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Abstract

It is well-known that, due to bimodal operation as well as existent discontinuous differential states of
batteries, standalone microgrids belong to the class of hybrid dynamical systems of non-Filippov type. In
this work, however, standalone microgrids are presented as complementarity systems (CSs) of the Filippov
type which is then used to develop a multivariable nonlinear model predictive control (NMPC)-based load
tracking strategy as well as Modelica models for long-term simulation purposes. The developed load tracker
strategy is a multi-source maximum power point tracker (MPPT) that also regulate the DC bus voltage at
its nominal value with the maximum of ±2.0% error despite substantial demand and supply variations.

Keywords: Nonlinear model predictive control (NMPC), Mixed complementarity problem (MCP), Wind
energy, Photovoltaic (PV), Lead-acid battery, Modelica, Modeling, Maximum power point tracking
(MPPT).

1. Introduction

Microgrids are the building blocks of the modern
power grids. In fact, the near future distribution
grids can be seen as a network of several intercon-
nected microgrids which locally generate, consume,
and even store energy [1]. Intermittent solar and
wind energies, coupled with battery storages, con-
tributes to the energy resources for supplying vari-
able load demands of the microgrids [2]. Due to
some challenges that ac microgrids face with host-
ing several distributed energy systems [3, 4], such
as the need for synchronization, dc microgrids have
gained more popularity particularly for standalone
applications in avionic, automotive, or marine in-
dustries as well as the remote rural areas [1, 5].
There are various interests in employing nonlinear
model predictive control (NMPC) technique [6, 7]
to develop coordinated multivariable control strate-
gies for the standalone microgrids (e.g. [8, 9]).
However, such control strategies require the use of
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an adequate mathematical model of the microgrids
in order to predict their behavior during the pre-
diction horizon. Moreover, in smart grid applica-
tions, such a model is needed to simulate the mi-
crogrids behavior for at least one day ahead [10].
There are three major considerations that need to
be taken into account when developing a mathemat-
ical model for the microgrids: i) the algebraic con-
straints presented by the PV module, wind turbine,
and battery bank; ii) the battery bank as a sub-
system with two modes of operation, namely, charg-
ing and discharging; and iii) the cycle life of the
battery bank as a discontinuous differential state.

Algebraic constraints and bimodal operation of
battery bank lead to a description of standalone dc
microgrids as a set of hybrid differential algebraic
equations (hybrid DAEs) [11, 12]. Therefore, the
standalone dc microgrids can be represented by an
acausal model for the control and simulation pur-
poses. Unlike the causal approach, which requires
the system being decomposed into a chain of causal
interacting blocks consisting of only ordinary dif-
ferential equations (ODEs), the acausal modeling
is a declarative approach in which individual parts
of the model are described as hybrid DAEs [12].
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Acausal modeling, as the mathematical represen-
tation of the system, is an effective way to model
and simulate complex systems and such a model is
also applicable to develop NMPC strategies. Mod-
elica [13], as an object-oriented and equation-based
language to describe complex systems, provides the
capability to acausally model the class of hybrid
dynamical systems [12].
Moreover, the cycle life of the batteries, as dis-

continuous differential states, cause the system to
be of the non-Filippov type [14], which is more chal-
lenging to analyse. The cycle life is defined as the
total number of complete charging/discharging cy-
cles a battery can undergo before its capacity falls
down below 80% of its nominal value. Apart from
the cycle life, standalone dc microgrids can be mod-
eled as differential inclusions (DIs) [15] of the Fil-
ippov type. The author in [16] argued that the
NMPC strategies to control the hybrid systems of
the Filippov type may be solved by employing a
variable element length version of the collocation
method. Applying this flexible version of the collo-
cation method transfers such a NMPC problem into
a mathematical programming with the complemen-
tarity constraints (MPCC). Then, employing the
penalization method, the resulting MPCC can be
transformed into a nonlinear programming (NLP)
problem which can be solved by general purpose
NLP solvers. However, in order to transform the
NMPC problem to a MPCC, such problem should
be of the complementarity class of the hybrid dy-
namical systems [17].
The main aim of this paper is to provide a math-

ematical model of the standalone dc microgrids ap-
plicable to NMPC strategies as well as long-term
simulation purposes. For this aim the standalone
dc microgrids are modeled as complementarity sys-
tems (CSs) including differential and algebraic con-
straints as well as mixed complementarity prob-
lems (MCPs). The discontinuous cycle life differ-
ential state is reformulated with a continuous ap-
proximation. Such a reformulation transforms the
proposed dc microgrid model to be of the Filippov
type. Moreover, the bimodal operation of the bat-
tery bank is also modeled as separate complemen-
tarity constraints. The developed model is then
used in two different applications: i) the equiva-
lent model in the form of DIs, is employed to simu-
late the standalone dc microgrids; and ii) a NMPC
strategy based on the presented model is devel-
oped to track the load demands and regulate the
dc bus voltage despite substantial generation fluc-

tuations. It is shown that the developed model can
be solved with DASSL general purpose DAE solver
[18] equipped with the event detector and consis-
tent re-initialization features. The obtained results
indicate that the proposed model is accurate for
simulating different variables of the dc microgrids
using the OpenModelica environment [19]. More-
over, it is shown that the developed model is agile
enough to be solved with available NLP solvers in
order to be used in NMPC control strategies.
The remainder of this paper is organized as fol-

lows. Section 2 briefly describes the standalone dc
microgrid studied in this paper. Section 3 provides
preliminaries on mathematical concepts mentioned
throughout the paper. Section 4 deals with the
modeling of a standalone dc microgrid as a CS. Sec-
tions 5-6 present and discuss the above-mentioned
two applications of the developed model of the stan-
dalone dc microgrids. Finally, the conclusion of the
study is given in Section 7.

2. Standalone dc microgrids

Fig. 1 illustrates a topology of a standalone dc
microgrid for the small-scale applications. It con-
sists of wind, solar, and battery branches which are
connected to the dc bus through dc-coupled struc-
tures, i.e. via dc-dc converters. The microgrid sup-
plies a variable linear dc load which is connected
directly to the grid bus.
The wind turbine operates at variable speeds and

is connected to a permanent magnet synchronous
generator (PMSG) directly, i.e. direct-drive cou-
pling. The direct-drive coupling provides some ad-
vantages in terms of high reliability and is more
popular for small-scale wind turbines [20]. In spite
of high cost, the PMSG is the most dominant type
of the direct-drive generators in the market [20],
chiefly due to higher efficiency. The solar branch,
in other hand, consists of a photovoltaic (PV) ar-
ray that injects harvested energy into the microgrid
through a boost-type converter. The authors in
[21] showed that employing a dc-coupled structure
to connect the battery bank to the dc bus is more
flexible in terms of implementing different charging
and discharging regimes and despite power losses.
From Fig. 1, it can be seen that the presented dc

microgrid is controlled by four manipulated vari-
ables, i.e. the wind turbine pitch angle and the
switching duty cycles of three different dc-dc con-
verters. While increasing the wind turbine pitch
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Fig. 1. The topology of a small-scale and standalone dc
microgrid.

angle promotes pitching to feather, the operating
points of the PMSG, PV, and battery bank can be
changed by varying the dc-dc converters duty cy-
cles.

3. Preliminaries

3.1. Introduction to the differential inclusions

(DIs) of the Filippov type

Consider the following system:

ẋ ∈ F(x,u; t). (1)

where F is a non-empty, bounded, and closed set
of functions.
This piecewise continuous class of differential

equations, which is known as differential inclusions
[14], presents discontinuous right-hand sides. A dif-
ferential inclusion given by Eq. (1) is of the Filip-
pov type on an interval [a, b] if the differential states
remain continuous on that interval.
The following Eq. (2) indicates a specific rep-

resentation of the differential inclusions with two
modes of operation [16].

ẋ =







f−(x,u; t) for σ(x(t)) < 0,
ν(t)f−(x,u; t)+

(1− ν(t))f+(x,u; t) for σ(x(t)) = 0,
f+(x,u; t) for σ(x(t)) > 0.

(2)

where x(t) and u(t) are the states and manipulated
control signals, respectively. The switching func-
tion σ(x(t)) determines transitions between two
modes of operation while a convex combination of
the two models is allowed at the transition point
with ν(t) ∈ [0, 1].

3.2. Introduction to complementarity systems

(CSs)

CSs, as specific types of the class of hybrid dy-
namical systems, arise in several engineering appli-
cations dealing with multi-modal systems. A CS is
formulated as the following general form which con-
sists of orthogonal inequality (Eq. (3c)) also known
as complementarity problem [17]:

0 = F(x, ẋ,u,γ; t), (3a)

0 = G(x,u,γ,ω; t), (3b)

C
∗ ∋ ω ⊥ Γ(γ) ∈ C, (3c)

x(t0) = x0. (3d)

where ⊥ is the complementarity operator indicating
that at least one of the bounds is active. Let C

be a convex cone, then C∗ is the polar cone of C
defined as C∗ =

{

z|zTν ≤ 0, ∀ν ∈ C
}

. The slack
variable γ ∈ R

m and the signal ω ∈ R
m constitute a

pair of complementarity variables and Γ(.) is some
function.
Particularly, if one considers the convex cone C as

the interval [ℓ,u] ∈ R+, then the complementarity
problem given by Eq. (3c) is transformed to the
class of mixed complementarity problems (MCPs)
as follows:

0 = F(x, ẋ,u, γ; t), (4a)

ℓ ≤ γ ≤ u ⊥ Γ(γ), (4b)

x(t0) = x0. (4c)

where the function Γ(.) is multiplied with a neg-
ative sign to be a member of C∗ which is −R+.
The complementarity problem given by Eq. (4b)
has been simplified by considering the function G

as ω − γ = 0.
Fig. 2 illustrates the solution of the MCP given

by Eq. (4b). Such a solution is a vector γ such
that for each function Γi(.), i ∈ {1, ..,m} one of the
following cases holds:







γi = ℓi for Γi(γ) ≥ 0,
ℓi ≤ γi ≤ ui for Γi(γ) = 0,
γi = ui for Γi(γ) ≤ 0.

(5)

As a result, the complementarity systems given
by Eq. (4) has up to 2m different modes of op-
eration [17]. The authors in [16, 17] showed that
the class of complementarity systems can be trans-
formed to other classes of hybrid dynamical systems
including DIs as well as the systems with equilib-
rium constraints.
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Fig. 2. The solution of the mixed complementarity
problem MCP(γ,Γ).

Fig. 3. The standalone dc microgrids as complementarity
systems.

4. Model Development

The authors in [15] presented the mathematical
model of the standalone hybrid wind and solar dc
microgrids. Their model presents the dc microgrid
as hybrid differential algebraic equations (hybrid
DAEs) with differential inclusions. However, the
challenging cycle life differential state, causing the
system to be of the non-Filippov type, is not con-
sidered in their model. Moreover, the differential
inclusions of the presented model in [15] should be
converted to mixed complementarity problems in
order to use such a model to develop model predic-
tive control strategies.

Fig. 3 summarizes the developed model for the
standalone dc microgrid given by Fig. 1. In Fig. 3,
it can be seen that the dc microgrid is modeled
as a CS including mixed complementarity prob-
lems with slack variables γ = [γ1, γ2]

T . Such a
CS consists of differential and algebraic states, i.e.
x = [If ,Qact, ωr,Vexp]

T and z = [Ipv, Vpv, Ipvdc,
Ibstack, Vbstack, Ibatdc, Iwr, Vwr, Iwtdc, Te, Tm, λ,
Cp, SOC, Iload, Vdc]

T , and manipulated and non-
manipulated control variables, namely, u and v,
which are detailed later throughout the next sub-
sections.

In what follows, the following notations are used
to model the standalone dc microgrid depicted in
Fig. 1 as a CS given by Eq. (4):

F(x, ẋ, z,u,v,γ) =







f1(x, ẋ, z,u,v,γ)
f2(x, ẋ, z,u,v,γ)
..

f25(x, ẋ, z,u,v,γ)






= 0,

(6a)

MCP(γ,Γ) =

[
MCP1(γ1,Γ1(x, z, γ1))
MCP2(γ2,Γ2(x, z, γ2))

]

. (6b)

whereF is a set of implicit differential and algebraic
functionals fi for i ∈ {1, 2, .., 25} that models the
dc microgrids behaviors. All the equations that are
not indicated as implicit functions {fi} are used to
calculate intermediate variables. MCP is a vector
of two MCPs as in Eq. (4b) that models the differ-
ent modes of operation and any transitions between
them.
The following sub-sections present all the differ-

ential and algebraic equations that model the bat-
tery, solar, and wind branches. Connecting all these
branches together, there are two power balance con-
straints given by algebraic Eq. (7) indicate that the
sum of the generation and the consumption powers
should always be zero.

f1 = Vdc

(

Ipvdc + Iwtdc + Ibatdc − Iload

)

, (7a)

f2 = Vdc − IloadRL. (7b)

4.1. The battery branch

The authors in [22] introduced a model to math-
ematically represent the lead-acid battery. This
model can be generalized as a CS by introducing
the following MCP:

MCP1 : 0 ≤ γ1 ≤ 1 ⊥ Γ1(x, z, γ1) = Ibstack,

(8)

where Ibstack is the current of a battery stack. Re-
garding the solution of a MCP given by Eq. (5), γ1
is a slack variable indicates if the battery bank op-
erates either in the charging (γ1 = 1) or discharging
(γ1 = 0) mode of operation. It is important to note
that according to the notation throughout this pa-
per, Ibstack is negative during the charging mode of
operation.
Therefore, a lead-acid battery bank, consisting of

Nbatp battery stacks in parallel and each stack con-
sists of Nbats batteries in series, can be modeled as
the following DAEs coupled with the complemen-
tarity constraint given by Eq. (8). It is important
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to note that at every instant only one of the seg-
ments of the equations is active in terms of the value
of γ1:

f3 =
Vbstack

Nbats

+

γ1

{
Rbat

Ibstack

Nbatp

− V0 +
P1Cmax

Cmax −Qact

Qact+

P1Cmax

0.1Cmax +Qact

If − Vexp

}
+

(1 − γ1)
{
Rbat

Ibstack

Nbatp

− V0 +
P1Cmax

Cmax −Qact

Qact+

P1Cmax

Cmax −Qact

If − Vexp

}
. (9a)

f4 =
dQact

dt
(t)− 1

3600

Ibstack(t)

Nbatp

, (9b)

f5 =
dIf
dt

(t) +
1

Ts

(If − Ibstack

Nbatp

), (9c)

f6 =
dVexp

dt
(t)− γ1

{ P2

3600

∣
∣
∣
∣

Ibstack

Nbats

∣
∣
∣
∣
(P3 − Vexp)

}
+

(1 − γ1)
{ P2

3600

∣
∣
∣
∣

Ibstack

Nbats

∣
∣
∣
∣
Vexp

}
, (9d)

f7 = Vbstack − Vdc

1−Db

, (9e)

f8 = Ibstack − (1−Db)Ibatdc, (9f)

f9 = SOC −
{

1− Qact

Cmax

}

. (9g)

Vbstack, Ibstack and SOC, respectively, are the
voltage, current, and the state of charge of the bat-
tery stack. The parameters P1 − P3 are experi-
mental require being identified for each type of the
battery. The Cmax is the maximum amount of the
battery capacity, Rbat is the internal resistor of the
battery, Qact is the actual battery capacity, and V0
is the battery constant voltage. Moreover, If is the
filtered value of the battery current with the time
constant of Ts [22]. The bi-directional converter
with the duty cycleDb of the boost switching power
pole is modeled in steady-state continuous conduc-
tion mode (CCM) [23].
The cycle life of a battery bank, as a measure

to calculate the cost of its delivered energy [24],
mainly depends on two factors: the number of
charging/discharging cycles and the depth of each
discharge. Fig. 4a illustrates the normalized cy-
cle life that is a discontinuous differential state be-
ing increased by the reverse of equivalent full cycle
(EFC) at the moment of each mode switching from

(a)

(b)

Fig. 4. (a) Discontinuous cycle life differential state and
its equivalent continuous approximation; and (b) the
introduced charging cycle, tchg , state of the battery and
the relevant SOC variations.

discharging to charging. EFC indicates the num-
ber of cycles of a battery at any depth of discharge
(DOD) which is given by a curve for different values
of DOD [24].

In order to model cycle life as a continuous differ-
ential state and therefore convert the system to the
class of the Filippov type, a new continuous state,
tchg, is defined as given by Fig. 4b which indicates
the duration of the charging cycle. The tchg starts
from zero and monotonically increases during the
charging cycle. Once the battery switches to dis-
charging mode, tchg sharply drops down to zero.
Such a differential state can be defined using the
following complementarity problem:

MCP2 : 0 ≤ γ2 ≤ 1 ⊥ Γ2(x,z, γ2) = −tchg,

(10)

where γ2 is a slack variable shows that if tchg is
positive then γ2 = 1, otherwise γ2 = 0.

Having the complementarity constraints given by
Eq. (10), one can model the tchg as the following
differential inclusion:
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f10 =
dtchg
dt

(t)−
(

γ1 − 1000(1 − γ1)

)

γ2. (11)

Eqs. (10) and (11) show that when tchg ≥ 0,
its value increases with the unity rate if battery is
in charging mode, i.e. γ1 = 1. Once the battery
switches to the discharging mode, i.e. γ1 = 0, the
value of the tchg falls down with the rate of −1000
until tchg reaches zero when it remains constant af-
terward. Given Eq. (11), one can use Eq. (12) to
model the cycle life, cycleL, as a continuous differ-
ential state. It is based on the fact that the cycle life

equals to
∞
∑

n=1

1
EFC(DODn)

, where n is the number of

discharging to charging mode switches and EFC de-
pends on the value of the DODn = 1 − SOCn at
which the battery switches to the charging mode.
Fig. 4a illustrates the resulting continuous cycle life
comparing with the original discontinuous value. In
Fig. 4a, it can be seen that the value of cycle life be-
comes steady a little while after switching to charg-
ing mode, i.e. tchg ≅ 20, or during discharging
mode, i.e. γ1 = 0.

f11 =
dcycleL

dt
(t)− γ1exp(−tchg)

{

Equivalent full cycle
︷ ︸︸ ︷
(

1− SOC

)
1159SOC2 − 952SOC + 745.3

−SOC + 1.05909
︸ ︷︷ ︸

Number of cycles

}−1

.

(12)

4.2. The solar branch

The authors in [25] presented a mathematical
model of the solar branch, consisting of a PV array
that is connected to the dc bus through a boost-
type dc-dc converter. The presented model is based
on the equivalent electrical circuit of the PV mod-
ule [26, 27] as well as the average model of the con-
nected dc-dc converter [23]. The average model of
the converter can be replaced with the following
steady-state equations in CCM:

f12 = Vpv − (1−Ds)Vdc, (13a)

f13 = Ipvdc − (1−Ds)Ipv. (13b)

A PV array consists of, respectively, Npvs and
Npvp PV modules in series and parallel. Given the
photocurrent, Iph, and diode reverse saturation cur-
rent, I0, as Eqs. (14b) and (14c), one can model

a PV array with the transcendental characteristic
equation given by Eq. (14a) [27].

f14 = Ipv − Iph +
Vpv +

Npvs

Npvp
RsIpv

Npvs

Npvp
Rsh

+

I0






exp(

Vpv +
Npvs

Npvp
RsIpv

ndNs

q ×Npvs

KTc

)− 1






,

(14a)

f15 = Iph −Npvp×
(
Rs +Rsh

Rsh

Isc,stc + kI (Tc − Tc,stc)

)
S

Sstc

, (14b)

f16 = I0 −Npvp×
Isc,stc + kI (Tc − Tc,stc)

exp(
Voc,stc + kV (Tc − Tc,stc)

ndNs

q

KTc

)− 1

. (14c)

where Rs and Rsh, respectively, are the series and
parallel equivalent resistors of the PV module and
all other parameters are as follows:

q Electron charge (1.60218 × 10−19)
Ns The number of the PV cells in PV module (-)
K Boltzman constant (1.38066 × 10−23)
kI Short-circuit current temperature coefficient (A/C)
Tc The current PV cell temperature (K)
Isc,stc Short-circuit current at the STC (A)
S The current solar irradiance (W/m)
kV Open-circuit voltage temperature coefficient (V/C)
Sstc S Insolation level (W/m)
Tc,stc STC cell temperature (K)
Voc,stc Open-circuit voltage at the STC (V)

4.3. The wind branch

The wind turbine performance can be measured
according to the power coefficient curve, Cp, [28]
with respect to the tip speed ratio, λ (Eq. 15a)),
and the pitch angle β. Eq. (15c) gives the Cp curve
of a wind turbine [29] consisting of three blades with
radius, Rad, of 4.01 meter. Such a wind turbine
generates the maximum power coefficient of 0.48 at
the optimum tip speed ratio of 8.1.

f17 = λ− Rad× ωr

Ux

, (15a)

f18 = λi − (
1

λ+ 0.08β
− 0.035

β3 + 1
)−1

, (15b)

f19 = Cp,norm − 1

Cp,max

(C1(
C2

λi

− C3β − C4)

exp(−C5

λi

) + C6λ). (15c)
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The experimental coefficients C1−C6 are defined
in Table 2. λi in Eq. (15b) is an intermediate vari-
able to make the equations easier to understand.

All fast voltage and current dynamics, except
the angular velocity of the generator given by Eq.
(16a), can be ignored for the long-term simulation
and outer controller applications. For the sake of
simplicity, it is assumed that there is no mechanical
and electrical losses through the powertrain. There-
fore, the electromagnetic power given by Eq. (16b)
is equal to the output electrical power of the wind
branch.

f20 =
dωr

dt
(t)− 1

J
(Te − Tm − Fωr), (16a)

f21 = −Te × ωr − Iwtdc × Vdc, (16b)

f22 = −Tm × ωr − Cp,norm(
Ux

Ux,base

)3Pnom, (16c)

VLL =
1√
2
kEωr, (16d)

kE =
√
3Pψ. (16e)

The shaft inertia J (Kg.m2) and the combined
viscous friction coefficient F (N.m.s) of the PMSG
are given by the manufacturers. The VLL, i.e. the
r.m.s. value of the line-to-line output voltage of
the generator given by Eq. (16d), depends on the
mechanical angular velocity. Having the number
of the pole pairs P and the flux linkage ψ (V.s)
(see Table 2), one can use Eqs. (16d) and (16e) to
calculate the r.m.s. value of the line-to-line output
voltage, VLL, and the voltage constant kE of the
generator.

Similar to the battery and solar branches, the
buck converter can be modeled in steady-state
CCM:

f23 = Vdc −DwVwt, (17a)

f24 = Iwt −DwIwtdc. (17b)

where Dw is the switching duty cycle of the con-
verter and all remaining parameters are as in Fig.
1.

The average dc output voltage of the rectifier,
Vwt, in presence of the non-instantaneous current
commutation is calculated as follows [23]:

Vwt = 1.35VLL − 3

π
PωrLsIwt, (18)

Replacing Eqs. (16d), (16e), and (17) into Eq.
(18) and rearranging, one has the following equa-
tion to calculate the dc output current of the wind
branch, Iwtdc:

f25 = Iwtdc −
π

3PωrLsDw

{
1.35

√
3Pψωr√
2

− Vdc

Dw

}

.

(19)

5. Application I: Long-term simulation of

the standalone dc microgrids

5.1. Modelica model of the standalone dc microgrid

In order to simulate the standalone dc microgrid
given by Fig. 1, the presented mathematical model
given by Eq. (6) is declared with Modelica mod-
eling language [13]. The OpenModelica platform
[19], including a Modelica compiler and DASSL [18]
general purpose DAE solver, is selected to simulate
the system chiefly because it is an open-source soft-
ware and it supports more features of the Modelica
language comparing with others. Table 1 summa-
rizes the developed Modelica model. In Table 1, the
MCPs given in Eqs. (8) and (10) are indicated by
symbol †. They are translated into IF-THEN-ELSE
Modelica propositions. Moreover, DIs given in Eqs.
(9a), (9d), and (11), marked with symbol ‡, are also
translated into IF-THEN-ELSE propositions. It is
important to note that the model is of the Filippov
type and therefore there is no need to re-initialize
any state variable after mode switching.

5.2. Simulation results

The proposed Modelica model is used to simu-
late a sample standalone dc microgrid consisting
of an array of the Kyocera KC200GT PV mod-
ules, a bank of the Panasonic LC-R127R2PG lead-
acid batteries, and a wind branch. The authors
in [22, 27, 29] presented the identified electrical
parameters of the employed lead-acid battery, PV
module, and wind turbine. Table 2 summarizes all
parameters and their values in this study.
Fig. 5a compares the simulated current-voltage

(I − V ) curve of the KC200GT PV module at the
STC condition with the experimental curve avail-
able by the manufacturer in datasheet (the circle
markers). It is observed that the proposed model
predicts the curve very close to the empirical data
provided by the manufacturer.
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Table 1
Outline of the developed Modelica model. MCPs and DIs are respectively indicated by † and ‡.

class HRES

...;

discrete Boolean gamma1 ”true: charging”;

Real soc(start = 0.6, fixed = true) ”State of charge of the battery”;

Real tchg ”The period of time that the battery is in charging state”;

RealInput Ux ”The wind speed (m/s)”;

RealInput beta ”The pitch angle (degree)”;

RealInput Dw ”The buck converter duty-cycle [0,1]”;

equation

Ipv = Iph− I0 ∗ (exp((Ipv ∗ rs Tc+ V pv)/a Tc)− 1)− (Ipv ∗ rs Tc+ V pv)/rsh Tc Sx;

Iph = (Npvp ∗ ((Rsh +Rs)/Rsh ∗ Isc stc+Ki ∗ (Tc− Tc stc)) ∗ Sx)/Sx stc;

I0 = (Npvp ∗ (Isc stc+Ki ∗ (Tc− Tc stc)))/(exp(((V oc stc+Kv ∗ (Tc− Tc stc)) ∗ q)/(nD ∗Ns ∗K ∗ Tc))− 1);

V pv = V dc ∗ (1−Ds);

Ipvdc = (1 −Ds) ∗ iPV ;

gamma1 = if Ibstack ≤ 0 then true else false; (†)

der(If) = −1/Ts ∗ If + Ibstack/(Ts ∗Nbatp);

der(Qact) = 1/3600 ∗ Ibat;

der(V exp) = if gamma1 then P2/3600∗abs(Ibstack/Nbatp)∗(P3−V exp) else−(P2∗abs(Ibstack/Nbatp))/3600∗
V exp; (‡)

soc = 1−Qact/Cmax;

V bstack/Nbats = if gamma1 then (‡)

V 0−R∗ Ibstack/Nbatp− (P1∗Cmax)/(Cmax−Qact)∗Qact− (P1∗Cmax)/(Qact+0.1∗Cmax)∗ If +V exp

else V 0−R∗Ibstack/Nbatp− (P1∗Cmax)/(Cmax−Qact)∗Qact− (P1∗Cmax)/(Cmax−Qact)∗If +V exp;

der(tchg) = if gamma1 then 1 elseif tchg > 0 then −1000 else 0; (†‡)

der(cycleL) = if gamma1 then 100/((1−soc)∗ (1159∗soc ˆ 2−952∗soc+745.3)/(−soc+1.05909))∗exp(−tchg)

else 0; (‡);

−Te ∗ ωr= Iwtdc ∗ V bstack;

Ibstack = Ibatdc ∗ (1 −Db);

V bstack = V dc/(1−Db);

−Tm ∗ ωr = Cp pu ∗ (Ux/12)ˆ3 ∗ Pnom;

der(ωr) = (Te− Tm− F ∗ ωr)/J ;

Iwtdc = pi ∗ (1.35 ∗ P ∗ psi ∗ sqrt(3) ∗ ωr)/sqrt(2)/(3 ∗ Lst ∗ P ∗ ωr∗Dw);

lambda = (R ∗ ωr)/Ux;

lambda i = 1/(1/(lambda + 0.08 ∗ beta) − 0.035/(betaˆ3 + 1));

Cp = (C1 ∗ (C2/lambda i− C3 ∗ beta− C4) ∗ exp(−C5/lambda i) + C6 ∗ lambda)/0.48;

V dc = Iload ∗RL;

Ipvdc+ Ibatdc + Iwtdc = Iload;

end HRES;

Table 2
The wind turbine, PMSG, battery stack, and PV parameters in this study.

Wind turbine PMSG Battery stack PV array
C1(−) 0.517 J(Kg.m2) 0.35 Cmax(Ah) 48.15 Rs(Ω) 0.221
C2(−) 116.0 F (N.m.s) 0.002 Rbat(Ω) 0.019 Rsh(Ω) 405.4
C3(−) 0.4 P (−) 8 V0(V ) 12.3024 nd(−) 1.3
C4(−) 5.0 ψ(V.s) 0.8 P1(−) 0.9 Ns(−) 54
C5(−) 21.0 Prated(KW ) 10.0 Nbats(−) 8 Isc,stc(A) 8.21
C6(−) 0.007 Ls(H) 0.0083 Nbatp(−) 3 Voc,stc(V ) 32.9
λopt(−) 8.1 Ts(sec) 0.726 kI(A/K) 0.003
Pwt,nom(KW ) 10.0 Vbstack,nom(V ) 96.0 kV (V/K) -0.12
Rad (m) 4.01 Pbat,nom(KW ) 1.296 Npvs(−) 1
Ux,base(m/s) 12.0 C10(Ah) 45.0 Npvp(−) 10
Cp,max(−) 0.48 Vgas(V ) 13.0 Ppv,nom(KW ) 2.001
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(a) (b)

(c) (d)

Fig. 5. (a) The simulated I − V (dashed line) and P − V (solid line) curves against the experimental points (the circle
markers) of the KC200GT PV module; the simulated (b) voltage and (d) current of the battery; and (c) the simulated power
coefficient curve of the wind turbine.

The simulation results of a single LC-R127R2PG
lead-acid battery for a full operating cycle includ-
ing charging, over-charging, saturation, discharg-
ing, over-discharging, and exhaustion zones are
given by Figs. 5b and 5d. While the battery is be-
ing charged for around 160 minutes, it is discharged
afterward. It also indicates that after 80 minutes it
enters into the over-charging zone. Battery is fully
charged at 112 minutes and the sunken current af-
terwards is totally dissipated in the form of heat or
water electrolysis. Discharging with the current of
7.2A in average, it takes around 35 minutes for the
battery, which matches with the information avail-
able in datasheet, to reach the cut-off voltage that
is around 10.2V .

Fig. 5c illustrates the results obtained from the
wind turbine simulation. In Fig. 5c, it can be seen
that the wind turbine generates the maximum lift
at λopt = 8.1 which is matched with characteristics
of the employed wind turbine [29].

The following test scenario is carried out to eval-
uate the stability of the developed model by apply-
ing different step changes to the manipulated and
non-manipulated variables:

• After 100 seconds the load demand sharply
changes from 65% to 20% of the maximum
value.

• There is a step change in wind speed at time
350 seconds from 100% to 167% of the rated
speed.

• At t = 300 seconds, insolation falls to 50% from
the initial 100% of the maximum level.

• The wind turbine pitch angle and the wind
branch duty cycles change to perform pitch
control at t = 350 seconds and to remove the
wind branch generations between t = 500 and
600 seconds.

Fig. 6a illustrates the manipulated variables that
harvest the maximum power of the solar and wind
branches (Fig. 6b), i.e. 2KW and 10KW respec-
tively. In Fig. 6a, it can be seen that at t = 350
seconds, when the wind speed increases by 67%,
the pitch angle goes up to 20 degrees and promotes
pitching to feather [28]. In effect, although the wind
speed reaches to 67% above the rated value, the
generated power by the wind turbine remains sta-
ble at the rated value, i.e. 10KW . Moreover, in
Fig. 6c, it can be seen that despite an initial sharp
increase causing by one second of the pitch con-
troller delay, the rotational speed of the wind tur-
bine returns back. Fig. 6a and 6b show that a sharp
decrease of Dw at t = 500 seconds makes the wind
turbine share of the electrical power to become zero
between t = 500 and 600 seconds.
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(a) (b)

(c) (d)

Fig. 6. Applied (a) switching duty cycles and pitch angle values for the simulation purposes; and the simulation results for
the (b) electrical current of each branch, (c) angular velocity of the wind turbine; and (d) cycle life as well as SOC of the
battery bank.

Any discharging to charging mode transitions in-
crease the cycle life of the battery by 1

EFC(DODn)

as given by Fig. 6d. From Fig. 6d, it can be seen
that the cycle life, as an inherently discontinuous
state, is modeled with a continuous approximation.
Battery starts absorbing the excess of energy from
the beginning and the absorbing rate increases at
t = 100 seconds after a substantial reduction in
load demand. It also compensates the energy deficit
of the system during the period of time between
t = 500 and t = 600 seconds when the wind branch
is removed.

6. Application II: NMPC-based multivari-

able load tracking strategy for standalone

dc microgrids

This section presents a brief description on the
optimal control theory and NMPC, as the employed
control strategy, followed by the control system de-
sign. For further details on NMPC, the reader is
referred to [6, 7, 30].

6.1. Introduction to the nonlinear mode predictive

control (NMPC)

NMPC strategies make explicit use of the system
model, given by F , in order to find an optimal con-
trol law u∗(.) while maintaining a set of equality

and inequality constraints [7]. The term optimal
here is defined with respect to the cost functional
J that consists of the Lagrangian term L, which
is the sum of the deviations within the period of
time T , as well as the terminal penalty term M,
as the deviations from the final values. A NMPC
strategy iteratively solves an optimal control prob-
lem (OCP), given in Eq. (20), at time t and apply
the first optimal value as the next control signal
[6]. Eqs. (20d)) and (20e)), respectively, represents
initial and final constraints and Eq. (20g) models
the boxing constraints that should be maintained
by the optimal solution. Comparing with the con-
ventional methods, NMPC strategies are inherently
nonlinear and multivariable that handle constraints
and delays [30].
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u∗(.) = arg min
u(.)∈UN

JN (x, z,u;n) :=

n+N−1∑

k=n

L(x(k), z(k),u(k))

+M(x(n+N), z(n+N))

subject to:

F(x(k), ẋ(k), z(k),u(k),v(k)) = 0

H(x(k), z(k),u(k)) ≤ 0

x(n) = x0, z(n) = z0

R(x(n+N), z(n+N)) = 0

∀k ∈ [n, n+N − 1]

x(k) ∈ X , z(k) ∈ Z,u(k) ∈ U .

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

(20g)

Conventionally some specific forms of Eq. (20)
can be solved with the dynamic programming and
indirect methods. In order to solve more general
forms of Eq. (20), there are recently developed di-
rect methods [6]. The direct methods discretize in-
volved OCP, by for instance the collocation method,
and convert it into a nonlinear optimization prob-
lem (NLP) that can be solved by general purpose
NLP solvers [6, 16].

6.2. Controller design

Due to substantial generation and demand fluc-
tuations in standalone dc microgrids, energy man-
agement strategies (EMSs) are becoming essential
for regulating the microgrid voltage and tracking
the load demands. As an application of the de-
veloped standalone dc microgrids model, a NMPC-
based realization of EMS is proposed. The pro-
posed controller employs the collocation method
for discretization [16] and is implemented in open-
source CasADi environment [31] to benefit from the
automatic differentiation (AD) technique and im-
prove performances [31].
As given in Eqs. (6a) and (6b), the set of func-

tionals {f1, .., f25} and {MCP1,MCP2} construct
the system model F of the involved OCP. Due to
existent MCPs in the system model, the resulting
OCP is of the class of mathematical programming
with complementarity constraints (MPCC) prob-
lems [16]. In order to use ordinary NLP solvers, the
MCPs given in Eqs. (8) and (10) can be regularized
as the following equality and inequality constraints
[16]:

Γ(γ)−w + v = 0,

w,v ≥ 0, wTγ = ǫ, vT(1− γ) = ǫ. (21)

where 0 < ǫ≪ 1 is a design parameter and Γ(γ) =
[Γ1(γ1) Γ2(γ2)]

T = [Ibstack − tchg]
T and γ =

[γ1 γ2]
T are respectively the functions and slack

variables given in Eqs. (8) and (10). Moreover,
w = [w1 w2]

T and v = [v1 v2]
T are new defined

slack variables.

6.2.1. Control objectives

The developed energy management strategy in
this paper addresses two control objectives: i) max-
imizing the battery bank SOC; and ii) regulating
the dc bus voltage level of the microgrid. These ob-
jectives are formulated as the cost function J and a
path constraint h1, respectively, because while the
former should be as close to one as possible, the
latter, which is the stability indicator of microgrid,
must always be within a permissible range.
The cost function J , given in Eq. (22), is the

battery bank deviation from the fully charged sta-
tus which should be minimized with respect to the
manipulated control signals u and slack variables
w, v, and γ.

JN (x, z,u;n) :=

n+N−1∑

k=n

‖SOC(k) − 1.0‖2 + ‖SOC(n+N) − 1.0‖2 .

(22)

The permissible deviation of the dc bus voltage
level Vdc from the specified set point V dc is given
in Eq. (23) as a slack variable α1 which is a design
parameter.

h1 : |Vdc − V dc| − α1 ≤ 0. (23)

In this study, the design parameter α1 is set to be
in the range of ±2% of the V dc. It means that for
the set point of 48.0 volt, the maximum permissible
deviation is ±0.96 volt.

6.2.2. Control constraints

The generated power by the wind turbine is lim-
ited to the rated power by employing a pitch angle
controller [28]. This requirement is addressed by
the following path constraint:

h2 : −Teωr − Pwt,nom ≤ 0. (24)

The variation of the wind turbine angular veloc-
ity, i.e. ∆(ωr), is also limited in order to decrease
the tower vibrations [28]. Moreover, SOC of the
battery bank must be within a permissible range,
e.g. [0.60, 0.90]. The charging and discharging cur-
rents of each member of the battery bank are also
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Table 3
Design parameters and the computational time of the
developed NMPC controller.

Parameter Name Value
Prediction horizon T (sec) 60
Sampling time h (sec) 12.0
No. of the discretization samples N 5

V dc(V ) 48.0
Average Computational Time (sec) 5.97
Minimum Computational Time (sec) 1.98
Maximum Computational Time (sec) 13.81

limited to 0.16C10 and 0.23C10 amperes, respec-
tively, where C10 is the nominal capacity of each
battery given in Table 2.

6.3. Results and discussion

The performance of the developed optimal load
tracker strategy in terms of different control objec-
tives is evaluated by carrying out a test scenario.
In order to solve the resulting OCP with a general
purpose NLP solver, it is assumed that the bat-
tery bank only switches between the charging and
discharging modes of operation at the edge of the
discretized time slots.
Table 3 summarizes the design parameters and

performance indicators of the developed NMPC
controller. The computational times are calculated
on an Intel CORE 2 DOU machine with 3GB of
RAM. The microgrids’ states are evaluated every
sampling time h= 12 seconds. The developed solver
computes optimal pitch angle and switching duty
cycles in average within 5.97 seconds which is very
close to the 5 seconds evaluation time criterion spec-
ified by the hierarchical architecture specifications
[32]. The optimal pitch angle, β̄, is applied as a set
point to an inner closed-loop controller. Moreover,
the optimal values of the switching duty cycles are
applied to the pulse width modulators (PWMs) of
the dc-dc converters.
The non-manipulated variables, i.e. the wind

speed, insolation, and load demand, are applied
to the system according to the given profiles in
Fig 7a. Fig 7b illustrates the calculated optimal
pitch angle and one of the switching duty cycles,
i.e. Dw. Pitch angle is increased between 60 to
180 seconds when wind speed rises substantially.
The wind turbine rotational speed is also decreased
down to 21.7(rad/s), as in Fig. 7c. In response,
the normalized power coefficient of the wind turbine
in Fig. 7c is declined to 0.630 and then to 0.393.
Fig. 7d shows that despite a wind speed increase of
38%, the wind branch power remains steady at its

(a)

(b)

(c)

(d)

(e)

Fig. 7. The (a) normalized values of the applied
non-manipulated variables; (b) optimal switching duty
cycle and pitch angle of the wind branch; and the resulting
(c) power generations by the wind and solar branches; (d)
angular velocity and normalized power coefficient of the
wind turbine; and (e) batteries current.
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(a)

(b)

(c)

Fig. 8. (a) Switchings of the slack variables and the
resulting (b) dc bus voltage level of the microgrid and (c)
SOC trends.

rated power, excluding the time between 60 to 120
seconds, by the developed coordinated pitch and
speed control strategy which operates as MPPT al-
gorithm, unless there is excess generation. Since the
maximum permissible charging currents of batter-
ies are limited to 0.16C10, i.e. 7.2 A, the controller
curtails the generated power of both the solar and
wind branches between 60 to 120 seconds, when the
load demand falls down, in order to charge batter-
ies with a constant current of 7.2 A, as given in Fig.
7e.

Load demand steps up from 68% to 125% of its
rated value at t = 120 seconds causing the bat-
tery bank switches from the charging to discharg-
ing operation mode. The consequent variations of
the slack variables γ1, v and w are given in Fig.
8a. Battery bank switches from the charging mode
(γ1 = 1) to the discharging mode (γ1 = 0) in or-
der to maintain the dc bus voltage level within the

(a)

(b)

Fig. 9. (a) Steady-state charging current of battery bank
and the corresponding SOC and (b) dc bus voltage level of
the microgrid.

permissible range. Fig. 8b illustrates the fact that
despite a substantial increase of the load demand,
the dc bus voltage level remains in the range of
48.0± 2%. Moreover, the variables v and w, which
model the instantaneous direction changes of the
battery current in Eq. (21), switch between 0 and
the magnitude of the charging and discharging cur-
rents of batteries, respectively, which are limited to
0.16C10 and 0.23C10.
Fig. 8c illustrates that switching between the

charging and discharging modes changes the SOC
trends during the simulation time. The control
strategy harvests the maximum available wind and
solar powers in order to maximize SOC though SOC
increases identically even when there is excess gen-
eration due to generation curtailment. Fig.s 9a and
9b show this fact with a long-term simulation re-
sults for the case in which wind speed and load
demand remain steady at 1.08% and 67% of their
rated values, respectively. Battery bank is charged
with a constant current of 0.16C up to SOC = 0.9
and the dc bus voltage is maintained within its per-
missible range.

7. Conclusion

In this paper, standalone dc microgrids, consist-
ing of the wind, solar, and battery branches, has
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been mathematically modeled as complementarity
dynamical systems. The proposed model has been
used to develop a multivariable NMPC-based load
tracking and voltage regulation strategy. Moreover,
it has been declared as Modelica models and em-
ployed for long-term simulation of the standalone
dc microgrid operations. The developed mathemat-
ical model is in the form of hybrid DAEs of the Fil-
ippov type, including mixed complementarity prob-
lems in order to model the multi-modal operation as
well as the discontinuous cycle life state of the bat-
tery bank. The Modelica simulation results show
the simulation accuracy with respect to the infor-
mation available in manufacturers datasheets. The
obtained results show that the developed Modelica
model is accurate to simulate the hybrid nature of
the standalone dc microgrids. Furthermore, the de-
veloped NMPC-based strategy for such a comple-
mentarity system is solved using general purpose
NLP solvers. It is shown that such a strategy acts
as a MPPT algorithm equipped with the generation
curtailment facility to track the load demands and
maintain the dc bus voltage level of the standalone
dc microgrids.
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