp(
Voc
ndNs

q

KTc
)− 1

(6d)

0 ≤ [vpv, ipv]
T ≤ [Voc, Isc]

T . (6e)

Given the PV module information for the test conditions of the Table 1 and the electrical parameters of
the Fig. 1, the MPP can be estimated for either of the test conditions. The objective function, which needs
to be minimized, is the reverse of the generated power. There is a nonlinear constraint (6b) that is the I−V
curve of the PV module. Except the box constraints (6e) the others provide the equations to calculate the
photocurrent and the diode reverse saturation current.

3.2. The proposed MPP estimation algorithm

The optimization problem (6) can be solved employing either the curve-inspecting technique, the local
optimization methods, or even the heuristic algorithms such as a GA. The authors in [12], [13], and [28]
employed the curve-inspecting method, which is an exhaustive search method, to find the MPP of the I−V
curve. This algorithm solves the transcendental Eq. (6b) for Ipv with respect to all possible values of Vpv
with a Newton-Raphson based method. Then, it finds the MPP as the couple (Vmpp, Impp) generating the
maximum power. The procedure needs to calculate a complete I − V curve to be able to extract the MPP
and its speed depends significantly on the step-size of the Vpv variation.

From Fig. 2, it can be seen that the generated power by the PV module is a concave function with respect
to the PV voltage (P − V curve). Consequently, the objective function of the problem (6) is convex over
the feasible values of Vpv and Ipv and it can be solved employing well-known nonlinear convex optimization
techniques. In this study, the IPM, which is also known as the barrier method, has been selected chiefly
because it solves the problem faster comparing with the curve-inspecting method. Furthermore, there exists
a powerful still freely accessible implementation of the IPM, i.e., the interior point optimizer (IPOPT) [30].
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Figure 4: The existance of local optima for different values of the ideality factor.

In contrast to many other optimization techniques, IPM traverses the interior points inside the boundaries
to find the optimal solution.

The fundamental idea of the IPM is to transform the nonlinear optimization problem with inequality
constraints to a problem with only equality constraints. Then the optimum value is estimated through
satisfying the necessary conditions proposed by the Karush-Kuhn-Tucker (KKT) theorem. A summary of
the IPM is provided in the Appendix I and for further details, the reader is referred to [31] and [32].

Table 2 summarizes the execution time of the curve-inspecting and the proposed methods to solve
the problem (6). It illustrates that the curve-inspecting technique is computationally quite expensive.
While the implementation of the proposed MPP estimation algorithm in MATLAB is more than 10 times
faster, employing the IPOPT makes it even much faster. The MPP estimation is a critical task of the PV
module identification because it is executed several times depending on the identification algorithm and
its parameters, e.g., the population size and the maximum number of generations in a GA. A fast MPP
estimation algorithm, in particular, speeds up the identification algorithm, explained below, substantially.

3.3. Formulating the PV model identification problem

PV module manufacturers report the maximum power points at two different conditions, namely, STC
and NOCT conditions, in their datasheets. In this paper, the PV model identification problem has been
extended as the procedure of identifying the best values for nd, Rs, and Rsh parameters (Fig. 1) such that
not only the I − V curve (Eq. (1)) at the STC condition but also the appropriate I − V curve at the
NOCT condition have the maximum output power as much similar as possible to the (Vmpp,Impp) points
reported by the manufacturers (Table 1). Identifying these parameters, Eqs. (2), and (3) can be employed
to calculate the remaining Iph, and I0 parameters.

Fig. 4 illustrates the identification errors for different values of the ideality factor. They have been
depicted just up to the optimum points for simplicity’s sake. This identification error is the absolute
difference between the estimated MPP and the MPP provided by the manufacturer and is defined by a
normalized Euclidean distance. In Fig. 4, it can be seen that for each individual value of the ideality
factor there is a local optimum with respect to other model parameters Rs and Rsh and this fact introduces
multiple local optima to the problem. For instance, when nd equals to 1.25, which is illustrated by ”+”
comparing for example to the case of nd = 1.5 illustrated by ”�”, the local optima locates at (Rs, Rsh) =
(0.2454Ω, 408.4Ω) and the relevant error is −8.056.

Table 2: The execution time of different methods to estimate the MPP.

Methods The execution time

The curve-inspecting method with MATLAB 3000(msec)

The proposed algorithm with MATLAB 300(msec)

The proposed algorithm with IPOPT 90(msec)
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Table 3: Conflicts between the STC- and the NOCT-based objectives.

PV modules −→ KC200GT ST40

Error Type ↓ Parameters of
[13]

Using NOCT-based
objective

Parameters of
[28]

Using NOCT-based
objective

STC-identification error 0.00262 0.03192 0.00499 0.03214

NOCT-identification error 0.02401 0.00003 0.05166 0.00002

Based on available STC and NOCT MPPs provided by manufacturers , two varieties of the identification
errors are defined. These STC-identification and NOCT-identification errors measure the difference between
the calculated MPPs by an identified model and MPPs reported in datasheets for the STC and NOCT con-
ditions. Although the prior researches (e.g. [13] and [28]) used the STC information available in datasheets,
the NOCT data can also be employed for PV model identification purpose. Table 3 compares these two
approaches in terms of STC- and NOCT-identification errors. From Table 3, it can be seen that minimizing
either of these errors does not minimize the other one. For instance, the identified PV model based on avail-
able NOCT information in KC200GT PV module datasheet, instead of the STC information, decreases the
NOCT-identification error but increases the STC-identification error. In other words, the identified model
that proposes an optimum point for the STC-identification error does not provide an optimum point for the
NOCT-identification error and vice versa. Therefore, considering both the STC and the NOCT conditions
introduce a MOOP [33] with the following conflicting objectives:

J1(vpv, ipv) = ‖[vpv − Vmpp,stc
Vmpp,stc

,
ipv − Impp,stc
Impp,stc

,
vpvipv − Pmpp,stc

Pmpp,stc
]‖2. (7)

J2(vpv, ipv) = ‖[vpv − Vmpp,noct
Vmpp,noct

,
ipv − Impp,noct
Impp,noct

,
vpvipv − Pmpp,noct

Pmpp,noct
]‖2. (8)

J(vpv, ipv) = {w1θ1J1(vpv, ipv) + w2θ2J2(vpv, ipv)} . (9)

Due to the fact that the power is the multiplication of the voltage and the current, considering only the
generated power in the objective functions and discarding these two factors introduces an algorithmic error.
Moreover, Eq. (10) indicates that even small amount of round-off error in the estimated Vmpp and Impp,
namely, εv and εi are magnified by the values of the voltage and current before taking into account as the
estimated Pmpp error, εp. In order to eliminate these issues, the difference between all these three factors
and the nominal values available in datasheets have been considered.

εp = Vmppεi + Imppεv. (10)

Although the open- and short-circuit points can also be added as parts of the objective functions, it is
unnecessary because they are considered in Eqs. (4) and (5). Fig. 6 of next section shows that theI − V
curve of the estimated parameters for the STC condition passes through all remarkable points accurately.

There are two approaches to solve the multi-objective optimization problems: converting to a single-
objective problem, and determining the entire Pareto solution [34]. While the former approach returns a
single solution, the latter provide a Pareto optimal set as a set of solutions that are not dominated with
each other. The decision-maker selects among the Pareto optimal set according to trade-offs. The proposed
algorithm in this paper without loss of generality employs the first approach for two reasons. While it is
easier to implement, the proposed algorithm also aims at estimating the best set of values for the parameters
rather than a set of optimal solutions.

The individual objectives (7) and (8) are converted to a single objective (9) employing a weighted affine

combination of the normalized objective functions Ĵ =
[
Ĵ1, ..., Ĵk

]
with weights w = [w1, ..., wk]

T
[34]. The
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Table 4: The box constraints of the electrical parameters.

Parameters KC200GT ST40 E20/333

nd,min(−) 1.0 1.0 1.0

nd,max(−) 2.0 2.0 2.0

Rs,min(Ω) 0.001 0.001 0.001

Rs,max(Ω) 1.0 1.0 2.0

Rsh,min(Ω) 50 50 50

Rsh,max(Ω) 1100 550 1500

affine combination means that
∑k
i=1 wi = 1 and the normalized objective function is defined as follows:

Ĵ = [θ1, ...θk]T [J1, ..., Jk] (11a)

θi =
1

fi(x[i])
(11b)

x[i] = arg maximize
x∈χ

{fi(x)} . (11c)

where k is the number of individual objective functions. In order to keep the values of all objective functions
in the range of [0, 1], the normalization factors {θi} are selected as the reverse of the maximum value of
each objective function (11b). The resulting single-objective PV model identification problem is proposed
as follows:

[Rs,opt, Rsh,opt, nd,opt] = arg minimize
Rs,Rsh,nd∈<

{w1θ1J1(vmpp,stc, impp,stc) + w2θ2J2(vmpp,noct, impp,noct)} (12a)

subject to:

[vmpp,stc, impp,stc] = The solution of (6) for the STC (12b)

[vmpp,noct, impp,noct] = The solution of (6) for the NOCT (12c)

[Rs,min, Rsh,min, nd,min]T ≤ [Rs, Rsh, nd]
T ≤ [Rs,max, Rsh,max, nd,max]T . (12d)

Through this study, the normalization factors are calculated dynamically and the weights are assumed
to be equal (i.e. [0.5, 0.5]). The proposed method for this case can be named as the full method. The equal
weights imply that there is no preferences between either of the STC or the NOCT conditions, however, if
there is such a preference the affine weights can be unbalanced. Particularly, applying either of the values
of [1, 0] or [0, 1] convert Eq. (12) to a single (only Eq. (7) or Eq. (8)) objective problem and the proposed
method can be called the STC- or NOCT-based method. The two constraints (12b) and (12c) present the
MPPs of the STC and NOCT curves according to Eq. (6). Table 4 summarizes the box constraints of the
electrical parameters for the different PV modules studied in this paper.

3.4. The proposed PV model identification algorithm

The well-known nonlinear programming (NLP) algorithms such as IPM cannot solve the PV model
identification problem (12) since it is a global optimization problem with multiple local optima. To address
this problem, a GA is proposed in this paper.

Generally speaking, a GA is a search technique based on the natural genetic mechanisms. It is a class
of stochastic search methods combining elements of two strategies, namely, exploring the search space and
exploiting the best solution [35]. The GAs start with an initial fixed-size population, which is a set of
random individual chromosomes, representing a string of the values of design variables. New offsprings are
generated by either a crossover or a mutation operation. The chromosomes evolve through the generations
according to a selection rule states that the fitter chromosomes have higher probabilities of being selected
[35].
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Table 5: The pseudocode of the proposed PV model identification method.

Step1: Initialization

Load the optimization parameters: popSize, genNo max, mutRate init,

crossoverRate;

Load the PV parameters from datasheets;

genIndx = 0; The current generation

mutRate max = min {3×mutRate init, 0.9};
v = [nd, Rs, Rsh]; The chromosme structure

pop = popGen(popSize); Random initial population of popSize

Step 2: Crossover and mutation

Selecting the parents (λ = rand() ∈ [0, 1]; i ∈ {1, 2}):
[parent1,c, parent2,c] = RouletteWheel(crossoverRate);

offspringi,c = λparent1,c + (1− λ)parent2,c;

mutRate = mutRate init+ (mutRate max−mutRate init)(
fitnessgenIndx

fitnessbest,genIndx
)a;

Selecting the chromosomes/variable to be mutated:

[chrom, var]m = RouletteWheel(mutRate) ;

mutV ar = varm × rand()× (1− genIndx
genNo max );

migratedChromm = chromm(mutV ar); using mutated var.

pop = pop ∪ {offspringi,c} ∪ {migratedChromm};

Step 3: Calculating fitness values (j is the chromosome number)

Calculating the values of objective functions:;

(vmpp,stc, impp,stc) = Solve Eq. (6) for STC with IPM;

(vmpp,noct, impp,noct) = Solve Eq. (6) for NOCT with IPM;

[f1,j , f2,j ] = Use these values acc. to Eqs. (7) and (8);

normalizeFactor1 = maximize
j∈[0,popSize]

{f1,j};

normalizeFactor2 = maximize
j∈[0,popSize]

{f2,j};

fitnessj = 0.5
normalizedFactor1

f1,j+ 0.5
normalizedFactor2

f2,j ; Eqs. (9), (11b) and (8)

Step 4: Selection

Psel,j =
|fitnessj−fittnessgenIndx|

fitnessbest,genIndx
; selection probability

pop = RouletteWheel(Psel,j); new population of popSize

Step 5: Terminating criteria

If the genIndx < genNo max AND fitnessbest,genIndx < 10000 then

update the genInx and go to step 2

else the chromosome [nd, Rs, Rsh] with the fitnessbest,genIndx

is the optimum solution. STOP.

Table 5 presents a pseudocode of the proposed GA for this study. The proposed GA adopts the disruptive
selection method [36] to find the global optimum point. Traditional GAs allocate more trials to above-
average chromosomes and do not guarantee convergence to the global optimum. Unlike traditional GAs,
the disruptive selection, which is a more effective method, gives a higher probability to both the best
and the worst chromosomes in a roulette wheel framework [36]. Fig. 5 (a) and (b) illustrate that the
employed disruptive selection method keeps diversity of the chromosomes up to the last generation in order
to be able to find the global optima. Red dots are MPPs estimated by different chromosomes of the last
generation and the black stars indicate target values. From Fig. 5 (c), it can be seen that although the
best fitness remains constant for several consecutive generations, which means the algorithm is vulnerable
to premature convergence, the average fitness is variable. In other words, the proposed GA preserves the
population diversity throughout different generations. Figs. 5 (d)-(f) show the diversity of each estimated
parameter throughout different generations. From Figs. 5 (d)-(f), it can be seen that although majority of
the chromosomes are converged to an optimum point, the proposed GA still searches other possible options
up to the last generation.

Moreover, the proposed GA employs two other techniques to preserve the population diversity through
the generations and prevent a premature convergence. First, a specific technique is used to adjust the
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Figure 5: (a)-(b) Diversity of the estimated MPPs for different chromosomes of the last generation; (c) the average fitness which
remains at the half of the best fitness throughout different generations with (d)-(f) the diversity of each estimated parameter
in detail.

mutation rate dynamically. It changes the mutation rate proportionally to a diversity measurement, which
is defined as the ratio of the average fitness to the best fitness [35]. Secondly, a random offspring generation
strategy is used to preserve the population diversity. When two parents have equal genotypes, the normal
offsprings are clone to their parents. The idea behind the random offspring generation strategy is that if
this situation happens, then the normal offsprings are replaced by new randomly generated ones [37].

From Table 5 , it can be seen that the procedure calculates the maximum values of each objective function
prior to selecting the chromosomes of the next population. These values are the normalization factors {θi}
in Eq. (12) for each objective function.

Unlike the identification methods in [13] and [12], the proposed method does not require an initial guess
for the ideality factor. The execution time is independent of the parameters resolution and the method
can be terminated in the middle of the execution according to the accuracy-time trade-offs and having the
sub-optimal solution.

4. Results, validation, and discussion

The proposed method is used to identify the equivalent electrical circuit of three PV modules with
different technologies [38, 39, 40]. Table 1 illustrates the parameters of these PV modules provided by three
manufacturers: Kyocera, Shell, and Sunpower. The following Subsection 4.1 presents identified model for
the Sunpower E20/333 module using different variations of the proposed PV model identification method.
It also validates the results of the proposed method by comparing them with the curves, available in the
PV module datasheets [38, 39, 40]. Subsection 4.2 verifies the accuracy of the proposed MPP estimation
algorithm with respect to the results of the prior researches. The obtained PV identification results are
compared in Subsection 4.3 with two other studies in [13] and [28], indicating substantial improvements in
accuracy. All the implementations are conducted using MATLAB with the following parameters:

• Design variables: [nd, Rs, Rsh]
• The crossover rate: 85%
• The initial mutation rate: 40%
• The population size : 100
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Table 6: The identified electrical parameters for Sunpower E20333 (Monocrystalline) module employing the proposed methods.

Parameters STC-based NOCT-based Full

nd(−) 1.132 1.014 1.167

Rs(Ω) 0.365 0.598 0.337

Rsh(Ω) 1125.75 1399.17 1414.89

The STC-identification error(%) 0.0004 1.6279 0.0121

The NOCT-identification error(%) 1.0927 0.0014 1.0208

The overall error(%) 1.0931 1.6293 1.0375

Table 7: The identified electrical parameters for the SHELL ST40 module (Thin film) and Kyocera KC200GT (Polycrystalline)
modules employing the proposed methods.

SHELL ST40 Kyocera KC200GT

Parameters STC-based NOCT-based Full STC-based NOCT-based Full

nd(−) 1.346 1.829 1.973 1.291 1.033 1.348

Rs(Ω) 1.508 1.151 1.067 0.232 0.421 0.214

Rsh(Ω) 386.22 294.59 510.49 547.91 662.813 1060.66

The STC-identification error(%) 0.0087 3.2138 3.0240 0.0007 3.1924 0.0291

The NOCT-identification error(%) 4.4390 0.0020 0.0210 2.190 0.0030 2.0960

The overall error(%) 4.4477 3.2158 3.0450 2.191 3.1958 2.1254

• The maximum number of generations: 100
• The affine weights: [0.5, 0.5]

4.1. The Sunpower E20/333 model identification and validation

Table 6 presents the electrical parameters of the Sunpower E20/333 PV module identified by different
variations of the proposed method. It shows a comparison between different errors in STC-based, NOCT-
based, and full methods indicating how the full method provides a solution with better overall error, with
respect to the MPPs (Table 1), than the other variations (with 5.1% improvement). The identified solution
by the full method is close to the results of the STC-based method, however, it is not necessarily the same
for other types of the PV modules. From Table 7, it can be seen for the ST40 module that the identified
solution by the full method is much closer to the results of the NOCT-based method and it experiences an
improvement of 31.5% compared with the STC-based method.

Fig. 6 compares the predicted I−V curves of the E20/333 PV module for different amounts of the solar
irradiance and the cell temperature with the points provided by the manufacturer (the circle markers). It
is observed that the identified model by the proposed full method predicts different curves so that they are
very close to the manufacturer’s provided points.

Fig. 7 depicts the curve error versus the PV voltage for different amounts of solar irradiance. The curve
error is defined as the absolute normalized difference between the predicted I −V curve, which is generated
by employing the identified model, and the I − V curves which is provided by manufacturers. If there exist
predicted and manufacturer provided points with the same value of the voltage (or current) on the curves,
then the error equals to the absolute difference between the proportional current (or voltage) values. The
calculated absolute values are normalized with either the short-circuit current or open-circuit voltage values.

4.2. The MPP estimation algorithm verification and validation

The MPP estimation algorithm is validated with the results of the curve-investigating method [13] that
finds the MPP with any required accuracy employing an exhaustive search. Table 8 compares the estimated
MPPs for the STC and NOCT curves using either of these methods. The results show that they are match
together precisely and the proposed algorithm estimates the MPP quite accurately comparing with the
manufacturer values (Table 1).

4.3. Accuracy verification of the proposed method

From Figures 6 and 7 and the explanations under subsections 4.1 and 4.2, it can be seen that the
proposed method extracts a PV model that predicts accurately matched I−V curves to the curves available
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Figure 6: The predicted I − V curves (the solid lines) and the manufacturer’s points (the circle markers) of the Sunpower
E20/333 PV module for different values of solar irradiance and Tc = 25◦C, in addition to the case that Tc = 50◦C (the thicker
line and the solid circle markers).

Figure 7: The absolute normalized curve errors between the predicted and manufacturer provided I −V curves of the E20/333
module at different amounts of the solar irradiance.

by the manufacturers. In order to indicate the improved accuracy of the proposed method, the measured
identification error, as the sum of the STC- and the NOCT-identification errors, is also compared with the
corresponding values introduced by the methods in [13] and [28]. Fig. 8 shows this comparison for different
PV modules. It is observed that the identified model by the proposed full method generates the least overall
error among all methods. For instance, applying the proposed full method for the KC200GT and ST40
modules comparing with the results in [13] and [28] delivers a significant improvement of 20.8% and 46.3%,
respectively. Identically, dramatic improvements of 99.7% and 98.3% with respect to these references are
gained for the STC-identification errors when the STC-based method is applied to these two modules.

The absolute normalized curve error between the predicted and manufacurer provided I − V curves of
ST40 module for two different values of insolation are given in Fig. 9. The absolute errors have been
normalized using similar technique introduced under Fig. 7. From Fig. 9, the proposed full method shows
a significant reduction in curve errors and especially it gives dramatic improvements for lower insolations.

Table 8: The comparison between the proposed MPP estimation algorithm and the curve-investigating method [13].

KC200GT ST40 E20/333

Methods STC NOCT STC NOCT STC NOCT

Curve-investigating method:
(Vmpp
Impp

) (26.3000
7.6100

) (23.2000
6.1300

) (16.5980
2.4100

) (14.7030
1.8840

) (54.7000
6.0900

) (50.4000
4.9100

)
The proposed method:

(Vmpp
Impp

) (26.3001
7.6099

) (23.1994
6.1300

) (16.5990
2.4099

) (14.7000
1.8844

) (54.7002
6.08999

) (50.4002
4.9099

)
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Figure 8: The identification error of the proposed methods comparing with the results in [13] and [28].

Figure 9: The absolute normalized curve errors between the predicted and manufacturer provided I − V curves of the ST40
module introduced by different methods at (a) 1000W/m2 and (b) 200W/m2 insolation.

The introduced improvement by applying the proposed full method may vary for different types of the
PV modules; however, the full method is still a consistent identification algorithm. It means that it always
proposes the optimum solution with respect to the overall and curve errors, regardless of the different PV
technologies. A PV module is dominated by either the NOCT (e.g. the ST40 module) or the STC condition
(e.g. the KC200GT or the E20/333 modules). If it is dominated by the NOCT condition, using the STC-
based identification method (e.g. the methods in [13] and [28]) provides a model with significant overall
error chiefly because of a substantial NOCT-identification error. The proposed full method is consistent,
i.e., it automatically adjusts itself to find the best equivalent electrical model for a PV module, regardless
of being dominated by either the STC or the NOCT condition.

5. Conclusion

This paper proposes a method to identify the parameters of the PV modules equivalent electrical circuits.
The identified model is essential to simulate the behavior of the PV modules at any operating condition.
The main aspect of the proposed model identification method is to extract the electrical parameters with
minimizing the overall identification error rather than just the STC-identification error. While the latter is
the distance between the estimated and manufacturer provided MPPs of the STC curve, the overall identi-
fication error is the sum of such distances for both the STC and the NOCT curves. The PV identification
has been reformulated as a nonlinear optimization problem. A novel GA has been introduced to solve the
resulting multi-objective global optimization problem, which has several local optima. In order to estimate
the MPP of a given I−V curve, which is a subproblem of the main PV identification problem, a novel MPP
estimation algorithm has also been proposed. Unlike the prior approaches that construct a set of points of
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the I − V curve, the proposed fast MPP estimation algorithm employs IPM to extract directly the MPP.
By applying the proposed identification method to three PV modules of different thin film, polycrys-

talline, and monocrystalline technologies, the overall errors against manufacturers data are improved by
a factor between 5.1% to 31% depending on the PV technology. It indicates that the proposed method
works well even for the PV modules dominated by the NOCT condition. The identified models for Ky-
ocera KC200GT and SHELL ST40 PV modules are also compared with the results provided by two recent
researches and show considerable improvements of respectively 20.8% and 46.3%. Moreover, by employing
IPM, the proposed method is up to 10 times faster than prior methods. The pseudocode of the proposed PV
model identification algorithm and a sample MATLAB script of the developed MPP estimation algorithm
are presented.
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Appendix A: The interior-point method

A nonlinear constrained optimization problem can be defined as follows:

minimize
z∈<n

F (z) (13a)

subject to: G(z) = 0 (13b)

H(z) ≥ 0. (13c)

where the vector of functionals G and H are the equality and inequality constraints of the problem, respec-
tively. The fundamental idea of the IPM is to modify this problem under consideration that all constraints
become equality constraints. There are two main approaches to achieve this aim, namely, the homotopy
method, and the barrier method. Here, a summary of the former approach has been provided and reader is
referred to [31] and [32] for further details.

According to the homotopy method all inequality constraints are converted to equality ones using a
vector of slack variables s so then Eq. (13) is transformed to Eq. (14) as follows:

minimize
z∈<n,s∈<ns

F (z) (14a)

subject to: G(z) = 0 (14b)

H(z)− S = 0. (14c)

where ns is the dimension of the slack variables equals to the number of inequality constraints and
S = diag(s). Now applying the KKT theorem a system of differential and algebraic equations are constructed
as the necessary conditions. The theorem states that for an optimal point z∗ of Eq. (14) there exist multipliers
λ∗ and µ∗ and the slack variables s∗ such that the system of equations:

∇zL (w∗, λ∗, µ∗) = 0 (15a)

Sµ− νe = 0 (15b)

G(z∗) = 0 (15c)

H(z∗)− S = 0 (15d)

s∗ ≥ 0. (15e)

holds where e = [1, 1, ..., 1]T , υ is an iteratively vanishing perturbation parameter ( lim
j−→∞

υj = 0) in order

to enforce the solution to stay away from the boundaries, and L is the Lagrangian function of (14) as
follows:
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L (z, λ, µ) = F (z)−G(z)Tλ−H(z)Tµ. (16)

Now the methods such as the linesearch or trust-region can be employed to solve Eq. (15) iteratively to
find the set of (z∗, λ∗, µ∗, s∗).

Appendix B: MATLAB scripts

Table 9 illustrate a summary of the MATLAB scripts for the proposed MPP estimation algorithm.

Table 9: MATLAB scripts of the proposed MPP estimation algorithm.

%The objective function and the constraints must be in sep-
arate files.

iph = iph STC;
a Tc = a STC;
i0 = i0 STC;

% The solve for the optimization problem
x0 = [voc STC * 0.8, isc STC * 0.7]; %initial guess
opt lb = [voc STC * 0.5, isc STC * 0.5]; %lower bounds
opt ub = [voc STC, isc STC]; %upper bounds
options = optimset(’Algorithm’,’interior-point’, ’TolFun’, ...

1e-18, ’Display’, ’off’);
[ x,fval ] = fmincon(@PVObj,x0,[],[],[],[],opt lb ...

opt ub,@(x)PVConstraints(x, var3, iph STC,...
i0 STC, var1, var2, a STC/var3),options);

[ c, ceq ] = confun(x);
vmpp = x(2); impp = x(1); pmpp = vmpp * impp;

% The objective function
function f = PVObj(x)

f = 1/(x(1) * x(2));
end

% The constraints function
function [ c, ceq ] = PVConstraints(x, nd, iph, i0, rs, rsh, vt)

% Nonlinear equality constraints
c = [];
% inequality constraints
ceq = [(x(1) - iph +...

i0 * (exp(( rs * x(1) + x(2)) / (nd * vt)) - 1) +...
((rs * x(1) + x(2)) / rsh)) ] ;

end
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