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Abstract—In free space optical (FSO) communication links, 
atmospheric turbulence has a significant impact on the 
quality of a laser beam propagating through the 
atmosphere. Turbulence results in intensity scintillation, 
which can severely impair the operation of target 
designation and FSO communications systems. Two 
important parameters for describing quality of FSO 
communications systems are the signal-to-noise ratio (SNR) 
and the bit error rate (BER). In this paper, using a modified 
model we analyze the effect of atmospheric turbulence on 
the SNR and BER for an FSO system in both weak and 
strong turbulence conditions. 

I. INTRODUCTION 
FSO systems or optical wireless communication have 

many advantages when compared with the free space 
radio frequency based systems such as: high bandwidth, 
fast deployment, license-free, light weight and reduced 
size. Unfortunately, free space channel where light 
propagates is not ideal, thus leading to and suffers from a 
number of affects including absorption, scattering or 
displacement depending on the atmospheric condition. 
However, in clear atmosphere, with a typical attenuation 
coefficient of 0.43 dB/km, a major challenge facing FSO 
systems is the effect of turbulence induced irradiance 
fluctuation on the system performance especially for a 
link range exceeding 1 km. Atmospheric turbulence is 
caused by both spatial and temporal random fluctuations 
of refractive index due to temperature, pressure, and wind 
variations along the optical propagation path through the 
channel [1-8]. In this paper we investigate the turbulence 
effect on performance of an FSO link. We show that BER 
performance deteriorates with the index of refraction 
structure parameter (C2

n). In Section II we outline the 
theoretical analysis for the SNR and BER. In section III 
results and discussion are introduced, and finally 
concluding remarks are presented in Section IV.     

     

II. THEORY OF ANALYSIS 
Base on the Rytov theory, the field of the plane wave in 

random media is given as [9]:  

( ) ( ) ( )( )0 0 0expE r A r i rϕ=                               (1)                                                                                                       

                                                                                 
where A0(r) is amplitude of the laser beam in the 
atmosphere without turbulence,  0ϕ and  E0(r) the phase 
and laser beam profile, respectively.  In presence of 
turbulence, three effects (Beam wander, Beam spreading, 
and Scintillation) impair the signal at the receiver. The 
rate of fluctuations for the beam wander is slow (<1 or 2 
kHz), therefore using tracking schemes the effect can be 
overcome. Beam spreading leads to spreading of the 
average energy of the beam over a large area (~ 1m/Km). 
Scintillation is the most important effect that is created by 
changing the refractive index, due to atmospheric 
turbulence, which leads to the intensity fluctuations. Due 
to atmospheric turbulence, the refractive index changes 
leading to changes in the laser beam profile. The wave 
equation can be written as [9, 10]: 

( ) ( ) ( )( ) ( ) ( )0exp expE r A r i r E rϕ= = Φ  (2) 

 where A(r) is amplitude of the laser in the turbulence 
atmospheric, Φ is the exponential factor due to turbulence 
given as: 

( ) ( )( )0
0

( )
( )

A rLn i r r iS
A r

ϕ ϕ χ
⎛ ⎞

Φ = + − = +⎜ ⎟
⎝ ⎠

 (3) 

  where χ represents the fluctuations of the log of the 
amplitude of the field and S  is the phase fluctuations. 
This equation predicts a fluctuation in intensity and phase 
of received signal due to turbulence that affects the signal 
to noise ratio (SNR) or bit error rate (BER). For a plane 
wave, when the turbulence is weak, and assuming that the 
refractive index structure coefficient C2

n is symmetrical 
along the beam path), Rytov suggested a variance for the 
log intensity fluctuations given as [5]:  

    

( )22 2 7/6 11/6
ln ln ln 1.23IR nI I C k Lσ = − =   (4 )  

       where k=2π⁄λ, L is the propagation length and  I is 
the light intensity. The subscript R shows the variance is 
Rytov regime, where the turbulence is weak.  
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As for a practical FSO system (plane wave) with weak 
and symmetrical atmosphere turbulence the log irradiance 
variance is given by [8, 9]: 

 
2 2 7/6 11/60.31 nC k Lχ =                                         (5) 

 In this paper we assume the only dominant noise 
source is the atmosphere turbulence, neglecting all other 
noise sources,    thus: 

 0

0 0

( ) ( )( )ln ln ln(1 )
( ) ( )

nA r A rA r
A r A r

χ ε
⎛ ⎞ ⎡ ⎤+

= = = +⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦     

(6) 

  where An(r) is the amplitude of noise and  
ε = An(r) /A0(r).   
Both SNR and BER are used to evaluate the quality of 

communication systems. BER performance depends on 
the average received power, the scintillation strength, and 
the receiver noise. With appropriate design of aperture 
averaging the received optical power could be increased 
as well as reducing the effect of the scintillation.  With 
turbulence the SNR in terms of the mean signal and noise 
intensity I0 and 〈In〉, respectively is given as: 
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                        (7)                                          

For FSO links with on-off keying (OOK) modulation 
scheme the BER can be written as [9]: 

5.0

)2/(

)2(
exp

SNR
BER

SNR

π
=

−

                                                (8)                                                    

For weak turbulence model, ε is very small thus (6) is 
given as [9]: 

ln(1 )χ ε ε= + ≈                                                     (9) 
With this approximation SNR can be written as: 
                                                    

( )1 12 2 7/6 11/60.31 nSNR C k Lχ
− −⎡ ⎤= =⎣ ⎦              (10)                               

 
Without the above approximation (9) is written as:  

 ln(1 ) 1eχχ ε ε= + ⇒ = −                              (11)                            
 
For weak turbulence (C2

n ≤ 10-14),  ߯  ൌ   lnIR andߪ0.5
using (7) and (8) the SNR and the BER can be directly 
calculated.  

When the turbulence is not weak (C2
n ≥ 10-14) the 

relationship between the SNR and χ is much more 
complicated. But by using the Tailor series for function 
f(߯ሻ ൌ  ሺe߯‐1ሻ2 and with some simplification, (7) can be 
approximated to: 

2 3 2

1 1
...

SNR
χ χ α χ

= ≈
+ +

                     (12)                                         

where 1≤ α ≤ 2 and represents the strength of scintillation 
(for worst case α = 2). 

Including the beam spreading effect the effective SNR is 
defined as [10, 11, and 12]: 
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                                                                                        (13)                 
where WL = (W0

2+L2θ2)0.5 is the spot size of the phase 
front at range L in the absence of turbulence, W0 is the 
minimum spot size in transmitter, θ is the beam 
divergence angle. F is the aperture averaging factor 
defined as the ratio of the normalized intensity variance of 
the signal at a receiver with diameter D to that of a point 
receiver[10]:                                                                            
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                                                (14)                           

In our model we have assumed that the surface area of 
the photodetector is large enough, therefore F is small, 
thus is negligible. The effective SNR is reduced to:  
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III. RESULTS AND DISCUSSIONS 
In this section, we use above discussion and 

relationship for calculating SNR and BER for a range of 
parameters. The wavelength used is 1550nm rather than 
the lower wavelengths of 780-850nm. This is compatible 
with the 3rd window of optical communication backbone 
links, and also offering improved eye safety. 

Fig. 1 shows the SNR against the distance for a range 
of C2

n  , whereas Fig. 2 illustrates the BER performance. 
Both figures depicts that SNR and BER deteriorate with 
the distance and with the strength of the atmospheric 
turbulence. 

As shown in the Fig. 2, if we want an acceptable 
communication (BER of 10-9), the maximum distance 
between transmitter and receiver can be 3600m for 
C2

n=10-15 m-2/3, and 700m for C2
n=10-14 m-2/3. 

Fig. 3 illustrates the BER against the distance L for 
three values of wavelengths, showing a marked 
improvement in performance at higher wavelengths. For 
example at BER of 10-9 the range increases by ~1000 m 
at λ = 1550nm compared with λ = 780nm.   
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   Figure.1 The SNR versus the distance for different values of C2

n 
 

 
 

  Figure. 2 The BER versus the distance for different values of C2
n 

 
   Using the weak turbulence model with and without 
approximation for ε (i.e. (9) and (11)), the BER against L 
is plotted in Fig. 4. As the figure shows the actual 
maximum range for the FSO system decreases.      

Fig. 5 shows the BER as function of  distance, for weak 
and strong turbulence for different α values. It can be seen 
that, for strong turbulence (i.e. C2

n=10-14 m-2/3), the 
effective communication range drops ~300 (very short 
distance). With FSO links normally installed at a 
minimum height (relative) of 20-30 m above the ground, it 
has been shown that in these altitudes C2

n<10-14 m-2/3 is for 
all times.  

Fig. 6 illustrates BER performance as a function of 
distance for SNR and SNReff. As shown BER display 
marginal improvement for SNR compared with SNReff.  

 

IV. CONCLUSION 
In this paper, we focused on the scintillation as the 

most important parameter affecting the performance of 
FSO links. Analyses were carried out for the SNR and the 
BER in the weak and strong turbulence regimes. From 
the results, it was shown that the link BER performance 
deteriorates with higher values of C2

n. To achieve a BER 
of 10-9 in weak turbulence regime, the link range very 
large (about a few kilometers) compare as strong 
turbulence. 

                         
Figure.3 The BER versus distance for different values of λ 

 
 

 
    Figure.4  The BER versus distance for weak turbulence 

                           with / without approximation 
 

 
Figure.5  The BER versus distance for weak and  

                 strong turbulence 
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           Figure.6 The BER versus the distance for SNR and SNReff 
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