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Abstract 

Four different types of solar cells have been characterized by impedance 

spectroscopy (IS): thin film CdS/CdTe devices, an extremely thin absorber (eta) solar 

cell made with microporous TiO2/In(OH)xSy/PbS/PEDOT, an eta-solar cell of columnar 

ZnO/CdSe/CuSCN, and a solid state Dye Sensitized Solar Cell (DSSC) with Spiro-

OMeTAD as transparent hole conductor. Each cell has been manufactured in a different 

laboratory and several samples of each type have been studied. Independent of the 

different origin, materials type (organic and inorganic), configuration and geometry of 

the cells studied, a negative capacitance behaviour has been observed in all of them at 

high forward bias. The experiments suggest a universality of the underlying 

phenomenon giving rise to this effect, constituting general behaviour for a broad range 

of solar cell devices. The deleterious effect of negative capacitance on the device 

performance is discussed by comparison of the obtained results with the behaviour of a 

conventional monocrystalline Si solar cell. 
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1. Introduction 

The relatively high cost of the conventional Si monocrystalline solar cells has 

impelled, among others, the research in a second generation of thin film solar cells and 

cells based on nanocomposite concepts such as the DSSC1,2 and the eta-solar cells.3-5  

One of the most intensively studied types of thin film devices is the polycrystalline 

cell based on CdS/CdTe heterojunction, with a record efficiency of 16.5%.6 Such 

devices are among the best candidates for terrestrial applications because of the 

relatively high efficiency, long-term stability in the performance, as well as a potential 

for low-cost production. Due to high absorption coefficient of CdTe (>104 cm-1) a layer 

of this material with a thickness of only about 2 µm is sufficient to absorb most of the 

useful part of the solar spectrum.7,8 

On the other hand, other types of solar cells such as DSSC and eta-solar cells, based 

on alternative concepts, have also been thoroughly investigated with the aim to 

significantly decrease the production cost. The attractive side of such devices is a very 

thin absorber -- a monolayer of dye for DSSC, or a semiconductor absorber layer with 

thickness of tenths of nanometers for eta-solar devices. In the later case, the absorber 

layer is situated in a nanometric or micrometric matrix allowing for a significant 

improvement in the light absorption due to the large effective area of the matrix. In these 

cells the photogenerated carriers are transferred into two different media. This fact 

permits to relax the high quality requirements of single crystal p-n junction devices 

enabling for low cost fabrication processes to be employed.  

In the conventional DSSC the dye molecules are regenerated by a redox couple 

dissolved in an electrolyte. The use of an electrolyte causes problems in the process of 

its encapsulation and in the long-term stable performance. One of the options intended 

to avoid this problem is to substitute this liquid electrolyte by a transparent hole 

semiconductor, in our case Spiro-OMeTAD.9 However, these solid state devices present 

a lower efficiency (∼4.5%) in comparison with a liquid electrolyte DSSC (∼10%). Those 

effects have been attributed to a higher recombination dynamics and low hole 

conductivity.10 

The DSSC configuration has also inspired an alternative all-solid device, the eta-solar 

cell with a semiconducting extremely thin absorber sandwiched between two 

transparent, highly interpenetrated semiconductors of different kinds.3-5 The highest 

efficiency demonstrated to date for this type of cell is 2.3% at 1/3 sun, obtained for an 
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eta-solar cell of columnar ZnO/CdSe/CuSCN,11 which is one of the types of cells 

studied in this work. Additionally, an eta-solar cell made with microporous 

TiO2/In(OH)xSy/PbS/PEDOT (∼1% efficiency), has also been studied, presenting the 

interests of the use of an organic polymer as hole conductor, and the system of 

In(OH)xSy/PbS to improve the contact selectivity. 

The potentialities of these four types of solar cells (in the presented and related 

configurations) stimulate an interest in the study of their AC behaviour, which can 

provide diverse information on device properties and performance. Impedance 

spectroscopy (IS) - is a well known AC technique used for the study of electrochemical 

and solid state systems, and has been employed extensively in characterization of DSSC 

devices.12-16 On the other hand the utilization of this technique in the characterization of 

solid-state solar cells is not regular, although a few examples are shown in the 

literature.17,18 In principle impedance spectroscopy measurements taken over a broad 

frequency range (mHz-MHz) may provide information on any system that is composed 

of a combination of interfacial and bulk transport processes, particularly on transport 

coefficients, recombination parameters and interfacial states in solar cells. It is this that 

makes the technique especially valuable for the characterization of the devices 

mentioned above, with a broader aim to find the ways to improve their performance 

and/or stability. 

In solar cells, AC measurements are normally used mostly in reverse conditions to 

obtain information on interfacial characteristics (admittance spectroscopy). In this work 

we have systematically analyzed by IS data over a wide range of biasing potential, both 

under reverse and forward bias, using dark and light conditions, for samples of four 

different types of solar cells: CdS/CdTe thin film solar cells, microporous 

TiO2/In(OH)xSy/PbS/PEDOT, columnar ZnO/CdSe/CuSCN eta-solar cells, and a solid 

state DSSC with doped and undoped Spiro-OMeTAD as transparent hole conductor. In 

all the cases a strong negative capacitance has been observed at high forward bias 

conditions for low frequencies. Such behaviour is compared with the (positive) 

capacitance of a high performance silicon solar cell, and the implications of the negative 

capacitance effect, as well as possible interpretations, are discussed. 

 

2. Experimental 

The four solar cells analyzed have been manufactured in four different laboratories. 
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The CdS/CdTe solar cells were grown on 4×4 cm transparent conductive oxide (8 Ω/ ) 

on glass by metal-organic chemical vapour deposition (MOCVD)19 at the University of 

Wales, Bangor. The 120 nm CdS window layers were deposited at a substrate 

temperature of 300ºC using the organometallics dimethylcadmium (DMCd) and 

ditertiarybutylsulphide (DTBS) in the ratio 1:2. The 4 µm CdTe absorber layers were 

grown at 350ºC using DMCd and di-isopropyltelluride (DIPTe) in the ratio 1:1. The 

structures were activated using the well-known cadmium chloride (CdCl2) treatment at 

Durham University using a 40nm thick chloride layer followed by annealing in nitrogen 

in a tube furnace at 420ºC for 18 min. The surfaces were etched using a solution of nitric 

and phosphoric acids (1% HNO3, 70% H3PO4, 29% H2O). Finally, gold contacts (~2.5 

mm diameter dots) were evaporated onto the CdTe layer as back contacts, and In-Ga 

amalgam was applied to the front contact for electrical connection. Each device 

comprised 4 gold dots on a ~1 cm2 area; the areas around dot contacts were not scribed 

to further define the region of charge collection. 

The microporous TiO2/In(OH)xSy/PbS/PEDOT:PSS eta-solar cells were produced at 

the Hahn-Meitner-Institute. Compact and microporous layers of TiO2 were prepared by 

several dippings in a solution containing titanium isopropoxide onto glass substrates 

coated with conductive SnO2:F and final firing at 500°C for 30 min. The In(OH)xSy and 

PbS layers were deposited by the so-called SILAR (successive ion layer adsorption 

reaction) technique from 0.01 M InCl3, 0.005 M Pb(AcO)2 and 0.01 M Na2S (pH = 

7…8) precursor salt solutions and annealing in air at 200°C and 120°C, respectively. 

During the SILAR process, the samples were rinsed in water after each dipping step 

while the water was exchanged after each 5 dips. PEDOT:PSS layers were spin coated. 

The contact areas were defined by carbon ink back contacts. More details about 

TiO2/In(OH)xSy/PbS/PEDOT:PSS eta-solar can be obtained in reference 20. 

The columnar ZnO/CdSe/CuSCN eta-solar cells were performed at the LCMTR. A 

ZnO nanowires array was electrodeposited on conducting glass substrates, which were 

previously covered with a continuous ZnO sprayed layer. As a second step, a very thin 

CdSe coating was electrodeposited on ZnO nanowires, giving a ZnO/CdSe core-shell 

nanowires array. The empty space of the nanostructure was filled with chemically 

deposited CuSCN. To finish the eta-solar cell, a gold contact was vacuum evaporated on 

the CuSCN. More details about deposition processes are given in reference 11. The 

studied samples were annealed in air at temperatures in the range of 350-400°C during 1 
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hour before CuSCN deposition. 

The solid state DSSC with doped and undoped Spiro-Ometad as transparent hole 

conductor were made at the Imperial College of London. Measurements of samples 

where performed both at Imperial and at the University Jaume I, with a Potentiostat 

PGSTAT-30 equiped with an impedance analysis module. Details about preparation 

method of undoped samples are described in reference 10. Doped samples were obtained 

by adding Sb to the OMeTAD solution prior to spin coating the sample.  

In order to discuss the effect of the negative capacitance the IS results obtained for 

the above cells have been compared with those obtained for a Si monocrystalline solar 

cell supplied by BP-Solar Spain. From the original cell with a size of 12.5×12.5 cm2 a 

smaller piece of 0.49 cm2 was cut, in order to obtain a near homogeneous illumination 

on the entire cell surface.  

Impedance measurements for all the cells, except for the CdS/CdTe solar cells, were 

carried out in the Universitat Jaume I with an Autolab PGSTAT-30 apparatus, equipped 

with a frequency analyser module. These measurements were made in the dark and 

under different illumination intensities employing a halogen lamp. Bias potentials in 

both reverse and forward ranges were applied, while 10 mV ac perturbation was used in 

impedance measurements with a frequency range from 1 MHz to 0.01 Hz. All the 

experiments were performed inside a Faraday cage or screened box. 

Impedance measurements for the CdS/CdTe solar cells, were carried out at the 

University of Durham using a Solartron 1260 frequency response analyser and a 1296 

dielectric interface. The amplitude of the ac signal was 40 mV for frequencies ranging 

from 3 MHz to 0.3 Hz at 20 values per decade. Similarly, experiments were repeated for 

different bias conditions. Light measurements were done under AM1.5 light spectrum at 

various intensities using on commercial ORIEL 300W solar simulator. 
 

3. Solar cell capacitance: the standard model 

For later reference we first analyze a high performance Si monocrystalline solar cell 

which follows in many respect the “ideal” model of a solar cell.21 For the Si cell, the 

observed pattern of impedance Nyquist plot (Z’’ vs Z’) consists of a semicircle. It can be 

described by means of a simple equivalent circuit consisting of a series resistance RS, 

connected in series with the parallel association of a resistance Rr, that should be 

identified with the recombination resistance, and the total capacitance of the cell Ctot. 
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The later is given by dltot CCC += µ , and represents the parallel association of the 

chemical capacitance, µC ,22 (also called diffusion capacitance), which originates from 

the increase of the minority carrier density, and the depletion-layer capacitance, dlC , 

due to the space charge region.17 It has been discussed elsewhere22 that the chemical 

capacitance is a crucial element of solar cell devices, as it describes the splitting of 

Fermi levels (and hence, the photovoltage) for a given amount of photogenerated 

carriers. 

When the cell is high forward-biased, its capacitance is mostly determined by the 

chemical capacitance, µCCtot ≈ , which increases exponentially with the potential as 

 ( )kTqVC D ηµ /exp −∝  (1) 

where VD is the potential difference in the parallel association of Rr with dlC , if 

equivalent circuit terminology is used, q is the absolute value of the electron charge, η is 

the diode factor, k is the Boltzmann constant and T is the temperature. Here we define 

the forward bias as being a negative voltage, as is conventional in semiconductor device 

literature (the opposite convention is often used in the solar cell literature). The value 

dlC can be expressed as )( 0
2

Ddl VVBC −=−  where V0 is the built-in potential and 

B=2/qNε0εr with N=NAND/(NA+ND), where ε0 is the permittivity of free space, εr the 

permittivity of the material, and NA and NB the doping concentration of p and n regions 

respectively.21 For reverse bias the space charge region enlarges and µC  diminishes 

and, consequently, dltot CC ≈ . 

 In Fig. 1, totC  is plotted as function of VD for different light illumination 

intensities. The behaviour of totC  is divided in two regions, for high forward bias, VD < 

-0.4 V, the capacitance increases exponentially with the absolute VD value as predicted 

in eq. (1), and its value is fixed by the bias potential independently of the applied 

illumination intensity. Fitting the data in this region, we have obtained the diode factor 

η=1.18, which is close to the ideal value η=1, as can expected from a high performance 

solar cell. For reverse bias the behaviour of totC  with VD has a much smaller gradient, 

and in this region dltot CC ≈ , so that the capacitance follows a Mott-Schottky plot. For a 

conventional DSSC with electrolyte an analogous behaviour to that shown in Fig. 1 has 

been observed, although with a higher value of η.12,14,15 

 

4. General characteristics of the negative capacitance 

The frequency-dependent capacitance is defined from the impedance, Z, as C=1/(iω 
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Z), where ω is the angular frequency of the ac perturbation. The impedance is separated 

in real and imaginary parts as Z = Z’ + iZ’’, and similarly, the complex capacitance is 

written as C = C’ + iC’’ where )Re(' CC = . While most systems investigated by IS, can 

be described with (positive) resistors and capacitors, with Z’>0 and C’>0, respectively, 

as in the above mentioned Si solar cell, the appearance of negative capacitance is 

otherwise not uncommon. If the system is close to equilibrium, negative capacitance or 

resistance are not allowed, as such elements would upset the principles of 

thermodynamics. However, far from equilibrium, for example under strong steady-state 

bias, negative capacitance and resistance can be and are in fact found. Negative 

capacitance (or inductive behaviour) has been observed in a variety of electronic devices 

such as Schottky diodes,23,24 short based p-n junctions,25-27 polymer light-emitting 

diodes (PLEDs),28-30 and DSSC.31 The inductive feature of the ac impedance is also 

found in electrochemical measurements of electrocatalysis, electrodeposition and 

electro-dissolution.32-40  

There are two main types of interpretations suggested for the negative capacitance. In 

the first one the inductive behaviour takes place when the current between two 

electronic reservoirs (such as oxidized and reduced ionic species in solution, or two bulk 

semiconductors connected by a quantum well) is governed by the occupation of an 

intermediate state, which decreases when the applied potential increases. An example is 

the electrocatalytic reaction CA ⇔  controlled by an intermediate absorbed species B . 

From the analysis of Sadkowski40,41 in terms of zeros and poles of the impedance, it can 

be infered that such electrocatalytic reactions, even those involving thermodynamically 

stable systems, display an inductive feature when the concentration of the adsorbed 

species decreases while the potential increases, contrary to the equilibrium isotherm, as 

a result of a significant charge-transfer current. In the case of Schottky diodes the 

negative capacitance was interpreted in terms of the loss of interface charge at occupied 

states bellow the Fermi level due to impact ionization.24 In double-barrier resonant 

tunneling diodes (RTD) the quantum capacitance (similar to the chemical capacitance 

discussed above) was defined as the change of the charge stored in the quantum well 

with respect to a change of the potential in the RTD.42 It was shown that the quantum 

capacitance becomes negative in the region of negative differential resistance due to 

decrease of electron charges in the quantum well at increasing forward bias.42,43  

A different mechanism exists in short-base p-n junction which gives also a negative 
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capacitance.25-27 Such effect appears as a consequence of the minority carrier 

depopulation at high forward bias, which induces a change of sign of the capacitance. 

The mechanism has been modeled regarding the series resistance corresponding to the 

neutral diode regions in addition to the diffusion (minority carrier) capacitance.26 

 

5. Results and discussion 

For the four types of solar cells studied in this work, a negative capacitance has been 

observed under dark conditions for high forward bias. An example of the IS results 

obtained for the CdS/CdTe solar cell is plotted in Fig. 2. In the low frequency range the 

Nyquist plot exhibits an arc with positive imaginary part of the impedance (note the 

minus sign in the imaginary part of the impedance axis). As a consequence the real part 

of the capacitance adopts negative values in this frequency range.  

To obtain a broad view of the results obtained on the different types of solar cells 

described above, we compare in Fig. 3 the bias dependence of the capacitance with that 

already described for the Si monocrystalline solar cell. For the analyzed cells, and in 

contrast to the “ideal” behaviour of the Si sample, the device capacitance rises with 

increasing bias, reaches a maximum, and then rapidly decreases. 

In Fig. 2, the frequency of transition between negative and positive imaginary parts 

of the impedance is displaced to higher values as the forward bias increases. The effect 

of this low frequency arc on the capacitance can be better observed in Fig. 4 for the four 

kinds of analyzed solar cells. Doped OMeTAD sample produced the same effect but it is 

not plotted for the sake of clarity. The real part of the capacitance of the device for high 

frequency increases as the frequency is decreased until a quasi-plateau region is 

attained. The value of the real part of the capacitance in this plateau region for high 

reverse bias (positive voltage) increases progressively as the reverse bias is reduced. As 

already discussed, in the standard model of a solar cell an exponential increase of the 

capacitance is expected with increase of the forward bias. However, instead of this 

behaviour, for the analyzed solar cells the apparition of the negative contribution at 

certain forward biases produces a pronounced decrease in the capacitance, giving raise 

to a dip in )'(Abs C data in Fig. 4. 

Fig. 5 shows the impedance spectra and capacitance versus frequency for a 

microporous TiO2/In(OH)xSy/PbS/PEDOT eta-solar cell at different applied bias under 1 

sun illumination (for the same sample as in Fig. 4). As it can be seen from the 
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comparison of this data with the data in Fig. 4, the negative capacitance behaviour is 

enhanced under illumination. For example, the frequency of transition between positive 

and negative values of the real part of the capacitance at V=-0.5 V (forward bias), shifts 

by about two decades to higher frequency values due to photocarrier generation under 

illumination. Interestingly, for this sample under illumination a negative capacitance is 

also observed, for the reverse bias. Presumably this behaviour takes place due to the 

particularities of structure of this cell, for the other three types of cells do not show 

negative capacitance at reverse biases even under illumination. However, our results 

show that for all types of the cells studied here, the negative capacitance behaviour is 

enhanced under illumination in the same manner as for TiO2/InS/PbS/PEDOT eta-solar 

cell described above. 

We remark that in all the solar cells considered the resistance is positive as it is 

checked by current-voltage experiments, showing that for all the cells analyzed the 

current increases with the forward bias, indicating that the origin of the commented 

behaviour is purely capacitive. 

A reduction in the capacitance of CdS/CdTe solar cells has also been observed by 

Friesen et al.,44 and to explain this effect they employed the model of Niemegeers and 

Burgelman.45 In this model the CdS/CdTe/Au contact behaves as a back to back diode. 

However while that model can explain a reduction of the device capacitance for high 

forward bias, it is not capable to explain the negative capacitance observed in the 

present work. 

In general the chemical capacitance in Eq. (1) relates to the approach of the quasi-

Fermi level to conduction band level, both in thin film polycrystalline cells and DDSC, 

due to photogeneration of carriers.22 As it is seen in Fig. 4, for the analyzed cells the 

appearance of the negative capacitance has a dramatic effect on the device capacity. 

Clearly, such behaviour implies that the overall capability of the device to store charge 

is strongly affected by the negative capacitance contribution, and by necessity this will 

also bear the effect on the device performance. The negative capacitance observed in the 

solar cells investigated here indicates a failure in the operation of these devices, due to 

some dynamic effect that prevents the accumulation of charge. While the phenomenon 

appears to be fairly general, further investigation is needed to determine the exact origin 

of the negative capacitance in the polycrystalline and nanocomposite solar cells. 

According to the first class of models discussed in Section 3, above, interfacial and 
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intergranular states could play an important role in the reported behaviour. 

 

7. Conclusions 

A negative capacitance behaviour has been observed in high forward bias in four 

different types of solar cells: of thin film CdS/CdTe devices, microporous 

TiO2/In(OH)xSy/PbS/PEDOT and columnar ZnO/CdSe/CuSCN eta-solar cells, and a 

solid state DSSC with Spiro-OMeTAD as transparent hole conductor. In all of the cases 

the photogenerated carriers due to device illumination enhance this effect. The negative 

capacitance prevents these solar cells from obeying the “ideal” relationship consisting of 

an exponential increase of the number of carriers with respect to variation of quasi-

Fermi level. Further investigation is needed to determine the exact origin of the negative 

capacitance in the solar cells studied to be able of surpassing this limitation to the 

efficiency.  
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Figure Captions 
 

Fig. 1: BP Si monocrystalline solar cell, device capacitance totC  as function of 

device potential, VD, for different light intensities, solid line represents the fit of µC  in 

the potential region where it is dominant. 
 

Fig. 2: Impedance spectra for CdS/CdTe solar cell at two different forward bias in 

dark conditions. The frequency range employed in the measurement was 1 MHz – 0.1 

Hz.  
 

Fig. 3: Real part of the capacitance for the solar cells analyzed under dark for a 

frequency of 10 Hz. The fit of totC  for the Si monocrystalline solar cell under dark, Fig 

4, is also included for comparison. 
 

Fig. 4: Absolute value of the real part of the capacitance for the solar cells analyzed 

under dark conditions. The minimum observed at intermediated frequencies indicates 

the transition frequency between positive (high frequency) and negative capacitance 

(low frequency).. 
 

Fig. 5: (a) Impedance spectra for TiO2/In(OH)xSy/PbS/PEDOT solar cell at different 

applied bias under 1 sun illumination. The frequency range employed in the 

measurement was 1 MHz – 0.1 Hz (0.01 Hz for TiO2/dye/OMeTAD cells). (b) Zoom of 

the impedance spectra shown in (a). (c) Absolute value of the real part of the 

capacitance for TiO2/InS/PbS/PEDOT solar cell under dark conditions. The minimum 

observed at intermediated frequencies indicates the transition frequency between 

positive (high frequency) and negative capacitance (low frequency). 
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