Northumbria Research Link

Citation: Tekiner, Firat (2006) Distributed and intelligent routing algorithm. Doctoral
thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/178/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is

available online: http://nrl.northumbria.ac.uk/policies.html

Some theses deposited to NRL up to and including 2006 were digitised by the British
Library and made available online through the EThOS e-thesis online service. These
records were added to NRL to maintain a central record of the University’s research
theses, as well as still appearing through the British Library’s service. For more
information about Northumbria University research theses, please visit University Library
Online.

[

% Northumbria g

University UniversityLibrary

CUSTOMER

SERVICE
EXCELLENCE

http://nrl.northumbria.ac.uk/policies.html
https://library.northumbria.ac.uk/research-theses
https://library.northumbria.ac.uk/research-theses
https://ethos.bl.uk/

Distributed and Intelligent
Routing Algorithm

Firat Tekiner

A thesis submitted in partial fulfilment of the requirements of
Northumbria University, Newcastle
for the degree of
Doctor of Philosophy

Research undertaken in the
School of Computing, Engineering & Information Sciences

October 2005

ACKNOWLEDGEMENTS

I would like to thank my director of studies, supervisor and above all friend Prof. Z.
Ghassemlooy, for giving this opportunity to me and for his inspirational guidance and

support. He has been an invariable source of help throughout the research project.

I would like to thank to my girlfriend Yontem who then became my wife at the end of
this thesis for her patience and support throughout this thesis. I would also want to

thank to my mum and to my dad for their support throughout my life.

I would like to acknowledge the Sheffield Hallam University and Northumbria
University as this work would not be possible without the financial support provided
by the Sheffield Hallam University and Northumbria University PhD scholarships

throughout my PhD project.

Many thanks to Dr. Samir Al-khayatt and Dr. Mark Thompson for their support
especially for tedious proofreading of the thesis. I am grateful for the encouragement
and support received from many friends that I made whilst studying at Sheffield and
Newcastle and especially to Dr. Bala Amavasai for his patience and support with the
linux systems. I would like to thank to my colleagues and friends in the Optical

Communications Research Group.

Last but not least, I would like to thank to my family and friends back home in Cyprus

for their support and encouragements during this study.

DECLARATION

I hereby declare that this thesis is entirely my own work and has not be
submitted in support of an application of another degree or qualification
of this or any other university, institute of learning or industrial

organisation.

1

ABSTRACT

A Network's topology and its routing algorithm are the key factors in determining the
network performance. Therefore, in this thesis a generic model for implementing
logical interconnection topologies in the software domain has been proposed to
investigate the performance of the logical topologies and their routing algorithms for
packet switched synchronous networks. A number of topologies are investigated
using this model and a simple priority rule is developed to utilise the usage of the
asymmetric 2 x 2 optical node. Although, logical topologies are ideal for optical (or
any other) networks because of their relatively simple routing algorithms, there is a
requirement for much more flexible algorithms that can be applied to arbitrary
network topologies.

Antnet is a software agent based routing algorithm that is influenced by the
unsophisticated and individual ant’s emergent behaviour. In this work a modified
antnet algorithm for packet switched networks has been proposed that offers
improvement in the packet throughput and the average delay time. Link usage
information known as “evaporation” has also been introduced as an additional
feedback signal to the algorithm to prevent stagnation within the network for the first
time in the literature for the best our knowledge. Results show that, with
“evaporation” the average delay experienced by the data packets is reduced nearly
30% compared to the original antnet routing algorithm for all cases when non-uniform
traffic model is employed. The multiple ant colonies concept is also introduced and
applied to packet switched networks for the first time which has increased the packet
throughput. However, no improvement in the average packet delay is observed in this

case. Furthermore, for the first time extensive analysis on the effect of a confidence

1ii

parameter is produced here. A novel scheme which provides a more realistic
implementation of the algorithms and flexibility to the programmer for simulating

communication networks is proposed and used to implement these algorithms.

iv

GLOSSARY OF ABBREVIATIONS

ACO
ADVR

AS
ASGA
BGP
BT

CDRQR
CPU
DRQR
EBGP
EGP
EIGRP
EPSRC
FIFO
GA
HCRNET
IDRP
IGP
IGRP
I-H-U

ISP
LSA
MACO
MAGMA
MSN
OSPF
OTDM
PQR

Ant Colony Optimisation

Agent Distance Vector Routing

Ant to Packet Ratio

Autonomous Systems

Ant System Genetic Algorithm

Border Gateway Protocol

British Telecom

Cooperative Asymmetric Forward
Confidence Based Dual Reinforcement Q-routing
Central Processing Unit

Dual Reinforcement Q-routing

Enhanced Border Gateway Protocol

Exterior Gateway Protocol

Enhanced Interior Gateway Routing Protocol
Engineering and Physical Sciences Research Council
First In First Out

Genetic Algorithms

Hypercube Connected Rings NETwork
Inter-Domain Routing Protocol

Internet Gateway Protocol

Interior Gateway Routing Protocol
I-Heard-You

Internet Protocol

Internet service Provider

Link State Advertisements

Multiple Ant Colony Optimization

A Multiagent Architecture for Metaheuristics
Manbhattan Street Network

Open Shortest Path First

Optical Time Division Multiplexing

Predictive Q-routing

PVM
QoS

SPF
TID
TOAD
TRR
TSP
WDM

Parallel Virtual Machine

Quality of Service

Routing Information Protocol

Shortest Path First

Task Identifier

Terahertz Optical Asymmetric Demultiplexer
Transmission/Reflection Ratio

Travelling Salesman Problem

Wavelength Division Multiplexing

vi

GLOSSARY OF SYMBOLS

Symbol
A

!

a

b;
b,
b3

By(d,y)

C’
Cx(d,y)
d

d

D

D'

D.

Dy

Definition

In and out degree of de bruijn graph

Ant parameter

Evaporation constant

Agent

Ant parameter

Evaporation constant

System parameter

System parameter

System parameter

B-Table for the path from node x to node d via neighbour node y
Scale factor

Contention ratio

The number of unordered node pairs forming a cycle
Effective route capacity, Bandwidth

C-Table for the path from node x to node d via neighbour node y
In and out degree of kautz graph

Link propagation delay

Diameter

Route delay

Column direction

Minimum cost path from source node i to destination node j

Row direction

vii

E(x)

ki

ka

L(x)

Lk

Nh—p
Ny
Nr

Ok—d

Pnd
q
On

qx

Number of edges of a digraph

Evaporation parameter

Noise

Average hop distance

Number of columns

Coefficient

Coefficient

Load

Link usage ratio

Statistical model

Heuristic correction value

Columns MSN

No of rows

Statistical Array

Rows MSN

Number of nodes

Average number of hops per packet

Total number of hops

Total number of packets

Observed trip time experienced while travelling from £ to destination d
In and out degree of shufflenet and gemnet
Probability of node n to destination d

Total size of the packets that are waiting in the queue
Number of packets waiting to be sent to the queue of the output port »

Current queue delay for the packet in node x

viil

RH

R«(d,y)

S(k)

Sa

t1

t2

Ty

Tk

Ux(d,y)

Reinforcement signal (goodness value)

Recent usage ranking parameter

Routing code

Reliability

R-Table for the path from node x to node d via neighbour node y
Stability factor

Stack associated with node &

The size of the current packet

Ant creation rate

Timeout value

Timeout value

Absolute age of the ant

Observed trip time

System parameter

Routing table for node £

Instability factor

U-Table for the path from node x to node d via neighbour node y
Set of all the edges of the digraph

Variance

observation time window to destination d

Distance

Confidence parameter

Old estimation

Value that weights the importance of the heuristic function

Learning parameter for the recovery rate

X

y Decay in the recovery rate

AQ.(y,d) Estimation value for node x to destination d via the neighbour node y
or Reinforcement parameter

€ Antnet constant

n q-function learning parameter

ny Learning rate parameter

Ud Estimated mean

o Variance

List of Figures

Fig. 2.1: A 24-node (p = 2, £ = 3) Shufflenet topologY.cccvviriiiiiinieici e 14
Fig. 2.2: Pseudo code for Shufflenet routing algorithmccocovivviiniininceene 15
Fig. 2.3: An 8 Node (A =2, D =3) De Bruijn graph.......ccccovminnimninniriernsiccnenes 16
Fig. 2.4: Pseudo code for De Bruijn graph routing algorithm...........ccovvvivviiincriinniiinccceee 18
Fig. 2.5: A 10 node (k=2, m =35, p =2) Gemnet topologYccccouvririiiiimiieniiiiinncenscesieeneerseens 19
Fig. 2.6: Pseudo code for Gemnet routing algorithimcc.cceiviiiiniiiiniiiiiic e 20
Fig. 2.7: KAULZ SIAPM. ...oiiieeii ettt st st 21
Fig. 2.8: A 64 node (m =8, 7 =8) MSNcceiiiniinete e e 23
Fig. 2.9: 8 10AE 3-CUDC.....oouiiiiiiiiii e e e 28
Fig. 2.10: HCRNET ..ottt s et b e sss s ea ettt e 30
Fig. 3.1: Destination/next hop association in routing table ... 35
Fig. 3.2: Pseudo code for general link state routing algorithm...........ccoovviiiniininiccciecccne 39
Fig. 3.3: Pseudo code for Distance Vector algorithim.........cccooueviininiiiininininicceeeeeees 41
Fig. 4.1: Agent environment interaction.........cccciviiiirininiiininicie s rens 53
Fig. 4.2: Main components of reinforcement learning agent.........coccoeevuiivniiineniiicininiiene e 54
Fig. 4.3: The process of how ants find optimal path in real life..........ccovriniiivi e 57
Fig. 4.4: Pseudo code for ACO meta-heuristiC.......cuouriiiiniiiriniiivriiciicrcencc e 59
Fig. 4.5: Pseudo code for ABC algorithin.........coviiiiiiiiniiiccicn e 64
Fig. 4.6: Data structures stored in Very N0covvriiiiiiiinininnncrn e 67
Fig. 4.7: Antnet routing algorithm’s pseudo code........ocviriiiiiiiiiiiiiii s 73
Fig. 4.8: Pseudo code for ASGA AlOrithmcccviniviiinininiiiiniiiiicccc e 74
Fig. 4.9: Multiple ANt COIOMIOS.cucucvirimiecrireiie sttt s 78
Fig. 4.10: FOrward €XPlOTatiOn.....c..covviririreercerceeieeneriecsssensib et s s sbsse s st sba b e se e se e e nesssene 82
Fig. 4.11: Forward and backward eXploration...........c.cccouririvinniiiniineicsiit e 84
Fig. 4.12: Pseudo code for PQR........ccorirviiiiiiictriitn sttt bere s s e 86
Fig. 5.1: Node mMOdel.....coouiiiiiiiiiiiit ittt e n e e 92
Fig. 5.2: Shufflenet showing possible worst and best paths using prioritised routing...........cocococreveneens 93
Fig. 5.3: PACKEt fOIMAL ..ottt et et b s st es e 95
Fig. 5.4: Interconnection network routing algorithm framework..........occovviieincnce, 98
Fig. 5.5: Implementation fIOWCHATt.........c.ccuiiviiiiiiiiicccc e eseeb e 101
Fig. 5.6: Implementation flowchart with bBuffer ... 103

Fig. 5.7: Average number of hops versus system load for Shufflenet employing deflection routing... 106
Fig. 5.8: Average number of hops versus system load for De Bruijn Graph employing deflection
100115181 OO OO RURTRPOUROTON 107
Fig. 5.9: Average number of hops versus system load for Gemnet employing deflection routing....... 108
Fig. 5.10: Average number of hops versus system load for Shufflenet employing store-and-forward

TOULIIE oo everieerei et et tese e st saeseeste s se e s ee e e meese s resmeess s e a s hesme st e se e b e e soeteatneebesa s annse 108

Xi

Fig. 5.11: Average number of hops versus system load for De Bruijn Graph employing store-and-
FOTWALA TOULINE ..eevveeeirivirierieeieetietecenetee e eres e s e e s e e e s er e e e rss b s st s maesbssbbeebeemnaesbaossanannesnnc 109
Fig. 5.12: Average number of hops versus system load for Gemnet employing store-and-forward
TOULITZ ..eeveverereeeeeeteeeernetenseneseereeeaseme s s eretrerbemeerert s oas se s e s e bb e s bbb o b e b s s b s R bbb R b o bbb s b b a b s bob s b ennenboabas 109
Fig. 5.13: Contention ratio versus system load for Shufflenet employing deflection routing............... 111
Fig. 5.14: Contention ratio versus system load for Gemnet employing deflection routing.................. 111
Fig. 5.15: Contention ratio versus system load for De Bruijn Graph employing deflection routing.... 112
Fig. 5.16: Contention ratio versus system load for Shufflenet employing store-and-forward routing . 112
Fig. 5.17: Contention ratio versus system load for Gemnet employing store-and-forward routing 113
Fig. 5.18: Contention ratio versus system load for De Bruijn Graph employing store-and-forward
TOUBITIZ oottt ste e s e eeeeseereeate et e st s bt saresabesb e s e s bt e s s shbsanba s b e e bbb et S e bb e oAb e s s ab e be s nas bbb s sa b e b s omaaesrnis 113
Fig. 5.19: Node idle ratio versus system load for Shufflenet employing deflection routing................. 114
Fig. 5.20: Node idle ratio versus system load for De Bruijn Graph employing deflection routing....... 115
Fig. 5.21: Node idle ratio versus system load for Gemnet employing deflection routing.............c...... 115
Fig. 5.22: Node idle ratio versus system load for Shufflenet employing store-and-forward routing ... 116
Fig. 5.23: Node idle ratio versus system load for De Bruijn Graph employing store-and-forward routing
.. 116
Fig. 5.24: Node idle ratio versus system load for Gemnet employing store-and-forward routing 117
Fig. 5.25: TRR versus system load for Shufflenet employing deflection routing...........c..covvevcerennn 118
Fig. 5.26: TRR versus system load for Gemnet employing deflection roUtingccoeevevveverceerennns 118
Fig. 5.27: TRR versus system load for Shufflenet employing store-and-forward routing 119
Fig. 5.28: TRR versus system load for Gemnet employing store-and-forward routingc.ceceeenn. 120
Fig. 6.1: Master Worker mMOdelc.oouiveviiiiririnirniirncs et 127
Fig. 6.2: 29 Node random network links having the same COSt.......cccoviiniiiniiiniiminnen 129
Fig. 6.3: 36 node irregular Srid.......c.cooerevreririrenierenirce st e e 129
Fig. 6.4: Overall system deSigh......cccvvriniiiirniniiiniiis e 131
Fig. 6.5: Average packet delay versus ant creation rate 29-node for original and improved antnet
algorithms fOr I0W 10AAScvveiirieieir ettt st s e e e 135
Fig. 6.6: Average packet delay versus ant creation rate 29-node for original and improved antnet
algorithms for Medium 10adSccoeiiiiiiniiniic e 135
Fig. 6.7: Average packet delay versus ant creation rate 29-node for original and improved antnet
algorithms for high 10adscoovereirinere et 136
Fig. 6.8: Average packet delay versus ant creation rate 36-node for original and improved antnet
algorithms for 10W 10adScoeeeei e 137
Fig. 6.9: Average packet delay versus ant creation rate 36-node for original and improved antnet
algorithms for medinm L0adscoceviriiiriri e 138
Fig. 6.10: Average packet delay versus ant creation rate 36-node for original and improved antnet
algorithms for high 10adSciuviieeeree e e 138

Fig.

6.11: Average packet delay against evaporation rate for different evaporation states, low load and

2O-T10WE ..o crvee et eectee et e e re et s et te e s s e ee bbbt aesas s abaaa et bt eaaannnserereeeasasasebrarasrrntenesoannrees 144

xii

Fig. 6.12: Average packet delay against evaporation rate for different evaporation states, medium load
ANA 29-110A8 ..ot e e e e e e e e e e e e 145
Fig. 6.13: Average packet delay against evaporation rate for different evaporation states, high load and
20-1100C ettt et e er e e s e e e et st s er e a e b rre e e e e reeaeanneane 146
Fig. 6.14: Average packet delay against evaporation rate for different evaporation states, low load and
BO-N0AE ..ottt e st e sh e et en e ae e re et ee 146
Fig. 6.15: Average packet delay against evaporation rate for different evaporation states, medium load
ANA 36-T100€oeiiieeeece ettt et e et e e e e e ettt 147
Fig. 6.16: Average packet delay against evaporation rate for different evaporation states, high load and
BO-TIOAC ..ottt ettt ettt e e e e e b Rt se e e 148
Fig. 6.17: Interaction of multiple ant COIONIESoceuerivierriiiniiiiirn e 149
Fig. 6.18: Throughput versus time for different antnet configurations and low load........ccccorerennnene. 150
Fig. 6.19: Throughput versus time for different antnet configurations and medium load.................... 151
Fig. 6.20: Throughput versus time for different antnet configurations and high load.............cc.cccc.ce. 152
Fig. 6.21: Throughput versus time for different antnet configurations and low load........c.ccccevvrerrnnene 152
Fig. 6.22: Throughput versus time for different antnet configurations and medium load.................... 153
Fig. 6.23: Throughput versus time for different antnet configurations and high load........ccccccoeveenne 154
Fig. 6.24: Confidence parameter Y versus the average delay for different antnet configurations with
1ow 10ad and 29 NOE......ccceiieiicricteercree e resiee st ese s b e b ese b s e eesassresaens 155
Fig. 6.25: Confidence parameter Y versus the average delay for different antnet configurations with
medium 1oad and 29 NOGE.......coviereeiiccere it seasenen 155
Fig. 6.26: Confidence parameter Y versus the average delay for different antnet configurations with
high 1oad and 29 NOGE.........c.ccririiiiiiicti e s ses s nes 156
Fig. 6.27: Confidence parameter Y versus the average delay for different antnet configurations with
low 108d a0d 36 NOGEccviriiiiicciie ettt st e 156

Fig.

Fig.

6.28: Confidence parameter Y versus the average delay for different antnet configurations with
medium 10ad and 36 NOAEccoiiiiriiie et n s s seas 157

6.29: Confidence parameter Y versus the average delay for different antnet configurations with
high 10ad a0d 36 NOGE......c..cciiieireiieereece ettt eaes e ss s s s et sesaanenen 157

Xiii

List of Tables

Table 2.1: Comparison of NetWork ProOPertiesccoreririirrieieiereerenteeet e sieresre e e reeeseesne s venrs 31
Table 3.1: Parameters Used i RIPccoovvviiriirierie ettt s s 43
Table 3.2: Comparison of the TOULING PIOIOCOIS......c.ereciierirenirecirisiiie st 49
Table 5.1: TESt ENVITOMIENL . c.c.eeoverrerereirreirreeeeereecreeeresrrsse s eee st ton s st steseermosst e stenbabs sreasnneessassrsenesseasen 105
Table 5.2: Average number of hops comparison for three networks and for network size of 64......... 110
Table 5.3: Contention ratio comparison for three networks and for network size of 64c.cenue. 114
Table 5.4: Node idleness ratio comparison for three networks and for network size of 64 117
Table 5.5: TRR comparison for three networks and for network size of 64ccovvvvrveiiicrienicecnn, 121
Table 5.6: Evaluation of the routing algorithms and tOpologies.........cccecvreerviereirncncnrciercrevireeineanns 122
Table 6.1: Overall average delay comparison for different system 10ads.......ccoeeveriiieciereneeenecennnes 158
Table 6.2: Overall average delay comparison for different system loads........cccceeovvercreiencvninninnnnns 159
Table 6.3: Overall throughput comparison for different system 10adscccoccerevrvervrervvceicnninnieninns 159
Table 6.4: Overall throughput comparison for different system 10adsccocevrevcreniicnneenninieninnianes 159

Xiv

Table of Contents

ACKNOWLEDGEMENTS i
Declaration ii
Abstract iii
Glossary of Abbreviations v
Glossary of Symbols vii
List of Figures xi
List of Tables xiv
List of Tables xiv
Table of Contents b 474
CHAPTERI - Introduction 1
1.1 Organisation Of THESIS......ccovcveriiriirerieniire sttt er e sene sttt seeeseess et ee e e e e sesaseneeresenanenessans 4
1.2 AQMS ANA OBJECTIVES. ..ceueirerieerirrereeeeieereieer it siestereeseseeeseresrerees e ereosessennesbenssanssnsbesseasennessasensencosen 6
1.3 Original COntrIDULIONS .. .cveverivviiiirreirireetr ettt st bbb s es bbb neneesenas 8
1.4 PUDBHCALIONS ...e.cveenieteiieite ettt sttt b et s sae et eseneshe b sbesme st st s bt s b e st st sstsabe e e satenesabene 9
Chapter II - Review of the Logical Network Topologies 11
B I 13 (oY LETe 0 + SO OO OO 11
2.2 L0GICAl TOPOLOZIEServereirieicrteeriincre et see e e ctese s e s esene e st ae s e st ereean st esaeaneneestsresenmesnnes 11
2.2.1 SHUFFIEIIEL. ... vttt sttt et s st s s ss s sae b s st e sae st s ba st et s snssasseees 13

2.2.3 D BrUuifil GTAPR ..ecveiiieieeieriieeeesiestes e sstsassessessaessessnesaeseessessesseeseeesseesenssessessaseessasssensenses 15

2.2.2 GEIMMNET....cuieiiieriterte sttt et sttt s b st et s st s st e e sbe s ot s b e e st e e at st e besebe s et e tasebesnenren 18

2.2.4 KAULZ GTAPN.....eiiieienriciaiieierieesiesre st e et ses e seea s et esstesesaeseeabeeneese s st eseesbesaeeeaseesaeansesennes 20

2.2.5 Manhattan Street NEtWOTKccvveerirerrireniieierineneiese et stseese s e essesse e seeseesessessesessnene 22
2.2.5.1 Distributed TOULINE FUIES ..eiveeterterreeriree ettt et ettt be et et esbe et esvesaeebaeesenetesbesresessesenans 26

2.2.60 HYPETCUDE....ccueermiinieriicriteie sttt ettt et e e ss e st b st s e bae st s b e se s e e s s sanesresanenaen 27

2.2.7 Hypercube connected rings NETWOIKcccccoorviiveciniiniiiiniiiiisinseeiene 29

2.3 Comparison Of the NETWOTKSvv.ceveiriieeneiierrriieetsi it es 31
2.4 CONCIUSIONS ..ttt ettt e e e b e se e s et s b b beenbe st s s s it s b e s st s b ebesensnesseen 32
Chapter III - Traditional Routing Algorithms and Protocols 33
3.1 IIEEOAUCHION .oveeeiveeieeieseeteetee st et et ese st etaese st eaesbe e e s asseseseeseaseenesnesassssenesenessessnassaseneasessensnsensenen 33
3.2 ROULINE PTODIEIIL c.c.eeiieceiiiecr ettt bbb et b bt ns 33
3.3 Routing AIZOTItRITIS ...c.eovtiuiiieeciier ettt ettt et e b sne s e e one 37
3.3.1 Dijkstra / Shortest Path Algorithm.......ccccecerieviiirniininiciiritrc e 37

XV

3.3.2 Link State Routing AIZOTIthIMccccvvrviiimrenienirinreniereires e e svesesecsesnesseseneseas
3.3.3 Distance Vector Routing/ Bellman Ford Routing Algorithmccoovverecrennanee
3.4 ROULING PrOtOCOIS ...ccveiiiriiiieiiie ettt sttt s s
3.4.1 Routing information protoColcvveerieriecreierieiere et ecere st seseeeeesenes
3.4.2 Interior gateway routing protoColeciviviererrerreniee et
3.4.3 Open Shortest Path First ..c..cooviiiiininnicnnicri e
3.4.4 Enhanced interior gateway routing protocol.........ccceeceeererrcermerereenesrereereeressereenes
3.4.5 Border gateway ProtoCOL.......ccoiveriiininicniinniiie et e
3.4.6 EXterior gateWay ProtOCOL......cveerrierrereerenersenneerenreeeserereeseenseesesnessessensesessesseses
3.5 COMPATISON ..ovevirereriirireeieresisintiain e csese e sr e sss s e s b b s b st s bbb e s b b

3.6 CONCIUSIONS ..eoeieieiiiieieectiieeire e e seesesrer e sr et e stavaeesssabasesesssbeessssssevessssesesssssensonrunsessrsns

Chapter 1V - Reinforcement Learning and Ant Colony Optimisation

4,1 TNEOAUCHION c.evevireceiriireeerer ettt s st aeebeesbesusbe st et snessententonesensenes
4.2 Reinforcement Learningeccvvveeerrrrrirenteriensrueseesreeseeresserssessseesseessessresasesaseensessnenas
4.3 SWaArm INtEIIZEINCEveerrrecrecerercerer st esresnesserssbe e eeressaeesaensseessesneesanerasesssans
4.4 Ants and Ant Colony OptimiSationcccerrerrereererinerrenrevenesriessenerssssesseeessessenes
4.5 Antnet routing algorithm and its derivativescoccevrveveeerrerrenrenrenrereenenene e
4.5.1 Mobile software agents for control in telecommunications networks
4.5.2 ABC routing in telecommunications NEIWOTKSccvevrrerererircrecrniineneeereeenenas
4.5.3 Regular and uniform ant routing algorithmccccocevvvvrininnincniniicnccrennens
4.5.4 Cooperative Asymmetric Forward routing algorithm..........ccccovceniiinicrineecnnene
4.5.5 SIMATE QIS ..co.veveiiiiieteiitisece ettt eae st sttt s re s s er s e saesas s e s b s eenssnes
4.5.6 Antnet routing algorithincceccovviriirnenieininne ettt
4.5.7 Explorer, allocator and deallocator ants.........cveveceeeiviencerenirenerssmnessneeeenens
4.5.8 Ant System Genetic AIZOTItHM......c.cvcivveriinieeserrireeiessreesreeeeevsresseesereeseeesesssrens
4.5.9 Improved Antnet Routing Algorithm.......ccccovrivcinniviinnininiciiicene
4,5.10 Limiting nUmber OF QNScecveeirvrceieniinieereenrrnresieseaseeeneeseessnesescessesessressessns
4.5.11 Multiple ant COLOMIES ...vevueerrrererrirrierirenirireenresresrreesssessnseseessseesseseeosasssnessans
4.5.12 Other Ant-Agent Based Approachesccvveevininieniinnennnninccinene
4.6 Agent Distance Vector ROUHIE......c.coevcciinincrniiiinii e
4.7 Q-LEATIITLE ...eoverueenieireriineeieeteiteret et st ee et estebe st st s st aseeses s b e s s e besreesa b s s bt e sbeseneseseenn
4.7.1 Q-TOULINE .oeeeereeeririerestee ettt et see et et s e e see s e bt re s e e seeeen s sbesba et ebe st s besanenan
4.7.2 Dual reinforcement Q-rOUING........eceecreererrreesrersoneerersareeessersoneessesssresssessasaresnes
4.7.3 Confidence based dual reinforcement Q-routingcccocveeriveereerrreereeceonsessranens
4.7.4 Predictive Q-TOULINE ...ccceervreririieietecierinecnsessteereeesee e st sssesne s ense st essenes

4.8 CONCIUSIONS ...eocvveririiiiiiierreeeeriureeceitreeesireseeesstneeesssssssssersnssssseassssssesssssssssssessssesssasssees

Chapter V - Implementation and Evaluation of Logical Network Topologies

5.1 INTOAUCHON covvveeeeeeeeeeeeieeccetree s ereteecrestessabvvesessbeeeesesssssnesesssssnssatstasssnnbressonsannsensrersans

5.2 TESUNG CIILETIA . ..veuteruirieirereieerteiest st ebe et st s e e see et et e ssesseesaeeseestee st e s e ssesaneneeneennens

xvi

5.3 TransmisSiON/ReFIECtiON RAtIOcovvueeiiivivieiriieirirreisiaeeeresieiseeecnteesesssseessensseessessssresssssassesssnseess 91

S DIESINueeueceinrererrrreret et ecs e ne e st be e et b et s bR bR e RS bebeebebeRessesbsenes 94
5.4.1 PACKET TOIIMALeiviiiiiieie sttt ettt st sa e s b e e sen e sbs e st e s e st 95
5.4.2 Network routing algorithm frameworkcoovccniniiiiiniinini s 95

5.5 TMPIEMENTAtION .. coceiiiiiiiriecteirtt ettt e e s e e 99

5.6 Test Environment and Experiment Model..........oooeviiiriinininnircenrenenee e sees e e seesnennes 105

5.7 Tests and Network COmMPATISONScccceveeeeeerrerrrermereeserrersterierereseseseeseresssesaseessersaseesseessesssesnes 106
5.7 1 INrOAUCHION.coiiiiiieie ettt e e st s arae s s ne e b an e 106
5.7.2 Test 1 - Average number OF HOPS.....c.cvveviiiiericninicer et eercre e 106
5.7.3 TeSt 2 ~ CONLENMLION ..euveurenirierererceiierere st ereteeest et st secsesessaesareseesat st se s asnseseesinenesssaneesenas 110
5.7.4 Test 3 — Node id1eness PEICEMAGEccverrerrerireirereerertrreesitestssesnese st e e seresessbest s ensenee 114
S5.7.5Testd — TRR ..ottt sttt st e s st st s srs st st e e sae st sen e es 117

5.8 COTMPATISOTE ..everveeurernieiiieretest ettt st e sts s sa e sas et s b sa sasab e b s eae e se s o b e aesa s e R e s sa s s b enbbsassnnesnontsstons 121

5.9 CONCIUSIONS ...evrirrrierireieneriresieaisertesraesieeseesstesaeasssanesestesbesanesaessstsorssennessssosssssstessenassesssesssesnennes 123

Chapter VI - Improved Antnet Routing Algorithm 125

6.1 TIEEOAUCHION ..veeveriirceeeesiesterteeesestesreeaseener s eseseseese s e eeces s seneenessbe b e s s seabesbenteneeneenessbanessenesennn 125

6.2 Parallel Virtual Machine Modelcccciniiiiniiininiiinicinice s 125
6.2.1 The master WOrker 10de]cociiiririiiet et e 126

6.3 AsSUMPHONS MadE ...c.coviiiiiiiiiiiecr e e e 127
6.3.1 Traffic MOGEIS......ocirrieiiriiciiieci e s 130

6.4 Overall SYSIEM DESIZI...cocuiriiiieiiieciieeit ettt et ses s s e s e sas s s nenes 130

6.5 Antnet MOIfICATIONS ..oueviieeiie ettt ettt ettt et et s se sttt es e b e s e sesabesenebeneseene 132
6.5.1 Deleting aged PACKES ..ovevviviecriecie sttt et e se e s st steaes e e e na s s 133
6.5.2 Limiting the effect of r due to traffic fluctuations..........cccoeeviinincniiinicincne 133
6.5.3 Further comments on improved antnetc.cecvireereneiinineesecitenestee e esesesesesereeens 139
6.5.4 Limiting the number 0f ntS.........ccoeiirieierierierninn et e st et ess e eeene 140

6.6 Stagnation Problemccvvviiriieiireiniie ettt s e s 140
6.6.1 EVAPOTALION...c..iriieiiiiieiiit ettt st ceas e b et s e ebassbe st s b sa st beane s 141
6.6.2 Multiple a1t COLOMIES ...cveceeververrerrriieirrenresieeriereeesteestse e s e ssesacssessessesassseasesaesssseseseseans 148

6.7 Effect of Y O ADINET c..oovviriiiiiiiciiint ittt ne et n s ess e ene 154

6.8 COIMPATISON ..covreuiireiereiiiirireeiteste ettt ettt cb e st e ssesa e sas s b sat e s be e aens e n s sr s e st e s s esbennsssantasnens 158

6.9 CONCIUSIONS .. eeruveiruerinreiieiretsteeteroreesseenesrteseressesesesernsssesmeesruesbttoesssensassbstsstssssntesbnssssostssrenannonee 160

Chapter VII - Conclusion and Furher Work 162
7.1 CONCIUSIONS ..oveeiereiiire ittt sttt ettt et b et s s s b et e b r s b e s re st sa b saesa e beasans 162
7.2 FUIRET WOTK .ttt ettt see et e e s e n e e e b e sn s e e anaes 166

References 169

Xvii

CHAPTERI - INTRODUCTION

In today’s fast growing Internet, traffic conditions changes and failures occur at some
parts of the network occasionally, in an unpredictable manner. Therefore, there is a
need for an algorithm to manage traffic flows and deliver packets from the source to
the destination in a realistic time. The routing algorithm is the key element in
networks performance and reliability, and can be seen as the “brain” of the network
that manages the traffic flow through the network. An ideal routing algorithm should
be node and link independent, and be able to deliver packets to their destination with
the minimum amount of delay, regardless of the network size and the traffic load. The
only way to achieve this would be by employing an intelligent and distributed routing
algorithm. The routing algorithms currently in use lack intelligence, and need human
assistance and interpretation in order to adapt themselves to failures and changes
within the network. Routing is considered to be an NP-Hard Optimization problem,
therefore widely used optimisation methods have been applied in the literature: to
name a few, Genetic Algorithms [Liang et al, 02], Neural Networks [Dixon et al, 95],
Simulated Annealing [Osman & Kelly, 96], Software Agents [Yang et al, 02] [and

Reinforcement Learning [Littman & Boyan, 92].

In recent years, agent based systems and reinforcement learning have attracted
researchers’ interest. This is because these methods do not need any supervision and
are distributed in nature. Swarm intelligence, particularly ant based systems [Dorigo
et al, 02-2], Q-learning methods [Boyan & Littman, 94] and hybrid agent based

Distance Vector algorithms [Amin et al, 04] have shown promising and encouraging

results. The ant-based approach applied to the routing problem was first reported in
[Schoonderwoerd, 96], which itself was influenced by the work done in [Appleby &
Steward, 94] on the software agents used for control in telecommunication networks.
An improved version of the algorithm reported in [Schoonderwoerd, 96] was applied
to connection-oriented systems [Bonabeau et al, 98]. In [Subramanian et al, 97] for
the first time ant based routing was applied to the packet based connection-less
systems. In [Di Caro & Dorigo, 97] the idea was applied to application of mobile
agents in adaptive routing, namely antnet, which is also used as the basis in this work.
In real life, ants deposit some kind of chemical substance called a pheromone to mark
the path that they used. On their way back they choose the path with the most
pheromones, thus the shortest path. Ants (nothing but software agents) in antnet are
used to collect traffic information and to update the probabilistic distance vector

routing table entries.

Although ant based routing algorithms have shown some interesting results, they are
still far away from being ideal. Tests carried out in this work have shown that by
detecting and dropping a few of the packets, routed through the non-optimal routes,
the average delay per packet is decreased and network throughput is increased. In
addition, one of the major problems with antnet approach is the stagnation, where the
network freezes and consequently routing algorithm gets trapped in the local optima
and therefore is unable to find new improved paths [Sim & Sun, 03]. A number of
methods have been used to overcome this problem, such as: evaporation, ageing,
pheromone control and hybrid algorithms [Dorigo & Stutzle, 04]. However, most of
these methods, except for evaporation, are rather complex or not efficient and requires

other heuristics such as genetic algorithms (GA) [White et al, 98]. Evaporation of link

is a simple method which adds negligible overhead to the node itself. Here the focus
is on the antnet routing algorithm. In the original antnet algorithm the only feedback
provided to the system by the software agents is the trip time observed on their way
from source to destination. This feedback signal is reinforced by updating the related
probability entry in the distance vector table. In this work link usage information is
used as the second feedback to the system in order to prevent stagnation problems.
For every link, the usage information is held at every node based on a predefined time
window. Routing table entries are then reinforced with a negative signal based on the
calculated evaporation information based on the link usage statistics. In addition,
multiple colonies of ants used in antnet for packet switched networks also improve the
performance of the algorithm compared to the original approach. However, this
approach has improved node and algorithm complexity as separate data variables are

kept for each colony.

The challenge is how to implement and simulate these algorithms. For a large
asynchronous network size the task becomes both complicated and time consuming.
Thus, researchers and network designers have used a simplified network model and a
large number of assumptions to overcome the problem. Communication networks are
usually simulated by discrete event simulation and analytical modelling [Banks et al,
00], [Ross, 02]. However, there is an elegant alternative simulation environment,
which is based on supercomputers and network of workstations with the ability to
reduce simulation time from days into hours for a complex network configuration. A
supercomputer consists of thousands of high performance processing elements, with a
large amount of memory, connected together with high speed interconnect resembling

a small scale local area network connected to each other as in the Internet. There are

various simulation tools available for researchers. However, running big scaled
network simulations is very time consuming. Therefore in this thesis a new way of

simulating networking processes will also be proposed.

1.1 Organisation of Thesis

The thesis is divided into seven chapters. Following the introduction, a literature
review of the widely used topologies and their routing algorithms are given in Chapter
two. This chapter gives a brief description of the most commonly used logical
interconnection networks and their routing algorithms. The term logical network
topology describes the way packets travel within the network independently from the
physical interconnection of the devices within the network. By using suitable
topologies, network performance can be improved and resources can be used
efficiently. Finally in chapter two, a comparison of the reviewed topologies is given

and their advantages and disadvantages are discussed.

The logical network topologies and the routing algorithms reviewed in chapter two
can only be used within routers or static networks. Although they are ideal for optical
networks, due to simple routing algorithms used there is a growing demand for
flexible algorithms that can be used in arbitrary network topologies. In Chapter 3, a
review of the traditional routing algorithms together with routing protocols that are
currently in use today’s networks have been given. Dijkastra’s shortest path algorithm
is one of the well known algorithms which is widely adapted in the internet and
studied in the literature. This algorithm is also the base for the link state routing

algorithm and related protocols. Open shortest path first (OSPF) is deployed

throughout the internet and is the de facto routing algorithm within the networks.
Exterior gateway protocol (EGP) is a gateway protocol which is mainly used between
the backbones and as its name suggests, among the gateways. However, nowadays

most widely used gateway protocol is border gateway protocol (BGP).

The traditional routing algorithms lack intelligence, and need human assistance and
interpretation in order to adapt themselves to failures and changes. Therefore Chapter
4 analyses the ant colony optimisation and gives a review of the routing algorithms
based on the ant colony optimisation. After providing a brief description of
reinforcement learning, the ant colony optimisation is analysed and the antnet routing
algorithm together with the algorithms influenced from it reviewed in detail. After
this, Chapter 5 and 6 provides practical results and improvements proposed to the

existing algorithms.

Chapter 5 gives a study of a variety of network performance issues, design,
implementation and evaluation for various synchronous logical network topologies
and their routing algorithms. Particularly, routing algorithms for these networks are
simulated and tested as in a fully connected network. In order to test the algorithms a
generic implementation framework has been developed for synchronous logical
network topologies. A priority rule for the chosen algorithms has been introduced in

order to reduce the amount of crosstalk experienced per packet in an optical network.

Chapter 6 outlines the weaknesses associated with the antnet routing algorithm and

proposes solutions for overcoming them. The antnet routing algorithm is also

discussed and evaluated in a different platform using parallel programming
paradigms. This novel approach provides a more realistic implementation of the
algorithms and flexibility to the programmer. Therefore, this chapter starts with an
introduction to the programming environment and model. This is followed by test
criteria and the traffic model used together with all the assumptions made. Finally,
novel implementations of antnet routing algorithm are presented with some results
and discussion. Results show that, the performance of the original antnet algorithm

has been improved up to 30%.

Finally, conclusions and suggestions for further work are discussed in Chapter 7.

1.2 Aims and Objectives

The fundamental aim of the work presented in this thesis is to design, model,
introduce novel improvements and investigate the performance of routing
algorithms that are suitable for use either for logical network topologies or
arbitrary networks within packet switched networks. In order to achieve this aim

the following research milestones were identified:

» Design an implementation model to simulate synchronous packet switched
networks and simulate the well known logical network topologies and their

routing algorithms.

» Investigate the suitability of these topologies and algorithms to Optical
time domain multiplexing (OTDM) systems and behaviour of the routing
algorithm against several performance parameters such as packet delay,

contention ratio and node idleness level.

Model logical interconnection networks with the requirements of the 2x2
terahertz optical asymmetric demultiplexer (TOAD) Router designed in

our research group. Improve the performance of the TOAD based router.

Evaluate routing algorithm performance of the logical networks and their

routing algorithms.

Design and develop a new simulation model to implement and simulate
the distributed routing algorithms for asynchronous packet switched

networks suitable for arbitrary networks.

Investigate the traditional routing algorithms that are in use in today’s

networks.

Investigate the adaptive and intelligent routing algorithms, particularly
reinforcement learning based algorithms suitable to packet switched

networks.

Extend the work on the antnet routing algorithm to improve its
performance in terms of network throughput and packet delay and improve

its adaptability to different traffic models and changing environments.

Investigate antnet’s performance with respect to number of novel

improvements proposed.

1.3 Original Contributions

During this work the following original contributions have been made:

» A new and novel way of implementing synchronous routing algorithms for

logical network topologies has been proposed (Section 5.5).

» Simple priority rule for reducing the amount of noise experienced per
packet to use with 2x2 TOAD based router has been introduced (Section

5.3).

» A novel way of implementing distributed routing algorithms on clusters
and workstations and supercomputers is proposed (Section 6.4). This work
has also been submitted to the engineering and physical sciences research
council (EPSRC) to investigate this further on using the supercomputers

available via national supercomputing services.

» Improvements to the antnet routing algorithm have been proposed and
tested to overcome the weaknesses spotted during the simulations run on

the original version of the algorithm (Section 6.5).

» A novel evaporation technique is used in order to overcome the stagnation
problem that is experienced by the antnet routing algorithm (Section

6.6.1).

» For the first time in the literature, multiple ant colonies are applied to
packet switching networks in order to the overcome the stagnation

problem (Section 6.6.2).

» The effect of the Confidence parameter Y on Antnet has been investigated
for various traffic models and network configurations for the first time

(Section 6.7).

1.4 Publications

The work in this thesis has resulted in the following publications, which are listed in

reverse chronological order.

1.

F. Tekiner and Z. Ghassemlooy "Improved Antnet Routing Algorithm for
Packet Switching", Mediterranean Journal of Computer Networks, Oct 05, Vol

1, No.2, pp. 69-76.

F. Tekiner, Z. Ghassemlooy and S. Al-khayatt, "Improved Antnet Routing
Algorithm with Link Probability Evaporation Over the Given Time Window",

in Proceedings of SOFTCOMO04, Split/Venice, 11-13 Oct 2004, pp. 502-505.

F. Tekiner, Z. Ghassemlooy and S. Al-khayatt, "Investigation of Antnet
Routing Algorithm by Employing Multiple Ant Colonies for Packet Wwitched
Networks to Overcome the Stagnation Problem", Proceedings of LCSO04,

London 13-15 Sep 2004, pp. 185-188.

F. Tekiner, Z. Ghassemlooy and S. Al-khayatt, "Antnet Routing Algorithm-
Improved Version", in: Proceedings of CSNDSP04, Newcastle, UK, 22-22

July 2004, pp. 416-419.

. F. Tekiner, Z. Ghassemlooy and T. R Srikanth, "Comparison of the Q-routing
and Shortest Path Routing Algorithms" PGNETO04, 28 - 29 June 2004,

Liverpool, UK, pp. 428 - 432.

. F. Tekiner, Z. Ghassemlooy and S. Al-khayatt, "Implementation and
Evaluation of Shufflenet, Gemnet and De Bruijn Graph Logical Network
Topologies", IASTED 2004, Innsbruck Austria. 16-19 Feb 2004, pp. 582 —
587.

. F. Tekiner, Z. Ghassemlooy and S. Al-khayatt, "Packet Loss Analysis of
Output Buffered Shufflenet", 16-17 June 2003, PGNET 2003, ISBN:

1902560094,

. F. Tekiner, Z. Ghassemlooy and S. Al-khayatt, M. Thompson, "Prioritized
Routing in Logical Network Topologies", Set for Europe Young Engineers

2002, House of Commons Poster Presentation, 9 December 2002,

. F. Tekiner, Z. Ghassemlooy, S. Al-khayatt and M. Thompson, ‘“Prioritized

Shufflenet Routing in TOAD based 2X2 OTDM Router”, Senacitel 2002,

Valdivia, Chile, 13-16 November 2002.

10

CHAPTERII - REVIEW OF THE
LOGICAL NETWORK TOPOLOGIES

2.1 Introduction

This chapter gives a brief description of the most commonly used logical
interconnection networks and their routing algorithms. Logical network topology
describes the way packets travel within the network independently from the physical
interconnection of the devices within the network [Acampora et al, 88]. By using
suitable topologies, network performance can be improved and resources can be used
efficiently. The chapter commences with an introduction to the logical topologies and
explains why they are needed. This is followed by the review of the widely used
topologies and their routing algorithms. Finally, a comparison of the reviewed

topologies is given and their advantages and disadvantages are discussed.

2.2 Logical Topologies

There are four major issues when selecting and designing a network: switching
method, network operation mode, control strategy and network topology with its
routing algorithm [Feng, 81]. As for switching, there are two main techniques, circuit
switching and packet switching [Qiao & Yoo, 99], [Tanenbaum, 03]. The former
switches in the order of mili-seconds, whereas the latter switches in the order of
microseconds. Packet switching is widely used in today's networks, which provide
high bandwidth utilisation by means of dynamically allocating bandwidth on demand

[Qiao & Yoo, 99]. Operation mode can be either asynchronous or synchronous. In the

11

synchronous mode, packets are sent when a time slot is available, whereas in
asynchronous networks, packets are sent when a link is available. A typical network
consists of several nodes (switching elements) and interconnection links which could
be controlled either by distributed nodes or by a centralised node(s). In distributed
control on receiving a packet, routing decisions are made at each node independently,
whereas in the centralised control, a routing decision is made by a central processor(s)

and is based on the current situation of the network.

The network topology outlines how the nodes are connected to each other. Although
the single-hop network is the most basic, it requires a pre-transmission phase and fast
tuning transceivers (as in wavelength division multiplexing (WDM) [Mukherjee, 92-
1]). A multihop network [Mukherjee, 92-2], regular or arbitrary [Yao et al, 01],
overcomes these drawbacks by finding the path at every intermediate node rather than
defining the path at the start. A network topology is regular if node connections are
based on a specific connectivity pattern which is also called an interconnection
network. However, in the arbitrary network topologies, there is no fixed predefined
pattern as its name suggests and they can be dynamic and scalable. The latter
characteristics facilitate new nodes being added or removed without making any
changes in the network structure as in the case of the Internet. On the other hand,
regular network topologies, with well defined connectivity patterns, are the alternative
option for more static environments (such as router and multiprocessor architectures,
etc.) as they provide simpler node structures and routing schemes. Therefore,
interconnection networks can either be used as an underlying physical topology itself
as in multiprocessor parallel networks [Grammatikakis et al, 98], or as a logical

topology based on the underlying physical topology. The idea of imposing a logical

12

topology for the broadcast networks (such as star, tree and bus) was first introduced in
[Acampora et al, 88] to maintain and improve the performance of the network. There
are a number of logical network topologies that have been applied for multihop
networks [Baransel et al, 95]. In multihop packet-routing networks, packets traverse a
number of intermediate nodes until they arrive at their destination [Banerjee et al, 99].
At each node, routing decisions are carried out by simply processing only a small
fraction of the information contained within the packet header. The routing algorithm
used at each node is identical and a decision is made at every node to find the best
possible port allocation to the incoming packets. This decision is made independently,
with no regard for the routing decisions made at the rest of the nodes within the
network. However, each network topology has its own specific routing algorithms
that are much simpler than the routing algorithms used in the arbitrary networks,
where in most cases routing tables are used [Tanenbaum, 03]. In this chapter, the most
commonly used logical network topologies will be reviewed together with their
routing algorithms. Implementation and results for the selected networks will be given

in the next chapter.

2.2.1 Shufflenet

The shufflenet is classified as a regular multihop network topology that is symmetric
and homogeneous, i.e. the network looks the same from any node [Banerjee et al, 99].
Thus, the number of hops from a source to a destination is minimised. Due to its
cylindrical connectivity pattern (see Fig. 2.1) routing is reliable and fault tolerant.

Moreover, deflection routing can be applied straightforwardly with promising results.

13

A (p,k) Shufflenet consists of N = kpk (k=1,2, 3,... and p = 1, 2, 3,...) nodes
arranged in k£ columns of pk nodes each and with the last (k-th) and first columns
connected together cylindrically where p is in and out degree of the nodes. Fig. 2.1
shows a 24-node Shufflenet configuration. In general, node (row, column) is
connected to nodes (p.row mod pk, (column + 1) mod k), (p.row mod pk + 1, (column

+ 1) mod k),... (p.row mod pk + p, (column + 1) mod k.

0,0 01

1,0 11

2,0 21

3,0 3,1

4,0 4,1

50 51

6,0 8,1

7,0 Al

Fig. 2.1: A 24-node (p = 2, k = 3) Shufflenet topology.

In simple static Shufflenet routing, there is only one path from source to destination,
which is fixed [Acampora & Karol, 89] [Karol & Shaikh, 88]. However, if a packet
cannot reach its destination in one pass (i.e. it is k-hops away) then it will take one of
the many minimum hop routing paths available. A simple adaptive algorithm exploits
this multiplicity of potential routing paths, by routing packets via less-congested paths

whenever possible [Karol & Shaikh, 88]. Generally there are two kinds of packets

14

defined in adaptive routing: TYPE-S packets that have a single minimum hop path
from the current location to the destination and TYPE-M packets that have multiple
minimum hop paths from the current location to the destination [Karol & Shaikh, 88].
TYPE-M packets have no preference on which output port they should go, since there
are more paths available. The pseudo code for the routing algorithm is given in Fig.

2.2 [Karol & Shaikh, 88].

Find distance(X) between source(s) node (v*,¢°) and destination(d) node (v* , ¢)

Y- (k+cd +cs)modk ¢t 2ct
k ! =c*

where r and ¢ is the column and row coordinates (r = 0,1,2,..p"" and ¢ = 0,1,2,...k-1)

Define Packet Type (S or M)

If I”Z-1—X = r;_lar;_z_x = r;_z,,...,and rf) = I’}
Then Packet Type is S
Else Packet Type is M

If Packet Type is M
Then forward packet to any of the available port

. — s s s s s d s
Else Routing code = FrzrFrasFarFoFor Vo (c +1)modk

Fig. 2.2: Pseudo code for Shufflenet routing algorithm
2.2.3 De Bruijn Graph
De Bruijn graphs can support much larger numbers of nodes than the same degree
Shufflenets by having the same average number of hops [Sivarajan & Ramaswami,

91]. Moreover, it retains the simple addressing and routing properties of the

Shufflenets.

15

A G(A,D) is a directed De Bruijn graph which consist of N = A” nodes with the set of
{0,1,2,... A—l}D nodes where there is an edge from node (a;, a2 , ... ap) to node (b,
b, bp)if and only if equation 2.1 is satisfied.

.....

bi=ai+1,a, b€ {0,1,2,.. A-1} ,1<i-D-1 @2.1)

Where D is the diameter of the De Bruijn graph with a deflection penalty D as the
packets has to make a loop back (since there is only single path that exists in the De
Bruijn Graphs for a pair of node). Each node has in and out degree of A, and A nodes
(i.e. 000,111) have self-loops. Self-loops only exists in the logical graph but not in the
physical network configuration. The De Bruijn graph structure is inherently

asymmetric due to the nodes with self-loops (see Fig. 2.3) [Sivarajan & Ramaswami,
V
011 110

Fig. 2.3: An 8 Node (A =2, D = 3) De Bruijn graph

94].

16

There is one-to-one correspondence between the connectivity of the nodes in the De
Bruijn graph G (A, D) with all the possible states of a A shift register of length D. If
state b can be reached from state a in one shift operation in the shift register then there
is an edge from node a to b. Therefore, the De Bruijn graph can be seen as the state
transition diagram of a shift register [Golomb, 82]. A node in the De Bruijn graph can
be represented by a sequence of D digits as defined in the shift register analogy
[Golomb, 82]. An edge from node 4 to node B can be represented by a string of D + 1
digit(s). Consequently, any path in the graph of length £ from source to destination
nodes can be represented by a string D + k digits. The first D digits represent the

source node and the last D digits represent the destination node.

To find routing code from source to destination, the algorithm determines the longest
suffix' of the source which appears as a prefix of the destination. In order to find this,
two operations, shift-match (i, A, B) and merge (i, A, B), based on the shift register

analogy are defined for De Bruijn graphs as follows:

Given two strings A = (a1, a2, ... ap) and B = (b1, by, bp), shift-match (i, A, B)

operation is true if and only if:

A = (a1, am, ... as+p) tonode B = (b1, by,.... bp.y) (2.2)

! Suffix or prefix of a string is what is obtained by removing number of symbols from the end or
beginning of the word.

17

A string (or a sequence) of length D + i given by (a;, . ap, bp+1, ..., bp) is defined as
merge (i, A, B), where(0 <7< D. Note that / also gives the hop distance (shortest
number of hops) between nodes A and B. Pseudo code for the routing algorithm is

given in Fig. 2.4 [Sivarajan & Ramaswami, 94].

Find i between nodes A and B by using shift-match (i, A, B) operation
i=0;
while (shift-match (i, A, B) is False)
i=i++;
end while
Routing code (shortest path) between nodes A and B is given by merge operation (i, A, B)
Routing code = merge (i, A, B)

Fig. 2.4: Pseudo code for De Bruijn graph routing algorithm

2.2.2 Gemnet

A (km'p) Gemnet consists of N=kxm'(k=1,2,3..., and m' = 1, 2, 3) nodes
arranged in k£ columns of m' nodes each and with the last (k-th) and first columns
connected together cylindrically where p is the in-and-out degree of the nodes [Iness
et al, 95] [Jackel et al, 98]. Fig. 2.5 shows a 10 nodes Gemnet configuration. In
general, node (row, column) is connected to nodes (¢!, [#' + i] mod m') where i =0, 1,
2,...p-1. ¢' and r' are defined in equations 2.3 and 2.4:

c'=(ctl)mod k; (2.3)

r=rxp. 2.4)

The diameter (maximum hop distance between any two nodes) is given as [Jaekel et

al, 98]:

18

[log,m' + k-1. (2.5)

The major advantage of the Gemnet compared to the Shufflenet and the De Bruijn
graph (covered in the next section) is it is they are not bound by the network size.
Hence, it is scalable, but not perfectly symmetric. It is only symmetric if the & and m’
values match the Shufflenets p and kp® values [Iness et al, 95] [Banerjee et al, 99].

Thus, Gemnet becomes a Shufflenet.

0,0 1,0 0,0
]

0,1 1,1 0,1

0,2 1,2 0,2

0,3 1,3 0,3

0.4 14 0,4

Fig. 2.5: A10 node (k=2,m'=5, p =2) Gemnet topology

In Gemnet, routing is simple and adaptive since there exist multiple paths. The pseudo
codes for the routing algorithm is given in Fig. 2.6 [Jaekel et al, 98].. The route code
R’ which specifies the shortest path from source (¢,) to destination (c¢*,/%) is
expressed as a sequence of /& base-p digits,

R'={aia;...ap)p, i™ node will route the packet on its a; outgoing link”.

? Each outgoing link is numbered individually from 0 to p for each node on Gemnet.

19

Find distance (D) between nodes (c¢',r*) and (¢*,¥*)
D = [(k+c%)-c*] mod k

Define Packet Type (S or M)

h
Let Number of alternative shortest paths S = ‘7 L =7 —I
m

IfS>1
Then Packet Type is M
Else Packet Type is S

If Packet Type is M
Then forward packet to any of the available port
Else (if packet type is S) Routing code(R') = [m+ r* — ((Pxp") modm') | modm’
Where, k is the smallest integer = (D + ik), and i =0, 1, 2,... ,.

Fig. 2.6: Pseudo code for Gemnet routing algorithm
2.2.4 Kautz Graph

A Kautz graph is a digraph that uses exactly the same routing algorithm as in the De
Bruijn graph however it accommodates more nodes than the De Bruijn graph with

same degree and diameter.

A (d,k) Kautz graph is a directed digraph, where d is the in and out degree and £ is
the diameter of the graph with deflection penalty %, Fig. 2.7 [Panchapakesan &

Sengupta, 95].

In Kautz graph each node is labelled with strings of length k(a; a» .. a;) from an
alphabet d + 1 letters that do not contain two consecutive same letters. Formally

speaking, a; # a,,;, where 1<i<k-1. A (d k) Kautz graph consists of N = d*+ d*!

nodes and £ = Nd edges where there is an edge from node (a1, a2, ... @) to node (b,

b, ... by)if and only if

20

bi=ai+1,a; b; €{0,1,2,... d-1}, 1 <i-k-1 2.6)

The Kautz graph structure is perfectly symmetric unlike De Bruijn graph as it does

not have nodes with self loops.

210

101

012

N
/
N

AN
‘

212 » » 201 » 010

e N

L.

202 020
| / \
021 102

Fig. 2.7: Kautz graph

Y

A lower bound to the average hop distance (4) for a packet to travel between two

arbitrary nodes is given by [Panchapakesan & Sengupta, 95] in:

h=p+

k-p (p-DE Ed-2C|d""-d p-2
N(N-1) N(N-1) NN-D| @-1)> d-1

} .7)

21

where C is the number of unordered node pairs forming a cycle length of two and in

the case of Kautz graph it is defined as in equation 2.8:

C=d(d+1) 2.8)
2
and p is the largest integer that satisfies the following equation:
NN=-D=F . gia?s. +am (2.9)
Ed-2C

If £ <2, then p does not exist and therfore it is assumed that p = £.

The routing algorithm used in Kautz graph is exactly the same algorithm that is used

in the De Bruijn graph as both of the networks are based on the shift register analogy.

2.2.5 Manhattan Street Network

The Manhattan street network (MSN) is a two connected mesh structured network.
The bidirectional links in MSN are arranged in a structure that it resembles the streets
of Manhattan [Maxemchuck, 87]. [Bassil & Cruz, 96] studied non-uniform traffic

models for MSN.

A (m,n) MSN consists of N=mn (m = 1,2,3..., and m = 1,2,3) nodes arranged in m
columns of n nodes each connected together with adjacent row links and column links

alternating in direction where in and out degree of nodes is always 2. Fig. 2.8 shows a

22

64 nodes MSN configuration. MSN is similar to the slotted loop system and packet

based network [Maxemchuck, §9].

C
i
X
!/
£
lj
x
r
X
r
X
ﬁ
X
l/
X
r

|
|
|
|
i
i
i
|
|
|
|
(
E
|
[

Fig. 2.8: A 64 node (m = 8, n = 8) MSN
The diameter (maximum hop distance between any two nodes) is n when g is odd

and n+1 when 5 is even. Deflection penalty is always 4 whatever the network size is.

A packet makes a loop of 4 hops when a it is deflected and returns back to the node
that it has been deflected. Thus, MSN 1is considered as one of the most suitable

networks for deflection routing as it has a low and constant deflection penalty.

23

The average number of hops 4 required for a packet to travel between the arbitrary

nodes in a (m, n) MSN when m = n is JN , whereas when m # n, h is defined as:

[%(m+n+4)——n—4}

h= , Where ™ is even and = is odd, (2.10)
N -1 2 2

[%(m+n+4)—-n}
N -1

b=

, Where —’;1 is even and —’21 is even, 2.11D)

[E(m+n+4)—m—n—4}
5= 4

, Where 2 is odd and Z is odd (2.12)
N-1 2 2

In MSN, routing decisions must be made at every node independently from the other
nodes. Moreover, in MSN if network size is known, shortest path from source to
destination is known. Labelling of the nodes (addressing) plays important role in
MSN’s routing. Each node has a unique “absolute address™ which is defined as (row,
column) (see the labelling in the Fig. 2.8). However, routing only depends on the
relative address not on the absolute address. Relative address is the relative position
from source to destination, which is enabled using the same routing algorithm in
every node. In original MSN’s configuration [Maxemchuck, 87] there are two types

of relative addressing, integer and fractional addressing.

The relative address (7,¢) in an m x n integer addressed network given as:

r= "g - !:(—’;1 - Dc (rsource - rdestz'narion)) mOd m:l (2' 13)

24

c= g - li(g' - ‘Dr (C source — C destination)) mod n:l (2 14)

The relative address (r,¢) in an m x n fractionally addressed network given as:

r=1-[1-D(r,))mod?2] (2.15)

ource F, destination

c=1-[1-D,(c)) mod 2] (2.16)

source cdestinarion

Column direction® D, and row direction D, are dependent on the direction of the links

at the destination node, which are defined as follows,

D, is +1 when Cgestination 1S €ven
D, is -1 when Cgestinarion 1S 0dd
D, is +1 when ¥ jestination 1S €ven

D, is +1 when v ostination 15 0dd

Fractional addressing has two main advantages over integer addressing. In the former,
it is easy to expand the network as new rows and columns can be added to the system
without changing the addresses of the existing nodes. Also, the routing rules used are
independent from the size of the MSN (independent from the number of rows and
columns). Therefore, in an integer based network, the arithmetic logic unit (or the
routing algorithm) which calculates the relative address, must be changed whenever
the size of network changes. On the other hand, there is no need to do any changes in

the fractionally addressed network.

? Direction represents the way the packet travels within the network. i.e. when D, = -1 packet travels
dowanwards and when it is +1 packet travels upwards direction. when D, = -1 packet travels from right
to left and when it is +1 packet travels from left to right.

25

2.2.5.1 Distributed routing rules
Rulel finds the shortest path for the integer addressed MSN, whereas Rule2 and
Rule3 reduce the number of calculations performed at each node. However, this

results in longer paths in some cases. Rulel works as follows:

Select the preferred path if there is one, otherwise select either path (if there is zero or
more than one path exists). Preferred packet directions for row and column can be

found by the following equations respectively,

n+1

l’d=—2——+l" (217)

source — Vdestination

e If row direction (rd) value is positive then packet direction is on positive®
direction

e If row direction (rd) value is negative then packet direction is on negative
direction

o [If row direction (rd) value is O then packet direction is either direction (packet can

be directed to any direction on row wise)

n+l

cd= +c (2.18)

source — Cdestination

Negative direction is defined as packets travelling from right to left (or up to down) and positive
direction is the opposite.

26

e If column direction (rd) value is positive then packet direction is on positive
direction

e If column direction (rd) value is negative then packet direction is on negative
direction

e If column direction (rd) value is 0 then packet direction is either direction (packet

can be directed to any direction on column wise).

Rulel finds the preferred output port for the packet regardless of the directions of the

physical output links.

2.2.6 Hypercube

The Hypercube structure was proposed for computer networks in [Bhuyan &
Agrawal, 84] and its properties have been studied briefly in [Saad & Schultz, 88] and

[Katseff , 88].

An n-dimensional p-ary hypercube consists of N = p" Nodes (p = 1,2, 3...,n =1, 2,
3...) each of which have p neighbours. Fig. 2.9 shows an &8 nodes 3-cube
configuration. In hypercube, nodes are labelled in base-p numbers. The in and out
degree of a node depend on the hypercube configuration and it is always p. There is a
bi-directional link between any two nodes if and only if the binary representations of
their labels differ by one and only one bit, i.e., node (xX,.1, X4-2, ..., X X0 Jbase P 1S

connected to node (Vu-1, ¥n-2, --., ¥ir Y0 Joasep if (X; # y;) where 0<i<n.

27

110 (= >

—-—
—
—

100 = » 101

Dimension 2

010 = » 011

Dimension 0

000 =

001

\ J

Fig. 2.9: 8 node 3-cube

In general, p-cube can be constructed recursively from lower dimensional cubes. By
joining every node of two identical (p-1) cubes whose nodes are numbered from 0 to
2" a p-cube can be obtained. The 3-cube in Fig. 2.9 can be obtained by combining
two 2-cubes (2-cube is a square). The diameter (maximum hop distance between any
two nodes) is p with a deflection penalty of 1 (as bidirectional links are used in
hypercube). The average number of hops / required for a packet to travel between

two arbitrary nodes in an n-dimensional p-cube is defined as:
h=n(l- —1*) , Where A = g in binary hypercube (2.19)
p

The main disadvantage of a hypercube is that, its in and out degree increases with the
network size. Thus, one can say that hypercube is not a practical solution as every

node has to be changed every time network size increases which is a costly exercise.

28

On the other hand the routing algorithm of hypercube is really simple. A route
between two nodes X = (Xn-1, Xn-2, -+ -5 Xi» X0 Jbase p A0 Y= (Yn-1, ¥n-2, --+» ¥i» YO)base p 1S

defined by an exclusive or XOR operator given as:

Route code(R) =X® Y (2.20)

After finding the route code, the dimensions corresponding to the non-zero positions
of the R are traversed in arbitrary order from X to reach Y. Let s be the shortest
distance between two arbitrary nodes in a hypercube, then the number of alternate

paths between them is defined as £.

2.2.7 Hypercube connected rings NETwork

As name suggests, a hypercube connected ring network (HCRNET) is obtained by
replacing each of the nodes of an n-dimensional hypercube by » node rings as shown

in the Fig. 2.10 [Banerjee & Sarkar, 94].

A HCRNET consists of N = 12" (n = 1,2,3...) nodes arranged in 2" rings of n nodes
each. Fig. 2.10 shows a 24 nodes HCRNET configuration. In general, hypercube
connections are unidirectional and ring connections are bi-directional. The nodes are
labelled as (x;, x,), where x; is the label of the ring which is obtained from the

corresponding node’s label in the original hypercube, defined as 0 < x;, <n. x; is the

x™ node in the ring x; consisting of » nodes, defined as 0 < x, < n. Node (xz, x,) is

connected to node (x, ® 2™ ,x,) via the x,-dimension of the hypercube. Therefore,

the in and out degree of each node is 3(2+1) and it remains unchanged for different

29

configurations. The diameter (maximum hop distance between any two nodes)

and ah
and Al

i A
— -

Fig. 2.10: HCRNET

In HCRNET, route from source (c’,#) to destination (¢*,#) can be broken into three
parts [Banerjee & Sarkar, 94]:
¢ Routing within the ring of the source node,
¢ Routing from node x to a node in the destination node’s ring (say y) via nodes
in intermediate rings,

e Routing within the ring of the destination node,

30

Based on this, two routing methods are described in [Banerjee & Sarkar, 94], a

shortest path routing scheme and a longer path scheme which is a faster and near

optimal. Details can be found in [Banerjee & Sarkar, 94].

2.3 Comparison of the Networks

A comparison of the network topologies that have been reviewed is shown in Table

2.1.
Table 2.1: Comparison of network properties
De Kautz
Properties MSN Shufflenet | Gemnet Hypercube | HCRNET
bruijn Graph
Network n dim. p- .
(m,n) (p.k) (km,p) | (AD) (d.k) n dim.
Config. ary
Number
of nodes mn kp* km AP & +d*! P nry
™
In&out
2 k p A d p 3
degree
log,m]
Diameter JN 2k -1 [gkpl D k)4 n+ni2
+ k-
Multiple
Path Yes Yes Yes No No Yes Yes
Exists
Deflection
4 k m D k 1 Unknown
Penalty
Avg. no.
VN log,N logs,N | logiN log,N log,N log,N
of hops
Depends
Perfectly Perfectly Perfectly Perfectly Perfectly
Symmetry i . onthe | Good
Symmetric | Symmetric Symmetric | Symmetric | Symmetric
Config.
Very
Scalability Fair Poor Poor Poor Poor Good
Good
Routing Very
Low Very Low Low Very Low | VeryLow Poor
Simplicity Low
Link Dir. Uni Uni Uni Uni Uni Bi Uni and Bi

31

For all topologies the average number of hops required to travel from source to the
destination per packet is in order of log,N except for MSN. In MSN, Shufflenet,
Gemnet, Hypercube, HCRNET there are multiple paths exists. In Hypercube all the
links are bidirectional whereas in HCRNET, within the rings, links are unidirectional
and connection of rings is bidirectional. The rest of the networks have unidirectional
links. The deflection penalty is constant for MSN and Hypercube. However, in others
the average number of hops depends on the size of the network. The De Bruijn graph
is the only network that is not perfectly symmetric whereas the Gemnet is the only

network that is very scalable. Thus, it can accommodate any number of nodes.

2.4 Conclusions

In this chapter, a review of the most common non-blocking type logical network
topologies was presented with the focus on routing algorithms. Comparison of the
reviewed algorithms was given and it was identified that for all topologies except
MSN the number of hops from source to destination is in the order of log;N. After this
review three topologies, Shufflenet, De Bruijn graph and Gemnet has been selected
for implementation as they are the most suitable architectures for OTDM networks.
An implementation model and performance investigations of the selected topologies
together with some adaptation to the OTDM TOAD will be given in chapter 5. The
next chapter will offer a review of the routing algorithms for the arbitrary networks
which will be followed by a review of intelligent routing algorithms based on the ant

colony optimisation in chapter 4.

32

CHAPTERIII - TRADITIONAL
ROUTING ALGORITHMS AND
PROTOCOLS

3.1 Introduction

This chapter gives a review of the traditional routing algorithms together with routing
protocols that are currently used in today’s networks. The chapter commences with an
introduction to the routing problem and explains its requirements and characteristics.
This is followed by a review of the widely used routing algorithms and protocols.
Finally, a comparison of the routing protocols is given and advantages and

disadvantages are discussed.

3.2 Routing Problem

Routing is the act of moving information (packets) across a network or Internet from a
source to a destination. Routing involves two major acts, one to determine the optimal
path to a particular destination (usually in software) and the other to switch the packet
to the assigned port which is done by hardware. The switching carried out in the
hardware domain is a much simpler process whereas determining the optimal path,
which is a stochastic process, is a challenging task [Steenstrup, 95]. Moreover, the

optimal path defined may change depending on the network’s needs [Steenstrup, 95].

The problem of routing arises when a node in the network tries to send some data

(packet) to a destination node [Tanenbaum, 03]. A routing algorithm is required to

33

find the optimal path (i.e. the shortest path) from source to destination. Solutions to
the routing problem must satisfy the following properties where the first two are
safety properties that must always be satisfied and the rest must be satisfied

eventually [Tanenbaum, 03]:

1. Correctness. Algorithm should find the optimal or best route, whatever the
network condition is.

2. Fault Tolerance (Robustness). Algorithm not only should be able to deliver
the packets to its destination even in the most problematic conditions, but it
should also be able to cope with node failures, link failures and path
congestion.

3. Optimality. Is the ability to select the best path (route) from the source to the
destination. The shortest path normally defines the optimal path but this
depends on the metrics and requirements of the network (or system). For
example, a path with less buffering delay may be the optimal path, although it
might take a longer path.

4. Simplicity (low overhead). Algorithm should be efficient and simple.

5. Stability. Algorithm should reach equilibrium after a certain run time.

6. Scalability. The performance of the algorithm should improve as the resources
increase (in the same ratio) and it should also be able to cope with increases in
network traffic.

7. Fairness. A packet should reach its destination within a reasonable time.

Unlike the routing algorithms reviewed in the previous chapter, the algorithms

reviewed in this chapter are not based on a specific topology. Hence, they are

34

sometimes named as routing algorithms for arbitrary topologies. Another common
characteristic of these algorithms is that they are all table based, a data structure
stored at every node (or router). The routing table entries are defined as routing
metrics [Steenstrup, 95] and are used to evaluate the best possible path for a packet to
travel to its associated destination. A typical example of a routing table is given in
Fig. 3.1 where every identified destination node is associated with an output port and

a routing metric.

Dest | HHop | Metric
3 3 1
5 5 1
2 3 2
3 5 2
6 5 1 6 3

Fig. 3.1: Destination/next hop association in routing table

A routing metric is a standard of measurement, such as path bandwidth, that is used
by routing algorithms to determine the optimal path to a destination. Routing
algorithms use many different metrics to determine the best route. More advanced
routing algorithms base their route selection process on multiple metrics [Cormen et

al, 02] by combining them in a single (hybrid) metric. The metrics are:

o Path length
o Reliability
¢ Delay

+ Bandwidth
e Load

o Communication cost

35

Path length: is the most common routing metric. Some routing algorithms allow the
assigning arbitrary costs manually to each network link. In this case, path length is the
sum of the costs associated with each link traversed. Other routing algorithms define
hop count, a metric that specifies the number of passes through internetworking

products.

Reliability: in the context of routing algorithms, refers to the dependability (usually
described in terms of the bit-error rate) of each network link. Some network links
might go down more often than others. On occurrence of a network failure, certain
links might be repaired more easily and quickly than other links. Any reliability
factors can be taken into account in the assignment of the reliability ratings, which are

arbitrary numeric values usually assigned to network links.

Routing (packet) delay: refers to the length of time required to move a packet from
source to destination through the network. Delay depends on many factors, including
the bandwidth of intermediate network links, the queues at each node along the way,
network congestion on all intermediate network links, and the physical distance
travelled by the packet. Since delay is a conglomeration of several important

variables, it is a common and useful metric.

Bandwidth: refers to the available traffic capacity of a link. All other characteristics
being equal, a 10-Mbps Ethernet link would be preferable to a 64-kbps leased line.
Although bandwidth is a rating of the maximum attainable throughput on a link,
routes through links with greater bandwidth do not necessarily provide better routes
than those through slower links. For example, if a faster link is busier, then the actual

time required to send a packet to the destination could be greater.

36

Load: refers to the degree to which a network resource, such as a node, is busy. Load
can be calculated in a number of ways, including central processing unit (CPU)

utilization and packets processed per second.

Cost: is another important metric, which is expressed by the different metrics, by
different network designers as a function of bandwidth, delay, data rate, financial cost

etc. It is usually defined as 1/(bandwidth) in some routers [Bellman, 59].

3.3 Routing Algorithms

The Bellman Ford distance vector routing algorithm and Dijkastra’s shortest path
routing algorithm are the bases for almost all the routing protocols that are currently
in use today [Streenstrup, 95]. A variation of the Distance Vector algorithm is used in
the Routing Information Protocol (RIP) and Interior Gateway Routing Protocol
(IGRP) whereas the shortest path routing algorithm is the basis for the OSPF routing
protocol [Cisco-02]. On the other hand, the Enhanced Interior Gateway Routing

Protocol (EIGRP) uses both of the algorithms [Sportack, 99].

3.3.1 Dijkstra / Shortest Path Algorithm

The Dijkstra [Dijkstra, 59] algorithm is one of the most widely deployed routing
algorithms in today’s Internet. This algorithm computes the routes based on the cost
metric, which is expressed by different metrics by network designers as a function of
delay, data rate, financial cost, etc. Using the Dijkstra algorithm, every node in the

network computes its routes to every other node in the network [Bertsekas, 91].

The Dijkstra algorithm is also termed as a greedy algorithm, since it optimises the

routes to all the nodes to a single least cost path, and always uses this path without

37

any regards to future consequences (such as congestion on the most diverted path if
the metric is based on the hop count). To find the least cost path or the shortest path,
the algorithm chooses a local optimum cost’ at each step, under the assumption that

this will lead to a global optimum cost.

The Dijkstra algorithm can be best explained by presenting the network as a directed
graph or digraph, where every node is treated as an edge of the digraph and every link
as the vertex connecting any two edges [Bertsekas, 91]. The costs of these vertices are
always non-negative. Let 7 be the set of all the edges of the digraph, c[s,w] is the
array of the cost metrics of the vertices between any edge s and w, and D[w] is the
array of the least costs (of the shortest path) to any node to be computed. Initially, the
cost of the shortest path to any other edge is considered as infinity i.e. D[w] = oo, If
there are n edges in the digraph, every edge s starts computing the costs D[w] of the

shortest paths to other nodes by choosing its neighbour, w € (V-s) with minimal value

of ¢[s,w]. Then it computes the routes for every other edge v € (V-s-w) as in equation

3.1., where c[w,v] is the costs of the vertex, connecting v to w. This process is also
called relaxing the nodes and it continues until all the digraph edges are visited.
When the process is completed, all nodes in the network have the shortest path to

every other node in the network.

D[v] = minimum(D[v], D{w]+c[w,v]) 3.1
In order not to recompute the previously visited paths, every visited node is marked. If

there are e number of edges and » number of vertices in the digraph, the complexity

’ Optimum cost refers to the least cost of the path to a particular node at that point in transition of the
execution of the algorithm in a recursive manner

38

of the Dijkstra algorithm or the number of iterations carried is O(e log N) where N is

number of nodes [Shankar et al, 95].

3.3.2 Link State Routing Algorithm

In the link state routing algorithm, the node (router) running (the link-state routing
algorithm (LSA)) advertises the states of its local network links, rather than using the
incremental calculation used in the distance vector algorithms. In the link state routing
algorithms, topological databases (routing tables) are used to a construct graph of
interconnected nodes and links that represents the network. Each node maintains a
map of the network in its routing tables with the entries for every known node with
their attached links, and neighbouring nodes. The pseudo codes for the link state

routing algorithms is given in Fig. 3.2 [Bertsekas, 91].

Set Dj; to infinity for all jnot equal fo i
Loop N
Find the node k notin N for which diis smallest
Add kto N
Foreachjnotin N
If Dic+ Dy < Dy then
Set Djto D+ Dy
Set next_hop(i)) to next_hop(i k) concatenated with
link from kto j

Fig. 3.2: Pseudo code for general link state routing algorithm

Therefore, an efficient flooding® algorithm is a crucial requirement. Dijkastra’s

shortest path algorithm is used to maintain the routing tables.

% Flooding is a type of routing algorithm that all of the received packets are sent to (flood) to all of the
possible destinations (output ports).

39

3.3.3 Distance Vector Routing/ Bellman Ford Routing Algorithm

The distance vector routing algorithm was first implemented in the ARPANET based
on the Bellman-Ford [Bellman, 59] algorithm. The distance vector algorithm views
networks in terms of adjacent routers and estimated distance metrics, rather than
predicting the entire network topology. The distance metric can be the geographical
distance, hop count or a hybrid function that uses delays, throughput, reliability, etc.
The distance vector algorithm estimates the minimum length (cost) paths by using a

simple distributed algorithm in the form of:

=0,i=] (3.2)

Dy =min|D, +D,|, i# (33)

Where D;; is the minimum cost path from source node i to destination node j. D;; is
initialized to infinity when i # j. Every node i executes (equations 3.2, 3.3)

concurrently and iteratively to find the minimum length path to node ;.

The main advantage of the distance vector algorithm approach is that node i does not
have to know all the Dj; values, but rather need know only D values for those nodes &
which are immediate neighbours of i. Thus the distance vector algorithm can be
executed in a distributed manner since there is no need for global knowledge. Hence,
it is sometimes named as distributed and asynchronous Bellman Ford algorithm

[Bertsekas, 91].

40

Forall i
For all jnot equal to i

If jis an immediate neighbour of /then
Set Dy to Costy
Set next hop (i pto

Else
Set Dy to infinity
Set next hop (i) to "unknown"

Loop infinity
Forall i
For all neighbours k of i
Send Dj; and next hop (i,) fo kforall j
Receive Dy and next hop (k.) from k for all j
For all j

For all neighbours k of
If Costik + Dy < Dj then
Set next hop @ pto k
Set Dyto Costi + Dy

Fig. 3.3: Pseudo code for Distance Vector algorithm

The pseudo code for the basic distance vector routing table is given in Fig. 3.3

[Bertsekas, 91]. Initially, every node i know the cost of the link to its neighbour node

k only and sets the rest of the possible nodes to infinity. In other words, if the cost of

the links and the associated output ports (neighbours) is represented as a table, node i

would only know the row associated with itself on its neighbour’s tables. After the

initialisation process, every node updates its neighbour’s routing table with the

information that it has. Every neighbour node checks the updated message it receives

and chooses the minimum path. This process continues in an iterative manner and

every node sends updated messages at regular intervals or whenever a change occurs.

Unlike distance vector algorithm in the link state routing algorithms, link state

advertisements are broadcasted to all nodes within the same hierarchical area.

41

3.4 Routing Protocols

3.4.1 Routing information protocol

Routing information protocol (RIP) is a basic distance vector protocol and it is one of
the most commonly used routing protocols [Cisco-02]. In RIP, each node in the
network keeps a routing table that contains entries for all the reachable nodes in the
network, a distance metric associated with each entry and the via-node (next-hop
node) if it is not the neighbour of that node. This table is first initialised with the
neighbours, before every node sends its current routing update at regular intervals as
in typical distance vector routing algorithms’ to all their neighbours and then each
node compares tables and chooses the minimum cost route. RIP uses a very simple
metric, hop count (here it is used for age indication), to measure the goodness of the
path. Moreover, it only maintains information about the best path. However, unlike
the original Bellman-Ford algorithm, RIP retains information about the best cost path
to the destination path. RIP detects node or link failures from the missing update
messages. For example, some RIP implementations assign infinity for the neighbours
if they do not receive an update message for 180 seconds (6 successive update
messages). The main drawback of RIP is that it limits the maximum hop value to 16.
Hence, the diameter of the network is limited to 16. RIP is a very simple and primitive
protocol compared to OSPF and Interior gateway routing protocol (IGRP). However,
for a small sized network, RIP has very little overhead in terms of bandwidth and is

relatively simple to configure and implement.

In RIP version 1 [Hedrick, 88] two types of RIP messages are used: Request

Messages and Response Messages. A router requests an update when it first joins a

7 In the original RIP configuration it sends the update messages in every 30 seconds.

42

network and all routers respond with Response Messages containing the routes. In
addition to this, Response Messages are sent every 30 seconds by default. The default
values used in RIP 1 are given in Table 3.1. Triggered updates occur when there is a
change in the parameters and it contains the changed information to speed-up network
convergence.

Table 3.1: Parameters used in RIP

Parameter RIP Default Value
Infinity 16 (fixed)
Update time 30 sec
Invalid time 180 sec
Flush time 120 sec
Holddown Not used

The RIP 2 specification described in [Malkin, 98] allows more information to be
included in RIP packets and enables the use of a simple authentication mechanism to
secure table updates. More importantly, RIP 2 supports subnet masks, a critical

feature that is not available in RIP 1.

3.4.2 Interior gateway routing protocol

IGRP was developed by CISCO in the mid 80’s for Internet protocol (IP) networks to
overcome the weaknesses of the RIP protocol [Hedrick, 91]. It is a Distance Vector
routing protocol which uses a composite metric to calculate the best routes. The

composite metric function is defined as follows:

e

RII

43

Where, D' is the routing delay (1 - 2°*), Route delay in tens of microseconds. C'is the
effective route capacity (1200 kbps - 100 GBps). R" is the reliability (1 - 255), The
value 255 means 100 percent reliability, 0 means no reliability. &4, and &, are the
coefficients that determines the impact of C’'and D', and L is the load (1 - 255), 255

is 100 percent loading.

The weights of these values are defined by the network administrator according to the
needs of the system. The route delay may include the following: transmission delays,
queuing delays, propagation delays and processing delays. C’' is computed as the
product of sum of minimum bandwidth and the percentage of the available capacity
based on the load (equation 3.5). Coefficients k; and k; are assigned to determine the
relative importance of the available bandwidth and the delay in the function. IGRP
also supports multi path routing by assigning multiple paths for the given range of
values. This is done by a variable called “variance” which selects the paths within the
specified range defined by the variance. In particular, the acceptable routes must have

value less than or equal to variance v times the minimum cost.

C'=>" CpnL (3.5)

IGRP uses hold-downs, split horizons and poison-reverse updates to improve
reliability and stability of the protocol. Hold-downs inform the node to keep any
changes that might affect routes for some period of time. Nodes detect failures from
lack of regularly scheduled update messages from its neighbours. The node then
calculates new routes and sends this information to its neighbours. However,

sometimes nodes do not receive update messages in the correct order, due to delays

44

(which cause correct information to be overwritten). Thus, hold-downs are used to
prevent this happening. The split horizon rule is used to prevent the updating of the
node from which the information is gathered from. Poison reverse acts in the same

way but is not only limited to the neighbouring nodes.

3.4.3 Open Shortest Path First

The main characteristic of OSPF is that it is based on the Dijkastra’s shortest path first
algorithm (SPF) [Moy, 98]. It uses SPF algorithm to calculate the changes in the
routing table. The algorithm first sends a ‘hello’ message to every output port to
identify its neighbours and learn their network addresses. On receiving hello messages
nodes reply back. The hello packets are also transmitted every 10 seconds by default,
to check connection between the nodes. If a node in the network does not receive a
hello packet from one of its neighbours, then it starts a dead interval counter for that
node. If no hello packet is received within the dead interval time (usually 4 times the
hello interval time), then the node will send a link state update indicating link failure

[Steenstrup , 95].

In order to compute the link costs, every node sends out echo packets on every point-
to-point link, and receiving nodes are required to reply back immediately. By
measuring the round-trip time and dividing it by two, the sending node can get a
reasonable estimate of the delay. The delay of the link can also be manually assigned
by the network administrator. In addition, each node sends periodic link state
advertisements (LSAs) to every available destination in the network to inform other
nodes of the changes that it has discovered. LSAs are also flooded, once the algorithm

initialises itself and learns about its neighbours.

45

One other characteristic of OSPF is that it supports hierarchal routing, where the
network is divided into many areas with area “zero” as the backbone area, which
interconnects with all other areas in the network. Every area is identified with a
unique code. If hierarchical routing is not required, all the nodes in the network are
configured to be in area “zero” or the backbone area by default. All the packets

between areas should route across the backbone area.

3.4.4 Enhanced interior gateway routing protocol

Enhanced interior gateway routing protocol (EIGRP) is similar to IGRP in many
ways, but is different in that it has properties of both a distance vector routing
protocol and a link state routing protocol [Steenstrup , 95]. In EIGRP, instead of
making periodic updates, nodes send partial updates when the metric for a route
changes. EIGRP uses four mechanisms to improve the performance of the routing
algorithm. The neighbour recovery/discovery mechanism sends hello packets to
discover nodes’ neighbours and failures within them. A reliable transport protocol
ensures that packets are delivered to all neighbours, if necessary using
acknowledgement messages. Two staged process is used to track validity and
correctness of the received update messages. Protocol dependent modules are
responsible for network layer specific requirements [Steenstrup, 95]. In addition to the
four mechanisms explained above, four additional data structures are used in the

EIGRP: neighbour tables, topology tables, route states and route tagging.

For every discovered neighbour, there is an associated table containing its address and
round trip time. The topology table keeps all of the destination addresses, together

with the metrics that have been advertised so far by the neighbours. A topology table

46

entry is in passive state while the node is recalculating it and active state otherwise.
This information is kept in the route states. In addition, route tags are used to maintain

and control routing policies in a more efficient way.

EIGRP uses the following packet types: hello and acknowledgement update and query
and reply [Sportack, 99]. Hello packets are broadcast to all neighbour nodes for
discovery and recovery requiring no acknowledgement. The hello message with no
data is an acknowledgement message. Update information is used to send the new link
and node information to other nodes. Query packets are broadcast when the
destination has no feasible successors and reply packets are sent as a response to the

query message.

3.4.5 Border gateway protocol

The BGP is an interautonomous system routing protocol [Malkin, 98]. An
autonomous system is a network or group of networks under a common
administration and with common routing policies, such as a university network. BGP
version 4 is the current de facto exterior routing protocol in the Internet and is the
protocol used between Internet service provider (ISP)'s. Customer networks, such as
universities and corporations, usually employ an Interior gateway protocol (IGP) such
as RIP or OSPF for the exchange of routing information within their networks.
Customers connected to ISPs, and ISPs use BGP to exchange customer and ISP
routes. When BGP is used between autonomous systems (AS), the protocol is referred
to as external BGP (EBGP). BGP learns multiple paths via internal and external BGP

speakers and it finds the best path and updates associated properties in its routing

47

table. These properties are referred to as BGP attributes which are weight, local

preference, multi-exit discriminator, origin, AS_path®, next hop and community

3.4.6 Exterior gateway protocol

EGP is for exchanging routing information between two neighbour gateway hosts in a
network of autonomous systems [Rosen, 82]. It uses periodic message exchanges
Hello/I-Heard-You (I-H-U) to monitor the status of the links with its neighbours. The
routing table contains a list of known routers, the addresses they can reach, and a cost
metric associated with the path to each router so that the best available route is
chosen. However, unlike BGP, EGP do not attempt to choose the best route by itself.
EGP updates the associated distance-vector entries in the routing table, but does not
evaluate this information. This is because the routing metrics from different
autonomous systems are not directly comparable. Each AS may use different criteria
for developing these values. Therefore, EGP leaves the choice of a ‘best’ route to
someone else. When EGP was designed, the network relied upon a group of trusted
core gateways to process and distributes the routes received from all autonomous
systems. These core gateways were expected to have the necessary information in

order to choose the best external routes.

3.5 Comparison

Although the distance vector routing algorithms are simpler they have slow
convergence and have split horizon problems. Link state algorithms are more complex
and require more resources compared to the distance vector routing algorithms but

they converge faster than the distance vector routing algorithms. Distance Vector

Autonomous Systems (AS)

48

algorithms need computational complexity of O (N°). In the worst case scenario, the

algorithm must be iterated N (number of nodes) times with each iteration having to be

done N-1 times and for each iteration minimisation having to be taken N-1 times. On

the other hand, the Dijkastra’s link state algorithm has the computational complexity

of O (N?). Some approaches, as in EIGRP, use a hybrid approach to benefit from the

advantages of the both algorithms. A comparison of the traditional routing algorithms

is given in Table 3.2.
Table 3.2: Comparison of the routing protocols
Algorithm Type Characteristics
Distance A very basic protocol, with some problems and
RIP Vector limifations a.s it uses limited hop counter as the
routing metric
Designed for IP networks, uses a composite
Distance | metric, hold-downs, split horizons and poison-
IGRP Vector reverse updates to improve reliability and
stability
Uses four mechanisms, neighbour recovery/
discovery, reliable transport protocol, DUAL
EIGRP Hybrid finite state machine, protocol dependent
modules to improve the performance of the
routing algorithm
Distance | Inter domain protocol, restrict itself to two
EGP Vector levels of domains
No restrictions unlike to EGP, exchanges vector
BGP Path-vector | of destinations and domain level path

information with its neighbours

Internet Domain
Routing Protocol

(IDRP)

Path-vector

Uses all of the ideas in the BGP-4

OSPF

Link State

Uses flooding to advertise update messages and

can be used with inter-domain routing protocols

49

3.6 Conclusions

In this chapter a review of the traditional routing algorithms together with routing
protocols that are currently in use today’s networks were given. Dijkastra’s shortest
path algorithm is one of the well known algorithms widely adapted in the Internet and
studied in the literature. It also forms the basis for the link state routing algorithm and
protocols. OSPF is deployed throughout the internet and is the de facto routing
algorithm with in the networks. EGP is a gateway protocol which is mainly used
between the backbones and as it name suggests, among the gateways. However, BGP

is the most widely used gateway protocol.

The review highlighted that all of the algorithms that has been reviewed here (which
are also widely used in the Internet) needs human interpretation in order to adapt to
the changes (i.e. node/link failures, adding/removing links/nodes, congestion).
Therefore, there needs to be an administrator to monitor these algorithms and than
modify the variables used in these algorithms based on status of the network. Because
of this, there is a growing body of research in intelligent algorithms that can adapt
themselves to the changes in the network. Therefore, next chapter will be review of

the intelligent algorithms.

50

CHAPTER 1V - REINFORCEMENT
LEARNING AND ANT COLONY
OPTIMISATION

“An agent is something that perceives and acts in an environment” [Russell &

Norvig, 95]
4.1 Introduction

This chapter analyses ant colony optimisation (ACO) and reviews the routing
algorithms based on ant colony optimisation. It begins with an introduction to
reinforcement learning and describes how this works. After providing a brief
description of reinforcement learning, ant colony optimisation is analysed and the
antnet routing algorithm together with the algorithms derived from it are reviewed in

detail.

The routing algorithms discussed in the previous chapter lacked intelligence, thus
requiring human assistance and interpretation in order to adapt themselves to failures
and changes. Routing is considered to be an NP-Hard Optimization problem,
therefore widely used optimization problems have been applied in the literature. To
name a few, Genetic Algorithms [Liang et al, 02], Neural Networks [Dixon et al, 95],
Simulated Annealing [Osman & Kelly, 96], Software Agents [Yang et al, 02] [Amin

& Mikler, 02-1] and Reinforcement Learning [Littman & Boyan, 92].

51

The routing problem has many similarities with the travelling salesman problem
(TSP) [Larra Naga et al, 99] and can be considered to be a scheduling problem.
Therefore most of the research that has been applied to TSP and scheduling problems
has been adapted to the routing problem. However, most of the meta-heuristic
optimization tools are not capable of producing satisfactory results for real time
systems, as they need some period of time for the learning process and demand high

processing power.

In recent years, agent based systems and reinforcement learning have attracted
researchers’ interest. This is because these methods do not need any supervision and
are distributed in nature [Bonabeau et al, 00] [Kunkle, 01]. Swarm intelligence
(particularly ant based systems) [Dorigo et al, 02-2], Q-learning [Boyan & Littman,
94] methods and hybrid agent based distance vector algorithms [Amin et al, 01] have

shown promising and encouraging results.

Unlike other optimisation problems the routing problem which is a dynamic
optimisation problem, has to be solved in real time. [Schoonderwoerd, 96] was the
first to apply ant based systems to the routing problem. This work was influenced by
the work reported in [Appleby & Steward, 94] and was applied to circuit-switched
and connection oriented systems. [White & Pagurek, 98] and [Bonabeau et al, 98]
later on improved [Schoonderwoerd, 96] the algorithm and applied it to the
connection oriented systems. [Subramanian et al, 97] was the first to apply the ant
colony concept to packet based connectionless systems. Others such as, [Heusse et al,
98] and [Di Caro & Dorigo, 97], [Di Caro & Dorigo, 98-1], [Di Caro & Dorigo, 98-2],

[Di Caro & Dorigo, 98-3] and [Di Caro & Dorigo, 98-4] followed in the footsteps of

52

[Subramanian 97]. In the following section we will first review reinforcement
learning and its applications to the routing problem, particularly to the applications of
agent and ant based routing algorithms. The chapter then introduces the work reported
in [Appleby & Steward, 94] which has influenced the work reported in

[Schoonderwoerd, 96] and gives a review of ant-based routing algorithms.

4.2 Reinforcement Learning

Reinforcement learning is an agent based learning method where agents are rewarded
for the actions that they take. Therefore agents are reinforced with the rewards and
directed towards better solutions. In reinforcement learning, an agent should be able
to sense the environment and be able to take actions that could change the
environment or the state of the environment. Also, an agent should have a goal or
goals in order to take actions [Weyns et al, 04]. Based on the action taken, agent
receives a feedback which is called “reward” or “reinforcement” (see Fig. 4.1). The,

agent then uses this reward to learn and use this experience in the actions that it takes.

m Action

Policy gN
Goal

)

Reward

juaby
JUSWUOIIAUT

Observation

C

Fig. 4.1: Agent environment interaction

53

Agents are never told what the right actions are and are left to their own accord to
explore and make appropriate decisions in order to increase their knowledge. Beyond
the agent and environment [Sutton & Barto, 98] identified the four main aspects of
reinforcement learning: a policy, a reward function, a value function and a model of

the environment (optional), see Fig. 4.2 [Kaelbling et al, 96].

Fig. 4.2: Main components of reinforcement learning agent

Fig 4.2 shows the main components of reinforcement learning agent. Policy is the
way that agent behaves based on knowledge gained from previous actions. It is
composed of a set of rules that the agent has to obey. The reward function informs the
agent how well it has performed its tasks based on its goal. Based on the reward
function an agent comes up with a solution to the problem which is called the “value
function”. This function is the long term representation of the reward function. The
environment model tells the agent what might happen or what the expected reward is
based on the action taken. Models are built on statistical knowledge and experience
gained by the agent. More detailed information about the reinforcement models can

be found in [Sutton & Barto, 98], [Kaelbling et al, 96] and [Andrei, 02].

There is a trade off between exploiting and exploring in reinforcement learning. When

there are less agents in the system that are exploring for a new solution they get stuck

54

in the local optima and cannot find the optimum solution. On the other hand, when
they explore more, they create more overhead in the network thus resulting in low
network performance. Therefore there has to be a balance between exploring and

exploiting in order to find the optimal solution for a given problem.

4.3 Swarm Intelligence

“Artificial life is the study of man-made systems that exhibit behaviour characteristics

of natural living systems” [Schoonderwoerd, 96]

Swarm intelligence is a form of reinforcement learning based on observations from
nature [Carnahan & Simha, 01]. Researchers have been trying to analyse and
understand the dynamics of nature, as it is the perfect working model that can be used
to develop the meta-heuristics. Genetic algorithms, neural networks, simulated
annealing and swarm intelligence are the most studied examples. All of these
approaches have one goal; to apply existing well observed dynamics of nature on man
made systems to solve hard optimisation problems. Goldberg and his students
[Goldberg, 89] applied the Darwinian approach to optimise the given problem
[Chambers, 95] using genetic algorithms. Neural networks, where many processing
elements are interconnected like neurons process a given task in a highly parallel
fashion just like human brain [Dixon et al, 95]. Annealing is a chemical process that is
used to harden metals and glass starting at high temperatures and then cooling it
slowly. Simulated annealing is a process that attempts to find the minimum
(optimum) cost (solution) in the given cost function (problem). In recent years
however, swarm intelligence, especially animals that have emergent collective

behaviour, has attracted researcher’s interest where solutions for large tasks emerge as

55

a result of the behaviours of individual entries. Bird-flocking, fish-schooling, nest
building and ant colonies have been simulated to solve NP-hard optimisation
problems [Camazine et al, 01]. These systems are distributed in nature with no chosen

leader, hence they are sometimes named as “unsupervised learning”.

4.4 Ants and Ant Colony Optimisation

Individual ants are very unsophisticated and simple insects that are capable of
performing a variety of complicated tasks when they act in collective manner. Real
ant behaviour has been observed by many researchers and they have agreed on the
following collective behaviour of several ant species reported in, [Beckers et al, 92],
[Franks, 89], [Schoonderwoerd, 96] and [Dorigo et al, 02-1]. Ants in real life:

e explore particular areas for food

build and protect their nests

e sort brood and food items

e cooperate in carrying large items

e immigrate as colonies

e leave pheromones on their way back

e preferentially exploit the richest available food source

e store information on the nature(uses world as a memory)

o make their decision on a stochastic way

e always finds the shortest paths to their nests or food source
e are blind, can not foresee future

e have very limited memory

56

Fig. 4.3: The process of how ants find optimal path in real life

It is believed that these behaviours emerge from the interactions between the large
numbers of ants and the environment. Also, it has been observed by many researchers
that in nature ants always find the shortest path from their nests to the food source.
They do this by using the notion of “stigmergy”, which is a form of indirect
communication through the environment [Beckers et al, 92]. Ants lay pheromone, a
chemical substance, to mark the path that they use to the food source. For example, in
Fig. 4.3(i) ants initially have no idea which direction to take and choose one of the
paths randomly. It is expected on average that half of the ants to choose the shorter
path and the other half to choose the longer path (they have no information or
knowledge of the paths at this stage). It can be observed from Fig. 4.3(ii1) that the ants
that have chosen the shorter path should reach to their destinations more quickly than
those that selected the longest path. These ants will also take the shorter path on their
way back to the source before the others. In Fig. 4.3(iii), the number of ants choosing
the shorter path will be increased after this step as there will be more pheromone laid
on to the shorter path. Recently, there has been increased research activities inspired
from these “simple” insects reported in [Beckers et al, 92]. They applied ant

behaviour to solve NP-hard optimisation problems and used ants (agents) to sense the

57

environment and to find solutions. However, there are differences between real ants
and artificial ants® where an artificial ant is nothing but a software agent. Artificial ant

based systems have the following characteristics:

e ants (agents) do not communicate directly, rather they change the
environment (update some common data structures)

¢ ants deposit pheromone as a function of quality of the solution found,

e ants make their decision based on a probabilistic way, based on a
defined probability function

e ant systems are resilient and dynamic

e there are no supervisors

¢ ant systems are highly distributed

e ant systems are robust

e ant systems are highly scalable

e ants are self organizing, no interaction is required from outside

e ants perform backwards learning

e ants have some but limited memory

? Ants and agents will be used interchangeably throughout the text.

58

// ACO Meta-heuristic
Begin
While (not terminate)
Begin schedule activities
// The following Three functions are executed concurrently in parallel
Generate_ants Q;
Evaporate_ pheromone O;
Daemon_actions (:
// executed based on central knowledge or another op. method
// routing tables can be updated here independent from the ants
End schedule activities
End While

Generate_ants Q;
// ants are created here and policy is given in this function

Begin
Initialise_ant Q;
// oniniticlisation random dest. is given to the ant and M data stack is updated
While (solution not found)
A = Local_ant_routing_table;
P = Transition_Probabilities (A, M. problem_constraints);
Next_state = apply_ant_decision_policy (P, problem_constraints);
If (forward_mode)
Deposit_pheronome Q; // on to the visited arc
Update_ant_routing_table;
End If
Update M; //as routing table is changed
End While
If Backward_mode)
Evaluate_solution Q;
Deposit_pheronome_on_all_visited_nodes Q;
Update M; //as routing table is changed
Endif
// forward mode and backward mode functions are mutually exclusive
// when both is not executed then daemon has updated the tables.
Die Q: // Once ant reaches back to source node it dies
End.

Fig. 4.4: Pseudo code for ACO meta-heuristic

Ant-colony based algorithms were pioneered by [Coiorni & Dorigo, 92] and [Dorigo
et al, 96] as a multi-agent approach inspired from real ant colonies in nature and based
on the Monte Carlo model [Sutton & Barto, 98] and [Fishman 96]. Ant based systems
were first applied to the travelling salesman problem (TSP) and in [Dorigo &
Gambardella, 97] [Dorigo & Gambardella, 99] this heuristic is named as ant colony
optimisation [Dorigo & Di Caro, 99] [Dorigo et al, 02-1]. The pseudo code for the

general ACO meta-heuristic [Dorigo et al, 99] is given in Fig. 4.4.

59

In Fig. 4.4, first three functions can be executed concurrently in a distributed system,
but some synchronisation may be needed. Daemon_actions () requires additional
knowledge to the locally available information, where this knowledge could be
centralised knowledge or another optimisation method such as GA. Forward mode
and backward_mode are executed in a mutually exclusive manner; ants either update
pheromone tables before or after they built the solution, on their way back to the
source node. Initially, three ant based meta-heuristics have been implemented in
[Dorigo et al, 99] namely: ant-density, ant-quantity and ant-cycle. In the first two, ants
deposit pheromone after building the complete solution. However this has been found
to be inefficient. Ant-cycle heuristic has been proposed, where backward ants are used

to lay the pheromones.

4.5 Antnet routing algorithm and its derivatives

4.5.1 Mobile software agents for control in telecommunications

networks
[Appleby & Steward, 94] used software mobile agents to establish (to route)
telephone calls in British telecom (BT)’s telephone network and to optimise the load

balancing in the networks. Two kinds of software agents used in their system namely:
1. Load management agents: designed to distribute load evenly

2. Parent agents: responsible for managing the population level and task

allocation of the load management agents.

60

A load management agent provides lower level of control, each agent is launched
from source to destination and routed by a variation of the Dijkastra’s well-known
routing algorithm [Bertsekas et al, 92] which updates routing tables on their way to
destination. The best route is defined as the “largest minimum spare capacity” of all

possible routes which is to distribute load evenly avoiding high local node loadings.

Parent agents provide second level of control. They travel along the network and
discover the most congested parts of the network, the nodes that creates most traffic.
[Appleby & Steward, 94] applied the following important properties to achieve

robustness:

e There should be no direct inter agent communication
e There should be a large number of agents
e The agents should be able to dynamically alter their population and task

allocation.

4.5.2 ABC routing in telecommunications networks

The work reported in [Schoonderwoerd, 96] applied the ants concept to the routing
problem for the first time based on the work reported in[Appleby & Steward, 94]. In
this work, ant colony optimisation was applied to circuit switched telephone
networks. Routing tables are replaced with a table of probabilities and ant based
agents, rather than ordinary agents are used for updating the routing tables in order to
optimise the performance of the algorithm on changing data traffic loads. Ants have

the following properties [Schoonderwoerd, 96] and [Schoonderwoerd et al, 96]:

61

e Two kinds of ants are used in the routing algorithm, forward and backward
ants

e Each ant (forward ant) is initially sent to a random destination

e On reaching their destination, ants die and create backward ants to travel back
to source following the marked path

e Ants are delayed at congested nodes, preventing them from laying more
pheromone on the path that encourages following ants (this increases the
probability of usage of other paths)

e Laying pheromone is proportional to the ants age, older ants lay less

pheromone.

In ABC each row and column in the routing table corresponds to a neighbour, and to a
destination node respectively. Backward ants travelling from the destination to the
source node normally update the routing table entries. This update takes place in two
ways: (i) a positive reinforcement on path taken by the agent (equation 4.1) or (ii) a
negative reinforcement on the other paths (equation 4.2). Basically, an ant increments
the pheromone level, i.e. increasing probability of path used so that the ants coming

behind could use that particular path.

_r(t)+or
r(t+1)——————1+5r 4.1)
rit+1) = l:—aﬁ)rmii_l 4.2)

Where dr is the reinforcement parameter which is based on ants characteristics

showing how well the ant is performing. [Schoonderwoerd, 96] used ants absolute age

62

T, which is the measured time spent in the network, to calculate the reinforcement

parameter as:

ot =—+b' 4.3)

Where a' and b’ are ants parameters. Stagnation is considered to be one of the
biggest issues in reinforcement learning. In ABC routing, the table freezes after some
time since probability entries are used in the routing table. Thus, the algorithm is
enabling to exploit the newly found optimal routes. In other words, the algorithm
sticks in local optima and is not therefore able to reach the global optimum solution.
This will be explained in detail and further solutions will be provided with novel
approaches in Chapter 6. In ABC routing, a scheme called the noise function, which
can be considered as an exploration parameter has been used to ensure that the
algorithm does not get trapped in the local optima. Based on the noise function'® an
ant chooses a random destination at each hop, thus being able to fully search the entire
network. Later on it will be shown that using the noise function, the network can be
managed more appropriately to find best paths performance [Bonabeau et al, 99].
However, the main drawback of this algorithm is that it can only find single paths
from source to destination. The pseudo code for the ABC algorithm is given on Fig.
4.5 [Bonabeau et al, 99]. In the initialisation steps, ants explore the network in the

absence of network traffic which enables ants to initialise the routing table entries.

1 Noise is set to 0.05 in the ABC routing algorithm where 5% of the ants are forwarded to the random
destinations.

63

Main

Initiclization // no data fraffic ants discover paths and updates routing table entries

For t = 0 1o finitialise
Begin
Fori=1toN
Begin
Launch_antrandom({destination))
End Loop

Route ants based on probability entires and Update routing table entries

End Loop
If (t_interval) is reached // time interval for ant generation
Then
Destination node = random (possible destinations)
Sent forward ant (destination_node, source_node)
End If
if (Ant_received)
Function_ ant_received ()

/I Set next hop randomly from the possible output ports.

Choose next hop from routing table among the output ports.

End if
End Main
Function_ ant_received ()
If (backward ant)
Then
Fori=1toN
Begin
If i = node came from
Pt +1)= 1O
1+or
Else
e+ =20
1+ or
End Loop
If (current node = destination node)
Then
Kill(backward Ant)
End if
Push stack (next hop node, Ant);
Sent_ant (next_hop node);
End if
If (forward ant)
Then
If NOT (current node = destination node)
Then
If rand(1) == g // noise(g) set to 0.05
Then
Sent_ant (random(output port))
End if
Else
End if
Else
Change type to Forward Ant
Fnd if

Fig. 4.5: Pseudo code for ABC algorithm

64

4.5.3 Regular and uniform ant routing algorithm

[Subramanian et al, 97] also applied ant colonies to packet switched networks to solve
routing problem in real time. ABC routing algorithm rules are used to update the
routing tables. Two routing algorithms have been proposed namely, regular ants and
uniform ants. Regular ants use routing tables while searching for the optimal solution,
whereas uniform ants, being unbiased, use randomised rules to find their path.
Therefore, they explore paths rather than going through the paths, which are directed
by the routing tables. Moreover, uniform ants, can find multiple paths as they explore
the network whereas regular ants are only capable of finding a single path. This
makes regular ants more complex compared to the uniform ants as they find their way
around. The most remarkable characteristic of the approach in [Subramanian et al, 97]
is that, ants are piggybacked on the data packets, thus utilising the network much
more efficiently. However, this algorithm is based on the assumption that the traffic
on the path followed by the forward ant is same as the traffic on the path followed by
the backward ant. However, this is not a valid assumption to make any longer, since
today’s packet switched networks are no longer symmetrical (i.e. upload and

download links have different capacities).

4.5.4 Cooperative Asymmetric Forward routing algorithm

[Heusse et al, 98] also proposed a packet-switching version of the [Schoonderwoerd,
96] routing algorithm, which is named as the cooperative asymmetric forward (CAF)
routing algorithm. The idea was also inspired from the link state and distance vector
routing algorithms where agents update the routing tables rather than broadcast the
messages used in OSPF routing. Two types of agents have been used, forward agents

and back propagating agents. Forward agents share the same queues as the data

65

packets enabling agents to collect realistic information about the network’s
performance. On the other hand, propagating agents retrace their route to the source
by using high priority queues and update the routing tables in a much quicker way
(rather than sharing low priority queues with the ordinary data packets). Once a loop
is detected they update their data structures rather than deleting the entries (unlike the
approach in [Di Caro & Dorigo, 98-4] which will be explained in detail later in this

chapter).

4.5.5 Smart ants

[Bonabeau et al, 98] extended the [Schoonderwoerd, 96] algorithm by embedding
dynamic programming that made agents “smarter” and improved the performance of
the algorithm. The algorithm is based on the assumption that a sub- path within the
optimal path is also optimal. Although ants update the links associated with the
source-destination pair, paths can also be updated on their way to their destination.
Routing table entries are updated using the same rules as in the ABC algorithm,
except for the absolute age which is replaced with ant’s relative age (7; - 7). The

reinforcement parameter is given as:

+b (4.4)

Where, T;is the ant’s absolute age on visiting the node f and T; is the ant’s age on

visiting the intermediate node i.

66

4.5.6 Antnet routing algorithm

[Di Caro & Dorigo, 97] [Di Caro & Dorigo, 98-4] proposed the antnet routing
algorithm where ants explore the network and collect information about network
status by using routing policies based on the local information at each node.
Moreover, while exploring the network, ants updates the routing tables to build a
statistical model of the network status. Ants also communicate with each other via
these tables. In this algorithm, two types of agents namely, forward ants (agents) and
backward ants (agents) are used to update the routing table entries. In each node
there are two kinds of queues, low priority and high priority. The data packets and
the forward agents use low priority queues whereas the backward agents only use the

high priority queues.

Network Nodes (N)
j Pll Pu wuser PIN
=r P
o 21 2N
-~
£
|
o
£
S
'5 P L-1 N}
o PL[PLN-l PLN

Network Nodes (N)

Gatisticﬁ) Statistic(2) | Statistic(@

N v

Fig. 4.6: Data structures stored in every node

Agents communicate through the two data structures stored in every node (see Fig.

4.6) as outlined below:

67

i. A distance vector routing table 7, with distance metric defined by the
probabilistic entries. For each possible destination d and neighbour node n a

probability value P, is used reflects the goodness of the link (path) given as:

Z > =1,d €[1,N], N, = {Neighbours(k)} 4.5)

N
nek

ii. Anarray My (uq 64, W) defines a simple statistical traffic model experienced
by the node k& over the network. Where, W, is the observation time window

used to compute the estimated mean i, and variance Gdz that gives as:

By =My +M(0,5, —Hy) a (4.6)

07 =05 N0 —H4)* —04) (4.7)

Where, o,_,,is the new observed trip time experienced by the agent while travelling

from node & to destination d. Behaviour of the Antnet can be summarised in the

following six steps:

At regular intervals'? (defined by the user) from every node an agent 4 is sent to a

randomly selected destination node d.

Each agent first defines the possible neighbour nodes (unvisited neighbour

nodes) at the current node by using its routing table. Then, the agent chooses the

' is the factor that weights the number of most recent samples that will effect the average and is set
to 0.005 [Di Caro & Dorigo, 98-4].
2 This value is set as 0.3seconds [Di Caro & Dorigo, 98-4].

68

next node »n within the identified possible (unvisited) nodes by using the
probabilistic values and by taking into account the state of the associated queue by

using the equation 4.8"°.

PI .- })nd+a’ln
1N -D)

(4.8)
Where, [, is the heuristic correction value with respect to the probability values stored
in the routing table that gives a quantitative measure associated with the queue

waiting time and defined as [Di Caro & Dorigo, 98-4]:

] =1-—do (4.9)

And g, is the length of the bits (or number of packets if packet size is fixed) waiting to

be sent to the queue of the output port # of the node .

3. If the selected port is full then the agent is stored in the first in first out (FIFO)
output buffer of port and waits for its turn. It is assumed that the buffer size is

infinitely large.

4. The identifier of every visited node and time elapsed since the agent was

despatched from the source is pushed into the stack S (k) carried by the agent.

1 o is the value that weights the importance of the heuristic function with respect to the probability
values stored in the routing table and it is set to 0.3.

69

5. If an agent is forced to visit previously visited node, hence if a cycle exists, then it
deletes all the entries for the nodes associated with the cycle. Moreover, if the

cycle length is greater than half of the agent’s age, then the agent is destroyed.

6. When a forward agent reaches the destination it changes its type to a backward
agent and returns back to the source node via the same path. On the return
journey, agent pops all visited node from its stack and updates the associated

routing table entries (probabilities) for all nodes by using the following rules:

o M (pg, o, Wy) is updated with the values stored in the stack memory S(k).
The time elapsed to arrive (for the forward ant) at the destination (o;_, ;) is

used to update the estimated mean u 'y, variance a'dz and the best value over

the observation window W',

e The routing table 7} is updated by incrementing the probability of choosing
neighbour f when destination is d° P and decrementing the other
probabilities P,;- as in equations 4.10 and 4.11. In other words, the solution is
updated with a positive reinforcement signal as in equation 4.10 on the
selected next node and the rest of the solutions (nodes) are updated with a

negative reinforcement signal as in equation 4.11.

Pfd' :Pfd' +}"(1-—Pfd') (4.10)

Pnd' =Pndf—rPndr,ngNk,n¢f (4.11)

70

Observed trip time I'* is used to calculate the reinforcement signal r
(goodness measure) as the reinforcement signal as in equation 4.12. T is the
only feedback that the agents receive from the network that is used to find the

optimal solution.

I—,c =1 ifl <1
r=4cu cu 4.12)
1 Otherwise

Where, c is the scale factor used to saturate “out-of-scale” values below 1.
In the original antnet algorithm the following values were used for the constant

variables [Di Caro & Dorigo, 98-4]:

n=0.005,0=0.3,c=2,e=0.25, t=0.5.

Pseudo code for the original Antnet algorithm is given in Fig. 4.7 [Di Caro & Dorigo,
98-4]. Later the following improvements have been proposed by [Di Caro & Dorigo,
98-41:
e Forward ants use high priority queues as backward ants rather than using the
low priority queues as in the previous approach
¢ No information is kept in the ants stack regarding the delays experienced in
each node
e Backward ants update the routing table entries based on the estimated ant trip

times which is computed using statistical model L,

' Variables used in antnet are not related with the variables used in the other algorithms.

71

— dl +(ql +Sa)

L 4.13
k B, (4.13)

Where, d; is the link propagation delay, ¢; is the total size of the packets

that are waiting in the queuse, s, is the size of the current packet.

In antnet algorithm time delay from the current node is the only feedback to the agent.
The performance of the antnet algorithm depends on the several static parameters that
are used. These parameters need tuning using the daemon function explained in
section 4.3 to tune the performance of the routing algorithm. However, it is not
possible to implement the daemon function in a real network as it requires global
knowledge about the network which is not available in distributed systems. Pseudo

code for antnet routing algorithm is given in Fig. 4.7 [Di Caro & Dorigo, 98-4].

72

While (NOT KILL)

Then
If NOT (current node = destination node)
Then
// Set next hop node from unvisited nodes in the routing table
based on the probabilistic entries.
Next_hop_node = Select_Probability (unvisited nodes, routfing
table);
Push_stack(next_hop_node, Agent);
Sent_agent (Low_priority_queue, next_hop node);
// agent is placed to the low priority queus, if it is empty it will be
sent
End If
Else
Change angent’s type to backward agent when it reaches to the
destination
Agent type = backward;
Endif
If loackward ant)
Then
If NOT (current node = destination node) // destination = source node in
this case
Then
Next_hop_node = pop_stack(:;
Endif
Update(M array);
Calculate R;
Update (Routing table);
Sent_agent (High_priority_queue, next_hop node);
// agent is placed to the high priority queus, if it is empty it will be sent
Endif
End while;

// Killis a special msg type that will be used in the simulation which can only be sent by the
Master, When kill is sent it will be placed in front of the high priority aueue rather than end of

If ¢_interval) is reached // time inferval for ant generation
Then
Destination_node = random (possible destinations)
Sent forward agent (destination_node, source_node)
End if

// it is assumed that received packets are handied by the distributed programming
environment and they are not being lost while processing other packets (agents).

If forward ant)

Fig. 4.7: Antnet routing algorithm’s pseudo code

73

4.5.7 Explorer, allocator and deallocator ants
[White et al, 98-1] applied ant systems to connection oriented circuit switch networks.
In [White et al, 98-1] ants choose their destination based on the probabilistic table and
keep a data structure, named tabu list of the nodes visited. This approach prevents
cycles and avoids visiting previously visited nodes. In this work, a GA has been used
to optimise the constant parameters that have been used in the algorithm. They used
three types of ants:

e Explorer ants: search for a path from source to destination

e Allocator ants: allocate resources from source to destination

¢ Deallocator ants: free allocated resources.

4.5.8 Ant System Genetic Algorithm

Ant colony algorithms are sensitive to the number of parameters used, such as, the
number of agents and the sensitivity of the link cost. Moreover, sometimes shorter
path becomes unavailable or it takes some time to discover. Therefore, in [White et al,
98-2] a GA was used to optimise the path usage and to avoid solution stacking in local
optima. In Fig. 4.8, the pseudo code for ant system genetic algorithm (ASGA) is given

[White et al, 98-2].

Initiclize Population

Fori= 1 to Iterations
Begin
Forj =1 fo population size
Begin
Use_agent_to_solve_problem ()
End
Forj =1 fo population size
Reinforce_path_followed_by_agent ();
End

Generate_agent_parameters Q;
End

Fig. 4.8: Pseudo code for ASGA Algorithm

74

4.5.9 Improved Antnet Routing Algorithm

[Baran & Sosa, 00] used intelligent initialisation of probabilistic routing tables with
deterministic values. In the initial states of the original approach, software agents are
forwarded based on the uniformly distributed probabilities without taking into account
the initial state of the network. However in [Baran, 01] routing table entries for the
neighbouring nodes are initialised with higher probability values. Although this
improves the performance of the algorithm in the initial states, in the long term its
effect on performance is negligible. It has been further shown that, when a link or
node failure occurs, the probability corresponding to the failing node is distributed
equally amongst the others. [Baran, 01]’s approach seems to improve the algorithms
response to the failures in a short time period, but over longer period the gain in
performance improvement is negligible. [Baran & Sosa, 00] further suggested limiting
the number of ants in the system by four times the number of links. The first problem
with this scheme is that this criterion can only be available globally and as the
network evolves it is obvious that number of links would not stay the same.
Moreover, although restricting the number of ants improves the performance of the
algorithm and reduces the overhead that may be created by the ants in the network, it
reduces the convergence of the algorithm. A simple scheme used in [Tekiner et al, 04-
3] to limit the number of ants where number of ants are depend on the number of
packets in the system at any given time. In general a large number of ants collecting
information about the status of the network mean faster convergence while consuming
more system resources. This is the main dilemma in reinforcement learning as has
been discussed earlier in this chapter. Lastly, [Baran & Sosa, 00] have used a
deterministic approach in choosing the next hop. However, it has been pointed out

that this might lead to a possible infinite looping and congestion in the optimal route

75

[Sim & Sun, 03]. This congestion has also been observed in a similar approach

adopted in this thesis.

4.5.10 Limiting number of ants

Although, [Baran & Sosa, 00]’s approach on limiting the number of ants is proved to
have a significant impact on the performance of the algorithm. The main drawback is
that it uses some constant values for limiting the number of ants that can be different
on every network. [Akon et al, 04] proposed a timeout approach to control ant
populations in a dynamic manner. Whenever an ant is generated at the source node s
to destination d, a timeout value ¢; is also been set. If the created ant fails to return
back to the source node for whatever reason, ¢ is used to regenerate a new ant to the
destination with the same value. Otherwise, on successful return #, is updated as £,
based on the reinforcement value » scored and ant is sent back to destination (equation

4.14) [Akon et al, 04]

t, = Tbx(bl "ﬁ%—b?] (4.14)

Where, b1, b, b3 and T, are system parametersls.

By using the above formula, the number of ants is kept low when it is not needed.
However, this reduces the probability of discovering changes in the network, since
there will be a reduced number of ants to collect up-to-date information. In addition,
in [Akon et al, 04] backward ants updates the timeout values in the intermediate nodes

based on the reinforcement value on its way back to the source node.

B b, =2.5b,=2,b;=100 and Ty is set to ant creation rate.

76

4.5.11 Multiple ant colonies

The idea of using multiple ant colonies was first applied to wavelength routing in
[Varela & Sinclair, 99]. In this work, more than one ant colony is used to distribute
the different wavelengths over the entire network to achieve increased availability for
the required wavelength at any given time. In the original antnet, ants are only
attracted by the pheromone trails laid by the ants from their own species. In addition
to this, in [Varela & Sinclair, 99] ants are repelled by the pheromone laid by other
species. Therefore, routing decision implementation is based on more than one
routing table. Three variants of the algorithm have been proposed namely: local
update, global update/distance and global update/occupancy. In the local update table
entries are updated in every hop whereas, in the global updates, table entries are
updated at the end of each cycle'®. Also, two variants of the global update have been
used where two different repulsion techniques are employed to distribute the

wavelengths based on the distance or the link occupancy.

In [Sim & Sun, 02] the idea of multiple ant colonies has been applied to the antnet
routing algorithm in circuit switched networks. In [Sim & Sun, 02] it is assumed that
there exists more than one ant colony. Let us say that, there are two ant colonies
existing in the network, named as red and blue, where each use different pheromone
tables. For example, red ants only update the pheromones laid by the red colonies and
so on. By using two colonies, more than one optimal path becomes available for
every source destination pair. Therefore, higher load balancing is achieved. Unlike the
approach in [Varela & Sinclair, 99], where ant colonies repel each other, in [Sim &

Sun, 02] no information on whether ant colonies repel or attract each other is given.

' An ant is said to complete its cycle when it completes it journey from source node to the destination
node.

77

To date the application of multiple ant colony algorithms to the packet-switched

networks has not been reported, and consequently there is no performance evaluation.

""E » E :r______.___H, -l gy e e s l—h----
'

Fig. 4.9: Multiple Ant Colonies

In Fig. 4.9 there are two ant colonies red and blue. In Fig. 4.9(i) ants from both
colonies do not know where to go initially as there is no pheromone laid from both
colonies. They both make unbiased decisions and randomly choose one of available
three paths. In Fig. 4.9(ii) the first pair reaches to their destinations and follow the
path that they came from to return back to the nest. It can be seen from Fig. 4.9(iii)

that some pheromone is laid on most of the paths by both of the colonies but not

78

equally. Finally, Fig. 4.9(iv) shows the pheromone laid by both of the colonies. It can
be clearly seen that there is a good balance in the distribution of pheromones.
Therefore, the load balancing of the network is very high. The middle path which is
also the shortest path is dominated by the blue colonies hence with very little amount
of pheromone laid by the red colonies. The second shortest path, which is the path
below the graph, is dominated by the red colonies. Therefore, red colonies avoid the
congested middle path and the upper path is equally shared by both colonies in this
scenario. One can say that by using multiple colonies, improved load balancing can be
achieved and hence improved performance. To date, no application of multiple ant
colony optimisation (MACO) is reported in packet switched networks. In Chapter 6,
we will apply MACO to packet switched networks and compare the results with

existing approaches.

4.5.12 Other Ant-Agent Based Approaches

A number of researches proposed hybrid versions of ACO meta heuristics. Multi
AGent Metaheruistics Architectur (MAGMA) is one of these approaches where
agents acts in a multi-level architecture, each level corresponding to a different level
of abstraction [Roli & Milano, 02]. There are four levels in MAGMA and there are
four kinds of specialised agents each of them running a different algorithm. Agents
communicate with each other in two ways, horizontally, by communicating with the
agents on their level only and vertically by communicating with the other agents on
different levels. This communication is very flexible and any kind of algorithm and
protocol can be used within MAGMA. Different meta-heuristics as well as ant
colonies have been embedded and tested in MAGMA [Roli & Milano, 02]. [Di Fatta

et al, 00] applied ant systems to packet based active networks. In this approach they

79

used a dynamic congestion metric by taking into account delays experienced in the

routers in addition to the transmission delays.

[Li et al, 00] used ant systems on circuit switched telecommunication networks. In
this approach on detection of a cycle an ant dies rather than removing the cycle from
its stack. [Guoying et al, 00] applied AS to real time multicast routing networks.
[Michalareas & Sacks, 01] used deterministic rules for the data packets and
probabilistic rules for the ants travelling in the network as in the antnet routing.
[Matsou & Mori, 01] used accelerated ants to improve the convergence speed to
improve network performance. Ants are accelerated by allowing every ant to update
more than one entry at a time in the routing table, based on the routing history unlike
antnet, where an ant could update only one entry. [Chu et al, 02] applied ant systems
to the multicast routing problem to meet quality of service (QoS) requirements. In
[Gunes et al, 02] ant systems are applied to multihop wireless networks to reduce the
overhead for routing. [Kassabalidis et al, 01] reviewed and implemented the antnet
routing algorithm in their limited work. [Botee & Bonabeau, 99] used traditional
GA’s to tune the constant parameters used in the antcolony optimisation applied to the
TSP problem. [Liang et al, 02] applied ant systems together with GA to packet routing
networks. [Liang and Zincir-Heywood, 02] investigated the performance of the antnet

routing algorithm and simulated it on an event driven C++ simulator.

4.6 Agent Distance Vector Routing

Agent distance vector routing (ADVR) [Amin et al, 01] is another algorithm that has
been inspired by the ants. ADVR is a hybrid routing algorithm that uses distance

vector routing together with agents. In ADVR, the aim is to use network resources

80

efficiently. Therefore a hybrid approach has been employed to agent migration; depth-
first-search method is used together with the ant system. In depth-first-search [Amin
et al, 04] agents exchange their migration history with the other agents that are
visiting the same node. This is to ensure efficient utilisation of the network resources
by avoiding the transfer of the same information among the same nodes. However, the
main drawback of this method is that, after some period an agent starts making the
same decision that results in clusters of agents doing the same thing. Also, in [Amin et
al, 01] it was argued that increasing agent populations increases utilisation of network
resources, although more agents mean higher parallelism. In order to find the optimal
number of agents (best agent population) [Amin & Mikler, 02-2,04] proposed a
dynamic agent population solution. In this approach, an agent that has not updated a
table entry for a long time is allowed to die, whereas a busy agent is allowed to clone

itself on the auxiliary agents.

4.7 Q-Learning

Q-learning is a model free algorithm that learns from the delayed reinforcements and
it is one of the easiest approaches to implement in reinforcement learning, thus one of
the most popular [Sutton & Barto, 98]. Q-learning is applied to the routing problem in
the Q-routing algorithm, where routing table in the distance vector algorithm [Sutton
& Barto, 98] is replaced by the table of estimations (Q values) based on the link delay.
In Q-routing the same routing policies are used as in the distance vector routing
algorithm. The Q-function is used to update routing table entries in Q-routing [Boyan
& Littman, 94]. However, it has been suggested that neural networks can be used for
approximating the Q-function by incorporating diverse parameters of the network

such as time delays and queue lengths [Boyan & Littman, 94].

81

4.7.1 Q-routing

In Q-routing, when x sends a packet to the node d via its neighbour y, it receives y’s
estimated remaining trip times to the destination d. Then it selects the neighbour with
the smallest time (equation 4.15). Q-routing uses forward exploration to update the Q
values in the routing table (named as Q-table) that represents the delivery time

estimation to the given destination (equation 4.16) [Boyan & Littman, 94].

0,(z,d)= Zrer]%ri(ryl) Q,(z,d) (4.15)
AQ (v, d)=1,(Q,(z,d) +q, -0, (r,d)) (4.16)

Where, AQ,(v,d) is the new estimation value for node x to destination d via the
neighbour node y (Fig. 4.10). This new estimation is calculated by subtracting the old
estimation value Q,(y,d) from the sum of the estimation time for packets travelling
from node y to destination d via neighbour z (Q,(Z,d)) and current queue delay for the
packet in node x (g,). nf” is the learning rate parameter defined by the programmer
[Tekiner et al, 04-4]. In Fig. 4.10, x updates its Q.(y,d) value pertaining to the

remaining path of packet p via node y.

Data Packet
/'"‘\.\ p
X Y
|
Learning Update

© @

Fig. 4.10: Forward exploration

17 y/is set to 0.7 in original Q-routing algorithm [Boyan & Littman, 94].

82

4.7.2 Dual reinforcement Q-routing

Backward exploration together with forward exploration is applied in dual
reinforcement Q-routing (DRQR) algorithm in order to improve the learning rate of
the Q-routing algorithm [Kumar & Miikkulainen, 97]. In DRQR, exact delay values
learnt from the backward learning have also been used in the routing tables in addition
to the estimation values learnt from forward learning in Q-routing. This has doubled
the learning information available in the algorithm thus improved the learning rate of

the algorithm [Kumar & Miikkulainen, 97].

In DRQR algorithm, when x sends a packet to node y to get its estimated remaining
trip times, y also gets x’s estimated trip times for its link with s. In Fig. 4.11, a packet
at node x arriving from source node s is sent to node y, also carries the estimated time
that it takes from node x to s, Qx(Z,s) (equation 4.17). With this information node y
updates its own estimate Qy(x,s) for the entry node x associated with the destination s
(equation 4.18). Therefore, in DRQR both backward and forward exploration can be
used to update the Q entries. However, this adds an overhead to the packet and to the

algorithm.

0,(z',s)= min Qy(z,s) (4.17)
zeN(y)

AQy(3,5) =11p(Qx(2',5) + gy — 0y (%,5)) (4.18)

In Fig. 4.11, during the forward exploration, the node sending the data packet (node x)
updates its Qx(y, d) value pertaining to the remaining path of packet p via node y.

However, during backward exploration, the receiving node y updates its O, (x,s) value

83

pertaining to the traversed path of packet p via node x. The main drawback of both the
Q-routing and the DRQR approaches is that, although they are capable of detecting

node and link failures, they are incapable of restoring them.

Data Packets with Q(x,s) information
p—»

1
Learning Update:

© 9

Fig. 4.11: Forward and backward exploration.

4.7.3 Confidence based dual reinforcement Q-routing

In confidence based dual reinforcement learning (CDRQR) a “confidence” parameter
is used to control the reliability of the enforced signal [Kumar & Miikkulaine, 02].
When a Q-routing entry is not updated for a long time it does not give a true estimate
of the associated link. Thus, one can say that it is not reliable. In order to avoid this, a
dynamic learning parameter is used in CDRQR. In addition to the Q-table used in the
original Q-routing algorithm a C-table (Ci(d,y)) is also used. C\(d,y) defines the
confidence parameter, a number between 0 and 1, for the path from node x to node d
via neighbour node y. A value of 1 means the Q-table entry represents the current
state of the network that has just been updated. On the other hand, value 0 means that

the corresponding link has never been used before and updated.
In CDRQR, a node is provided with the estimate for the remaining trip time and the

associated confidence value, and uses them to define the learning parameter. In other

words, the learning parameter used in CDRQR is dynamic and changes based on the

84

confidence parameters. The Q-estimate is calculated in CDRQR as [Kumar &

Miikkulaine, 02]:
AQ, (3, d) =11, (Cig» C)(Q, (@ D)+ g, — 0,(3, D)) (4.19)

The learning rate function 7,(C,,,C,,) is defined as:

nf (Cold’Cest): max(cest’l—cold) (4‘20)
According to [Kumar & Miikkulaine, 02] learning rate should be high if the

confidence in the old Q value is low and/or the confidence in the estimated Q value is

high.

In order to provide more reliable estimates, the confidence values are given by:

o _{a: AC,, (4.21)
| b: Cout Ny (Cold s Cose)(Cest ~Cog) '

If the Q values associated with the links have not been updated within the last time
step, every C value decays with some 4 as in equation 4.21(a). Otherwise, if the Q
value is updated in the last time step, the associated C values are updated as in

equation 4.21(b).

4.7.4 Predictive Q-routing

Predictive Q-routing (PQR) is a memory-based Q-learning algorithm to improve the
performance of the Q-routing under low loads [Choi & Yeung, 96]. PQR uses the

memory to keep the best experiences learned and reuses to predict the traffic model of

85

the network. PQR, therefore, distributes the network load evenly to achieve better
performance in terms of delivery times. In PQR in addition to Q-tables (equation
4.15) three more tables are kept in the nodes. The B-table, B,(d,y), represents the best
estimated delivery time from node x to node d via neighbour node y. When a path is
congested the algorithm diverts the traffic through other nodes. Then, eventually this
path becomes available again. The R-table, R.(d,y), is used to keep the recovery rate
of this and represents the path from node x to node d via neighbour node y. The U-
table, U,(d,y), keeps track of the last update time from node x to node d via neighbour

node y. In Fig. 4.12 the pseudo code for PQR is given [Choi & Yeung, 96].

Table Updates (when a packet arrives to a node)

AQ.(y,d)=7n(Q,(Z,d)+q,-Q,(y,d))

B (y,d)=min(B,(y,d),0,(y,d))

if(AQ, (v,d) <0)
AR, (y,d) = AQx(y,d)/(current _time — Ux(y,d))
R (y,d)=R (y,d)+ AR, (y.d)

else if(AQ, (y,d)>0)
Rx(y’d) = 7Rx(yad)

U,(y,d)=current _time

Routing Policy (tfo send a packet from node x to y)

At = current _time—-U (y,d)

Q. (. d)=max((Q,(y,d)+ AR (,d)) B,(y,d))
y=argmin {0, (v,d)}

Fig. 4.12: Pseudo code for PQR

In PQR there are three learning parameters used.
1. mis the original Q-function learning parameter that is used in Q-routing and it
is set to 1.

2. Bis the learning parameter for the recovery rate and is set to 0.7.

86

3. vy is used to control the decay in the recovery rate where this value is usually

greater than 3 and set to 0.9.

4.8 Conclusions

This chapter presented an introduction to reinforcement learning and ant colony
optimisation, followed by a detailed review of antnet routing algorithm and its
evolution. Finally, a review of the well known Q-routing algorithm and its derivatives

has been given.

Ants uses probabilistic routing tables whereas in link state and distance vector routing
table entries are deterministic. Also, ants use less resources on the nodes compared to
these algorithms. Moreover, ants are dynamic and self-organising systems whereas
distance vector and link state algorithms require human supervision. Q-routing does
not guarantee finding the shortest path always. Moreover, it can only find a single
path, but cannot explore multiple paths. In Q-routing, routing is proportional to the
data traffic. Therefore network emerges lower in low data traffic hence routing
algorithm works slower. This is not a desired property as a routing algorithm should
perform the same under all traffic conditions. Dual reinforcement routing uses
forward learning together with backward learning with a considerably small overhead.
CDRQR algorithm uses confidence parameter to make the Q-routing algorithm more
reliable. On the other hand, PQR algorithm uses memory to improve the load balance
of the network, thus the performance of the network. Implementation and the

modifications proposed for the antnet routing algorithm will be given in Chapter 6.

87

CHAPTER YV - IMPLEMENTATION
AND EVALUATION OF LOGICAL
NETWORK TOPOLOGIES

5.1 Introduction

This chapter is a study of a variety of network performance issues, design,
implementation and evaluation for various synchronous logical network topologies
and their routing algorithms. Particularly, routing algorithms for these networks will
be simulated and tested as in a fully connected network. In order to test the
algorithms, a generic implementation framework has been developed for synchronous
logical network topologies. For simulations, all nodes create a packet with a random
destination based on the defined system load, and place it on one of its output ports.
All nodes execute the same algorithm and make routing decision in order to forward
packets to the related output port. The algorithm runs for specified number of loops

(iterations) and stops execution after reaching specified numbers of iterations.

The remainder of this chapter is organised as follows: In section 5.2 the testing
criteria and the transmission/reflection ratio (TRR) are defined. This is followed by
the node model incorporated in a particular network topology. A design and routing
algorithm framework based on TOAD are covered in section 5.4. Implementation of
the network and routing algorithms are presented in section 5.5. The test environment
is described in section 5.6. Finally, an evaluation of Shufflenet, Gemnet and De

Bruijn graphs is given in section 5.7.

88

5.2 Testing Criteria

The following test criteria have been selected to evaluate the performance of the

routing algorithms for different network sizes under different system loads:

1. Average number of hops

2. Contention percentage

3. Node idleness percentage

4. Transmission-reflection-ratio
TRR is used to evaluate the proposed priority rule (see section 5.3) based on the
routing algorithms that can make use of the available multiple paths. Also, each
network will be compared with deflection routing (no-buffer) and store-and-forward
routing (with one-level buffer) configurations. It has been shown that there is no
performance gain in the system when employing multi-level buffering [Maxemchuck,
93]. Tests carried out with more than one level of buffer have also proven this point.
This is because, when the buffer size is increased there are more packets at the system
at any given time, thus more congestion. Based on the deflection and store-and-
forward routing strategies, two types of nodes are used in the tests, with/without
buffering (one level). Furthermore, a multilevel buffer requires buffer management
algorithms [Hunter et al, 98], which are beyond the scope of this thesis. In this work
the following are assumed: (i) one level of buffer is either full or empty, (ii) in the
event of congestion a packet is stored in the buffer if it is not full, and (iii) a packet
stored in the buffer is released within the next iteration as it has priority over the

packet in the node’s inputs.

&9

Algorithms will be evaluated for their routing capabilities and adaptability for optical
networks in particular all OTDM. Simulations will be carried out for a varying
number of nodes and different loads (theoretically this system should work for up to
infinite number of nodes based on the network configuration). As the number of
nodes increases, the number of packets wanting to reach their destinations will also
increase, then resulting in packet congestion. In order to verify this, the number of
packets, the number of congestions, the percentage nodes idleness for all iteration and
the TRR (see section 5.3) will be compared for a varying number of nodes (i.e. 24, 32,
64, 128, 256, 384, 512 and 1024 nodes). In addition, the impact of the request load on
the performance of the algorithms will also be investigated, as different algorithms
have different behaviours on different load levels. Parameters that will changed
during simulation are the number of nodes, the number of messages created per test,
the total number of hops, the total number of times a node was idle, the total number
of times an output port is used (transmission and reflection) and the total number of

congestion.
(1) The performance analysis and best/average/worst case comparison of the

algorithms is determined according to the following:

Average number of hops per packet N, from source to destination is defined as

N, =N (5.1)
NH

Where Ny and Ny are the total number of packets and hops, respectively.

(i) Percentage of the idle of nodes in the network ¢ is given as:

90

N
= % 5.2
g=—-1-x100 (%) (5.2)

Where N and 7 are the Shufflenet size and the total number of iterations, respectively.
g is an important factor with regards to utilization of the network and N is the total

number of idle nodes.
(i) Contention occurs when two or more packets are destined for the same output

port. Congested packets are either buffered or deflected to the next available port. The

contention ratio ¢’ which measures this is defined as:

¢'=—= (5.3)

Where N¢ is total number of contentions that occurred. This is an important parameter
as the number of contentions occurring within the system has direct effect on the

number of hops taken by a packet, which is the main performance measure.

5.3 Transmission/Reflection Ratio

Fig. 5.1 shows a logical node structure of a TOAD based 2 x 2 routers that will be
used as the node model in the simulations [Gao, 03]. As shown in Fig. 5.1 packets can
be inserted (added) or dropped at the node on request and of course on availability of
output port. Previous studies have shown that in TOAD based routers the crosstalks
observed at the output ports are not the same. Crosstalk observed at the reflection port

is slightly higher compared to the transmission port [Gao, 03].

91

Add Packet

(Input)
OutputA
InputA (Transmission)
> » >
OutputB
InputB (Reflection)
>

Drop Packet
(Output)

Fig. 5.1: Node model

Therefore, the implication of asymmetrical crosstalk at the output port in a network
environment would be to select routes, which avoid the reflection output ports as
much as possible in order to minimise the overall crosstalk observed by a packet when

reaching its destination. TRR is defined as:

TRR=12» (5.4)

Where N7z and Ny are the total number of transmissions and reflections, respectively.
TRR for each packet should be maximised in order to ensure that packet reaches the
destination with the least amount of crosstalk. In the best-case scenario, only the path
utilising transmission ports is used. In the worst-case scenario TRR is equal to zero

since a path that goes through all the reflection ports has been selected.

As discussed previously, each node is a 2 x 2 TOAD router with two output ports,
with the reflection port (Output-B) having higher crosstalk than the transmission port
(Output-A). In deflection routing if two packets are destined to the same output port,
then one of them is deflected. Whereas, in store-and-forward routing if one-ievel of

buffering is full, then the packet is deflected to the available port. As shown in Fig.

92

5.2, packet taking the worst path (all reflection ports) will experience increased
crosstalk than those taking the best path. The best-case scenario is to select a path that
links all the transmission ports until the packet reaches its destination. To achieve this,
a priority scheme has been introduced, where packets going through the transmission
port have higher priority over the reflection port. A packet received by a node can be
routed arbitrarily to one of the two output ports without affecting the path length to
the packet destination. However, when the packet is TYPE-M (see Chapter 2), nodes
attempt to avoid the reflection port and instead use the transmission port. In doing so,
packet TRR 1is increased. In Shufflenet, TRR also reflects the output port utilisation.
However, introducing the priority scheme decreases the output port utilisation

dramatically, thus resulting in increased network congestion [Hluchyj & Karol, 88].

0,1 » 0,2 > 00 |
o AN AN g
1,0 11 1,0 |
S N NN
2,0 2,1 2,0
3,0 3.1 3,0
4,0 41 4,0
5,0 5,1 50 |
6.0 61 1 6,0
7,0 <> 74 <> 7,2 70

- -) Worst Case Scenario

» Best Case Scenario

Fig. 5.2: Shufflenet showing possible worst and best paths using prioritised
routing

93

5.4 Design

In developing all the algorithms that have been reviewed in the literature and the
proposed algorithms in this thesis a number of assumptions and conditions for the
interconnection networks have been made, which are as follow:
e All nodes in the system have a unique address
e All nodes within the system are fully connected
e Packets are processed synchronously by delaying them at the input ports so
that they arrive at the node at the same time
e Packets are delayed while the node is processing the header containing the
destination information
e Each node is identically the same (i.e. processing power, architecture, routing
algorithm...)
e Packet size is fixed through out the simulations
e There is no packet loss due to the congestion as packets are deflected when
there is no buffer available
e There is no packet loss due to the loss in the transmission (it is assumed that
packet restoration algorithm runs in the node)
o The packet in the buffer has priority over the packets in the input ports
e The existing packet in the system has priority over the new packet that is about
to inserted to the system. It is assumed that there is a buffering and control

mechanism for the new packets.

94

5.4.1 Packet format

The packet format is assumed to be fixed, composed of a header and payload as
shown in Fig. 5.3. The header carries the information required for the packet routing
algorithm. It is composed of the packet age (number of hops experienced by packet), a
unique packet identifier and the packet destination address. It is assumed that the
packet is delayed while the header is being processed at each node. Although it is
assumed that there is sufficient time for header processing, packet header content
should be kept to a reasonable size in order to ensure faster processing, thus increased
throughput. In practical systems, if a packet cannot be processed within the given time
(in the dedicated time slot) then it is regarded as a lost packet, since there is no
mechanism to store partial routing information. The packet payload carring the data

has no effect on the routing decision.

Packet Age, Packet ID, Destination Address, Data

A
\)
A

/

Header Payload

Fig. 5.3: Packet format

5.4.2 Network routing algorithm framework

A framework for the routing algorithm implementation and the simulation is given in
Fig. 5.4. This Meta model is based on the information gathered from the review of the
networks and the routing algorithm properties and will be used as the base model for
implementing the routing algorithm of the selected networks. The design and
implementation process are broken down into 8 main steps with each step

representing and identifying certain aspects of the simulation as outline below:

95

STEP 1- Initialization: This step is the start-up process of the algorithms. Each node

clears its output ports, buffers and all the variables.

STEP 2- Check if packet has reached its destination: Node checks the destination
address of the packet to see whether the packet reached to its destination or not. A
packet is dropped (deleted and counter incremented) if the current node is its

destination.

STEP 3- Find the node connections: Every network has a different connectivity
pattern. Based on the connectivity pattern, a node defines its actual connections,

which are mapped to the node’s output ports.

STEP 4- Routing algorithm: The node that makes the routing decision (i.e. assigning
the output port) uses all the information contained within the header. This is the
“heart” of the simulation, where different strategies and rules have been used to

handle the packets that directly affect the performance of the algorithm.

STEP 5- Copy packets from input to output port: Based on the information and
decision taken in STEP 4, the packet is copied from the input port to the selected
output port. In the case of contention (if there are more than one packets that are
forwarded to the same port), only one packet is granted access to its preferred output

port whereas the rest of the packets are deflected or buffered.

96

STEP 6- Create new packet: Node creates a new packet and places it on one of its
output ports (if empty). Packets are created based on the probability of packet creation

rate. This probability is also used to define the system load.

STEP 7- Copy packets from output to the next node’s input port: Node copies the
packet at its output port to the next node’s input port based on the node connections

defined in STEP 2.

STEP 8- Display current network status: Each node is displayed in the logical

network structure with packets in their input ports. This 1s used to track packets,

hence, it can be used to verify the correctness of the algorithm.

97

¢

Initialization

STEP 1

Check whether any
packet reached to the
destination

STEP 2

Find Node
Connections

STEP 3

m=-—d

S0 UTgoZ

e

Apply Routing Rules
(Algorithm) &
Find the prefered
Output Port for each
packet
(Store In the case of
Contention If Buffer
Exists!)

“oo3zcz

o]

STEP 4

30—~ o+~ —

Forward Packets (from
the Input port) to the
Output Port

v olao z

STEP §

Create New Packet

STEP 6

Copy Packet (from output
port) to the next node’s
input port

STEP 7

Display Current Status of
the Network

|

STEP 8

Fig. 5.4: Interconnection network routing algorithm framework

98

STEPS and STEP7 could be combined into one step by copying packets from the
input port of one node to the input port of the next node. However, in order to
guarantee mutual exclusion packets must first be copied to the node output port. After
all nodes process the packets in their input ports, packets can then be copied to the
next nodes. Otherwise, the packet that is copied to the input port overwrites the

existing packet that has not been processed.

5.5 Implementation

This section will describe the implementation details of the simulation according to
the system design highlighted in the previous sections. The program structure will be
presented. Implementation of the networks and algorithms are based on the eight steps
defined by the design model as in the previous section except for the first four steps

given as follow:

STEP 1- Initialisation: Each node initialises (clears) the variables and converts the

source addresses (source address is node itself) into a binary format.

STEP 2—- To check if a packet has reached its destination: If packet has reached its
destination then node deletes the packet in its input port and increments its sent_out

counter.
STEP 3- To finds the node connections: Once the initialization step is finished the

packets at input ports are checked to see if they have reached their destination. The

node then checks to see if there is a packet in its input port. On detecting a packet, the

99

node then converts the packet’s destination address into binary. Finally, node finds the

node connection based on the interconnection pattern of the network.

STEP4 - Routing algorithm: Following STEP 3, node applies the routing algorithm
in order to find packet type and packets output port preference. Since routing decision

is specified in a distributed manner, then every node re-routes the packet at every hop.

The implementation of proposed topologies is best illustrated in Figs. 5.5 and 5.6.
Networks are implemented with/without buffers based on two different contention
resolution schemes. For the store-and-forward routing implementation only Fig. 5.5
applies. Thus, making the deflection routing configuration implementation much
simpler and less complex. There are four different scenarios that might occur if there
is no packet in the buffer or if buffer does not exist; not valid inputs A and B, valid
input A valid and not valid input B, not valid input A valid input B, and valid input A

and B. Note, valid input means there is a packet in the input port.

In the first scenario where there are no packets in the input ports, the node checks
randomvar which defines the packet creation rate and if it is true then it creates a new
packet and places it randomly to one of the output ports. Otherwise, it continues with
the next step. In the second and third steps, if there is only one packet then node
places it to the preferred output port (after executing the routing algorithm) and

checks randomvar to create a new packet and places it to the empty output port.

100

Initialization

Packet destination
== Node address

Drop packets
sent_out++

I

acket_a_valr
(packet_b_valid
ket_buf_vali

Convert
destination
address to binary

> Calculate D

Set type_flag
(Single or Multi)

Set TypeA

(TypeB, TypeBuf)
to 1 (Type M)

If type_flag
(if Type S)

Apply routing
algorithm to find
output port

if 1Buffer
(if there is no packet
in the buffer;

tpacket_a_valid &
Ipacket_b_valid

If randomvar

Create a packet and
insert into one of the
output ports if
probability is satisfied

acket_a_valid &
packet_b_valid

If
{TYPEARSETYPEB)
&& (AprefA&&BprefA ||
refB&&BprefB

"4
Copy one packet
from input to

buffer and other
input to output

{AprefB&&BprefA]
TypeA8&BprefA||
AprefB&&TypeB)

Copy InA to OutB

Copy InB to OutA

Copy InA to OutA

acket_a_valid &8
!packet_b_valid

AprefersB &&
IA_prefers_A

Copy Input A to Output A
and create a packet and
insert to output B if
probability is satisfied

Copy InB to OutB |«

Copy Input A to Output B
and create a packet and
insert to output A if
probability is satisfied

Y

tpacket_a_valid & BprefersA &&
packet_b_valid 'B_prefers_B
N N
Copy Input B to Output B
and create a packet and

insert to output A if
probability is satisfied

Copy Input B to Output A
and create a packet and
insert to output B if
probability is satisfied

Fig. 5.5: Implementation flowchart

101

In the last step, there are two possibilities, either contention occurs or packets are
forwarded without contention. For the case of contention one of the packets is placed
in the buffer and other is passed to the preferred output port. However, if there is no
buffer in the system, one of the packets is forwarded to the preferred output and the
other is deflected to the other output port. In routing algorithm fairness is satisfied as
follows;

» If both packets prefer to go to the output A then packet in the input B is

deflected or buffered and,
» If both packets prefer output B then packet in the input A is deflected or

buffered.

With the store-and-forward routing, in some cases, there might be three packets at a
node that prefer to go to the same output port (packet in buffer, inputs A and B). In
this case it is assumed that a packet in the buffer has priority over packets at the input
ports. Therefore there are four different cases, as in the deflection routing
configuration, which are: Case 1; node checks the existence of a packet in the buffer,
and on detecting one it forwards it to the preferred output port and places a new
packet on the other port. Otherwise, node creates and places a new packet in any of
the output ports depending on the randomvar’s state. Cases 2 and 3; if contention
occurs, packet in the buffer is forwarded to the output port and the packet in the input
port is forwarded to the buffer. Otherwise, both packets are forwarded to the preferred

output ports.

102

Copy Butfer to Output B
| and create a packel and |
insert o output A |
probability is satisfied |

| Copy Buffer to Output A |

| and create a packet and
insen 1o output B i
probability is satisfied

i
NTYFEALATYPEBuU)

& (AprefAlSBufpreds ||
A prefBa&Bulpredd)

Y

R, ;
Copy buffer to cutput | Copy Ina o QutB |
- and copy input At | Copy In Buterto | [
™ the olher output | Outa
| {eontenton with buf}
N Copy InA to Outh
Copy In Buffer to
- OuE —

"
WTYPEBSATYPEBuUf)
&& (BprelA&SBulprefs ||
prefB&&BufprafB)

A

h J SRSTEL), Sl
Copy buffer 1o cutput Copy InB 1o CuwB
£ and copy input B to Copy In Buffer 1o
ot the other output Outd
{contention with buf)
§ Copy InB to Outa | [
Copy Butfer to
= DutB -—

'C_mﬂuﬂ'mwma!

|Capy Buffer to Cul B
Copy In A to Buffer |

Copy In Ato Qul B

TypeALLBprefA||

AprefBE&TypeB) Copy In B to Out A Copy In B to Buffer
| |
Buffer to Qut A anyauﬂarluﬂm.ﬂ

CupylnAmOuB
¥ |Cuwln3mm

Copy In A to Butfer
Copy In B to Dut A

Copy Output Array
——— el 10 NPt Array and
Display

Fig. 5.6: Implementation flowchart with buffer

103

Case 4; since there are three packets in the system, regardless of the preferences of
packets, one of them, in the inputs, is forwarded to the buffer. In the worst-case
scenario, three of the packets are forwarded to the same output port and three of them
are single path packets. In this case, only packet within the buffer is forwarded to the
preferred output port and other two are deflected or buffered. Fairness is assured on

forwarding the inputs packet randomly as in the deflection routing case.

STEP 5 — Copy packets from the input ports to the output ports: This step takes
place within the STEP 4 whilst allocating the output ports to the packets. STEPs 5 and
7 are done in two different steps in order to use the resources in a mutually exclusive

manner.

STEP 6 — Create new packet: If there is an unallocated output port, a new packet is

created and placed at it based on the traffic model (see STEP 4).

STEP 7 — Copy packets from the output port to next node’s input port: After
processing all packets in the output ports, they are forwarded to the next nodes input

ports according to the interconnectivity pattern.

STEP 8 - Display current network status: After each iteration, current network

status is displayed in order to trace and find whether a packet loss has occurred or

whether packets are routed correctly.

104

5.6 Test Environment and Experiment Model

The experiments are implemented and compiled with Ansi C compiler. Table 5.1
shows the test environment.

Table 5.1: Test environment

Processor Type Intel Pentium 4
Processor speed 1.7 GHz
Ram type 133 MHz SDRAM
Ram size 512 MB
Operating system Windows XP
Vendor and version Microsoft, Professional
Compiler Borland C++ 5.02

In the experiments, each active node generates random packets at its output port
destined (if there is one available) to random destinations as in the model defined in
section 5.2. All nodes execute the same code and stop execution after a specified
number of iterations is reached. Experiments have been conducted for varying number
of loads (packet creation probabilities, 0.033, 0.066, 0.100, 0.125, 0.166, 0.200, 0.250,
0.333, 0.5, 1), from 8 to 1024 nodes (the number of nodes for each network varies
depending on the network properties, see chapter 3). On completion, the results for
the number of nodes, number of messages created per test, total number of hops, total
number of times that node stayed idle, total number of times that each output port is
used (transmission and reflection) and the total number of congestion occurred) are

calculated and displayed.

105

5.7 Tests and Network Comparisons

5.7.1 Introduction

In this section test results together with a discussion will be given. Selected networks
have been tested with varying number of nodes and different load levels for store-and-

forward routing and deflection routing.

5.7.2 Test 1 - Average number of hops
The average number of hops against the system load for different network sizes and

different schemes are shown in Fig.s 5.7, 5.8 and 5.9.

18 |

= |

Sewwe st

| . - - = .

| 003 007 010 0413 017 020 025 033 050 1.00
|

|

)

no. of
il
(2% o

A\raraje
E=]

b B o o0

System load
|—#—24N —B—64N 160N —»¢— 384N —%— 896N

Fig. 5.7: Average number of hops versus sysiem load for Shuﬁleﬂet employing
deflection routing
As can be seen from the figs the number of hops increases very little with the system
load for small size networks (24N and 64N), whereas for large size network the
increase is linear for the Shufflenet, and Gemnet, and exponential for the De Brujin
Graph. This shows that for a large size networks, both Shufflenet and Gemnet are
scalable and can cope with increasing traffic when there is no buffer. However, De

Bruijn graph could not cope with increased traffic when no buffer is used. Moreover,

106

a De Bruijn graph with more than 256 nodes could not cope with congestion and
therefore is unable to deliver packets to their destinations (see Fig. 5.14 for percentage
of contentions occurred per packet). This is because the De Bruijn graph is not
designed for deflection routing. Hence, more number of hops is needed for the De

Bruijn graph.

E &£ B
S

Y

B 8
™~

Average no. of hops
- B
1

003 007 010 013 017 020 025 033 050 1.00
, Systemload === @
—— 32N —B— 64N 128N —— 256N

Fig. 5.8: Average number of hops versus system load for De Bruijn Graph
employing deflection routing
We compare all three networks for network size of 64, since this is a common number
of nodes for all of the networks. The same interconnection pattern is used for all three
cases with the only difference in the routing algorithms used. Gemnet and Shufflenet
show the same performance although they use different strategies, whereas the De
Bruijn graph performs worse than the other two networks especially for larger
network sizes. It can be concluded that the routing algorithm’s performance depends

on the network properties and configuration.

107

Ej X/‘r*ﬂ—/’y

s

gﬂx’ e

N - |
: ._._._.—o—i—F'O—"'4

003 007 040 043 047 0320 025 033 050 1.00 |
System load [

——24N —B—B4N 160N —»— 384N —¥— 895N | |

Fig. 5.9: Average number of hops versus system load for Gemnet employing
deflection routing

==
_—

==
w [=1

o
o
I
K

)

Aiérane no. of hops

|
|
|
|
4 ‘
|
|

003 007 040 043 047 020 025 033 050 1.00 |
— . System load I
—o— 24N —— BN 160N —>— 384N —%—896N | |

[=]

{

Fig. 5.10: Average number of hops versus system load for Shufflenet employing
store-and-forward routing

When a buffer is employed in the nodes, the performance of the networks and their
routing algorithms increase dramatically, see Figs. 5.7 - 5.12. Moreover, this increase
is much higher in the De Bruijn graph compared to the other two. Therefore, it can be

concluded that the De Bruijn graph utilises the buffer more efficiently compared to

108

the other two. On the other hand with small network sizes the De Bruijn graph

performs better than the others.

L
ram LA

e 2 -T2
L Ll Eid £ i

[—_—

._.-—H-—n—-l—I——I"‘"’.i
Te—————a—————v | |

L, %
23 *_*_*—Fs*"'ﬁ!"/xf/x

0.03 007 0410 0413 047 020 025 033 050 1.00
System load

[—e—32n —W—84N 128N —<— 256N —¥— 512N —@— 1024N

Fig. 5.11: Average number of hops versus system load for De Bruijn Graph
employing store-and-forward routing

-
=

\

|

Awra.g; no,of hops

g

&
I

l

3 1 sfp—p & re s

003 007 00 043 047 020 025 033 050 100
System load
—— 24N —l—64N 160N —#— 384N —W— 896N

Fig. 5.12: Average number of hops versus system load for Gemnet employing
store-and-forward routing

When Fig.s 5.7-5.12 are compared, the De Bruijn graph gives the same performance
(shightly better) as the other two networks under low system loads (load < 0.200).

However, at high loads (=0.25) the number of hops required for the De Bruijn graph

109

is higher (e.g. around 30-40% at system load 1 with the biggest network size)
compared with the other two. This is expected at high loads, since the possibility of
having three packets in a node at any given time is high where one of the packets

needs to be deflected.

Comparing deflection routing tests with the store-and-forward routing tests show that
there is an improvement in performance in the latter case, see Table 5.2. However,

this improvement is gained at the cost of system complexity.

Table 5.2: Average number of hops comparison for three networks and for

network size of 64
Average number of hops
Network type With buffer Without buffer
Shufflenet 4.64 5.97
De Bruijn 4.68 8.13
Gemnet 4.62 5.99

5.7.3 Test 2 - Contention

Figs 5.13, 5.14 and 5.15 show the contention ratio versus the system load for
deflection routing for different network size. The poor performance reported by the
Debruijn Graph in the previous test can be explained by looking at the Fig. 5.14.
Shufflenet and Gemnet have similar characteristics with lower contention ration
compared with the De Bruijn graph. This is because these networks can act as a
‘buffer’ when there is a need for buffering. In the De Bruijn graph contention ratio

increases exponentially especially for larger network sizes.

110

2

e 8583888885838

I Y

Contention ratio(%)

0.03 0.07 0.10 0.13 017 0.20 0.25 0.33 0.50 1.00

System load
[—e—24N —B—64N 160N —>— 384N —H—BI6N |

Fig. 5.13: Contention ratio versus system load for Shufflenet employing
deflection routing

180

&
b4

5

Conettion ratio(%)
g

g 8

[=]

003 00T Q10 043 047 030 025 033 050 100
Systermn load
[—#—24N —B—B4N 160N —»— 384N —%—BI6N |

Fig. 5.14: Contention ratio versus system load for Gemnet employing deflection
routing
Fig.s 5.16 and 5.17 show that for the Shufflenet and Gemnet contention percentage
increases when store-and-forward routing is employed. In addition, Fig.s 5.16, 5.17
and 5.18 show that the number of packets that contention occurred has increased for

all networks when the number of nodes and the system load is increased.

111

1400

g
Bt

Contentin ratio{%)

003 007 040 043 047 020 025 033 050 100

: System load
|—#—32N —8—64N 128N —»— 256N

Fig. 5.15: Contention ratio versus system load for De Bruijn Graph employing
deflection routing

3
S

g

Contention ratio(%)
g

&
I

o 1 | |
03 oF 0D Q08 ofF 0D 03 03 0E 10
System load

| —— 24N —m— 4N BON —— 358N —— BO6N

Fig. 5.16: Contention ratio versus system load for Shufflenet e;n;.:-loying store-
and-forward routing
In the De Bruijn Graph, more packets experienced contention compared to the other
two. Comparing results for the store-and-forward routing with the deflection routing
shows that only for the De Bruijn graph the contention ratio has been reduced. This is
because, in the Shufflenet and Gemnet when two packets are at the input ports
destined to the same output port and when there is a packet already in the buffer that
is also wanting to go to the same port regardless of the type of the packet (Multiple or

Single), the packet in the buffer is forwarded to the output port.

112

g g

g
™~

8
N

Contention ratio(%)
\
]

B

=
|
| & 20

m.

] - - -

ol aF a0 OB _Of 05 03 0o
SMm?ﬂd

—— 32N —— 64N 128N —— 256N —%— 512N —a— 1024N

Fig. 5.17: Contention ratio versus system load for Gemnet employing store-and-
forward routing

g

g

8

8

cnnbnﬂoﬁ réti

=]

(=

08 007 0D 08 OF 02 05 03 050 10
System load

Fig. 5.18: Contention ratio versus system load for De Bruijn Graph employing
store-and-forward routing
Table 5.3 shows that packets on average experienced 60% less contention in the De
Bruijn graph when store-and-forward routing is employed compared to other two
networks. Therefore, one can say that, the average number of hops has a considerable
impact on the contention percentage. As shown in Table 5.2 the average number of
hops is almost 80% lower when store-and forward routing employed in the De Bruijn

graph compared with the deflection routing.

113

Table 5.3: Contention ratio comparison for three networks and for network size

of 64
Contention Ratio (%)
Network type With buffer Without buffer
Shufflenet 3588 34.56
De Bruijn 73.62 136.51
Gemnet 35.82 35.26

5.7.4 Test 3 — Node idleness percentage

As described earlier, node idleness ratio represents the proportion of the network
nodes that are idle in each iteration. Fig.s 5.19, 5.20 and 5.21 show system load versus
node idle ratio for deflection routing. As the network load increases, the number of
nodes that have not done any processing decreases, as there are more packets
generated by nodes. However, it can be seen from the Fig.s that the number of nodes
that are idle decreases. This is due to having more nodes, thus, more paths.

Consequently, a smaller number of nodes is occupied at any given time.

Node idel ratio(%)
oo 8388883888

003 007 010 043 0417 020 025 033 050 1.00
| System load
| [—#—26N —B—84N 160N —x— 384N —¥— 896N |

Fig. 5.19: Node idle ratio versus system load for Shufflenet employing deflection
routing

114

Node idle ratio(%) '
885883888
v

2 \‘\
0 M
o - - - - ; |
08 oF Q0D 08 OF 00 035 03 0% W0
System load
—— 32N —m— 64N 128N —— 256N

Fig. 5.20: Node idle ratio versus system load for De Bruijn Graph employing
deflection routing

In the De Bruijn graph, fewer nodes were idle during the simulations compared to the
other two as its ability to discover new and alternative paths is limited. Hence, more
hops are required for a packet to reach to its destination. Therefore, more system

resources are used.

[100

£
o
2
2
=
=
0 . . .
003 007 040 013 047 020 025 033 050 100
System load
—— 24N —— 64N 160N —>— 384N —%—BO6N |

Fig. 5.21: Node idle ratio versus system load for Gemnet employing deflection
routing
In the store-and-forward routing the difference between the De Bruijn graph and other
two networks are much smaller. One can say that, the De Bruijn graph uses network
resources more efficiently than other two networks by looking at the test results.

However, having a smaller number of nodes remaining idle does not necessarily mean

115

that the De Bruijn graphs resource utilisation is better than the others. In fact, it is the
opposite as in the De Bruijn graph, packets experience more hops to reach their

destinations, thus resulting in increased crosstalk and power penalty.

100

90—.%‘
80

b |
=

Node idle ratio[%)

388888

0.03 007 010 043 047 020 025 033 050 1.00

Systemload
—— 24—l 4N 180N —— 384N —— BIEN

Fig. 5.22: Node idle ratio versus system load for Shufflenet employing store-and-
forward routing

Fig.s 5.22, 5.23 and 5.24 show the results for the store-and-forward routing. As in the
deflection routing tests node idleness ratio increases with the number of nodes.
However, in this case the performance of all the networks for varying network sizes is

closer. This is due to the fact that algorithms can handle more packets when buffer 1s

available.
: 100
|
| o0 '
| |
| 801
|
| 4
g
B
| 6501
1
|E, |
:3"1'{:I
=
20
10
[+] - -
003 00¥ 010 043 047 020 025 033 050 1.00
- System load .
—— 0 —l— 4N 128N —— 256N
—%—512N ——1024N

Fig. 5.23: Node idle ratio versus system load for De Bruijn Graph employing
store-and-forward routing

116

100
=
m.
£ 701
S 60
. 50
£ 9
@ 40
LR
0
10

V] - e

003 007 010 043 047 020 025 033 05 1.00

| System load
| [—#—24N —m—84N 160N ——384N —%—BO6N |

Fig. 5.24: Node idle ratio versus system load for Gemnet employing store-and-
forward routing
Table 5.4 shows that, in all networks when deflection routing is employed there are
less number of idle nodes available when compared to the store-and-forward routing.
This was an expected result, as a node with buffer can accommodate three packets at

any given time, whereas a node without buffer can accommodate only two.

Table 5.4: Node idleness ratio comparison for three networks and for network

size of 64
Node Idleness Ratio (%)
Network type With buffer Without buffer
Shufflenet 48.75 4422
De Bruijn 43.61 35.39
Gemnet 48.77 43.89

5.7.5 Test 4 - TRR

Fig.s 5.25 and 5.26 show the TRR versus the system load for different Shufflenet and
Gemnet configurations employing deflection routing algorithm. During the tests for
the De Bruijn graph, no gain in TRR was observed. This was an expected result as
there are no multiple paths exist. Therefore, no TRR results are presented for the De

Bruijn graph.

117

1.7

- ~¥%_
1.5

[+ 4
'E1.3
1.2
1.1 -‘i—
1.0 - - - - - - - -
003 007 010 013 017 020 025 033 050 1.00
Systern load
I+24N —l—GaN 160“ —H—S-B-IN -H—BEGH

Fig. 5.25: TRR versus system load for Shufflenet employing deﬂection routing

For all cases, TRR drops as the system load increases. This is because of reduced
number of multiple paths at high system load. Moreover, as the system load increases
the possibility of two packets arriving simultaneously at a node increases. Thus, both
output ports of the router are used. As expected at low load (< ~0.17), larger
configurations show higher TRR. Whereas, at high load (> ~0.17) the TRR is higher
for smaller Shufflenet configurations. This is because, for larger Shufflenet
configurations there are more packets in the system, and therefore the possibility of

finding non-congested paths decreases.

11 '*_
1.0 T T
003 007 010 013 017 020 025 033 050 1.00
System load
|—#—24N —l— 84N 160N —— 384N —¥— BIGN |

Fig. 5.26: TRR versus system load for Gemnet employing deflection routing

118

Fig. 5.27 and 5.28 show TRR versus the system load when employing store-and-
forward routing. As expected, the TRR profile is almost same as in Fig. 5.25 and
5.26, since TRR does not dependent on buffering. Note that the deflection routing
gives slightly improved performance. This is because the average number of hops
taken per packet is 25% higher than store-and-forward routing [Maxemchuck, 89].
Indeed, TRR is directly proportional to the number of multiple paths that exist.
Therefore, one can state that having a buffer has no effect on the number of multiple

paths.

10

0.033 0.066 0.100 0.125 0,166 0.200 0.250 0.333 0.500 1.000
System load
| —— 24N —l— 54N 160N —3— 384N —— 806N

Fig. 5.27: TRR ;fersus system load for Shufflenet employing store-and-forward
routing
As in Fig. 5.27 and 5.28, the decrease in the TRR as the load increases is due to an
increased number of packets within the network, thus increasing the occurrence of
deflection. Packets not being deflected also decrease the possibility of multiple hops.
When a packet is deflected, it is at least & hops away from its destination, which

makes it TYPE-M packet.

119

1.60

1.65 4

[150
1.45

| 140

TRR

1.30

1.25
o \ |
1.16 ‘:

[110 - — ——

003 007 040 043 047 020 025 033 050 1.00
System load |

|

| | —#—24N —E—64N 160N —3— 384N ——896N | |

Fig. 5.28: TRR versus system load for Gemnet employing store-and-forward
routing
Table 5.5 shows that Shufflenet performs slightly better than Gemnet in deflection
routing. However, in the store-and-forward routing Gemnet performed slightly better
in high loads although the behaviour of both networks was not as stable as deflection
routing tests. Moreover, it can be concluded from the Fig.s that both of the networks
performed reasonably well in deflection routing as TRR results are slightly higher
than the store-and-forward routing. However, the difference is very small and it can
be concluded that buffering does not have much effect on TRR. The De Bruijn graph
has not been included in these tests as TRR is always 1 due to the lack of multi paths.

Therefore, one can say that, the De Bruijn graph performed worst in TRR tests.

Table 5.5 also shows that, when prioritised routing is employed in De Bruijn graph it
has no effect on the TRR performance. In fact, there are no TYPE-M packets exist in
De Bruijn graph which the prioritised algorithm is based on. Also, deflection routing
performed slightly better than the store-and-forward routing in the Shufflenet and

Gemnet, Table 5.5.

120

Table 5.5: TRR comparison for three networks and for network size of 64

TRR
Network type With buffer Without buffer
Shufflenet 1.35 1.39
De Bruijn 1.00 1.00
Gemnet 1.35 1.40

5.8 Comparison

Different performance metrics and formulas were defined to help to analyse the
networks and their routing algorithms that were outlined in Chapter 2. The test criteria
listed in the requirements part, will enable the simulation results to be analysed and
evaluated in the most effective way. The system design should enable the required
information to be collected and analysed. The simulation based model was outlined
after realisation of the requirements was highlighted. The design model is based on

the routing algorithm properties and on the information presented in Chapter 2.

The requirement design model also proposed to test the correctness of the routing
algorithms. This model covers the requirements defined in Chapter 2 as closely as
possible and it enables to retrieve quantitative data from the implementation of the

model to prove the correctness of the algorithm.

The designed model is the basis of the implementation of the algorithms. It provides
great flexibility (even specific network and algorithm requirements can be easily
implemented and satisfied) to the implementation process of the algorithms that has

been covered successfully.

121

A simple priority scheme was developed where packets are routed via the
transmission port instead of the reflection as much as possible. Simulation results
showed that TRR > 1 is achievable over a wide range of system load for both
deflection and store-and-forward routings. Higher TRR means that packet will
experience lower crosstalk when propagating through the network. One drawback of
prioritised scheme is that the output port (channel) utilisation is imbalanced as one of
the ports has priority over the other. The algorithms were ranked as in the Table 5.6; 1
represents the best and 3 represent the worst algorithms. Stability is defined based on

the fluctuations on the simulation results.

Table 5.6: Evaluation of the routing algorithms and topologies

Shufflenet De Bruijn Graph Gemnet
Average number
1 3 1
of hops
Contention 1 3 2
Node idleness 1 3 1
TRR 1 3 1
Routing
Algorithm 2 1 3
Simplicity
Scalability 3 2 1
Stability 1 2 3
OTDM 1 3 1
adaptability
Efficient use of
buffer 2 1 2

The shufflenet and Gemnet performed very closely and better than the De Bruijn on
overall comparison. However, in an application that requires very simple routing
scheme and less processing, De Bruijn would be the best choice among the others

although it performed worst in overall evaluation.

122

The test results also showed that store-and-forward routing performed better than
deflection routing with regards to the average number of hops. However, with store-
and-forward routing it may take longer (time wise) to reach destination. However,
TRR results showed that Shufflenet and Gemnet are more suitable to OTDM

networks compared with the De Bruijn graph.

As a summary, Gemnet and Shufflenet have the most efficient routing algorithms.
However, De Bruijn graph’s routing may be the choice for use with systems that
requires low processing power. On the other hand, Gemnet is the only scalable

network and could be selected in a specific system that requires high flexibility level.

5.9 Conclusions

The aim of this chapter was to simulate and evaluate the logical network topologies
suitable for the OTDM networks which operate in synchronous mode as no such
evaluation exists in the literature to the best knowledge of authors. Therefore, a
generic model for implementing logical interconnection topologies in software was
proposed to investigate the performance of the logical topologies and their routing
algorithms for packet based synchronous networks. The model is generic for
synchronous transfer modes and therefore can be used to implement any logical
topology using any programming language. Three topologies were investigated and
implemented namely: Shufflenet, De Bruijn graph and Gemnet. Results for the
average packet delay showed that the De Bruijn graph performed the worst. Also, it
was observed that the De Bruijn graph made more efficient use of buffering compared

to other algorithms.

123

In addition, a simple priority rule named as TRR was defined in order to utilise the
usage of the asymmetric 2x2 node. Results showed that TRR has no effect on the
performance of the topology and the algorithm. However, it increased the utilisation
of the transmission port significantly. Also, no gains were observed in the De Bruijm

graph since there are no multiple paths existing.

This chapter also evaluated a few of the well known logical network topologies and
their routing algorithms. The next chapter will evaluate intelligent antnet routing
algorithm for arbitrary networks. Novel improvements and modifications will also be

introduced for the antnet routing algorithm.

124

CHAPTER VI - IMPROVED ANTNET
ROUTING ALGORITHM

6.1 Introduction

The aim of this chapter is to outline the weaknesses associated with the antnet routing
algorithm and propose solutions for overcoming them. Unlike previous tests that were
carried out in Chpater 5, the antnet routing algorithm is being evaluated on a different
platform and its performance being investigated based on the criteria defined. The
chapter starts with an introduction to the programming environment and model. This
is followed by test criteria and the traffic model used together with all the assumptions
made. Finally, novel implementations of antnet routing algorithm are presented with
some results and discussion. The performance test criteria selected are those widely
reported in the literature [Tannebaum, 03]. The results will be analysed for average

packet delay and network throughput.

OSPF, RIP and Q-routing algorithms have been implemented in the previous work
reported in [Di Caro, 04] showing that antnet performed better than all. This has also

been verified in the work presented here.

6.2 Parallel Virtual Machine Model

This section will look at the parallel virtual machine (PVM) programming model
before proceeding with the design, as the system design is closely related to the

underlying model [Geist et al, 94]. PVM is a very flexible message passing system

125

that enables (mostly Unix) networks of computers to be used as a single distributed
memory parallel computer (note, PVM version 3 can be used in different Operating
System environments). This network is referred to as the virtual machine. PVM
allows the user to use standard tools to develop a program using the C/C++,

programming language.

To begin the application, the user manually starts one copy of the application known
as the master or initiating task. This task subsequently starts other PVM tasks within
the virtual machine. Eventually there are a number of active tasks computing and
communicating to solve the problem. Once the tasks are started they can interact
through the explicit message-passing functions provided by PVM. It is possible to use
different parallel programming models with PVM. The following section will look at
the master-worker programming model before proceeding with the design of the

system.

6.2.1 The master worker model

The master worker is a classic parallel programming model. One processor (master) is
devoted to assigning computations to all the other processors (workers) involved. The
master-slave (or host-node) model in which a separate “control” program termed the
master is responsible for process spawning, initialisation, collection and display of
results, and perhaps timing of functions (Fig. 6.1). The design part will be based on

this classic model.

126

Input and/or Output

!

Master Program

Master to rker Communication
> Wm*kerﬁPrugrm'n | Worker lProgram > 4 Wurke; I-l‘*rngram >

Worker to Worker Communication

Fig. 6.1: Master worker model

6.3 Assumptions Made

The following section firstly looks at the assumptions made and then describes the
design model based on these assumptions and the master model described in the
previous section. All algorithms that were considered in the literature review and
those to be implemented are based on a number of assumptions and conditions for the

distributed environment:

e Algorithms are implemented in the C language in a parallel environment by using
parallel virtual machine

e Assigning every process to a different node both on the same machine and
different machines simulates parallel behaviour

e Non-uniform data traffic with 50% of the traffic being forwarded to the hotspot

nodes

127

No packet creation destined to the immediate neighbours

5 seconds are given to discover all the paths and to initialise the probabilistic
routing table entries

Ant creation rate is set to varying rates

Network topology with each link having equal cost is adopted, see Figs. 6.2 and
6.3'%. Traffic is generated to nodes 1 and 21 on 29 node network and from the
bottom 6 nodes (0-5) on the left and on the right (31-36) of the network on 36
node configuration.

36 node network is widely used topology [Boyan & Littman, 94] in artificial
intelligence to force the algorithm to learn and use the longer path when shorter
path is congested and 29 node random topology has been designed to simulate
balanced network scenarios.

For each simulation, packet generation is stopped after creation of 2500 packets
per node and simulation is stopped after all packets are arrived to their
destinations or detected and deleted from the network

Every simulation is run 8 times and the average of the results is used for accuracy
It is assumed that the packet size is fixed and there is no packet loss

All experiments are implemented for varying link evaporation rates, since it has a

significant effect on the performance of the algorithm

All these assumptions and conditions should be satisfied by the distributed system

together with the design and implementation of the algorithm.

While designing and implementing the system, additional assumptions and issues

with regard to the communication network and model are also taken into

consideration.

'8 In addition to these 14 node nfsnet has also been implemented and simulated [Tekiner et al, 04-2]

128

Fig. 6.2: 29 Node random network links having the same cost

12 13 14 21 22
Gz @—@

(W)

3

(W)
N
(N
N
(N
&/

O\ 16) A
(&)—(10——11)

o

%% %

N\ \&/

))
(=] ~J

I I
[i
B8

o
—
N
[
o
©
B
[
e

Fig. 6.3: 36 node irregular grid

Message delivery guaranteed: Messages should be delivered without being changed
or lost.

Message order preservation: The system should ensure that no message overtaking
occurs. This means that messages should be delivered in the order that they have been

sent.

129

Message transfer delays: Messages should be delivered to their destinations in a
finite amount of time. However, transfer time can be different according to the
communication system load.

Network topology is known: Nodes know the path to other nodes.

6.3.1 Traffic models

Algorithms will be run on three different topologies and with 3 different traffic loads.
Uniform and non-uniform (hot spot) traffic models will be used with the following
load levels and distributions:

1. Low Loads: A packet is created in every 1 second.

2. Poisson Distribution: Lambda is set to 0.5 seconds

3. High Loads: A packet is created in every 0.001 second

It has been observed during testing that the modifications and improvements
introduced in this thesis are only effective under hotspot traffic conditions therefore
no results for uniform traffic models will be presented here although tests were

carried out.

6.4 Overall System Design

Fig. 6.4 shows a general view of the test (simulation) model that will be implemented.
A master process is executed from one of the nodes and is responsible for the creation
(spawn) of the worker nodes that will do the simulation. The master process is also
responsible for the initialisation of the system and display of information (test results).
Workers exchange messages between each other to carry out tests and return results to

the master process.

130

® 5 — —

Master orker
asks - Create Workers
vz Task |dentifiers ¢ Eent[Task ldenti
l ——— ——— Waiingforthe nialisation
message.
Send Initial Parameters » Receive Topology Information
and Simulation parameters
Create packets based on the
traffic models and send it to
Bhl'kﬁi other nodes
Wi o o el On receiving packets nd the
from the worker nodes. possible output port and direct it
Collect staisicalinfomat
regarding the simulation
)) Simulation Completed - Send
Receive Results < Racull
Calculate the overall simulation
results
&
Display Results — Idle Waiting to be KILLED!
Exit (PVM) Send kill signal to worker

\

Fig. 6.4: Overall system design

Receive Kill Msg and Exit fr

131

First of all, the master process creates a number of nodes that are required to execute
the simulation and receives their task identifiers (tids) in one operation. These task
identifiers are later used to enable the communication between the nodes (they are
unique addresses for the nodes within the PVM system). After receiving the task
identifiers, the master process prepares the initialisation message and forwards it to all
of the nodes (by using the stored task identifiers). In the initialisation message, the
workers just know their neighbour processes or the token holder, according to the
algorithm’s implementation, depending on the structure model that they use (dynamic
or static). Workers carry out the simulation according to the initialisation data they
receive. The master process stays idle throughout the simulation and waits for the
results of the simulation (such as the number of messages exchanged per node and
time taken, etc). After successful completion of the simulation, the worker processes
send the message containing results to the master process. The master process waits
for all the worker processes to send the result message. After receiving all the result
messages, the master process calculates the results and displays them in an
comprehensible manner. The master process exits from the PVM system just after
displaying the results. This result allows the worker node to exit from PVM and kill

signals are automatically sent to worker nodes by the PVM system.

6.5 Antnet Modifications

Based on the original antnet routing algorithm three modifications have been

proposed and tested as outlined below.

132

6.5.1 Deleting aged packets

During the simulations it was discovered that some packets travel within the network
for a number of hops until they reach their destination when the original antnet is
employed. This problem occurs because the routing table used in the antnet routing
algorithm is probabilistic and therefore a few packets have possibility to be directed to
non-optimal routes and cycle. This is similar to the problem experienced by ants that
they are also deleted when they are forced to visit pre-visited nodes (when a cycle
occurs). A simple rule is defined to detect and drop these packets as follows:
if PACKET AGE > 2 x NO_OF NODES (6.1)

then DROP PACKET

This rule is based on the information obtained from experimental results. It was
observed that only 0.5% of the packets experience this problem. Therefore, only 0.5%
of the packets are dropped from the network. However, when the packet age condition
is set to IXNO_OF NODES, the packet loss increased to almost 7%. On the other
hand, when the condition is set to 3XNO_OF _NODES, the loss rate decreased to
0.3% with no further improvement in the performance. Therefore, packets that travel
continuously in the given networks conditions are dropped based on the equation 6.1.

However, a different threshold level may be needed for different configurations.

6.5.2 Limiting the effect of r due to traffic fluctuations

The reinforcement 7 applied to the routing table entries is limited by the lower and
upper bounds defined as follows:
if (NO_OF NODES <=5)
0.1 <r<(1-0.1 *NO_OF NODES) (6.2)

else /* if (NO_OF NODES > 5) */
0.05 < r < (1- 0.05 * NO_OF NODES)

133

The values used are based on experimental results and it is intended to limit the effect
of the traffic fluctuations in the network at a given time. A similar method to control
the effect of » has also been reported in [Tekiner et al, 04-1]. However, if » does not
satisfy these values for three consecutive times and is less than 0.95, then
reinforcement is applied to the routing table entry. It is believed that by limiting the
impact of » on the routing table entries the algorithm would not freeze as easily as was

the case in the originally proposed algorithm.

Fig.s 6.5-6.10 shows the performance comparison of the original and modified antnets
in terms of the average packet delay experienced per packet for different ant creation
rates for 29-node and 36-node networks and for three different loads. With the
modified algorithm, packet delay is reduced compared with the original routing
algorithm. This is because in the original routing algorithm some packets travel with
very high number of hops within the network, thus using a considerable amount of
network resources and bandwidth. Although only around 0.7 % of the packets
experience this problem, they occupy large amount of system resources as it takes

more than double hops than average to reach the destination.

In Fig. 6.5 it can be seen that as the number of ants increases the average packet delay
increases. The biggest improvement (5%) has been achieved when ant creation rate is
set to 2.5 sec. Moreover, the best performance is achieved when ant creation rate is set

to 1 sec.

134

2,144
212
2.1
2.08
2.06+
2.04
2.02-

1.98-
1.96
1.94

Avg. Packet Delay (sec.)

1 2.5 5 10
Ant Creation Rate (sec.)

B Original OImproved

Fig. 6.5: Average packet delay versus ant creation rate 29-node for original and
improved antnet algorithms for low loads

In Fig. 6.6 it can be seen that as the number of ants increases in the network the
average packet delay decreases when ant creation rate is less than 5. The biggest
improvement has been achieved when ant creation rate is set to 2.5 sec is around 5%,
similar to the previous result. Improved antnet performed the best when ant rate is set
to 2.5. This is because fewer numbers of packets are available at the network at any
given time when compared to the previous test. Therefore, increasing the number of

packets in the network decreased the contention.

2,124

[+
—

§

Avg. Delay (sec.)

1 25 5 10
Ant Creation Rate (sec.)

B Criginal O Improved

Fig. 6.6: Average packet delay versus ant creation rate 29-node for original and
improved antnet algorithms for medium loads

135

Fig. 6.7 shows that unlike previous tests the biggest improvement is achieved with the
high load when ant rate is set to 10 seconds. Moreover, this improvement is bigger
than the previous tests and it is around 6.5%. This is due to the fact that fewer
numbers of packets are created in any given time. Thus, creating more ants decreases
the packet ant ratio, which affects the performance of the network. Therefore, this
proves that increasing the number of packets within the system does not always lead
to improved performance, since utilisation also play an important role in the

performance of the network.

2.3
2.281
2,261
2.24
2.224

2.2
2184
2,16
214
2,121

2.1

RO SO

Avg. Delay (sec.)

1 25 5 10 |
Ant Creation Rate (sec.) :

‘B Original OImproved

Fig. 6.7: Average packet delay versus ant creation rate 29-node for original and
improved antnet algorithms for high loads
Fig.s 6.8-6.10 shows a significant improvement in the average packet delay
performance compared with the original version of the antnet for 36 node irregular
grid. This is partly due to the architectural characteristics of the irregular grid itself. In
irregular grid connectivity is higher compared to the 29-node random network.
Therefore, there are more paths available for the ants to explore. Moreover, since
there are only two paths connecting each side of the grid, it is more likely to get

unreliable reinforcement signal » from the system. Thus, limiting the effect of r hides

136

the effect of instantaneous changes over the algorithm. From Fig. 6.8, it can be seen
that as the number of ants decreases the average packet delay decreases. However,
with the modified algorithm, packet delay is reduced compared with the original
routing algorithm. This is because in the original routing algorithm some packets
travel with a very high number of hops within the network thus utilising considerable

amount of network resources and bandwidth.

Avg. Delay (sec.)

1 25 5 10
Ant Creation Rate (sec.)

:l Original O1m) pmved—

Fig. 6.8: Average packet delay versus ant creation rate 36-node for original and
improved antnet algorithms for low loads
Fig. 6.9 shows the ideal case for the improved algorithm, illustrating that ant creation
rate do not have any effect on the average packet delay for the case with the poisson
traffic distribution (0.1, where packet is created in every 0.1 secs). Therefore, delays

experienced per packets stay almost the same for different ant creation rates.

137

2.8
2.6
2.4
2.21

Avg. Delay (sec.)
NENERE R

1.8- : .
1 2.5 5 10 i

Ant Creation Rate (sec.)

B Original O Improved

Fig. 6.9: Average packet delay versus ant creation rate 36-node for original and
improved antnet algorithms for medium loads
Fig. 6.10 shows that the average packet delay for high load is similar to the medium
load case (see Fig. 6.9) at lower ant creation rates. However the improved algorithm
performs better with high ant creation rates. The performance gain achieved for the
improved antnet with high loads when ant rate is set to 10 is around 33% compared to

the original approach.

Avg. Delay (sec.)

1 25 5 10
Ant Creation Rate (sec.)

'B Original O Improved

Fig. 6.10: Average packet delay versus ant creation rate 36-node for original and
improved antnet algorithms for high loads

138

6.5.3 Further comments on improved antnet

The modified antnet showed improved average packet delay compared with the
original antnet routing algorithm for all cases. For example, when the ant creation rate
is set to 10 (1 ant per 10 seconds is created), ~4% and ~33% improvement for 29-
node and 36-node irregular grid are observed respectively. With different ant creation
rates improvements in the range between 3.5-6.5% for 29-node and 21.5-33% for 36-
node configurations are observed. The significant gain achieved with the irregular
grid is due to its architectural characteristics. Only two paths are available for packets
to travel from left-hand side of the grid to the right-hand side and vice versa.
Therefore, packets reroute themselves in order to fully utilise less congested nodes as

often as possible.

It was also observed that there is a dramatic decrease in the performance of the antnet
algorithm with high loads. This is because the network cannot saturate the number of
packets that are created and routed within the network. Furthermore, improvements
have the biggest impact on the high loads, as there is more congestion at any given
time in the network. Thus, packets are continually being forwarded to different routes
in order to avoid congestion which results in more packets being recycled. Moreover,
the effect of the reinforcement parameter r is limited within a certain range.
Therefore, fluctuations in the traffic do not affect the proposed algorithm’s
performance as much as in the original version. Fluctuations in the network are

expected to happen more often due to the high traffic load.

139

Moreover, further simulations for ant creation rates greater than 10 showed that the
average delay increased and throughput of the algorithm decreased slightly in both
algorithms. Therefore, an ant creation rate between 1 and 10 is optimal for the
proposed system. However, since node and link failures have not been implemented
and investigated in this work, it is not possible to comment on the effect of ant

creation rate on the performance of the network in problematic conditions.

6.5.4 Limiting the number of ants

As it can be seen from the previous results, although the ant rate has an effect on the
performance, it is not possible to comment on which ant creation rate is the most
suitable for different network configurations. Hence, the need for the third
improvement is outlined in this section. In the modified algorithm, the number of ants
is limited by the ant-to-packet ratio (APR) utilization as in equation 6.3. This value is
defined after a number of simulations run by different topologies. Although, this has
no major impact on the performance of the algorithm (when compared with results on
1.0 > ant creation rate' > 0.1), it would increase the adaptability and suitability of
the algorithm. In other words it makes the algorithm more generic.

NO OF ANTS CREATED ~0
NO OF PACKETS SEND (6.3)

Utilization =

6.6 Stagnation Problem

Although the proposed modifications improve the performance of the algorithm, they

do not avert stagnation problems. Stagnation occurs when a network reaches its

' Ant creation rate defines the frequency (in time) of the forward ants to be created by the node.
Therefore, a low ant rate, means a high number of ants in the system.

140

equilibrium state. This is an undesirable property of the routing algorithm where ants
recursively choose the same path to reach their destination. Therefore, routing
optimisation may get stranded in the local optima and as a result it may not be able to
discover new paths that become optimal due to the changes in network traffic and
topology (i.e. due to link/node failures, deleting/adding new nodes or uniform traffic).
Moreover, finding the shortest path, by the ants, is a statistical process [Baran & Sosa,
00]. It is highly probable that other ants will use the non-optimal paths chosen by
leading ants at the start of the exploration. Several methods such as noise function,
evaporation, multiple ant colonies and other heuristics beside the ant colony
optimisation have been used and studied in the literature to overcome the stagnation
problem [Sim & Sun, 03], [Dorigo & Stutzle, 04]. However, the most commonly used
method is the noise function where predefined percentages of the ants are forwarded
to random destinations. However, this is only a primitive method and does not

provide a solution.

6.6.1 Evaporation

In this work link usage information is used as the second feedback in the system to
prevent the stagnation problem. For every link the usage information is held at the
node that they are connected to and for a predefined time window (period). Then,
routing table entries are reinforced periodically (in the rate of the time window) based
on the evaporation information and link usage statistics. The real life scenario
influences this, where chemical substances deposited by the ants evaporate over time.
Link usage ratio L(x) defined as in (6.4) is used for calculating the evaporation rate

E(x) defined in (6.5)%:

0 [p [Tekiner et al, 04-03] a=0,b=1.

141

ant _send(x)
N

Zant _send (i)
i=0

L(x) =

(6.4)

E(x)= {1 - (axg\—[]—_\;—R—) + be(x)ﬂxP(x) , Wherea+b=1 (6.5)

Equation 6.5 is divided into two parts; the recent usage ranking parameter R and the
link usage ratio®’ L(x). The effect of each part is controlled by constants a and b,
respectively. If @ = 0 and b = 1, then evaporation is only based on the recent usage
ranking, whereas and ifa =1 and b = 0?2, then evaporation is based on the link usage
ratio. For example, in real life scenario, lets consider that there exists N paths from
current node y to the destination node d. Then, if the last ant is forwarded through the
neighbour node x, then one would expect chemical substance to be laid on the path to
x to evaporate the least. The major difference between the real life scenario and antnet
scenario is in the simulation environment. Where in the latter we deal with discrete
values, therefore probabilities associated with the links cannot be evaporated
continuously, and are evaporated at the end of each time window. Therefore, (6.5)
measures the proportion of ants send via node x within that time window. On the other
hand, the so called ranking parameter represents the node where an ant has laid its
pheromone the last among N number of neighbours. For example, R = 0 suggests that
particular link was the last to be used, thus indicating a pheromone has just been laid.

Therefore, least amount of pheromone expected to be evaporated from that node (x).

?! In our previous work evaporation is defined as link usage ratio only, where a = 0 and b =1 [Tekiner
et al, 04-03]
2 Whena=1.0and b=0.0 it is represented as evap(1.0,0.0).

142

Evaporation rate E(x) for the neighbour x calculated is subtracted from the probability
associated with node x, see equation 6.6. The amount of probability evaporated from
node x is then distributed equally to the other neighbouring nodes (since, sum of all
probabilities for the neighbours is 1), see equation 6.7. Variables that keep track of the
number of ants forwarded to the neighbours are reset after a specific time window and

new information is gathered at the next time window.

P(i)= P(i)—E(x), i=x. (6.6)

Since, for all N, the sum of all probabilities is equal to 1, then probability of

evaporation from node x distributed equally to the other neighbours is given by:

N o E(X)
P(z)-—P(z)+N_l,z¢x. 67

Results for the average delay against the ant evaporation rate are presented in Figs.
6.11 to 6.16 for different values of a and b are compared with the case with no
evaporation for two different network configurations and three different network
loads. It can be seen from the Fig.s for that all cases the algorithm with the
evaporation has performed better than the non-evaporation version (evap (0, 0), a and
b are both 0, thus E(x) is 0). Results also show that, with the evaporation algorithm
the lowest average delay is achieved when the evaporation window is set to 1 sec.
Thus showing ~7% and ~16% improvement for 29 random network and 36-node
irregular grid, respectively when compared with the non-evaporating algorithm.

However, while conducting tests it was observed that the evaporation algorithm was

143

not as stable as the non-evaporation algorithm. Not much difference was observed on
10 tests conducted by non-evaporation configuration, whereas there was around 0.2 to
0.5 seconds difference between the best and worst cases observed with the
evaporation case for 29 and 36 node configurations, respectively. It is believed that
this is due to the hot spot traffic model used, and secondly for the algorithm capturing

the wrong time window to evaporate the links.

In Fig. 6.11 there is no linear relationship between the ant evaporation rate and the
average packet delay. Evaporation rate greater than 4, evap (1,0) shows the best
average delay compared to all other cases. However, for lower evaporation rates, evap
(0,1) out performs the rest, particularly when evaporation rate is 2.5. Since the
network load set was very low the algorithm failed to find the best evaporation
window for evaporating and updating the path. Moreover, links should have been
evaporated more often in order to give an improved understanding of the current state

of the network to the algorithm.

2.1

2,05 — ii__"“‘f_f

195 ¢

ma

Avg. Delay (sec.)

,.
N 1
o & o
. .
—t

1.75

Evap Rate

[cm=1.0,0.0 —— 0.8,0.2 0.6,04 — 0.4,0.6 — 0.2,0.8
— Y, pu— 1 Y'Y -

Fig. 6.11: Average packet delay against evaporation rate for different
evaporation states, low load and 29-node

144

Fig. 6.12 shows the results for 29-node random network with the poisson traffic
distribution for varying evaporation rates. It can be seen from the Fig. that the
maximum delay is observed for evap (0,0) case setting the upper bound and evap (0,
1) setting the lower bound for all values of evaporation rates. This also shows an 8%
improvement in terms of overall performance compared with non-evaporation version

of the algorithm.

Avg. Delay(sec.)
=, = P
aRBo B ugl

\)>

25 5 10
Evap Rate

-

—1.0,0.0 —0.8,0.2 0.6,0.4 —0.4,086 —0.2.0.8
()0, 1.0 ==—=10.0,0.0

Fig. 6.12: Average packet delay against evaporation rate for different
evaporation states, medium load and 29-node
For high load (see Fig. 6.13) the average packet delay is slightly higher for all cases,
with evap (0,1) giving the best delay performance, similar in profile of that low load
case as in Fig. 6.11. In all cases in Fig. 6.11 and 6.12 the algorithm performed better
with low average packet delay for low evaporation rate. This is because of the high

rate of packet creation per path at any given time.

145

E‘ 2.1 - /\
T 2.05

2%

<

; 4 |
1.0 25 5.0 10.0

Evap Rate

[—1.0,0.0 —0.8,0.2 06,04 — 0.4,06 —u.z.u.éf|
| e (1, (1,] () e (3, 0,0.0 |

Fig. 6.13: Average packet delay against evaporation rate for different
evaporation states, high load and 29-node
For 29-nodes, evap (0, 1) performed the best compared to all other configurations,
with ~8% improvement when evap (0, 1) is employed with the improved version of
the antnet routing algorithm. The ideal evaporation rate for the evap (0, 1) is 2.5
seconds. Therefore, further tests were run with this evaporation rate for 29-node
random network. Fig.s 6.14 to 6.16 compare the effect of @ and b (see equation 6.5)

for 36-node irregular grid for three different system loads.

1 2.5 5 10
Evap Rate

w—1,0,0.0 — 0.8,0.2 0.6,0.4 — 0.4,0.6 ——0.2,0.8.
(0.0, 1.0 e 0.0,0.0

Fig. 6.14: Average packet delay against evaporation rate for different
evaporation states, low load and 36-node

146

On the other hand, this is not the case for the evap (0, 1) as it offers improved
performance than all other evaporation rates. This is because there are only two paths
that exist from left of the grid to the right of the grid and vice versa. Therefore, in
reality link usage count of two links has effect on the performance of the algorithm.
However, here link count is applied to all the links thus wrong link evaporation is
favoured that performed worse. In addition, packet creation rate worsen the situation

where very few packets are created compared to evaporation rate.

In Fig. 6.15 it can be seen that evap (0, 1) performed better than the improved antnet
when evap rate is less than 5 for medium loads. Medium load is the ideal network
load for this simulation environment where algorithm has more chance compared to
other loads to get the best evaporation window. Thus, it has the most impact on the
performance of the algorithm. Comparing evap (0, 1) and improved antnet it can be
observed that there is 18% improvement for the best case (when evap rate is 1 sec)

and 12% for the worst case (when evap rate is 5 seconds).

25
E*E.E- - s
5 2.4
&
3 1.9 4 —
5 1.7 + |
|
1.5 - } - :
1 25 8 10

Evap Rate

[—1.0,0.0 —0.8,0.2 0.6,0.4 ——0.4,0.6 —0.2,0.8|
[e 1,0, 1.0) == 0.0,0.0

Fig. 6.15: Average packet delay against evaporation rate for different
evaporation states, medium load and 36-node

147

When comparing Figs. 6.16 and 6.15, it can be seen that the trend of the average
packet delay is completely opposite. With the high load it is expected that evaporation
rate would have the opposite effect. Irregular grid is a special test case where
algorithm needs to learn the usage of longer path from one side of the grid to another
side. In this particular case, network gets congested heavily with high packet creation,
therefore the time taken by the routing algorithm to process each packet increases and
as a result the algorithm performance improves when operating at high evaporation

rate.

3.2

2.8 + Pty
2.6
24 f |
2.2 +

Avg. Delay (sec)

Evap Rate

[1,0,0.0 —— 0.8,0.2 0.6,04 — 0.4,0.6 —0.2,0.8
e (], (), 1,1]) s .0,0.0

Fig. 6.16: Average packet delay against evaporation rate for different
evaporation states, high load and 36-node

6.6.2 Multiple ant colonies

The idea of using multiple ant colonies was first applied to wavelength routing in
optical wavelength division multiplexing [Varela & Sinclair, 99]. In this work, more
than one ant colony was used to distribute different wavelengths over the network in
order to accomplish increased availability of wavelengths routing. In the original
antnet, ants are only attracted by the pheromone trails laid by the ants from their own

species (as there is only one colony considered at any given time). Also introduced in

148

this work was the concept of ants being repelled by the pheromone laid by other
species, in addition ants being attracted to the pheromone trails laid by their own
species. Three variants of the algorithms have been proposed namely: local update,
global update/distance and global update/occupancy [Varela & Sinclair, 99]. In the
local update and the global update table entries are updated every hop and at the end
of each cycle™, respectively. In the global update two variants (i.e. different repulsion
techniques) are used to distribute wavelengths within the network based on the

distance or the link occupancy.

(iv)

Fig. 6.17: Interaction of multiple ant colonies

Multiple ant colonies have also been applied in circuit switched networks, assuming
that there exists more than one ant colony and no information is given on ant colonies
repelling or attracting each other as reported in [Sim & Sun, 02]. Here, the application

of multiple ant colony algorithms in packet-switched networks has been reported.

* An ant is said to complete its cycle when it completes it journey from source node to the destination
node.

149

Here we investigate two ant colonies as illustrated in Fig. 6.17, where red and blue
ants each use different pheromone tables. The red ants only update the pheromones
laid by the red colonies and so on. We have shown that using two colonies, more than
one optimal path becomes available for every source destination pair and a higher
load balancing is achieved. As a result, more than one routing table is used (two in
this case). The costs of adopting multiple ant colonies are the need for increased

resources and system complexity (for further analysis see [Tekiner et al, 04-2]).

Fig.s 6.18-6.20 shows the throughput versus time for five different antnet
implementations for 29-node random-net and three different system loads. In Fig.s
6.18 and 6.19 antnet employing multiple colonies performed the best where
throughput is 800 kb/sec higher than the original antnet. The sharp decrease around
135 second is due to packet creation being stopped at this stage and packets left in the
buffers are being processed. Since throughput was highest with multiple antnet it

finished the simulation first whereas original antnet finished the simulation last.

7000 — ,
29000 i
| %5000 +
: 000 +
| =
| 83000 +

[=]
2000 -

[10 35 60 85 110 135 160 185 210 235 260 285 |
' Time (sec.) i
——Evap (1,0) — Evap (0,1) Multi —— Improved —— Original

Fig. 6.18: Throughput versus time for different antnet configurations and low
load

150

As shown in Figs. 6.18 and 6.19 there is very little difference between the results, thus
choosing which to adopt becomes rather a daunting task. Thus one can say that,
employing evaporation have little effect on the throughput performance of the
network. Antnet generally has no effect on the throughput, which is also confirmed by

the results presented in [Di Caro, 04], [Dorigo & Stutzle, 04].

I 7000 —

10 35 60 85 110 135 160 185 210 235 260 285
) ~ Time (sec.)
——Evap (1,0) ——Evap (0,1) Multi —— Improved —— Original

Fig. 6.19: Throughput versus time for different antnet configurations and
medium load

In the high loads case however, it can be seen from Fig. 6.20 that multiple ant
colonies has no effect on the throughput. On the other hand, the original antnet
algorithm still performs the worst. This is because, packets that are routed within the

network without reaching their destination decrease the overall throughput.

151

. e
LB} L L

i 10 35 60 85 110 135 160 185 210 235 260 285 .
| Time (sec.) |

Evap (0,1) Multi —— Improved —— Original i

5 —Evap {(1,0)

Fig. 6.20: Throughput versus time for different antnet configurations and high
load
Fig.s 6.21-6.23 shows the throughput for 36-node irregular grid versus time for
various antnet implementations for three loads. It can be seen from the Fig.s that
multiple antnet is no longer the best performing configuration. This is due to the fact
that in 36-node irregular grid there are only two paths available from left to the right
of the grid with one path being the shortest route (in terms of distance but not fastest).
Thus, in the case of two colonies being employed, they do not have a chance to

balance the available paths but switch between them.

| 8
!.":
s
=9
2
=
0 —ro A
10 60 110 160 210 260 310 360 410 460
R Time (Sec.)) |
——Evap (1,0) — Eve_:_p [_q._‘l} Multi — Improved —— Original

Fig. 6.21: Throughput versus time for different antnet configurations and low
load

152

From Fig.s. 6.21 and 6.22 it can be seen that on average evap (0, 1) performed slightly
better than the others. This shows that with low and medium loads algorithm managed
to capture the sub paths leading to the two main paths that are connecting the left of
the grid to the right of the grid. On the other hand, it can also be seen that evap (1, 0)
failed to rank correctly the consecutive sub paths as some packets and ants had to go

through loops.

9000
8000 +
E?Uﬂﬂ 1
iﬁl}ﬂﬂ +
= 5000 +
84000 +
23000 -
2 2000 -
ﬁ1ﬂm -

10 60 110 160 210 280 310 380 410 460

- Time (sec.) B

——Evap (1,0) —Evap (0,1) Multi —— Improved —— Original

| I— — S—

Fig. 6.22: Throughput versus time for different antnet configurations and
medium load
Fig. 6.23 shows the only results where the original antnet algorithm performed better
than the others. This is because both evaporation configurations are misguided by the
continuous change that happens in the ideal paths. In other words, ants and packets
have been forwarded to the non-ideal paths due to congestion occurring at almost
every node. However, this does not mean that they reach their location late; it only

means that they reach their destination via a number of additional hops.

153

. 9000

| — 8000 +
[%]

! @ 7000

' £ 6000 1
§. 5000 -
2 4000 +
E 3000 -
£ 2000 -

F 1000 - ||
10 60 110 160 210 260 310 360 410 460
_ Time (sec.)
| '—Egap (1,00 —Evap (0,1) Multi —— Improved —Driginali

Fig. 6.23: Throughput versus time for different antnet configurations and high
load

6.7 Effect of Y on Antnet

In [Dorigo & Stutzle, 04] it has been highlighted that the confidence parameter } has
a major effect on the performance of the antnet routing algorithm. No evaluation of
the network performance has been made that takes Y into account. Therefore, here for
the first time the effect of Y is compared by using different antnet configurations. ¥
defines the effect of reinforcement signal r on the optimisation. In other words, if V' is
1 then reinforced value changes the current value completely. However if Y is O then
reinforced values has no effect on the performance. Therefore, effect of ¥ on the
performance of the proposed versions of the algorithm needs to be investigated. It has
been reported in [Di Caro & Dorigo, 98-4] that the ideal value of Y for the original

antnet routing algorithm is 0.75- 0.8. Hence, in the previous tests ¥ was set to 0.8.

Fig.s 6.24-6.26 shows the average delay versus confidence parameter Y for various

antnet configurations. For Fig. 6.24 the average packet delay increases as ¥ decreases.

Evap (0,1) gives better performance than the others at high values of Y.

154

oa Lk} (EL 0.5 0.4 0.3 |
Confidence Parameter - Y

—— Ewap (0,1) — Exap (1,0] Wit —— Improed

Fig. 6.24: Confidence parameter Y versus the average delay for different antnet
configurations with low load and 29 Node

On the other hand in Fig. 6.25 as Y increases the average delay remained almost
unchanged for all configurations except for evap (0, 1) where there is a cyclic delay

characteristic. When Y is equal to 0.8 and 0.4, evap (0, 1) gives the lowest delay.

0e 0T 08 08 0.4 03 |
Corfidence Paramater - ¥

[——Ewap 0.1) — Ewap (1,0) Mutti inpraved

Fig. 6.25: Confidence parameter Y versus the average delay for different antnet
configurations with medium load and 29 Node

Fig. 6.26 shows the average delay for different values of ¥ for high system loads. It
can be seen that unlike previous results evap (0, 1) performs better only when Y is set
to 0.8 and 0.4 similar to Fig. 6.25. This shows that the default confidence level used is

best suited to this system load.

135

os o7 X3 1.3 04 LER
Confidence Parameter - ¥

—Fap (0.1 —Eap (1.0) Multi — improved |

Fig. 6.26: Confidence parameter Y versus the average delay for different antnet
configurations with high load and 29 Node
Fig.s 6.27 to 6.29 shows the results for the irregular grid for a range of } values and
for different system loads. Unlike to randomnet, evap (0, 1) performs better in almost
every occasion for all values of Y. However, evap (0, 1)’s performance was not as
consistent as the others. Fig. 6.27 show that evap (0, 1) gives the best performance
when Y is set to 0.3 for low system loads. This is probably because algorithm is only
limited to two main routes for finding the best path from each sides of the grid.

Therefore a low confidence parameter is more suited to the irregular grid.

[T — ———— =

0.8 o7 0.8 0% 0.4 03 |
Confidence Paramaber - ¥

— Ewp01) —Eap (1.0} Multi — improved

Fig. 6.27: Confidence parameter Y versus the average delay for different antnet
configurations with low load and 36 Node

156

Fig. 6.28 show that evap (0, 1) offers improved performance for ¥ = 0.5 and low
system loads, whereas for other values of ¥ the performance is similar to others as in

the previous results.

el e e S i _

Ffurg. Deday (sec.)

0.8 or 0.& 0.5 0.4 03
Confidence Paramater - Y

—Eapi0l) — Eap (L0 Ml — improve |

Fig. 6.28: Confidence parameter Y versus the average delay for different antnet
configurations with medium load and 36 Node

In Fig. 6.29, there is almost 0.8 sec. difference on the average delay per packet when
Y is set to 0.6 and 0.4 for evap (0, 1). This is because at a high network load the

algorithm adaptation to changes becomes rather challenging.

i
th
i

2

Avg. Dalay (sec.)
B
[~

i

~
F T

o7 0.8 0.5 b4 0.3
Confidence Paramater - Y

=
o™

[—Ewp .1} —Ewp{1.0) Muti — Improwed|

Fig. 6.29: Confidence parameter Y versus the average delay for different antnet
configurations with high load and 36 Node

157

6.8 Comparison

Results for the average packet delay for the original, improved, evaporation and
multiple ant colonies are given in Tables 6.1 and 6.2 for three different system loads.
It can be seen from the tables that for all cases the algorithm with evap (0, 1) offers
improved performance compared with the others. Also in some cases improved antnet
performed better than the multiple antnet and vice versa. The original antnet
performed the worst in all cases. Results also show that, the evaporation algorithm has
performed at least 10% better than the improved antnet in every case for 29-node
network and around at least 22.5% for 36-node irregular grid. Also, evap (1, 0)
performed worse than evap (0, 1). However, while conducting the tests it was
observed that evaporation algorithm was not as stable as the non-evaporation
algorithm. There was not much difference on the 10 tests conducted by non-
evaporation configuration. On the other hand, there is around 0.2 to 0.5s difference
among the best and worst cases observed with the evaporation case for 29 and 36
node configurations, respectively. It is believed that, this is due to two main reasons.
Firstly, due to the non-uniform traffic model used in the tests, and secondly the
algorithm capturing the wrong time window as that is the only factor on choosing the

time to evaporate.

Table 6.1: Overall average delay comparison for different system loads

Avg Delay(s) L-Low L-Mid L-High
Evap (1,0) 1.99 1.97 2.20
Evap (0,1) 1.88 1.89 2.00

Multi 1.97 1.90 2.16
Improved 2.05 2.05 2.16
Original 2.12 2.10 2.28

158

Table 6.2: Overall average delay comparison for different system loads

Avg Delay(s) L-Low L-Mid L-High
Evap (1,0) 2.11 2.15 2.73
Evap (0,1) 1.82 1.88 2.29

Multi 2.32 1.98 2.17
Improved 2.01 2.21 2.64
Original 2.495 2.77 3.54

Tables 6.3 and 6.4 show the average throughput of the network for the original,
improved, evaporation and multiple antnet for three different system loads. As can be
seen from the Fig.s the evap (0, 1) and multiple antnet outperformed others in all
cases. On the other hand, in some cases packet creation has been stopped around 100
seconds and 200 seconds (every node in the network stops creating packets after 2500
packet creation.) for 29 and 36 node configurations, respectively. When a network is
congested multiple ant colonies performed better than the others with 29-node
network and with the irregular grid, multiple ant colonies performed the worst. This is
because there are only two paths available from left of the grid to the right and from
the right of the grid to the left. Therefore, each colony can dominate only one path and

cannot explore more paths.

Table 6.3: Overall throughput comparison for different system loads

Throughput(kb/s) L-Low L-Mid L-High
Evap (1,0) 1838.80 1864.59 2320.91
Evap (0,1) 1887.62 1813.60 2217.04

Multi 1864.91 1986.88 2118.02
Improved 1832.94 1869.88 2100.60
Original 1620.58 1590.89 1593.30

Table 6.4: Overall throughput comparison for different system loads

Throughput(kb/s) L-Low L-Mid L-High
Evap (1,0) 2380.39 2485.92 2721.89
Evap (0,1) 2421.63 2470.46 2574.70

Multi 2589.00 2692.17 2711.07
Improved 2471.21 2412.01 2612.92
Original 2031.48 1946.90 2130.65

159

In addition, tests were carried out for different values of confidence parameter Y in
order to observe its effect on the performance of the improved and new versions of
the algorithm. For all the tests with 29-node grid, the ideal Y value is 0.8 as the
original authors of the antnet have suggested it. On the other hand with 36-node
irregular grid, the ideal Y value is around 0.4 and 0.5. Therefore, one can say that for
extreme conditions as in irregular grid the confidence in applying the reinforcement

signal is 50%.

6.9 Conclusions

In this chapter, it has been shown that by detecting and dropping packets that travel
continuously within the network one can improve the antnet’s performance in terms
of network throughput and the average packet delay. The effect of traffic fluctuations
on the network performance has been limited by the introduction of boundaries, by

limiting the number of ants within the network at any given time.

One of the major problems with the antnet is stagnation and adaptability. This occurs,
when the network freezes and consequently the routing algorithm gets trapped in local

optima and is therefore unable to find new improved paths.

In the original antnet routing algorithm, the only feedback signal used was the
reinforcement applied by using the agents’ trip times. Here, in addition the link usage
statistics were used as a feedback signal and reinforced to the solution by the
evaporation parameter to improve the performance of the algorithm.

In addition multiple ant colonies were applied to packet switched networks. It was

shown that, by employing multiple ant colonies in packet switched networks,

160

throughput can be increased. On the other hand, no gain in average packet delay was
observed. One major disadvantage of using multiple ant colonies is the resources used
in every node. More colonies will be required (thus routing tables), when applying
multiple ant colonies to larger sized networks in order to exploit more paths. No direct
interaction among the different ant colonies was considered. Thus, methods used in
[White et al, 98-2] could be applied to improve the performance of multiple ant
colonies in packet switched networks. On the other hand, further tests showed that
evaporating path probabilities and applying multiple ant colonies had no effect on
uniform and non-problematic traffic conditions. This was an expected outcome as
there was no need to change the solution found if traffic stays static at all the time.
When network conditions do not change, there are no new improved paths available.

Thus, the solution found was the optimal solution.

In [Di Caro, 04] and [Dorigo & Stutzle, 04] results for OSPF, RIP and Q-routing
algorithms are compared with antnet and it is reported that antnet performed better in
all of the cases. In this thesis implementation and initial tests with these algorithms
have also verified these results. Therefore, extensive tests with these algorithms have
not been carried out in this thesis and the focus has been only on the antnet and its
improvements. However, hybrid version of IGRP and Q-routing algorithms using ants

has also been implemented as part of this work with no performance gain.

161

CHAPTER VII - CONCLUSION AND
FURHER WORK

7.1 Conclusions

The primary objective of this work was to model and analyse distributed routing
algorithms that are suitable for packet switched networks. This thesis divided into two
main threads first of which proposed a model to implement logical network topologies
and provided an investigation of these with some improvements for OTDM systems.
The second thread investigated routing algorithms for arbitrary networks. It started
with a major review of traditional routing algorithms that are in use in today’s
networks and this was followed by a review of reinforcement learning approaches to
the routing problem. The antnet routing algorithm has been implemented and various
modifications have been proposed. A second reinforcement signal has been used for
the first time in the literature to overcome the stagnation problem together with the
first implementation of multiple ant colonies on packet switched networks. A novel
way of simulating communication networks has been proposed and algorithms have

been implemented using this model.

In Chapter 2, a review of the most common non-blocking type logical network
topologies has been given. This provided an insight to the logical network topologies
with a focus in routing algorithms. Comparison of the reviewed algorithms was also

provided.

162

Since logical network topologies are limited, Chapter 3 gave a review of the
traditional routing algorithms together with routing protocols that are currently in use
today’s networks. Dijkastra’s shortest path algorithm is one of the well known
algorithms which is widely adapted in the Internet and studied in the literature.
Dijkastra’s algorithm is also the base for the Link State Routing algorithm and
protocols. OSPF is deployed throughout the internet and is the de facto routing
algorithm within the networks. EGP is a gateway protocol which is mainly used
between backbones and as it name suggests, among the gateways. However, BGP is

the most widely used gateway protocol.

Traditional routing algorithms and protocols lack intelligence, they need human
assistance and interpretation in order to adapt themselves to failures and changes.
Moreover, they are mainly table based which makes search process highly
undesirable. Due to these problems, there is a great amount of research concentrated

on finding an intelligent distributed routing algorithm.

In recent years, agent based systems and reinforcement learning have been widely
applied to routing. Swarm intelligence particularly ant based systems, Q-learning
methods and hybrid agent based distance vector algorithms have shown promising
and encouraging results. Therefore, Chapter 4 presented an introduction to
reinforcement learning and ant colony optimisation, followed by a detailed review of
the antnet routing algorithm and its evolution. Finally, a review of the well known Q-

routing algorithm and its derivatives were given.

163

The aim of Chapter 5 was to simulate and evaluate the logical network topologies
suitable for OTDM networks which operate in synchronous mode since there is no
information on such evaluation in the literature to the best knowledge of author.
Therefore, a generic model for implementing logical interconnection topologies in
software was proposed in order to investigate the performance of the logical
topologies and their routing algorithms for packet based synchronous networks. This
model proposed is generic for any synchronous transfer modes and therefore can be
used for implementing any logical topology using any programming language. Three
topologies have been investigated and implemented namely: Shufflenet, De Bruijn
graph and Gemnet. Results for the average packet delay showed that the De Bruijn
graph performed the worst. Also, it is observed that the De Bruijn graph made use of

buffering more efficiently compared to the other algorithms.

In addition, a simple priority rule named as TRR was introduced in order to utilise the
usage of the asymmetric 2x2 node. Results showed that TRR has no effect on the
performance of the topology and the algorithm. However, it increased the utilisation
of the transmission port significantly. Also, it was observed that since there are no

multiple paths existing in the De Bruijn graph therefore no gain was observed.

In Chapter 6, it was shown that by detecting and dropping packets that travel
continuously within the network one can improve the antnet’s performance in terms
of network throughput and the average packet delay. The effect of traffic fluctuations
on the network performance can be limited by the introduction of boundaries, (i.e. by

limiting the number of ants within the network at any given time). Although limiting

164

the number of ants increased the network utilisation, it reduced the chance of finding

the best and new routes and detecting failures and problematic conditions.

One of the major problems with the antnet is stagnation and adaptability. This occurs,
when the network freezes and consequently the routing algorithm gets trapped in the

local optima and is therefore unable to find new improved paths.

In the original antnet routing algorithm the only feedback signal used was the
reinforcement applied by using the agents trip times. Here, in addition the link usage
statistics were used as a second feedback signal and reinforced to the solution by
evaporation parameter to improve the performance of the algorithm. The evaporation
parameter was calculated based on the link usage statistics held by every node.
Simulation results showed that under non-uniform traffic conditions the algorithm
with evaporation displayed reduced average delay per packet compared with
algorithm with no evaporation. Moreover, the simple rules and unsophisticated
variables used in the improved version did not add a significant overhead to the
network and to the node. However, inconsistency observed in the average delay was

the main drawback observed during the simulations.

In addition, multiple ant colonies were applied to packet switched networks. It was
shown, that by employing multiple ant colonies in packet switched networks,
throughput can be increased. On the other hand, no gain in the average packet delay
was observed. One major disadvantage of using multiple ant colonies is the resources

used in every node.

165

Results for OSPF, RIP and Q-routing algorithms were compared with the antnet
showing that the later offered improved performance in all cases [Di Caro, 04] and
[Dorigo & Stutzle, 04]. Our implementation and initial tests with these algorithms has
also verified these results. Therefore, extensive tests with these algorithms have not
been carried out and our work focused on the antnet routing algorithm and to its
improvements. However, hybrid version of IGRP and Q-routing algorithms using ants

has also been implemented as part of this work with no performance gain.

In summary, this thesis has presented the design, analysis, and simulation results of
routing algorithms suitable for both logical and arbitrary networks. The primary
objective of this study was to investigate the potential and limitations of such
networks together with their routing algorithms. Noise and crosstalk characteristics of
OTDM switch and stagnation in antnet routing algorithm have been addressed. A

novel way of simulating communication networks has been proposed and used.

7.2 Further work

In this section, the remaining outstanding issues and potential improvements that are

believed to be interesting and deserve future investigation are presented.

[Abbattista et al, 95] and [Liang et al, 02] used genetic algorithm to optimise ant
colony for the TSP and routing problem, respectively in offline system [Chen, 97]. In
both methods information gathered from the algorithm during offline simulations
were used to tune parameters of the algorithms [Botee & Bonabeau, 99]. However, in
real systems, routing problems must be addressed and resolved in real time to ensure

improved performance. Therefore one can employ distributed genetic algorithm to

166

optimise the constant variables used in antnet routing algorithm. For ant based system
GA mutation operation can be applied in two different ways. (i) using the probability
of randomly selected path(s) to increase the exploration probability of the network,
and (ii)) a more traditional technique where mutation operator is applied to the path
(sequence) that backward ant follows by changing some of the entries based on the

mutation operator used.

In the electrical domain the routing table could be extremely large (> 500,000 entries)
requiring a large amount of computation time. In many applications this could act as
the bottleneck, thus preventing further network expansion. In optical domain, the
problem becomes even more problematic, since there are no optical memories. Thus,
one has no option but to use greatly reduced routing tables in optical domain. To
overcome the problem of searching a large size routing table an alternative routing
algorithm with dynamic and intelligent characteristics might be considered. The ant
based routing algorithm, with the ability to adapt and learn, is one such alternative. In
addition, unlike the original unsupervised learning approach, the biased and unbiased
ants with prior knowledge could be used to make decisions in some cases (i.e.
traditional routing protocols and algorithms such as BGP, OSPF and IGRP could run
at the background on different processor with an associated GA running on different
processor). In addition to the antnet routing algorithm other reinforcement learning

approaches such as Q-routing algorithm can also be used together with GA.

The pioneer of agent based routing algorithm [Appleby & Steward, 94] used different

agents to solve routing problem while keeping other ants in the network in order to

eliminate the need for network administrators. As a future work similar approaches

167

can also be used, where worker ants representing data packets within the network can
only change the pheromone levels of path that they travel and also use low priority
queues. However, beside the worker ants there can be other ants with higher priorities
queues carrying high priority packets that can travel faster (using high priority
queues) within the network and be able to update more than one entry in the routing
table. Importance of the packet could also be defined by its length, age, and closeness
to its destination. In addition, there could also be controller ants which will measure
network load and number of ants passing through the network and feed this

information to the algorithm.

In addition IGRP, OSPF and BGP will also be optimised in real time by the GA
model developed for the antnet. Since these currently need human interpretation in

real life in order to adapt to changes occurring in the network.

The author ultimately believes that further study in intelligent routing algorithms

should exploit these revelations to produce algorithms for the next generation

communication networks.

168

References

[Abbattista et al, 95]: F. Abbattista, N. Abbattista, and L. Caponetti, “An
Evolutionary and Cooperative Agents Model for Optimization”, Proc. of Int. Conf. on
Evolutionary Computation, Perth, Nov 1995, pp. 668 - 671

[Acampora & Karol, 89]: A. S. Acampora and Mark J. Karol, “An Overview of
Lightwave Packet Networks”, IEEE Network, 1989, pp.29 - 41

[Acampora et al, 88]: A. S. Acampora, M. J. Karol and M. G. Hluchyj, “Multihop
Lightwave Networks: A New Approach to Achieve Terabit Capabilities”, in Proc.
ICC'88, vol. 1, 1988, pp. 1478 - 1484

[Akon et al, 04]: M. M. Akon, D. Goswami and S. A. Jyoti, “A New Routing Table
Update and Ant Migration Scheme for Ant Based Control in Telecommunication
Networks", Parallel Architectures, Algorithms and Networks, Proceedings. 7th
International Symposium, 10-12 May 2004, pp. 508 - 513

[Amin & Mikler, 02-1]: K. A. Amin, A. R. Mikler “Towards Resource Efficient and
Scalable Routing: An Agent-based Approach”, 2002

[Amin & Mikler, 02-2]: K. A. Amin and A. R. Mikler, “Dynamic Agent Population in
Agent-based Distance Vector Routing”, ISDA 2002: Second International Workshop
on Intelligent Systems Design and Applications, Atlanta, USA, Augt 2002, pp. 195 -
200

[Amin et al, 01]: K. Amin, J. Mayes and A. Mikler, “Agent-based Distance Vector
Routing”, Lecture Notes In Computer Science, Vol. 2164, Springer-Verlag, London,
2001, ISBN:3540424601, pp. 41 - 50

[Amin et al, 04]: K. Amin, A. Mikler, “Agent-Based Distance Vector Routing: A

Resource Efficient and Scalable Approach to Routing in Large Communication

169

Networks”, Journal of Systems and Software, Vol. 71, Issue 3 May 2004, pp. 215 -
227

[Andrei, 02]: S. Andrei, “A survey on network routing and reinforcement learning”,
2002, retrieved on Jun 2004 from:
www.math.tau.ac.il/~mansour/rlcourse/student_proj/asuciu/network1.htm

[Appleby & Steward, 94]: S. Appleby and S. Steward, “Mobile Software Agents for
Control in Telecommunication Networks”, British Telecom Technical Journal, Vol.
12, 1994, pp. 104-113.

[Banerjee & Sarkar, 94]: S. Banerjee and D. Sarkar, “Hypercube Connected Rings: A
Fault-Tolerant and Scalable Architecture for Virtual Lightwave Network Topology,”
Proc. IEEE INFOCOM ‘94, Boston, June 1994, pp. 1236 - 1243

[Banerjee et al, 99]: S. Banerjee, V. Jain and S. Shah, “Regular Multihop Logical
Topologies for Lightwave Networks”, IEEE Communications Surveys & Tutorials,
Vol. 2, No. 1, First Quarter 1999, pp. 2 - 18

[Banks et al, 00]: J. Banks, J. S. Carson, B. L. Nelson and D. M. Nicol, "Discrete-
Event System Simulation”, Prentice Hall, 3rd Edition, ISBN: 0130887021, August 15,
2000.

[Baran & Sosa, 00]: B. Baran, R. Sosa, "A New Approach for AntNet Routing",
ICCCN-2000 Computer Communications and Networks, 2000, Las Vegas, 16-18 Oct.
2000, pp. 303 - 308

[Baran, 01]: B. Baran, “Improved AntNet Routing”, ACM SIGCOMM, Workshop on
Data com. in Latin America and the Caribbean, Vol. 31, No. 2, April 2001, pp. 42 —

48, ISBN:0146-4833.

170

[Baransel et al, 95]: C. baransel , W. Dobosiewicz and P. Gburzynski, “Routing in
Multi-hop Packet Switching Networks: Gbps Challenge”, IEEE Network, Vol. 9, No.
3, 1995, pp. 38 - 61

[Bassil & Cruz, 96]: J. Brassil and R. Cruz, "Nonuniform Traffic in the Manhattan
Street Network", Journal of Performance Evaluation, Vol. 25, 1996, pp. 233 - 242
[Beckers et al, 92]: R. Beckers, J.L. Deneubourg, and S. Goss, "Trails and U-turns in
the Selection of a Path by the Ant Lasius Niger," Journal of Theoretical Biology, Vol.
159, 1992, pp. 397 - 415

[Bellman, 59]: R.E. Bellman, "On a Routing Problem", Quarterly of Applied
Mathematics, Vol. 16, 1959, pp. 87 - 89

[Bertsekas, 91]: D. Bertsekas, "Data Networks", 2nd Edition, Prentice Hall, 1991,
ISBN: 0132009161

[Bhuyan & Agrawal, 84]: L. N. Bhuyan and D.P. Agrawal, “Generalized Hypercube
and Hypercube Structures for a Computer Network,” IEEE Trans. Computers, Vol. C-
33, No. 4, April 1984, pp. 323 - 333

[Bonabeau et al, 00]: E. Bonabeau, M. Dorigo and G. Theraulaz, “Inspiration for
Optimization from Social Insect Behaviour”, Nature, Vol. 406, July 2000, pp. 39 - 42
[Bonabeau et al, 98]: E. Bonabeau, F. H enaux, S. Gu’erin, D. Snyers, P. Kuntz, and
G. Theraulaz, “Routing in Telecommunications Networks with “smart” Ant-like
Agents”, Proceedings of IATA 98, Second International Workshop on Intelligent
Agents for Telecommunication Applications, Lecture Notes in Artificial Intelligence,
Vol. 1437, Springer-Verlag, 1998, pp. 60 - 71

[Bonabeau et al, 99]: E. Bonabeau, M. Dorigo, and G. Theraulaz, “Swarm
Intelligence from Natural to Artificial Systems”, Oxford University Press, 1% Edition,

1999, ISBN: 0195131592

171

[Botee & Bonabeau, 99]: HM. Botee and E. Bonabeau, "Evolving Ant Colony
Optimization", Advances in Complex Systems, Vol. 1, No. 2/3, 1999, pp. 149 - 159
[Boyan & Littman, 94]: J. A. Boyan and M. L. Littman., "Packet Switching in
Dynamically Changing network: A Reinforcement Learning Approach", Proceedings
of the Advances in Neural Information Processing Systems, 1994, 671-678.
[Camazine et al, 01]: S. Camazine, J. L. Deneubourg, N. R. Franks, J. Sneyd, G.
Theraulaz and E. Bonabeau, "Self-Organization in Biological Systems", Princeton
University Press, April 1, 2001, ISBN: 0691116245

[Cantu-Paz, 97]: E. Cantu-Paz, A survey of parallel genetic algorithms, Tech. Rep.,
The University of Illinois, 1997, retrieved on May 2004 from:

illigal.ge.uiuc.edu/pub/;

/1 apers/IIliIGALs/97003.ps.Z.

[Carnahan & Simha, 01]: J. Carnahan and R. Simha “Nature’s algorithms”, IEEE
Potentials, April/May 2001

[Chambers, 95]: L. Chambers, "Practical Handbook of Genetic Algorithms ,
Applications Volume 1", CRC Press, 1995 , Chp 11, Scheduling and routing
problems, pp. 367 - 430

[Chen, 97]: K. Chen, “A simple Learning Algorithm for the Travelling Salesman
Problem”, Physical Review E, Vol. 55, 1997, pp. 7809 - 7812

[Choi & Yeung, 96]: S. P. M. Choi and S. Y. Yeung, "Predictive Q-routing: A
Memory-based Reinforcement Learning Approach to Adaptive Traffic Control”,
Advances in Neural Information Processing Systems, Vol. 8, MIT Press, 1996 pp. 945
- 951.

[Chu et al, 02]: C. H. Chu, J. Gu, X. D. Hou, and Q. Gu, “A Heuristic Ant Algorithm
for Solving QoS Multicast Routing Problem”, 2002 IEEE Congress on Evolutionary

Computation, Honolulu, Hawaii, May 12-17, 2002, pp. 1630 - 1635

172

[Cisco-01]: Cisco, "Internetworking Technology Handbook", 2002, Online Edition,

Retrieved from: http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito _doc/ , Cisco,

Internetworking technologies handbook, Chapter 46, OSPF
[Cisco-02]: Cisco, "Internetworking Technology Handbook", 2002, Online Edition,

Retrieved from: http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/ , Cisco,

Internetworking technologies handbook, Chapter 47, RIP

[Coiorni & Dorigo, 92] A. Coiorni and M. Dorigo "Distributed Optimization by Ant
Colonies", Proceedings of First European Conference on Artificial Life, 1992, pp. 134
- 142

[Cormen et al, 02]: T. Cormen, C.Leiserson and R Rivest., 2001, "Introduction to
Algorithms", Second Edition, MIT Press, ISBN: 0262032937

[Di Caro & Dorigo, 97]: G. Di Caro and M. Dorigo, “AntNet: A Mobile Agents
Approach to Adaptive Routing”, Universit'e Libre de Bruxelles, IRIDIA, Technical
Report 97-12, 1997

[Di Caro & Dorigo, 98-1]: G. Di Caro and M. Dorigo, “AntNet: Distributed
Stigmergetic Control for Communications Networks”, Journal of Artificial
Intelligence Research (JAIR), Vol. 9, 1998, pp. 317 - 365

[Di Caro & Dorigo, 98-2]: G. Di Caro, and M. Dorigo, “An Adaptive Multi-agent
Routing Algorithm Inspired by Ants Behaviour”, PART98—Fifth Annual
Australasian Conference on Parallel and Real-Time Systems, Springer-Verlag, 1998,
pp. 261 - 272

[Di Caro & Dorigo, 98-3]: G. Di Caro, and M. Dorigo, “Mobile Agents for Adaptive
Routing”, Proceedings of the 31st International Conference on System Sciences

(HICSS-31), Los Alamitos, CA, Vol. 7, 1998, pp. 74 - 83

173

[Di Caro & Dorigo, 98-4]: G. Di Caro and M. Dorigo, "Two Ant Colony Algorithms
for Best-effort Routing in Datagram Networks", Proc. 10th International Conference
on Parallel and Distributed Computing and Systems, Las Vegas, Nevada, October 28-
31, 1998

[Di Caro, 04]: G. Di Caro "Ant Colony Optimization and its application to adaptive
routing in telecommunication networks" PhD thesis in Applied Sciences, Polytechnic
School, Université Libre de Bruxelles, Brussels, Belgium, 2004

[Di Fatta et al, 00]: G. Di Fatta, S. Gaglio, G. Lo Re and M. Ortolani, “Adaptive
Routing in Active Networks”, OpenArch 2000 IEEE Third Conference on Open
Architecture and Network Programming, Tel Aviv, March 2000

[Dijkstra, 59]: E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs",
Numerische mathematik, 1959, Vol. 1, pp. 267 - 271

[Dixon et al, 95]: M. W. Dixon, G. R. Cole and M. . Bellgard. “A Neural Network
Shortest Path Algorithm for Routing in Packet-switched Communication Networks”,
ICC'95, Seattle, USA, June 18-22, 1995, pp. 1602 - 1606

[Dorigo & Di Caro, 99]: M. Dorigo and G. Di Caro, “The Ant Colony Optimization
Meta-heuristic”, New ideas in optimization, McGraw-Hill, London, 1999, pp. 11 - 32
[Dorigo & Gambardella, 97]: M. Dorigo and L. M. Gambardella, "Ant Colonies for
the Traveling Salesman Problem", BioSystems, Vol. 43, 1997, pp. 73-81

[Dorigo & Gambardella, 99]: M. Dorigo and M. L. Gambardella, “Ant Colony
System: A Cooperative Learning Approach to the Travelling Salesman Problem”,
IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1999, pp. 53 - 66
[Dorigo & Stutzle, 04]: Marco Dorigo and Thomas Stutzle, “Ant Colony

Optimization”, Bradford Book, July 2004, ISBN: 0262042193

174

[Dorigo et al, 02-1]: M. Dorigo, L. M. Gambardella, M. Middendorf and T. Stutzle,
”Guest Editorial: Special Section on Ant Colony Optimization”, Evolutionary
Computation, IEEE Transactions on , Vol. 6, No. 4, Aug 2002, pp. 317 - 319

[Dorigo et al, 02-2] M. Dorigo, G. Di Caro, and M. Sampels, "Ant Algorithms”,
Proceedings of ANTS 2002, Third International Workshop on Ant Algorithms,
Brussels, Belgium, September 12--14, 2002", Lecture Notes in Computer Science
Vol. 2463, Springer-Verlag, 2002.

[Dorigo et al, 96]: Marco Dorigo and Vittorio Maniezzo. "Ant system: Optimization
by a Colony of Cooperating Agents" IEEE Transactions on Systems, Man, and
Cybernetics-Part B, Vol. 26, No. 1, 1996, pp. 29 - 41

[Dorigo et al, 99]: M. Dorigo, G. Di Caro and L. M. Gambardella, "Ant Algorithms
for Discrete Optimization", Artificial Life, Vol. 5, No. 2, 1999, pp. 137 - 172

[Feng, 81]: T. Y. Feng, “A survey of interconnection networks”, IEEE Computation
Magazine, Vol. C-30, No. 12, 1981, pp. 12 - 27

[Fishman 96]: G. S. Fishman, "Monte Carlo", Springer Verlag, 2nd edition, April 25,
1996, ISBN: 038794527X

[Franks, 89]: N. Franks, "Army ants: A Collective Intelligence", American Scientist,
Vol 77, Mar-Apr, 1989, pp. 139 - 145

[Gao et al, 01]: R. Gao, Z. Ghassemlooy, G. Swift and P. Ball, “Simulation of All-
Optical Time Division Multiplexed Router”, SPIE Photonics West, USA, 2001

[Gao, 03]: R. Gao, "All Optical Packet Network Routing in High Speed
Communication Systems", PhD Thesis, Sheffield Hallam University, 2003

[Geist et al, 94]: A. Geist, A Bequelin, J] Dongarra, W Jiang, and V Sundaram.,
"PVM: Parallel virtual machine: a users' guide and tutorial for networked paraliel

computing”, MIT Press, 1994, ISBN: 0262571080

175

[Goldberg, 89]: D. E. Goldberg, "Genetic algorithms in search, optimisation and
machine learning", Addison-Wesley, 1989, ISBN: 0201157675

[Golomb, 82]: S. W. Golomb, “Shift Register Sequences”, Agean Park Press, 1982,
ISBN: 0894120484

[Grammatikakis et al, 98]: M. D. Grammatikakis, D. F. Hsu and M. Kraetzl, “Packet
Routing in Fixed-Connection Networks: A Survey”, Journal of Parallel and
Distributed Computing Vol. 54, 1998, pp. 77 - 132

[Gunes et al, 02]: M. Gunes, U. Sorges, and 1. Bouazizi, "ARA - The Ant-Colony
Based Routing Algorithm for MANETSs", 2002 International Conference on Parallel
Processing Workshops (ICPPW'02), Vancouver, B.C., Canada, Aug. 18 - 21, 2002,
pp. 79 - 85

[Guoying et al, 00]: L. Guoying, L. Zemin, and Z. Zheng, "Multicast Routing Based
on ant Algorithm for Delay-bounded and Load-balancing Traffic",25th Annual IEEE
Conference on Local Computer Networks (LCN'00), November 08 - 10, 2000, pp.
362 - 368

[Hedrick, 88]: C. L. Hedrick, 1988, “Routing Internet Protocol (RIP)”, RFC 1058,
I[ETF

[Hedrick, 91]: C. L. Hedrick Rutgers, "An Introduction to IGRP", CISCO White
Papers, Document ID: 26825, 1991

[Heusse et al, 98]: M. Heusse, S. Gu’erin, D. Snyers, and P. Kuntz, “Adaptive Agent-
Driven Routing and Load Balancing in Communication Networks”, Advances in
Complex Systems, Vol. 1, 1998, pp. 237 - 254

[Hluchyj & Karol, 88]: M. G. Hluchyj and M.K. Karol, “ShuffleNet: An Application
of Generalized Perfect Shuffles to Multihop Lightwave Network’ IEEE INFOCOM

‘88, 1988, pp. 379 - 390

176

[Hunter et al, 98]: D. K. Hunter, M. C. Chia and I. Andonovic, “Buffering in Optical
Packet Switches”, Journal of Lightwave Technology, Vol. 16, No. 12, 1998, pp. 2081
- 2094

[Iness et al, 95]: J. Iness, S. Banerjee, and B. Mukherjee, “GEMNet: A Genaralized,
Shuffle Exchange-Based, Regular, Scalable, Modular, Multihop, WDM Lightwave
Network,” IEEE/ACM Trans. on Networking, Vol. 3, No. 4, Aug. 1995, pp. 470 - 476
[Jackel et al, 98]: A. Jaekel, S. Bandyopadhyay and A. Sengupta, “A Flexible
Architecture for Multihop Optical Networks™ IEEE International Conference on
Computer Communication and Networks, [CCCN98, 1998, pp. 472 - 478

[Kaelbling et al, 96]: L. P. Kaelbling, M. L. Littman, and A. W. Moore,
“Reinforcement learning: A survey”, Journal of Artificial Intelligence Research, Vol.
4, 1996, pp. 237 - 285

[Karol & Shaikh, 88]: M. J. Karol and S. Shaikh, “A Simple Adaptive Routing
Scheme for ShuffleNet Multihop Lightwave Networks,” GLOBECOM ‘88, Conf.
Rec., Nov. 1988, pp.1640 - 1647

[Kassabalidis et al, 01]: I. Kassabalidis, M.A.El-Sharkawi, R.J.Marks II, P. Arabshahi
and A.A.Gray, "Swarm Intelligence for Routing in Communication Networks", IEEE
Globecom 2001, San Antonio, Texas, Nov. 25-29, 2001, pp. 3613 - 3617

[Katseff , 88]: H. P. Katseff, “Incomplete Hypercubes,” IEEE Trans. on Computer,
Vol. 37, No. 5, May 1988, pp. 604—608

[Kumar & Miikkulaine, 02]: S. Kumar and R. Miikkulainen,"Confidence-Based Q-
routing: An On-Line Adaptive Network Routing Algorithm”, Smart Engineering
Systems: Neural Networks, Fuzzy Logic, Data Mining, and Evolutionary

Programming: Vol. §, 2002

177

[Kumar & Miikkulainen, 97]: S. Kumar and R. Miikkulainen., "Dual Reinforcement
Q-routing: An Online Adaptive Routing Algorithm", Artificial Neural Networks in
Engineering, Vol. 7, 1997, pp. 231 - 238

[Kunkle, 01]: D. R. Kunkle, “Self Organizing Computation and Information Systems:
Ant Systems and Algorithms”, Introduction to Artificial Intelligence, November 2001

[Larra Naga et al, 99]: P. Larra Naga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S.
Dizdarevic, “Genetic Algorithms for the Travelling Salesman Problem: A Review of
Representations and Operators”, Articial Intelligence Review, Vol. 13, 1999, pp. 129
- 170

[Li et al, 00]: L. Li, Z. Liu, and Z. Zhou, "A New Dynamic Distributed Routing
Algorithm on Telecommunication Networks", International Conference on
Communication Technologies (ICCT2000) in conjunction with 16th IFIP World
Computer Congress (WCC2000), in Beijing, Aug. 21-24, 2000

[Liang and Zincir-Heywood, 02]: S. Liang, A. N. Zincir-Heywood, "The Effect of
Routing under Local Information using a Social Insect Metaphor", IEEE Congress on
Evolutionary Computation, May 2002, pp. 1438 - 1443

[Liang et al, 02]: S. Liang, A. N. Zincir-Heywood and M. 1. Heywood, “Intelligent
packets for dynamic network routing using distributed genetic algorithm”, Genetic
and evolutionary computation conference (GECCO 2002), July 9-13, 2002, pp. 88 -
96

[Littman & Boyan, 92]: M. Littman and J. Boyan “A Distributed Reinforcement
Learning Scheme for Network Routing”, Technical Report Carnegie Mellon
University, 1992

[Malkin, 98]: G. Malkin., 1998, “RIP Version 2”, RFC 2453, IETF

178

[Matsou & Mori, 01]: H. Matsuo and K. Mori, "Accelerated Ants Routing in Dynamic
Networks", Proc. Intl. Conf. On Software Engineering, Artificial Intelligence,
Networking and Parallel /Distributed Computing, Aug. 2001, pp.333 - 339
[Maxemchuck, 87]: N. F. Maxemchuck, “Routing in the Manhattan Street Network,”
IEEE Trans. Commun., Vol. COM-35, May 1987, pp. 503 - 512

[Maxemchuck, 89]: N. F. Maxemchuk, “Comparison of Deflection and store-and-
forward techniques in the MSN and Shuffle Exchange networks,” Proc. IEEE
INFOCOM ‘89, April 1989

[Maxemchuck, 93]: N. F. Maxemchuck, “Regular mesh topologies in local and
metropolitan area networks,” AT&T Tech. J., vol. 64, pp. 1659-1686, Sept. 1985.
796-798, Dec. 1993

[Michalareas & Sacks, 01]: T.Michalareas and L.Sacks, "Link-State & Ant-like
Algorithm Behaviour for Single-Constrained Routing", IEEE Workshop on High
Performance Switching and Routing, HPSR 2001, May 2001

[Mitchell, 97]: M. Mitchell, "An Introduction to Genetic Algorithms", MIT Press,
Third Printing , 1997, Chp. 1, ISBN: 0262631857

[Moy, 98]: J. T. Moy., 1998, "OSPF Version 2", RFC 2328, IETF

[Mukherjee, 92-1]: B. Mukherjee "WDM-Based Local Lightwave Networks Part I:
Single-Hop Systems", IEEE Network, May 1992, pp. 12 - 27

[Mukherjee, 92-2]: B. Mukherjee, “WDM-based local lightwave networks - Part II
Multihop systems,” IEEE Network, vol. 6, July 1992, pp. 20 - 32

[Osman & Kelly, 96]: I. H. Osman, J. P. Kelly, “Meta-Heuristics: Theory &

Applications”, Kluwer Academic Publishers, 1996, ISBN: 0792397002

179

[Panchapakesan & Sengupta, 95]: G. Panchapakesan and A. Sengupta, “On Multihop
Optical Network Topology Using Kautz Digraphs,” Proc. IEEE INFOCOM 95,
Boston, April 1995, pp. 675 - 682

[Qiao & Yoo, 99]: C. Qiao and M. Yoo, “Optical Burst Switching (OBS) - A New
Paradigm for an Optical Internet”, Journal of High Speed Networks, Vol. 8, No. 1,
1999, pp. 69-84.

[Ramaswami & Sivarajan, 98]: R. Ramaswami and K. N. Sivarajan, "Optical
Networks: A Practical Perspective"”, Chp.s 1,9,14, 1998, ISBN: 1558604456

[Rekhter, 95]: Y. Rekhter., "Border Gateway Protocol 4 (BGP-4)", RFC 1771, IETF,
1995

[Roli & Milano, 02]: A. Roli and M. Milano, “MAGMA: A Multiagent Architecture
for Metaheuristics™, technical report in University degli Studi di Bologna,August 28,
2002

[Rosen, 82]: E. C. Rosen, "Exterior Gateway Protocol (EGP)", RFC 827, 1982

[Ross, 02]: S. M. Ross, “Simulation”, Academic Press FElsevier Science, Third
Eddition, 2002, ISBN: 0125980531

[Russell & Norvig, 95]: S. J. Russell and P. Norvig, “Artificial Intelligence: Modern
Approach”, Prentice Hall, 1st edition, January 15, 1995, ISBN: 0131038052, Chp20,
pp. 598 - 624

[Saad & Schultz, 88]: Y. Saad and M. H. Schultz, “Topological Properties of
Hypercubes,” IEEE Trans. Comput., Bol. C-37, July 1988, pp. 867-872
[Schoonderwoerd et al, 96]: R. Schoonderwoerd, O. Holland, J. Bruten, and L.
Rothkrantz, “Ant-based Load Balancing in Telecommunications Networks”, Adaptive

Behavior, Vol. 5 No. 2, 1996, pp. 169 - 207

180

[Schoonderwoerd et al, 97]: R. Schoonderwoerd, O.E. Holland, J.L. Bruten, "Ant-like
Agents for Load Balancing in Telecommunications Networks", Proc. 1 st ACM
International Conference on Autonomous Agents, February 5-8, 1997, Marina del
Rey, CA, USA, pp. 209 - 216

[Schoonderwoerd, 96]: R. Schoonderwoerd, “Collective Intelligence for Network
Control”, M.S. Thesis, Delft University of Technology, Faculty of Technical
Informatics, May 1996

[Shankar et al, 95]: A. Udaya Shankar, Cengiz Alaettinoglu, Klaudia Dussa-Zieger
and Ibrahim Matta, "Transient and Steady-State Performance of Routing Protocols:
Distance-Vector versus Link-State", Journal of Internetworking: Research and
Experience, Vol. 6, 1995, pp. 59 - 87

[Sim & Sun, 02]: K. M. Sim and W. H. Sun, “Multiple Ant-colony Optimization for
Network Routing”, 1st Int. Symp. Cyberworld, Tokyo, Japan, November 2002, pp.
277-281

[Sim & Sun, 03]: K. M. Sim and W. H. Sun, “Ant Colony Optimization for Routing
and Load-balancing: Survey and New Directions”, Systems, Part A, IEEE
Transnactions on, Man and Cybernetics, Vol. 33, No.5, Sep 2003, pp. 560 - 572
[Sivarajan & Ramaswami, 91]: K. Sivarajan and R. Ramaswami, “Multihop
Lightwave Networks based on De Bruijn Graphs,” IEEE INFOCOM ‘91, Bal Harbor,
FL, April 1991, pp. 1001 - 1011

[Sivarajan & Ramaswami, 94]: K. Sivarajan and R. Ramaswami, “Multihop
Lightwave Network Based on de Bruin Graph” IEEE/ACM Trans. on Networking,
vol. 2, no. 1, Feb. 1994

[Sportack, 99]: M. A. Sportack, "IP Routing Fundamentals", Indianapolis, Cisco

Press, 1999, 157870071X

181

[Steenstrup , 95]: M. E. Steenstrup, “Routing in Communications Networks”,

Prentice-Hall, 1* edition, 2995, ISBN: 0130107522

[Subramanian et al, 97]: D. Subramanian, P. Druschel and J. Chen, “Ants and

Reinforcement Learning: A Case Study in Routing in Dynamic Networks”, [JCAI-97,

Palo Alto, Morgan Kauffman, 1997, pp. 832 - 838

[Sutton & Barto, 98]: R. S. Sutton amd A. G. Barto, “Reinforcement Learning: An

Introduction” MIT Press, 1998, Chp.s 1-5, ISBN: 0262193981

[Tanenbaum, 03]: A. S. Tanenbaum, “Computer Networks”, Fourth Edition, Prentice-

hall, 2003, chp. 1,5, ISBN: 0130661023

[Tekiner et al, 02]: F. Tekiner, Z. Ghaseemlooy, M. Thompson, S. Alkhayatt,

“Prioritized Shufflenet Routing in TOAD based 2X2 OTDM Router”, Senacitel, 2002

[Tekiner et al, 04-1]: F. Tekiner, Z. Ghassemlooy, S. Al-khayatt, Antnet Routing
Algorithm-Improved Version, in: Proceedings of CSNDSP04, Newcastle, UK, pp.
416-419, 22-22 July 2004.

[Tekiner et al, 04-2]:F. Tekiner, Z. Ghassemlooy, S. Al-khayatt, Investigation of
antnet routing algorithm by employing multiple ant colonies for packet switched
networks to overcome the stagnation problem", in: Proceedings of LCS04, London13-
15 Sep 2004, pp. 185 - 188.

[Tekiner et al, 04-3]:F. Tekiner, Z. Ghassemlooy, S. Al-khayatt, Improved antnet
routing algorithm with link probability evaporation over the given time window, in
Proceedings of SOFTCOMO04, Split/Venice, 11-13 Oct 2004, pp. 502 - 505

[Tekiner et al, 04-4]: F. Tekiner, Z. Ghassemlooy and T. R Srikanth, "Comparison of
the Q-routing and Shortest Path Routing Algorithms" PGNETO04, 28 - 29 June 2004,

Liverpool, UK, pp. 428 - 432

182

[Varela & Sinclair, 99]: G. N. Varela, M. C. Sinclair, "Ant Colony Optimisation for
Virtual-wavelength-path Routing and Wavelength Allocation", Proc. Congress on
Evolutionary Computation (CEC'99), Washington DC, USA 1999, pp. 1809 - 1816
[Weyns et al, 04]: D Weyns, K Schelfthout, T Holvoet and O Glorieux., 2004, "Role
Based Model for Adaptive Agents", Proceedings of the AISB 2004, Fourth
Symposium on Adaptive Agents and Multi-agent Systems, 2004, pp. 75 - 86

[White & Pagurek, 98]: T. White and B. Pagurek, “Towards Multi-Swarm Problem
Solving in Networks”, 3rd International Conference on Multi-Agent Systems (ICMAS
'98), July 1998, pp. 333 - 340

[White et al, 98-1]: T. White , B. Pagurek and F. Oppacher, “Connection Management
using Adaptive Mobile Agents”, International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98), July, 1998, pp. 802 - 809
[White et al, 98-2]: T. White, B. Pagurek and F. Oppacher, “ASGA: Improving the
Ant System by Integration with Genetic Algorithms” 3rd Conference on Genetic
Programming (GP/SGA'98), July 1998, pp.610 - 617

[Yang et al, 02]: Y. Yang, N. Zincir-Heywood, M. 1. Heywood and S. Srinivas
“Agent Based Routing Algorithms on LAN”, Canadian Conference IEEE, 2002

[Yao et al, 01]: S. Yao, S. J. B. Yoo, B. Mukherjee, “A Comparison Study Between
Slotted and Unslotted All-Optical Packet-switched Network with Priority-based
Routing”, Optical Fiber Communication Conference and Exhibit, OFC 2001, 2001,

pp. TuK2-T1-3

183

