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Abstract

Due to substantial generation and demand fluctuations in stand-alone green micro-

grids, energy management strategies (EMSs) are becoming essential for the power

sharing purpose and regulating the microgrids voltage. The classical EMSs track

the maximum power points (MPPs) of wind and PV branches independently and

rely on batteries, as slack terminals, to absorb any possible excess energy. How-

ever, in order to protect batteries from being overcharged by realizing the constant

current-constant voltage (IU) charging regime as well as to consider the wind tur-

bine operational constraints, more flexible multivariable and non-linear strategies,

equipped with a power curtailment feature, are necessary to control microgrids.

This dissertation work comprises developing an EMS that dynamically optimises the

operation of stand-alone dc microgrids, consisting of wind, photovoltaic (PV), and

battery branches, and coordinately manage all energy flows in order to achieve four

control objectives: i) regulating dc bus voltage level of microgrids; ii) proportional

power sharing between generators as a local droop control realization; iii) charging

batteries as close to IU regime as possible; and iv) tracking MPPs of wind and PV

branches during their normal operations.

Non-linear model predictive control (NMPC) strategies are inherently multivariable

and handle constraints and delays. In this thesis, the above mentioned EMS is

developed as a NMPC strategy to extract the optimal control signals, which are duty

cycles of three DC-DC converters and pitch angle of a wind turbine.

Due to bimodal operation and discontinuous differential states of batteries, micro-

grids belong to the class of hybrid dynamical systems of non-Filippov type. This

dissertation work involves a mathematical approximation of stand-alone dc micro-

grids as complementarity systems (CSs) of Filippov type. The proposed model is

used to develop NMPC strategies and to simulate microgrids using Modelica.

As part of the modelling efforts, this dissertation work also proposes a novel algo-

rithm to identify an accurate equivalent electrical circuit of PV modules using both

standard test condition (STC) and nominal operating cell temperature (NOCT) infor-

mation provided by manufacturers. Moreover, two separate stochastic models are

presented for hourly wind speed and solar irradiance levels.
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Chapter 1

Introduction

This thesis deals with developing energy management strategies (EMSs) that dy-

namically optimise the operation of stand-alone dc microgrids, consisting of wind,

photovoltaic (PV), and battery branches, to coordinately manage energy flows and

regulate dc bus voltage level of microgrids. The proposed strategies are novel con-

strained and multivariable maximum power point trackers (MPPTS) that employ re-

newable energy systems as flexible generators which means that their generated

powers are optimally curtailed, if required, in proportion to their ratings.

The presented EMSs are developed using non-linear model predictive control (NMPC)

technique and dynamically extract the optimal control signals with respect to the

battery bank and wind turbine operations. In order to develop these NMPC-based

strategies, this dissertation work also involves the mathematical modelling of stand-

alone dc microgrids as a complementarity system (CS) of Filippov type which is

applicable to both the NMPC strategies, as well as for the long-term simulation pur-

pose.

As parts of the modelling efforts, a stochastic model is also presented to simulate

hourly wind speed and solar irradiance for locations across the UK. Furthermore,

a novel algorithm is proposed to identify an accurate equivalent electrical circuit for

PV modules.

The remainder of this chapter reviews the notion of sustainable microgrids and

briefly describes three wind, solar, and battery branches. A discussion on energy

management strategies is then provided which is followed by an overview of the
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Chapter 1. Introduction

NMPC technique to implement multivariable and non-linear optimal controllers for

the constrained problems. The chapter is closed with a review on research contri-

butions.

Chapter 2 provides mathematical modelling of stand-alone dc microgrids which is

shown to be of the class of hybrid dynamical systems due to connected battery

bank. The discontinuous differential states and bimodal operations are modeled

as separate complementarity constraints in order to approximate stand-alone dc

microgrids as systems of Filippov type.

Chapter 3 investigates stochastic models of renewable energy resources. In order to

design a reliable site and a robust controller for stand-alone sustainable microgrids,

uncertainties in renewable energy resources need to be modeled stochastically.

The goodness-of-fit of the proposed model has been evaluated using Kolmogorov-

Smirnov (K-S) test.

Chapter 4 addresses the problem of accurate model identification of the available

physical components across sustainable microgirds and in particular photovoltaic

(PV) modules. A novel PV model identification method is presented which is fast

and accurate regardless the underlying PV technologies.

Chapter 5 presents the developed SIMULINK and Modelica models to simulate oper-

ation of dc microgrids. SIMULINK/SimPowerSystems is used to model and simulate

the fast and very fast dynamics of dc microgrids. Modelica model, on the other hand,

covers slow dynamics of the system for NMPC applications and long-term simulation

purpose.

Chapter 6 proposes novel energy management strategies to address three control

issues of dc microgrids; i.e. voltage regulation, power sharing, and battery manage-

ment. The EMSs proposed in this work simultaneously control four variables: i) wind

turbine pitch angle; ii) angular velocity of wind generator; iii) operating voltage of PV

array; and iv) charging current of battery bank.

Several concluding remarks and future research directions are presented in Chapter

7.
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1.1. Stand-alone dc microgrids

1.1 Stand-alone dc microgrids

Microgrids are new key elements of modern power grids that improve the grids ca-

pability of hosting renewable energy and distributed storage systems [1]. In fact, in

the near future, distribution networks will consist of several interconnected micro-

grids that will locally generate, consume, and even store energy [1]. Microgrids may

operate as an extension of the main grid, i.e. the grid-connected mode, or as a

stand-alone network with no connection to the grid. Stand-alone sustainable micro-

grids have some distinct applications in avionic, automotive, or marine industries, as

well as in remote rural areas. In such stand-alone microgrids, intermittent solar and

wind energies coupling with battery storages contributes realistic sources to supply

variable load demands [2]. However, comparing to the grid-connected microgrids,

three well-known issues regarding voltage regulation, power sharing, and battery

management, are more severe in stand-alone microgrids leading to the necessity of

more sophisticated control strategies.

Although traditionally the utility grids have always been of ac type, there are sev-

eral reasons for employing dc microgrids for small-scale rural areas or commercial

facilities [1, 3–7]. While ac systems benefit from the ease of transmission, transfor-

mation, distribution, and protection [6], they suffer from the need of synchronization

of several generators [3]. On the other hand, dc microgrids are more efficient due

to the facts that dc generators and storages have taken higher portion of modern

grids capacity [1] and there is no need of ac-dc converters to connect them to dc

microgrids [7].

Figure 1.1 illustrates the topology of a stand-alone dc microgrid for small-scale ap-

plications. It consists of wind, solar, and battery branches which are connected to

a dc bus through dc-coupled structures, i.e. via dc-dc converters. The microgrid

supplies a variable linear dc load which is connected directly to the grid bus.

From Figure 1.1, it can be seen that the presented dc microgrid is controlled by four

manipulated variables, i.e. the wind turbine pitch angle and switching duty cycles

of three different dc-dc converters. While increasing the wind turbine pitch angle

promotes pitching to feather, the operating points of PMSG, PV, and battery bank

can be changed by varying dc-dc converters duty cycles.
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Chapter 1. Introduction

Figure 1.1: Topology of stand-alone green microgrids in this study

1.1.1 Wind turbines

Wind turbines (WTs) convert the kinetic energy of wind to mechanical power [8].

The performance of a WT can be characterized with three different curves, namely,

power, torque, and thrust coefficient curves [9]. These curves are normally plotted in

terms of tip speed ratio, which is defined as a weighted ratio of the rotational speed

to wind speed, for different values of pitch angle. Figure 1.2 illustrates the optimum

value of tip speed ratio at which the power coefficient, Cp, is maximized. According

to the Lanchaster-Betz theory, the upper bound of power coefficient, i.e. Cp,max, is

0.593 [9]. Modern wind turbines provide the maximum power coefficient of around

0.48 [9].

Regarding the rotational speed, a WT operation can be classified into either constant

speed or variable speed. The variable speed WT operation, which requires employ-

ing power converters, is more attractive, principally due to its ability to harvest the

maximum power at variable wind speeds [10]. In order to generate the maximum

power by a WT at variable wind speed, it is necessary to employ a maximum power

point tracking (MPPT) control strategy [11].
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1.1. Stand-alone dc microgrids

Figure 1.2: Power coefficient curves in terms of tip speed ratio for three different values of pitch angle.

1.1.2 Permanent magnet synchronous generators (PMSGs) and three-phase

rectifiers

A wind turbine can be connected to an electrical generator directly or through a

gear-box. The former case, which is called direct-drive, provides some advantages

in terms of high reliability and is more popular for small-scale wind turbines [12].

To deliver power in direct-drive topology, which operates at low rotational speed,

it requires employing multi-pole generators. In spite of high cost, PMSGs are the

most dominant type of direct-drive generators in the market [12], due to several

advantages such as higher efficiency.

In order to convert the three-phase output of a PMSG to dc voltage, it is essential

to deploy a three-phase rectifier. A general structure, which consists of a full-bridge

diode rectifier connected in series to a dc-dc converter, is common, due to lower cost

[11]. Figure 1.3 illustrates the electrical circuit of a full-bridge three-phase rectifier

where Iwt is the equivalent dc current of dc side. Due to the inductance Ls available

on ac side, there is non-instantaneous current commutation [13].

1.1.3 Boost, buck, and bi-directional dc-dc converters

dc-dc converters are normally implemented based on the switching-mode circuit

technology containing at least one energy storage and a transistor-based power-

pole [13]. However, in ideal cases, a single-pole double-throw switch can also be

used for simulation purpose [14]. Figure 1.4 illustrates the electrical circuit of boost,

buck, and bi-directional types of dc-dc converters. While a boost-type converter, as

given in Figure 1.4a, scales up its input voltage, a buck-type converter, as given in
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Figure 1.3: Electrical circuit of a full-bridge three-phase rectifier.

Figure 1.4b, provides lower voltage than the input voltage. Unlike the boost and buck

converters which dictate the instantaneous current flow to be unidirectional, Figure

1.4c shows a bi-directional converter. In such a converter a complementary control

signal allows the current to flow in either direction.

A state-space averaging approach to model a dc-dc converter is proposed in [15]. It

suggests two states, Il and Vc for the continuous conduction mode (CCM) in which

the instantaneous inductor current, Il, is always greater than zero. According to the

proposed approach, there is a set of two distinct state-space systems to model two

states of switch operation and the overall state-space model of the converter is a

weighted average of these two models. The weighting factor is the duration of time

that converter remains in each state.

While state-space averaging approach is simple to analyse and implement, it does

not model the hybrid nature of converters. One-level dc-dc converters given in Fig-

ure 1.4 work in two different modes of operation with respect to the value of discrete

state Sd [16]. Defining the same state vector as above, i.e. XT = [Il Vc]
T , dc-dc

converters can be modelled as hybrid systems. It presents an affine state space

model coupled with a linear output equation for each modes of operation [16].

1.1.4 Photovoltaic (PV) arrays

PVs are among the popular renewable energy components to harvest solar energy.

A PV cell, as the fundamental PV element, is a P-N junction that converts solar

irradiance to the electrical energy. Normally, manufacturers provide PV modules,

also known as PV panels, which consist of several PV cells connected together in

series. In order to construct a PV farm, at least one PV array, which is a combination
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(a)

(b)

(c)

Figure 1.4: Ideal electrical circuit of (a) boost-type; (b) buck-type; and (c) bi-directional dc-dc converters.
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of several PV modules in series and parallel arrangement, is used to provide the

required power at a specific voltage level.

A PV cell is a non-linear component that its operation is characterised by a set

of current-voltage curves at different insolation levels and junction temperatures.

Figure 1.5 shows a sample of such current-voltage (I − V ) curves indicating the

maximum power point (MPP). MPP varies due to changes in operating conditions,

i.e. insolation level and junction temperature, and requires being followed by a MPPT

algorithm.

Figure 1.5: A sample I − V curve of PV modules.

For further study on the PV technology, the reader is referred to Chapter 4.

1.1.5 Lead-acid batteries

There are different types of batteries applicable to the backup/storage purposes

across microgrids. Different battery technologies are comprehensively reviewed and

compared in [17, 18] for the renewable energy applications. They suggest that lead-

acid batteries have some advantages for hybrid renewable energy system (HRES)

applications. Lead-acid batteries are widely available in many sizes and are appro-

priate for small to large applications. Furthermore, the normalized cost of this type

of batteries is reasonable and it is mature in concepts, mathematical model and

technology. In fact, the performance characteristics of lead-acid batteries are well

understood and modelled.

Batteries operate in different modes. Figure 1.6a illustrates a complete operating
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1.2. Acausal versus causal modelling and simulation

cycle of a battery from charging to the exhaustion zone in which battery is completely

discharged [19]. In Figure 1.6a, it can be seen that the battery is a multi-mode

component introducing discontinuity to the system. An equivalent electrical circuit,

as Figure 1.6b, and a hybrid mathematical formulation of lead-acid batteries for two

charging and discharging modes of operation are proposed in [20].

Despite the power losses, it is argued in [21] that employing a dc-coupled structure

to connect a battery bank to the dc bus is more flexible in terms of implementing

different charging and discharging regimes.

(a)

(b)

Figure 1.6: (a) Different working zones and (b) equivalent electrical circuit of lead-acid batteries.

1.2 Acausal versus causal modelling and simulation

The complex systems, like stand-alone dc microgrids described in Chapter 2, nor-

mally includes different operating modes which are also limited with algebraic con-

straints. As a result, such systems can be modelled, according to the acausal mod-

elling approach, as a set of hybrid differential-algebraic equations (hybrid DAEs)
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[22]. Unlike the causal approach, which needs the system to be decomposed into

a chain of causal interacting blocks consisting of only ordinary differential equations

(ODEs), acausal modeling is a declarative approach where the system model is de-

scribed as hybrid DAEs [22]. Acausal modeling, as a mathematical representation

of the system, is an effective way to model and simulate complex systems and such

a model is also applicable to develop NMPC strategies. Modelica [23], as an object-

oriented and equation-based language to describe complex systems, provides the

capability to acausally model the class of hybrid dynamical systems [22].

1.2.1 Differential-algebraic equations (DAEs)

There are several engineering problems in which some algebraic states need to be

considered in order to model a system. These algebraic states are often added

by conservation laws, design constraints, or constitutive equations. For instance,

though the movement of a dangling pendulum of length L can be modelled in Carte-

sian system with a set of ODEs, there is still an algebraic constraints by the length

of pendulum which is x2 +y2 = L2. Therefore, a dangling pendulum is modelled with

a set of differential and algebraic equations (DAEs).

Differential-algebraic equations (DAEs) are a vector of functionals f in terms of both

differential and algebraic states, denoted respectively by vectors x and z. Such a

DAE system can be specified in the following semi-explicit non-linear form:

0 = f(x, ẋ, z,u; t), x(t0) = x0, (1.1a)

0 = p(x, z,u; t). (1.1b)

where u is a vector of the system inputs. It is important to note that the number

of equations must equal the sum of the differential and algebraic variables, i.e.

dim(f) = dim(x) + dim(z).

The structural properties of a system of DAEs can be described by a structure inci-

dence matrix with rows of equations and columns of unknowns in any orders [24].

The Sij element is set to be 1 if the ith equation contains the jth variable, else it is set

to zero. Analysis of the structure incidence matrix leads to calculating a measure of
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complexity for the system of DAEs, called as index. Generally speaking, the higher

value the DAE index is, the more complicated the numerical solution routine.

In order to analyse the structure incidence matrix S, it is multiplied by a left and right

permutation matrices P and Q, respectively:

Ŝ = P.S.Q. (1.2)

The resulting matrix Ŝ, which has the same properties as the original matrix S, can

be analysed as follows:

• If the resulting matrix Ŝ is a lower triangular matrix, the DAE index is zero which

means that the DAE system can be converted into ODE form and there are

neither algebraic loops nor structural singularities. In other words, there are

explicit equations to calculate available algebraic states in terms of available

differential states.

• If the resulting matrix Ŝ is a block lower triangular (BLT), the DAE index is one

and it means that the system contains algebraic loops, but no structural sin-

gularities. A square matrix is BLT matrix if it can be divided into a number of

building square matrices in which all blocks located upper the block diagonal

are zero. The number and size of these algebraic loops are also defined by

more deep analysis of the resulting BLT. In this case, algebraic loops must be

solved separately by Newton-based solvers.

• If the resulting matrix Ŝ is singular, the DAE index is 2 or higher and the DAE

system is called a higher index problem.

In order to solve DAE systems of higher index, one can reduce the index of the

system by differentiating constraints. As a matter of fact, the index of a DAE sys-

tem equals to the number of differentiation that lead to a full ODE system in which

the algebraic constraints can also be replaced by equivalent ODE constraints. For

instance, a dangling pendulum with length L can be modelled as the following Euler-

Lagrange equations in the Cartesian coordinates:
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ẋ = u, (1.3a)

ẏ = v, (1.3b)

u̇ = λx, (1.3c)

v̇ = λy − g, (1.3d)

x2 + y2 = L2. (1.3e)

where u and v are the momentum variables and λ, as a Lagrange multiplier, is the

algebraic state. Twice differentiating the algebraic constraint in (1.3e) and replac-

ing derivatives of the differential states and momentums with their equivalents, one

obtains the following equation:

L2λ− gy + u2 + v2 = 0. (1.4)

The derivative of this equation leads to the following ODE constraint:

L2λ̇− 3gv = 0. (1.5)

Therefore, Euler-Lagrange equations of a dangling pendulum in Cartesian coordi-

nates are a DAE of index-3. However, in order to solve the higher index problems,

the DAE system is differentiated index −1 times to be converted to a DAE of index-

1. There are effective algorithms to solve the resulting DAE system of index-1 with

algebraic loops [25].

1.2.2 Modelica modelling language

Although modelling and simulation of complex multidisciplinary systems is tradition-

ally very important in all engineering disciplines, the area is expanded to develop

more flexible models which are also applicable to model-based design methods or

model-based control strategies. Modelica is an object-oriented declarative mod-

elling language to model complex physical systems for different applications. The
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language is continuously developed since 1997 and the last version of the specifi-

cation, Modelica 3.3, was published in May 2012.

Modelica allows to declare the mathematical models of multidisciplinary complex

systems by a unified modelling language to be used for simulation purposes or opti-

mal control applications [26]. Modelica provides a way to model different systems by

a set of mathematical equations which allow acausal modelling of multidisciplinary

problems in the form of differential and algebraic equations, in a natural text-book

style. The connector, defined by Modelica to model acausal physical interfaces,

models a physical quantity by dedicated variables. The value and direction of these

variables are given by the topology of the component network being fundamentally

different from the causal models like Simulink ones [27].

Modelica models are not necessarily suitable for numerical algorithms or to be in-

tegrated. In order to use a developed Modelica model for simulation or optimisa-

tion purposes, it should be compiled to a form appropriate for numerical algorithms.

Modelica platforms, such as OpenModelica [28] or Jmodelica [27], translate any de-

veloped model into a flat non-linear hybrid DAEs of index-1 representation consisting

of variables and equations. Then, efficient programming codes, typically in C, are

generated which are suitable for numerical integration [27]. These platforms sup-

port built-in general purpose index reduction algorithms, consistent initiator, general

purpose DAE integrators, and probably a general purpose NLP. Therefore, Model-

ica models can be developed, compiled, and used for simulation or optimisation by

employing Modelica platforms like OpenModelica or JModelica.

Tables 1.1 and 1.2 illustrate two simplified examples of Modelica codes. Table 1.1

shows a Modelica class to model lead-acid batteries. The bimodal operations of a

lead-acid battery is modelled by a boolean variable, i.e. chargeState, which is true

whenever the battery is in charging mode and false otherwise. Moreover, the differ-

ential state Vexp is initialized, using the reinit function provided by Modelica, when

battery switches from discharging to charging mode of operation. The developed

Modelica classes for lead-acid battery and other components can be employed to

simulate a solar system consisting of a photovoltaic (PV) array connected to a load

through a boost converter, as well as two batteries connected directly to the load to

compensate the generation fluctuations. Table 1.2 summarizes a developed Model-
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Table 1.1: An example of the lead-acid battery Modelica class.

class LeadAcidBattery

...

equation

chargeState = if noEvent(ibat ≤ 0) then true else false;

der(charge) = 1/3600 ∗ ibat;

der(V exp) = if chargeState then P2/3600 ∗ abs(i) ∗ (P3− V exp) else −(P2 ∗ abs(i))/3600 ∗ V exp;

when change(chargeState) and pre(chargeState) then

tmp = if not chargeState then

pre(vbat)− V 0−R ∗ pre(ibat)− (P6 ∗ Cmax)/(Cmax− pre(charge)) ∗ pre(charge)−

(P6 ∗ Cmax)/(pre(charge) + 0.1 ∗ Cmax) ∗ pre(ibat)

else 0;

reinit(V exp, tmp);

end when;

soc = 1− charge/Cmax;

vbat = if chargeState then

V 0−R∗ibat−(P1∗Cmax)/(Cmax−charge)∗charge - (P1∗Cmax)/(charge+0.1∗Cmax)∗ibat+V exp

else V 0−R∗ibat−(P1∗Cmax)/(Cmax−charge)∗charge− (P1∗Cmax)/(Cmax−charge)∗ibat+V exp;

end LeadAcidBattery;

ica model for such a solar system. Since Modelica is an object oriented modelling

language, it is possible to create multiple instances from a developed class. In Table

1.2, it can be seen that there are two instances of the lead-acid battery Modelica

class that construct a battery bank by being connected together in series.

For further details on Modelica, the reader is referred to [26].

1.3 Hybrid dynamical systems

There are many dynamical systems that combine both continuous- and discrete-

time behaviours. Such systems fit into the class of hybrid dynamical systems or

simply hybrid systems. Generally speaking, hybrid systems are multi-modal systems

that switch between modes when a particular event occurs [29]. These can be

either state, time, or input originated events which are respectively generated by

threshold crossing of a certain differential or algebraic state of the system, by the

elapse of certain time period, or they may be generated externally. In each mode of

operation, continuous states of the system are described by a set of DAEs which is

changed by mode transitions. The mode transitions may also reset these states to
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Table 1.2: An example Modelica model using the developed lead-acid battery Modelica class.

model SolarSystem

Modelica.Blocks.Sources.Constant Sx(k = 300.0);

Modelica.Blocks.Sources.Constant Tx(k = 298.15);

Modelica.Electrical.Analog.Basic.Ground ground;

PVArray pvarray(Npvp = 10);

Modelica.Blocks.Sources.TimeTable DutyCycle(table = [...]);

Modelica.Blocks.Sources.Step ramp(startTime = 5, offset = 10, height = -6);

Modelica.Electrical.Analog.Basic.VariableResistor load;

BoostConverter converter(Rl = 0.001, Rc = 0.3, L = 0.0005, C = 0.005);

LeadAcidBattery battery1;

LeadAcidBattery battery2;

equation

connect(Tx.y,pvarray.Tx);

connect(Sx.y,pvarray.Sx);

connect(pvarray.n,ground.p);

connect(pvarray.p,converter.p1);

connect(converter.n1,ground.p);

connect(converter.n2,ground.p);

connect(DutyCycle.y,converter.D);

connect(converter.p2,load.p);

connect(ramp.y,load.R);

connect(load.n,ground.p);

connect(converter.p2,battery1.p);

connect(battery1.n,battery2.p);

connect(battery2.n,ground.p);

end SolarSystem;

new values. Such hybrid nature is naturally present in a variety of systems and is not

necessarily caused by human intervention. For instance, the voltages and currents

of an electrical circuit consisting of a switching device are changed continuously

during each state of the switch; however, they are also varied discontinuously due

to the switch operation.

A bouncing ball is another example of hybrid dynamical systems. Figure 1.7 shows a

ball threw from height of h0 = 1m with the initial velocity of V0 = 0 m/s. From Figure

1.7, it can be seen that the motion direction and velocity are inverted at impact

moment. In order to model such a hybrid system, such an impact is modelled with

a discrete-time state; however, height and velocity states are continuous between

each two successive impacts.
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Figure 1.7: A bouncing ball as a hybrid dynamical system.

A model of hybrid dynamical systems requires describing both continuous- and

discrete-time dynamics as well as regions in which these dynamics are applied to

[30]. It should also take into account the interconnection between the continuous

and discrete dynamics and mode transitions criteria. There are a number of ap-

proaches to model hybrid systems, including hybrid automata, differential inclusion,

mixed logical dynamical systems, complementarity systems, and piecewise affine

systems, to name a few. However, these different types of models can be, directly

or under some conditions, transformed into each other [31]. All required conditions

to establish such a transformation are related to well-posedness, i.e. the existence

and uniqueness of solution trajectories given an initial condition, and boundedness

of certain variables.

The hybrid automata approach can be used to model a large classes of hybrid dy-

namical systems. It explicitly partition states of a system into a continuous state

ζ, including differential and algebraic states of the system, and a discrete state q,

which describes different modes of operation. The discrete state q can only change

through a jump. For instance, in order to model a bouncing ball given in Figure 1.7,

a discrete state q must be defined that jumps from normal mode to impact mode

of operation during the period of impact time. Figure 1.8 represents an example of

a hybrid automaton with two modes of operation, q and q′. The evolved trajecto-

ries of the state ζ during modes q and q′, are respectively defined by ζ̇ = fq(q, ζ),

ζ ∈ Domain(q) and ζ̇ = fq′(q
′, ζ), ζ ∈ Domain(q′). If the value of the state ζ is mem-

ber of set Guard(q, q′), the system switches to mode q′ and meanwhile ζ changes to
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1.3. Hybrid dynamical systems

Figure 1.8: A simple example of an automaton.

a new value ζ+ ∈ Reset(q, q′, ζ). For further details on the hybrid automata approach,

the reader is referred to [30].

Although the hybrid autamata approach is very effective to model large classes of

hybrid dynamical systems, it usually generates a complicated model in terms of

analysis and controller design [29]. Indeed, for each of the above mentioned mod-

elling approaches there is always a trade-off between generality of the model and

complexity of the analysis. Among these approaches, differential inclusions, and

particularly of Filippov type, is a straight-forward and natural approach for develop-

ing models to be used for computer aided simulation. Complementarity systems,

on the other hand, is a preferable option to analyze and design controllers because

it covers vast applications while it is agile enough in terms of theoretical investiga-

tions [31]. Moreover, there are prior studies and developed tools available for this

approach. Due to these advantages, differential inclusions and complementarity

systems are used in this study to model standalone dc microgrids.

For further study on hybrid dynamical systems analysis and modelling, the reader is

referred to [29–31].

1.3.1 Complementarity systems (CSs)

CSs, as specific types of the class of hybrid dynamical systems, arise in several

engineering applications dealing with multi-modal systems. A CS is formulated as

the following general form which consists of orthogonal inequality (in (1.6c)) also

known as complementarity problem [31]:
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0 = F(x, ẋ,u, γ; t), (1.6a)

0 = G(x,u, γ,w; t), (1.6b)

C∗ 3 ω ⊥ Γ(γ) ∈ C, (1.6c)

x(t0) = x0. (1.6d)

where ⊥ is the complementarity operator indicating that at least one of the bounds

is active. Let C be a convex cone, then C∗ is the polar cone of C defined as C∗ ={
z|zTν ≤ 0,∀ν ∈ C

}
. The slack variable γ ∈ Rm and the signal ω ∈ Rm constitute a

pair of complementarity variables and Γ(.) is some function.

Particularly, if one considers the convex cone C as the interval [`, u] ∈ R+, then

the complementarity problem given by (1.6c) is transformed to the class of mixed

complementarity problems (MCPs) as follows:

0 = F(x, ẋ, u, γ; t), (1.7a)

` ≤ γ ≤ u ⊥ Γ(γ), (1.7b)

x(t0) = x0. (1.7c)

where the function Γ(.) is multiplied with a negative sign to be a member of C∗

which is −R+. The complementarity problem given by (1.7b) has been simplified by

considering the function G as ω − γ = 0.

Figure 1.9 illustrates solution of the MCP given in (1.7b). This solution is a vector γ

such that for each function Γi(.), i ∈ {1, ..,m} one of the following cases holds:


γi = `i for Γi(γ) ≥ 0,

`i ≤ γi ≤ ui for Γi(γ) = 0,

γi = ui for Γi(γ) ≤ 0.

(1.8)

As a result, the complementarity systems given by (1.7) has up to 2m different modes

of operation [31]. It is shown that the class of complementarity systems can be

transformed to other classes of hybrid dynamical systems including DIs and the

systems with equilibrium constraints [25, 31].
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1.3. Hybrid dynamical systems

Figure 1.9: Solution of mixed complementarity problemsMCP(γ,Γ).

1.3.2 Differential inclusions (DIs) of Filippov type

Discontinuous differential states, such as the cycle life variable of batteries, cause

the system to be of non-Filippov type [32] which is more challenging for modelling

and simulation. Apart from the cycle life, stand-alone dc microgrids can be modeled

as differential inclusions (DIs) of Filippov type.

Consider a system given by (1.9) where F is a non-empty, bounded, and closed

set of functions. This piecewise continuous class of differential equations, which

is known as differential inclusions [32], presents discontinuous right-hand sides. A

differential inclusion given by (1.9) is of Filippov type on an interval [a, b] if differential

states remain continuous on that interval.

ẋ ∈ F(x,u; t). (1.9)

(1.10) indicates a specific representation of the differential inclusions with two modes

of operation [25].

ẋ =


f−(x,u; t) for σ(x(t)) < 0,

ν(t)f−(x,u; t) + (1− ν(t))f+(x,u; t) for σ(x(t)) = 0,

f+(x,u; t) for σ(x(t)) > 0.

(1.10)

where x(t) and u(t) are the states and manipulated control signals, respectively. The

switching function σ(x(t)) determines transitions between two modes of operation

while a convex combination of two models is allowed at transition point with ν(t) ∈

[0, 1].
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1.4 Energy management strategies

During the past decade, a number of researchers conducted their activities towards

solving different energy management problems. An energy management strategy

specifies the control problem of optimally managing energy flows, with respect to

one or more constraint(s), to assure continuous supply of load demand in a power

system [2]. The constraints can be economical and technical limitations. The re-

sulting controllers can be assumed as outer controllers that continuously extract the

optimum set points which are then applied to some inner controllers such as a pitch

angle controller of a wind turbine. To the best knowledge of the author, prior power

engineering researches cover a wide range of energy management problems in two

main directions: i) grid-connected or stand-alone microgrids; and ii) hybrid or pure

electrical vehicles (HEV/EV). However, researches from different backgrounds use

different terminologies. In the field of HEV/EV the words energy management sys-

tem (or strategy) (EMS), power control strategy, and power management system are

more common (e.g. [33–36]). On the other hand, researchers in the field of power

grids use the words dispatch strategy, energy management system (or strategy),

and power management strategy (e.g. [37–39]). The term supervisory control is

also common to refer outer level control laws like energy management strategies.

In this research the term energy management strategy has been chosen to indicate

the employed control law.

An energy management problem consists of a number of sub-problems, including

battery management, load and energy resources prediction, system and constraints

modelling, fast system simulation as well as appropriate control technologies, to

name a few.

There are a number of prior researches focused on modelling uncertainty of re-

newable energy resources. These models are mostly based on stochastic analysis

leading to probability distribution functions (PDFs) of hourly solar irradiance [40–43]

and wind speed [44, 45]. These models are essential to simulate energy resources

and are applicable to design a reliable renewable site. Moreover, predictions of the

available energy resources for some time ahead is vital for probable employing of

predictive controllers to manage the energy production and consumption.
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1.5. Non-linear model predictive control

Several researchers conducted their research to model different involved compo-

nents (e.g. [46–51]) to understand dynamical behaviours of a system. Mathematical

models of the system make it possible to accurately simulate its behaviour, and

also to employ advanced model-based controllers to implement more sophisticated

EMSs.

Batteries are one of the most uneconomic components in both microgrids and EVs,

principally due to their high cost of replacement which is highly dependent on the

charging and discharging methods. Therefore, it is essential to implement a proper

battery management strategy as part of any EMS. The researches in [52, 53] have

introduced implementations of different battery management strategies as stand-

alone systems. Moreover, the works in [21, 35, 54–56] have provided battery man-

agement strategies as a part of the developed EMSs.

A number of prior works presented different control techniques to implement EMSs.

Some of these strategies are developed by employing conventional control tech-

niques (e.g [21, 37, 50, 57, 58]). Optimal control techniques have become popular

recently to solve energy management problems (e.g. [38, 56, 59, 60]), mainly due

to handling constraints and the recent advances in relevant numerical solvers.

Through this study, it is shown that the energy management problem of a stand-

alone sustainable microgrid can be formulated as an optimal control problem which

can be solved by employing non-linear model predictive control (NMPC) technique.

Figure 1.10 summarizes the presented optimal EMS in this study from energy, con-

trol theories, and involved mathematical concepts perspectives. All applied control

theories and involved mathematical concepts are described throughout the next sec-

tions.

1.5 Non-linear model predictive control

1.5.1 Open-loop optimal control problems

Optimal control problems (OCPs) make explicit use of the system model in order to

find an optimal control law u∗(.) subject to system dynamics and a set of equality and

inequality constraints. The term optimal here is defined with respect to certain crite-

ria implying the control objectives. These criteria are specified with a cost functional
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Figure 1.10: An outline of the presented EMS from different perspectives.

J , consisting of Lagrangian term L, also known as the stage cost, that penalizes a

distance to the time varying reference trajectory during the prediction period.

It is important to note that an OCP is different from a normal static non-linear opti-

misation problem in terms of existent dynamics (ordinary or partial differential equa-

tions) among its constraints. It makes OCPs member of the class of dynamic opti-

misation problems. Briefly, it means that the optimum solution of a problem at each

sampling instant should optimise trajectories of the system for the infinite future hori-

zon instead of only that specific moment [61].

The structure of a infinite horizon problem, OCP∞, with a cost function J subject

to a given non-linear continuous system F [62], is given in (1.11), where X , Z,and

U denote feasible differential and algebraic states, as well as feasible inputs. From

(1.11), it can be seen that there could be initial (in (1.11e)) and final (in (1.11d))

constraints to be maintained by the optimal solution. Moreover, (1.11g) represents

boxing constraints on states and control variables.
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1.5. Non-linear model predictive control

u∗(.) = arg minimize
u(.)∈U∞

J∞(x, z,u; t) :=

∞∫
t

L(x(τ), z(τ),u(τ))dτ

subject to:

F(x(t), ẋ(τ), z(τ),u(τ), v(τ)) = 0

G(x(τ), z(τ),u(τ)) ≤ 0

R(x(∞), z(∞)) = 0

x(t) = x0, z(t) = z0

∀τ ∈ [t, t+∞]

x(τ) ∈ X , z(τ) ∈ Z,u(τ) ∈ U .

(1.11a)

(1.11b)

(1.11c)

(1.11d)

(1.11e)

(1.11f)

(1.11g)

By definition, the minimum value of the cost function with an initial value X(t) =

X0 and infinite optimisation horizon is called the optimal value function defined as

follows:

V∞(t, X0) = J∞(x∗(.), z∗(.),u∗(.); t, X0) :=

minimize
u(.)∈U∞

J∞(x, z,u; t, X0).
(1.12)

It is shown that applying an infinite horizon optimal feedback law to the system, the

resulting closed-loop system is asymptotically stabilized which can be evaluated with

the infinite horizon optimal value function, given in (1.12), as Lyapunov function for

the closed loop system [62]. This fact can be analyzed using Bellman’s principle of

optimality stating that the optimal solution ofOCP∞, given in (1.11), at a specific time

instance is part of the optimal solution of such OCP∞ at the previous time instant.

It also stems from Bellman’s principle that in nominal cases, with no disturbances

available, feasibility at one time instant leads to feasibility and optimality at the next

one. It means that if an OCP has a solution at t = 0, it will have a feasible solution at

t > 0 that decreases the value function in (1.12). Choosing (1.12) as the Lyapunov

function, its continuity and monotonically decreasing properties at origin establish

an asymptotic stability of the closed-loop system.
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1.5.2 Non-linear model predictive control

Although one can show the well posedness and stability of the involved OCP∞ when

the infinite horizon optimal control sequence, u∗(.), exists at the time instance t = 0,

it is not practical, either analytically or numerically, to solve OCP∞ [62]. In order to

be able to numerically solve a non-linear open-loop optimal control problem, it must

be formulated as a finite horizon approximation. However, such a finite prediction

horizon T , even when there is no disturbances, causes two major issues [63]: First,

the shorter finite horizon, the more deviation there would be between the optimal

open-loop solution of the finite horizon prediction and real closed-loop trajectories.

It is shown that they converge together if the finite horizon approximation problem

is solved consecutively with the same cost function over a receding optimisation

horizon. Second, there is no guarantee that the optimal solution of the finite horizon

approximation stabilizes a closed-loop system. In order to make the resulting closed-

loop system stable, the stage cost requires being modified by adding a penalty terms

to it, as given in (1.13a), and adding equality or inequality constraints on feasible

states, as in (1.13b):

JT (x, z,u; t) :=

t+T∫
t

L(x(τ), z(τ),u(τ))dτ +M(x(t+ T ), z(t+ T )),

X(t+ T ) ∈ Ω ⊆ X .

(1.13a)

(1.13b)

While the terminal penalty term M indicates the cost of state deviations from the

desired final values, the term Ω shows terminal region constraint. Both freely chosen

M and Ω are determined suitably in an off-line manner in order to guarantee the

stability of the closed-loop system. They can be such that the new cost function in

(1.13a) gives an upper approximation of the original infinite horizon cost functional

in (1.11a) [63]. In order to find the upper approximation of the infinite horizon cost

functional, it can be split into two segments:

minimize
u(.)∈U∞

J∞(x, z,u; t, X0) =

minimize
u(.)∈U∞

( t+T∫
t

L(x(τ), z(τ),u(τ))dτ +

∞∫
t+T

L(x(τ), z(τ),u(τ))dτ
)
.

(1.14)

24



1.5. Non-linear model predictive control

Although it is not possible to find an upper approximation for general non-linear

systems, if there is a terminal region around origin within which trajectories of the

closed-loop system remain for a time interval of [t + T,∞], then it is possible to find

an upper bound on the second term. This upper approximation of the second term

can then be used as the terminal penalty given by termM.

It is important to note that though adding terminal penalty cost is very effective to ob-

tain stability and feasibility of NMPC problems, it is not a necessary condition. There

are new advances to stabilize NMPC problems without adding terminal constraints

to the original problem (e.g. see [62, 64]).

NMPC, also known as non-linear receding horizon control (RHC), repeatedly solves

on-line a finite horizon version of an OCP in order to obtain the optimum control

signals at each sampling instant [65]. NMPCs are digital control strategies which

are based on discrete finite-horizon OCPs. (1.15) shows the finite horizon discrete

version of the OCP given in (1.11). The period of time T in (1.13) is divided into N

equal or non-equal length samples with the duration of h = T
N

in which the control

variables are assumed to be constant [62].

u∗(.) = arg minimize
u(.)∈UN

JN(x, z,u;n) :=

n+N−1∑
k=n

L(x(k), z(k),u(k)) +M(x(n+N), z(n+N)),

subject to:

F(x(k), x(k + 1), z(k),u(k), v(k)) = 0,

G(x(k), z(k),u(k)) ≤ 0,

R(x(n+N), z(n+N)) = 0,

x(n) = x0, z(n) = z0,

k ∈ [n, n+N − 1],

x(k) ∈ X , z(k) ∈ Z,u(k) ∈ U , .

(1.15a)

(1.15b)

(1.15c)

(1.15d)

(1.15e)

(1.15f)

(1.15g)

Figure 1.11a illustrates a general block diagram of a plant which is controlled by a

NMPC. In Figure 1.11a, it can be seen that a NMPC strategy consists of a dynamic
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(a)

(b)

Figure 1.11: General (a) block diagram (courtesy of [63]) and (b) operation of the NMPC.

optimizer, a cost function, as well as a number of constraints. It also relies on, as

part of the relevant OCP, a model of the plant to predict its behaviour. The current

values of the plant internal states, x̂, need to be measured or estimated at k and

applied to NMPC as their initial values.

Figure 1.11b shows that, at any sampling instant k, controller calculates the optimum

input trajectory u∗(.) for a finite prediction horizon T = N×h where h is the sampling

length. The optimum input trajectory is calculated such that a cost function, e.g. the

required time for the closed-loop states to reach desired set-points or the maximum

level of overshoots, is minimized. Due to both model and real plant mismatch, as

well as measurement disturbances, the predicted and real system behaviours are

different and therefore it needs to employ a feed-back mechanism. Controller uses

current plant measurements as initial values at k, constructs an OCP and solves it to

obtain the optimum open-loop manipulated control signals u∗(.). The first p, where p
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usually equals to 1, obtained control signals are then applied to the plant such that

the next measurement becomes available at (k+p)h [63]. Using new measurements

at (k+ p)h, controller repeats the procedure with the prediction and control horizons

moving forward in order to find a new control law for the next step.

It is important to note that in Figure 1.11b, it can be seen that manipulated closed-

loop control signals are discretized as piecewise constant values during the sam-

pling length h.

Unlike conventional causal controllers which use previously computed control laws,

NMPC is an acausal technique that computes current control law based on the next

N-step ahead predictions of the plant behaviour. Comparing with conventional meth-

ods, NMPC, as a non-linear control strategy, presents several advantages.

Due to the existent constraints like actuators limitations, safety limits, and pressure

or velocity paths to name but a few, steady-state operation of the plant is normally

very close to boundaries of the set of feasible states [65] which is not easy to main-

tain with conventional control methods; however, NMPC is an inherently non-linear

and multivariable strategy that handles constraints and delays [66, 67]. Recently,

NMPC became an attractive approach for the control of constrained non-linear pro-

cesses because of better understanding of its stability and robustness properties

and new developed algorithms for dynamic optimisation [66, 68]. Although NMPC is

very effective for modern control problems, it suffers from the performance challenge

and particularly the computational delay of on-line optimisation which must be quick

relative to the plant dynamics in order to achieve desired stability and performance

characteristics [66, 68]. Furthermore, there are still several rich research areas rele-

vant to stability, feasibility, and robustness analysis, as well as relevant to appropriate

solvers of NMPC strategies for the systems with uncertainties (e.g. [69]) which are

the class of stochastic dynamic programming problems. Economic NMPC scheme,

which aims at finding optimal non-steady-state points that satisfy all constraints ex-

cept steady-state ones with a less cost comparing with steady-state points, is also

new interesting research area relevant to NMPC (e.g. [70, 71]. Moreover, there

are both analytical and numerical challenging problems need to be addressed with

regard to applying NMPC strategies for hybrid dynamical systems (e.g. [29]).
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1.6 NMPC numerical solvers

In spite of linear model predictive control schemes which lead to solve convex quadratic

programming problems with linear constraints, NMPC schemes involve non-linear

dynamic programming problems. While there are very effective methods for solving

convex problems [72], solving non-linear optimisation problems, in general, are com-

putationally expensive and need to carefully define the optimisation problems and

also employ advanced techniques to be able to achieve real-time feasible solutions.

There are three different approaches to solve the NMPCs given by (1.15) [62, 63]:

i) dynamic programming method based on Bellman’s optimality principle; ii) indi-

rect method based on Pontryagin minimum principle; and finally iii) direct methods,

which are used in this study, that convert OCPs into non-linear optimisation prob-

lems (NLPs) and use a NLP solver to solve them.

1.6.1 Dynamic programming (DP)

This approach is based on Bellman’s principle of optimality which describes a prop-

erty of the optimal solution of an OCP with horizon N , OCPN . Figure 1.12 sum-

marizes the Bellman’s principle of optimality. From Figure 1.12, it can be seen that

regardless of the initial state x0 ∈ {x00, .., x
j
0} and the first sample of the optimal deci-

sion u∗(0) ∈ {u∗00 , .., u
∗j
0 }, the remaining optimal decision samples u∗(1 ≤ i ≤ N − 1)

construct an optimum solution for the remaining OCPN−1 with x∗(1), where x∗(1) is

the state value resulting from the first decision u∗(0), as the initial state. In general,

it means that in order to solve a discrete OCPN given by (1.15), one needs to recur-

sively solve OCPi,∀i ∈ {1, ..,m < N} sub-problems and then combine the solutions

to reach an overall solution.

Figure 1.12: A graphical description of Bellman’s principle of optimality.
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1.6. NMPC numerical solvers

DP is the corresponding discrete-time version, given by (1.16), of the original continuous-

time Hamilton-Jacobi-Bellamn (HJB) equation. (1.16) shows Bellman’s equation

which can be used to iteratively calculate optimal value function from an initial value

V0 with regard to Lagrangian function L and having the system dynamics x(k + 1) =

f(x,u; k) [73].

VK+1(x; k) = minimize
u(.)∈U1

{
VK(f(x,u; k)) + L(x,u; k)

}
. (1.16)

where k ∈ [0, N − 1] and K ∈ [1, N ].

HJB is a partial differential equation that its solution is the optimal value function

of an OCP. Therefore, rather than seeking for the optimal control sequence u∗(.),

the problem is approached as finding an optimal value function, given in (1.12), for

all initial values which then can be used to calculate corresponding optimal control

sequence [73].

Although DP provides a necessary and sufficient condition for optimality leading to

find a global optimal solution, a phenomenon named curse of dimensionality de-

grades its performance and restricts its application [73]. The curse of dimensionality

states that required computational efforts to solve an OCP by DP grows exponen-

tially with dimension of the states of the system [62] and therefore practically DP is

applied to solve small-size problems.

1.6.2 Indirect method

Indirect method employs Pontryagin minimum principle (PMP) as a necessary con-

dition for optimality [61]. PMP states that if there exists an optimal solution for the

original OCP, given by (1.15), it must also minimize a Hamiltonian function H. The

discrete-time Hamiltonian function for an OCP without inequality constraints, i.e.

G(x, z, u; t) = ∅ in (1.15), is defined as follows:

H(x, z,u, λk+1, νk+1; k) := L(x, z,u; k) + λTk+1f(x, z,u; k). (1.17)

where k ∈ [0, N − 1], f is the explicit form of the system model F and λ is a vector
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of Lagrange multipliers that represent the marginal cost of violating equality and

inequality constraints.

PMP, as a general case of Euler-Lagrange equation, introduces necessary condi-

tions for the sequence of u∗(.) to be optimal control signals. These conditions are

summarized as follows for an OCP without inequality constraints, i.e. G(x, z,u; t) = ∅

[61]:

H(x∗,u∗, λ∗k+1; k) ≤ H(x∗,u, λ∗k+1; k)

x∗(k + 1) =
∂H
∂λk+1

(x∗,u∗, λ∗k+1; k)

λ∗k =
∂H
∂x

(x∗,u∗, λ∗k+1; k)

λN =
∂M
∂x(N)

(x∗,u∗;N)

x(0) = x0

∀u(k) ∈ U , k ∈ [0, N − 1]

(1.18a)

(1.18b)

(1.18c)

(1.18d)

(1.18e)

(1.18f)

(1.18a) shows that u∗(.) must minimize Hamiltonian function. In order to minimize

Hamiltonian, it is necessary that:

∂H
∂u(k)

(x∗,u∗, λ∗k+1; k) = 0. (1.19)

The solution of (1.19) is a parametric local optimum, u∗(k) = µ(x∗, λ∗k+1; k) of PMP

and the original OCP in terms of λ∗ and x∗. Applying this parametric local optimum

to the remaining conditions of PMP, one has a set of differential equations with two

boundary constraints. Then this set of differential equations is solved, by using e.g.

a shooting method, to extract the optimum values of x∗(.), as optimal trajectories of

the original OCP, and λ∗(.). It is important to note that if the following condition is

satisfied, it provides sufficient condition to guarantee that u∗(.) is the local optimum

solution of PMP and so the original OCP:

∂2H
∂2u(k)

(x∗,u∗, λ∗k+1; k) � 0. (1.20)

Comparing with DP method and Bellman’s optimality principle, PMP is less com-
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putational expensive. DP, as a numerical representation of HJB equation, needs a

similar computation burden as solving HJB PDEs, while PMP only solves non-linear

second-order differential equations [74]. DP computation load increases exponen-

tially in terms of the states dimension comparing to the linear increase of PMP’s.

However, as mentioned before, the optimal trajectory derived from PMP is not nec-

essarily the global optimum solution and it reduces the computational time to get an

optimal solution which could be a local one [74].

1.6.3 Direct methods

Both the necessary and sufficient optimality conditions introduced by DP, as well

as the necessary optimality conditions introduced by PMP are increasingly harder

to apply to large systems consisting of equality and inequality constraints. For this

reason, in order to facilitate the treatment of inequality constraints and singular arcs,

NMPC strategies rely on analytic solutions of the state and adjoint equations [25].

Hence, efficient numerical methods are required to apply NMPC strategies to larger

systems.

The indirect approach and the resulting PMP necessary conditions can be formu-

lated as a set of DAEs with boundary conditions. The resulting boundary value

problem (BVP) can be addressed with different optimise then discretise (O-D) ap-

proaches. The O-D based algorithms discretise Euler-Lagrange equations and solve

the resulting discretised equation numerically to find the optimal solution.

Due to difficulties associated with solving BVPs and handling inequality constraints,

a new discretise and optimise (D-O) approach has been developed. The main as-

pect of D-O based methods is that the control signals and probably the states are

all discretised and the resulting static optimisation problem is then solved using NLP

solvers to find optimal solutions. Although this approach requires an accurate level

of discretisation for states and control signals, it benefits from direct finding of opti-

mal solution.

There are two groups of strategies employing D-O approach: sequential and simul-

taneous strategies. Figure 1.13 summarizes a type of the sequential strategy called

single shooting. In Figure 1.13, it can be seen that at the inner level the DAE con-

straints are integrated separately with respect to initial values and control signals
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Figure 1.13: An outline of the sequential dynamic optimisation approach [Courtesy of [25]].

given by NLP solver. Calculated state trajectories are used to calculate gradients

of the objective and constraints functionals with respect to control variables. Hav-

ing the gradient values, NLP solver updates control signals and apply them to DAE

solver in order to iteratively converge to the optimal solution. In sequential methods,

only control variables are discretised as piecewise polynomials and optimisation is

performed with respect to the polynomial coefficients. The single shooting strategy

is relatively easy to implement which is due to available efficient codes for DAE and

NLP solvers. However, it repeats numerical integration of DAE models that degrades

its performance. Moreover, it does not guarantee to handle open loop unstable sys-

tems [25].

In order to increase the performance of the sequential shooting strategy and also

make it usable for unstable systems, single shooting algorithm was modified to a

new multiple shooting method [25, 75]. In multiple shooting method, the time do-

main in sliced into smaller elements and DAE model of the system is integrated

separately over each time element. These multiple integrations can be performed in

parallel to improve performance of the control strategy. In order to link these time el-

ements to keep the states continuous over time, a number of equality constraints, as

initial values of states at each time element, are also added to NLP. These equality

constraints ensure a converged solution for unstable systems.

Simultaneous dynamic optimisation strategy, also known as direct method, fully dis-

cretises both control variables as well as states. This discretization is performed by

using collocation on finite elements. Therefore, the existent differential equations

of OCP are vanished and the resulting set of algebraic equations and constraints
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construct a large non-linear program that can be solved with NLP solvers. Direct

method is fully simultaneous and it means that it does not require any inner DAE

solver and sensitivity calculator. Moreover, any involved NLP solver benefits from

sparsity of the resulting Karush-Kuhn-Tucker (KKT) system leading to improve its

performances [25].

In this thesis, direct method is employed to find optimal solutions of developed

NMPC strategies. It is chiefly because stand-alone dc microgrids are inherently

of the class of hybrid dynamical systems that are difficult to be solved with sequen-

tial methods. The next section of this chapter provides a detailed explanation of

simultaneous method.

1.6.4 Simultaneous (Collocation) method

Simultaneous method discretises both control variables and states with piecewise

polynomial representations are finite elements in time. As a result, dynamic opti-

misation problems are transformed to non-linear programs which can be solved by

NLP solvers with no need of DAE integrators.

In order to develop the collocation method, without loss of generality, the following

ODE is considered:

ẋ(t) = f(x; t). (1.21)

According to the collocation method, the ODE given in (1.21) is solved at selected

points in time. Although there are a number of polynomial representation, Lagrange

interpolation polynomials of degree K is used to approximate state variable x(t) over

a single finite element mainly because the polynomial coefficients have the same

variable bounds as states profile themselves. Lagrange interpolation polynomials

of each time element i is a polynomial of degree K which is constructed by K + 1

chosen interpolation points. These interpolation points are chosen for the following

time grids:

tik = ti−1 + hiτk,

τk ∈ [0, 1], tik ∈ [ti−1, ti].

(1.22a)

(1.22b)
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where τ0 = 0 and hi is the length of element i.

Figure 1.14 illustrates a degree K = 3 polynomial approximation of the ODE given

by (1.21) across an element i of time. Lagrange interpolation polynomials of degree

K of each time element i is constructed by K + 1 chosen interpolation points as

follows:

Figure 1.14: The states polynomial approximation across a finite element [Courtesy of [25]].

xK(tik) =
K∑
j=0

`j(τ)xij, j ∈ {0, 1, ..., K − 1}. (1.23a)

where xK(tij) = zij, tij = ti−1 + hiτj and:

`j(τ) =
K∏

k=0,6=j

τ − τk
τj − τk

. (1.24)

Replacing the approximated polynomial into (1.21), the resulting equations at inter-

polation points τk leads to the following collocation equation for each time element i

[25]:

ẋK(tik) =
d

dt

K∑
j=0

`j(τk)xij,

=
1

hi

K∑
j=0

d`j
dτ

(τk)xij,

≈ f(x; t),

∴
K∑
j=0

˙̀
j(τk)xij ≈ hif(xik; tik), k = 1, ..., K. (1.25a)
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The collocation equation in (1.25) would be a set of algebraic equations if interpo-

lation points τk are determined and therefore the resulting algebraic equations can

be directly applied into a NLP formulation. With such a representation of differen-

tial state variables, control signals and algebraic states can also be discretised by

Lagrange interpolation as follows [25]:

u(t) =
K∑
j=1

`j(τ)uij, z(t) =
K∑
j=1

`j(τ)zij. (1.26)

where:

`j(τ) =
K∏

k=1,6=j

τ − τk
τj − τk

. (1.27)

The collocation equation given in (1.25) can be extended for DAEs (of index 1) as

follows:

K∑
j=0

˙̀
j(τk)xij − hif(xik, zik, uik; tik) = 0, i = 1, ..,M, k = 1, ..., K,

P (xik, zik, uik; tik) = 0, i = 1, ..,M, k = 1, ..., K.

(1.28a)

(1.28b)

Hence, in order to convert an OCP into a non-linear program, interpolation points

must be determined such that they provide the most accurate approximation of state

variables x and z.

It is proved that the best chosen values for interpolation points τk are the roots of a

Kth degree orthogonal polynomial, PK(τ) [25] such that:

∫ 1

0

Pj(τ)Pj′(τ)dτ = 0, ∀j 6= j′, j = 0, ..., K − 1, j′ = 1, ..., K. (1.29)

Shifted Gauss-Legendre and Radau polynomials are among those with the orthog-

onality property. Table 1.3 provides shifted Gauss-Legendre and Radau roots as

collocation points for different degrees K.

For M time elements, (1.30) is required being added to a set of collocation algebraic
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equations given in (1.25) in order to enforce continuity of state variable x across

different elements boundaries.

xi+1,0 =
K∑
j=0

`j(1)xij, i = 1, ...,M − 1

xN =
K∑
j=0

`j(1)xNj, x1,0 = x0.

(1.30a)

(1.30b)

Having the collocation discretization of differential and algebraic equations given in

(1.25) and (1.28), the relevant NLP formulation corresponding to discretized version

of the original OCPN , given in (1.15), can be constructed as follows:

u∗nk = arg minimize
unk∈UN+K

JN(x, z,u;n) :=

n+N−1∑
i=n

K∑
j=0

L(xij, zij,uij) +M(x(n+N), z(n+N))

subject to:
K∑
j=0

˙̀
j(τk)xij − hif(xik, zik, uik; tik) = 0,

P (xik, zik, uik; tik) = 0,

G(xij, zij,uij) ≤ 0,

xi+1,0 =
K∑
j=0

`j(1)xij,

xn+N =
K∑
j=0

`j(1)x(n+N)j, x1,0 = x(t0),

R(x(n+N), z(n+N)) = 0,

i ∈ {n+ 1, ..., n−N + 1}, k ∈ {1, ..., N ×K}

xij ∈ X , zij ∈ Z,uij ∈ U .

(1.31a)

(1.31b)

(1.31c)

(1.31d)

(1.31e)

(1.31f)

(1.31g)

(1.31h)

(1.31i)

In order to find optimal solutions of the original OCPN , the resulting NLP formulation

in (1.31) can be solved by large-scale NLP solvers.
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Table 1.3: Shifted Gauss-Legendre and Radau roots as collocation points.

Degree K Legendre Roots Radau Roots

1 0.500000 1.000000

2 0.211325 0.333333

0.788675 1.000000

3 0.112702 0.155051

0.500000 0.644949

0.887298 1.000000

4 0.069432 0.088588

0.330009 0.409467

0.669991 0.787659

0.930568 1.000000

5 0.046910 0.057104

0.230765 0.276843

0.500000 0.583590

0.769235 0.860240

0.953090 1.000000

1.6.5 Non-linear programming (NLP)

Applying direct methods such as simultaneous collocation approach to solve NMPC

problems, converts the original problems to large-scale NLP problems with both

equality and inequality constraints [68] as follows:

minimize
z∈<n

F (z) (1.32a)

subject to: P (z) = 0 (1.32b)

G(z) ≥ 0. (1.32c)

where the vector of functionals P and G are the equality and inequality constraints

of the problem, respectively.

In order to solve the resulting large-scale NLP problems with both equality and in-

equality constraints, there are at least three approaches [25]: sequential quadratic

programming (SQP)-type methods, interior-point methods, and nested projection

methods. There are some prior researches that compared these different methods

for NMPC applications (e.g. see [76]). During the past decade an open-source
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version of the interior-point method, called IPOPT, has been developed to solve

large-scale NLPs [68]. IPOPT employs a logarithmic barrier method to construct a

relaxed version of the original NLP. IPOPT is the chosen NLP solver in this study,

chiefly because of its excellent convergence properties and superior performance

for the dynamic optimisation problems [68]. Furthermore, IPOPT is available as an

open-source packages. A summary of the interior-point method and particularly log-

arithmic barrier method is provided and for further details, the reader is referred to

[72] and [25].

Interior-point method (IPM)

The Interior-point method (IPM), comparing with the active set based strategies like

sequential quadratic programming (SQP), is largely insensitive to the number of

active constraints [76]. Moreover, since it iteratively solves a sparse linear system, it

exploits the sparsity structure of the original NMPC problem [76]. The fundamental

idea of IPM is to modify the NLP problem given in Eq. (1.32) under consideration

that all constraints become equality constraints. There are two main approaches to

achieve this aim, namely, homotopy, and barrier approaches. Here, a summary of

both approaches has been provided and the reader is referred to [72] and [25] for

further details.

According to the homotopy approach all inequality constraints are converted to

equality ones using a vector of slack variables s so then (1.32) is transformed to

(1.33) as follows:

minimize
z∈<n,s∈<ns

F (z) (1.33a)

subject to: P (z) = 0 (1.33b)

G(z)− S = 0. (1.33c)

where ns denotes dimension of slack variables equals to the number of inequality

constraints and S = diag(s). Now applying Karush-Kuhn-Tucker (KKT) theorem

a system of differential and algebraic equations are constructed as a necessary

conditions. KKT theorem states that for an optimal point z∗ of (1.33) there exist
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multipliers λ∗ and ν∗ and slack variables s∗ such that a system of equations:

∇zL (z∗, λ∗, ν∗) = 0 (1.34a)

Sν − νe = 0 (1.34b)

P (z∗) = 0 (1.34c)

G(z∗)− S = 0 (1.34d)

s∗ ≥ 0. (1.34e)

holds where e = [1, 1, ..., 1]T and υ is an iteratively vanishing perturbation parameter,

i.e. lim
j−→∞

υj = 0, in order to enforce the solution to stay away from boundaries, and

L is Lagrangian function of (1.33) as follows:

L (z, λ, ν) = F (z)− P (z)Tλ−G(z)Tν. (1.35)

Different methods such as linesearch or trust-region can be employed to solve the

resulting (1.34) iteratively to find the set of (zj+1, λj+1, νj+1, sj+1) with an initial values

(zj, λj, νj, sj).

On the other hand, according to barrier approach, one uses a log-barrier function

and adds it as a penalty to the cost function F to construct a relaxed problem with

barrier parameters {µl} as follows:

minimize
z∈<n,s∈<ns

F (z)− µl
nG∑
i=1

ln(G(z)) (1.36a)

subject to: P (z) = 0 (1.36b)

G(z) > 0. (1.36c)

where nx represents number of inequality constraints G and integer l is a sequence

counter such that lim
j−→∞

µl = 0. It is important to note that since the log-barrier term

becomes unbounded at G(z) = 0, the inequality constraints G(z) is strictly posi-

tive. As the barrier parameters {µl} decreases to zero, the solution of the relaxed

problem in (1.36) converges to a local solution of the original NLP problem given in

39



Chapter 1. Introduction

(1.32). Hence, in order to solve the original NLP, a sequence of barrier problems

is constructed with monotonically decreasing sequence of barrier parameters {µl}

that converges to the solution of the original NLP. Similar to homotopy approach, a

Newton based method can be applied to iteratively solve the derived KKT necessary

conditions, leading to solution of the following sparse linear system at each iteration

j to find the set of (zj+1 = zj + ∆z, λj+1 = λj + ∆λ, νj+1 = νj + ∆ν):


Wj Aj −I

ATj 0 0

Zj 0 Xj




∆z

∆λ

∆ν

 = −


∇F (zj) + Ajλj − νj

P (zj)

ZjNje− µle

 (1.37)

where e = [1, 1, ..., 1]T and we define Z = diag(z), N = diag(ν), the Hessian Wj =

∇zzL (zj, λj, νj), and Aj = ∇P (z).

1.6.6 Automatic differentiation (AD)

The performance of NLP solvers, and hence NMPC strategies, strongly depends

on accuracy and speed of the employed Jacobian, and Hessian matrix calculation

algorithms. Therefore, differentiation is a fundamental problem of numerical NLP

solvers and is one the main bottlenecks for their performance and accuracy.

Automatic differentiation (AD) is a state-of-the-art technique to compute fast and

accurate derivatives of any degree. Although it is not neither numerical nor symbolic

differentiation method, it can be seen as a numerical method that also gets benefits

from the symbolic differentiation idea; however, it is not limited by neither complexity

of equations nor derivative degree. It does not endure truncation errors, annoying

other numerical methods.

AD relies on the fact that all computer programs execute a finite set of elementary

operations, defined by the programming languages. AD evaluates derivative of a

function specified by a computer program, consisting of a finite set of elementary

operations. The partial derivative of elementary operations are known and therefore

AD generates another computer program to calculate the overall derivative of such a

function by assigning intermediate variables to each elementary operation and using

the chain rule. There are two basic modes of AD: forward mode and reverse mode.
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By forward mod, the derivatives are propagated throughout computations from basic

variables to the top level of function. On the other hand, in reverse mode, derivatives

are propagated from the top level of function down to variables.

Table 1.4 summarizes operation of AD forward mode to differentiate a sample func-

tion f(x) = (x + x2)2. Numerical value of the evaluated derivative is calculated by

seeding the variable x and its derivative with the values 2 and 1, respectively.

Table 1.5, on the other hand, summarizes operation of AD reverse mode to differ-

entiate the same function. In this mode, w represents derivative of the output y

with respect to w and therefor y = 1. For the reverse mode, numerical value of the

evaluated derivative is calculated by seeding variable x.

Table 1.4: Automatic differentiation of a sample function y = f(x) = (x+ x2)2 in the forward mode.

Elementary operations Forward derivatives Intermediate variables Values Derivatives Values

w1 = x = 2 ẇ1 = ẋ = 1

w2 = x2 = w2
1 ẇ2 = 2w1ẇ1 4 4

w3 = x+ x2 = w1 + w2 ẇ3 = ẇ1 + ẇ2 6 5

w4 = (x+ x2)2 = w2
3 ẇ4 = 2w3ẇ3 36 60

Table 1.5: Automatic differentiation of a sample function y = (x+ x2)2 in the reverse mode.

Elementary operations Reverse derivatives Intermediate variables Values Derivatives Values

w4 = (x+ x2)2 = w2
3 w4 36 1

w3 = x+ x2 = w1 + w2 w3 = 2w3w4 6 12

w2 = x2 = w2
1 w2 = w3 4 12

w1 = x = 2 w1 = (1 + 2w1)w3 60

Complete Jacobians and Hessian can be computed by repeating AD procedure. AD

considerably saves the evaluation costs comparing to numerical methods [77]. Ja-

cobian is evaluated with a cost proportional to the number of independent variables,

in forward mode, and dimension of the function, in reverse mode.

For further details on AD, the reader is referred to [78–80].

Computer algebra system with automatic differentiation implementation (CasADi)

There are a number of AD tools for C/C++, FORTRAN, and MATLAB functions.

Among available tools, computer algebra system with automatic differentiation im-

41



Chapter 1. Introduction

plementation (CasADi) is employed in this research. CasADi is an open-source inte-

grated framework for non-linear programming in C/C++ or Python, and consists of an

implementation of AD as well as interfaces to NLP and DAE solvers [81]. Moreover,

it is a computer algebra system (CAS) tool to implement different direct discretization

algorithms, including single and multiple shooting and collocation methods.

Providing AD, CAS, and interfaces to DAE and NLP solvers, CasADi is a flexible tool

to address optimal control problems and, in particular, NMPC strategies. Instead of

providing the end user with a black box OCP solver, as it is in other existing OCP

tools such as ACADO [82] and MUSCOD-II [83], CasADi is a low-level developing

tool and allows advanced users to implement their own NMPC strategy.

For further details on CasADi, the reader is referred to [77, 81].

1.6.7 NMPC strategies for hybrid dynamical systems

Different control theories, including NMPC, were originally developed for continuous

systems; however, there is a great interest in expanding such theories for hybrid

dynamical systems. Although DAEs are effective to model continuous systems, dis-

continuities available in hybrid systems embed new details to the model which are

described with different techniques (see Section 1.3). NMPC is independent of the

type of underlying system, though the system model magnificently affects the com-

putational complexity, stability, and robustness issues. In particular, different tools

are required to solve NMPC problems with different types of prediction model.

The author in [25] stated that NMPC strategies to control differential inclusions of

Filippov type, which is targeted in this study, can be solved by employing collocation

method. Applying collocation method to a NMPC problem, such a problem is trans-

fered into a mathematical programming with complementarity constraints (MPCC).

However, in order to transform a NMPC problem to a MPCC, it should be of the

complementarity class of hybrid dynamical systems [31]. Employing a penaliza-

tion method, the resulting MPCC can be transformed into a non-linear programming

(NLP) problem, instead of mixed integer non-linear programming (MINLP), and can

be solved by general purpose NLP solvers.
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Mathematical programming with complementarity constraint (MPCC)

As described in Section 1.3, a complementarity constraint is a relationship which is

defined between a number of variables in which at least one, or more, of variables

is at its bounds. A NLP with embedding such a complementarity constraint is in-

herently nonconvex. Moreover, such complementarity constraints introduce linear

dependence of constraints, which makes NLP harder to be solved [84, 85].

MPCCs are a specific form of the more general bilevel optimisation problems, called

as mathematical programming with equilibrium constraints (MPECs), with the fol-

lowing simplified form:

minimize
x∈<nc

F (x, y) (1.38a)

subject to: P (x, y) = 0 (1.38b)

G(x, y) ≤ 0 (1.38c)

y = arg minimize
ŷ∈<nc

{xT ŷ : ŷ ≥ 0}. (1.38d)

(1.38d) indicates the lower level optimisation problem within the outer problem. The

value of y is zero for ∀x > 0 and it is greater than zero for ∀x ≤ 0. The lower level

optimisation constraint can be converted into a complementarity constraint on the

outer problem. As a result, one gets a MPCC as follows:

minimize
x,y,z

F (x, y, z) (1.39a)

subject to: P (x, y, z) = 0 (1.39b)

G(x, y, z) ≤ 0 (1.39c)

0 ≤ x ⊥ y ≥ 0. (1.39d)

where x ∈ <nc and y ∈ <nc are the complementing variables and z ∈ <n−2nc is the

remaining variable.

A MPCC of the form of (1.39) needs to be reformulated in order to be solved with

general NLP solvers [25]. According to the necessary KKT conditions for optimality,
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a NLP problem has a feasible solution if constraints qualifications hold [25, 84, 85];

however, these qualifications are violated for MPCCs.

Two types of MPCC reformulation techniques, namely, regularized and penalized

formulations, have been analyzed in prior researches [25]. According to the regu-

larized formulation, the complementarity constraint given in (1.39d) is relaxed with

a positive relaxation parameter ε. The solution of MPCC is obtained by solving a

series of relaxed solutions as ε approaches zero. On the other hand, in penalized

formulation, complementarity constraints are moved to the objective function and

the resulting problem is solved for a particular large enough penalty parameter ρ.

The MPCC problem in (1.39) is regularized and penalized, respectively, in (1.40)

and (1.41). It is important to note that (1.40) shows a regularized formulation of the

original MPCC problem in which the complementarity constraint is relaxed with the

equality in (1.40e). However, it can be relaxed in different ways [25].

minimize
x,y,z

F (x, y, z) (1.40a)

subject to: P (x, y, z) = 0 (1.40b)

G(x, y, z) ≤ 0 (1.40c)

x, y ≥ 0 (1.40d)

xiyi ≤ ε, i = 1, ..., nc. (1.40e)

minimize
x,y,z

F (x, y, z) + ρxTy (1.41a)

subject to: P (x, y, z) = 0 (1.41b)

G(x, y, z) ≤ 0 (1.41c)

x, y ≥ 0. (1.41d)

For further details on MPCC and NMPC for hybrid dynamical systems, the reader is

refer to [25, 31, 84–87].

44



1.7. Research objectives and contributions

1.7 Research objectives and contributions

Energy management strategies are essential elements of stand-alone green micro-

grids for the power sharing and voltage regulation purposes. Conventionally, energy

management strategies employ decoupled maximum power point tracking (MPPT)

algorithms and rely on batteries to absorb excess energy. However, in order to real-

ize constant current-constant voltage (IU) charging regime and increase the life span

of batteries, energy management strategies would be more flexible and equipped

with a power curtailment feature. Such a non-linear multivarible control problem with

operational constraints requires an advanced control strategy. In order to analyze

different operations of microgrids and to develop model-based control strategies,

microgrids need to be modelled mathematically. However, microgrids belong to the

class of hybrid dynamical systems of non-Filippov type, because of bimodal opera-

tion of batteries and their discontinuous differential states, which is not practical for

controllers design.

Moreover, a microgrid consists of a number of physical components which must be

mathematically modelled. PV modules, wind turbines, generators, and batteries are

physical components with parameters which must be identified appropriately. For

instance, an accurate and fast PV model identification and maximum power point

(MPP) estimation method are becoming essential to reduce the PV power losses

effectively.

This study targets the following objectives in order to address the above mentioned

issues:

• Providing a mathematical model of stand-alone sustainable microgrids for the

long-term simulation purpose as well as for developing control strategies.

• Introducing a novel PV model identification algorithm to identify parameters of

the equivalent electrical circuit of a PV module.

• Conducting a study on stochastic analysis of renewable energy resources, i.e.

solar irradiance and wind speed.

• Providing a framework to conduct long-term simulation of a sample stand-alone

dc microgrid to be able to predict its operation over a long time and under
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energy resources uncertainties.

• Developing non-linear multivariable control strategies for stand-alone dc micro-

grids to achieve five control objectives: i) supplying variable dc loads; ii) regu-

lating the dc bus voltage level; iii) charging batteries as close to IU regime as

possible; iv) proportional power sharing between generators; v) tracking MPPs

of wind and PV branches during normal operations.
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Acausal Modelling of Stand-alone dc

Microgrids as Complementarity

Systems

Due to bimodal operation as well as existent discontinuous differential states, bat-

teries and therefore microgrids belong to the class of hybrid dynamical systems of

non-Filippov type. In order to develop a mathematical model applicable to NMPC

strategies, stand-alone dc microgrids are approximated as complementarity sys-

tems of Filippov type. The presented model is also used to develop a Modelica

model for the long-term simulation purposes.

2.1 Introduction

Microgrids are the building blocks of modern power grids. As explained in Chapter

1, due to some challenges that ac microgrids face with [6, 3], dc microgrids get more

popular particularly for stand-alone applications [1, 88]. There are new interests to

employ NMPC technique [63, 62] to develop coordinated multivariable control strate-

gies for stand-alone microgrids (e.g. [89, 90]). However, such control strategies re-

quire using a mathematical model of microgrids to predict their behavior during the

prediction horizon. Moreover, in smart grid applications, such a model is needed to

simulate the microgrids behavior for at least one day ahead [91]. There are three

major challenges regarding developing a mathematical model for microgrids: i) the
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algebraic constraints presented by PV module, wind turbine, and battery bank; ii)

battery bank as a sub-system with two modes of operation, namely, charging and

discharging; and iii) cycle life of battery bank as a discontinuous differential state.

The available algebraic constraints and bimodal operation of battery bank cause

the mathematical model of stand-alone dc microgrids to be a set of hybrid differen-

tial algebraic equations (hybrid DAEs) [22]. Therefore, stand-alone dc microgrids

are represented by an acausal model for the control and simulation purposes. Un-

like causal approach, which requires the system to be decomposed into a chain of

causal interacting blocks consisting of only ordinary differential equations (ODEs),

acausal modeling is a declarative approach in which individual parts of the model

are described as hybrid DAEs [22]. Acausal modeling, as the mathematical repre-

sentation of the system, is an effective way to model and simulate complex systems

and such a model is also applicable to develop NMPC strategies. Modelica [23],

as an object-oriented and equation-based language to describe complex systems,

provides the capability to acausally model the class of hybrid dynamical systems

[22].

Cycle life of batteries, as discontinuous differential states, cause the system to be

of non-Filippov type [32] which is more challenging. Cycle life is defined as the total

number of complete charging/discharging cycles a battery can undergo before its

capacity falls down below 80% of its nominal value. Apart from the cycle life, stand-

alone dc microgrids can be modeled as differential inclusions (DIs) of Filippov type.

The work in [25] argues that NMPC strategies to control the hybrid systems of Filip-

pov type may be solved by employing a variable element length version of the col-

location method. Applying this flexible version of collocation method transfers such

NMPC problems into a mathematical programming with MPCC. Then, employing a

penalization method, the resulting MPCC can be transformed into a NLP problem

which can be solved by general purpose NLP solvers. However, in order to trans-

form NMPC problem to a MPCC, such problem should be of the complementarity

class of hybrid dynamical systems [31].

The main aspect of this chapter is to provide a mathematical model of stand-alone dc

microgrids applicable to NMPC strategies and long-term simulation purposes. For

this aim stand-alone dc microgrids are modeled as CSs including differential and al-
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gebraic constraints as well as MCPs. The discontinuous cycle life differential state is

reformulated with a continuous approximation and such a reformulation transforms

the proposed dc microgrid model to be of Filippov type. Moreover, bimodal opera-

tion of battery bank is also modeled as separate complementarity constraints. The

developed model is then used in two different applications: i) in Chapter 5, an equiv-

alent model in the form of DIs, is employed to simulate stand-alone dc microgrids;

and ii) in Chapter 6, a number of NMPC strategies based on the presented model

are developed to track load demands and regulate dc bus voltage despite substantial

generation fluctuations.

The remainder of this chapter is organized as follows. Section 2.2 deals with the

modeling of a stand-alone dc microgrid as a CS followed by Section 2.3 that presents

and discusses the developed Modelica model of stand-alone dc microgrids which is

applicable for the long-term simulation purpose.

2.2 Modelling of stand-alone dc microgrids as complementarity

systems

Figure 2.1 summarizes the developed model for the stand-alone dc microgrid topol-

ogy given in Figure 1.1. It can be seen that the dc microgrid is modeled as a CS

including mixed complementarity problems with slack variables γ. Such a CS con-

sists of differential and algebraic states, i.e. x and z, and manipulated and non-

manipulated control variables, namely, u and v, which are detailed later throughout

the next sub-sections.

Figure 2.1: DC microgrids as complementarity systems.
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The following notations are used to model the stand-alone dc microgrid depicted in

Figure 1.1 as a CS given by (1.7):

F(x, ẋ, z,u, v, γ) =


f1(x, ẋ, z,u, v, γ)

f2(x, ẋ, z,u, v, γ)

..

f25(x, ẋ, z,u, v, γ)

 = 0, (2.1a)

MCP(γ,Γ) =

 MCP1(γ1,Γ1)

MCP2(γ2,Γ2)

 . (2.1b)

where F is a set of implicit differential and algebraic functionals fi for i ∈ {1, 2, .., 25}

that models dc microgrids behaviors. All the equations throughput the chapter which

are not indicated as implicit functions {fi} are used to calculate intermediate vari-

ables. MCP is a vector of two MCPs as in (1.7b) that models different modes of

operation and any transitions between them.

The following sub-sections present all differential and algebraic equations that model

battery, solar, and wind branches. Connecting all these branches together, there are

two power balance constraints given by (2.2) indicating that the sum of the genera-

tion and the consumption powers should always be zero.

f1 = Vdc

(
Ipvdc + Iwtdc + Ibatdc − Iload

)
, (2.2a)

f2 = Vdc − IloadRL. (2.2b)

2.2.1 Solar branch

This section presents a mathematical model of solar branch, consisting of a PV

array that is connected to the dc bus through a boost-type dc-dc converter. The

presented model is based on the equivalent electrical circuit of a PV module [46, 92].

The average model of converters can be replaced with the steady-state equations
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in CCM as follows:

f3 = Vpv − (1−Ds)Vdc, (2.3a)

f4 = Ipvdc − (1−Ds)Ipv. (2.3b)

A PV array consists of, respectively, Npvs and Npvp PV modules in series and paral-

lel. Given photocurrent, Iph, and diode reverse saturation current, I0, in (2.4b) and

(2.4c), one can model a PV array with the transcendental characteristic equation

given by (2.4a) [46].

f5 = Ipv − Iph +
Vpv + Npvs

Npvp
RsIpv

Npvs

Npvp
Rsh

+ I0

{
exp(

Vpv + Npvs

Npvp
RsIpv

ndNs

q ×Npvs

KTc
)− 1

}
, (2.4a)

f6 = Iph −Npvp ×
(
Rs +Rsh

Rsh

Isc,stc + kI (Tc − Tc,stc)
)

S

Sstc
, (2.4b)

f7 = I0 −Npvp ×
Isc,stc + kI (Tc − Tc,stc)

exp(
Voc,stc + kV (Tc − Tc,stc)

ndNs

q

KTc
)− 1

. (2.4c)

where Rs and Rsh, respectively, are series and parallel equivalent resistors of PV

module and all other parameters are as follows:

q Electron charge (1.60218× 10−19)
Ns The number of PV cells in PV module (-)
K Boltzman constant (1.38066× 10−23)
kI The short-circuit current temperature coefficient (A/◦C)
Tc The current PV cell temperature (K)
Isc,stc Short-circuit current at STC (A)
S The current solar irradiance (W/m2)
kV Open-circuit voltage temperature coefficient (V/◦C)
Sstc Insolation level (W/m2)
Tc,stc STC cell temperature (K)
Voc,stc Open-circuit voltage at STC (V )

2.2.2 Battery branch

A model to mathematically represent lead-acid batteries is introduced in [20]. This

model can be generalized as a CS by introducing the following MCP:
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MCP1 : 0 ≤ γ1 ≤ 1 ⊥ Γ1(γ1) = Ibstack, (2.5)

where Ibstack is the current of a battery stack. Regarding the solution of a MCP

expressed by (1.8), γ1 is a slack variable which indicates if the battery bank is in

charging (γ1 = 1) or discharging (γ1 = 0) mode of operation. It is important to

note that according to the notation throughout this chapter, Ibstack is negative during

charging mode of operation.

Therefore, a lead-acid battery bank, consisting of Nbatp battery stacks in parallel

while each stack consisting of Nbats batteries in series, can be modeled as the DAEs

coupled with the complementarity constraint given by (2.5). Notice that at each

moment just one of the segments of equations is active in terms of the value of γ1:

f8 =
Vbstack
Nbats

+ γ1

{
Rbat

Ibstack
Nbatp

− V0 +
P1Cmax

Cmax −Qact

Qact +
P1Cmax

0.1Cmax +Qact

If − Vexp
}

+

(1 − γ1)
{
Rbat

Ibstack
Nbatp

− V0 +
P1Cmax

Cmax −Qact

Qact +
P1Cmax

Cmax −Qact

If − Vexp
}
. (2.6a)

f9 =
dQact

dt
(t)− 1

3600

Ibstack(t)

Nbatp

, (2.6b)

f10 =
dIf
dt

(t) +
1

Ts
(If −

Ibstack
Nbatp

), (2.6c)

f11 =
dVexp

dt
(t)− γ1

{ P2

3600

∣∣∣∣IbstackNbats

∣∣∣∣ (P3 − Vexp)
}

+ (1 − γ1)
{ P2

3600

∣∣∣∣IbstackNbats

∣∣∣∣Vexp},
(2.6d)

f12 = Vbstack −
Vdc

1−Db

, (2.6e)

f13 = Ibstack − (1−Db)Ibatdc, (2.6f)

f14 = SOC −
{

1− Qact

Cmax

}
. (2.6g)

Vbstack, Ibstack and SOC, respectively, are voltage, current, and state of charge of

battery stack. Parameters P1 − P3 are experimental and require to be identified for

each type of battery. The Cmax is the maximum amount of the battery capacity,

Rbat is internal resistor of battery, Qact is the actual battery capacity, and V0 is the
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battery constant voltage. Moreover, If is the filtered value of the battery current with

a time constant of Ts [20]. The bi-directional converter with duty cycle Db for the

boost switching power pole is modeled in steady-state continuous conduction mode

(CCM) [13].

The cycle life of a battery bank, as a cost measure of its delivered energy [93], mainly

depends on two factors: the number of charging/discharging cycles and depth of

each discharge. Figure 2.2a illustrates the normalized cycle life as a discontinuous

differential state being increased by the reverse of equivalent full cycle (EFC) at the

moment of each mode switching from discharging to charging. EFC indicates the

number of cycles of a battery at any depth of discharge (DOD) which is given by a

curve for different values of DOD [93].

In order to model the cycle life as a continuous differential state, and therefore con-

vert the system to the class of Filippov type, a new continuous state, tchg, is defined

as in Figure 2.2b which shows duration of charging cycle. The tchg starts from zero

and monotonically increases during charging cycle. Once battery switches to dis-

charging mode, tchg sharply drops down to zero. Such a differential state can be

defined using the following complementarity problem:

MCP2 : 0 ≤ γ2 ≤ 1 ⊥ Γ2(γ2) = −tchg, (2.7)

where γ2 is a slack variable shows if tchg is positive (γ2 = 1) or not (γ2 = 0).

Having the complementarity constraints given by (2.7), one can model tchg as the

following differential inclusion:

f15 =
dtchg

dt
(t)−

(
γ1 − 1000(1− γ1)

)
γ2. (2.8)

(2.7) and (2.8) show that when tchg ≥ 0, its value increases with a unity rate if the

battery is in charging mode, i.e. γ1 = 1. Once the battery switches to the discharging

mode, i.e. γ1 = 0, the value of tchg falls down at a rate of −1000 until tchg reaches

zero when it remains constant afterward. Given (2.8), one can use (2.9) to model

cycle life, cycleL, as a continuous differential state. It is based on the fact that cycle

life equals to
∞∑
n=1

1
EFC(DODn)

, where n is the number of discharging to charging mode
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(a)

(b)

Figure 2.2: (a) Discontinuous cycle life and its equivalent continuous approximation; and (b) the introduced
charging cycle, tchg, state of battery in terms of state of charge (SOC).

switches and EFC depends on the value of DODn = 1 − SOCn at which battery

switches to its charging mode. Fig. 2.2a illustrates the resulting continuous cycle life

comparing with the original discontinuous value. In Fig. 2.2a, it can be seen that the

value of cycle life becomes steady a little while after switching to charging mode, i.e.

tchg u 20, or during discharging mode, i.e. γ1 = 0.

f16 =
dcycleL

dt
(t)− γ1exp(−tchg)

{ Equivalent full cycle︷ ︸︸ ︷(
1− SOC

)
1159SOC2 − 952SOC + 745.3

−SOC + 1.05909︸ ︷︷ ︸
Number of cycles

}−1
.

(2.9)

2.2.3 Wind branch

The wind turbine performance can be measured according to the power coefficient

curve, Cp, [9] with respect to tip speed ratio, λ (2.10a), and pitch angle β. (2.10c)
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gives Cp curve of a wind turbine [94] consisting of three blades with radius, Rad, of

4.01 meter. Such a wind turbine generates the maximum power coefficient of 0.48 at

the optimum tip speed ratio of 7.35.

f17 = λ− Rad× ωr
Ux

, (2.10a)

f18 = λi − (
1

λ+ 0.08β
− 0.035

β3 + 1
)−1, (2.10b)

f19 = Cp,norm −
1

Cp,max
(C1(

C2

λi
− C3β − C4)exp(−

C5

λi
) + C6λ). (2.10c)

The experimental coefficients C1 − C6 are defined in Table 6.1. λi in (2.10b) is an

intermediate variable to make the equations easier to understand.

All fast voltage and current dynamics, except the angular velocity of the generator

given by (2.11a), can be ignored for the long-term simulation and outer controller

applications. For the sake of simplicity, it is assumed that there is no mechanical

and electrical losses in the powertrain. Therefore, the electromagnetic power given

by (2.11b) is equal to the output electrical power of wind branch.

f20 =
dωr
dt

(t)− 1

J
(Te − Tm − Fωr), (2.11a)

f21 = −Te × ωr − Iwtdc × Vdc, (2.11b)

f22 = −Tm × ωr − Cp,norm(
Ux

Ux,base
)3Pnom, (2.11c)

VLL =
1√
2
kEωr, (2.11d)

kE =
√

3Pψ. (2.11e)

The shaft inertia J (Kg.m2) and combined viscous friction coefficient F (N.m.s) of

PMSG are given by manufacturers. The VLL, i.e. r.m.s. value of the line-to-line

output voltage of generator given by (2.11d), depends on the mechanical angular

velocity. Having number of pole pairs P and flux linkage ψ (V.s) (see Table 6.1), one

can use (2.11d) and (2.11e) to calculate the r.m.s. value of the line-to-line output

voltage, VLL, and the voltage constant kE of generator.
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Figure 2.3: Power coefficient curves in terms of tip speed ratio.

Similar to battery and solar branches, buck converters can be modeled in steady-

state CCM:

f23 = Vdc −DwVwt, (2.12a)

f24 = Iwt −DwIwtdc. (2.12b)

where Dw is switching duty cycle of converter and all remaining parameters are as

in Figure 1.1.

The average dc output voltage of rectifier, Vwt, in the presence of the non-instantaneous

current commutation is calculated as follows [13]:

Vwt = 1.35VLL −
3

π
PωrLsIwt, (2.13)

Replacing (2.11d), (2.11e), and (2.12) into (2.13) and rearranging, one has the fol-

lowing equation to calculate the dc output current of wind branch, Iwtdc:

f25 = Iwtdc −
π

3PωrLsDw

{
1.35
√

3Pψωr√
2

− Vdc
Dw

}
. (2.14)

2.3 Modelica model of stand-alone dc microgrids

In order to simulate the stand-alone dc microgrid shown in Figure 1.1, the presented

mathematical model in Section 2.2 is declared with Modelica modeling language
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Table 2.1: Outline of the developed Modelica model. MCPs and DIs are respectively indicated by † and ‡.

class StandaloneMicrogrids

...;

discrete Boolean gamma1 ”true: charging”;

Real soc(start = 0.6, fixed = true) ”State of charge of battery”;

Real tchg ”The period of time that battery is in charging state”;

RealInput Ux ”wind speed (m/s)”;

RealInput beta ”pitch angle (degree)”;

RealInput Dw ”buck converter duty-cycle [0,1]”;

equation

Ipv = Iph− I0 ∗ (exp((Ipv ∗ rs Tc+ V pv)/a Tc)− 1)− (Ipv ∗ rs Tc+ V pv)/rsh Tc Sx;

Iph = (Npvp ∗ ((Rsh+Rs)/Rsh ∗ Isc stc+Ki ∗ (Tc− Tc stc)) ∗ Sx)/Sx stc;

I0 = (Npvp∗(Isc stc+Ki∗(Tc−Tc stc)))/(exp(((V oc stc+Kv∗(Tc−Tc stc))∗q)/(nD∗Ns∗K∗Tc))−1);

V pv = V dc ∗ (1−Ds);

Ipvdc = (1−Ds) ∗ iPV ;

gamma1 = if Ibstack ≤ 0 then true else false; (†)

der(If) = −1/Ts ∗ If + Ibstack/(Ts ∗Nbatp);

der(Qact) = 1/3600 ∗ Ibat;

der(V exp) = if gamma1 then P2/3600 ∗ abs(Ibstack/Nbatp) ∗ (P3 − V exp) else −(P2 ∗
abs(Ibstack/Nbatp))/3600 ∗ V exp; (‡)

soc = 1−Qact/Cmax;

V bstack/Nbats = if gamma1 then (‡)

V 0−R ∗ Ibstack/Nbatp− (P1 ∗Cmax)/(Cmax−Qact) ∗Qact− (P1 ∗Cmax)/(Qact+ 0.1 ∗Cmax) ∗
If + V exp

else V 0−R ∗ Ibstack/Nbatp− (P1 ∗Cmax)/(Cmax−Qact) ∗Qact− (P1 ∗Cmax)/(Cmax−Qact) ∗
If + V exp;

der(tchg) = if gamma1 then 1 elseif tchg > 0 then −1000 else 0; (†‡)

der(cycleL) = if gamma1 then 100/((1− soc) ∗ (1159 ∗ soc ˆ 2− 952 ∗ soc+ 745.3)/(−soc+ 1.05909)) ∗
exp(−tchg)

else 0; (‡);

−Te ∗ ωr= Iwtdc ∗ V bstack;

Ibstack = Ibatdc ∗ (1−Db);

V bstack = V dc/(1−Db);

−Tm ∗ ωr = Cp pu ∗ (Ux/12)ˆ3 ∗ Pnom;

der(ωr) = (Te− Tm− F ∗ ωr)/J ;

Iwtdc = pi ∗ (1.35 ∗ P ∗ psi ∗ sqrt(3) ∗ ωr)/sqrt(2)/(3 ∗ Lst ∗ P ∗ ωr∗Dw);

lambda = (R ∗ ωr)/Ux;

lambda i = 1/(1/(lambda+ 0.08 ∗ beta)− 0.035/(betaˆ3 + 1));

Cp = (C1 ∗ (C2/lambda i− C3 ∗ beta− C4) ∗ exp(−C5/lambda i) + C6 ∗ lambda)/0.48;

V dc = Iload ∗RL;

Ipvdc+ Ibatdc+ Iwtdc = Iload;

end StandaloneMicrogrids;
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[23]. The proposed acausal model, as HDAE equations, covers both continuous-

(either differential or algebraic) and discrete-time behaviors [22]. Table 2.1 summa-

rizes the developed Modelica model.

In Table 2.1, the MCPs given in (2.5) and (2.7) are indicated by symbol †. They

are translated into IF-THEN-ELSE Modelica propositions. Moreover, DIs in (2.6a),

(2.6d), (2.8), and (2.9) marked with symbol ‡, are also translated into IF-THEN-

ELSE propositions. In order to minimize the number of equations in this study and

unlike usual object-oriented approach, a flat HDAE model of stand-alone microgrids

is proposed. It is important to note that the model is of Filippov type and therefore

there is no need to re-initialize any state variable after mode switching. Otherwise,

such re-initializations must be implemented using change(.), pre(.), and reinit(.)

facilities of Modelica.

2.4 Summary

In this chapter, stand-alone dc microgrids, consisting of wind, solar, and battery

branches, has been mathematically modeled as complementarity dynamical sys-

tems. The developed mathematical model is in the form of hybrid DAEs of Filippov

type, including mixed complementarity problems in order to model multi-modal op-

eration as well as discontinuous cycle life state of the battery bank.

The proposed model has also been declared as Modelica models which is employed

in Chapter 5 for long-term simulation of stand-alone dc microgrid operations. More-

over, the mathematically presented dc microgrid is embedded in NMPC strategies

(see Chapter 6) as the system model to predict its behaviours.
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Chapter 3

Stochastic Model Identification of

Wind Speed and Solar Irradiance

Stochastic modelling of the uncertainties in renewable energy resources is appli-

cable to design a reliable site and a robust controller for standalone sustainable

microgrids. This chapter proposes stochastic models of hourly wind speed and so-

lar irradiance for four locations across the UK. The goodness-of-fit of the proposed

model is evaluated using Kolmogorov-Smirnov (K-S) test. The proposed model can

be employed to simulate the amount of hourly wind speed and insolation for these

locations.

3.1 Introduction

Wind kinetic energy and solar irradiance are assumed as energy resources which

have considerable share in near future electricity production [47]. A typical stan-

dalone and sustainable microgrid employs an array of Photovoltaic (PV) modules

and a Wind Turbine (WT) to supply load demands. There is also a battery bank to

reduce power fluctuations. Despite employing proper sized components there still

may be blackout periods because of uncertainties in energy resources which need

to be considered through appropriate models.

The work in [40] has introduced a stochastic model for hourly global insolation ab-

sorbing by a PV array based on beta distribution. Although, it is a considerable

achievement in stochastic modeling of insolation, the goodness-of-fit of the model
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depends on location and the month of year [41], [95]. In particular, global solar ir-

radiance is not necessarily fitted well for some months depending on location. The

work in [40] has also introduced a stochastic model for hourly wind speed based on

Weibull distribution. The fitness of hourly wind speed to Weibull distribution slightly

depends on location and the month of year; nevertheless, it indicates an appropriate

model for wind speed [96].

In this chapter, a stochastic model for hourly solar irradiance of four locations in the

UK has been extracted and evaluated. The Maximum Likelihood Estimator (MLE)

method has been employed to estimate the model parameters based on meteoro-

logical records. The goodness-of-fit of the estimated parameters has been evaluated

using K-S test.

3.2 Problem formulation

3.2.1 Stochastic model of hourly solar irrandiance

Extraterrestrial solar irradiance can be estimated for any particular location with re-

gard to its altitude and longitude as well as azimuth angle. However, the absorbed

energy on an inclined surface is not equal to the terrestrial radiation but is a frac-

tion of it. The difference between the terrestrial and absorbed insolation is mainly

because of clouds which is a random phenomenon [97]. With attention to the proba-

bilistic behavior of insolation, the amount of the electrical power generated with a PV

array is a stochastic process, i.e., the value of hourly generated power is a random

variable with a distribution related to the distribution of absorbed insolation.

The authors in [40] used a stochastic model for global insolation absorbed by a PV

array. They modeled hourly global solar irradiance as beta probability distribution

function (PDF) as follows:

fIx(ix;α, β) =
Γ(α + β)

Γ(α)Γ(β)

(
ix
I0

)α−1(
1− ix

I0

)β−1
. (3.1)

where:
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3.2. Problem formulation

ix The solar irradiance (W/m2)

Γ(.) Gamma function

α and β The shape parameters of beta distribution

I0 The extraterrestrial solar irradiance (W/m2)

fIx(ix) PDF of solar irradiance random variable Ix

The above equation introduces an hourly random variable which is the ratio of global

to extraterrestrial solar irradiance of that hour. This random variable is defined as

the clearness index. The authors in [98] proposed (3.2) to calculate extraterrestrial

radiation for a particular location on earth.

I0 = 1367

(
D

D

)2

. (3.2)

where the yearly average of the extraterrestrial radiation I0 is 1367(w/m2). The frac-

tion D
D

indicates the deviation of the daily distance D between sun and a particular

location on earth from the yearly average distance D between sun and earth. This

deviation varies through year by ±3% as earth orbits sun and can be approximated

by a sinusoidal series as follows [98]:

(
D

D

)2

= 0.00011 + 0.034221 cos(β) + 0.00128 sin(2β) + 0.000719 cos(2β)+

0.000077 sin(2β), (3.3a)

β =
2πn

365
. (3.3b)

where β is the rotational angle of earth around sun and n represents the day of year

in range of [1, 365] or [1, 366] for leap year.

Figure 3.1 illustrates the variation of extraterrestrial irradiance through year. In this

figure, it can be seen that while earth is in the closest distance to sun during De-

cember and January, it is in the farthest distance during July.

Figure 3.2 illustrates different curves of beta distribution for different values of the

shape parameters α and β. From Figure 3.2, it can be seen that by having the

values of the shape parameters for a particular location, one can estimate the solar

irradiance distribution for that location as follows:
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Figure 3.1: Extraterrestrial irradiance variations over a year with its monthly average values.

• α > 1 & β < 1: In this special case, hourly solar irradiation is mostly around

extraterrestrial insolation of that day which is physically impossible.

• α < 1 & β > 1: It means that hourly solar irradiation is mostly around zero.

• α < 1 & β < 1: This particular case illustrates that hourly solar radiation is

distributed almost uniformly.

• α > β > 1: It models the case in which the amount of hourly solar irradiation is

mostly greater than half of the extraterrestrial insolation of day.

• β > α > 1: In contrast to the case of α > β, this case models situations in which

the amount of hourly solar irradiation is mostly less than half of the extraterres-

trial insolation of day.

The shape parameters α and β of hourly global solar irradiance can be modeled

when there are adequate meteorological records for that hour.

3.2.2 Stochastic model of hourly wind speed

The kinetic energy absorbed by a wind turbine depends on speed and direction of

wind which are both random variables. Therefore, similar to PV arrays, the hourly

generated power by wind turbines is a stochastic process.
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3.2. Problem formulation

Figure 3.2: Different curves of beta distribution subject to different values of α and β.

The prior researchers in [40, 97, 96] presented stochastic models for wind speed.

The authors in [96] employed Weibull probability distribution function (PDF) to model

hourly wind speed as follows:

fV (v; k, c) =
k

c

(v
c

)k−1
exp

{
−
(v
c

)k}
. (3.4)

where:

v Hourly wind speed (m/s)

k The shape parameter

c The scale parameter

fV (v) PDF of wind speed random variable V

Figure 3.3 shows different curves of Weibull distribution for different values of shape

and scale parameters. Based on these curves, the wind speed distribution can be

roughly estimated as follows:

• c ≤ 1: In this case, hourly wind speed is mostly around zero. The greater value

of k > 1, the narrower PDF around zero would be obtained.

• c > 1 & k > 1: In this special case, the distribution of hourly wind speed is a

bell shape around an average value. The bell moves forward by increasing k or

c.

• k = c� 1: It illustrates that hourly wind speed is mostly around the maximum

value of that hour.

63



Chapter 3. Stochastic Model Identification of Wind Speed and Solar Irradiance

Figure 3.3: Different curves of Weibull distribution subject to different values of k and c.

The shape and scale parameters k and c of hourly wind speed can be modeled

when there are adequate meteorological records for that hour.

3.3 Models assessment for UK locations

The empirical global solar irradiance and wind speed data samples for the UK are

provided by British Atmospheric Data Center (BADC) [99]. In this study, hourly

global solar irradiance and wind speed recorded by BADC for four locations across

the UK, respectively over the period 1990 to 2010 and 2000 to 2008, is used. Table

3.1 illustrates these four locations and their geographical locations. It includes sites

in Scotland, Wales, England and Shetland as one of the closest places in the UK to

the North Pole.

MLE method is employed to estimate the probability distribution function and its pa-

rameters. The basic idea of MLE method as an optimizing algorithm is to maximize

Table 3.1: Locations across the UK studied in this thesis.

Location Name Geographical Location

Shetland Far North of Scotland

Argyll South of Scotland

Dyfed West of Walse

Cornwall Southwest of England
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the likelihood function with respect to parameters α and β or k and c, respectively,

for hourly solar irradiance or wind speed.

3.3.1 Solar irradiance stochastic model parameter estimation

There are only 21 solar irradiance measurements for each hour over the period 1990

to 2010 which are not enough to calculate shape parameters. To increase the num-

ber of samples it is assumed that all observations for the same hour throughout any

month are independent and identically distributed (IID). This assumption increases

the number of data samples for each hour to around 600 samples. For instance, it

is assumed that shape parameters of solar irradiance distribution during the period

10:00 to 11:00 hour of all days in January are the same. However, it does not mean

that the amounts of solar irradiance of all days in January for this period of time

are similar. Furthermore, monthly average values of extraterrestrial solar irradiance

(Figure 3.1) have been applied to all hours of that month.

Figure 3.4 illustrates graphically the calculated shape parameters of hourly solar

irradiance for the four locations summarized in Table 3.1. The exponents for each

location have been extracted employing MLE method with around 600 hourly records

coupled with monthly average extraterrestrial irradiance. The hourly solar irradiance

can be roughly estimated using values of α and β from Figure 3.4 and comparing

them with different curves in Figure 3.2. For instance, Figure 3.4 (g) and (h) show

that values of α and β of Argyll in south of Scotland are almost always less than

unity. From Figure 3.2, it can be seen that such values for α and β means that solar

irradiance has a uniform distribution. In other words, solar irradiance can be any

value with the same probability.

3.3.2 Solar irradiance stochastic model assessment

K-S statistical test has been employed in this study to evaluate goodness-of-fit of

the proposed model. According to this method, goodness-of-fit is quantized with the

maximum distance between empirical and estimated cumulative distribution func-

tions (CDF).

Figure 3.5 depicts a comparative analysis between theoretical and empirical CDFs.

For instance, for the time slot between 12:00 and 13:00 during October in Dyfed,
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Figure 3.4: Estimated logarithmic values of (a) α and (b) β for Dyfed (west of Wales), (c) α and (d) β for Cornwall
(southwest of England), (e) α and (f) β for Shetland (far north of Scotland), and (g) α and (h) β for Argyll (south
of Scotland).

the maximum distance is 0.070 and is greater than the critical value of 0.053 for 651

samples. It means that the model of global solar irradiance, presented by [40], is not

fitted well with meteorological records of Dyfed.

3.3.3 Wind speed stochastic model parameter estimation

Using the hourly wind speed measurements over the period between 2000 and 2008

and applying the same assumption under sub-section 3.3.1, one has 270 hourly

wind speed samples instead of just 9 samples. Then, these 270 samples are used

to calculate the hourly shape and scale parameters. Figure 3.6 illustrates graphi-

cally the calculated shape and scale parameters of hourly wind speed for the four

locations indicated in Table 3.1.

The hourly wind speed can be roughly estimated using values of k and c extracted
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Figure 3.5: The maximum distance of theoretical and empirical CDFs and critical values for (a) Dyfed (west
of Wales), (b) Cornwall (southwest of England), (c) Shetland (far north of England), and (d) Argyll (south of
Scotland).

from Figure 3.6 and comparing them with different curves in Figure 3.3. For instance,

Figure 3.6 (a) and (b) show that the value of k of Dyfed is less than two while the

value of the parameter c is greater than five. From Figure 3.3, it can be seen that

these values of the parameters k and c indicates a distribution of wind speed which

is a narrow bell shape around average value.

3.3.4 Wind speed stochastic model assessment

Figure 3.7 depicts a comparative analysis between theoretical and empirical CDFs.

For example, for the period 12:00 to 13:00 during October in Dyfed, the maximum

distance is less than the critical value for 279 samples. It means that the estimated

model of wind speed for this hour is fitted well with meteorological records.

3.4 Summary

The amount of electrical power generated by a hybrid sustainable microgrid is a

stochastic process with respect to hourly solar irradiance and wind speed as a ran-
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Figure 3.6: Estimated values of (a) k and (b) c for Dyfed (west of Wales), (c) k and (d) c for Cornwall (southwest
of England), (e) k and (f) c for Shetland (far north of Scotland), and (g) k and (h) c for Argyll (south of Scotland).

Figure 3.7: The maximum distance of theoretical and empirical wind speed CDFs and critical values for (a)
Dyfed (west of Wales), (b) Cornwall (southwest of England), (c) Shetland (far north of England), and (d) Argyll
(south of Scotland).
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dom variables. In order to study the behavior of such microgrids or to design a

reliable site for a location, it essentially requires modeling the probabilistic behavior

of solar irradiance and wind speed.

This chapter has proposed a stochastic model of hourly solar irradiance and wind

speed for four locations across the UK. The proposed model has been evaluated

employing K-S test.

The proposed stochastic models are used in Chapter 5 to simulate the hourly wind

speed and solar irradiance. The simulation results obtained for hourly wind speed

indicate proper match with statistical moments of available measurements. Although

the simulation results for hourly solar irradiance are not completely match with mea-

surements, there are still two advantages to gain by employing stochastic model,

which are simplicity of simulation and considering uncertainties due to cloud shad-

ing.
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Chapter 4

Model Identification of Photovoltaic

(PV) Modules

Due to simulation requirements as well as recent applications of model-based con-

trollers, accurate and fast PV model identification and maximum power point (MPP)

estimation methods are becoming essential to reduce PV power losses effectively.

The classical PV model identification methods use empirical data of MPP at the stan-

dard test condition (STC). However, the nominal operating cell temperature (NOCT)

is the more practical condition and it is shown that the extracted model is not well

suited to it. The proposed method in this chapter estimates an accurate equivalent

electrical circuit for PV modules using both STC and NOCT information provided

by manufacturers. A multi-objective global optimization problem is formulated using

only the main equation of PV module at these two conditions that restrains the er-

rors due to employing experimental temperature coefficients. A novel combination

of a genetic algorithm (GA) and the interior-point method (IPM) allows the proposed

method to be fast and accurate regardless PV technologies. It is shown that the

overall identification error, which is defined by the sum of MPP errors of both STC

and NOCT conditions, is improved by a factor between 5.1% to 31% depending on

PV technologies.

4.1 Introduction

Advances in PV technologies during the last decade have increased the share of so-

lar energy in the growing electricity market. PV modules are non-linear and complex
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still very popular components [100], [55] since they are easy to install and oper-

ate. However, it is essential to model PV module accurately to be able to predict

its behavior at different operating conditions. While the PV behavioral prediction is

essential for system design and PV module simulation, it can also be useful for a

probable employing of model-based prediction controllers (MPC) to manage energy

generation or to track MPP of operation. There are many studies conducted on

different MPPT methods (e.g. see [101–104]).

A PV cell is a P-N junction that is typically modeled with an equivalent electrical

circuit [47]. Although there are prior researches focused on non-electrical models

based on either artificial neural network (ANN) [105] or adaptive neuro-fuzzy in-

ference scheme (ANFIS) [106], equivalent electrical circuit is the most popular PV

model. The core advantage of the electrical models is that unlike the other models it

does not necessarily require measured data samples to be trained. Moreover, it can

easily be simulated with other components as an integrated electrical circuit. Figure

4.1 illustrates a single-diode equivalent electrical circuit of PV cell, which is also ap-

plicable to model a PV module. A PV module consists of several PV cells connected

together in series. Although double-diode circuit provides better modeling of the

loss in depletion region caused by recombination of carriers [107, 108], single-diode

model still offers a good compromise between accuracy and simplicity [46]. A PV

array, which is a combination of several photovoltaic modules in series and parallel

arrangement, can be modeled with the same circuit, too. There are six parameters

in this model, namely, stray capacitor C, ideality factor of diode nd, photocurrent

Iph, reverse saturation current of diode I0, series resistor Rs, and shunt resistor Rsh.

While stray capacitor C is neglected [48], there are still five unknown parameters for

each PV module, which require being determined with an identification method.

To the best of the authors knowledge, the prior researches on PV electrical equiv-

alent model identification methods can be categorized into three groups. Each of

these methods can also be applied to either a simplified model taken the shunt re-

sistor as infinite [109, 110] or the normal circuit leading to a four- or five-parameter

estimation problem, respectively.

In the first group, the authors in [111–115] presented analytical methods to calculate

parameters. The identification method proposed in [111] attempts to approximate
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Figure 4.1: Single-diode equivalent electrical circuit of PV cells, modules, and arrays.

and solve analytically the equation of PV as a polynomial of the first order. Even

though a simple parameter estimation method is demonstrated, the method does

not provide enough accuracy. The works of [112–115], however, introduced a sys-

tem of five equations to resolve five model parameters. Three of these equations

are extracted from three remarkable points [46], i.e., short- and open-circuit points

coupled with MPP. While the forth equation is constructed based on the fact that

derivative of power at MPP is zero, the fifth equation is more challenging. The

authors in [112] employed an approximation for temperature coefficient as the fifth

equation, however, the others adopts the equation introduced in [113] as a simplified

approximation of shunt resistor. Although these analytical methods are straightfor-

ward and only need nominal values from datasheets, they still need sophisticated

numerical or even optimization methods to solve the resulting non-linear and tran-

scendental system of equations. Moreover, the accuracy is deteriorated as a result

of using simplified approximation of either temperature coefficient or shunt resistor.

Alternatively, there are prior researches focused on identifying a PV current-voltage

(I − V ) curve (Figure 4.2) being the best fit to empirical data [116–119]. The au-

thors in [116] and [117] proposed a genetic algorithm as a curve fitting procedure

to identify the circuit in Figure 4.1. The main issue of this approach is that it re-

lies on measured data rather than information available in datasheets. Moreover, it

requires measuring cell temperature, which is a cumbersome task, of PV module.

With the aim of avoiding the need to measure points on different I − V curves, the

authors in [118] introduced a set of equations to calculate remarkable as well as

two intermediate points at different values of insolation and cell temperature. This

method is adopted by Sandia national laboratories (SNL), USA [120] as the refer-

ence method in PV model identification. The equations rely on several empirical

parameters, which need to be extracted for each type of PV module. The national
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Figure 4.2: I − V curves of PV module for STC and NOCT conditions.

institute of standards and technology (NIST), USA [121] provides these empirical

parameters for different PV modules technologies [112]. The procedure needs to be

repeated for any new PV module type.

Finally, in order to avoid issues of these approaches, i.e., the needs for measuring

points on I − V curves and degrading the accuracy caused by simplifications, the

authors in [46], and [92] proposed methods based on optimization techniques. The

identification method proposed in [46] employed an exhaustive search algorithm to

explore all values of ideality factor and series resistor. It calculates the value of shunt

resistor iteratively. Although it is an effective algorithm, it requires checking all possi-

ble values of ideality factor and series resistor before determining the optimum ones

as well as calculating a complete I − V curve at each iteration. These two issues

make the procedure quite slow. Furthermore, the speed of procedure is sensitive

to the resolution of parameters with an order of O
((

resolutionnew

resolutionold

)2)
. The authors

in [92] reformulated the problem as an unconstrained optimization problem. Then,

they employed the particle swarm optimization (PSO) technique to solve it at differ-

ent values of cell temperature. Although the formulation and employed algorithm

improve the execution speed of the procedure, it still requires solving I − V as well

as two other transcendental equations at each iteration.

The main limitations of these methods are that they either require sophisticated ex-

perimental setups or use only STC information available in datasheets. It is difficult

to measure experimental points with regard to the difficulty in measuring cell tem-
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perature. Meanwhile, STC information estimates parameters with good accuracy

for MPP at STC; however, it is shown in Section 4.3.2 that it introduces a consider-

able error for MPP at NOCT. Furthermore, the methods based on the optimization

techniques solve repeatedly the non-linear transcendental I−V curve for the whole

range of the PV voltage and it causes them to be slow. To overcome these limita-

tions, this chapter proposes a novel PV model identification method to estimate the

electrical parameters with minimum overall error, namely, overall optimum solution.

The overall error is defined by the sum of the STC and NOCT errors, which are the

MPP estimation errors for the STC and NOCT curves, respectively. In this chap-

ter, the proposed method is applied for extracting the electrical parameters of the

equivalent single-diode circuit; however, with some modifications it is also applica-

ble to the double-diode model of a PV module. The proposed method relies on a

multi-objective optimization problem (MOOP) using either any empirical inaccurate

equations or any assumptions on parameters. A novel combination of a GA and IPM

is introduced to solve the resulting MOOP in considerably short time. Moreover, it

is shown that applying the proposed STC-based method, which considers the STC

error rather than overall error as objective function, the sum of the voltage, current,

and power errors is significantly low.

The results are validated against experimental benchmark curves, available in PV

module datasheets. They are also compared with the results of two prior researches

[46], [92] with respect to both the overall and STC errors. Applying the proposed

method for Kyocera KC200GT and SHELL ST40 PV modules and comparing with

the results in [46] and [92] shows substantial improvements. Employing IPM instead

of calculating complete I−V curves, the proposed method is around 10 times faster

than the method introduced in [46].

This chapter is organized as follows: the next section provides a summary of PV

mathematical model. Section III presents a formulation of MPP estimation and pa-

rameter identification problems as well as the proposed procedure. The identified

electrical parameters for three different PV technologies coupled with their validation

are given in Section IV. Finally, Section V presents a conclusion of the study. Figure

4.3 provides a summary of the chapter indicating different stages of the PV model

identification and validation procedure.
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Figure 4.3: An outline of chapter indicating different stages of the proposed procedure.

4.2 PV equivalent electrical circuit

Figure 4.1 illustrates a single-diode equivalent electrical circuit of a PV module.

Among electrical parameters, series resistor Rs is the sum of structural resistances

[46] and shunt resistor Rsh representing the leakage current [46]. Applying Kirchhoff

current law (KCL) to the junction point of these two resistors gives the characteristic

equation of PV module, which is a non-linear transcendental equation, as follows:

Ipv = Iph − I0
{

exp(
Vpv +RsIpv

ndNs

q

KTc
)− 1

}
− Vpv +RsIpv

Rsh

. (4.1)

where Vpv and Ipv are, respectively, output voltage and current of PV module and all

other symbols are defined as follows:

q The electron charge (1.60218× 10−19)

K Boltzman constant (1.38066× 10−23)

Ns The number of PV cells in series constructing PV module (-)

Tc The current amount of PV cell temperature (K)

Photocurrent Iph and reverse saturation current of the diode I0 for STC and NOCT

conditions are calculated using available parameters in datasheets [46], [122]:

Iph =

(
Rs +Rsh

Rsh

Isc,X + kI (Tc − Tc,X)

)
S

SX
. (4.2)

I0 =
Isc,X + kI (Tc − Tc,X)

exp(
Voc,X + kV (Tc − Tc,X)

ndNs

q

KTc
)− 1

. (4.3)

where parameters are defined as follows:

75



Chapter 4. Model Identification of Photovoltaic (PV) Modules

Isc,X The short-circuit current of PV module at condition X (A)

kI The temperature coefficient of short-circuit current (A/◦C)

kV The temperature coefficient of open-circuit voltage (V/◦C)

S The current amount of solar irradiance (W/m2)

SX The standard amount of the solar irradiance at condition X (W/m2)

Tc,X The standard amount of the cell temperature at condition X (K)

Voc,X The open-circuit voltage of PV module at condition X (V )

X The operating condition that is either STC or NOCT (-)

Manufacturers provide all above parameters, i.e., empirical values of the remarkable

points for each operation conditions as well as cell temperature at NOCT. Table 4.1

illustrates these information for PV modules studied in this chapter.

Under STC and NOCT conditions, (4.2) and (4.3) can be rewritten as follows:

Iph =


Rs +Rsh

Rsh

Isc,stc For STC-curve,

Rs +Rsh

Rsh

Isc,noct For NOCT-curve.

(4.4)

I0 =



Isc,stc

exp

(
Voc,stc
ndNs

q

KTc,stc

)
− 1

For STC-curve,

Isc,noct

exp

(
Voc,noct
ndNs

q

KTc,noct

)
− 1

For NOCT-curve.

(4.5)

By substituting (4.4) and (4.5) into (4.1), one obtains the equations of the two I − V

curves in Figure 4.2, which their stationary points are MPPs.

There are other equations to model deviation of photocurrent, short-circuit current,

and open-circuit voltage due to a variation in cell temperature [112], [92]. None of

these equations are used in the proposed method and it only uses (4.1) under STC

and NOCT conditions to increase the accuracy of the method.

4.3 MPP estimation and PV identification problems formulation

Basically, PV model identification can be interpreted as a parameter estimation prob-

lem (as a sub-class of optimization problems) with a few difficulties. It requires find-
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ing a global optimum point in a problem with multiple local optima. Moreover, it is

shown that existing two objectives, i.e. matching of MPP for each STC- and NOCT-

curve against manufacturer data, are conflicting objectives. The PV model identi-

fication problem is formulated as a global MOOP with two constraints on MPPs of

STC and NOCT curves. A proper GA is proposed to solve this global MOOP. It relies

on a fast MPP estimation algorithm, explained below, that employs IPM.

4.3.1 MPP estimation problem formulation

MPP is a point (Vmpp, Impp) on I − V curve that produces the maximum possible

power out of PV module. As a result, the problem of estimating MPP for either STC-

or NOCT-curve can be formulated as follows:

[Vmpp, Impp] = arg minimize
vpv,ipv∈<

{
1

vpvipv

}
(4.6a)

subject to:

ipv = iph − i0
{

exp(
vpv +Rsipv
ndNs

q

KTc
)− 1

}
− vpv +Rsipv

Rsh

(4.6b)

iph =
Rs +Rsh

Rsh

Isc (4.6c)

i0 =
Isc

exp(
Voc
ndNs

q

KTc
)− 1

(4.6d)

0 ≤ [vpv, ipv]
T ≤ [Voc, Isc]

T . (4.6e)

Given PV module information for the test conditions in Table 4.1 and electrical pa-

rameters in Figure 4.1, MPP can be estimated for either of test conditions. The

objective function, which needs to be minimized, is the reverse of generated power.

There is a non-linear constraint (4.6b) that is the I − V curve of PV module. Except

box constraints in (4.6e), other constraints provide equations to calculate photocur-

rent and diode reverse saturation current.

4.3.2 PV model identification problem formulation

In this chapter, PV model identification problem has been extended as the proce-

dure of identifying the best values for nd, Rs, and Rsh parameters (Figure 4.1) such
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that not only I−V curve (in (4.1)) at STC condition but also appropriate I−V curve

at NOCT condition have the maximum output power as much similar as possible

to (Vmpp,Impp) points reported by manufacturers (Table 4.1). Identifying these pa-

rameters, (4.2), and (4.3) can be employed to calculate the remaining Iph, and I0

parameters.

Table 4.1: PV modules studied in this thesis and their datasheet information.

Polycrystalline Thin film Monocrystalline
Parameters KC200GT (Kyocera) ST40 (SHELL) E20/333 (Sunpower)
Impp,stc(A) 7.61 2.41 6.09

Vmpp,stc(V ) 26.3 16.6 54.7

Pmpp,stc(W ) 200.143 40.00 333.123

Isc,stc(A) 8.21 2.68 6.46

Voc,stc(V ) 32.9 23.3 65.3

Impp,noct(A) 6.13 1.88 4.91

Vmpp,noct(V ) 23.2 14.7 50.4

Pmpp,noct(W ) 142.216 27.7 247.64

Isc,noct(A) 6.62 2.2 5.22

Voc,noct(V ) 29.9 20.7 61.2

kI(A/◦C) 3.18× 10−3 0.35× 10−3 3.5× 10−3

kV (V/◦C) −1.23× 10−1 −100× 10−3 −176.6× 10−3

Ns(−) 54 36 96

Tc,noct
◦C 47 47 45

Tc,stc
◦C 25 25 25

Figure 4.4 illustrates identification errors, which are defined as the normalized Eu-

clidean distance between the estimated MPP and experimental MPP provided by

manufacturer, for different values of ideality factor. They have been depicted just

up to the optimum points for simplicity. In Figure 4.4, it can be seen that for each

individual value of ideality factor there is a local optimum with respect to other model

parameters Rs and Rsh and this fact introduces multiple local optima to the problem.

For example, when nD equals to 1.25, which is illustrated by ”+”, local optima with

the error of −8.056 locates at (Rs, Rsh) = (0.2454Ω, 408.4Ω).

Applying identification error to each STC or NOCT information, respectively, intro-

Table 4.2: Conflicts between STC- and NOCT-based objectives.

PV modules −→ KC200GT ST40

Error Type ↓
Parameters of [46]

Using
NOCT-based

objective
Parameters of [92]

Using
NOCT-based

objective

STC-identification error 0.00262 0.03192 0.00499 0.03214

NOCT-identification error 0.02401 0.00003 0.05166 0.00002
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Figure 4.4: The existance of local optima for different values of ideality factor.

duces STC-identification error and NOCT-identification error. Table 4.2 illustrates

corresponding errors to the prior estimated parameters in [46] and [92]. It also com-

pares the amount of these identification errors with the case that parameters are

identified with respect to MPP at NOCT condition. From Table 4.2, it can be seen

that minimizing either of these errors does not minimize the other one. If the esti-

mated parameters propose an optimum point for the STC-identification error, these

parameters do not provide an optimum point for the NOCT-identification error and

vice versa. Hence, considering both STC and NOCT conditions introduce a MOOP

[123] with the following conflicting objectives:

J1(vpv, ipv) = ‖[vpv − Vmpp,stc
Vmpp,stc

,
ipv − Impp,stc
Impp,stc

,
vpvipv − Pmpp,stc

Pmpp,stc
]‖2. (4.7)

J2(vpv, ipv) = ‖[vpv − Vmpp,noct
Vmpp,noct

,
ipv − Impp,noct
Impp,noct

,
vpvipv − Pmpp,noct

Pmpp,noct
]‖2. (4.8)

J(vpv, ipv) = {w1θ1J1(vpv, ipv) + w2θ2J2(vpv, ipv)} . (4.9)

Due to the fact that power is the multiplication of voltage and current, considering

only the generated power in objective functions and discarding these two factors

introduces an algorithmic error as follows:

εp = Vmppεi + Imppεv. (4.10)
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(4.10) indicates that even small amount of round-off error in the estimated Vmpp and

Impp, namely, εv and εi are magnified by the values of voltage and current before

taking into account as the estimated Pmpp error, εp. In order to eliminate these is-

sues, the difference between all these three factors and nominal values available in

datasheets have been considered in (4.7) and (4.8).

Although open- and short-circuit points can also be added to objective functions, it is

unnecessary because they are considered in (4.4) and (4.5). Figure 4.6 of the next

section shows that the generated I − V curve using estimated parameters passes

through all remarkable points accurately.

There are two approaches to solve the resulting multi-objective optimization prob-

lems: i) converting to a single-objective problem; and ii) determining an entire Pareto

solution [124]. While the former approach returns a single solution, the latter pro-

vide a Pareto optimal set of solutions that are not dominated with each other. The

decision-maker selects among Pareto optimal set according to trade-offs. The pro-

posed algorithm in this chapter without loss of generality employs the first approach

for two reasons. While it is easier to implement, the proposed algorithm also aims

at estimating the best set of values for parameters rather than a set of optimal solu-

tions.

The individual objectives (4.7) and (4.8) are converted to a single objective (4.9),

employing a weighted convex combination of the normalized objective functions Ĵ =[
Ĵ1, ..., Ĵk

]
with weights w = [w1, ..., wk]

T [124]. Convex combination means that∑k
i=1wi = 1 and the normalized objective function is defined as follows:

Ĵ = [θ1, ...θk]
T [J1, ..., Jk] (4.11a)

θi =
1

Ji(x[i])
(4.11b)

x[i] = arg maximize
x∈χ

{Ji(x)} . (4.11c)

where k is the number of individual objective functions. In order to keep the values

of all objective functions in the range of [0, 1], the normalization factors {θi} are

selected as the reverse of their maximum values. The resulting single-objective PV

model identification problem is proposed as follows:

80



4.4. MPP estimation algorithm

[Rs,opt, Rsh,opt, nd,opt] =

arg minimize
Rs,Rsh,nd∈<

{w1θ1J1(vmpp,stc, impp,stc) + w2θ2J2(vmpp,noct, impp,noct)} (4.12a)

subject to:

[vmpp,stc, impp,stc] = The solution of (4.6) for STC (4.12b)

[vmpp,noct, impp,noct] = The solution of (4.6) for NOCT (4.12c)

[Rs,min, Rsh,min, nd,min]T ≤ [Rs, Rsh, nd]
T ≤ [Rs,max, Rsh,max, nd,max]

T .

(4.12d)

Through this study, normalization factors are calculated dynamically and weights

are assumed to be equal (i.e. [0.5, 0.5]). The proposed method for this case can

be named as full method. The equal weights imply that there is no preferences

between either of STC or NOCT conditions, however, if there is such a preference,

the convex weights can be unbalanced. Particularly, applying either of the values

of [1, 0] or [0, 1] convert (4.12) to a single (only (4.7) or (4.8)) objective problem and

the resulting methods are respectively called STC- and NOCT-based method. Two

constraints in (4.12b) and (4.12c) present MPPs of STC and NOCT curves. Table

4.3 summarizes box constraints of electrical parameters for different PV modules

studied in this thesis.

4.4 MPP estimation algorithm

The optimization problem given in (4.6) can be solved employing either the curve-

inspecting technique, a local optimization method, or even heuristic algorithms such

as a GA. The authors in [108], [46], and [92] employed the curve-inspecting method,

which is an exhaustive search method, to find MPP of the I − V curve. It solves the

Table 4.3: Box constraints of PV module electrical parameters.

Parameters KC200GT ST40 E20/333
nd,min(−) 1.0 1.0 1.0

nd,max(−) 2.0 2.0 2.0

Rs,min(Ω) 0.001 0.001 0.001

Rs,max(Ω) 1.0 1.0 2.0

Rsh,min(Ω) 50 50 50

Rsh,max(Ω) 1, 100 550 1, 500
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transcendental equation (4.6b) for Ipv with respect to all possible values of Vpv with

a Newton-Raphson based method. The procedure needs to calculate a complete

I − V curve to be able to extract MPP and its execution time depends significantly

on the step-size of Vpv variation.

From Figure 4.2, it can be seen that the generated power by a PV module in terms

of PV voltage (P-V curve) is a concave function. Consequently, objective function of

the problem in (4.6) is convex over feasible values of Vpv and Ipv and it can be solved

employing well-known non-linear convex optimization techniques. In this study, IPM

has been selected chiefly because it solves the problem fast. Furthermore, there

exists a powerful still freely accessible implementation of IPM, i.e., IPOPT [125].

The fundamental idea of IPM is to transform the non-linear optimization problem with

inequality constraints to a problem with only equality constraints. Then the optimum

value is estimated through satisfying the necessary conditions proposed by Karush-

Kuhn-Tucker (KKT) theorem.

Table 4.4 summarizes execution time of the curve-inspecting and the proposed

methods to solve the problem given in (4.6). It illustrates that the curve-inspecting

technique is computationally quite slow. Table 4.5 illustrate a summary of MATLAB

scripts developed for the proposed MPP estimation algorithm. While the implemen-

tation of the proposed MPP estimation algorithm in MATLAB is more than 10 times

faster, employing IPOPT makes it even faster. MPP estimation is a critical task of the

PV module identification problem because it is executed several times depending on

the identification algorithm and its parameters, e.g., population size and the maxi-

mum number of generations in a GA. A fast MPP estimation algorithm, in particular,

speeds up substantially the identification algorithm.

Table 4.4: Execution times for different MPP estimation methods.

Methods Eexecution time

Curve-inspecting method with MATLAB 3000(msec)

The proposed algorithm with MATLAB 300(msec)

The proposed algorithm with IPOPT 90(msec)
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Table 4.5: MATLAB scripts of the proposed MPP estimation algorithm.

%MATLAB script of the MPP estimation algorithm. The objective function and constraints have
been attached for simplicity’s sake. They need to be separate files with the same names. STC
or NOCT parameters need to be configured first.

iph = iph STC;
a Tc = a STC;
i0 = i0 STC;

% A solver for the optimization problem
x0 = [voc STC * 0.8, isc STC * 0.7]; %initial guess
opt lb = [voc STC * 0.5, isc STC * 0.5]; %lower bounds
opt ub = [voc STC, isc STC]; %upper bounds
options = optimset(’Algorithm’,’interior-point’, ’TolFun’, 1e-18, ’Display’, ’off’);
[ x,fval ] = fmincon(@PVObj,x0,[],[],[],[],opt lb ...

opt ub,@(x)PVConstraints(x, var3, iph STC,...
i0 STC, var1, var2, a STC/var3),options);

[ c, ceq ] = confun(x);
vmpp = x(2);
impp = x(1);
pmpp = vmpp * impp;

% objective function
function f = PVObj(x)

f = 1/(x(1) * x(2));
end

% constraints function
function [ c, ceq ] = PVConstraints(x, nd, iph, i0, rs, rsh, vt)

% Non-linear equality constraints
c = [];
% inequality constraints
ceq = [(x(1) - iph + i0 * (exp(( rs * x(1) + x(2)) / (nd * vt)) - 1) +...

((rs * x(1) + x(2)) / rsh)) ] ;
end

4.4.1 Model validation

The proposed MPP estimation algorithm is compared with the results of the curve-

investigating method [46], i.e. a method to find MPP with any required accuracy

employing an exhaustive search. Table 4.6 shows the results of this comparison.

In Table 4.6, it can be seen that they are matched together precisely and the pro-

posed algorithm estimates MPPs quite accurately comparing with experimental val-

ues given in Table 4.1.
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Table 4.6: A comparison between the proposed MPP estimation algorithm and curve-investigating method [46].

KC200GT ST40 E20/333
Methods STC NOCT STC NOCT STC NOCT

Curve-investigating

method:
( Vmpp

Impp

) ( 26.3000
7.6100

) ( 23.2000
6.1300

) ( 16.5980
2.4100

) ( 14.7030
1.8840

) ( 54.7000
6.0900

) ( 50.4000
4.9100

)

The proposed

method:
( Vmpp

Impp

) ( 26.3001
7.6099

) ( 23.1994
6.1300

) ( 16.5990
2.4099

) ( 14.7000
1.8844

) ( 54.7002
6.0899

) ( 50.4002
4.9099

)

4.5 PV model identification algorithm

The well-known non-linear programming (NLP) algorithms such as IPM cannot solve

the PV model identification problem in (4.12) because it is a global optimization

problem with multiple local optima. To address this problem, a GA is proposed in

this chapter to solve the resulting global optimisation.

4.5.1 Genetic algorithms

Generally speaking, a GA is a search technique that mimics the natural genetic-

based biological organisms. It is a class of stochastic search methods combining

elements of two strategies, namely, exploring the search space and exploiting the

best solution [126]. GAs also belong to a larger set of evolutionary algorithms. Due

to similarity with Darwinian evolution, biological terms are widely used to describe

GAs.

Unlike the gradient-based algorithms that looking for an individual solution, GAs deal

with a population, as a set of solutions. GAs start with an initial fixed-size population,

which is a set of randomly generated chromosomes. A chromosome concatenates

the numerical representations of all decision variables. Theoretically, these variables

can be of any types of information; however, most of the prior developed GAs are

focused on binary or real values. Having discrete values like integers, the resulting

optimisation problem is of the class of mixed integer problems which requires more

complications to be considered.

GAs rely on three stochastic operators, namely, crossover, mutation, and selection

[127]. A GA generates new offsprings or solutions by employing either a crossover

or a mutation operation. The crossover operators take two mated chromosomes of
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the current generation, as parents, and generate two offsprings by randomly mixing

the parents chromosomes. Moreover, to avoid quick convergence to the local optima

points, it is essential to introduce new solutions to algorithm by randomly changing

one or more decision variables of a part of chromosomes. All chromosomes, in-

cluding the original and new generated ones, are evaluated according to the defined

fitness function. Then, the selection operator selects the predefined population size

number of the most fittest chromosomes to construct a new generation. If the prob-

lem is well-posed, chromosomes iteratively converge to the global optimal solution

through a number of generations and according to a selection rule states that the

fitter chromosomes have higher probabilities of being selected.

For further details on GAs, the reader is referred to [126].

4.5.2 Design of the proposed PV model identification algorithm

Table 4.7 presents a pseudocode of the proposed GA in this study. The proposed GA

adopts disruptive selection method [128] to find the global optima. Traditional GAs

allocate more trials to above-average chromosomes and do not guarantee conver-

gence to the global optimum. Unlike traditional GAs, the disruptive selection, which

is a more effective method, gives a higher probability to both the best and the worst

chromosomes (Figure 4.5) in a roulette wheel framework [128]. Figure 4.5 (a) and

(b) illustrate MPPs proportional to chromosomes of the last generation and indicate

varieties of genes. Figure 4.5 (c) shows the effect of the disruptive selection on the

fitness values. While it preserves the best chromosomes through generations, it still

keeps the average fitness of the population around half of the best fitness.

In order to solve the proposed global optimization problem having multiple local op-

tima, it is essential to employ methods that prevent the population premature conver-

gence. The proposed GA employs two techniques to preserve population diversity

through generations. Firstly, a specific technique is used to adjust the mutation rate

dynamically. It changes the mutation rate proportional to a diversity measurement,

which is defined as the ratio of the average fitness to the best fitness [126]. Secondly,

random offspring generation is the other technique used to preserve the population

diversity. When two parents have equal genotypes, normal offsprings are clone to

their parents. The idea behind this method is that if this situation happens, then the
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Table 4.7: A pseudocode of the proposed PV model identification method.

Step1: Initialization

Load optimization parameters: popSize, genNo max, mutRate init, crossoverRate;

Load PV parameters from datasheets;

genIndx = 0; current generation

mutRate max = min {3×mutRate init, 0.9};

v = [nd, Rs, Rsh]; chromosme structure

pop = popGen(popSize); Random initial population of popSize

Step 2: Crossover and mutation

Selecting parents (λ = rand() ∈ [0, 1]; i ∈ {1, 2}):

[parent1,c, parent2,c] = RouletteWheel(crossoverRate);

offspringi,c = λparent1,c + (1− λ)parent2,c;

mutRate = mutRate init+ (mutRate max−mutRate init)( fitnessgenIndx

fitnessbest,genIndx
)a;

Selecting chromosomes/variable to be mutated:

[chrom, var]m = RouletteWheel(mutRate) ;

mutV ar = varm × rand()× (1− genIndx
genNo max

);

migratedChromm = chromm(mutV ar); using mutated var.

pop = pop ∪ {offspringi,c} ∪ {migratedChromm};

Step 3: Calculating fitness values (j is the chromosome number)

Calculating values of objective functions:;

(vmpp,stc, impp,stc) = Solve Eq. (4.6) for STC with IPM;

(vmpp,noct, impp,noct) = Solve Eq. (4.6) for NOCT with IPM;

[f1,j , f2,j ] = Use these values acc. to Eqs. (4.7) and (4.8);

normalizeFactor1 = maximize
j∈[0,popSize]

{f1,j};

normalizeFactor2 = maximize
j∈[0,popSize]

{f2,j};

fitnessj = 0.5
normalizedFactor1

f1,j+
0.5

normalizedFactor2
f2,j ; Eqs. (4.9), (4.11b) and (4.8)

Step 4: Selection

Psel,j =
|fitnessj−fittnessgenIndx|

fitnessbest,genIndx
; selection probability

pop = RouletteWheel(Psel,j); new population of popSize

Step 5: Terminating criteria

If genIndx < genNo max AND fitnessbest,genIndx < 10000 then

update genInx and go to step 2

else chromosome [nd, Rs, Rsh] with fitnessbest,genIndx

is the optimum solution. STOP.

86



4.5. PV model identification algorithm

Figure 4.5: Generated curves for KC200GT PV module employing the proposed STC-based method: (a) esti-
mated MPPs of STC during the last generation, (b) estimated MPPs of NOCT during the last generation, (c) the
best and average fitness values. (d)-(f) Diversities of chromosomes for all generations.
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normal offsprings are replaced by new randomly generated ones [129]. In Figure 4.5

(c), it can be seen that although the best fitness is constant for several consecutive

generations, which means the algorithm is vulnerable to premature convergence,

the average fitness is variable. In other words, the proposed GA preserves the pop-

ulation diversity through generations. Figure 4.5 (d)-(f) depict diversities of each

parameter in more details.

From Table 4.7 , it can be seen that the proposed procedure calculates the maximum

values of each objective function prior to selecting chromosomes of the next popu-

lation. These values are the normalization factors {θi} in (4.12) for each objective

function.

Unlike the identification methods in [46] and [108], the proposed method does not

require an initial guess for ideality factor. Moreover, execution time is independent of

the parameters resolution and the method can be terminated in the middle of execu-

tion according to a accuracy-time trade-off that leads to have sub-optimal solutions.

4.5.3 Model validation

The proposed PV identification method is used to identify equivalent electrical cir-

cuit of three PV modules with different technologies [130–132]. Table 4.1 illustrates

the data of these PV modules provided by three manufacturers: Kyocera, Shell, and

Sunpower. Subsection 4.5.4 presents identified model for Sunpower E20/333 mod-

ule using different variations of the proposed PV model identification method. It also

validates the results of the proposed method by comparing them with experimental

curves, available in PV module datasheet [132]. The results are also compared in

Subsection 4.5.5 with two other studies in [46] and [92], indicating substantial im-

provements in accuracy. All implementations are conducted using MATLAB with the

following parameters:

• Design variables: [nd, Rs, Rsh]

• Crossover rate: 85%

• Initial mutation rate: 40%

• Population size : 100
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• The maximum number of generations: 100

• Convex weights: [0.5, 0.5]

4.5.4 Sunpower E20/333 model identification and experimental validation

Table 4.8 presents electrical parameters of Sunpower E20/333 PV module identified

by different variations of the proposed method. It shows a comparison between

different errors in STC-based, NOCT-based, and full methods indicating how the

latter provides a solution with the smallest overall error, with respect to experimental

MPPs (Table 4.1), than the other variations (with 5.1% improvement). The identified

solution by the full method is close to the results of the STC-based method, however,

it is not necessarily the same for other types of PV modules. From Table 4.9, it can

be seen for ST40 module that the identified solution by the full method is much closer

to the results of NOCT-based method and it experiences an improvement of 31.5%

compared with the STC-based method.

Figure 4.6 compares the predicted I − V curves of E20/333 PV module, for differ-

ent amounts of solar irradiance and cell temperature, with respect to the benchmark

points provided by manufacturer (the circle markers). It is observed that the iden-

tified model by the proposed full method predicts different curves very close to the

empirical benchmark points.

Figure 4.7 depicts the curve error versus PV voltage for different amounts of solar

irradiance. The curve error is defined as absolute normalized difference between the

predicted I − V curve, which is generated by employing the identified model, and

experimental benchmark I − V curves which is provided by manufacturers. If there

exist predicted and empirical points with the same value of voltage (or current) on

curves, then the error equals to absolute difference between the proportional current

(or voltage) values. The calculated absolute values are normalized with either short-

circuit current or open-circuit voltage values.

4.5.5 Accuracy verification of the proposed method

From Figures 4.6 and 4.7 and explanations under subsections 4.5.4, it can be seen

that the proposed method extracts a PV model that predicts accurately matched

I − V curves to experimental measurements, provided by manufacturers. In order
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Figure 4.6: Predicted I − V curves (the solid lines) and experimental points (the circle markers) of Sunpower
E20/333 PV module for different values of solar irradiance and Tc = 25◦C, in addition to the case that Tc = 50◦C
(the thicker line and the solid circle markers).

Figure 4.7: Absolute normalized curve errors between the experimental and predicted I − V curves of E20/333
module at different amounts of solar irradiance.

to indicate improved accuracy of the proposed method, the measured identification

error, as the sum of STC- and NOCT-identification errors, is also compared with the

corresponding values introduced by the methods in [46] and [92]. Figure 4.8 shows

this comparison for different PV modules. It is observed that the identified model

by the proposed full method generates the least overall error among all methods.

For instance, applying the proposed full method to KC200GT and ST40 modules

and comparing with the results in [46] and [92] delivers a significant improvement.

Identically, substantial improvements with respect to these references are gained for

90



4.5. PV model identification algorithm

Table 4.8: Identified electrical parameters of Sunpower E20333 (Monocrystalline) module employing the pro-
posed methods.

Parameters STC-based NOCT-based Full

nd(−) 1.132 1.014 1.167

Rs(Ω) 0.365 0.598 0.337

Rsh(Ω) 1125.75 1399.17 1414.89

STC-identification error(%) 0.0004 1.6279 0.0121

NOCT-identification error(%) 1.0927 0.0014 1.0208

Overall error(%) 1.0931 1.6293 1.0375

Table 4.9: Identified electrical parameters of SHELL ST40 (Thin film) and Kyocera KC200GT (Polycrystalline)
modules employing the proposed methods.

SHELL ST40 Kyocera KC200GT

Parameters STC-based NOCT-based Full STC-based NOCT-based Full

nd(−) 1.346 1.829 1.973 1.291 1.033 1.348

Rs(Ω) 1.508 1.151 1.067 0.232 0.421 0.214

Rsh(Ω) 386.22 294.59 510.49 547.91 662.813 1060.66

STC-identification
error(%)

0.0087 3.2138 3.0240 0.0007 3.1924 0.0291

NOCT-identification
error(%)

4.4390 0.0020 0.0210 2.190 0.0030 2.0960

Overall error(%) 4.4477 3.2158 3.0450 2.191 3.1958 2.1254

STC-identification errors when STC-based method is applied to these two modules.

The absolute normalized curve error between predicted and experimental I − V

curves of ST40 module for two different values of insolation are given in Figure 4.9.

The absolute errors have been normalized using similar technique introduced under

Figure 4.7. From Figure 4.9, it can be seen that the proposed full method shows

a significant reduction in curve errors. Moreover, it gives dramatic improvements

especially for lower insolation.

The introduced improvement by applying the proposed full method may vary for dif-

ferent types of PV modules; however, the full method is still a consistent identification

algorithm. It means that it always proposes the optimum solution with respect to the

overall and curve errors, regardless of different PV technologies. A PV module is

dominated by either NOCT (e.g. ST40 module) or STC condition (e.g. KC200GT

or E20/333 modules). If it is dominated by NOCT condition, using the STC-based

identification method (e.g. the methods in [46] and [92]) provides a model with sig-
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Figure 4.8: Identification error of the proposed methods comparing with the results in [46] and [92].

nificant overall error chiefly because of a substantial NOCT-identification error. The

proposed full method is consistent, i.e., it automatically adjusts itself to find the best

equivalent electrical model for a PV module, regardless of being dominated by either

STC or NOCT condition.

4.6 Summary

This chapter proposed new formulations for PV model identification and MPP esti-

mation problems. These formulations construct proportional non-linear optimization

problems using only the main algebraic equation of PV modules and the available

data provided by manufacturers. A novel GA- and IPM-based identification method

was introduced to solve the resulting multi-objective global optimization problem,

which has several local optima. The proposed method identifies parameters of an

equivalent electrical circuit as a model to predict the behavior of PV modules at any

operating condition. The main aspect of the proposed model identification method is

to extract these electrical parameters with minimizing the overall identification error

rather than just STC-identification error. While the latter is the distance between em-

pirical and estimated MPPs of STC curve, the overall identification error is the sum

of such distances for both STC and NOCT curves. The proposed MPP estimation

algorithm is based on IPM and finds MPPs much faster comparing with two recent

approaches. Unlike other approaches that blindly search I − V curve, this algo-
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Figure 4.9: Absolute normalized curve errors between experimental and predicted I−V curves of ST40 module
introduced by different methods at (a) 1000W/m2 and (b) 200W/m2 insolation.

rithm quickly solves an optimization problem to extract MPP. Applying the proposed

identification method to three PV modules of different technologies shows very low

identification errors. The results were compared with empirical curves as well as

two recent researches. It is indicated that the proposed method works well even for

PV modules dominated by NOCT condition. A pseudocode of the proposed method

and a sample MATLAB script of the MPP estimation algorithm were presented.

93



Chapter 5

Dynamical Simulation of Standalone

dc Microgrids

In order to be able to analyze different control strategies, it is essential to simu-

late standalone dc microgrids operations. Moreover, long-term simulations of stan-

dalone dc microgrids, in particular, is necessary to predict their behaviours under

wind speed and solar irradiance uncertainties. This chapter provides the simulation

results of a sample standalone dc microgrid which cover both the fast and slow dy-

namics of the system. It is shown that such a standalone dc microgrid is simulated by

employing acausal approach, using flat hybrid DAEs. A MATLAB/SimPowerSystems

acausal model is developed in order to simulate the system including all fast and

slow dynamics. On the other hand, the developed Modelica model in Chapter 2 is

used for long-term simulation with the cost of ignoring fast dynamics.

5.1 Introduction

In order to study the behavior of standalone microgrids, it is essential to simulate the

system. Such simulations are necessary regarding two aspects: i) fast dynamics

observations leading to short-term simulations; and ii) long-term simulation. A short-

term simulation is required to be able to design and analyze inner controllers. A long-

term simulation, on the other hand, is essential to predict the standalone microgrids

behaviours over a period of time ahead. Such a long-term simulation is fundamental

to design and analyze outer level model predictive controllers as well as to handle
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different uncertainties in smart grid applications. The outer control strategies and

long-term simulations operate in the order of seconds, minutes or even hours for

which the fast dynamics can be replaced with the relevant steady-state equations.

Both the short- and long-term simulations of standalone microgrids are challenging

due to the three major issues. Firstly, PV module, wind turbine, and battery bank add

algebraic constraints to the system model. Such embedded algebraic constraints

shifts the problem to the class of DAEs. Secondly, the multi-mode operation of bat-

tery bank introduces discontinuity and makes the system to be of the class of hybrid

DAEs. Finally, due to existence of simultaneous fast and slow dynamics, microgrids

simulation is becoming time-consuming and memory expensive. For these reasons,

standalone microgrids should be simulated employing an acausal approach.

As explained in Chapter 1, acausal system modelling is a declarative approach in

which individual parts of the system are directly described as HDAE equations [22].

Among the available SIMULINK toolboxes, SimPowerSystems toolbox employs the

acausal approach to model and simulate the system. Moreover, Modelica-based

simulation frameworks use acausal approach to simulate complex system. There

are a number of available Modelica modelling and simulation frameworks, among

them the open-source OpenModelica environment [28] is used throughout this re-

search, chiefly because it is a free software and it supports more features of Model-

ica language comparing to others. OpenModelica provides and integrated Modelica

compiler and DASSL [137] general purpose hybrid DAE solver.

There are prior researches focused on using either basic SIMULINK or SimPow-

erSystems toolboxes of MATLAB/SIMULINK framework to simulate different com-

ponents of sustainable microgrids. A simplified SIMULINK model of PV array is

presented in [133]. Such a model is also employed in [133] to simulate PV arrays

that supply constant ac and dc loads at specific operating conditions. They used

the linearization technique introduced in [134] to take into account the effect of so-

lar irradiation on cell temperature. The work in [46], on the other hand, proposes

two simulation scenarios based on equivalent electrical circuits of PV modules. The

proposed equivalent electrical circuits are based on the SimPowerSystems compo-

nents and consists of controlled current sources. In order to increase the simulation

accuracy at low solar radiation, a two-diode PV model is introduced in [135].
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A mathematical representation of a 3-blade wind turbine operation is presented in

[94]. Based on such a mathematical representation, SimPowerSystems toolbox

provides an integrated ready-to-use component to simulate 3-blade wind turbines.

Moreover, the works in [136] and [19], respectively, propose comprehensive mathe-

matical models of PMSGs and lead-acid batteries which are used by SimPowerSys-

tems in its ready-to-use simulation components.

5.2 Standalone microgrids simulation using SimPowerSystems

toolbox

Figure 5.1 illustrates the developed MATLAB/SIMULINK model of a sample stan-

dalone dc microgrid. From Figure 5.1, it can be seen that the system decomposed

into ten components, including wind speed and solar irradiance generators, PV ar-

ray, wind turbine, PMSG, rectifier, battery bank, dc load, and a boost and a buck

converter to connect, respectively, solar and wind branches to a dc bus. The result-

ing model is simulated according to the acausal approach available by SimPower-

Systems framework.

5.2.1 Solar irradiance and wind speed generators

Although solar irradiance and wind speed levels can also be given deterministically

with their profiles, there are embedded modules to stochastically simulate these

values using Beta and Weibull random generators. These generators use hourly

shape parameters which are extracted and analyzed in Chapter 3.

As the main advantage, stochastic models of wind speed and solar irradiance take

uncertainties into account for simulation purposes. For instance, these random val-

ues for solar irradiance inherently take into account uncertainties due to cloud shad-

ing or incident angle and generated values for solar irradiance can be directly fed

into a PV array. Stochastic models are also simple to implement. Once all hourly

shape parameters are learned, wind speed and insolation values can be generated

by using random generators.

Figure 5.2 shows the developed simulation model of the hourly solar irradiance gen-

erator which is also applicable to a wind speed generator. While shape param-

eters and extraterrestrial insolation for different locations is applied through two-
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dimensional lookup tables, a random generator uses these parameters to generate

hourly clearness index that can be multiplied by extraterrestrial insolation of that day

to calculate hourly global solar irradiance. The result is segmented and is step-

wise linearized using a linear interpolator. Figure 5.3 depicts the sample simulation

results ontained for hourly insolation in Dyfed, UK, on 01 January and 01 October.
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Figure 5.1: SIMULINK model of a hybrid wind-solar-battery renewable energy system.
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Figure 5.2: Solar irradiance generator module.
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(a) (b)

Figure 5.3: Simulated hourly solar irradiance in Dyfed, UK, on (a) 01 January; and (b) 01 October.

Coupling wind speed and insolation generators with other components causes the

simulation to be multi-rate. While the time step for all components is small enough to

simulate system dynamics, the simulation rate of wind speed and insolation is one

hour, which is significantly higher. In this study, this challenge has been overcome by

feeding a separate clock to the wind speed and solar irradiance generators (Figure

5.1).

5.2.2 PV array simulation

Figure 5.4 illustrates the block diagram of a PV array simulator. In Figure 5.4, it

can be seen that this electrical circuit includes a current source which is controlled

by (5.1), where Im is the sum of photocurrent, Iph, and diode current, Id. PV cell

temperature, Tc is simulated externally using a state-space block and its output is

then fed into the PV module simulator.

Im(t) = Iph(t)− I0(t)
{

exp

(
Vpv(t) +RsIpv(t)

ndNs

q

KTc(t)

)
− 1

}
. (5.1)

Although a PV array as a component can be simulated with its equivalent electri-

cal circuit, there is still a challenge to connect it to a DC-DC converter. Since a

PV array is an instantaneous system, its connection to a converter casts an alge-

braic constraint on the converter which is not solvable with ordinary ODE integrators.

SIMULINK employs a proprietary index-1 DAE solver consists of an ODE integrator

coupled with a Newton type method to solve algebraic constraints. It requires us-

ing a small step-size for simulation (i.e. 10−8 sec. in this study), as well as setting

manually a consistent initial value.

100



5.2.
S

tandalone
m

icrogrids
sim

ulation
using

S
im

Pow
erS

ystem
s

toolbox

Figure 5.4: PV module simulation model.
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5.2.3 Boost- and buck-type DC-DC converter simulation

Figure 5.5 shows a SimPowerSystems circuit, including pulse width modulation

(PWM) block and ideal switches, which is developed to simulate a boost-type DC-DC

converter. Buck-type converters are are also modelled as electrical circuits. From

Figure 5.5, it can be seen that the simulation of converters is not simplified with

averaging approach, instead it is modelled as a hybrid system. Transistors are re-

placed with two ideal switches for simplicity. In order to prevent cases in which both

switches are opened causing the inductor to be disconnected, a snubber resistor is

also added to Ideal Switch1.

Figure 5.5: Boost-type dc-dc converter simulation model with ideal switches and inductor resistive loss.

5.2.4 Battery simulation

SIMULINK provides a built-in module to simulate different types of batteries, includ-

ing lead-acid battery. The provided module is based on the mathematical model for

lead-acid battery presented in Chapter 2.

Connecting a battery bank to the system, similar to PV arrays, introduces algebraic

constraints. Consequently, in order to simulate the resulting DAE system, step-size

of simulation is reduced and a slight in series inductance is added (Figure 5.1).
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5.2.5 Wind branch simulation

SIMULINK/SimPowerSystems provides built-in modules, including a 3-blade wind

turbine, a 3-phase PMSG, and a 3-phase passive rectifier, in order to simulate wind

branch. These modules are used to construct the wind branch of the sample stan-

dalone sustainable microgrid in this study.

Table 5.1 summarizes wind branch parameters and their values.

5.2.6 Simulation results

The available built-in algebraic loop solver of SIMULINK helps SimPowerSystems

toolbox to integrate the model of standalone dc microgrid. However, as mentioned

before, it also requires applying a small simulation step-size, i.e. 10−8 seconds, and

initial condition blocks (ICs) across algebraic loops. Moreover, in order to simulate

pulse width modulators (PWMs) and hence dc-dc converters, simulation step-size

must be fixed. In other words, fixed-step solvers must be chosen instead of much

faster variable-step solvers. Such small fixed simulation steps leads to a very slow

and memory-expensive simulation which limits any possible duration of simulation

to around 2 seconds, using AMD Athlon processor with 3.0 GB of RAM.

TABLE 5.1 summarizes simulation parameters for wind, solar, and battery branches.

Figures 5.6 shows the simulation results obtained for solar branch of the sample

microgrid. In Figures 5.6, it can be seen that generated power by solar branch of

microgrid is less than the maximum power which is due to the chosen value for its

duty cycle. Duty cycle is constantly kept at the value of 0.55 and hence the generated

power of solar branch gradually reduced due to battery and dc bus voltage level

increase. An external controller (see Chapter 6) adjusts solar branch duty cycle in

order to ensure that PV array always operates at MPP, i.e. (Vmpp, Impp, Pmpp) = (26.3

V , 71.6 A, 2.001 KW ) at STC.

Table 5.1: System parameters for SIMULINK/SimpowerSystems simulation.

Wind branch Battery branch Solar branch
Pwt,nom(KW ) 10.0 Vbstack,nom(V ) 48.0 Ppvnom(KW ) 2.0
Turbine radius (m) 4.01 C10(Ah) 550 Number of PV modules (−) 10
Duty cycle (−) 0.37 Duty cycle (−) 0.55
Wind speed (m/s) 12.0 Insolation (Wh/m2) 1000.0
PWM Frequence (KHz) 20.0 PWM Frequence (KHz) 20.0
λnom(−) 7.35
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(a) (b)

(c) (d)

Figure 5.6: Simulated (a) current and (c) power of solar branch; and (b) current and (d) voltage of PV array using
SimPowerSystems toolbox.

Figure 5.7 indicates that choosing a duty cycle value of 0.37 for wind branch, en-

sures that it operates in its MPP. From Figures 5.7a and 5.7b, respectively, it can be

seen that wind branch generates 10 KW of mechanical power at a rotational speed

of 22 rad/s which shows it operates in MPP. In the beginning, rotational speed of

wind turbine is initialized to 10 m/s that generates around 3 KW . As depicted in Fig-

ures 5.7c, there is a peak in applied mechanical torque to wind turbine to increase

its rotational speed and hence generated power. However, after a transition the me-

chanical torque remains steady at 450 N.m to supply the demanded electromagnetic

torque at nominal rotational speed. From Figure 5.7d, it can be seen that there is no

supplied electromagnetic torque during the time before t = 0.2 seconds that helps

rotational speed to reach its nominal value. In Table 5.1, it can be seen that when

wind speed is 12 m/s, wind turbine rotates with a tip speed ratio of 7.35 in order to

generates the maximum power. As shown in Figure 5.7e, tip speed ratio remains

steady at around 7.3 after a transition phase. Although wind turbine operates at its

MPP and generates 10 KW , Figure 5.7f shows that the delivered power by wind

branch is less due to the internal electrical loss of buck converter. Since the voltage

level of wind branch equals to the battery bank voltage, i.e. around 60 V at t = 2 sec

(Figure 5.7g), the injected current by wind branch is around 135 A (Figure 5.7h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: SIMULINK simulation results of wind branch including (a) mechanical power; (b) rotational speed;
(c) mechanical and (d) electromagnetic torques; and (e) tip speed ratio variation. It also indicates generated (f)
power and (g) current of wind branch injected to dc bus at the voltage level given in (h).
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The simulation results obtained for battery bank are also depicted in Figure 5.8.

From Figure 5.8a, it can be seen that in the beginning when wind branch does not

operate at its MPP, battery bank is discharged in order to provide its share of load

demands. Meanwhile, state of the charge (SOC) of battery bank goes down before

t = 0.2 seconds. Then, battery bank starts being charged when the generated power

by wind branch is increased. Figure 5.8b shows SOC variations of battery bank and

indicates that it is in charging state after a short-time discharging. The similar state

switching can also be observed from Figure 5.8c which depicts the battery bank

current variations. It is important to note charging current and power are represented

by negative values. From Figure 5.8d, it can be seen that the voltage level of battery

bank is increased gradually during its charging state. In order to steadily generate

the maximum solar- and wind-branch powers, an external controller must re-adjust

duty cycles due to battery bank voltage variations.

Figure 5.9 depicts the electrical current and power delivered to the connected dc

load. It is important to note that the dc bus voltage level and hence the delivered

power to load are changed due to variations of the battery bank terminal voltage.

5.3 Modelica-based dynamical simulation of standalone micro-

grids

The proposed Modelica model in Chapter 2 is used to simulate a sample standalone

dc microgrid, consisting of an array of Kyocera KC200GT PV modules, a 3-blade

wind turbine connected to a PMSG, and a bank of Panasonic LC-R127R2PG lead-

acid batteries. The works in [46] and [20] present the identified electrical parameters

of the employed PV module, lead-acid battery, and wind turbine. Table 5.2 summa-

rizes all parameters and their values used in this study.

Fig. 5.10a compares simulated current-voltage (I − V ) curve of KC200GT PV mod-

ule at STC condition against experimental curve available by the manufacturer in

datasheet (the circle markers). It is observed that the proposed model predicts very

close to the empirical data provided by manufacturer.

The simulation results obtained for a single LC-R127R2PG lead-acid battery over a

full operating cycle, including charging, over-charging, saturation, discharging, over-

discharging, and exhaustion zones, are given by Figures 5.10b and 5.10d. In Fig-
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(a) (b)

(c) (d)

Figure 5.8: SIMULINK simulation results of battery bank: (a) charging (positive) and discharging (negative)
power; (b) SOC variations; (c) charging (positive) and discharging (negative) current; and (d) battery bank
voltage level variations.

(a) (b)

Figure 5.9: SIMULINK simulation results of the connected dc load: delivered electrical (a) current and (b) power.

ures 5.10b and 5.10d, it can be seen that battery is discharged after 100 minutes of

charging. It also indicates that after 25 minutes it enters into the over-charging zone.

Discharging with a current of 7.2A in average, it takes around 35 minutes, which

matches with the information available in datasheet, so that the terminal voltage of

battery reaches to its cut-off threshold that is around 10.2V .

Figure 5.10c illustrates the simulation results obtained for wind turbine. In Figure

5.10c, it can be seen that wind turbine generates the maximum lift at λopt = 8.1

which is matched with characteristics of the employed wind turbine [94].

The following scenario is carried out to evaluate the stability of the developed model

by applying different step changes to manipulated and non-manipulated variables:

• After 100 seconds, load demand sharply changes from 65% to 20% of the maxi-

mum value.
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• There is a step change in wind speed at time 350 seconds from 100% to 167%

of the rated speed.

• At t = 300 seconds, insolation falls to 50% from the initial maximum level.

• The wind turbine pitch angle and the wind branch duty cycles are changed to

perform pitch control at t = 350 seconds. They are also changed to remove the

wind branch shares of generation between t = 500 and 600 seconds.

Figure 5.11a illustrates the manipulated variables applied to harvest the maximum

power of solar and wind branches, i.e. 2KW and 10KW respectively. In Figure

5.11a, it can be seen that at t = 350 seconds, when wind speed is increased by

67%, pitch angle goes up to 20 degrees and promotes pitching to feather [9]. In

effect, although wind speed reaches to 67% above its rated value, the generated

power by wind turbine remains stable at the rated value, i.e. 10KW . Moreover, in

Figure 5.11c, it can be seen that despite an initial sharp increase causing by one

second delay of the pitch controller delay, rotational speed of wind turbine returns

back. Figure 5.11a depicts a sharp decrease of Dw at t = 500 seconds that makes

the wind turbine share of the electrical power to become zero between t = 500 and

600 seconds Figure 5.11b.

Any discharging to charging mode transition increases the cycle life of battery by
1

EFC(DODn)
as given in Figure 5.11d. From Figure 5.11d, it can be seen that cycle life,

as an inherently discontinuous state, is modeled with a continuous approximation.

Although battery starts absorbing excess of energy from beginning, its absorbing

rate is increased at t = 100 seconds after a substantial reduction in load demand.

It also compensates energy deficit of the system during the period of time between

t = 500 and t = 600 seconds when wind branch is removed.

Table 5.2: Wind turbine, PMSG, battery stack, and PV parameters in this study.

Wind turbine PMSG Battery stack PV array
C1(−) 0.517 J(Kg.m2) 0.35 Cmax(Ah) 48.15 Rs(Ω) 0.221
C2(−) 116.0 F (N.m.s) 0.002 Rbat(Ω) 0.019 Rsh(Ω) 405.4
C3(−) 0.4 P (−) 8 V0(V ) 12.3024 nd(−) 1.3
C4(−) 5.0 ψ(V.s) 0.8 P1(−) 0.9 Ns(−) 54
C5(−) 21.0 Prated(KW ) 10.0 Nbats(−) 8 Isc,stc(A) 8.21
C6(−) 0.007 Ls(H) 0.0083 Nbatp(−) 3 Voc,stc(V ) 32.9
λopt(−) 8.1 Ts(sec) 0.726 kI(A/K) 0.003
Pwt,nom(KW ) 10.0 Vbstack,nom(V ) 96.0 kV (V/K) -0.12
Rad (m) 4.01 Pbat,nom(KW ) 1.296 Npvs(−) 1
Ux,base(m/s) 12.0 C10(Ah) 45.0 Npvp(−) 10
Cp,max(−) 0.48 Vgas(V ) 13.0 Ppv,nom(KW ) 2.001
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(a)

(b)

(c)

(d)

Figure 5.10: Modelica simulation results: (a) I − V (dashed line) and P − V (solid line) curves of KC200GT PV
module against experimental points (the circle markers); (b) battery voltage; (c) power coefficient curve of wind
turbine; and (d) battery current.
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(a)

(b)

(c)

(d)

Figure 5.11: Applied (a) switching duty cycles and pitch angle values; and Modelica simulation results for (b)
electrical current of each branch, (c) angular velocity of wind turbine; and (d) cycle life as well as SOC of battery
bank.
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5.4 Summary

In this chapter, the developed mathematical model in Chapter 2 was used to simu-

late a sample microgrid. It was shown that it requires employing acausal approach in

order to simulate microgrids due to existence of algebraic constraints. A SIMULINK

model was developed based on SimPowerSystems toolbox which is suitable to

model complex systems in SIMULINK using the acausal approach. It was shown

that due to algebraic loops and existence of PWMs, such a simulation is very slow

and memory-expensive.

It was shown that the developed Modelica model in Chapter 2 c be solved directly

with DASSL general purpose DAE solver which is equipped with event detector and

consistent re-initialization features. The obtained results indicated that the proposed

model is accurate to simulate different variables of dc microgrids using OpenModel-

ica environment. Moreover, it was shown that the developed model is agile enough

to be solved and therefore is suitable for long-term simulation purpose.
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Chapter 6

Optimal Energy Management

Strategies for Stand-alone dc

Microgrids

Coordinated and multivariable energy management strategies are proposed to con-

trol the operation of a wind turbine and a photovoltaic array of a stand-alone dc

microgrid. As a result, the output power generated by these renewable energy con-

verters are controllable that makes it possible to implement the constant current-

constant voltage regime to charge the connected battery bank. The proposed strate-

gies are developed as nonlinear model-predictive controllers that dynamically calcu-

late the optimum pitch angle and three switching duty cycles. It is shown that apply-

ing the proposed controller to a sample stand-alone dc microgrid, the battery bank

is charged according to the IU charging regime. The variable load demands are also

shared accurately between generators in proportion to their ratings. Moreover, the

dc bus voltage is maintained at the nominal level with the maximum error of 2.0%.

6.1 Introduction

As explained in Chapter 1, it is more challenging in stand-alone microgrids to ad-

dress the three well-known voltage regulation, power sharing, and battery manage-

ment issues which needs to employ more sophisticated control strategies.

The stablity of a dc microgrid can be measured in terms of the stability of its dc
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bus voltage level [4, 138]. Therefore, maintaining the dc bus voltage level inside

a permissible range, i.e. the voltage regulation, is one of the main objectives of

any developed strategy to control dc microgrids [5]. Prior researches (e.g. [4, 138–

140]) focused on voltage regulation strategies for the grid-connected microgrids.

While the grid voltage source converter (G-VSC) is the primary slack terminal of

the grid-connected microgrids [4], storages, such as battery banks, are the only

slack terminals that regulate stand-alone or islanded microgrids voltage level. Al-

though battery banks are effective storage systems, their energy absorbing capacity

is limited regarding a number of operational constraints, as explained later in this

section. The works in [141, 142, 58] present strategies that curtail the renewable

power generations if the battery bank cannot absorb the excess generation. How-

ever, their curtailment strategy is sensitive to the dc bus voltage variation and is not

in coordination with the battery management constraints. Furthermore, their pro-

posed strategies curtail generations of different renewable energy systems (RESs)

independently without any proportional power sharing.

When multiple distributed generators (DGs) are connected in parallel, any voltage

difference among them leads to a current circulating between generators [143]. In

order to prevent the circulating current, load demands need to be shared between

all DGs in proportion to their ratings [5, 144]. Moreover, electrical, mechanical, and

thermal stresses should be shared evenly among all DGs to prevent overstressing.

Droop control is a conventional distributed strategy to share power demands be-

tween available generators. It emulates a virtual rotating inertia for an electronically-

interfaced generator to mimic the inertia of a conventional synchronous generator

[142]. The droop control is extended in [6, 145–148] to be applied to the dc slack

terminals by replacing conventional droop curves with a dc power-dc voltage sin-

gle curve. On the other hand, a dc voltage versus the output current droop curve

applicable to the dc microgrids is presented in [5, 143]. Although droop control is

very effective, it suffers from at least two drawbacks [1]: i) applying the droop con-

trol to the system with non-linear loads causes distortions to the grid voltage. This

non-linear load can be a battery bank in the charging mode. ii) It shifts the absolute

voltage level of a stand-alone microgrid in terms of the amounts of the load. In order

to overcome the second drawback and maintain the microgrid voltage level constant,

a hierarchical architecture is introduced in [1, 5, 143], consisting of two extra control
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levels; namely, the secondary and tertiary levels.

As mentioned before, there are a number of constraints that limits the battery op-

eration during the charging mode [21]: i) The maximum charging current should be

limited in terms of the battery capacity. Applying a constant high level of the charging

current increases the battery voltage to reach the gassing voltage fast. ii) Since the

internal resistor of the battery increases in terms of the higher state of the charge

(SOC), it is essential to reduce the charging current at high SOC values. iii) Although

higher charging current reduces the required charging time, battery cannot be fully

charged with a constant high level of the charging current. A control strategy is pro-

posed in [138] in which the maximum absorbing power by battery bank is limited as

an operational constraint. However, since a battery acts as a non-linear load during

the charging mode, limiting the maximum absorbing power does not necessarily limit

the charging current. Alternatively, in order to protect battery banks from being over-

charged, the work in [141] limits the maximum attainable SOC to be less than 100%.

This means that battery banks will never be fully charged. The strategies employed

in [6, 149] use an extension of the droop curves to share power demands between

different storage units. However, the proposed droop curve does not consider the

battery’s charging current and gassing voltage constraints. Moreover, applying a

linear and static droop curve to a non-linear and dynamic battery bank degrades the

power sharing accuracy.

In contrast to the strategies available in literatures where the output power of RESs

are not controllable and always equal to the maximum possible power, the proposed

strategies curtail, if it is necessary, the power generations of RESs. The EMSs

proposed in this work are multivariable NMPC strategies that simultaneously con-

trol four variables: i) the wind turbine pitch angle; ii) angular velocity of the wind

generator; iii) the PV array operating voltage; and iv) charging current of battery

bank. In order to solve the resulting multivariable and non-linear control problem,

the proposed EMSs are formulated as novel optimal control problems (OCPs). Un-

like strategies which are based on using dump load that only protects battery bank

from overcharging, the proposed strategy realizes IU charging regime that helps to

increase the battery bank life span. Moreover, removing dump loads, the overall

installation cost is reduced.
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This chapter is organized as follows: the next section discusses the optimal EMS

design issues. It also shows how an EMS is formulated as an OCP. The developed

NMPC strategy, that continuously solves the proposed OCP problem, is also pre-

sented in Section III. Section IV presents different test scenarios and discusses the

obtained results. Finally, the conclusion of the study is given in Section V.

6.2 Design of optimal energy management strategies

In this work, optimal EMSs for stand-alone dc microgrids are formulated as NMPC

strategies for comlementarity systems. Such NMPC strategies, as given in in (6.1),

are based on a relevant OCP in the form of MPCC for the prediction length of N

sample instances. From (6.1), it can be seen that such a relevant OCP includes

MCPs, given by (6.1c) besides normal equality and inequality constraints.

u∗(.) = arg minimize
u(.)∈<n

J(x(n), z(n), γ(n),u(n);N) :=

n+N∑
k=n

L(x(k), z(k), γ(k),u(k)) +M(x(n+N), z(n+N), γ(n+N)),

subject to:

F(x(k), x(k + 1), z(k), γ(k),u(k), v(k)) = 0,

MCP(γ(k),Γ(x(k), z(k))),

H(x(k), z(k), γ(k),u(k)) ≤ 0,

x(n) = x0, z(n) = z0, γ(n) = γ0,

R(x(n+N), z(n+N), γ(n+N)) = 0,

x(k) ∈ X , z(k) ∈ Z,u(k) ∈ U ,

0 ≤ γ(k) ≤ 1.

(6.1a)

(6.1b)

(6.1c)

(6.1d)

(6.1e)

(6.1f)

(6.1g)

(6.1h)

Figure 6.1 illustrates a sample of dc microgrids that is controlled with the proposed

optimal energy management strategies. For the sake of simplicity, only boost side

of the connected bi-directional converter is shown.

From Figure 6.1, it can be seen that the proposed EMSs iteratively get the estimated

system states, x̂, as the inputs and calculate the optimal solution, u∗(.), as the out-
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puts. It is assumed that there is an external state estimator, which is out of the

scope of this study, that estimates the current system states, i.e. x̂, from the system

outputs y. The microgrid dc bus voltage level, Vdc, is set externally as a set point

V dc. This means that the developed controller can also acts as a replacement for

the secondary and primary levels of the hierarchical architecture introduced in [143].

The non-manipulated variables v, consisting of solar insolation, wind speed, and

load demand, need to be predicted N steps ahead to be applied to the developed

NMPC. These predicted variables can be obtained from a meteorological center or

can be provided by an external module which relies on local measurements and

time series techniques like autoregressive-moving-average (ARMA) [150].

The developed NMPC controller consists of three entities: i) the dynamic optimizer

that solves the OCP successively; ii) The mathematical model, F , of the system that

is used to predict the behavior of the system with respect to the given initial value

x̂; iii) The cost function and constraints of the relevant OCP which are designed

for each operation scenario. The resulting optimal pitch angle, β̄, is applied as a set

point to an inner closed-loop controller. Moreover, the optimal values of the switching

duty cycles are applied to the pulse width modulators (PWMs) of dc-dc converters.

The mathematical model of a stand-alone dc microgrid is detailed in Chapter 2

as a set of the following implicit differential and algebraic (DAE) functionals fi for

i ∈ {1, 2, .., 25} and a vectorMCP of two MCPs. For different operation scenarios,

there are more functionals to be added to the system model F in order to model

control objectives. These additional functionals, specified for each test scenario, are

introduced throughout Section 6.4.

F(x, ẋ, z,u, v, γ) =


f1(x, ẋ, z,u, v, γ)

f2(x, ẋ, z,u, v, γ)

..

f25(x, ẋ, z,u, v, γ)

 = 0, (6.2a)

MCP(γ,Γ) =

 MCP1(γ1,Γ1)

MCP2(γ2,Γ2)

 . (6.2b)
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Figure 6.1: A simplified view of dc microgrids and the developed NMPC controller. Battery bank is assumed to work in charging mode.
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6.3 Implementation of optimal energy management strategies

The proposed controller employs the collocation method for discretization [25] and is

implemented in open-source CasADi environment [81] to benefit from the automatic

differentiation (AD) technique and improve its performances [81].

Table 6.1 shows the parameters of different components and their values in this

study. These values are used to model the sample dc microgrid depicted in Figure

6.1. The linear load demand is also assumed to be less than or equal to 12 KW.

Table 6.1: Components parameters in this study.

Wind turbine PMSG Battery stack PV array
C1(−) 0.517 J(Kg.m2) 0.35 Cmax(Ah) 48.15 Rs(Ω) 0.221
C2(−) 116.0 F (N.m.s) 0.002 Rbat(Ω) 0.019 Rsh(Ω) 405.4
C3(−) 0.4 P (−) 8 V0(V ) 12.3024 nd(−) 1.3
C4(−) 5.0 ψ(V.s) 0.8 P1(−) 0.9 Ns(−) 54
C5(−) 21.0 Prated(KW ) 10.0 Nbats(−) 8 Isc,stc(A) 8.21
C6(−) 0.007 Ls(H) 0.0083 Nbatp(−) 3 Voc,stc(V ) 32.9
λopt(−) 8.1 Ts(sec) 0.726 kI(A/K) 0.003
Pwt,nom(KW ) 10.0 Vbstack,nom(V ) 96.0 kV (V/K) -0.12
Rad (m) 4.01 Pbat,nom(KW ) 1.296 Npvs(−) 1
Ux,base(m/s) 12.0 C10(Ah) 45.0 Npvp(−) 10
Cp,max(−) 0.48 Vgas(V ) 13.0 Ppv,nom(KW ) 2.001

Table 6.2 summarizes the developed NMPC controller in this study that optimally

manages the energy flow across stand-alone dc microgrids. It illustrates that the dif-

ferent equations described throughout Chapter 2 construct the system model F and

makes it possible for the controller to predict the near future behavior of dc microgrid.

The non-manipulated variables, i.e. wind speed, insolation, and load demand, are

modeled as parameters which are initialized for every prediction horizon. The am-

bient temperature Tx is assumed to be constantly equal to 298.15 K, for simplicity’s

sake.

6.4 Test scenarios

In order to evaluate the performance of the developed optimal EMS in terms of

different control objectives, three different test scenarios are carried out throughout

this section. The first test scenario shows a multivariable MPPT strategy for stand-

alone dc microgrids as hybrid systems. It indicates general operations of a load

tracking strategy for such a hybrid system. In order to solve the resulting OCP with a

general purpose NLP solver, it is assumed that battery bank only switches between
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Table 6.2: A pseudocode of the proposed optimal energy management strategy.

Step1: Configurations

Set α1 = 0.02V dc and α2 = 0.01;
(
the values of the slack variables in Eqs. (6.7)-(6.8)

)
Set T = 10.0(sec), N = 2;

(
prediction horizon and the number of samples, respectively

)
Instantiate an NLP solver;

(
non-linear optimization problem solver

)
Step 2: Measurements

Measure the differential states If , Qbat, and ωr values form the system;

Measure the dc bus voltage Vdc;

Measure the battery stack voltage level Vbstack;

Get the predicted wind speed, insolation, and load demand for the next 10 seconds form an external
estimator;

Step 3: Constructing the OCP given by Eq. (6.1) in CasADi environment [81]

IF Vbstack < VgasNbats THEN

Use Eq. (6.9a) as the cost function;
(
constant current charging regime

)
ELSE use Eq. (6.9b) as the cost function;

(
constant voltage charging regime

)
Construct the vector F (Eq. 6.1b) using functionals f1 − f27 (as in Eqs. (2.2)-(2.14) and (6.7)-(6.8)) ;

Apply the current and next step values of the wind speed, insolation, and load demand as the OCP param-
eters;

Construct Eq. (6.1g) from the box constraints defined by Eqs. (6.10)-(6.11) as well as two constraints
|α1| ≤ α1 and |α2| ≤ α2 ;

Step 4: Initializations

Set the measured values of If , Qbat, and ωr as the initial values of differential states

Set the measured value of Vdc as the initial value of dc bus voltage level

Step 5: Discretization and solving the discretized problem

Discretize the OCP problem using the collocation method

Construct equivalent NLP problem

Solve the equivalent NLP problem using standard NLP solvers to calculate the optimal solution u∗(.)

Step 6: Applying the control variables

Constructing the control law using the first sample of the optimal solution, i.e. u∗(0) ;

Apply the control variable according to the above control law ;
(
the first sample of the optimal solution is

applied to the system
)

GOTO Step 2: Measurements ;
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the charging and discharging modes of operation at the edge of the discretized time

slots.

The next two test scenarios depict the controller effectiveness to implement a con-

stant current and constant voltage charging regime. A practical EMS can switch

between these two scenarios depending on the battery bank voltage level.

6.4.1 Scenario I: Multivariable load tracking strategy for stand-alone dc mi-

crogrids

Controller design

In order to use ordinary NLP solvers, the MCP constraint of the system model, given

in (6.2b), can be regularized as the following equality and inequality constraints [25]:

Γ(γ)− w + v = 0,

w, v ≥ 0, wTγ = ε, vT (1− γ) = ε. (6.3)

where 0 < ε � 1 is a design parameter and Γ(γ) = [Γ1(γ1) Γ2(γ2)]
T = [Ibstack −

tchg]
T and γ = [γ1 γ2]

T are respectively the functions and slack variables given in

(2.5) and (2.7). Moreover, w = [w1 w2]
T and v = [v1 v2]

T are slack variables,

defined to regularize MCPs.

Control objectives

The developed energy management strategy in this chapter addresses two control

objectives: i) maximizing the battery bank SOC; and ii) regulating dc bus voltage

level of the microgrid. These objectives are formulated as the cost function J and a

path constraint h1, respectively.

The cost function J , given in (6.4), is the battery bank SOC deviation from the fully

charged state which should be minimized in terms of manipulated control signals u

and slack variables w, v, and γ.

120



6.4. Test scenarios

J(x(n), z(n),u(n),w(n), v(n), γ(n);N) :=

n+N∑
k=n

‖SOC(k)− 1.0‖2 + ‖SOC(n+N)− 1.0‖2 .
(6.4)

The permissible deviation of the dc bus voltage level Vdc from the specified set point

V dc is given in (6.7) as a slack variable α1 which is a design parameter.

h1 : |Vdc − V dc| − α1 ≤ 0. (6.5)

In this test scenario, the design parameter α1 is set to be in the range of ±2% of the

V dc. It means that for a set point of 48.0 volt, the maximum permissible deviation is

±0.96 volt.

Control constraints

The generated power by wind turbine should be limited to its rated power by employ-

ing a pitch angle controller [9]. This requirement is addressed by the following path

constraint:

h2 : −Teωr − Pwt,nom ≤ 0. (6.6)

The variation of the wind turbine angular velocity, i.e. ∆(ωr), is also restricted in

order to decrease the tower vibrations [9]. Moreover, the charging and discharging

currents of each battery are limited respectively to 0.16C10 and 0.23C10 amperes,

where C10 is the nominal capacity of each battery given in Table 6.1.

Results and discussion

Non-manipulated variables, i.e. wind speed, insolation, and load demand, are ap-

plied to the system according to the given profiles in Figure 6.2a. Figure 6.2b, on

the other hand, illustrates the calculated optimal pitch angle and one of the switch-

ing duty cycles, i.e. Dw. In response to substantial wind speed rises during the time

between 60 and 180 seconds, the wind turbine pitch angle is increased to around 7

and then 14 degrees. Figure 6.2c shows that despite an increase of 38% by wind
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speed, the generated power remains steady at the rated power as the result of the

developed coordinated pitch and variable speed control strategy. From Figure 6.2d,

it can be seen that in order to maintain such a constant output power, the optimal

switching duty cycle and pitch angle are calculated to decline the normalized power

coefficient to 0.393.

Figure 6.2c shows that the developed strategy acts as MPPT algorithm during usual

operation. However, there is an exception during the period of time between 60 to

120 seconds, when the load demand falls down. Since the maximum permissible

charging current of batteries is specified to be 0.16C10, the controller curtails the

amount of the generated power to meet the charging constraint. Figure 6.2e depicts

that the charging current of each battery remains steady at 0.16C10, i.e. 7.2 A.

Moreover, from Figure 6.2a, it can be seen that the load demands fluctuate be-

tween 68% and 125% of the rated value causing battery bank switches between the

charging and discharging operation modes. The consequent variations of the slack

variables γ1, w, and v are given in Figure 6.3a. From Figure 6.3a, it can be seen that

battery bank switches from charging mode (γ1 = 1) to discharging mode (γ1 = 0)

at t = 120 seconds in order to maintain the dc bus voltage level in the permissible

range. Figure 6.3b illustrates that despite a substantial increase of load demand at

t = 120 seconds, dc bus voltage level remains in the range of 48.0 ± 2%. More-

over, the given variables w and v in (6.3), respectively, to model the instantaneous

changes of the battery current direction, switch between 0 and the charging and

discharging currents of batteries. Since the charging and discharging currents of

batteries are respectively limited to 0.16C10 and 0.23C10 amperes, the slack variables

w and v are also bounded by these values.

Finally, Figure 6.3c illustrates that switching between two modes of the battery bank

operation changes SOC trends during the simulation time. The SOC value starts

going down at t = 120 seconds, as a result of the battery bank discharging. Although

the developed control strategy tries to harvest the maximum available wind and solar

energies and maximize the SOC of battery bank, it may also curtail generations in

some cases. Due to this generation curtailment, SOC rises identically between t = 0

and 120 seconds in spite of wind speed and load demand variations.
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(a)

(b)

(c)

(d)

(e)

Figure 6.2: (a) Normalized values of the applied non-manipulated variables; (b) the optimal switching duty cycle
and pitch angle of wind branch; and the resulting (c) powers by wind and solar branches, (d) batteries current,
and (e) angular velocity and normalized power coefficient of wind turbine.
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(a)

(b)

(c)

Figure 6.3: (a) Switchings events of slack variables and the resulting (b) dc bus voltage level of microgrid and
(c) SOC trends.
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6.4.2 Scenario II: Constant current charging mode

This scenario covers the following three different cases which are run successively:

• Case I: wind turbine and PV array generate enough power at their MPPs to sup-

ply load demands and charge battery bank with its nominal charging current.

• Case II: the generated power is just enough to supply the load demands and

therefore battery bank is not charged or is charged with the current less than

its nominal charging current.

• Case III: the generated power is more than the required power to supply the

load demands and charge battery bank with its nominal charging current.

Each case lasts for 5 minutes and therefore the total period of the simulation time is

15 minutes. In order to calculate the optimal control variables every 5 seconds, the

developed NMPC controller runs exactly 60 times as per each case.

Control objectives

The developed EMS for this test scenario addresses three control objectives: i)

regulating the dc bus voltage level of microgrid; ii) power sharing between wind

turbine and PV array in proportion to their ratings; and iii) managing the battery to

be charged according to the IU charging regime. These objectives are formulated

as a combination of two slack variables and the cost function J .

The permissible deviation of the dc bus voltage level Vdc from the specified set point

V dc is given in (6.7) in the form of a slack variable α1 which is a design parameter.

In this study, α1 is set to be in the range of ±2% of V dc. It means that for a set point

of 48.0 volt, the maximum permissible deviation is ±0.96 volt.

f26 = α1 − (Vdc − V dc). (6.7)

The second part of the above mentioned ternary objective, i.e. the power sharing

criterion, is also formulated as a constraint in (6.8). The design parameter α2 indi-

cates the permissible deviation from the proportional power sharing criteria. If α2 is
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zero, the generated power ratio between the wind and PV branches is equal to the

ratio between their nominal powers, Pwt,nom and Ppv,nom which is 5. The generated

powers are also normalized with respect to the wind speed and insolation values,

i.e. Ux and Sx. In this study, the design parameter α2 is set to be in the range of

±1% that increases the flexibility of the algorithm with the cost of slight penalty.

f27 = α2 −

{
IwtdcVdc
Pwt,nom

(
Ux,base

max(Ux, Ux,base)

)3

− IpvdcVdc
Ppv,nom

Sx,base
max(Sx, Sx,base)

}
. (6.8)

The last part of the above mentioned ternary objective, i.e. battery bank charging

management, is considered as the cost function. There are two separate cases

and the presented EMS switches between them depending on the battery voltage

level: i) the battery voltage level is less than its gassing voltage; and ii) the battery

voltage level exceeds the gassing voltage. (6.9a) and (6.9b) are the discretized

cost functions designed for these two separate cases where ‖.‖2 denotes Euclidean

distance operator. The cost functions are convex combinations of two objectives

with the weights β1-β4. While β1 and β3 are close to 1.0, β2 and β4 are close to zero.

In order to keep dc bus voltage level as close as possible to V dc, its deviation is also

added to the cost function. Otherwise, dc bus voltage level may stay at the upper or

lower boundaries of the permissible range of Vdc ± 0.96 volt.

J
(
x(n), z(n),u(n), N

)
:=

n+N∑
k=n

{
β1

∥∥∥∥ 1

Ic

(Ibstack(k)

Nbatp

− Ic
)∥∥∥∥

2

+ β2

∥∥∥∥ 1

V dc

(
Vdc(k)− V dc

)∥∥∥∥
2

}
+{

β1

∥∥∥∥ 1

Ic

(Ibstack(N)

Nbatp

− Ic
)∥∥∥∥

2

+ β2

∥∥∥∥ 1

V dc

(Vdc(N)− V dc)

∥∥∥∥
2

}
, (6.9a)

J
(
x(n), z(n),u(n), N

)
:=

n+N∑
k=n

{
β3

∥∥∥∥ 1

NbatsVgas

(
Vbstack(k)−NbatsVgas

)∥∥∥∥
2

+ β4

∥∥∥∥ 1

V dc

(
Vdc(k)− V dc

)∥∥∥∥
2

}
+{

β3

∥∥∥∥ 1

NbatsVgas

(
Vbstack(N)−NbatsVgas

)∥∥∥∥
2

+ β4

∥∥∥∥ 1

V dc

(
Vdc(N)− V dc

)∥∥∥∥
2

}
.

(6.9b)
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Battery bank is charged with the constant current Ic when its voltage is less than

gassing voltage. Moreover, the voltage level of battery bank should always remain

below its gassing voltage V gas to protect it from permanent damages or even prob-

able explosion.

Box constraints

The generated power by wind turbine must be limited to its rated value specified by

manufacturers. In order to regulate the produced aerodynamic power and comply

with limitations, it requires employing a pitch angle controller [9]. This requirement is

addressed by introducing the given box constraint in (6.10) on the mechanical power

generated by wind turbine.

0 ≤ −Teωr ≤ Pwt,nom. (6.10)

Other box constraints on the manipulated variables as well as system states are

formulated as follows:

xmin ≤ x ≤ xmax, (6.11a)

umin ≤ u ≤ umax, (6.11b)

where xmin and umin specify lower boundaries for system states and manipulated

variables, respectively. xmax and umax are also the upper boundaries of these vari-

ables. For instance, the switching duty cycles are limited between 20 and 80% and

the pitch angle should be less than 30 degrees.

Initial constraints

Prior to calculating the optimal solution of the next receding horizon N , all system

states, including angular velocity of wind turbine, actual available charge of battery

Qact, and the filtered battery current, If , are initialized by the measured or estimated

values. Moreover, dc bus voltage level is measured and applied to controller as an
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initial value for Vdc. These measured or estimated values construct initial constraints

of the OCP, as given in (6.1e).

Results and conclusion

Table 6.3 summarizes design parameters of the developed NMPC controller. The

number of discretization samples N is chosen to be 2 and therefore one only needs

to predict the next sample of non-manipulated variables v. The reported compu-

tational times of a 10-second prediction horizon is calculated on an Intel CORE 2

DOU machine with 3GB of RAM. These computational times indicate that choosing

a 5-second sampling time h provides adequate margin for all calculations of the dy-

namic optimizer module in Figure 6.1. Moreover, it means that the microgrid voltage

level deviation from set points is evaluated every 5 seconds that complies with the

hierarchical architecture specifications [143].

Figure 6.4 illustrates non-manipulated inputs to the system including wind speed,

insolation, and load demand. From Figure 6.4, it can be seen that during the first 5

minutes, i.e. case I, wind speed as well as insolation are equal to the rated values

and load demand is less than the maximum available power. On the other hand,

during the second 5 minutes wind speed exceeds its rated value while load demand

reaches to the maximum rated power, i.e. 12 KW. Finally, while wind speed sharply

exceeds its rated value during the last case, load demand is also decreased below

the maximum available power. Without loss of generality, wind speed and load de-

mand are assumed to be constant within each case, i.e. for 5 minutes. Moreover,

solar irradiance is constant during the simulation only for results clarification.

The optimal control variables, u∗(.), minimize the cost function J given by (6.9). Fig-

ure 6.5 depicts these calculated optimal control variables for the non-manipulated

inputs in Figure 6.4. Applying these optimal control variables to stand-alone dc mi-

crogrid, the resulting variables of wind and solar branches are depicted in Figure 6.6.

Table 6.3: Design parameters and computational times for the developed NMPC controller.

Parameter Name Parameter
Value

Parameter Name Parameter
Value

Prediction horizon T (sec) 10 Average Computational Time (sec) 2.066
Sampling time h (sec) 5.0 Minimum Computational Time (sec) 0.628
No. of the discretization samples N 2 Maximum Computational Time (sec) 3.565
V dc(V ) 48.0
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(a)

(b)

(c)

Figure 6.4: Non-manipulated input variables: (a) wind speed, (b) solar irradiance, and (c) load demand.
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(a)

(b)

(c)

(d)

Figure 6.5: Calculated optimal control variables: (a) pitch angle, switching duty cycles of (b) solar-, (c) wind-,
and (d) battery-branch converters.

130



6.4. Test scenarios

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Different variables of wind and solar branches: (a) wind turbine angular velocity, (b) PV array voltage,
(c) wind turbine power coefficient, (d) PV array current, and (e)-(f) generated power by each branch.

Moreover, Figure 6.10 illustrates dc bus voltage level, supply and demand currents,

as well as SOC and charging current of battery bank.

Wind branch operates at its MPP during case I, i.e. before t = 300 seconds. Since

wind speed is equal to its rated value (Figure 6.4a), pitch angle is calculated to

be zero as given by Figure 6.9a. Figure 6.9c shows that in order to harvest the

maximum available power (Fig. 6.6e), controller adjusts the switching duty cycle of

the connected buck converter, Dw. The resulting rotational speed of wind turbine is

close to its nominal value as given by Figure 6.6a that produces the maximum power

coefficient (Figure 6.6c). From Figures 6.4a and 6.5a, it can be seen that at t = 300

and 600 seconds, when wind speed exceeds its rated value, pitch angle goes up to

1.2 and 16 degrees, respectively, that promotes pitching to feather [9]. It ensures
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that wind turbine works at its rated power during case II. However, in order to curtail

its generation during case III, i.e. during the period of time after t = 600 seconds,

controller not only promotes pitching to feather but also reduces rotational speed.

Figures 6.6c and 6.6e, respectively, indicate that as a result, power coefficient and

generated power of wind turbine are declined, respectively, to 0.348 and 9.039 KW.

Solar branch also works at its MPP during cases I and II (Figure 6.6f); however,

its generated power is curtailed during case III. From Figures 6.6b and 6.6d, it can

be seen that though PV array operates at its MPP, i.e. Vpv = 26.3V and Ipv =

76.1A, during cases I and II, controller changes its operation point during case III

in order to curtail its generated power down to 1.808 KW. Dividing this value to

the curtailed wind branch power, i.e. 9.039 KW, it reveals that controller shares

the curtailed power between two branches in proportion to their rating. The power

sharing accuracy during case III is 0.035% which is within the permissible range of

±1%, as defined by α2 in Table 6.2. It should be noted that though both wind and

solar branches work at their maximum power points during case I, the generated

power by the wind branch is slightly less than the nominal power at its rated speed.

This slight difference can be reduced by decreasing the design parameter α2.

In spite of a significant variation of wind speed and load demand, Figure 6.7a in-

dicates that dc bus voltage of microgrid is maintained within its permissible range,

which is V dc ± 0.02V dc. From Figure 6.7a, it can be seen that during case II, when

there is not enough generated power to charge battery, controller reduces dc bus

voltage level to reduce the wasted energy across lines. However, beginning case

III, voltage level returns back to its nominal value of 48.0V . Figure 6.7b shows the

supplied and demanded currents during the period of the simulation time.

In order to fully charge battery bank, the developed EMS does not let the charging

current to exceed its nominal value. The nominal charging current is assumed to be

0.15C10 which is 6.75 A per each battery and 20.25 A for the battery bank. Figure

6.7d depicts that charging current of battery bank remains constant at its nominal

value during cases I and III. The optimal EMS curtails the generated power such

that charging current, which initially exceeds its nominal value during case III, is

fixed later. Although there is not enough power during case II to charge battery at

its nominal current, charging current is still constant. In Figure 6.7c, it can be seen
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(a)

(b)

(c)

(d)

Figure 6.7: (a) Dc bus voltage of microgrid, (b) supply and demand currents of different components, (c) SOC,
and (d) charging current of battery bank. 133
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that this strategy helps battery to be charged up to high SOC values.

6.4.3 Scenario III: Constant voltage charging mode

Terminal voltage of battery bank rises by Scenario II due to constant charging cur-

rents. Once the battery terminal voltage level reaches its gassing voltage, charging

current should be gradually reduced in order to prevent exceeding gassing voltage

threshold. This constant voltage charging strategy helps battery bank to be fully

charged without the risk of permanent damage. From Table 6.2, it can be seen that

the developed controller switches to the constant voltage charging mode when ter-

minal voltage of battery bank reaches to its gassing voltage. For this purpose, the

cost function of the developed NMPC strategy is switched as given in Step 3 of Table

6.2.

Results and conclusion

Scenario III operates at wind speed and insolation levels similar to Scenario II, which

are given by Figure 6.4. Figures 6.8a and 6.8b, respectively, show the charging cur-

rent and terminal voltage variations of battery bank. From Figure 6.8a, it can be

seen that battery bank is charged with a constant current equals to 0.31C10 during

the period of time up to t = 300 seconds when its terminal voltage reaches to the

gassing voltage, i.e. 41.85 A. The developed controller does not let charging current

to exceed this nominal value. By reaching the gassing voltage at t = 300 seconds,

controller starts gradually reducing charging current in order to maintain the battery

bank voltage constant. As a safe margin, terminal voltage of each battery is main-

tained around 0.8%, or equivalently 0.1 V , less than its gassing voltage. In other

words, the terminal voltage of battery bank stays constant at 103.2 V for the gassing

voltage of 13.0 V as per each battery unit. Figure 6.8c indicates that battery can be

fully charged with the constant current-constant voltage charging strategy with no

risk of exceeding its gassing voltage.

Figure 6.9 depicts the calculated optimal control variables for non-manipulated in-

puts in Figure 6.4. Moreover, Figures 6.10a-6.10d, respectively, illustrate dc bus

voltage, Cp and angular velocity of wind turbine, as well as PV array current varia-

tions during the period of the operation time.
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(a)

(b)

(c)

Figure 6.8: (a) Charging current, (c) terminal voltage, and (c) SOC of battery bank.
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(a)

(b)

(c)

(d)

Figure 6.9: Optimal (a) pitch angle, switching duty cycles of (b) solar, (c) wind, and (d) battery branches.
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(a)

(b)

(c)

(d)

Figure 6.10: (a) Dc bus voltage level, (b) Cp, and (c) angular velocity of wind turbine, and (d) PV array current.
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In spite of a significant variations of wind speed, Figure 6.10a shows that dc bus

voltage of microgrid stays constant within the permissible range, which is V dc ±

0.02V dc. From Figure 6.10a, it can be seen that dc bus voltage is maintained at the

maximum possible level to store the maximum possible excess of generation.

Wind branch operates close to its maximum power point before t = 300 seconds to

supply the sum of the load demand as well as the charging power. The resulting

rotational speed of wind turbine is close to its nominal value as given by Figure

6.10c leading to produce close to unity power coefficient (Figure 6.10b). In order to

maintain the battery bank voltage level, generated power is curtailed after t = 300

and t = 600 seconds by increasing pitch angle and then reducing rotational speed

as given in Figure 6.10c. As a result, the power coefficient is declined to 0.75 and

then 0.33 (Figure 6.10b).

Figure 6.10d, on the other hand, illustrates that during the first stage, solar branch

also works close to its MPP, i.e. Ipv = 76.1A; however, its generated power is cur-

tailed after t = 300 seconds when controller changes its operation point in order to

curtail its generated power.

6.5 Summary

In this chapter, a novel optimal EMS was developed to manage energy flows across

a sample of stand-alone green dc microgrids, consisting of wind, solar, and bat-

tery branches. This optimal EMS is a coordinated and multivariable NMPC strategy

that addresses three main control objectives of stand-alone dc microgrids. These

objectives are voltage level regulation, proportional power sharing, and battery man-

agement. In order to address these objectives, the developed EMS simultaneously

controls pitch angle of wind turbine as well as switching duty cycles of three dc-dc

converters. It has been shown that the developed controller tracks MPPs of wind

and solar branches within normal conditions and curtails their generations during

under-load conditions. The provided flexible generation curtailment strategy real-

izes a constant current-constant voltage charging regime for the connected battery

bank that potentially increases its life span. It is important to note that the proposed

strategy can be a centralized implementation of the primary and secondary levels of

the hierarchical architecture. The obtained simulation results have shown the ability
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of the developed controller to achieve all control objectives. The issue of consider-

ing discharging mode of battery operation, which shifts the problem to the class of

hybrid dynamical systems, is currently being investigated.
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Chapter 7

Conclusion

This dissertation work comprised a study on modelling, simulation and control of

stand-alone dc microgrids for the purpose of developing dynamic energy manage-

ment strategies. It was shown that such the energy management strategies are

non-linear multivariable optimal control problems. This dissertation work involved

formulating such the optimal control problems and developing non-linear model pre-

dictive control strategies to optimally manage energy flows across stand-alone dc

microgrids.

This chapter summarizes main contributions of the work. It also addresses some

open issues and point directions for further research.

7.1 Original contributions

This thesis contributes to the following domains:

• Mathematical modelling of stand-alone dc microgrids as hybrid systems;

• Model identification of PV module and energy resources;

• Acausal long-term simulation of stand-alone dc microgrids;

• Optimal energy management strategies for stand-alone dc microgrids;

The obtained results are discussed in more detail throughout the following subsec-

tions.
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7.1.1 Mathematical modelling of stand-alone dc microgrids as hybrid sys-

tems

The available algebraic constraints and bimodal operation of battery banks cause

the mathematical model of stand-alone dc microgrids to be a set of hybrid differen-

tial algebraic equations (hybrid DAEs). Moreover, the cycle life state of batteries, as

a discontinuous differential state, make the system to be of non-Filippov type. In or-

der to develop a mathematical model applicable to NMPC strategies, stand-alone dc

microgrids were approximated as complementarity systems (CSs) of Filippov type,

including mixed complementarity problems. The introduced mathematical model

was used in Chapters 5 and 6, respectively, for long-term simulation and develop-

ment of the optimal energy management strategies for stand-alone dc microgrids.

7.1.2 Model identification of PV module and energy resources

As part of the modelling efforts, stochastic models of hourly wind speed and solar ir-

radiance were presented to simulate these renewable energy resources for locations

across the UK. The presented stochastic models were assessed, using Kolmogrov-

Smirnov (K-S) criteria, against available meteorological data.

Furthermore, a novel algorithm was proposed to identify an accurate equivalent

electrical circuit for PV modules. In spite of the prior PV parameter identification

methods, the presented algorithm uses both STC and NOCT information provided

by manufacturers. The proposed algorithm constructs a non-linear optimization

problem, based on the main algebraic equation of PV modules and available data

in datasheets, to identify the electrical parameters of an equivalent circuit. It was

shown that the overall equivalent circuit error, which is defined as the sum of the

MPP errors of both STC and NOCT conditions, is improved by a factor between

5.1% to 31% depending on underlying PV technology.

7.1.3 Acausal long-term simulation of stand-alone dc microgrids

Long-term simulation of stand-alone dc microgrids is becoming essential to predict

their behaviours under wind speed and solar irradiance uncertainties. A sample

stand-alone dc microgrid, based on the proposed mathematical model of the sys-

tem, is simulated for both its fast and slow dynamics. A Matlab/SimPowerSystems
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acausal model was developed in order to simulate all fast and slow dynamics for a

short period of simulation time. On the other hand, Modelica, as a declarative mod-

elling language, was used to develop a model of the system for long-term simulation

purpose. OpenModelica platform was also used to compile the developed Modelica

model, as well as to simulate it for long period of simulation time.

7.1.4 Optimal energy management strategies for stand-alone dc microgrids

The classical energy management strategies employ MPPT algorithms and rely on

batteries to absorb any possible excess energy. However, in order to realize constant

current-constant voltage (IU) charging regime and increase the life span of batteries,

energy management strategies require being more flexible, equipped with a power

curtailment feature. In this thesis, a NMPC-based coordinated and multivariable

EMS was developed to control the operation of a stand-alone DC microgrid. The

proposed strategy employs wind and solar branches as controllable generators in

order to achieve five control objectives: i) supplying variable dc loads; ii) regulating

dc bus voltage level; iii) charging batteries as close to IU regime as possible; iv)

proportional power sharing between generators; v) tracking MPPs of wind and PV

branches during their normal operations. It was shown that applying the proposed

controller to a sample stand-alone dc microgrid, battery bank is charged according to

the IU charging regime. A variable load demand is also shared accurately between

generators in proportion to their ratings. Moreover, dc bus voltage is maintained at

its nominal level with the maximum error of 2.0%.

7.2 Critical appraisal and future works

The techniques and results, presented throughout this thesis, can be possibly further

improved as the objectives of the following future research directions.

In order to practically deploy the developed NMPC strategies to stand-alone dc mi-

crogrids, stability of the closed-loop system must be analyzed. According to avail-

able stability theories for NMPC strategies, it needs to calculate appropriate stabiliz-

ing terminal penalty term and terminal region constraint to be added to the original

NMPC. However, it needs to re-evaluate available theories for the class of MPCCs.

Although the presented NMPC strategy for the class of MPCCs was simplified to
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be solved with NLP solvers, the original problem may be solvable by using adaptive

penalization of the complementarity constraints or by employing mixed integer non-

linear programming solvers.

The proposed optimal energy management strategies were developed and simu-

lated in Python. it is very interesting to validate the obtained results with the results

of a Hardware-in-the-Loop and experimental test environments. In order to deploy

the developed strategies for a real stand-alone dc microgrid, it is interesting to im-

prove its performance including the processing latency.

Moreover, the developed PV identification algorithm can be extended to identify the

electrical parameters of an equivalent circuit with two or more diodes. Two-diode

equivalent circuit of PV modules provides better modeling of the loss in depletion

region caused by recombination of carriers.

Finally, it is important to investigate any possible correlation between wind speed

and solar irradiance, as two stochastic processes. The correlation between wind

speed and insolation can be modeled as a joint probability distribution which is used

for coordinated simulation of these uncertain sources of energy.
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