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Abstract: In this paper, we investigate the use of invariant features for speaker recognition.
Owing to their characteristics, these features are introduced to cope with the difficult and
challenging problem of sensor variability and the source of performance degradation inherent
in speaker recognition systems. Our experiments show: (1) the effectiveness of these features
in match cases; (2) the benefit of combining these features with the mel frequency cepstral
coefficients to exploit their discrimination power under uncontrolled conditions (mismatch
cases). Consequently, the proposed invariant features result in a performance improvement
as demonstrated by a reduction in the equal error rate and the minimum decision cost function
compared to the GMM-UBM speaker recognition systems based on MFCC features.
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1. Introduction

Biometrics refers to methods for uniquely recognizing humans based on intrinsic physical or
behavioral characteristics. It offers a promising approach for security applications, with some advantages
over the classical methods, which depend on something you have (a key or a card) or something you
know (a password or a PIN). Speaker recognition is one of the emerging biometric technologies used
for authenticating and monitoring human subjects using their speech signals [1]. It is attractive for
two main reasons: (1) it does not require direct contact with the individual, thus avoiding the problem
of “perceived invasiveness” inherent in many biometric systems, like iris and finger print recognition
systems; (2) signal transducers (microphones) are now ubiquitous on most portable devices (cellular
phones, PDAs and laptops). Speaker recognition covers identification and verification. In speaker
identification, no identity is claimed from the speaker. The automatic system must determine who is
speaking. If the speaker belongs to a predefined set of known speakers, it is referred to as closed-set
speaker identification. The more general situation where the system has to deal with speakers that
perhaps are not modeled inside the database is referred to as open-set speaker identification. In speaker
verification, the goal of the system is to determine whether a person is who he/she claims to be. This
implies that the user must provide an identity, and the system just accepts or rejects the users according to
verification success or failure. Figure 1 illustrates a speaker recognition system where the only difference
between identification and verification is how the decision module deals with inputs to produce the
appropriate output [2].

Figure 1. Speaker recognition system.

Another type of classification divides the speaker recognition process into text-dependent or
text-independent systems. The first class is a constrained mode, where the speech is either fixed
(password) or prompted (please say “1− 2− 3”); this knowledge can improve the system performance.
The text independent class is an unconstrained mode where the speaker must be recognized regardless
of the text pronounced, which presents a more difficult challenge.

Recently, research in speaker recognition has been concentrated on addressing the variability problem.
This variability is caused by channel, noise and temporary speaker characteristics (mood, tiredness,
etc.). The term, session variability, refers to all of the phenomena that cause two recordings of a given
speaker to sound different from each other. The mismatches in sensor, language, style of speech and
environment between the training and testing affect dramatically the performance of the recognition
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system. Several methods have been developed to address this problem by acting on the feature extraction
stage, model stage or decision stage. These methods include normalization techniques, feature mapping,
speaker model synthesis, factor analysis and nuisance attribute projection (NAP) [3]. It is clear that
an appropriate selection of features can significantly increase the classification performance. Invariant
features, an alternative technique, have been successfully applied to a wide range of image analysis [4].
Invariant structures were proposed in speech recognition to overcome the non-linguistic factors [5,6].
Experimental results on connected Japanese vowel utterances show that these features achieve better
recognition rates. Recently, Müller et al. [7] used invariant integration features (IIFs) in speech
recognition and showed their good performance. In their work, they proposed features that are invariant
to translation along the sub-band space (related to frequency), where the objective was to recognize the
same speech, even when uttered by different speakers (speaker independent). In our work, we propose
to use this idea to recognize the same speaker, even when the speech is recorded in different ways or in
different environments.

2. Problem Formulation

In speaker recognition, the good choice of features that really represent the speaker is a very important
step, especially in a situation of variability, where the data recording conditions are not the same between
training and testing phases. The recognition performance degrades significantly.

In our work, we propose to use the invariant features to recognize the same speaker, even when the
speech is recorded in different ways or in different environments. In addition to the fact that the features
are invariant to frequency translations, as in [7], they must be invariant to magnitude changes, too, and
the paper considers the invariance of features to magnitude, as well as frequency variations.

The idea of these invariant features is to find a mapping T that is able to extract features that are
similar for different observations x of the same equivalent class (speaker). Formally, we assume that
clean speech is corrupted by a channel and additive noise (Figure 2). We have:

y [n] = h[n] ~ s[n] + b[n] (1)

where y[n] is the observed speech, h[n] is the impulse response of the channel, s[n] is the clean speech
and b[n] is the additive noise. ~ denotes the convolution operation.

Figure 2. Process to obtain the observed speech.
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Note that the clean speech s[n] can be seen as a source signal, produced by the human glottal airflow,
filtered with the resonances in the cavities of the human vocal tract. Taking the DFTand assuming that
the frame size is of sufficient length compared to the length of the channel impulse response, we get:

Y [k] = H[k]S[k] +B[k] (2)

where k is the frequency index.
Equation (2) shows the effects of speaker characteristics (expressed by S(k)), the channel (expressed

by H(k)) and the noise (expressed by B(k)) on the resulting speech signal Y(k). Each of those effects
had been more or less intensively studied. Hansen et al. and Yao et al. [8,9], for example, studied the
speech variability caused by stressful conditions. Ning et al. [10] designed a robust speaker recognition
system to alleviate the noisy environment problem.

In this study, we consider the other important cause of variability due to the use of different channels,
usually referred to as mismatch variability. We have developed a more robust speaker recognition system,
by means of invariant features, which, to our knowledge, have not been used before in this area. However,
to deal with the problem of magnitude changes, the proposed features are extracted according to both
frequency translation and amplitude changes.

The following section describes in detail the invariant features technique. Section 4 gives a brief
overview of a speaker recognition system by describing the feature extraction module based on mel
frequency cepstral coefficients (MFCCs), the modeling module based on Gaussian mixture models
and universal background models (GMM-UBM) and the decision module. Then, we describe the
experiments and results obtained, and finally, a conclusion is given.

3. Proposed Invariant Features

In the following section, we introduce some basic terms and definitions from [11] that will be used
later in the paper.

3.1. Definitions

The signal space S is a subset of a finite dimensional complex vector space V. We call the elements
of S patterns and denote them by vectors, i.e., v, w.

G is a group acting on V by a linear operator g. The action of G introduces an equivalent
relation ∼ in S. Two patterns v, w are called equivalent, v ∼ w; then, gv = gw.

In our problem, the spectrally changed version of the same speaker should result in the same
feature vectors.

We call the subset O(v) = {gv | g ∈G } for a given v an orbit of G in S. The orbit contains all possible
patters within one equivalent class. Two orbitsO1 andO2 are either identical or have no point in common.
A complete classification of that set of orbits lead to an exact discrimination between different classes;
on the other hand, incomplete classification may lead to the same features from patterns of different
classes. In practice, a “high degree of completeness” is desired. A possible solution for this problem can
be addressed by the construction of a complete feature space F. This is a subset of some complex vector
space together with a map T : S→ F with the following properties:
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(P1) T(v) = T(gv) for all g ∈ G, v ∈ S;
(P2) T(v) = T(w), then there exists a g ∈G with v=gw.

The condition P1 guarantees that equivalent patterns are mapped into one point, while P2 ensures that
non-equivalent patterns are mapped onto distinct points in feature space.

3.2. Invariant Feature Spaces Construction for Speaker Recognition

3.2.1. Background

Let T(v) = (f1 (v) , ..., fn (v)), n ∈ N, be the components of the maps f , where fi : S → C. These
components fi are considered polynomials to be implemented on a computer.

Various methods for constructing such invariant features are known, e.g., normalization approaches,
like moments [7], where the patterns are transformed with respect to an extreme point of the orbit,
differential approaches where the invariant features are obtained by solving partial differential equations,
such that the features remain invariant for infinitesimal variations of the parameter(s) of the group action
or averaging methods [11].

In this final category of methods, the features are constant on orbits. Therefore, they describe
properties that are common to all equivalent patterns. This suggests constructing features as appropriate
averages. We try to calculate the averaged function Af (v) by integrating f over the orbit O(v):

Af (v) =

∫
O(v)

f (gv) dg (3)

We call Af the G-average (or group average) of f .
This approach has been applied in speech and image processing [4,7]. This has motivated us to

investigate it in the context of speaker recognition.
According to Noether’s theorem [11], one can construct a basis of C-valued polynomials f defined

on space S and which is invariant under the action of G on S (denoted by f ∈ C[S]G) by calculating the
group average of all monomials vb00 v

b1
1 . . . v

bn−1

n−1 with b0 + b1 + . . . + bn−1 ≤ |G|, where |G| is the order
of the finite group G.

Assume that the signal space S contains only a finite number of patterns. Let G be a finite group
acting on S. Then, there exists an invariant f ∈ C[S]G with the properties P1 and P2. The proof can be
found in [11].

3.2.2. The Proposed Feature Extraction Technique

In the case of speaker recognition, the signal is represented by a time frequency (TF) vk(n), where
1 ≤ n ≤ N is the time index and 1 ≤ k ≤ K is the frequency index. The vector v = (v1, v2, ..., vK),
which contains all spectral values for a specific time, known as frame in speech, is called the pattern.

As shown in Section 2, the variability may affect the component of vector v in amplitude and/or
in frequency.

Consider, for example, two speech signals of the same speaker, one recorded by a certain type
of microphone and the second recorded by another type of microphone. The first recording will be
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characterized by a channel transfer function H1[k], while the second recording will be characterized by
a channel transfer function H2[k]. The resulting speech signal of each recording can be expressed in the
frequency domain using the Equation (2) as follows:

Y1[k] = H1[k]S[k] +B[k]

Y2[k] = H2[k]S[k] +B[k]

Using the vector representation introduced in this section, we associate a vector v to Y1 and a vector
w to Y2. Since these two vectors represent the same speaker, an adequate choice of a group acting G
yields to the property P2 of invariant features:

T(v) = T(w), then there exists a g ∈ G with v = gw

This action G depends on the nature of effects caused by the variability considered. In our work, the
database used for speaker recognition allows us to study the mismatch variability, since for the same
speaker, some recordings are taken by mobile phones and the others are taken by laptops (for more
details, see Section 4.1).

To have a clear idea about the possible differences between many recordings of the same speaker, we
represent in Figure 3 the spectra of one speaker recorded three times in different conditions.

We can see from Figure 3a that even if there are some similarities between these curves, differences in
frequency, as well as in magnitude can be observed. The frequency change effect between Recording 1
and Recording 2 is clearly illustrated in Figure 3b, while the amplitude change effect between Recording
2 and Recording 3 is illustrated in Figure 3c. Therefore, these effects can be attributed to the action of the
group G. They correspond to the translation operation for the frequency and the multiplication operation
for the magnitude.

Figure 3. Spectral magnitude representation. (a) The entire spectra for the three records;
(b) illustration of how frequency can change from one record to another for the same speaker;
(c) illustration of how magnitude can change from one record to another for the same speaker.

Formally, the spectra S of the same speaker in different conditions, A and B, are related by:

SA(ω) = C(ω).SB(ω + φ(ω)) (4)
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where φ represents the frequency translation and C the magnitude change of the spectral component.
Let vk(n) denote the TF representation of a speech signal. As mentioned in [7], periodic boundary
conditions have to be used, because they were required by the applied invariance transformations. In this
paper, we use repeated boundary conditions:

vk(n) = v1(n) for k < 1, vk(n) = vK(n) for k > K, Cvk(n) = 0 for Cvk(n) < 0 and Cvk(n) = 1

for all Cvk(n) > 1, where 0 ≤ vk(n) ≤ 1.

By assuming that a finite set of translations and multiplications along the spectral component space
describes the effects of speaker variability, a finite group G of order |G| can be defined. Then, a group
average is given by:

Af (v) =
1

|G|
∑
g∈G

f (gv) (5)

In our case of speaker recognition, f transforms the original spectrum vk to Cvk+i, as shown in
Equation (4). The invariant features are defined as a group average on the basis of monomials m,
such that:

A(v) =
1

2W + 1

+W∑
i=−W

m(v, i) (6)

where W ∈ N0 is the window size. m(v, i) =
∏K

k=1Cv
bk
(k+i) is the set of the monomials m of v

where bk ∈ N0, i ∈ Z and C ∈ R. The order of a monomial is defined by the term
∑K

k=1 bk. As an
example, we consider the monomial m of order one, then, bk=0 for all k ∈ {1, 2, ..., K}\k1 and bk = 1
for k = k1.

Figure 4 summarizes the complete operation of invariants feature coefficient (IFC) extraction. As
explained in this section, spectrum magnitude changes and the frequency translation actions are applied
to obtain a set of invariant features. For each speech frame, we compute the magnitude FFT; we act
on the resulting spectrum by changing the magnitude and frequency. Monomials of order one are then
computed according to Equation (6), which is equivalent to computing the mean spectral value for a
certain frequency k. It is clear that computing the mean spectral value does not change the spectral nature
of the monomials. We then take the logarithmic magnitude of the mel frequency spectrum, and finally,
a DCT transform is applied to obtain reduced and uncorrelated vectors suitable for the GMM-UBM
technique. We call these IFC parameters.

Figure 4. Steps for computing invariant feature coefficients.
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4. Experiments

4.1. Database and Experimental Protocol Description

Our experiments were performed on the MOBIO database [12,13], which consists of speech data
collected from 152 people (100 males, 52 females) using mobile phones and laptops. The mobile phone
used to capture the database was a Nokia N93i, and the laptop computer was a standard 2008 MacBook.
For each device, the data were recorded in a high quality format with a sampling frequency of 48 kHz.
In addition to the noisy data, this database has many challenges, such as: session variability, lexical
mismatch, speech-type mismatch, site mismatch and handset mismatch [12].

We followed the same protocol given in [12,13] by splitting the database into three distinct sets:
training set, development set and testing set. The three sets are completely separate in terms of speakers
and data collection sites (data are collected from six different universities). The background models were
derived from the training set. The purpose of the development set was to derive the best parameters of the
speaker recognition system, and the testing set was used to evaluate the system performance using these
parameters. The protocol for enrolling and testing were the same for both sets. Only five set response
questions from one session could be used to enroll a client. Testing was then conducted on all 15 free
speech questions from the other five sessions, equaling 75 testing utterances per client. When producing
imposter scores, all of the other clients were used as imposters. The performance was calculated in terms
of equal error rate (EER) on the testing set and the minimum detection cost function (minDCF).

4.2. Description of the Speaker Recognition System

4.2.1. Feature Extraction

The extraction and selection of the best parametric representation of acoustic signals is an important
task in the design of any speaker recognition system; it significantly affects the recognition performance.
Many types of features have been investigated [14]. Linear prediction coefficients (LPCs) have received
special attention in this regard, as they are directly derived from the speaker’s speech production model.
Likewise, perceptual linear prediction (PLP) coefficients are based on human perceptual and auditory
processing. However, over the past two decades, spectral-based features, derived by direct application
of the Fourier transform, have become popular. These features are mel frequency-spaced cepstral
coefficients (MFCCs), and their success arises from the use of perceptually-based mel-spaced filter bank
processing of the Fourier transform and the particular robustness (to the environment) and flexibility that
can be achieved using cepstral analysis.

The key steps involved in computing MFCC features are shown in Figure 5. A discrete Fourier
transform is applied to each windowed speech frame to yield complex spectral values. The global
shape of the magnitude spectrum, known as the spectral envelope, which contains the information
of the resonance properties of the vocal tract, has been found to be the most informative part of the
spectrum in speaker recognition [15]. A simple model of spectral envelope uses a set of band-pass
filters. The filters that are generally used in MFCC computation are triangular filters, and their center
frequencies are chosen according to a logarithmic frequency scale, also known as the mel frequency
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scale. Furthermore, the sub-band energy values can be carried out in a perceptually meaningful way
by smoothing logarithmically rather than linearly. The final step is to convert these logarithmic spectral
values into cepstral coefficients using the discrete cosine transform (DCT).

Figure 5. Steps of computing mel frequency cepstral coefficient (MFCC) features.

4.2.2. GMM-UBM System

In the GMM-UBM system, we use a single, speaker-independent background model (also called world model)
to represent P (X/λUBM) [16]. The UBM is learned using data gathered from a large amount of
speech. It is a large GMM, trained to represent the speaker-independent distribution of features.
An iterative expectation-maximization (EM) algorithm is used to estimate the maximum likelihood
model for the training feature vectors [17]. The estimates of the Gaussian mixture model parameters
λUBM = {ω

UBM
, µ

UBM
,Σ

UBM
} are improved at each iteration until convergence is reached.

We derive the speaker model by adapting the parameters of the UBM using the speaker’s training
speech and maximum a posteriori (MAP) adaptation [18].

4.3. Results and Discussion

All experiments use a gender-dependent GMM/UBM system; two UBM models, one for males
and one for females, are trained using the total data of the two sessions (laptop session and mobile
session) from two sites. The speaker models are obtained using the remaining sites, as explained earlier.
This choice is justified by the fact that gender mismatches between training and test data are of no
interest in our case, where we consider the sensor variability. We start by using only male models to
study our proposed features in different situations. In the last experiment, we will show the performance
results of speaker recognition for male and female trials. We use the ALIZE [19] open source toolkit
to derive the UBM model, speaker models and log-likelihood ratios (scores). Five iterations of the EM
(expectation-maximization) algorithm are used to model 512 mixtures of the UBM. The adaptation of
the speaker’s models is performed through one iteration of a MAP (maximum a posteriori) algorithm
to adapt the mean values of each Gaussian. Our GMM/UBM baseline system uses 19 MFCC features.
The system is based on 24 filter banks computed over 20-ms Hamming windowed frames on 8-KHz
down-sampled signals (to match the phone case) with a 10-ms frame rate. The MFCCs are augmented
with 19 delta, delta log-energy and 11 double delta coefficients. The total vector is so composed of
50 coefficients [20]. The proposed invariant features use monomials of the first order. The choice of this
order has been explained in [7] and has proven to yield features that give the best performance. Similar
to the MFCCs, we use 19 invariant features, augmented with 19 delta, delta log-energy and 11 double
delta coefficients. In our work, the frequency translations is performed on all of the spectrum; while the
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multiplicative C acts on maximum amplitude by a change of 10%. We focus on the maximums, since
the formants contain considerable information about the speaker’s identity.

For performance evaluation, we plot the detection error tradeoff (DET) curve, known to be usefulness
for many speaker and language recognition applications [21]. In the DET curve, we plot error rates
(probability of miss PMiss and probability of false alarm PFA) on both axes, by giving uniform
consideration to both types of errors. One of the most widely reported performance measures in speaker
recognition is the point in the DET curve where PMiss = PFA; this point is called the equal error rate
(EER). Another interesting point, called the minimum detection cost function [22], is also used. In all
of our experiments, we represent each speaker by two models, one using a mobile phone and the other
using a laptop. Then, we test the speakers for match and mismatch cases. In the first case, we will
compare the speech recorded in a mobile phone with the model of a speaker recorded in a mobile phone,
too. Then, in the second case, the experiment has been performed between speech recorded on a mobile
phone and the model of a speaker recorded on a laptop.

The last two columns of Table 1 show the effect of using different kinds of handsets between testing
and training phases, compared to using the the same kind of handset. It is clear that a net degradation
of the system performance is observed in the mismatch case for all types of features (the MFCC and the
proposed IFC). This effect of performance degradation is more detailed by the DET curve represented
in Figure 6. We observe from this figure that the false alarm error rates and the false rejection error rates
increase significantly in the mismatch case.

Table 1. Illustration of the speaker recognition system performance in term of equal error
rate (EER) for MFCC and invariant features in match (same) and mismatch (different) cases
with and without cepstral mean normalization (CMN) normalization. IFC, invariants feature
coefficient.

Without Normalization With CMN Normalization
Same Different Same Different

EER (MFCC)(%) 19.21 25.75 17.96 21.39
EER (IFC)(%) 19.08 25.23 17.37 22.18

(without magnitude action)
EER (IFC)(%) 18.36 25.06 16.94 20.59

(with magnitude action)

To illustrate the effect of using magnitude invariants in addition to the frequency translation invariants,
we have compared the proposed features when using only frequency translations against a combination
action of frequency and magnitude variations. The results depicted in Table 1 show the positive
contribution of adding the magnitude, as shown by a reduction of the EER. This improvement is
more obvious in different recording case between training and testing (mobile/laptop). Cepstral mean
normalization (CMN) [15] is applied to the MFCC and the proposed invariant features. It is one of
the simplest, but an effective way to remove time-invariant distortions introduced by the transmission
channels. This was verified by the results shown in Table 1, where a significant improvement was
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achieved with CMN normalization. We have then applied this normalization to the rest of our
experiments.

Compared to MFCC features, a performance improvement of the proposed features in both cases (the
match case and mismatch case) was realized. This result confirms the effectiveness of invariant features
in speaker recognition.

Figure 6. DET curves showing the performance degradation effect in the mismatch case
(dashed graphs) compared to the match case (continued graphs).

The relevance factor controls how much new data should be observed in a mixture before the new
parameters begin replacing the old parameters. In Figure 7, we show the effect of changing this factor on
EER of the speaker recognition system. The best results were found when using values for the relevance
factor between 2 and 10. We choose a value of six in all of our next experiments.

Figure 7. The effect of the relevance factor on system recognition performance in terms
of EER.
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To take advantage of MFCC features in terms of their discrimination power and invariant features
in terms of variability compensation, we propose to fuse the two methods together. A weighted linear
combination of the MFCC scores and invariants scores are used as described in [23], and the new system
scores are given by:

scores = β × scores(MFCC) + (1− β)× scores(IFC)

In the context of speaker recognition based on the GMM-UBM system, the scores refer to the log
likelihood function P (X/λ), where X represents the features vector extracted by the MFCC method for
MFCC scores, while for IFC scores, X is extracted by the IFC method. Figure 8 shows DET curves of
the three systems, based on MFCC, IFC and the fusion method. The left graph represents the match
case, and the right graph represents the mismatch case.

Figure 8. DET curves in the match case (a) and mismatch case (b).

(a) (b)

We note that for the MFCC-IFC fusion method, a parameter β has to be adjusted. For this reason, we
vary experimentally β between zero and one, until we get the best result (minimum error). The value
corresponding to this result is obtained for β = 0.5. The curves corresponding to the MFCC-IFC method
with this configuration are depicted in green color.

Table 2 gives the EER and minDCF for the proposed fusion technique based on the invariants and
MFCC features.

Table 2. System performance of the fused MFCC-IFC method. minDCF, minimum
detection cost function.

Same Different

EER (MFCC + IFC) 15.62 19.03
minDCF (MFCC + IFC) (×100) 6.79 7.41
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As expected, an additional improvement is obtained by the fusion technique in both cases (the match
and the mismatch cases). The degradation caused by using different recording conditions (mobile or
laptop) is compensated with an EER improvement of almost 10% of the proposed fusion technique
compared to the MFCC-based technique in the match and mismatch cases. In terms of minDCF, again,
the proposed technique performs better with an improvement of more than 6%.

To get better insight into the gain obtained by using the proposed technique in speaker recognition,
Figure 9a,b represents the EER for each speaker of the tested database in the match case and the mismatch
case, respectively. We calculate the EER and minDCF for each tested speaker, based on each speaker
DET curve. Then, we take the mean of all of these resulting EER. From the figures, it can be observed
that in the majority of cases, an improvement was achieved.

Figure 9. EER for each speaker (a) in the match case and (b) in the mismatch case.

(a) (b)

Table 3 gives the average EER and minDCF for the MFCC-based system, the proposed IFC and the
proposed MFCC-IFC-based systems for male and female speakers. Once again, the results show the
success of the proposed methods to reduce the EER and the minDCF compared to the MFCC method.

Table 3. Mean EER and mean minDCF of individual EERs and the minDCFs of
the speakers.

Female Male
Same Different Same Different

EER (MFCC) (%) 17.40 22.11 16.05 18.94
minDCF (MFCC) (×100) 6.77 8.08 6.71 7.26

EER (IFC) (%) 16.57 21.49 15.16 18.63
minDCF (IFC) (×100) 6.65 7.97 6.55 7.21

EER (MFCC + IFC) (%) 16.36 20.85 14.19 17.33
minDCF (MFCC + IFC) (×100) 6.40 7.84 6.29 6.80
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5. Conclusions

In this paper, we proposed the use of invariant features for speaker recognition by taking into
account their successes in image and speech recognition. The goal of applying these features
in the context of speaker recognition was to enhance system robustness against the variability
problem. We started our work by studying the effect of mismatch between test and training
on the speaker’s spectrum. We then adapted the invariant features by adding the amplitude
change invariance to the frequency translation invariance used earlier in the context of speech
recognition. We applied these features in the GMM-UBM technique. Some improvements were
obtained in both the controlled (match cases) and uncontrolled (mismatch cases) conditions when
compared to the MFCC counterpart. Besides the variability compensation of the IFC features, to
benefit from the discrimination power of the MFCC features, we combine the invariant features
with the MFCC features. The results confirm our prediction, and an additional improvement
is obtained.
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