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Abstract 

The Group B Streptococcus (GBS) is a Gram-positive opportunistic pathogen which is a 

leading cause of neonatal disease globally. In 2000-2001, the general incidence of 

neonatal GBS infection was 0.72 per 1000 live births in U.K. and the mortality rate is 

about 10%, because of which neonatal GBS disease is a significant burden on society.  

GBS is part of the commensal flora, colonising the vagina and gastrointestinal tract of 

women.  Vertical transmission is the main cause of early onset GBS disease. During the 

process of GBS neonatal disease, GBS must be able to survive in several very different 

host environments, including the vagina, amniotic fluid, the neonate‟s lung and blood. The 

vagina is normally acidic, low oxygen and with limited nutrients while the neonate‟s lung 

and blood are neutral, high oxygen and with abundant nutrient. Proteomic investigations 

of GBS protein expression under conditions representing those associated with benign 

maternal colonisation and foetal exposure may help us understand the molecular basis of 

GBS virulence. 

GBS growth characteristics, long term survival, acid adaptation, viable but non-culturable 

state and biofilm formation were investigated to help us understand how GBS survives in 

different environments and also help us to develop an in vitro model to reflect in vivo 

conditions during GBS disease development.  

An in vitro model of GBS growth under conditions reflecting maternal vaginal carriage 

(low pH, low oxygen, nutrient stress) and exposure to body fluids during invasive disease 

(neutral pH, aeration, nutrient sufficient) was established. Proteins expressed under each 

growth conditions were separated by two dimensional electrophoresis. Individual proteins 

were subjected to in-gel trypsin digestion and identified using liquid chromatography-

mass spectrometry with peptide mass fingerprinting followed with bioinformatic research.   

A total of 76 proteins were identified and 16 of these were expressed differentially. The 

putative virulence factor C protein β antigen and proteins involved in responses to 

oxidative stress were up-regulated under the conditions reflecting neonatal exposure.   

Another in vitro model of GBS growth on Todd Hewitt agar in the presence or absence of 

10% human serum was established and followed by proteomic investigation of proteins 

differentially expressed under these two conditions, as this model reflects GBS neonatal 

septicaemia (exposure to serum). A total of 84 proteins were identified and 11 of which 

were expressed differentially. The putative virulence factor C protein β antigen, arginine 

deiminase, an ABC transporter substrate-binding protein and glyceraldehyde-3-

phosphate dehydrogenase were up-regulated in the presence of human serum.   
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Chapter 1  

Introduction 

1.1. Epidemiology of Group B Streptococcus disease  

1.1.1. Morbidity and mortality of neonatal Group B Streptococcus disease  

Streptococcus agalactiae (also referred to as the Group B Streptococcus, GBS) 

is a Gram-positive opportunistic pathogen, which is a leading cause of neonatal 

disease, including pneumonia, septicaemia and meningitis (Doran and Nizet, 

2004; Johri et al., 2006).  

GBS was first described in 1887 and reported as a fatal human pathogen 

in 1938 (Heath and Schuchat, 2007). During the 1970s and 1980s, GBS was 

identified as the most common cause of neonatal infectious disease in Western 

countries. GBS neonatal disease can be divided into early onset disease (EOD) 

and late onset disease (LOD). Early onset neonatal disease refers to when the 

infant is infected by GBS in the first 6 days after birth. About 60-70% of 

neonatal infections are EOD. Late onset neonatal disease occurs at 7-90 days 

after birth (Heath and Schuchat, 2007; Johri et al., 2006). The mortality rate of 

GBS EOD was around 10% in the UK in 2000. Heath et al. (2004) showed that 

in the UK during 2000-2001, among EOD, 63% was sepsis and 26% was 

pneumonia. 43% of LOD was meningitis and 7% was focal infection (Heath et 

al., 2004). Neonatal sepsis and meningitis are often accompanied by neuronal 

developmental impairment. Half of GBS meningitis cases show neurological 
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deficiencies including blindness, deafness, partial sensory loss and profound 

mental retardation (Heath and Schuchat, 2007; Mullaney, 2001). 

Strains of GBS have been classically divided into 9 serotypes (Ia, Ib, II-

VIII) based on their capsular polysaccharide structure. Recently, a new GBS 

serotype IX has been defined by Slotved‟s group (Slotved et al., 2007). 

Serotype distributions are different with different geographical regions. Ia, II, III 

and V are the majority serotypes in North America and Western Europe. IV and 

VIII are the predominant serotypes in Japan (Brochet et al., 2009). In the U.K., 

the frequency of GBS serotypes were 48%  serotype III, 27% serotype Ia, 10% 

serotype V, 6% serotype Ib, 4%  serotype II, 1% serotype IV and 1% serotype 

VI (Weisner et al., 2004).  In Denmark during 1984-2002, the majority of strains 

were serotype III (59%), Ia (16%), Ib (8%) and II (5%) (Ekelund et al., 2004). In 

Norway between 1996 and 2006, serotype III (53%) was the predominant strain 

in neonatal GBS disease; other serotypes were Ia (12.8%), V (11.9%) and Ib 

(10.1%) (Bergseng et al., 2008). In Malawi, serotype Ia and III were the 

predominant serotypes and responsible for 77% of GBS neonatal disease 

(Gary et al., 2007). About 90% of all infection cases are caused by serotypes 

Ia, Ib, II, III and V. Serotype III is the dominant cause of both EOD and LOD 

GBS disease and presents with a higher rate of meningitis (Shet and Ferrieri, 

2003; Mullaney, 2001; Weisner et al., 2004). Ekelund et al. showed 63% of fatal 

cases in Denmark were infected by serotype III (Ekelund et al., 2004).  

The morbidity and mortality cause the neonatal GBS disease is a 

significant burden on society. The incidence of neonatal GBS disease in 

developed countries ranges from 0.4-0.81 per 1000 live births (Table 1.1). The 
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Table 1.1. Morbidity and mortality of GBS neonatal disease worldwide. 

Research Year Country EOD/1000 LOD/1000 Total/1000 Fatality Rate Reference 

1984-2002 Demark 0.3 0.1 0.4 8% Ekelund et al., 2004 

1991-2000 Jamaica 0.66 0.23 0.91 3.6% Trotman & Bell., 2005 

1996-2006 Norway 0.46  0.66 6.5%-20% Bergseng et al., 2008 

1997-2001 Netherlands 0.43 0.14 0.57 8%-5% Trijbels-Smeulders et al., 2007 

1997-2001 Sweden 0.4    Hankansson et al., 2006 

1999-2005 USA 0.47-0.34 0.34 0.81-0.68 5%-9% Phares et al., 2008 

2000-2001 UK & Ireland 0.48 0.24 0.72 9.7% Heath et al., 2004 

2000-2003 USA 0.31-0.52 0.30-0.36   Apostol et al., 2004  

2000-2004 USA (Alaska) 0.42    Castrodale et al., 2006 

2003-2005 Italy 0.27 0.23 0.50  Berardi et al., 2007 

2004-2005 Malawi (Africa) 0.92 0.89 1.81 33% Gary et al., 2007 
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morbidity of neonatal GBS disease in developing countries is likely to be higher 

than in developed countries. The incidence of neonatal GBS disease was 0.91 

per 1000 live births in Jamaica during 1991-2002 and 1.81 per 1000 live births 

in Malawi (Africa) during 2004-2005 (Trotman et al., 2006; Gary et al., 2007). 

The comparatively lower incidence of neonatal GBS disease in some 

developed countries may have been caused by the introduction of intrapartum 

prophylaxis (Johri et al., 2006). There is a difference of incidence between 

different geographical regions. The variation of GBS incidence may be caused 

by geography, economy and methodology differences (Heath et al., 2004). 

EOD GBS disease accounted for about 50%-84% of all neonatal GBS 

disease (Trijbels-Smeulders et al., 2007; Phares et al., 2008; Heath et al., 

2004). The mortality rate of EOD GBS disease ranged from 3.6% of India 

(Caribbean) to 33% of Malawi (Africa) (Trotman et al., 2006; Gary et al., 2007). 

The fatality rate in western countries ranged from 5% of USA to 20% of 

Netherland (Phares et al., 2008; Bergseng et al., 2008).   

The health and social care cost for neonates with GBS disease is high, 

approximately two fold higher than neonates without GBS disease in the first 2 

years. This means neonatal GBS disease is a significant burden on society. 

Finding cost-effective prevention and treatments of GBS disease will benefit 

both patients and society. (Schroeder et al., 2009).  
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1.1.2. Risk factors of GBS neonatal disease 

Vertical transmission is the main cause of GBS EOD. Neonates acquire 

bacteria via aspiration of the vaginal contents or amniotic fluid infected by GBS. 

The risk factors of EOD GBS disease among newborns are: GBS bacteriuria 

during pregnancy;  prolonged rupture of membranes more than 18 hours; 

preterm birth date less than 37 weeks and temperature higher than 38oC 

(Heath et al., 2004; Hakansson et al., 2007).  

GBS is a common part of the vaginal flora in women. The maternal GBS 

carriage rate varies among different countries ranging from 1.8% in Maputo 

(Mozambique, Africa) to 65% in USA (De Steenwinkel et al., 2008; Meyn et al., 

2009). The maternal GBS carriage rates in representative countries are 

summarised in Table 1.2. Half of these studies showed the maternal GBS 

carriage rate was more than 20%.  Some of these studies of GBS colonisation 

may be underestimates due to poor specimen collection and inadequate 

detection methods (Barcaite et al., 2008). Even in the same country, the 

maternal GBS carriage rate also varied between different race and ethnic 

groups (Barcaite et al., 2008). In the UK, the study by Jones et al. (2005) 

showed a maternal GBS carriage rate that was higher than that reported by 

Colbourn and Gilbert (2007). Colbourn and Gilbert (2007) showed that the 

colonisation rate was higher using vaginal and rectal swabs (18.1%) compared 

with only using a single vaginal swab (14%) (Colbourn and Gilbert, 2007). The 

reported differences of maternal GBS carriage rate may be affected by 

geographic, ethnic factors and culture techniques (Hansen et al., 2003). 
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Table 1.2. Maternal carriage rate and vertical transmission rate.  

Research Year  Country Carriage Rate Transfer Reference 

1996-2006 Europe 6.5%-36%  Barcaite et al. 2008 

1999-2003 UK 14% 36% Colbourn & Gilbert., 2007 

2001-2003 UK (Oxfordshire) 21.3%  Jones et al., 2006 

2004-2006 Poland 17.2%-20%  Strus et al., 2008 

2005 Sweden 25.4% 68% Hakansson et al., 2008 

2005-2006 Switzerland 21%  Rausch et al., 2009 

2005-2006 Bangui (Central African 

Republic), Darkar (Senegal) 
20.0%-17.5%  Brochet et al., 2008 

2006  Maputo, Mozambique 1.8%  De Steenwinkel., 2008 

2008 Uruguay 17.3%  Laufer et al., 2008 

 USA 65%  Meyn et al., 2009 
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GBS maternal colonisation in the gastrointerstinal and genital tract is a 

primary condition for EOD. Maternal carriage of GBS is dynamic (Phares et al., 

2008). Hansen et al. (2003) showed in Denmark during a 2 year period, the 

average GBS colonization rate was 36% and the highest colonization rate was 

54% among pregnant women. 28% of the pregnant women were persistent 

carriers (defined as a GBS carriage time span over 12 weeks) and 19% of the 

pregnant women were intermittent carriers. The stable carriage of GBS by 

women without symptoms suggests there was a state of commensalism 

between GBS and the host (Hansen et al., 2003). 

Vertical transmission is the main cause of EOD (Heath & Schuchat., 

2007). Women colonised with GBS prenatally have a high opportunity to 

transmit infection to their babies (Barcaite et al., 2008). It has been reported 

that by vaginal delivery and without intrapartum antibiotics, the vertical 

transmission rate from GBS carriage mothers to their infants was 36.4% in the 

UK during 1999-2003 and 68% in Sweden in 2005 (Colbourn and Gilbert, 2007; 

Hakansson et al., 2007). The babies apparently acquired GBS from their 

mothers as the same strains were detected from both neonates and their 

mothers (Hansen et al., 2003). Carriage of GBS and the extent of GBS 

colonisation are linked to the risk of GBS disease (Hansen et al., 2003). 

Intensive maternal colonization leads to a higher rate of vertical transmission.  

73% (32/44) of GBS heavy carrier mothers have „colonised babies‟, which is 

higher than light carrier mother (35%, 6/17) (Ancona et al., 1980). The degree 

of GBS carriage by pregnant women plays a role in vertical transmission. 

Pass et al. (1979) showed that 31% of GBS carriage babies were heavy 
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carriers. 8% of these heavy carriage babies developed early sepsis. This rate 

was higher than light carriers and those that were not carriers (Pass et al., 

1979). Similar results were obtained by Gerards et al. (1984). GBS heavily 

colonised neonates had an increased risk of developing disease compared to 

lightly colonised neonates (Gerards et al., 1984). 23% of EOD neonates were 

born preterm with average gestational age of 31 weeks (Phares et al., 2008). 

The risk of development of GBS disease among premature neonates was two 

times higher than in term infants (Hakansson et al., 2006).  Pregnant women 

with clinically identifiable risk factors are more likely to have baby with EOD and 

high mortality rate (Heath et al., 2004).  

Phares et al. (2008) showed that among the EOD neonates, the GBS 

positive culture rate was 72% at 24 hours and 95% at 48 hours. All these 

samples came from blood (96%) or cerebrospinal fluid (4%) (Phares et al., 

2008). EOD begins from a few hours to 6 days after birth and 90% of EOD 

occurs within 12 hours after birth. Without therapy with antibiotics, monkeys 

with GBS disease died within 10 hrs from sepsis (Rubens et al., 1991). The 

rapid onset of disease in neonates suggests that in many cases the infection 

must have been established in the uterus. GBS can grow rapidly in amniotic 

fluid both in vivo and in vitro experiments. Hemming et al. (1985) found that 

GBS had similar growth rates in amniotic fluid and Todd Hewitt broth media 

(Hemming et al., 1985). Abbasi et al. showed GBS grew in both second and 

third trimester amniotic fluid as well as in Todd Hewitt Broth media (Abbasi et 

al., 1986). In clear amniotic fluid, GBS cultures with a starter inoculation of 102-

103 CFU/mL reached to 107-108 CFU/mL after 8 hours growth. This suggested 
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GBS proliferated rapidly in amniotic fluid (Abbasi et al., 1986, Hemming et al., 

1985). Romero et al. (1991) found amniotic fluid culture rates of GBS were 

higher in meconium-stained amniotic fluid than in patient without staining. The 

risk that pregnant women with meconium-stained amniotic fluid will deliver a 

preterm neonate is higher than pregnant women with clear amniotic fluid 

(Romero et al., 1991). Amniotic fluid expressed limited bacteriostatic properties 

to GBS when compared with its ability to inhibit growth of E. coli (Eidelman et 

al., 2002). Meconium stained amniotic fluid can enhance GBS growth 

(Eidelman et al., 2002). The prolonged rupture of amniotic membranes can 

induce amniotic fluid staining with meconium, which may increase GBS 

colonisation of newborn babies (Eidelman et al., 2002).  

The incidence of GBS neonatal disease ranges from 0.4 to 1.81 cases per 

1000 live births world wide. The fatality rates of GBS neonatal disease are 

significant, ranging from 3.6% to 33% of cases (Table 1.1). The significant 

morbidity and serious mortality rates caused by GBS establish this bacterium 

as an important pathogen of neonates.  

 

1.2. The pathogenesis of GBS disease  

The development of GBS neonatal pneumonia, septicaemia and meningitis is a 

complex process. In the pathogenesis of these diseases, the bacterial need to 

adhere to and penetrate into different host cells including the vaginal 

epithelium, placental membranes, respiratory epithelium and blood-brain barrier 

endothelium (Figure 1.1). When GBS get into host blood and deeper tissues, it  
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Figure 1.1. The development of GBS neonatal disease (taken from Rajagopal, 

2009). 

(A) GBS maternal colonization in vaginal and lower gastrointestinal tracts.  

(B) GBS penetration of the intrauterine compartment. 

(C) Neonatal aspiration of GBS during birth.  

(D) GBS invade the neonatal lung causing pneumonia.  

(E) GBS arrive in the neonatal bloodstream causing sepsis.  

(F) GBS penetration of the blood-brain barrier causing meningitis. 
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will trigger the host immune responses to eradicate the bacteria. GBS possess 

virulence factors which can help the bacteria to avoid host immune clearance 

and activate host inflammatory responses (Doran and Nizet, 2004).  

Animal experiments showed GBS was found in the lung, liver, spleen and 

brain in GBS infected neonatal primates (Rubens et al., 1991). Inflammatory 

reactions occurred as monocytes and macrophages were present at infected 

tissues with haemorrhaging. The symptoms of sepsis and neonatal pneumonia 

include hypoxemia, hypercapnia and apnea. After a few hours without 

treatment, the neonatal primates died with hypotension, metabolic acidosis and 

respiratory failure (Rubens et al., 1991). There are inflammatory reactions and 

focal lesions at the early stage of GBS meningitis. This is accompanied with 

cerebral blood flow changes, cerebral hypoxia, ischaemia and oedema. This 

can cause permanent neuronal damage as necrosis in the cortex and neuronal 

loss and apoptosis were found in animal models (Maisey et al., 2008; 

Spellerberg, 2000) 

 

1.2.1. GBS virulence factors that affect adherence to epithelial surfaces  

GBS is a part of the common flora colonizing at the vagina, rectum, urinary tract 

and gastrointestinal mucosa. GBS adherence to host cells is the initial step of 

GBS neonatal disease. Tamura et al. (1994) showed GBS can adhere to 

pulmonary epithelial cells under different conditions. The ability of GBS to 

adhere to epithelial cells was decreased when the bacteria were treated with 

trypsin. This indicated that bacterial surface proteins are involved in the 
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adherence to the host cells (Tamura et al., 1994). Surface proteins including 

pili, C5a peptidase, α-C protein, Lmb, FbsA and Rib are linked to the firm 

adherence of GBS to host cells. These cell wall components and surface 

proteins interact with host cell extracellular matrix (ECM) components including 

fibronectin (Fn), fibrinogen, laminin and integrins to mediate GBS adherence 

(Doran and Nizet, 2004; Lindahl et al., 2005).  The GBS cell envelope 

component lipotechoic acid (LTA) is also involved in the adherence to the host 

cells. This adherence is relative weak and reversible (Doran and Nizet, 2004).   

The GBS pilus is an important cell surface component which is involved in 

bacterial colonization and invasion of host cells (Rosini et al., 2006). The GBS 

pilus consists of three surface proteins: PilA (Gbs1478), PilB (Gbs1477), PilC 

(Gbs1474). Gbs1477 is the essential component which forms the backbone of 

pilus and distributes throughout the length of the pilus. Gbs1478 is a pilus 

associated adhesin and Gbs1474 is a minor pilus associated component. 

These two surface proteins distribute intermittently along the pilus (Dramsi et 

al., 2006; Rosini et al., 2006). In GBS strain NEM316, class C sortases, srtC3-

C4 were found to be involved in pilus assembly (Dramsi et al, 2006). A GBS 

srtA deletion strain showed a impaired adherence to epithelial cells and binding 

to extracellular matrix. Thus SrtC is involved in catalysing Gbs1477 

polymerization and SrtA is involved in anchoring the pilus to the peptidoglycan 

cell wall (Rosini et al., 2006; Dramsi et al., 2006). 2 pilus islands (PI), PI-1 and 

PI-2 (including 2 alleles, PI-2a and PI-2b) are localized in 2 distinct genetic loci. 

A GBS Gbs1478 sortase deletion strain exhibited significantly reduced 

adherence to A549 epithelial cells compared with the wild type strain (Dramsi et 
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al., 2006). GBS COH1∆BP-1 and COH1∆BP-2a strains exhibited a lower 

translocation across ME180 cell monolayers compared with the wild type strain 

(Pezzicoli et al., 2008). This indicates that pilus structure is important for 

bacteria to pass through intercellular junctions. 3-Dimensional confocal 

microscopy experiments showed GBS pili located in the intercellular space 

protruding from translocating bacteria. Thus the pilus structure of GBS plays an 

important role of GBS adherence and invading host cells (Pezzicoli et al., 

2008). GBS pili are well conserved among strains. All strains expressed at least 

1 of the 3 pili substructures of surface protein. Margarit et al. (2009) suggested 

that if a vaccine included all pilus components it will be effective against GBS 

infection (Margarit et al., 2009).  RogB positively regulates the expression of 

gbs1477, gbs1478 and srtC3-4. A GBS 6313 RogB deletion strain showed a 

decreased adherence to human epithelial cells (Dramsi et al, 2006). 

The surface proteins of GBS include α-C protein, β-C protein, α-like 

proteins (Alp1, Alp2 and Alp3) and Rib protein (Lindahl et al., 2005). The α-C 

protein varies between 62.5 and 167 kDa and is the prototype of a family of 

streptococcal surface proteins. These proteins share a common structure, 

including an N-terminal region, a series of tandem repeats of amino acids and a 

C-terminal region containing a LPXTG peptidoglycan-attachment motif (Bolduc 

et al., 2002; Persson et al., 2008). Experiments demonstrated that α-C protein 

can bind to the surface of ME180 human cervical epithelial cells.  Deletion of 

the α-C protein gene attenuated the virulence of GBS seven fold (Bolduc et al., 

2002). Experiments have suggested that the N-terminal region of the α-C 

proteins is involved in adherence to and invasion of cervical epithelial cells.  
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The N-terminal domain of α-C protein has been found to bind epithelial cell-

associated glycosaminoglycan and the surface receptor α1 β1-integrin (Baron 

et al., 2004; Pannaraj et al., 2007; Bolduc et al., 2007). Rib protein, a member 

of the Alp family from type III strains can promote bacterial binding to epithelial 

cells (Doran and Nizet, 2004; Lindahl et al., 2005).  

The surface anchored protein FbsA mediates GBS adhesion to host cells 

(Rajagopal, 2009). Purified FbsA protein can bind fibrinogen directly and GBS 

FbsA deletion strain showed a decreased binding to fibrinogen and impaired 

growth in human blood compared with wild type strain (Schubert et al., 2002). 

FbsA is positively regulated by RogB and negatively regulated by RovS and 

CovR/CovS (Rajagopal, 2009). Lra1 adhesin family proteins mediate GBS 

attachment to host cell laminin. Some experiments showed the Lra1 family 

member, laminin-binding protein Lmb mediated GBS binding to host placental 

laminin but other experiments showed that the ability of Lmb protein bind 

laminin was debatable (Lindahl et al., 2005).  

The GBS C5a peptidase is a 120 kDa surface protein which has a 

function in adhesion to host cells (Liu and Nizet, 2004). C5a peptidase is 

encoded by the scpB gene and is composed of a protease domain, a protease-

associated (PA) domain and 3 fibronectin type III (Fn) domains. The protease 

domain is located at the N-terminus and the 3 Fn domains are located at the C-

terminus. An RGD sequence (Arg-Gly-Asp) is found in the protease domain and 

another RGD sequence is found between the F1 and F2 Fn domains. RGD 

sequences have been demonstrated to be able to bind integrins and Hep2 

epithelial cells (Brown et al., 2005). Cheng et al. (2002) demonstrated that 
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purified ScpB binds directly to Hep2 and A549 cell lines (Cheng et al., 2002). 

ScpB also binds to the extracellular matrix protein immobilized Fn, but not to 

soluble Fn. The binding was concentration dependent. As C5a peptidase 

binding to Fn may be involved in attachment and invasion of eukaryotic cells, 

this may contribute to the pathogenesis of GBS disease (Beckmann et al., 

2001). Hull et al. (2008) showed that ScpB binds to a point created by the 

association of multiple Fn molecules (Hull et al., 2008). This binding affinity is 

independent of the C5a peptidase activity of ScpB as the adherence was not 

affected by deletion of 4 amino acids of the peptidase motif (Tamura et al., 

2006). However, GBS adherence was only partially affected by deletion of the 

scpB gene. This suggests that there are other cell components of GBS involved 

in adherence to host cells by binding to fibronectin (Cheng et al., 2002; Lindahl 

et al., 2005). RgfC/RgfA and possibly RgfB negatively regulate ScpB 

expression in a strain specific manner (Rajagopal, 2009). CovR/CovS also 

repress ScpB expression in a strain specific manner as this was not observed 

in strain A909 (Rajagopal, 2009). 

 

1.2.2. GBS virulence factors affecting penetration of host cellular barriers  

Animal experiments showed GBS was found in the lungs, liver, spleen and 

brain in GBS infected neonatal primates (Rubens et al., 1991). GBS penetration 

of host cells and/or tissues is the key step of GBS neonatal disease. In the GBS 

infection, bacteria can penetrate chorion cells and amnion cells and induce 

placental basement membrane rupture (Spellerberg, 2000). In GBS pneumonia 

and sepsis, bacterial invade the pulmonary epithelial cell layers, the basement 
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membrane and the vascular endothelial cell layer. GBS penetration of the 

blood-brain barrier can cause bacterial meningitis (Spellerberg, 2000). Electron 

microscopy showed that GBS can invade A549 epithelial cells when co-cultured 

for 2 hours (Rubens et al., 1992). The invasion capacity of GBS strains isolated 

from the blood of infected infants was higher than that of GBS strains isolated 

from the vaginas of asymptomatic women. This suggests the GBS invasion is 

related to bacterial virulence potential (Soriani et al., 2005).  

GBS cross the lung epithelial barrier by a combination of three processes: 

intracellular invasion, direct cytolytic injury and damage induced by the 

inflammatory reaction of infected neonates (Soriani et al., 2005). Transmission 

electron microscopy and confocal imaging observed that there are both singular 

bacteria and bacterial chains present between ME180 cells and Caco2 cells. 

Both of these cell lines expressed tight junctions. This suggested that GBS can 

form an intimate association with intercellular junctions and has the capacity to 

disrupt epithelial cells by a paracellular mechanism (Soriani et al., 2005). 

Pezzicoli et al. (2008) found GBS pili located in the intercellular space 

protruding from translocating bacteria. This suggested GBS pilus is involved in 

a paracellular invasion of host tissues (Pezzicoli et al., 2008). It has been 

reported that GBS can enter host cells by endocytotic uptake and survive in 

these cells (Soriani et al., 2005). In in vivo experiments, GBS was found in the 

vacuoles of respiratory epithelial cells, macrophages and fibroblasts in infected 

infant primates. Multiple bacteria in one vacuole suggested that there was 

bacterial replication (Rubens et al., 1991).  
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Hyaluronate lyase is secreted by the GBS and may contribute to 

inflammation.  This surface accessible protein is encoded by the gene hylB 

which is expressed as a 110 kDa protein (Liu and Nizet, 2004; Spellerberg, 

2000). Hyaluronate lyases can degrade hyaluronan and this may help GBS 

spread as hyaluronan is one of the main polysaccharide components of 

connective tissues and the nervous system. The placenta and lung have a high 

concentration of hyaluronan and so this tissue damage maybe important early 

in the pathogenesis of GBS disease (Liu and Nizet, 2004). GBS hyaluronate 

lyase can break down the substrate chain and release disaccharides (Liu and 

Nizet, 2004). It has been reported that the hyaluronate lyase was expressed at 

a higher level in GBS strains from infected neonates than GBS strains from 

asymptomatic neonates (Liu and Nizet, 2004; Spellerberg. 2000). However, the 

role of hylB in the course of GBS infection has not been confirmed (Liu and 

Nizet, 2004; Spellerberg. 2000). 

Surface-anchored protein Spb1, the fibronectin-binding C5a peptidase 

ScpB and alpha C protein can increase GBS epithelial cell invasion.  Bolduc et 

al. (2002) showed that ME180 epithelial cells internalisation of a GBS wild type 

strain with a 9-repeat alpha C protein was nearly threefold higher than an alpha 

C-deficient mutant. GBS wild type translocation across polarized ME180 

membranes was five-times higher than that of the alpha C-deficient mutant. 

These data suggest that alpha C protein is involved in both GBS internalization 

and translocation across human cervical epithelial cells (Bolduc et al, 2002). 

Both anti-ScpB serum treatment and a scpB deletion mutant showed a 

decreased invasion of lung epithelial A549 cells and Hep2 cells by GBS. This 
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suggested that ScpB plays a role in GBS invasion of human cells (Cheng et al., 

2002). FbsB can promote GBS entry into host cells as a GBS FbsB deletion 

strain showed a severely impaired invasion into lung epithelial cells compared 

with the wild type strain (Gutekunst et al., 2004). 

Beta-hemolysin is regarded as an important virulence factor of GBS and a 

key phenotypic feature of GBS is the presence of beta-haemolysis surrounding 

colonies on blood-agar plates (Liu and Nizet, 2004).  Hemolysin synthesis has 

been linked to the cyl gene cluster (Gottschalk et al., 2006). The cylA and cylB 

genes are located in the cyl gene cluster. These genes encode the ATP binding 

and transmembrane domains of an ABC transport system. CylA is the ATP-

binding domain and cylB is the transmembrane portein (Gottschalk et al., 

2006). cylE encodes a 78 kDa predicted protein product and GBS with CylE 

were shown to damage lung epithelial cells, brain epithelial cells and 

macrophages (Nizet et al., 1996). GBS beta-hemolysin damages eukaryotic 

cells in various ways. A microtiter plate lactate dehydrogenase (LDH) release 

assay showed LDH was released from monolayers of A549 alveolar epithelial 

cells when A549 cells were exposed to log-phase hyperhemolytic GBS strains 

and to purified hemolysin. LDH release from lung epithelial cells induced by 

beta-hemolysin was inhibited by dipalmitoyl phosphatidylcholine (DPPC), a 

known hemolysin inhibitor and a major phospholipid component of human 

pulmonary surfactant (Nizet et al., 1996). Trypan blue assay showed 35-100% 

of cell nuclei were positively stained by trypan blue when A549 cells were 

incubated with hyperhemolytic GBS strains. Trypan blue is a vital dye, which 

can stain cell nuclei when cells have lost the membrane function to pump it out. 
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Investigation of GBS induced lung epithelial cell injury by electron microscopy 

showed that beta-hemolysin is a pore-forming toxin. The injury included 

discrete cytoplasmic membrane disruption, cell swelling, organelles and 

chromatin changes, water influx into the cell and hypo-osmotic damage (Nizet 

et al., 1996). All these experiments suggest that the expression of beta-

haemolysin by GBS contributes directly to injury of human lung epithelial cells 

(Nizet et al., 1996). Two component systems are involved in regulation of beta-

haemolysin expression. The CovS/CovR system represses beta-haemolysin 

expression while the serine/theonine kinase Stk1 relieves CovR repression on 

beta-haemolysin. The transcriptional regulator RovS activates beta-haemolysin 

expression, which is independent of CovS/CovR and Stk1 (Rajagopal, 2009). 

The CAMP factor is a 23.5 kD extracellular protein, which is named after 

its original descriptors: Christie, Atkins and Much-Peterson (Liu and Nizet, 

2004). In 1944, Christie found that coculture of Staphylococcus aureus and 

GBS on sheep blood agar plates produced an increased zone of haemolysis 

around GBS colonies near to those of S. aureus (Liu and Nizet, 2004; 

Spellerberg, 2000). This is because CAMP factor damages the membranes of 

sheep red blood cells which have been pretreated by the beta-hemolysin of S. 

aureus. Pretreatment with the S. aureus sphingomyelinase increases the 

binding of CAMP protein to the sheep red cell membrane and then pore 

formation and cell lysis occurs (Liu and Nizet, 2004; Spellerberg, 2000). 

Osmotic protection experiments show that CAMP factor forms discrete 

transmembrane pores more than 1.6 nm and up to 12-16 nm in diameter when 

observed by electron microscopy. These transmembrane channels allowed 
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small molecules (e.g. ions) to pass through but not large molecules (e.g. 

haemoglobin). The consequence was increased intracellular osmotic pressure, 

water infusion into the cell and cell lysis (Lang and Palmer, 2003). Intravenous 

injection of purified CAMP factor into rabbits and mice can cause rapid death of 

these animals (Skelka and Smola, 1981). A GBS CovR deletion strain did not 

express CAMP factor as CovR binding and activation were necessary for 

CAMP factor expression. CAMP factor expression is positively regulated by 

CovR/S and negatively regulated by Stk1 (Rajagopal, 2009). 

The amphiphilic molecule LTA is a component of GBS cell envelope. LTA 

is anchored to the cell membrane via its glycolipid anchor, which carries a 

polyglycerophosphate chain extending into the cell wall (Doran et al., 2005). 

LTA anchoring to the cell membrane is a key aspect of GBS blood-brain barrier 

invasion and the pathogenesis of GBS meningitis. It has been shown that the 

GBS strains isolated from infected neonates have a higher quantity of LTA than 

strains isolated from asymptomatic infants (Doran et al., 2005). Deletion of the 

∆iagA gene resulted in a failure to synthesise the glycolipid anchor of LTA and 

increased LTA release into the supernatant (Doran et al., 2005). The GBS iagA 

deletion mutant showed a decreased invasion of epithelial cells compared with 

GBS wild type (Doran et al., 2005).  
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1.2.3. GBS virulence factors that help avoidance of immunological 

clearance  

GBS escape from host immune clearance is an important step of GBS neonatal 

disease. When GBS get into the host‟s deeper tissues and circulatory system, 

the host immune system will respond to clear it (Spellerberg, 2000). Bacterial 

counts in the lung were much higher than in the liver and spleen which 

suggested that macrophages may be involved in the immune response 

(Rubens et al., 1991). Phagocytic cells including neutrophils and macrophages 

clear bacteria following the production of specific antibodies or complement 

(Spellerberg, 2000). In vivo experiments showed both complement-dependent 

opsonic activity and complement-independent opsonic activity was increased in 

GBS infected primates (Rubens et al., 1991). Neonates are more easily 

infected by GBS due to a deficiency of antibodies and complement. However, 

GBS possess virulence factors which can help them to avoid host immune 

clearance and activate host inflammatory responses (Doran and Nizet, 2004).   

The surface polysaccharide capsule (CPS) can inhibit complement factor 

C3b deposition and prevent the activation of the alternative pathway of 

complement. Classically, GBS was divided into nine serotypes (Ia, Ib, II-VIII) 

according to distinct capsular polysaccharides and serotype IX was identified in 

2007 (Slotved et al., 2007). The specific capsular polysaccharides are 

composed of different arrangements of glucose, galactose, N-

acetylglucosamine and sialic acid (Doran and Nizet, 2004; Spellerberg, 2000; 

Cieslewicz et al., 2005). GBS capsular polysaccharide plays an important role 

in resistance to complement mediated opsonophagocytic killing by host 
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leukocytes (Doran and Nizet, 2004; Spellerberg, 2000). C3-binding assays 

showed the binding capacity of a GBS capsule deficient strain to C3 molecules 

was eight times higher than wild-type strain (Marques et al., 1992). GBS 

capsule deficient mutants were more readily killed compared with wild-type 

strain when cells were incubated with leukocytes. The ability of neuraminidase-

treated GBS to bind to C3 was two to three times higher than untreated cells. 

Neuraminidase treatment of GBS can remove bacteria capsular sialic acid 

residues (Marques et al., 1992). This suggested GBS capsular sialic acid 

residues are important for resisting complement binding. Complement C3 

deposits on the GBS surface and is then degraded to the active factor C3bi. 

CR3 receptors of neutrophils recognise C3bi which contributes to neutrophil 

attachment and ingestion of the bacteria (Campbell et al., 1991). The capsular 

polysaccharide can inhibit the activated complement factor C3 binding to the 

surface of GBS, preventing the activation of the alternative complement 

pathway (Doran and Nizet, 2004; Spellerberg, 2000). The capsular 

polysaccharide may help GBS avoid host clearance by decreasing immune 

recognition (Mullaney, 2001). A transcriptional regulator, RogB, negatively 

regulates CPS expression in a strain specific manner (as GBS strains A909 

and COH1 do not express RogB). The CovR/CovS system positively regulates 

CPS expression in strain NEM316 (Rajagopal, 2009). 

C5a peptidase contributes to GBS pathogenesis in many ways (Liu and Nizet, 

2004), including adhesion (see above). C5a peptidase can attenuate the 

recruitment of polymorphonuclear leukocytes in vitro. Active C5a-peptidase can 

be released from the bacterial cell wall and specifically cleaves the complement 
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chemotaxin C5a. C5a, a 74 amino acid protein, normally recruits 

polymorphonuclear leukocytes leading to inflammatory reactions. C5a 

peptidase inactivates C5a to avoid clearance by polymorphonuclear leukocytes 

(Cheng et al., 2002; Cleary et al., 2004). A ScpB deletion strain was cleared 

more rapidly in the adult mouse lung compared with the wild-type strain. 

Immunization of mice with ScpB can increase clearance of GBS from lung. This 

suggested that antibody generated by immunization played a protective 

function (Cheng et al., 2002). 

Alpha C protein may help avoid phagocyte killing by antigenic variation 

(Spellerberg, 2000). The β-C protein is a 130 kDa surface protein, which can 

bind to the Fc part of IgA. This non-specific binding to IgA may interfere with 

opsonophagocytosis of GBS (Spellerberg, 2000). CAMP protein also binds to 

the Fc portion of human IgG and IgM (Spellerberg, 2000).  

GBS beta-haemolysin can cause cytolytic injury to macrophages and 

monocytes and induce apoptosis in these cells (Fettucciari, 2000; Liu et al, 

2004). GBS induced macrophage apoptosis was confirmed by several 

techniques based on morphological changes and DNA fragmentation 

(Fettucciari, 2000). GBS induced macrophage cytolysis and apoptosis when 

macrophages were incubated with a GBS hypohemolytic strain at high 

concentration. A GBS haemolysin deficient strain was cleared by macrophages 

and neutrophils. GBS survival was associated with the production of the orange 

carotenoid pigment, which is known as a free radical scavenger and provides 

protection against the H2O2 and superoxide produced by phagocytes during 

their oxidative burst. Inhibition of GBS beta-haemolysin activity can inhibit 
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macrophage apoptosis (Fettucciari, 2000). This suggests the beta-haemolysin 

contributes to GBS resistance to host innate immune mechanisms (Liu et al, 

2004).  

GBS Mn-cofactored superoxide dismutase (SodA) catalyzes conversion 

of superoxide to hydrogen peroxide which is further metabolised to molecular 

oxygen and water in the presence of peroxidases. SodA enables bacteria to 

defend against oxidative stress during infection. A GBS SodA deletion strain 

showed sensitivity to oxidative stress in vitro and enhanced clearance by 

macrophages in a mouse infection model (Poyart et al., 2001). RovS positively 

regulates SodA as SodA expression was decreased in a RovS deletion strain 

(Rajagopal, 2009). 

A GBS surface associated penicillin-binding protein (PBP1a), encoded by 

ponA, also contributes to bacterial resistance against phagocyte clearance. A 

GBS PBP1a deletion stain was more sensitive to phagocyte clearance 

compared with the wide type strain (Hamilton et al., 2006). However, the ponA 

mutant strain showed a similar ability in blocking complement activation and 

was as sensitive to oxidative killing as the wild type strain.  Experiments 

demonstrated the ponA mutant was more sensitive to killing by cationic 

antimicrobial peptides (Hamilton et al., 2006). This may explain why the ponA 

mutant was sensitive to phagocytosis, but since there was no change on the 

surface of the mutant strain, the mechanisms by which PBP1a affects 

resistance to antimicrobial peptides are still not clear (Rajagopal et al., 2009).   
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1.2.4. GBS virulence factors that activate inflammatory reactions  

When GBS get into the deeper tissues, they can induce host inflammatory 

reactions. Animal models of neonatal GBS infection showed there was a huge 

accumulation of GBS and intensive inflammatory infiltration in the neonatal lung 

(Henneke et al., 2005). Experiments also showed that neonatal GBS infection 

is associated with increased production of proinflammatory cytokines. 

Production of tumour necrosis factor alpha, interleukin (IL)-8 and IL-10 by GBS 

infected human respiratory epithelial cell line A549 was significantly higher than 

for uninfected cells. There was a significant difference in the production of 

these cytokines among different GBS strains (Mikamo et al., 2004). This 

suggested that there was inflammatory reaction of phagocytes to GBS 

(Henneke et al., 2005).  

GBS beta-hemolysin acts synergistically with cell wall components to 

induce macrophage production of nitric oxide synthase (iNOS) and generation 

of nitric oxide. This contributes to neonatal sepsis. Experiments have shown 

that expression of iNOS and the amount of nitric oxide released is 4-fold more 

when macrophages were exposed to GBS beta-hemolysin positive strains 

compared to GBS beta-hemolysin negative mutants (Ring et al., 2002). Beta-

hemolysin exhibited proinflammatory properties in the sepsis cascade as the 

production of macrophage iNOS induced by beta-hemolysin was via 

intracellular pathways, which is similar to lipopolysaccharide incuced iNOS 

production (Ring et al., 2002). Pathologic samples from lung have shown there 

are markedly damaged epithelial cells, beta hemolysin production and 

deposition of complement component C3, IgG, and fibrin in the infected lung 
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(Doran et al., 2002). Septic shock has been associated with increased amount 

of inducible nitric oxide production in animal models (Ring et al., 2002). It has 

also been shown that GBS beta-hemolysin can cause host cells to release 

neutrophil chemoattractant IL-8 in a dose and time dependent fashion. A cylE 

deficient GBS mutant induced less IL-8 release. IL-8 is a chemoattractant which 

can recruit neutrophils to kill bacteria and is a measure of the local inflammation 

reaction. IL-8 also can induce inflammatory cells to release proteases and 

reactive oxygen. A high level of IL-8 has been found in respiratory secretions of 

neonates with lung disease (Doran et al., 2002).  

GBS LTA has been shown to have the ability to induce inflammatory 

reactions.  LTA can stimulate mononuclear cells to release TNF-alpha, IL-1, IL-6 

and iNOS. Animal models showed the consequences of releasing these 

inflammatory cytokines are the provocation of septic shock, circulatory collapse 

and systemic infection (Doran et al., 2005; Hunolstein et al., 1997).  

 

1.3. Environmental factors affect GBS growth and virulence factor 

expression 

1.3.1. GBS survive in different host environments  

The rapid development of early onset GBS disease (often <24 hours after birth) 

suggests that vertical transmission of GBS from mother to infant occurs either 

during or immediately prior to birth. During the process of GBS neonatal 

disease, GBS colonising the mother‟s vagina are thought to be aspirated by the 

neonate during delivery. GBS may also access the neonate following entry into 



 

44 

 

the amniotic fluid (Hemming et al., 1985). The GBS then colonise the neonate‟s 

pulmonary epithelium, invade the epithelial cells, enter the infant lung, spread 

to the blood and can eventually penetrate the blood-brain barrier to get to the 

cerebral tissue. Therefore it is interesting that GBS must be able to adapt to 

and survive in several very different host environments (Rajogopal, 2009).  

The pregnant woman‟s vagina is very acidic (pH less than 4.5) whereas 

the neonate‟s lung and blood are approximately neutral (Tamura et al., 1994; 

Yamamoto et al., 2006). The vagina of pregnant women is a low oxygen 

environment with pO2 of 48 mmHg whereas the new born baby‟s arterial blood 

has a high oxygen condition with pO2 of 60 to 100 mmHg (Johri et al., 2003). 

Other factors such as ion concentrations and nutrient availability are also likely 

to be different between these environments. The concentration of sodium 

chloride in blood (150 mM) is relatively high compared to the vagina (30 nM). 

Calcium and magnesium concentrations are also higher in blood than in the 

vagina (Tamura et al., 1994).  

As noted earlier (Section 1.1.2) GBS can grow rapidly in amniotic fluid in 

both in vivo and in vitro experiments.  Hemming et al. (1985) found that GBS 

had similar growth rates in amniotic fluid and Todd Hewitt broth media 

(Hemming et al., 1985). Abbasi et al. (1986) showed GBS grew in both second 

and third trimester amniotic fluid. The amniotic fluid was analysed and found 

that the components and quantity (including total protein, albumin, zinc, 

inorganic phosphorus, transferrin, lysozyme activity and immunoglobulin levels) 

were similar to those in amniotic fluid specimens reported to inhibit bacterial 

growth (Abbasi et al., 1986).   Amniotic fluid stained by meconium can enhance 
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the growth of GBS (Eidelman et al., 2002). A transcriptome experiment showed 

that GBS strain NEM316 grew rapidly in human amniotic fluid with logarithmic 

phase starting at 35 mins (Sitkiewicz et al., 2009). Transcripts of genes related 

to amino acid, carbohydrate and nucleotide metabolism of GBS strain NEM316 

were expressed highly in amniotic fluid compared with in Todd Hewitt-Yeast 

extract (THY) medium. Some virulence genes including capsule, hemolysin and 

interleukin-8 proteinase were up-regulated when GBS was cultured in amniotic 

fluid. The transcripts of genes expressed variably during different phases of 

GBS growth. The finding that GBS strain NEM316 remodels its transcriptome in 

response to culture media relevant to pathogenesis confirms it has the ability to 

adapt to changing environments (Sitkiewicz et al., 2009).  

When GBS was incubated in human blood for 30 minutes, a large 

proportion of its genes were down-regulated compared with growth in THY. 

However, GBS genes encoding proteins related to bacterial-host interactions, 

including the host coagulation/fibrinolysis system, were upregulated in human 

blood compared with in THY. This indicates that GBS can adapt to exposure to 

human blood immediately after invading which may help cause host infection in 

a short time (Mereghetti et al., 2008b). Moreover, the inhibitory effects of 

cerulenin and triclosan (type II fatty acid synthesis pathway inhibitors) on GBS 

growth were alleviated when media were supplementted  with human serum in 

vitro. This is important as evidence that human serum can provide unsaturated 

fatty acids to act as nutrients (Brinster et al., 2009). Confirming this, GBS fabF 

(fatty acid elongation) and fabM (unsaturated fatty acid synthesis) deletion 

strains grew better in serum than in Todd Hewitt medium (Brinster et al., 2009). 
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It has been reported that at least 10% of GBS genes were expressed 

differently in response to changes in the environmental temperature (Mereghetti 

et al., 2008a). In stationary phase, GBS genes related to sugar metabolism, ion 

uptake and cell envelope synthesis were upregulated at 30oC compared with at 

40oC. Virulence factors including hemolysin and surface-anchored (LPXTG 

motif) proteins were upregulated at 40oC compared with growth at 30oC. GBS 

growth at 40oC was considered to reflect bacteria colonising in a host with a 

severe infection and high fever condition and GBS growth at 30oC condition 

was considered to reflect bacterial persistence in an asymptomic host or bovine 

milk. 

GBS transcriptome experiments revealed that gene transcript levels were 

expressed differentially throughout the cells‟ growth phases in vitro (Sitkiewicz 

& Musser, 2009). Genes encoding stress response proteins (e.g. hrcA, grpE, 

dnaK), and those involved in energy production (eg. ATP synthase subunits) 

and nutrient utilisation (carbohydrate utilisation and transport) were expressed 

at a higher level in stationary phase. Genes encoding regulators and signal 

transduction systems were expressed at high transcript levels in log phase.  

Among GBS virulence factors, 6 genes were upregulated and 11 genes (for cell 

wall anchored proteins including C5a peptidase precursor, putative fibronectin 

binding protein, laminin binding protein, hemolysin, sortase, capsule synthesis 

and putative group B antigen biosynthesis) were down regulated in stationary 

phase (Sitkiewicz & Musser, 2009). 

Together, these studies show that GBS can survive in a wide-range of 

conditions and has the ability to remodel its genes in response to environmental 
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changes including temperature, pH, oxygen level and nutrition (Mereghetti et 

al., 2008b). These changes in bacterial gene expression reflect the biological 

process of metabolism, adaptive responses and changes in virulence factor 

expression. GBS uses multiple mechanisms to mediate its gene expression in 

response to environment changes (Rajogopal, 2009). These processes are 

important for GBS to survive in multiple host environments and cause disease 

to the host (Sitkiewicz et al., 2009; Rajogopal, 2009). 

 

1.3.2. Oxygen affects GBS metabolism and virulence factor expression 

GBS is known to be a fermentative and acid-producing bacterium. Mickelson 

found that GBS undergoes fermentative metabolism in anaerobic conditions 

and undergoes respiration metabolism in aerobic conditions (Mickelson, 1971). 

The aerobic conditions were created by culturing GBS in large vessels with 

shaking. The anaerobic condition was created by culturing GBS in small 

vessels without oxygen (Mickelson, 1971). GBS can aerobically respire using 

externally derived haem and quinones (Yamamoto et al., 2005; Rezaïki et al., 

2008), suggesting these may be derived from the host and/or other vaginal 

bacteria (Rezaïki et al., 2008). Haem and quinone serve as acceptors in the 

electron transport chain reactions. A series of respiration related genes, 

including genes for NADH dehydrogenase and the cytochrome bd subunits 

CydA and CydB have been found in GBS genome sequences (Yamamoto et 

al., 2005). However the biosynthetic pathways for quinone and haem synthesis 

were not found in GBS. Respiration occurred when GBS cultured in an aerobic 

condition with externally supplied quinone and haem (Yamamoto et al., 2005). 



 

48 

 

GBS was cultured in M17 medium, with horse blood and menaquinone added 

as exogenous sources of haem and quinone. The respiration metabolism 

caused an increased GBS growth, with a twofold increase in biomass 

production. The respiration metabolism also produced a higher final culture pH 

and increased survival after 24 hours (Yamamoto et al., 2005). 

Johri et al. (2005) showed that GBS growth rate and environmental 

oxygen influence GBS adherence and invasion to host tissue. GBS adherence 

to human alveolar epithelial carcinoma A549 cells at fast growth rate (td=1.8h) 

was significantly higher than at slow growth rate (td=11h). In the presence of 

oxygen, the capability of GBS to adhere to A549 cells was significantly higher 

than in the absence of oxygen (Johri et al., 2005). For an encapsulated GBS 

strain, the invasion ability into host cells at a fast mass doubling time (td=1.8h) 

was 20 to 700 fold higher than at a slow growth time (td=11h) (Malin and 

Paoletti, 2001). The environmental oxygen level can also affect GBS invasion 

of host cells. In an investigation of GBS invasion of PFSK-1 human 

neuroepithelial cells, CFU/mL recovered under 5% oxygen conditions was 71-

fold higher than with anaerobic conditions (Johri et al., 2003). Also, GBS 

invasion into A549 epithelial cells in the presence of 20% oxygen was 

significantly higher than without oxygen (Johri et al., 2003). GBS adherence 

and invasion to A549 epithelial cells reached a peak at fast growth rate with 

15% oxygen compared with slow growth rate or absence of oxygen (Johri et al., 

2005). One dimensional sodium dodecyl sulphate-polyacrylamide gel (SDS-

PAGE) electrophoresis analysis showed that there were significant differences 

in GBS (type V strain 2603V/R) cell component expression when GBS was 

grown at different growth rates and environments (Johri et al., 2007). A GBS 
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gene microarray experiment found that there were 43 genes upregulated when 

GBS was grown at a fast growth rate with 12% oxygen (high invasive 

conditions) compared with slow growth rate without oxygen (Johri et al., 2007). 

This combined genomic and proteomic research showed that there were 36 

genes and proteins expressed when GBS grew at fast growth rates with 

oxygen, which included 8 surface proteins (Johri et al., 2007).  Protein 

SAG0765, SAG0823, SAG1007, SAG1350, and putative lipoprotein SAG0971 

were upregulated when GBS grew at a fast growth rate. Iron transporter-

binding protein SAG1007 and glutamine-binding protein SAG1466 expression 

were modulated by both growth rate and oxygen level. Penicillin-binding protein 

family members including SAG0519, SAG0287, SAG0765 and SAG2066 were 

found to be expressed during GBS invasion of host cells (Johri et al., 2007). 

GBS production of capsular polysaccharide, C proteins, CAMP factor and beta-

haemolysin at fast growth rate (td=1.4h) were significantly higher than at low 

growth rate of td=11h. However, the production of alkaline phosphatase 

decreased when the GBS growth rate was raised (Ross et al., 1999). GBS 

adherence and invasion to host tissue may be mediated by these components 

and their expression relates to differences in metabolism and environment 

(Mikamo et al., 2004). In contrast to the findings of Johri et al. (2007), Rubens 

et al. (1992) reported that GBS at stationary phase and lag-phase (slower 

growth) were more readily able to invade host cells than at log-phase (faster 

growth). Active protein, DNA and RNA synthesis were necessary for GBS 

invasion of host cells. The GBS invasion into A549 cells was significantly 

inhibited when GBS was treated with minocycline (a protein synthesis inhibitor), 

rifampin (an RNA synthesis inhibitor) and ciprofloxacin (Rubens et al., 1992). 
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1.3.3. pH affects GBS adherence   

The capability of GBS to attach to epithelial cells increased in acidic conditions 

(Tamura et al., 1994). GBS adherence to A549 pulmonary epithelial cells and 

vaginal epithelial cells at pH 4 was 10 to 20 fold higher than at neutral pH. 

There was no difference in GBS adherence to A549 pulmonary epithelial cells 

between log and stationary phase cells. Transcription experiments showed 

there were 317 genes up-regulated and 61 genes down-regulated when GBS 

was incubated in pH 5 media compared with pH 7 medium (Santi et al., 2009). 

In GBS wild type strains, CsrRS (a two component regulatory system, also 

known as capsule synthesis regulator, regulator and sensor components) 

regulated virulence genes including cylE (encoding beta hemolysin) and scpB 

(encoding C5a peptidase) were up regulated in pH 7 media comparing with in 

pH 5 media. These changes were not shown in a ∆csrRS strain. These results 

revealed CsrRS is involved in GBS responses to environmental pH change 

(Santi et al., 2009). The majority of genes involved in response to environment 

pH change include genes regulation transport, metabolism, stress response 

and virulence (Santi et al., 2009). 

 

1.4. Theories of GBS long term survival in relation to colonisation 

The healthy vagina is normally very acidic (pH less than 4.5). This low pH 

environment is a natural barrier employed by the human body to protect against 

microorganisms (Koutsoumanis & Sofos, 2004). GBS long term carriage by 

women might be explained by acid tolerance/adaptation theory or alternative 

adaptations to the acid vaginal environment. These are reviewed below. 
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1.4.1. Acid tolerance responses   

Bacterial resistance to acid killing in normally lethal acid conditions after they 

were transiently exposed to a mild sublethal acidic condition has been defined 

as an acid tolerance response (ATR) (Svensater  et al., 2001, Nascimento et 

al., 2004, Martin-Galiano et al., 2005, Papadimitriou et al., 2007). However, 

there is no research as to whether GBS has an ATR. Research on other 

bacteria showed ATR is a complicated biological mechanism since different 

systems are involved in this process (Koutsoumanis & Sofos, 2004). In the 

ATR, there are several physiological changes associated with the protection of 

the bacteria from the lethal acid environment which include de novo protein 

synthesis and changes in the fatty acid composition of the cell membrane 

(Koutsoumanis & Sofos, 2004).      

Streptococcus mutans can survive in a very acid environment and this 

ability has been well investigated. S. mutans could survive at pH 4.0 after 

preacidification (Takahashi & Yamada 1999). Two-dimensional gel 

electrophoresis results showed there were 64 proteins up-regulated and 49 

proteins down-regulated in S. mutans grown in pH 7 medium compared to pH 5 

medium (Svensater et al., 2001). Proteomic analysis of S. mutans also 

revealed the differentially expressed proteins between pH 5 and pH 7 were 

associated with stress response pathways and involved in DNA replication, 

transcription, translation, protein folding and proteolysis (Len et al., 2004).    

Experiments have shown that non-mutans streptococci also exhibited 

acid tolerance. After preacidification, non-mutans streptococci can survive at 

pH 4.0 for 60 mins (Takahashi & Yamada 1999). Streptococcus sobrinus 
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showed an increased survival rate in pH 5 medium and had the ability to 

decrease the medium pH value though glycolysis (Nascimento et al., 2004). 

Two-dimensional gels showed there were more than 9 proteins up-regulated 

and 22 proteins down-regulated when S. sobrinus was grown in pH 5 medium 

compared to pH 7 medium (Nascimento et al., 2004). Global expression 

analysis of Streptococcus pneumoniae showed there were 126 genes 

expressed differentially in acid shock experiments (Martin-Galiano et al., 2005). 

These experiments suggested that certain sublethal acid conditions may allow 

activation of physiological mechanisms which can protect the bacterial against 

lethal acid conditions (Koutsoumanis & Sofos, 2004).  Koutsoumanis and 

Sofos‟s research found Listeria monocytogenes, Escherichia coli O157:H7 and 

Salmonella typhimurium had different pH ranges of acid resistance and 

different pH values of maximum acid tolerance (Koutsoumanis & Sofos, 2004).   

F1F0-ATPase is involved in Gram positive bacterial resistance to killing in 

acid environments (Cotter et al., 2003). F1F0-ATPase activity increased two-fold 

when S. mutans UA159 was grown in pH 5 medium compared with in pH 7 

medium (Nascimento et al., 2004). Gene transcriptional analysis of S. mutans 

revealed all the genes encoding the eight subunits of F1F0-ATPase were up-

regulated in pH 5.5 medium (Gong et al., 2009). Streptococcus macedonicus 

showed a logarithmic-phase ATR when cells were exposed to sublethal acidic 

conditions. The survival rate of S. macedonicus was decreased when cells 

were treated with N, N‟-dicyclohexylcarbodimide (DCCD), a F1F0-ATPase 

inhibitor, after exposure to sublethal acid conditions (Papadimitriou et al., 

2007).  Two-dimensional gel results showed the β subunit of L. monocytogenes 
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ATPase is induced by acid stress (Cotter et al., 2003). F1F0-ATPase has the 

ability to hydrolyse ATP to generate a proton gradient for different transport 

processes and allows protons to be removed from the cell cytoplasm, resulting 

in a drop in environmental pH (Martin-Galiano et al., 2005). The activity of 

bacterial F1F0-ATPase was up-regulated when the environment pH decreased 

and this contributed to the bacterial ATR (Nascimento et al., 2004, Martin-

Galiano et al., 2005).  

The genome sequence of S. mutans showed it is impossible for these 

streptococci to undergo aerobic respiratory metabolism as there are no genes 

for the aerobic electron transport chain. The carbohydrate fermentation 

pathway is the main source of energy for S. mutans. The end products of 

complete glycolysis and fermentation include lactic acid, acetate, formate, 

ethanol, CO2 and ATP. This process provides ATP for the F1F0-ATPase to 

translocate protons out of the cell and to maintain the cytoplasm at neutral pH 

(Ajdić et al., 2002). Sheng and Marquis found malolactic fermentation by S. 

mutans can protect bacteria against acid killing and contribute to their 

aciduricity (Sheng & Marquis, 2007). Malolactic fermentation produces L-

lactate, carbon dioxide and ATP. The production of ATP is used by the ATPase 

to extrude protons across the membrane (Sheng & Marquis, 2007; Lemme et 

al., 2010). 

The arginine deiminase system (ADS) of L. monocytogenes contributes to 

both growth and protection of bacteria against acid killing (Ryan et al., 2008). 

RT-PCR analysis revealed the ADS gene was upregulated in both acid and 

anaerobic environments with the addition of arginine. Arginine deiminase is 
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involved in conversion of arginine to ornithine, CO2, ammonia and the 

production of ATP. Again, ATP is used to extrude protons across the 

membrane and maintain pH homeostasis. Also, the production of ammonia can 

neutralize acid and protect bacteria from lethal acidic enviroments (Ryan et al., 

2009).  An arginine deiminase deficient bacterium, S. mutans, possesses the 

agmatine deiminase system, which has a similar function as the ADS (Griswold 

et al., 2005). 

The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a 

major sugar transport system of Gram positive bacteria (Lemos & Burne, 2008). 

The PTS is composed of components including enzyme I (EI), the heat-stable 

phosphocarrier protein HPr and several sugar-specific permeases known as EII 

complexes.  The PTS has the ability to transport carbohydrates and contribute 

to acid adaptation (Nascimento et al., 2004; Ajdic et al., 2002). Glucose PTS 

activity was increased when S. sobrinus was grown in pH 5 medium compared 

with pH 7 medium. However, there was no significant difference in S. sobrinus 

F1F0-ATPase levels under these conditions (Nascimento et al., 2004). This 

suggested that the glucose-specific PTS plays an important role in the S. 

sobrinus acid tolerance response. Both F1F0-ATPase and glucose specific PTS 

activities increased at log-phase when S. macedonicus was transiently exposed 

to sublethal acid medium, suggesting these components contribute to S. 

macedonicus resistance to acid killing (Papadimitriou et al., 2007).  

Bacterial two-component systems are signal transduction systems, which 

are composed of a sensor kinase and a response regulator (Kawada-Matsuo et 

al., 2009). The sensor kinase is a transmembrane signal receptor that 
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recognizes environmental changes and phosphorylates a specific histidine 

residue. The response regulator accepts the phosphoryl group transferred from 

the sensor kinase and modulates expression of target genes (Biswas et al., 

2007). Two-component signal transduction systems detect environmental 

changes including oxygen, nutrition and osmotic potential and regulate gene 

expression to allow adaptation to these environmental changes (Biswas et al., 

2007).  Global transcriptional analysis of S. mutans revealed there are about 

14% of the genes expressed differentially between pH 5.5 medium and pH 7.5 

medium (Gong et al., 2009). Both gene transcriptional analysis and real-time 

qRT-PCR showed that genes encoding multiple two-component systems, 

including CiaHR, LevSR, LiaSR, ScnKR, Hk1037/Rr1038 and ComDE, were 

up-regulated in pH 5.5 medium compared with pH 7.5 medium (Gong et al., 

2009). S mutans strains with deletion of histidine kinase genes revealed a 

retarded growth and impaired ATR (Gong et al., 2009).  

There is link between chaperones and acid stress as these proteins 

respond to acid stress in some Gram-positive bacteria (Cotter et al., 2003). 

Both acid shock experiments and proteome analysis of S. mutans revealed the 

heat shock proteins GroEL and DnaK were up-regulated in acid conditions 

(Nascimento et al., 2004; Len et al., 2004). GroEL and DnaK are members of 

the class I chaperonins. These proteins are able to regulate signal transduction 

and are involved in protein folding, translocation and aggregation (Cotter et al., 

2003; Len et al., 2004). Chloramphenicol and actinomycin D partially inhibited 

acid tolerance of S. macedonicus, indicating ATR is related to protein synthesis 

(Papadimitriou et al., 2007). Some bacterial cell wall synthesis inhibitors 
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including vancomycin and penicillin can inhibit the acid tolerance of S. 

macedonicus, which suggest cell wall synthesis is necessary for the ATR 

(Papadimitriou et al., 2006). Cell membrane components including 

monounsaturated fatty acids and longer chain fatty acids increased when S. 

mutans was grown in pH 5 medium compared with in pH 7 medium (Cotter et 

al., 2003). Bacterial signal recognition particle (SRP) pathway is composed of 

SRP54 protein (Ffh), 4.5 or 7S small cytoplasmic RNA (scRNA) and SRP 

receptor (FtsY). The SRP complex is involved in cotranslational translocation 

and secretion of specific proteins through the plasma membrane (Hasona et al., 

2005). S. mutans with deletion of genes endoding Ffh, scRNA and FtsY cannot 

survive under stress conditions, including at pH 5, in 3.5% NaCl and 0.3 mM 

H2O2. This suggests the SRP pathway contributes to bacterial resistance to 

environmental stress changes (Hasona et al., 2005). S. mutans SRP deletion 

mutants showed a decreased membrane ATPase activity in both neutral and 

acid conditions. This is a partial explanation for the susceptibility to acid stress 

of SRP deletion mutants (Hasona et al., 2006).   

The above examples demonstrate that the mechanism of the ATR in 

bacteria can be complicated. F1F0-ATPase, glucose-specific PTS and two-

component systems all are likely to play important roles in bacterial ATR. 

Changes in the composition of the cell envelope, production of heat shock 

proteins and chaperones are also contribute to protection of bacteria from acid 

killing (Cotter et al., 2003). 
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1.4.2. Biofilm formation contributes to acid tolerance    

A bacterial biofilm is composed of groups of bacteria surrounded by an 

extracellular polysaccharide matrix (Kaur et al., 2009; Hall-Stoodley and 

Stoodley, 2009). The extracellular matrix is composed of water, 

polysaccharides, proteins, lipids, extracellular DNA, membrane particles and 

ions (Karatan and Watnick, 2009). This three dimensional complex is a 

coordinated community and allows bacteria to adapt to and survive in host 

environments (Hall-Stoodley and Stoodley, 2009). Bacteria in biofilms detect 

environmental changes and respond to it in order to survive in diverse and 

stressful conditions (Hall-Stoodley and Stoodley, 2009). Biofilms generate 

resistance to antibiotics by decreasing the antibiotic‟s penetration rate and 

mediating bacterial gene expression. Transmission electron micrographs reveal 

biofilms protect bacteria against phagocytes (Hall-Stoodley and Stoodley, 

2009). There are different proteins expressed between biofilm cells of S. 

mutans and planktonic cells (Welin-Neilands and Svensäter, 2007). S. mutans 

biofilm cells expressed significant greater acid tolerance ability compared with 

planktonic cells both at 3 hours and 3 day time points. These experiments 

showed that the survival rate of biofilm-grown S. mutans in pH 3.5 medium after 

transient exposure to pH 5.5 medium was 820 to 70,000 fold more than for 

planktonic cells (Welin-Neilans and Svensäter, 2007). Bacterial acid tolerance 

is increased with increased biofilm density (Welin-Neilands and Svensäter, 

2007).  

Bacterial biofilm formation is regulated by different environment signals 

including mechanical, nutritional, metabolic and host-derived signals, 
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secondary messenger and protein transcriptional regulators (Karatan and 

Watnick, 2009). Recent in vitro experiments have shown that GBS is able to 

form biofilms and the maximum biofilm formation time was 48 hrs (Kaur et al., 

2009). This biofilm formation was influenced by environmental changes 

including pH, carbohydrate and osmolarity. GBS biofilm formation was favoured 

without sugar supplementation of the medium and decreased at pH below 6 

(Kaur et al., 2009). The GBS pilus is an important cell surface component which 

is involved in biofilm formation (Konto-Ghiorghi et al., 2009; Rinaudo et al., 

2010). The PilA and PilB pilus proteins are essential for biofilm formation in 

GBS strain NEM316. There was an impaired biofilm formation in GBS NEM316 

pilus deletion mutants (Konto-Ghiorghi et al., 2009). Similarly, in Streptococcus 

pyogenes, wild-type strain formation of biofilms on polystyrene was five to six 

fold more than that by pilus deletion strains (Manetti et al., 2007).  

These recent studies suggest that formation of biofilms by some GBS 

strains may be an important feature of colonisation in vivo. 

       

1.4.3. Long term survival in stationary phase by streptococci and other 

reference organisms 

Colonisation by GBS in vivo may depend on the organisms ability to withstand 

conditions of low nutrient availability. Studies with other bacteria suggest 

survival in stationary phase may therefore be a relevant in vitro model. In 

neutral Todd-Hewitt broth media, S. pyogenes showed long term survival for 

more than 4 weeks in stationary-phase and remained culturable for more than 1 
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year.  However, the pH of the culture medium can affect the survival of bacteria. 

S. pyogenes survived less than 1 week in medium when the pH was below 5.6 

(Wood et al., 2005). Based on the phenomenon of long-term survival in 

stationary phase, the bacterial life cycle was expanded to five phases: lag 

phase, exponential phase, stationary phase, death phase and long-term 

stationary phase (Finkel, 2006). In death phase most of the cells lose viability. 

S. pyogenes lost more than 99% of viability after 4 days culture (Trainor et al., 

1999). This may be attributed to high density cell cultures exhausting the limited 

nutrients available and inducing bacterial „apoptosis‟ (Finkel, 2006). Surviving 

cells can then use the material of dead cells as their nutrition. After death 

phase, remaining viable cells enter into long-term stationary phase. In this 

phase, bacterial show lower rates of division and keep a balanced rate of „birth‟ 

and „death‟ (Finkel 2006).  After 4 weeks of stationary phase S. pyogenes 

produced two kinds of colonies: atypical large colonies and microcolonies 

(Wood et al., 2005). Proteomic analysis of these two colony types showed they 

possessed both common and unique characters compared with each other 

(Wood et al., 2005). This suggested there was an accumulation of mutants 

surviving in long-term stationary phase and these expressed differences in 

more than metabolism (Wood et al., 2009). S. pyogenes exhibited a starvation 

resistance response in carbon or phosphorous limited medium, with a constant 

cell number for more than 4 weeks. However cell numbers decreased 

dramatically when S. pyogenes was cultured in nitrogen limited medium 

(Trainor et al., 1999). S. pyogenes lost culturability in less than 72 hours when 

cells at long-term stationary phase were transferred from glucose depleted rich 

medium to phosphate buffered saline or by adding antibiotics. This suggested 
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bacteria at long-term stationary phase remain metabolically active (Wood et al., 

2009). Bacterial metabolic pathways were detected by measuring the medium 

components before S. pyogenes entry into stationary phase and at 12 weeks. 

Results showed there was an increase in formate and acetate concentrations 

and decrease in lactate level (Wood et al., 2009). Bacteria use the pyruvate 

pathway to convert lactate to acetate and produce ATP. There were other 

intermediate products such as amino acid catabolic products that could enter 

the pyruvate pathway and it was shown that there was more acetate production 

than lactate consumption (Wood et al., 2009). Thus it appears that the pyruvate 

pathway and amino acid catabolic pathway are the main metabolic pathways of 

bacteria surviving during long-term stationary phase (Wood et al., 2009). 

These studies suggest that stationary phase survival may provide novel 

insights into the ability of GBS to survive low nutrient conditions. 

 

1.4.4. Viable but non-culturable hypothesis  

Stress environments such as nutrient starvation, ranges of culture temperature, 

high or low pH, osmotic and oxygen concentration can be lethal to bacteria. 

Bacteria can sense these environmental changes and activate survival 

mechanisms to enter into a viable but nonculturable (VBNC) state (Oliver, 

2009). In the VBNC state, bacteria are unable to grow on standard medium and 

form colonies but are still alive (Bogosian & Bourneuf, 2001; Oliver, 2004). 

Bacteria in the VBNC state are considered to be in a dormant phase, 

accompanied by very low levels of metabolic activity, macromolecular synthesis 
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and respiration, but ATP levels and membrane potential are still high. VBNC 

cells can be resuscitated in favourable environments such as by changing 

temperature or incubation with other organisms including the protozoan 

Acanthamoeba polyphaga, yolk sacs of embryonated eggs and in vivo animal 

hosts (Oliver 2009). However, whether the cells enter VBNC state as a 

physiological phenomenon to survive in stress environments or this is a 

degenerative process leading to death is still in debate (Mula et al., 2008). 

Bacterial entrance into a VBNC state is accompanied by metabolic 

changes including nutrient transport, respiration rates and macromolecular 

synthesis (Oliver 2004). Proteomic analysis of E. faecalis in growing, starvation 

and VBNC states revealed there are different metabolic levels including 

glycolysis, oxidative phosphorylation and phospholipid biosynthesis among 

these states. This suggests VBNC cells need to change their metabolic 

pathways to survive in harsh environments (Heim et al., 2002). Muela et al. 

(2009) constructed stress environments of E. coli starvation, growth in seawater 

or under visible light. They found there were outer membrane subproteome 

changes under these conditions (Muela et al., 2009). E. coli also underwent 

biochemical changes in the cell wall when undergoing the transition from a 

growth state to the VBNC state. HPLC results showed there was an increase in 

peptidoglycan cross-links and muropeptides with tripeptide moieties and a 

decrease in the length of glycan strands of peptidoglycan in VBNC cells 

compared with growing cells (Signoretto et al., 2001). Since peptidoglycan 

plays an important role in maintaining cell shape in growth stages, the change 
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in the peptidoglycan may be explained as a cellular adaptation to the new 

environment (Signoretto et al., 2001). 

Cumulatively, these studies suggest that entry in a VBNC state may 

provide an alternative mechanism that might promote GBS survival in vivo. 

 

1.5. Proteomics  

Proteomics is defined as the investigation of the total proteins that are 

expressed by an organism at a certain time under a certain condition (Liebler, 

2002). The classical proteomics method is two-dimensional (2D) gel based 

proteomics which is composed of three key techniques: 2D gel electrophoresis, 

mass spectrometry (MS) and bioinformatics (Beranova-Giorgianni, 2003).   

Appropriate preparation of protein samples is essential for good 2D gel 

electrophoresis results. Cells are firstly disrupted and then proteins are 

extracted with lysis solution containing chaotropes, detergents, reductants and 

solubilising agent (Beranova-Giorgianni, 2003). Commonly, 8M urea is used as 

a denaturant which can solubilise and unfold most proteins. 2-4% CHAPS is 

also effective for solubilising samples. 20 to 100 mM dithiothreitol (DTT) is 

usually used as reductant to break any difulfide bonds and maintain proteins in 

a reduced state. Immobilized pH gradient (IPG) buffer is used to prevent protein 

aggregation. Processing protein samples should be carried out at low 

temperatures to avoid protein degradation. After extraction of protein samples, 

some contaminating substances, such as nucleic acids, salts, lipids or 

detergents may remain in the sample and interfere with the 2D results. These 
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substances can be removed by washing with a 2-D Clean-up Kit, acetone, 

ammonium sulphate or trichloroacetic acid (Dunn & Görg, 2001). 

2D electrophoresis is a powerful protein separation technique, which can 

separate thousands of proteins on a single 2D gel. Proteins are separated in 

the first and second dimensions according to two independent properties. The 

first dimension of 2D electrophoresis is isoelectric focusing (IEF), which can 

separate proteins according to their isoelectric point (pI). Proteins carry either 

positive, negative or zero charge depending on their amino acid content. Under 

an electric field and in a pH gradient, a protein will move to the position, its 

isoelectric point, at which it obtains zero charge (Liebler, 2002; Twyman, 2004). 

The second dimension of 2D is sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE), which separates proteins according their 

molecular weights. The negatively charged SDS detergent molecule binds to 

proteins proportionally to their molecular weight. Under an electric field, the 

protein-SDS complexes migrate through the cross-linked polyacrylamide gel to 

the positive electrode (Dunn & Görg, 2001; Liebler, 2002). There is an 

approximately linear relationship between the migration distance and the 

logarithm of the molecular weight. After separation, 2D gels are commonly 

stained by Coomassie blue stain or silver stain methods. Proteins can be 

visualized as spots with different sizes, intensities and position on the gel 

(Beranova-Giorgianni, 2003). However there are still some limitations of 2D 

based proteomics, as only a portion of all the proteins that are present can be 

visualised on 2D gels. Low-abundance proteins, very small or very large, 
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alkaline proteins and hydrophobic proteins are difficult to analyze by 2D 

(Beranova-Giorgianni, 2003). 

After 2D electrophoresis, the protein of interest can be digested into small 

peptides by proteases in preparation for MS analysis (Liebler, 2002). Trypsin is 

the most widely used protease, which cleaves proteins at the position C-

terminal to lysine and arginine residues (Liebler, 2002).  

MS has played an important role in proteomics as it allows the analysis of 

proteins separated by 2D with great accuracy, rapidly and sensitivity.  A typical 

mass spectrometer is composed of: an ionization source, to produce ions from 

sample; a mass analyzer, to separate the ions based on their mass-to-charge 

ratio; a detector system, to detect the ions; and a computer, to record the data 

and analyse data (Patterson, 2001; Liebler, 2002).  

Electrospray ionization (ESI) and matrix-assisted laser desorption 

ionization (MALDI) are the most commonly used ion source techniques. 

Samples ionized by MALDI are dry and co-crystallized with a matrix, which is 

used to analyse simple peptide mixtures. Samples ionized by ESI are 

transferred into gaseous ions at atmospheric pressure and delivered to the 

mass analyser through a capillary tube which experiences an electric field. ESI 

combined with LC-MS is used to analyse more complex samples (Lane, 2005; 

Glish and Vachet, 2003). Accuracy and precision are two important standards 

for any mass analyzer (Glish and Vachet, 2003). Ion trap, time-of-flight (TOF), 

quadrupole and Fourier transform ion cyclotron resonance (FT-ICR) are the 

common types of mass analyzer (Lane, 2005).  
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Peptide fragment fingerprinting (PFF)  is a protein identification method, in 

which the peptide MS/MS spectra are measured by MS and matched to 

corresponding peptides predicted from protein sequence databases. Mascot 

and Sequest are the commonly used search algorithms. In a Mascot search, 

the experimentally measured MS/MS fragment masses are compared with 

peptide sequences databases, and a match probability score is calculated 

(Lane, 2005). 

The fast growth of gene and protein sequence databases provides a 

means to identify proteins expressed in organisms. Bioinformatics tools make it 

easier to access these databases to search, match and identify a protein 

component (Beranova-Giorgianni, 2003; Liebler, 2002). Uni-PROT, trEMBL and 

NCBInr are the widely used protein sequence databases. 

Biological systems are complex and highly dynamic. The proteome will 

reflect the changes in the biological system, including individual proteins of a 

cell, regulatory mechanisms in the cell and environmental factors. Proteomics is 

therefore a highly sensitive and high throughput technique to analyse proteins 

(Liebler, 2002). Thus 2D gel based proteomics is valuable tool to compare the 

changes in a biological system. Recently, multi-dimensional protein 

identification technology (MudPIT) has been applied to proteomics. Although 

MudPIT can identify more proteins than 2D based proteomics, it cannot 

compare the changes in the biological system.  
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1.6. Aims of the present study 

The aims of the present study were to investigate the pathogenesis of GBS by 

developing different in vitro models to explore the GBS growth characteristics in 

conditions associated with maternal colonization, neonatal exposure and 

invasion. This in vitro work would be followed by proteomic investigation under 

these conditions. Specifically, this study aimed to 

1. investigate long term survival of GBS under conditions of nutrient limitation 

and acid exposure, including planktonic and biofilm modes of growth. 

2. Develop an in vitro model of GBS growth reflecting bacterial in vivo 

progression from maternal colonisation to neonatal exposure and to use 

proteomics to explore GBS adaptation under these conditions. 

3. Identify and functionally analyse differentially expressed proteins of GBS 

under the conditions reflecting maternal colonisation and neonatal 

exposure. 

4. Establish an in vitro model of GBS growth with human serum to reflect GBS 

invasion into blood. 

5. Use proteomics to explore GBS adaptation under conditions relevant to host 

invasion i.e. exposure to human serum. 

6. Identify and functionally analyse differentially expressed proteins of GBS 

grown in the presence and absence of human serum. 



 

67 

 

Chapter 2 

Materials and Methods 

2.1. GBS growth experiments 

2.1.1. Bacterial strains, media and microbiology techniques 

2.1.1.1. Bacterial strains 

S. agalactiae strain A909 was the principal strain used in the project. Strain 

A909 is a serotype 1a strain which was originally collected by Rebecca 

Lancefield and which has been genome sequenced (Tettelin et al., 2005). S. 

agalactiae strain A909 was obtained from Dr Dean Harrington (University of 

Bradford). S. agalactiae strain NEM316 is a serotype III strain that has been 

genome sequenced (Glaser et al., 2001) and was kindly provided by Dr 

Shaynoor Dramsi (Institut Pasteur, Paris, France). GBS strains NCTC 8181T, 

the type strain of S. agalactiae, NCTC 8184 and NCTC 9993 were from the 

collection of Professor Iain Sutcliffe (University of Northumbria) and were 

originally obtained from the National Collection of Type Cultures. GBS strain 

CT1 is a clinical isolate that was obtained from Dr Roland Koerner (Sunderland 

Royal Hospital). 

 

2.1.1.2. Media 

All media and solutions were made up with 18.2 MΩ H2O purified by a 

MILLIPORE Direct-Q H2O purification system. All media and solutions were 
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sterilised by autoclaving (BioCote) at 121oC, with a pressure of 1.05 par for 20 

mins. The pH of the media were adjusted using HCl additions and a pH Meter 

3310 (JENWAY) before autoclaving. Liquid media were stored at room 

temperature and solid media were stored at 4oC.  

 

2.1.1.2.1. Todd Hewitt Broth medium.  

Todd Hewitt broth (THB) contained Todd Hewitt Broth base (Oxoid), 3.64 g per 

100 ml. The pH of THB medium was adjusted to 4.3, 5, 6 and 7 with HCl.  Todd 

Hewitt Agar (THA) was made from THB supplemented with 1.5 g agar per 100 

ml.  After autoclaving approximately 20 ml medium was poured into each petri 

dish once the medium had cooled to about 50oC. 

 

2.1.1.2.2. LB broth.  

LB broth contained the following per 100 ml: tryptone, 1 g; yeast extract, 0.5 g; 

and sodium chloride, 1 g. 

 

2.1.1.2.3. Vagina Simulative Medium 

Vagina simulative medium (Table 2.1) was prepared as described by Owen and 

Katz (1999). To add glucose, a 50% w/v glucose stock was prepared and 

sterilised separately. To prepare 100 ml, all ingredients were combined into a 

volume of 90 ml. After pH adjustment to pH 4.2, the medium was adjusted to 

99ml. After autoclaving, 1 mL glucose stock was added to the medium. 
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Table 2.1 Vagina simulative medium as defined by Owen and Katz (1999). 

Component 100ml 

Sodium chloride 350 mg 

Potassium hydroxide          140 mg 

Calcium hydroxide              22 mg 

Bovine serum albumin 1.8 mg 

Lactic acid 200 mg 

Acetic acid, glacial 100 mg 

Glycerol 16 mg 

Urea 40 mg 

Glucose 500 mg 
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2.1.1.2.4. GBS growth in human serum. 

100 µl GBS A909 overnight starter culture was inoculated into 5 ml THB and 5 

ml human serum (Sigma H4522 - 100mL) and incubated at 37oC with shaking. 

Colony forming units (CFU)/mL were determined at 2, 4 and 6 hours (section 

2.1.2.2). Human serum from human male AB plasma was stored at -20oC and 

thawed immediately before use. The experiment was performed in a Class II 

Microbiological Safety Cabinet (Envair) sterilised before use with 70% ethanol.  

 

2.1.1.2.5. Comparison of GBS A909 growth in pH 5 THB with and without 

10% human serum.  

20 ml pH 5 THB with 10% human serum medium was made by adding 3.64g 

THB to 80ml 18.2 MΩ H2O and adjusting pH to 5. The medium was adjusted to 

90ml and divided into 5 aliquots of 18 ml in Universals and autoclaved. 2 ml of 

human serum was added to each universal before inoculation.  

200 µl GBS A909 overnight starter culture was inoculated into 20 ml pH 5 THB 

with and without human serum, and incubated at 37oC.  OD and CFU/mL were 

determined at 0, 2, 4, 6, 8 and 24 hours time points (Section 2.1.2.2).  

 

2.1.1.2.6. M17 agar and M17 with heme/menaquinone supplementation  

M17 agar medium (Oxoid, 10 g per 100 ml) was autoclaved and cooled to 

50oC. 400 µl of a 50% w/v glucose stock was added to the M17 agar medium to 

give a final concentration of 0.2%. Approximately 20 ml of medium was poured 

into each Petri dish.   
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M17 agar plates were supplemented with menaquinone and heme (to 

allow respiration metabolism, M17R medium) as described by Yamamoto et al. 

(2005). A 20 mM menaquinone stock (Vitamin K12, Sigma) was prepared 

containing 8.88 mg/ml menaquinone in 100% ethanol. The menaquinone stock 

was preserved at -20oC.  

Alkaline water (0.05M NaOH) was prepared containing 2 mg/ml NaOH. 

Heme stock (20 mM, Sigma) was prepared containing 13.0 mg/ml heme diluted 

in alkaline water. The heme stock was preserved at -20oC and filter sterilized 

before use.          

 To prepare M17R agar plates with menaquinone and heme, M17 agar 

medium was autoclaved and cooled to 50oC. 400 µl of 50% w/v glucose stock, 

50 µl menaquinone stock (final concentration of 10 µM) and 50 µl of heme 

stock (final concentration of 10 µM) were added to the M17 agar medium. 

Approximately 20 ml of medium was poured into each Petri dish.   

GBS strains A909 and 8181 were inoculated from THA plates using a 

sterile wire loop to a 5 ml THB pH 7.4 starter culture and shaken overnight at 

37oC. 100 µl of each GBS culture was serially diluted and 100 µl samples from 

the 106 dilution transferred onto replicate agar plates (six M17 and six M17R). 

The inoculum was spread using sterile Q tips. All plates were wrapped in 

parafilm to stop them drying out. After incubating at 37oC for 24 hours (3 plates, 

each medium) and one week (3 plates, each medium), the CFU/mL were 

counted.  
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2.1.1.3. Microbiology techniques 

2.1.1.3.1. Bacterial stocks and storage 

Bacterial strains were stored in a final concentration of 15% w/v glycerol. 500 µl 

30% (w/v) glycerol was mixed with 500 µl bacterial broth culture and stored at -

80oC for long term use and -20oC for short term use. 

For short term storage, GBS strains were streaked to yield single 

colonies on THA plates. Prior to streaking, THA plates were dried by placing 

them open, face down at 65oC for 10 minutes. One loop of GBS starter culture 

was streaked on the surface of the agar using a sterile wire loop.  The plate 

was incubated face down in an incubator at 37oC overnight. GBS strains were 

stored for up to 1 month on THA plates at 4oC. 

 

2.1.1.3.2. Gram staining of GBS 

A clean microscope slide was prepared by quickly passing through a Bunsen 

flame. Bacteria from a single colony were mixed with a droplet of sterile 18.2 

MΩ water using a sterile wire loop and spread over the central part of the slide 

to produce a thin film. Alternatively a small loopful of broth culture was applied 

to the slide. The film of bacteria was air-dried at room temperature and then 

passed through the Bunsen flame to fix it. The film was cooled before staining. 

Firstly, the film was flooded with methyl violet for 30-40 seconds and 

rinsed with tap water. Secondly, the film was flooded with Gram‟s iodine for 30-

40 seconds and rinsed with tap water. Then the film was decolourised by 

flooding with acetone for 2-3 seconds and rising with tap water immediately. 
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Finally, the film was counterstained with safranin for 15-20 seconds. After 

rinsing with tap water, the film was gently blotted dry with a paper towel.  

Gram-stains were examined directly by microscopy using the oil 

immersion (×100) lens. Gram-positive bacteria were shown as deep purple and 

Gram-negative bacteria were shown as pale pink. 

 

2.1.1.3.3. Lancefield typing of streptococci 

A ProlexTM streptococcal grouping latex kit (Pro-Lab Diagnostics) was used for 

Lancefield typing of streptococci. Following the manufacturer‟s instructions, one 

drop of Extraction Reagent 1, one loop of GBS culture (or a few colonies from a 

THA plate) and one drop of Extraction reagent 2 were added to an eppendoff 

tube serially and mixed together for 5-10 seconds. Five drops of extraction 

reagent 3 were added to the tube and the contents mixed together. 

One drop of „Blue latex suspension Group B‟ was dispensed onto a 

circle on the test card. One drop of extract from the GBS tube was pipetted 

onto the test card and mixed with the Blue latex. The card was gently rocked for 

one minute and the agglutination observed. GBS strains showed aggregation. 

In some cases, a negative control showing no aggregation was performing by 

testing the cell extracts with „Blue latex suspension Group A‟ which only 

aggregates S. pyogenes.  

GBS cultures were checked by Gram stain and Lancefield typing before 

every experiment to make sure the cultures were pure.  
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2.1.1.3.4. Phosphate buffered saline (PBS)  

PBS solution was made as shown in Table 2.2, and the pH was adjusted to 7.4 

and autoclaved. PBS stock was stored at room temperature. PBS was used to 

wash harvested cells and wash biofilms. 

 

2.1.2. GBS growth. 

 2.1.2.1. GBS growth curves measured by microtiter plate reader 

GBS strains were inoculated from THA agar plates using a sterile wire loop to a 

5ml pH 7 THB starter culture and incubated at 37oC shaking overnight. A 48-

well tissue culture plate was used for this assay. 1 ml THB medium (pH 4.3, 5, 

6 and 7) was added into quadriplicate wells. 25 µl GBS overnight starter culture 

was inoculated into 3 replicate wells (1:40 dilution) and one blank well (without 

inoculum) was left as a control. Growth curves were measured as increase in 

optical density (OD) at 570 nm using a BIO-TEC ultra microplate reader 

ELx808. Plates were incubated at 37oC. Optical density was measured every 

20 min. following automatic shaking of the microtitre plate. The experiment was 

repeated for three times for each strain tested and the data were analysed 

using Excel.  

 

2.1.2.2. GBS growth quantification at pH 4 by measured by colony forming 

unit formation  

200 µl GBS A909 overnight starter culture was inoculated into 20 ml (1:100 
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Table 2.2 Phosphate buffered saline 

Components 1 Litre 

NaCl 8 g 

KCl 0.2 g 

KH2PO4 0.2 g 

Na2HPO4.12H2O 1.44 g 
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dilution) THB media with different pH values (pH 4.3 and pH 7) and incubated 

at 37oC. At different time points (t=0, 2, 4, 6, 24 and 48 hrs), the GBS culture 

was sampled by adding 100 µl culture into 900 µl THB. GBS was serially 

diluted and 100 µl of culture was spread onto THA plates using a sterile Q tip 

(Figure 2.1). After incubating at 37oC for 24 hours, the colony forming units 

(CFU) were counted and CFU/mL in the original culture were calculated. The 

experiment was repeated for three times and a replicate with a different strain 

(GBS strain 8181) was carried out. 

 

2.1.3. GBS Long term survival experiments 

2.1.3.1. GBS long term survival experiments 

200 µl GBS overnight starter cultures were inoculated into 20 ml (1:100 dilution) 

THB media with different initial pH values (pH 5 and pH 7) and incubated at 

37oC. GBS long term survival experiments were carried out by taking samples 

at 1 day, 2 day, 3 day, 1 week, 2 week, 3 week, 4 week and 8 week time points. 

100 µL samples were serially diluted and cultured for CFU/mL determination 

(as in Section 2.1.2.2). In some experiments, 5 µL samples were also taken for 

Live-Dead staining (Section 2.1.4). 

 

2.1.3.2. Measuring survival of multiple GBS strains in stationary phase 

using a spot plate method 

200 µL each of overnight starter cultures of GBS strains A909, 8181, 8184,  
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Figure 2.1 Sampling and serial dilution strategy for determining CFU/mL during GBS growth. Sample calculation: for a 

sample diluted for 4 10-fold dilutions with final colony count of 7 CFU per 100 μL is 7×10×104=7×105 CFU/mL. 
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9993 and CT1 were inoculated into 20 ml THB medium with different initial pH 

(4, 5 and 7) at 37oC. 5 L from each culture were spotted directly onto THA 

plates (Figure 2.2). Samples were taken at day 1, 2, 3, and week 1, 2, 3, 4 time 

points. Broth cultures were shaken to resuspend cells that had settled out 

under gravity before spotting onto the THA plates. Fresh (overnight) cultures of 

GBS strain A909 were spotted in duplicate onto each plate as positive controls 

(Figure 2.2). Sampling 5 L directly onto plates gives a lower limit of detection 

of 200 CFU/mL (= 1 CFU/5 L). 

 

2.1.4. GBS Live-Dead staining 

Live/Dead staining was performed with ethidium bromide/acridine orange 

solutions (kindly provided by Dr. Lisa Lee-Jones, University of Northumbria). 

ethidium bromide/acridine orange solution contained per ml: 

Ethidium bromide 10mg/ml stock          100 l  

Acridine orange 10mg/ml stock               30 l 

Phosphate buffered saline                     870 l  

Solutions were mixed well and diluted 1:100 in phosphate buffered saline 

to make a working solution containing final concentrations of 10 g/ml ethidium 

bromide and 3 g/ml acridine orange. Working solution was stored at -20oC for 

extended periods and 4 C for up to 1 month. 

GBS was broth cultured in 5 ml THB (pH 5 and pH 7) and incubated at 

37oC. Samples were taken at 6, 24, 48, 72 hrs and 1 week timepoints. 5 l of  
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Figure 2.2 Long term survival measured by the spot plate method. 
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culture and 5 l of working solution were mixed gently on a microscope slide 

and covered with a coverslip. The slide was sealed with clear nail varnish to 

stop the dye escaping.  

Slides were immediately observed using a Simens Olympus BX40 

microscope in fluorescence mode with a reading filter of 515 nm. The cells 

were observed under the microscope using visible light at 100X magnification. 

Keeping the visible light on, the microscope was switched to fluorescence 

mode to observe the cells. Live cells are observed to fluoresce green and dead 

cells fluoresce red. Live and dead cell numbers were counted for 400 cells in 

total.  

 

2.1.5. Regrowth of extended stationary phase cells 

GBS A909 was broth cultured in 20 ml of pH 5 and pH 7 THB and incubated at 

37oC to establish replicate stationary phase growths. 1 ml of each GBS A909 

culture was inoculated into 20 ml of THB (pH 7) at 24 hrs, 1 week, 2 week and 

4 week time points. OD and CFU/mL of regrown culture were measured at 0 

hrs, 6 hrs and 24 hrs. OD was determined by taking 1 ml of sample into a 

cuvette and measurement at 600nm using a CE 2030 Spectrophotometer 

(CECIL). CFU/mL was determined essentially as described in Sections 2.1.2.2., 

with aerobic and anaerobic plate incubation conditions. Duplicate 100 µl 

samples serially diluted culture were spread onto pH 5 and pH 7 THA plates. 

One pH 5 and one pH 7 THA plate was incubated at 37oC in a candle jar (with 

GasPak CO2 generator strips; anaerobic condition) for 24 hrs. One pH 5 and 
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one pH 7 TH agar plate was incubated 37oC in an incubator (aerobic condition) 

for 24 hrs. The experiments were repeated for 3 times. All samples were 

checked by Gram staining and Lancefield typing to confirm GBS purity. 

 

2.1.6. Acid tolerance experiments 

2.1.6.1. Auto acidification measurements 

200 µl overnight starter culture of GBS A909 was inoculated into 20ml THB (pH 

4.2, 5, 6, 7.4) and incubated at 37oC. OD and medium pH were measured at 0 

hrs, 6 hrs, 1 day and 7 days growth. To measure medium pH, cells were 

harvested by centrifugation at 4000 rpm (2320g) for 15 min at 4oC. The 

supernatants were removed and autoclaved. The pH of the supernatants was 

measured using a pH meter. The experiments were repeated 3 times.  

200 µl overnight starter culture of GBS strains (A909, 8181, 8184, 9993 

and CT1) was inoculated into 20ml THB (pH 4.0, 5 and 7.4) and incubated at 

37oC. After incubating for 4 weeks, cells were harvested by centrifugation at 

4000 rpm (2320g) for 15 min at 4oC. The supernatants were removed and 

autoclaved. The pH of the supernatants was measured using a pH meter.   

 

2.1.6.2. Adaptation experiments - strategy for exposure to acid 

200 L overnight THB (pH 7.4) starter culture of GBS A909 was inoculated into 

20 ml pH 7 THB and incubated at 37oC. After incubation for 3 hrs, 200 L of the 

pH 7 culture was 1:100 diluted into 20ml pH 6 THB and incubated at 37oC 
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overnight.  200 L of the pH 6 culture was then 1:100 inoculated into 20ml pH 5 

broth and pH 6 broth. CFU/mL were measured at 6 hrs (to give values set to 

100%), 24 hrs, 48 hrs, 72 hrs, 1 week and two week time points. 

 

 

2.1.7. Biofilm experiments 

2.1.7.1. Survival of biofilm grown GBS 

GBS A909 biofilm cultures were established by adding 2 ml pH 5 THB into each 

well of columns 1-3 of a 24 well plate and adding 2 ml of pH 7 THB into each 

well of columns 4-6. After checking the purity, 50 µL of a GBS strain A909 

starter culture was inoculated into each well. The plate was put into a 

Tupperware box with wet tissue paper (soaked with sterile distilled water, to 

prevent drying out) and incubated at 37°C.  

After incubation for 24 hours, the medium in each well of row 1 was 

removed carefully without disturbing the cells that had settled into a biofilm. The 

surface was gently washed with 1 ml of PBS twice. Each well in row 1 was 

processed as follows: 1 ml of pH 7 THB was added to the wells in columns 1 

and 4. Bacteria were resuspended by agitation, repeatedly being drawn up and 

expelled from an automatic pipette.  CFU/mL counts for the resuspended 

bacteria were determined by serial dilution and spreading onto THA plates. For 

wells in columns 2 and 5, 1 ml of PBS was added into each and the cells were 

resuspended as above. Bacteria resuspended in PBS were Live-Dead stained 

(see Section 2.1.4). Biofilm formation by GBS in columns 3 and 6 were assayed 

by crystal violet staining (see Section 2.1.7.2 below). 
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After sampling, the plate was returned to the incubator at 37°C. The 

CFU/mL counting, Live-Dead staining and Crystal violet staining assays were 

repeated at 4 day, 7 day and 14 day timepoints for the GBS A909 cultures in 

rows 2, 3 and 4 (Figure 2.3). 

 

2.1.7.2. Crystal violet staining assay for biofilm formation  

The crystal violet staining method was adapted from Marinetti et al. (2007). The 

medium above the biofilm grown GBS was gently removed by pipette and the 

cells PBS washed as described in Section 2.1.7.1. 1 ml 0.2% w/v crystal violet 

was added to each well. After staining for 10 minutes at room temperature, the 

crystal violet was removed from each well and cells washed with 1 ml distilled 

water 3 times. 1 ml of 1% sodium dodecyl sulphate (SDS) was added and left 

for 10 min to extract bound crystal violet. The extracted crystal violet was 

removed and the absorbance read at 540 nm.  

 

2.1.7.3. Assay for improving biofilm formation by coating plates with 

extracellular matrix molecules (hyaluronic acid and heparin) 

Assays to improve biofilm formation were carried out using 48 well tissue 

culture plates. To prepare the plates, 50 µL of sterile water was added to each 

well of the first row. 50 µL heparin stock (1 mg/mL in PBS; Sigma) was added 

to each well of the second row. 50 µL hyaluronic acid stock (1 mg/mL in PBS; 

Sigma) was added to each well of the third row. 50 µL heparin stock and 50 µL 

hyaluronic acid stock were added to each well of the fourth row. The plate was 

left at room temperature for 1 hour to allow binding of the polymers to the  
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T=24 h →

T=96 h →

T=1 wk →

T=2 wk →

Columns 1-3 TH pH 5 Columns 4-6 TH pH 7

Biofilm from well resuspended and assayed for c.f.u./mL at time point shown

Biofilm from well resuspended and immediately assayed by Live/Dead staining 

at time point shown

Biofilm from well assayed in situ for biofilm formation by crystal violet staining at time 

point shown

 

Figure 2.3. Long term survival of biofilm grown GBS assessed using three different assays. 
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bottom of the wells before careful removal of the excess liquid and air drying for 

30 mins. 

After coating, 2 mL of THB pH 7 was added to each well and inoculated 

with 100 µL overnight starter culture of either GBS strain A909 (columns 1-3) or 

NEM316 (columns 4-6). The microtitre plate was incubated at 37°C for 24 hrs. 

The supernatant medium was then removed and the biofilm cells washed with 1 

ml sterile water. 1 ml THB was then added and the cells in each well 

resuspended for colony counting.  

 

2.1.7.4. Alternative models for biofilm formation 

An overnight starter culture of GBS A909 was 1:25 inoculated into four different 

pH 5 THB cultures (A, B, C and D), each containing 25 mL medium. All culture 

samples were incubated at 37oC and CFU/mL were measured at 24 hrs and 1 

week timepoints.  

Culture A (planktonic culture, control) was set up in 50 ml Universal tube 

and incubated as a standing culture. CFU/mL were measured at 24 hrs and 1 

week timepoints. Culture B (early biofilm formation) was set up in a 250 mL 

CELLSTAR® tissue culture flat flask and incubated for 24 hrs. The supernatant 

medium was discarded and the biofilm surface was gently washed with 10ml 

sterile PBS. Biofilm cells were resuspended with 25ml sterile PBS and CFU/mL 

were measured.  Culture C (an established biofilm, fed with THB) was set up in 

a tissue culture flat flask. Cells were fed on days 2, 4 and 6 by replacing spent 

medium with 25ml fresh 1/10th strength THB. After 1 week, the biofilm surface 
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was gently washed with 10ml sterile PBS. The biofilm cells were resuspended 

with 25ml sterile PBS and CFU/mL were measured.  

Culture D (an established human serum fed biofilm) was set up in a tissue 

culture flat flask and incubated. Cells were fed with 25ml 1/10th strength human 

serum medium at days 2, 4 and 6. After 1 week, the biofilm surface was gently 

washed with 10ml sterile PBS. The biofilm cells were resuspended with 25ml 

sterile PBS and CFU/mL were measured.  

 

2.1.8 Statistic methods: 

GBS growth experiments and proteomic experiments were analyzed 

statistically by using the SPSS Independent-sample t-test. Experimental data 

were set as groups and entered into SPSS16.0 data set. Data were analyzed 

by Compare Mean- Independent-Sample T Test. There was considered to be a 

statistically significant difference in the mean scores for the two groups where 

the p value was < 0.05. 

 

2.2. Methods of proteomics 

The strategy for the proteomics analysis is summarised in Figure 2.4. 

 

2.2.1. GBS A909 biomass culture 
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Figure 2.4. General steps of proteomics. 
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2.2.1.1. Biomass for proteomic investigation GBS grown under conditions 

associated with neonatal exposure 

Acidic micro-aerobic conditions were induced by culturing GBS A909 in 100 ml 

medi-flat flasks with 100 ml pH 5 THB. Flasks were incubated at 37oC as 

standing cultures. Cells were harvested after culturing for 6 hours. In this time 

the cells reached early stationary phase with OD600 of about 0.6. Subsequent 

neutral aerobic conditions were achieved by diluting a sample of the standing 

culture 1:100 into a 500 ml conical flask containing 100 ml pH 7.2 THB. Flasks 

were incubated at 37oC with shaking at 100 rpm to provide aeration. Cells were 

harvested after culturing for 3 hours. In this time the cells reached mid-

exponential phase with OD600 about 0.6. The strategy for growing biomass for 

2D electrophoresis analysis is summarised in Figure 2.5. Cultures from 

conditions P1 and P2 were harvested by centrifugation at 4000 rpm for 30 mins 

at 4oC. The cell pellets were washed with 10 ml ice cold PBS and centrifuged 

again at 4000 rpm for 30 mins at 4oC. This PBS wash was carried out 3 times 

in total. The washed cell pellets were preserved at -20oC for future use. 50 ml of 

original culture was used as one sample for proteomics. 

 

2.2.1.2. Biomass for proteomic investigation of GBS exposure to human 

serum 

Square polystyrene plates (Greiner, 12×12 = 144cm2) were sterilised with 

ultraviolet radiation overnight before use. 100 ml THB agar with 10% human 

serum plates (TH-HS) were made by adding 3.64 g THB and 2 g agar to 80 ml 
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OD600

0

1.0

1 2

TH pH 5 growth, standing TH pH 7 growth, shaking

 

Figure 2.5. Comparing early stationary phase, pH 5 microaerophilic grown cells with mid-log pH 7 aerobic grown 

cells. Cells for proteomic analysis were harvested at time points indicated by 1 and 2.
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18.2 MΩ H2O and the pH adjusted to 6. The medium was adjusted to a final 

volume of 90 ml and autoclaved. When the medium cooled down to 55oC, 10 

ml of human serum was added, mixed well and the medium poured into the 

square plates. 

1 ml GBS A909 overnight  starter culture was spread onto THA and THA-HS 

square plates. The plates were incubated at 37oC for 48 hours. After 48 hours 

culture, one plug of culture was removed into a microcentrifuge tube and the 

CFU/mL determined (section 2.1.2.2). Cultures from the surface of the square 

plates were harvested and washed three times with 10 ml ice cold PBS and 

spun down (section 2.2.1.1). The cell pellets were preserved at -20oC for future 

use. 25 ml of resuspended culture (25% of bacteria from the surface of 1 plate) 

was used as one sample for proteomics. 

 

2.2.2. Protein extraction and purification 

2.2.2.1. Protein extraction 

Lysis solution was made of 4.8 g urea and 0.4 g CHAPS in 10 ml distilled water. 

Lysis solution was divided into small volumes (e.g. 500 µl) and preserved at -20 

oC.  

100 µl lysis solution with 2 µl IPG buffer (Amersham Bioscience, UK, 

added into lysis solution immediately prior to use) was added to the cell pellet 

(one sample for proteomics) and the cells resuspended. The sample solution 

was transferred into a 1.5 ml microcentrifuge tube and sonicated. Each sample 

was sonicated at an amplitude of 14 microns for a total of 30 seconds, with 10 
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second intervals between each 10 seconds of sonication. The microcentrifuge 

tube was left on ice throughout the whole sonication process to avoid protein 

degradation. After sonication, the sample was spun down at 12,000xg at 4oC 

for 45 minutes.  Then the ca. 100 µl supernatant, containing the extracted 

proteins, was transferred to a new microcentrifuge tube and the pellet was 

discarded. 

 

2.2.2.2. Protein purification. 

2.2.2.2.1. Protein purification using a 2D clean up kit 

The supernatant was processed with a 2D clean up kit (Amersham UK). 300 µl 

precipitant was added to the protein sample and mixed by vortexing. After 

incubation on ice for 15 minutes, 300 µl of co-precipitant was added to the 

mixture and mixed by vortexing briefly. The sample was centrifuged at 

12,000xg for 5 min at 4oC. The supernatant was carefully removed by 

micropipette so as not to disturb the protein pellet. 40 µl of co-precipitant was 

added on top of the pellet and incubated on ice for 5 minutes. The sample was 

centrifuged at 12,000xg for 5 min at 4oC and the supernatant was carefully 

removed and discarded. The protein pellet was dispersed by adding 25 µl 

distilled water and vortexing for 5-10 seconds. 1 ml pre-chilled (-20 oC for at 

least 1 hour) wash buffer and 5 µl wash additive were added. The mixture was 

incubated on ice for 30 minutes and vortexed for 20-30 seconds every 10 

minutes. The sample was centrifuged at 12,000xg for 5 min at 4oC and the 

supernatant was carefully removed and discarded. The protein pellet was 



 

92 

 

briefly air dried and resuspended with rehydration solution. 

 

2.2.2.2.2. Protein purification using acetone precipitation methods 

To precipitate proteins with acetone, four sample volumes of pre-chilled (-20oC) 

acetone were added to the protein suspension. The sample was mixed by 

vortexing and incubated at -20oC for more than an hour. After centrifugation at 

13,000xg for 10 minutes, the supernatant was decanted. The protein pellet was 

washed with 4 sample volumes of pre-chilled 80% acetone and centrifuged at 

13,000xg for 10 minutes. After removing the supernatant, the pellet was briefly 

air dried (about 2 minutes) at room temperature and resuspended with 

rehydration solution. 

 

2.2.3. Protein separation using 2D SDS-PAGE 

2.2.3.1. Loading proteins on Immobiline DryStrip gels 

Protein samples were dissolved in 350 µl rehydration solution (lysis solution 

supplemented with 4 mg/ml dithiothreitol (DTT), 7 µl IPG buffer (pH 4-7) and 

3.5 µl 1% bromophenol blue solution). The sample was sonicated and 

centrifuged briefly to remove undissolved protein. 

Before loading a protein sample onto the gel strip, the Immobiline 

DryStrip reswelling tray was levelled by adjusting the bubble in the centre of the 

spirit level. The full 350 µl protein sample was pipetted into one channel of the 

reswelling tray. The Immobiline Drystrip (pH 4-7, 18 cm; GE Heathcare) was 
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taken from its protective cover and placed onto the protein sample in the 

channel  with gel side down and the anodic (+) end toward the tray end. The 

Immobiline DryStrip gel was moved gently to remove any bubbles between the 

gel strip and the reswelling tray. 4ml of DryStrip Cover Fluid (GE Healthcare) 

was pipetted on each of gel strips to prevent evaporation and urea 

crystallization. The DryStrip gel was rehydrated at room temperature overnight. 

 

2.2.3.2. Isoelectric focusing (IEF) 

IEF (i.e. the first dimension) was carried out by using a Multiphor II 

electrophoresis system (Amersham Bioscience) and the Immobiline DryStrip 

Kit. Before putting the immobiline DryStrip tray onto the cooling plate, 10 ml of 

DryStrip Cover Fluid was poured on top of the cooling plate. Larger air bubbles 

were removed to ensure a good thermal contact between the cooling plate and 

the tray. The anode and cathode electrode leads on the tray were connected to 

the Multiphor II unit. After pouring 10 ml of DryStrip Cover Fluid onto the 

Immobiline DryStrip tray, the immobiline DryStrip aligner was placed on the 

surface of DryStrip tray with the groove side up. 

The rehydrated DryStrip gel was removed from the reswelling tray to the 

channel of DryStrip tray with the gel side up. The gel was placed with the 

anodic (+) ends toward the anodic side of Multiphor II unit. Two 11 mm 

electrode contact strips were cut, soaked with 0.5 ml distilled water and placed 

across the anodic and cathode end of the DryStrip gels. The electrodes were 

then placed on the top of electrode contact strips and pressed. 20 ml of 
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DryStrip Cover Fluid were poured onto the DryStrip gels. The lid was placed on 

the unit and the power supply was connected to the unit.  

The IEF cooling system (Techne Circulator C-100 with TECAM heat 

exchanger 1000) was set up at 20oC. The IEF was programmed according to 

Table 2.3. After running the IEF dimension, the Immobiline DryStrip gels were 

moved into a petri dish and preserved at -80oC prior to the second dimension 

electrophoresis. 

 

2.2.3.3. Equilibration  

Equilibration buffer (1.5 M Tris-HCl, pH 8.8) contained Tris base 181.7 g per 

litre. The pH of the equilibration buffer was adjusted to 8.8 with HCl. The buffer 

was autoclaved and stored at room temperature. Equilibration buffer was used 

to prepare SDS equilibration buffer stock (Table 2.4), which stock was stored at 

-20 oC. Prior to the second dimension, the Immobiline Drystrip gels were 

equilibrated at room temperature. Each DryStrip gel was soaked in 10 ml SDS 

equilibration buffer stock with 100 mg DTT (1% w/v) added and shaken at room 

temperature for 15 minutes. The solution was discarded and the gel was further 

soaked in 10 ml of SDS equilibration buffer stock with 450 mg iodoacetamide 

(IAA, 4.5% w/v) added for 15 minutes. Then the Immobiline DryStrip gel was 

soaked with 18.2 MΩ H2O for 10 minutes. 
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2.2.3.4. Resolving gel and stacking gel preparation 

SDS resolving gels and stacking gels were prepared according to the recipes in 

Table 2.5 and Table 2.6. 10% SDS stock solution was made by adding 10 g 

SDS in 100 ml 18.2 MΩ H2O. The solution was stored at room temperature. 

10% w/v ammonium persulphate (APS; 100 mg/mL) was prepared either fresh 

in 18.2 MQ/cm H2O or from a freshly defrosted aliquot stored at -20°C. 

 

2.2.3.5. Casting 2D gels 

Two clean glass plates (one of 20×20 cm and another 20×22 cm) were 

separated by 1.5 mm spacers and assembled by clamps on both sides. The 

glass plate sandwich was set standing on the rubber gasket of a plate holder. 

18.2 MQ H2O was poured between the two plates and left for 20 minutes to 

check for leakage, then decanted and the space dried with filter paper.  

The ingredients of the resolving gel solution (Table 2.5) were mixed gently 

and pipetted into the space between the plates. The solution was pipetted to 

about 2 cm below the top of the short plate and with care taken to avoid the 

formation of air bubbles. Then 18.2 MΩ H2O was added to the top of resolving 

gel to produce a straight top edge. The resolving gel was left for 50 minutes to 

polymerise. After the gel had polymerised, the 18.2 MΩ H2O was removed from 

the top of gel with clean absorbent paper. A 1.5 mm thick comb with a large 

DryStrip gel well and a small marker well was inserted between two the plates 

at the top. The ingredients of the stacking gel solution (Table 2.6) were mixed 

and pipetted into the space between the comb and the resolving gel. The  
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Table 2.3. 2D SDS-PAGE IEF conditions. 

Step Voltage mA W Time (h) 

1 500 2 5 0.1 

2 500-3500 2 5 1.5 

3 3500 2 5 7 

 

 

Table 2.4. SDS equilibration buffer solution stock.  

Contents 200 ml includes 

Equilibration buffer 10 ml 

Urea 72 g 

Glycerol 69 ml 

SDS 2 g 

Water Added up to final volume of 200 ml 
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Table 2.5. 14% (w/v) acrylamide resolving gel recipe. 

18.2 MΩ H2O 58 ml 

40% acrylamide 52.2 ml 

1.5 M Tris-HCl, pH 8.8 37.5 ml 

10% SDS stock 1.5 ml 

10% APS 750 µl 

TEMED 75 µl 

 

 

Table 2.6. 4% (w/v)acrylamide stacking gel recipe. 

18.2 MΩ H2O 18 ml 

0.5 M Tris-HCl, pH 6.8 7.5 ml 

40% acrylamide  2.95 ml 

10% SDS stock 300 µl 

10% APS 150 µl 

TEMED 30 µl 
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stacking gel was left for 40 minutes to polymerise. The comb was removed 

when the stacking gel was set. 

 

2.2.3.6. Running the second electrophoresis dimension 

One litre of 10X SDS-PAGE running buffer stock contained Tris base 30 g, 

glycine 144 g and SDS 10 g. The 10X running buffer stock was diluted 1:10 

before use. 

10 ml of 1% bromophenol blue contained 0.1 g bromophenol blue. The 

bromophenol blue stock was stored in a sterile universal at room temperature.    

20 ml agarose sealing solution was made of 19 ml 1X running buffer 

supplemented with 0.1 g agarose and 40 µl of 1% (v/v) bromophenol blue in a 

200 ml beaker. The agarose sealing solution was heated until the agarose 

dissolved and pipetted into the large well to seal the DryStrip gel. Prior to 

adding the agarose sealing solution to the large well, the equilibrated 

Immobiline DryStrip gel was placed in the large well of the stacking gel with the 

pH 4 side close to the marker well.  

Two gel sandwiches were assembled on the sides of the cooling core. 

200 ml 1X running buffer was poured into the space between the sandwich 

plates and the cooling core and left for 10 minutes to make sure there was no 

leakage. 7 µl protein standards (Biorad, All Blue) was loaded in the small 

marker well of each gel. The cooling core with the sandwich glass plates were 

carefully moved into the buffer tank. 2 litre of 1X running buffer was gently 

poured into the tank, avoiding the production of air bubbles. 
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The Techne Circulator C-100 and TECAM heat exchanger 1000 cooling 

system was set up at 10oC.   The tank was covered with its lid and connected to 

the power supply, which was switched on and the gels run at 80 mA (100-400 

V) for 4-5 hrs. The second dimension electrophoresis was stopped when the 

bromophenol blue  dye was observed to be running out from the bottom of the 

gels. The gels were removed from the glass plates gently and each transferred 

into a gel container. Each gel was fixed by adding 200 ml of fixing solution 

(Table 2.7) and shaking for more than one hour.   

 

2.2.3.7. Staining gels with Colloidal Coomassie blue 

One litre Colloidal Coomassie blue stock was made by dissolving 100 g 

ammonium sulphate in 20 ml phosphoric acid and 200 ml 18.2 MQ H2O and 

dissolving 1 g coomassie blue G 250 in 100 ml 18.2 MQ H2O. These two 

solutions were mixed together and 18.2 MQ H2O was added to give a final 

volume of 1 litre. Colloidal Coomassie blue stock was made at least 24 hours 

prior to use and stored at room temperature.  

Coomassie blue staining solution was made by mixing four parts 

Coomassie blue stock with one part methanol. Electrophoresis gels were 

stained in 200 ml of Coomassie blue staining solution with shaking overnight. 

The stained proteins were revealed by washing the gel with 18.2 MQ H2O to 

destain the gel background. 
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Table 2.7 Fixing solution. 

Total volume 1 Litre 

Methanol 500 ml 

Glacial acetic acid 120 ml 
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2.2.3.8. 2D gel documentation. 

Gels were digitally photographed using a Bio-Rad GB-710 calibrated imaging 

densitometer. All gel images were acquired with the same size specifications:  

each gel image was scanned starting at the top left with 17cm length and 19cm 

width such that all visible spots were present in the gel images.  

 

2.2.4. Analysis 2D gel using PDQuest software 

Gels were analysed using PDQuest V8.0 advanced software. A new experiment 

folder was set up and 6 pairs of original gel images were surveyed. The 12 gels 

were auto assigned into 2 groups based on the replicate images. The faint, 

small and the largest spot cluster parameters were selected. The Spot 

Detection Wizard automatically processed the selected spot detection 

parameters and produced spot centres according to these parameters.  Streaks 

in the gel images were removed by selecting the streak removal checkbox 

under „Optional Controls‟. The original gel images were filtered and smoothed 

to clarify the spots, and then three-dimensional Gaussian spots were created 

during the spots detected step. The final result was three separated images: 

the original unaltered image, the filtered and processed image and a synthetic 

Gaussian image. All spot matching and analysis in PDQuest were performed on 

the Gaussian images. Any spots that were not detected in the image could be 

added to the Gaussian image using the „Edit spots‟ toolbar.  Any incorrectly 

positioned or misidentified spots were removed from the images using the 

„Remove Spot‟ toolbar from the Spot menu. Protein spots from the different gels 
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were matched to each other and synthesized into a MatchSet image.  Each 

spot was matched using the „Spot match‟ toolbar and unique spots were added 

to the gel. Those spot images expressed more strongly in one condition of 6 

gels than in another condition of 6 gels were selected as spots of interest.  

 

2.2.5. Protein in-gel trypsin digestion 

2.2.5.1. Stock solutions 

100 mM ammonium bicarbonate (NH4HCO3) contained NH4HCO3 79 mg in 10 

ml. 50 mM ammonium bicarbonate was made by 1:2 dilution of 100 mM 

NH4HCO3 in 18.2 MQ H2O. 10 ml of 50% (v/v) acetonitrile (ACN) was made by 

1:2 dilution of ACN in 18.2 MQ H2O.  

10 ml of 50% (v/v) ACN/5% (v/v) formic acid (FA) was made by 

combining 5 ml of ACN and 500 µl of FA, with the addition of 18.2 MQ H2O to 

give a final volume of 10 ml. 10 ml of 83% (v/v) ACN/0.2% (v/v) FA was made 

by combining 8.3 ml of ACN and 20 µl of FA, with the addition of 18.2 MQ H2O 

to give a final volume of 10 ml. 

0.1 µg/µl Trypsin solution was made by dissolving modified trypsin (New 

England BioLabs) in 1 ml of 100 mM ammonium bicarbonate and standing on 

ice. 

 

2.2.5.2. Protein in-gel trypsin digestion 

Protein spots were manually cut into 1 mm×1 mm gel slices and transferred 
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into 1 ml clean silicanised microcentrifuge tubes. 100 µl of 100 mM NH4HCO3 

and 60 µl of 50% (v/v) ACN were added to each tube and shaken for 30 

minutes to wash off the Colloidal Coomassie blue stain. The wash liquid was 

discarded and the wash was repeated for three times.  The gel slices were 

dehydrated by adding 60 µl of ACN and incubated at room temperature for 5 

minutes. The liquid was discarded and the dehydration was repeated for twice. 

The gel slices were then dried in a centrifugal evaporator for 15 minutes. 25 µl 

of 0.1 µg/ µl trypsin solution was added to each tube of gel slices and incubated 

on ice for 30 minutes. Then 30 µl of 100 mM NH4HCO3 was added into each 

tube and incubated at 25oC overnight. The digested proteins were collected by 

adding 30 µl of 50% (v/v) ACN with 5% (v/v) FA and shaking at room 

temperature for 30 minutes. The peptides solution was transferred into a 1.5 ml 

microcentrifuge tube. Further digested peptides were collected by adding 30 µl 

of 83% (v/v) ACN with 0.2% (v/v) FA into the gel slice tube and shaking for 30 

minutes. The extracted peptides were pooled with those intially extracted. The 

digested peptides solutions were either freeze dried directly or preserved at -

80oC for future use. 

 

2.2.5.3. Freeze drying protein samples 

Protein freeze drying was carried out by using an ALPHA 1-2 LD Freeze dryer 

(Chris). Each microcentrifuge tube containing frozen digested peptides was 

pierced with 3 holes into the lid with a needle. The microcentrifuge tubes were 

sat on a rack and placed in the ALPHA 1-2 LD Freezer dryer. After covering 

with the lid, the pump was switched on. The freeze dryer steps included a  
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pump warm up for 20 minutes and main drying, followed by a final drying at -

54oC overnight until crystal formation was observed. 

 

2.2.6. Protein identification using liquid chromatography/electrospray 

ionization- mass spectrometer (LC/ESI-MS) 

Buffer A contained 50 ml ACN and 1 ml FA per litre. Buffer B contained 950 ml 

ACN and 1 ml FA per litre. 

Protein samples were analysed by liquid chromatography combined with 

electrospray ionization mass spectrometry (LC/ESI-MS). LC was performed 

using an UltimateTM 158 3000 system (Dionex, UK) comprising a WPS-3000 

well-plate micro autosampler, a FLM-3200 flow manager and column 

compartment, and an LPG-3600 dual-gradient micropump.  Protein samples 

were dissolved in 7 μl of buffer A and loaded into a well of the well plate. The 

peptides were separated on a monolithic column (200 mm i.d., 5 cm, 

LCPackings). The column was heated to 60°C in order to reduce backpressure 

and run at 3 ml/min. The initial solvent was Buffer A (5% v/v ACN and 0.1% v/v 

FA). Peptides were eluted by the application of a 22 min. linear gradient (0%-

50%) of Buffer B (95% v/v ACN and 0.1% v/v FA). The LC system was directly 

coupled to an HCTUltra mass spectrometer (Bruker Daltonics) via a microspray 

source. Instruments were controlled using HyStar TM 3.2 (Bruker Daltonics) 

software and the experimental conditions for the analysis are summarized in 

Table 2.8.  
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Table 2.8 ESI-MS working parameters. 

MS parameter Range 

Micro pump pressure 0-350 bar 

Capillary voltage 4000 V 

Current on capillary 30-40 nA 

Full scan range  350-1800 m/z 

MS/MS scan range 50-3000 m/z 

Max. Ion trap accumulate time 200.00 ms 

Average scans 4 

Number of precursor ions 3 

Nebulizer of ionization source 10.0 psi 

Dry gas of ionization source 5.0 L/min 

Dry temperature of ionization source 300 ºC 

 

 

 

 

 

 

 

 



 

106 

 

2.2.7 Mascot search for protein identification 

Raw chromatography data were processed and Mascot compatible files 

created using DataAnalysisTM
 V 3.2 software (Bruker Daltonics) with the 

following parameters: compounds (autoMS) threshold 1000, number of 

compounds 250. Searches were performed using the online Mascot MS/MS 

ions search function 

(http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MI

S) and the NCBI non-redundant (nr) database (http://www.ncbi.nlm.nih.gov/). 

The searches were carried out with a peptide mass tolerance of ±1Da; 

fragment ion mass tolerance of ±0.5Da; peptide charge of 2+ and 3+; 

semitryptic specificity allowing for up to two missed cleavages; fixed 

modification with carboxymethyl of cysteine, and variable modification with 

oxidation of methionine. The search taxonomy was set as „Firmicutes‟ and 

enzyme was specified as „trypsin‟. To ensure the highest quality of 

identification, the following criteria were applied: 1) the protein hits (positive 

peptides) were from Group B Streptococcus; 2) only peptides for which the 

MS/MS spectra exceeded Mascot‟s significance level (mascot score >40) were 

included; 3) the query matched peptides ≥2.  

 

2.2.8 NCBI Blast & UniprotKB search 

Protein sequences for bioinformatic analyses were retrieved from the 

UniProtKB database (http://www.uniprot.org/; Uniprot Consortium, 2009) and 

homology searches performed using BLAST (Altschul et al., 1997) accessed 

via the NCBI server (http://www.ncbi.nlm.nih.gov/BLAST/). Unfiltered BlastP 

http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MI
http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MI
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searches were performed with an E cut-off of 0.001. Protein domain analysis 

was performed using both the UniProtKB entry and the Conserved Domain 

Detection facility of BlastP. Genomic context was explored via the BioCyc 

annotation (Caspi et al., 2008) accessed via the UniProtKB entries for each 

protein. 

 

 

2.3. Methods for one dimensional SDS-PAGE and Western 

blotting 

 

2.3.1. Preparation of protein samples for one dimensional SDS-PAGE 

GBS A909 cells from 50 ml THA with and without 10% human serum were 

harvested by centrifugation and washed with PBS. Protein extraction and 

purification was performed as described in Section 2.2.2. 40 µl of resuspended 

protein pellet was dissolved in 10 µl 1X SDS-PAGE loading buffer (Table 2.9).  

SDS-PAGE 5X loading buffer was prepared according Table 2.10. 10 ml of 2M 

Tris-HCl pH 6.8 contained 2.42 g Tris base. The pH of the Tris base solution 

was adjusted to 6.8 using HCl.  A total volume of 13.2 ml of 50% glycerol 

contained 6.6 g glycerol in water. The SDS-PAGE 5X loading buffer was stored 

in a foil wrapped universal or in a brown glass bottle at 4oC.  

12% 1D SDS-PAGE resolving gels were prepared as described in Table 

2.10. 100 ml 1 M Tris-HCl pH 6.8 contained 12.1 g Tris base and the pH was 

adjusted to 6.8 using HCl. 5% 1D SDS-PAGE stacking gels were prepared as 
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described in Table 2.11. 100 ml 2 M Tris-HCl pH 8.8 contained 24.2 g Tris base 

and the pH was adjusted to 8.8 using HCl.  

 

2.3.2. One dimensional SDS-PAGE 

1D SDS-PAGE was performed with a Biorad MiniProtean 3 system. A short 

glass plate was placed on top of the spacer plate and assembled using the 

manufacturers casting frame. The gel cassette assembly was placed and fixed 

on the casting stand gasket with the short plate facing the front. 

The resolving gel components (Table 2.10) were mixed gently and pipetted into 

the space between the plates, until the solution was 1.5 cm below the top of the 

small plate. 18.2 MQ H2O was added above the resolving gel to produce a 

straight top edge. The gel was left for a minimum of 20 minutes to polymerise 

and then the H2O layer was removed. The components of the stacking gel 

(Table 2.11) were mixed gently and pipetted above the resolving gel. A comb 

was inserted into the space between the plates. After the stacking gel had 

polymerised, the comb was removed. The gel cassette sandwich was then 

removed from the casting frame and placed into the electrode assembly 

chamber with the short plate facing inwards. The assembled gel cassette 

sandwiches and electrode chamber were put into the mini-Protean tank. 5 µl of 

protein marker and 10 µl protein samples were loaded in the wells of the 

stacking gel. SDS-PAGE 10X running buffer (Section 2.2.3.4.3) was diluted 

(1:10) and added into the tank. The lid was placed on the top of tank and 

connected with the power supply. SDS-PAGE gels were run using a Bio-Rad  
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Table 2.9 SDS-PAGE 5X loading buffer.  

Total volume 10 ml 

2M Tris-HCl pH 6.8 0.3 ml 

50% glycerol 5 ml 

10% SDS 2 ml 

18.2 MΩ H2O  2.7 ml 

2-mercaptoethanol 0.5 ml (this reagent was added 

working in the fume hood) 

 

Table 2.10 12% resolving gel for 1D SDS-PAGE. 

Resolving gel  

Acrylamide (40%) 3.0 ml 

18.2 MΩ H2O 4.5 ml 

2M Tris resolving gel buffer pH 6.8 2.5 ml 

APS (10%) 50 µl 

TEMED 10 µl  
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mini-Protean 3 system at 200V for 45 minutes. 

 

2.3.3. Staining and photographing gels 

After electrophoresis, one gel was stained with Coomassie Brilliant blue (Table 

2.12) as a control. The gel was removed from the cassette and stained with 20 

ml Coomassie Brilliant blue staining solution for 20 minutes. Then gels were 

destained with destain solution (Table 2.13) overnight. Gel images were 

scanned using a Bio-Rad GS-800 calibrated densitometer and photographed 

using Quantity One software (Bio-Rad). 

 

2.3.4. Western blotting 

PBS-Tween was made from PBS (Table 2.2) supplemented with 0.05 g of 

polyoxyethylenesorbitan (Tween 80) per litre. PBS-Tween-skimmed milk was 

made by dissolving 5 g skimmed milk powder („Marvel‟ brand) in 100 ml PBS-

Tween. PBS-Tween-skimmed milk was made freshly and stored at 4oC 

overnight. 

After electrophoresis, gels for Western blotting were soaked in Transfer 

buffer (Table 2.14) for 15 minutes. Proteins were transferred onto nitrocellulose 

membranes using a TRANS-BLOT® semi-dry transfer cell (Biorad). The 

Western blotting transfer sandwich was prepared on the surface of the transfer 

apparatus as follows, from the bottom to the top: two layers of thick filter paper 

soaked with transfer buffer, nitrocellulose membrane, the 1D electrophoresis  
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Table 2.11 5% Stacking gel for 1D SDS-PAGE. 

Stacking gel  

Acrylamide (40%) 0.5 ml 

18.2 MΩ H2O  2.5 ml 

2M Tris stacking gel buffer pH 8.8 1.0 ml 

APS (10%) 30 µl 

TEMED 10 µl 

 

 

Table 2.12 Coomassie Brilliant blue stain solution. 

Total volume 1 litre 

Coomassie brilliant blue R250 1 g 

Methanol 450 ml 

Glacial acetic acid  100 ml 

18.2 MΩ H2O  450 ml 
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Table 2.13 Destain solution. 

Total volume  1 litre 

Methanol  100 ml 

Glacial acetic acid 100 ml 

18.2 MΩ H2O 800 ml 

 

 

Table 2.14 Western blotting transfer buffer. 

Total volume 1 Litre 

Tris base 5.82 g 

Glycine 2.93 g 

Methanol 200 ml 

18.2 MΩ H2O 800 ml 
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gel, two layers of thick filter paper soaked with transfer buffer. The lid was 

placed and connected with the power supply. Blotting was carried out at 0.6 A 

for 90 minutes for 1 gel. 

After protein transfer, the membrane was blocked in 20 ml PBS-Tween-

skimmed milk at room temperature overnight. Membranes were then incubated 

for 2 hours in the primary antibody diluted in 10 ml PBS-Tween-skimmed milk 

and then washed 5 times with PBS-Tween (ca. 10 min and 15 mL buffer per 

wash). Membranes were then incubated for 2 hours in the alkaline phosphatase 

conjugated secondary antibody diluted in 10 ml PBS-Tween-skimmed milk for 2 

hours and then washed 5 times with PBS-Tween (ca. 10 min and 15 mL buffer 

per wash). Each membrane was incubated in 10ml 5-bromo-4-chloro-3-indolyl 

phosphate/nitro blue tetrazolium (BCIP/NBT, Sigma) reagent at 37oC and until 

the colour developed and then the membrane was washed with distilled water. 

The membrane was documented using Quantity One software. 

The primary and secondary antibodies available for use in Western 

blotting are summarised in Table 2.16. Anti-Bac was kindly supplied by 

Professor Gunnar Lindahl (Lund University, Sweden). Anti-Sip (which detects a 

reference GBS protein, Brodeur at al., 2000) was kindly supplied to Prof. 

Sutcliffe by Dr  Clément R. Rioux (Université Laval, Canada). Anti-HPr, for 

detection of a prominent streptococcal antigen (Dubreuil et al., 2000), was 

kindly supplied to Prof. Sutcliffe by Dr Christian Vadeboncoeur (Université 

Laval, Canada). 
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 Table 2.15 Primary and secondary antibody combinations used for 

Western blotting. 

Primary 

antibody 

Dilution Secondary 

antibody (Sigma) 

Dilution 

Anti-Bac 1/1,000 Anti-rabbit 1/30,000 

Anti-Sip 1/500 Anti-mouse 1/30,000 

Anti-HPr 1/1,000 Anti-rabbit 1/30,000 
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Chapter 3  

GBS growth characteristics in vitro 

3.1. Background 

GBS is opportunistic pathogen, which commensally colonises the vagina and 

gastrointestinal tract of pregnant women and causes serious neonatal disease 

(Heath, 2004). The rapid development of early onset GBS disease (often <24 

hours after birth) suggests that vertical transmission of GBS from mother to 

infant occurs either during or immediately prior to birth. During the process of 

GBS neonatal disease, GBS must be able to survive in several very different 

host environments, including the women‟s vagina, amniotic fluid, neonate‟s lung 

and blood (Rajogopal, 2009). The vagina is normally acidic, low oxygen and 

with limited nutrients while the neonate‟s lung and blood are neutral, high 

oxygen and with relatively abundant nutrients, as suggested by rapid bacterial 

growth (Tamura et al., 1994; Yamamoto et al., 2006; Johri et al., 2003).  

It is interesting to know that what kind of mechanisms help bacteria to be 

able to survive in these very different environments. It is reported that some 

mechanisms such as acid adaptation, biofilm formation and a viable but non-

culturable state may help bacterial survival in stress environments (Cotter & 

Hill, 2003; Bogosian & Bourneuf, 2001; Hall-Stoodley & Stoodley, 2009). GBS 

growth characteristics, long term survival, acid adaptation, viable but non-

culturable state and biofilm formation were investigated to contribute to 

knowledge of GBS survival in different environments and also help to develop 

an in vitro model to reflect in vivo condition of GBS disease development. 
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3.2. Results of GBS growth characteristics 

3.2.1. GBS growth in different media 

3.2.1.1. GBS growth in pH 4.3, 5, 6 and 7 THB medium measured by 

microtitre plate reader 

GBS A909 growth in pH 4.3, 5, 6 and 7 THB was measured by microtiter plate 

reader at an optical density of 570 nm. GBS A909 growth in pH 7 Todd-Hewitt 

broth medium reached mid-late exponential (OD 0.5) at 150 minutes (Figure 

3.1). GBS reached the onset of stationary at 240 minutes and established 

stationary phase at 320 minutes. GBS A909 exhibited a similar growth curve in 

pH 7 and pH 6 THB.  GBS A909 growth in pH 5 THB reached mid-late 

exponential (OD 0.35) at 260 minutes, with onset of stationary phase at 300 

minutes and established stationary phase at 360 minutes. Unexpectedly, GBS 

A909 grew very poorly in pH 4.3 THB (Figure 3.1). GBS strains 8181, 8184, 

9993 and CT1 all showed similar growth characteristics in THB as GBS A909 

(Figure 3.2).  

The stationary phase OD of GBS A909 in THB of different pH were 0.1 

(pH 4.3), 0.45 (pH 5), 0.8 (pH 6) and 0.8 (pH 7). Thus comparison of growth in 

unbuffered THB at pH 4.3, 5, 6 and 7 shows significantly reduced growths at 

pH 4.3 and 5 over a 0-24 hr time period, with both A909 and four other GBS 

strains (Figs. 3.1 and 3.2). GBS growth at pH 4.3 appears very poor as 

measured by OD and the pH of the culture medium is clearly an important 

factor for GBS growth. 
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Figure 3.1 GBS A909 growth curves in pH 4.3, 5, 6 and 7 THB medium.  

Results show mean and SD from triplicate experiments. 

 



 

118 
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Figure 3.2. GBS 8181, 8184, 9993 and CT1 growth curves in pH 4.3, 5, 6 and 7 THB medium. Results show mean and SD 

from triplicate experiments. 
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3.2.1.2. Quantification of GBS growth at different pH by measurement of 

colony forming units 

GBS A909 growth was quantified by measuring the number of colony forming 

units obtained at different pH. In pH 6 THB, the GBS CFU/mL increased with 

time and reached a peak of 7.7×108 CFU/mL at 6 hours culture (Table 3.1). 

After 6 hours culture, GBS CFU/mL gradually dropped, but still had a high value 

of 1.17×107 after 48 hours which was 10 times the level of the CFU/mL at 

inoculation. GBS A909 inoculated into pH 4.3 TH medium had a similar 

CFU/mL (1.30×106) as in pH 6 (1.17×106) immediately after inoculation. 

However, at pH 4.3 the CFU/mL of GBS A909 decreased rapidly and dropped 

to 4.86×103 at the 6 hr time point, which is 0.37% of the CFU inoculated. After 

48 hours culture at pH 4.3, CFU/mL dropped to 107, which is only 0.008% of 

the inoculated CFU (Table 3.1)   

GBS 8181 growth in pH 6 THB showed a very similar pattern with a 

maximum CFU/mL at 6 hours culture, after which GBS CFU/mL gradually 

declined but still had a value of 6 times of the inoculated CFU at 48 hr (Table 

3.2). Likewise, the CFU/mL of GBS 8181 inoculated into pH 4.3 THB decreased 

rapidly and after 48 hrs had dropped to 90 CFU/mL (0.005% of the inoculation, 

Table 3.2). These data confirmed the absence of growth at pH 4.3, as indicated 

previously by optical density measurement. The data also suggest that GBS 

strains survive less well at lower pH. 

 

3.2.1.3. Comparing GBS growth in TH/YE and human serum 

GBS A909 was grown in different culture media, Todd Hewitt with yeast extract 
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Table 3.1 GBS A909 growth quantification in THB by colony counting. 

Data show the mean from triplicate experiments. 

 

Time (hrs) CFU/mL (pH 4.3) CFU/mL (pH 6) 

0 1.3×106 (100%) 1.17×106(100%) 

2 2.11×104 (1.62%) 1.02×107 (872%) 

4 9.82×103 (0.76%) 1.42×108 (12137%) 

6 4.86×103 (0.37%) 7.7×108 (65812%) 

24 463 (0.04%) 1.7×108 (14530%) 

48 107 (0.008%) 1.17×107 (1000%) 

 

Table 3.2 GBS 8181 growth quantification in THB by colony counting. 

Data show the mean from triplicate experiments. 

Time (hrs) CFU/mL (pH 4.3) CFU/mL (pH 6) 

0 1.73×106 (100%) 2.1×106 (100%) 

2 8.53×104 (4.93%) 3.7×106 (176%) 

4 8.07×103 (0.47%) 1.17×108 (5571%) 

6 3.01×103 (0.17%) 6.8×108 (32381%) 

24 313 (0.02%) 3.3×108 (15714%) 

48 90 (0.005%) 1.27×107 (605%) 
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 (TH/YE, pH 7) and commercial pooled human serum (HS, pH 7). GBS A909 

grown in TH/YE reached early stationary phase after 4 hours culture with 

between 109 and 1010 CFU/mL.  Although there was a small drop of CFU/mL 

after 6 hours culture, the CFU/mL count stayed at approximately 1×109 until up 

to 24 hours culture. GBS A909 grown in HS had a similar growth curve as in 

TH/YE (Figure 3.3). 

 

3.2.1.4. GBS A909 growth in pH 5 THB supplemented with 10% human 

serum 

GBS A909 growth in 20 ml pH 5 THB with and without 10% human serum 

added were measured by optical density (O.D.) at 600 nm. GBS A909 grown in 

pH 5 THB medium had a long lag phase (O.D. <0.1) of 3 hours and reached 

mid-late exponential (O.D. 0.4) at 5 hours culture, consistent with previous data 

(Fig. 3.1). GBS A909 reached early stationary phase (O.D. 0.62) at 6 hours and 

established stationary phase (O.D. 0.65) at 7 hours. GBS A909 grown in pH 5 

THB with 10% human serum added had a similar growth curve as in pH 5 TH 

medium (Figure 3.4). 

GBS A909 growth in 20 ml pH 5 THB with and without 10% human serum 

added were measured by determining the CFU/mL. GBS A909 grown in pH 5 

THB medium reached a peak at 6 hours culture with CFU/mL of 5×107 and 

there was gradual decline in culturable cells after 6 hours. After 24 hours 

culture, CFU/mL dropped to 1×106. GBS A909 grown in pH 5 THB with 10% 

human serum medium had a similar growth curve as in pH 5 THB medium 
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Figure 3.3. GBS A909 growth in TH/YE and human serum medium 

measured by CFU quantitation.  Growth was measured by determining 

CFU/mL. Results show mean and SD from triplicate experiments. 
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Figure 3.4. GBS A909 growth curve in pH 5 THB with and without 10% 

human serum medium. Data shown are representative of 3 experiments. 

 

 

Figure 3.5. CFU/mL of GBS A909 growth in pH 5 THB with and without 

10% human serum medium. Data shown are representative of 3 experiments. 
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 (Figure 3.5). Comparing GBS A909 growth measured by colony form units and 

optical density, the optical density at 600 nm remained constant at around 0.64 

whereas CFU/mL had declined after 6 hr. This suggested that more than 90% 

of the cells had lost their ability to form a colony on TH agar plates. 

 

3.2.2. Long term survival of GBS 

3.2.2.1. GBS survival in extended stationary phase measured by plate 

counting 

GBS A909 long term survival in pH 7 and pH 5 THB were measured by 

determining CFU/mL for standing cultures over time. In pH 7 THB, GBS A909 

growth peaked at 6 hours, with the cell numbers of nearly 109 CFU/mL and 

survived in stationary phase to 2 days with cell numbers between ca. 109 and 

108 CFU/mL (Figure 3.6). After 2 days, cells entered the „death phase‟ and cell 

numbers decreased from 108 to ca. 106 CFU/mL. After 2 weeks, the cells had 

entered the long-term stationary phase. Cells numbers were maintained at 105-

106 CFU/mL for more than 8 weeks. In contrast, in pH 5 Todd-Hewitt broth 

medium, GBS A909 growth peaked at 6 hours with cell numbers between 108 

and 109 CFU/mL and then entered death phase. Cells could not be recovered 

at 1 week.  The limit of detection in these experiments was 105 CFU/mL. These 

data comparing survival at pH 7 versus pH 5 again suggested that GBS cells 

survived poorly at the lower pH, as observed when survival at pH 6 versus pH 4 

was measured over 48 hrs (Section 3.2.1.2). 
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Figure 3.6. GBS A909 survival in extended stationary phase by plate 

counting. Results show mean and SD from triplicate experiments. (Limit of 

detection 1 colony in 100 µL from 10-4 diluted culture = 105 CFU/mL). 
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3.2.2.2. GBS Long term survival measured using ‘spot’ plates  

GBS strains A909, 8181, 8184, 9993 and CT1 were broth cultured in pH 5 and 

pH 7 THB medium as standing cultures. Cell survival was measured by spot 

plating 5 µL samples from the cultures at different time points directly onto THA 

plates.  GBS A909 was viable for at least 4 weeks in pH 7 THB. When strain 

A909 was cultured in pH 5 THB, CFU were not recovered after 3 days. The limit 

of detection in this assay was ≥200 CFU/mL (1 CFU per 5 µL sample taken). 

These results were confirmed with the 4 other GBS strains (Table 3.3).   

 

3.2.3. Possible ‘Viable but non-culturable’ survival of GBS 

3.2.3.1. GBS A909 percentage survival in stationary phase determined by 

Live-Dead staining   

GBS A909 viability was determined by Live-Dead staining. The percentage 

survival of GBS A909 in pH 5 and pH 7 THB are shown in Table 3.4. The 

percentage survival of GBS A909 decreased with increased culture time in both 

pH 5 and pH 7 medium but the survival rate of GBS decreased faster in pH 5 

than in pH 7 medium. After 6 hours culture, GBS A909 had entered the 

stationary phase and the stable O.D. value indicated the total biomass was 

approximately the same (Fig. 3.1), whereas the dramatic decline in CFU/mL 

showed the cells lost their culturability rapidly (Fig. 3.3). The Live-Dead staining 

confirmed this and showed that there were still a significant number of cells that 

are still alive at long-term stationary phase (>48 hr) both in pH 5 and pH 7 

medium.  Live-Dead staining results suggested that the live cell numbers of 



 

128 

 

Table 3.3. Long term survival of GBS strains. Results are from triplicate 

replicate experiments with duplicate cultures in each. Survival was determined 

by the spot plate method: limit of detection was 200 CFU/mL. 

Strain Growth in pH 5 TH Growth in pH 7 TH 

 1 2 3 7 14 21 28 1 2 3 7 14 21 28 

A909 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

8181 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

8184 + + + - - - - + + + + + + + 

 + - - - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + + + - - + + + + + + + 

 + + + - - - - + + + + + + + 

9993 + + + - - - - + + + + + + + 

 + - - - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + + + - - + + + + + + + 

 + + + - - - - + + + + + + + 

CT1 + + + - - - - + + + + + + + 

 + - - - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + + - - - - + + + + + + + 

 + + - - - - - + + + + + + + 

 + + + - - - - + + + + + + + 
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Table 3.4. Percentage survival of GBS A909 in pH 5 and pH 7 TH medium 

determined by Live-Dead staining.  % Survival (live cells) was determined 

from a total of 400 cells counted at each time point. 

Time (hr) Replicate pH 7 (live%) pH 5 (live%) 

6 1 94.3 93.3 

 2 93.0 90.3 

 3 92 89 

  93.1±1.5 90.8±1.2 

24 1 83.3 59.0 

 2 81.5 33.0 

 3 80.3 44 

  81.7±1.5 45.3±13 

48 1 58.0 24.3 

 2 61.0 24.0 

 3 64.5 20.3 

  61.2±3.3 22.9±2.2 

72 1 53.3 7.8 

 2 42.0 14.3 

 3 45 10.8 

  46.8±5.8 11±3.3 

168 1 2.75 0.25 

 2 7.25 2 

 3 6.5 1.25 

  5.5±2.4 1.2±0.9 
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GBS A909 in pH 5 medium at 72 hours were approximately 11% of the total 

cells: assuming a maximum growth to ca. 109 CFU/mL at 6 hours (as 

suggested by CFU/mL measurement, Fig. 3.3), this would correspond to 

approximately 108 live cells/mL. However, the CFU/mL measurement showed 

the cell number was approximately 106 CFU/mL at 72 hr (Fig. 3.6). This 

suggests that around 99% of the cells at 72 hr were alive but could not be 

grown on THA. At the 1 week timepoint, Live-Dead staining results suggested 

that cell numbers were approximately 107 live cells/mL (1% of the total cells) 

but the CFU measurement showed cells could not be detected at the 1 week 

timepoint.  Thus a larger number of cells were shown to be alive with the Live-

Dead staining method than could be grown on the agar plates. This suggested 

the cells may survive in a „viable but non-cultureable‟ (VBNC) state (Bogosian & 

Bourneuf 2001; Oliver 2004). 

 

3.2.3.2. Regrowth of extended stationary phase cells into broth  

Data from triplicate experiments that examined regrowth of GBS from extended 

stationary phase are shown in Table 3.5 and Table 3.6.  Note that here the limit 

of detection at t=0 (i.e. directly after passage into fresh THB) is 1 CFU/100 μL 

regrowth culture (= 200 CFU/20 mL = 200 CFU/mL stationary phase culture 

used as inoculum). Thus these limits of detection are comparable to the „spot‟ 

plate assay (Table 3.3). 

GBS A909 was cultured in 20 mL of pH 5 THB for different times in 

stationary phase (1 day – 4 weeks) and CFU/mL determined are shown in  
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Table 3.5. Regrowth of extended stationary phase cell into pH 5 THB. Light 

red highlighting shows improved detection of viable cell into broth compared to 

the „spot‟ plate method. Blue highlighting shows extended lag phase for 1 and 2 

weeks stationary phase cultures compared to 24 hr culture. 

Time sampled Assay 0 hr allowed for 

regrowth 

6 hr allowed for 

regrowth 

24 hr allowed for 

regrowth 

24hr culture OD 0.032±0.003 0.351±0.041 0.800±0.016 

 c.f.u./mL, aerobic 

incubation 

22x104±6x104 28x106±27x106 24x107±5x107 

 c.f.u./mL, low O2 

incubation 

23x104±5x104 30x106±10x106 25x107±6x107 

1 week culture OD 0.038±0.003 0.039±0.003 0.755±0.051 

 c.f.u./mL, aerobic 

incubation 

70±10 97±31 21x107±9x107 

 c.f.u./mL, low O2 

incubation 

57±25 103±21 11x107±3x107 

2 week culture OD 0.042±0.003 0.037±0.003 0.285±217 

 c.f.u./mL, aerobic 

incubation 

9±10 90±130 

[nb no growth in 

1 replicate] 

38x106±45x106 

[nb no growth in 

1 replicate] 

 c.f.u./mL, low O2 

incubation 

7±6 100±140 

[nb no growth in 

1 replicate] 

20x106±28x106 

[nb no growth in 

1 replicate] 

4 week culture OD 0.042±0.006 0.044±0.009 0.044±0.013 

 c.f.u./mL, aerobic 

incubation 

0 0 0 

 c.f.u./mL, low O2 

incubation 

0 0 0 
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Table 3.6. Regrowth of extended stationary phase cell into pH 7 THB. 

Green highlighting shows improved survival and no extended lag for pH 7 

culture at later timepoints. 

Time sampled Assay 0 hr allowed for 

regrowth 

6 hr allowed for 

regrowth 

24 hr allowed for 

regrowth 

24hr culture OD 0.050±0.011 0.740±0.22 0.796±0.025 

 c.f.u./mL, 

aerobic 

incubation 

44x105±32x105 36x107±16x107 27x107±14x107 

 c.f.u./mL, low O2 

incubation 

55x105±16x105 16x107±2x107 25x107±14x107 

1 week culture OD 0.047±0.005 0.759±0.035 0.871±0.046 

 c.f.u./mL, 

aerobic 

incubation 

44x104±4x104 23x107±12x107 44x107±15x107 

 c.f.u./mL, low O2 

incubation 

45x104±17x104 24x107±7x107 44x107±20x107 

2 week culture OD 0.063±0.007 0.597±0.173 0.841±0.058 

 c.f.u./mL, 

aerobic 

incubation 

16x104±8x104 20x107±15x107 31x107±15x107 

 c.f.u./mL, low O2 

incubation 

15x104±5x104 14x107±7x107 24x107±19x107 

4 week culture OD 0.041±0.003 0.436±0.155 0.874±0.034 

 c.f.u./mL, 

aerobic 

incubation 

12x104±9x104 57x106±56x106 32x107±13x107 

 c.f.u./mL, low O2 

incubation 

11x104±5x104 60x106±46x106 27x107±13x1 07 
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Table 3.5. CFU/mL counts were determined on agar plates after incubation in 

aerobic and anaerobic conditions. The results showed there was an improved 

detection of viable cells following passage into broth compared to the „spot‟ 

plate method. As with previous data, the results showed that the longer that 

stationary phase continued the lower the number of cells were detected, 

although recovery into broth extended the timescale for detection of low 

numbers of viable stationary phase cells to 2 weeks (though there was one pH 

5 culture that could not be regrown at the 2 week point). As shown in Table 3.5, 

the lag phase of the regrowth cultures at 1 week and 2 week points were 

notably longer than for regrowth culture after 24 hrs.                   

For GBS A909 broth culture in 20 ml of pH 7 THB for different times (1 

day – 4 weeks) in stationary phase, the CFU/mL determined are shown in 

Table 3.6 (after incubation of agar plates in aerobic and anaerobic conditions). 

GBS A909 cultured in pH 7 THB medium could be regrown after 4 weeks in 

stationary phase but, as in previous experiments, CFU/mL of GBS A909 in pH 

7 TH medium decreased as time in stationary phase increased. These data and 

the corresponding data for pH 5 THB grown cells indicate that recovery of GBS 

CFU was not significantly affected by incubation in aerobic versus anaerobic 

(candle jar) conditions.  The lag phase for regrowth of cultures at the 2 and 4 

week sampling points was longer than for regrowth of culture at 24 hrs and 1 

week timepoints, as shown by lower OD and CFU/mL at 6 hrs. However, this 

delay in regrowth was not as extensive as for pH 5 THB grown cells (Table 

3.5). Samples from all regrown cultures gave Gram-positive staining results and 

Lancefield B typing, confirming regrowth was due to GBS and not culture 
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contaminants. These data again demonstrate that the culturability of GBS A909 

from extended stationary phase cultures decreased in both pH 5 and pH 7 

THB, but was more greatly decreased in pH 5 medium.   

 

3.2.4. Acid adaptation 

3.2.4.1. Auto acidification measurements 

The growth curves of GBS A909 in THB medium with different pH (4.3, 5, 6 and 

7.4) measured by O.D. at 600nm (Figure 3.7) agreed with the results measured 

by microtitre plate reader at 570 nm (Fig. 3.1). As shown in Table 3.7, after 6 

hours GBS A909 culture, the pH of the original pH 7.4 THB dropped to 6.5, i.e. 

approximately 1 pH unit, and stayed at pH 6.5 during the stationary phase. 

After 6 hours GBS A909 culture, the pH of the original pH 6 THB dropped to 5.3 

and stayed at 5.3 during the stationary phase. After 6 hours GBS A909 culture, 

the pH of the original pH 5 THB dropped to 4.5 and stayed at 4.5 during the 

stationary phase. The extent of the pH drop thus correlated with the extent of 

GBS growth (as measured by final OD 600). There was no significant change in 

medium pH value when GBS was cultured in pH 4.3 THB, consistent with a 

lack of GBS growth at this pH (Fig 3,1; Table 3.7; Fig. 3.7). 

After 4 weeks culture, the medium pH of GBS A909 grown in pH 7.4 THB 

dropped to 7.1. This result was confirmed with four other GBS strains (Table 

3.8). Thus after 4 weeks culture, the medium pH value of GBS strains  
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Figure 3.7. GBS A909 growth curves in pH 4.3, 5, 6 and 7.4 TH medium. 

GBS growth was measured at O.D. 600nm. 
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Table 3.7. Final medium pH after GBS A909 auto-acidification by up to 48 

hours growth. 

Sample /Time 

(hrs) 

0 hrs 6 hrs 24 hrs 48 hrs 

pH 4.2 4.24±0.03 4.24±0.03 4.24±0.03 4.25±0.06 

pH 5 5.04±0.03 4.54±0.05 4.56±0.05 4.57±0.10 

pH 6 6.04±0.02 5.36±0.09 5.25±0.18 5.26±0.18 

pH 7.4 7.45±0.06 6.50±0.04 6.46±0.13 6.46±0.05 

 

Table 3.8. Final medium pH after GBS strains growth for 4 weeks 

(duplicate cultures). 

 pH:7.4 pH:5 pH:4 

A909 (1) 7.15 4.59 4.14 

A909 (2) 7.11 4.65 4.13 

8181 (1) 7.07 4.59 4.14 

8184 (2) 7.08 4.64 4.14 

8184 (1) 7.18 4.58 4.15 

8184 (2) 7.02 4.36 4.15 

9993 (1) 7.15 4.47 4.14 

9993 (2) 7.01 4.51 4.14 

CT1 (1) 7.00 4.66 4.16 

CT1 (2) 7.06 4.67 4.16 
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inoculated into pH 7.4 THB dropped around 0.2-0.4 pH units. In contrast, the 48 

hour auto-acidification results showed the medium pH dropped around 1 pH 

units after 6 hours culture and kept this pH for 48 hours (Table 3.7). Similarly, 

after inoculation of GBS strains into pH 5 broth, pH values of the medium 

dropped ca. 0.3-0.4 pH units after 4 weeks culture compared to a drop of 0.5 

units after 6-48 hr with strain A909. It is known that GBS are acid-forming 

bacteria (Michelson, 1972), which can produce lactic acid through metabolising 

glucose. These data suggest that when the glucose was exhausted, in 

extended stationary phase, the GBS are undergoing alternative metabolic 

pathways and some of the initial acid production is reversed. 

 

3.2.4.2. Acid adaptation experiments: a revised strategy for exposure to 

acid 

It is well recognised that many bacteria can undergo an adaptive „acid tolerance 

response‟ (ATR, Cotter and Hill, 2003). An ATR is normally defined as 

improved survival after exposure to extreme acid stress and is often measured 

by exposure to a non-lethal acid pH for a short period, followed by colony 

counting after different exposure times under extreme acid stress (e.g. pH 3.5 

or less for 0-60 min). The ATR suggests that prior growth history affects affects 

survival on exposure to acid stress. Previous experiments showed that GBS 

A909 could not be cultured from pH 5 THB medium after 3 days culture (Figure 

3.6; Table 3.3). Experiments were therefore carried out to see if prior exposure 

of GBS to acid (e.g. from autoacidification during growth) would affect survival 

in stationary phase. GBS A909 were gradually exposed to pH 7 THB for 3 hrs 
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and pH 6 THB overnight before culture in pH 5 THB. The CFU/mL were around 

108 at the 6 hours point, 107 at 1 day, 105 at 2 day, 104 at 3 day point and could 

not be recovered at 1 week point (Figure 3.8). There was no significant 

improvement in GBS A909 survival after exposure to non-lethal acid conditions 

followed by culture in pH 5 THB. 

 

3.2.5. Alternative media for GBS growth 

3.2.5.1 GBS A909 growth on THA plates at different pH 

GBS A909 growth on pH 5 THA gave similar colony counts as GBS A909 

grown on pH 7 THA regardless of whether the plates were incubated 

aerobically or anaerobically (Table 3.9). Importantly, the similar counts from 

aerobically or anaerobically incubated pH 7 THA plates after 24 hr suggest that 

failure to detect viable CFU in earlier experiments (Fig. 3.6; Table 3.3) to 

recover viable GBS from extended stationary phase was not affected by the 

incubation method used after sampling. However, when cultured for 24 hrs, the 

colony sizes of GBS A909 cultured on pH 5 THA under anaerobic conditions 

were noticeably smaller than those produced on pH 7 THA with 

aerobic/anaerobic incubation conditions (approximate colony diameters less 

than 0.5 mm compared to about 1 mm). There were no colonies on pH 5 THA 

plates after aerobic incubation for 24 hrs but colonies were visible at 48 hrs. 

The colony sizes of GBS A909 cultured on pH 5 THA with aerobic conditions at 

48 hrs were much smaller than those on pH 5 THA incubated anaerobically.  
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Figure 3.8. GBS A909 long term survival after acid adaptation and culture 

at different pH. Results shows mean and SD from triplicate experiments. 
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Table 3.9. GBS A909 grown on pH 5 and pH 7 TH agar plates under 

aerobic or anaerobic conditions. Colony counts were performed at 24 hrs 

except for those on pH 5 THA incubated anaerobically, which were performed 

at 48 hr.   

Growth condition CFU/mL (pH 5 agar plate) CFU/mL (pH 7 agar plate) 

Aerobic  115x106±48x106  149x106±52x106  

Anaerobic  148x106±30x106  125x106±63x106 
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These data are generally consistent with results observed for „standing‟ broth 

cultures (i.e. that pH 5 cultures  will support growth (Fig. 3.1) but are consistent 

with a reduced growth rate for both anaerobically and aerobically grown GBS at 

pH 5, with the latter more apparent.  

 

3.2.5.2. GBS growth in vagina simulative medium 

There was no growth observed of GBS A909 in vagina simulative medium 

(Table 3.10) as measured by OD at 600 nm. 

 

3.2.5.3. GBS growth on M17 agar versus M17 with Heme/MQ 

supplementation (M17R) plates 

Growth on M17 medium agar plates gave similar CFU/mL to those observed 

with overnight cultures plated on THA (Table 3.11). Growth was not notably 

improved by medium supplementation with heme and menaquinone (M17R) 

compared to control medium.  It has been reported that GBS can aerobically 

respire using externally derived haem and quinones (Yamamoto et al., 2005; 

Rezaïki et al., 2008). Yamamoto et al. (2005) cultured GBS strain NEM316 in 

M17 medium with horse blood and menaquinone added as exogenous sources 

of haem and quinone. They found that respiration metabolism occurred and 

caused an increased GBS growth (Yamamoto et al., 2005). In contrast, the data 

here did not show any significant growth improvement of GBS A909 grown in 

M17R compared with control medium. This may be because the strain used 

was A909, which is different to strain NEM316. 



 

142 

 

Table 3.10. GBS A909 growth in Vagina Simulative medium (duplicate 

experiments). 

Time hrs/GBS A909 OD (sample 1) OD (sample 2) 

0 0.025 0.018 

1 0.015 0.007 

2 0.034 0.022 

3 0.021 0.035 

4 0.037 0.035 

5 0.040 0.026 

6 0.039 0.021 

 

 

Table 3.11. GBS A909 grown on M17 plates with Heme/ MQ 

supplementation plates. 

Medium CFU/mL (GBS A909) 

M17 113x106±92x106 

M17R 82x106±23x106 

M17-control 73x106±48x106 
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3.2.6. Biofilm experiments 

3.2.6.1. Biofilm culture in extended stationary phase 

CFU counting results showed there was biofilm formation when GBS A909 was 

grown in THB using tissue culture flasks to provide an abiotic surface (Table 

3.12). GBS A909 biofilm culture in pH 7 TH medium showed an apparently 

reduced CFU/mL at each time point compared with planktonic cells. This was 

most likely due to the growth of GBS cells in the medium which did not form 

biofilm culture, which were removed when the biofilms were washed before 

they were assayed. GBS A909 could also form biofilms in pH 5 THB. Biofilm 

CFU/mL of GBS A909 in pH 5 TH medium were obtained after 7 days but could 

not be detected after 14 days. However, notably, this demonstrated the first 

measurable recovery of CFU after 1 week in stationary phase for pH 5 grown 

cultures (except in regrowth experiments). 

Live-Dead staining results showed the percentage of live cells in biofilm 

cultures in pH 5 and pH 7 TH medium was improved compared with planktonic 

cells at all comparable time points (1, 4, and 7 days). This may suggest biofilm 

formation provides a protection to the cells against acid stress. Live-Dead 

staining showed that after 1 week in extended stationary phase in pH 5 TH 

medium, there were around 15.7% biofilm grown cells alive. In contrast, the 

colony counting method showed that at the 7 day timepoint, 127 CFU/mL were 

present, which is only 0.005% of the counts obtained after 1 day in stationary 

phase. This again suggested the percentage of live cells measured by Live-

Dead staining is much higher proportionally than suggested by CFU  
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Table 3.12. Biofilm culture in extended stationary phase. Data in black font are the mean biofilm data (n=6 experiments, except 

at 14d (n=4 experiments); Data in blue font are taken from comparable planktonic growth experiments (Fig. 3.6, Table 3.4). Yellow 

highlighting that shows CFU/mL recovery was lower in biofilm cultures (pH 7) than in planktonic cultures. Brown highlighting shows 

CFU/mL recovery was improved in pH 5 TH biofilm culture compared with planctonic culture at the 1 week point. Note that the 

percentage of live cells was higher in biofilm cultures (both pH 5 and pH 7) than in planctonic cultures at all comparable timepoints 

(planctonic data are taken from Table 3.4). * Note that these data were measured at 72 hr (3 days) rather than 4 days.   

 

Time 

 

pH 5 TH 

biofilm 

pH 5 

planctonic 

pH 7 TH 

biofilm 

pH 7 

planctonic 

pH 5 TH 

biofilm 

planctonic pH 7 TH 

biofilm 

planctonic pH 5 TH 

biofilm 

pH 7 TH 

biofilm 

 CFU/mL CFU/mL CFU/mL CFU/mL % Live % Live % Live % Live CV stain CV stain 

1d 27±13×10
5
 11±58×10

5
 565±197×10

5
 31±22×10

7
 68.0 45.3 86.0 81.7 1.085±0.506 

54% 

2.018±0.535 

4d 95±64×10
2
  68±18×10

5
  19.5 11*  62.5 46.8* 0.808±0.27 

50% 

1.61±0.395 

7d 127±134 0 13.5±3×10
4
 70±28×10

5
 15.7 1.2 34.3 5.5 0.953±0.099 

57% 

1.668±0.388 

14d  0±0 0 125±9×10
3
 18±12×10

5
 6.4  39.3  0.3±0.05 

34% 

0.892±0.314 
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counts (see Section 3.2.3. above). Similarly, live cells could also be detected 

after 14 days in pH 5 biofilm growths, whereas CFU could not be recovered by 

sampling and culture. 

Crystal violet (CV) staining results agreed with CFU counting and 

indicated there was less biofilm biomass laid down at pH 5 compared with pH 

7. The results also suggested biofilms are relatively stable over 1-7 days but 

less so after 14 days in stationary phase (a reduction to ~30%-50% of CV 

values compared to those obtained after 1-7 days). 

These data indicated that biofilm culture may yield fewer cells but 

improves survival over 4-7 day timescales at pH 5. This suggests biofilm growth 

generates smaller but more persistent communities of bacteria which may be a 

better reflection of the in vivo situation. However, recovery of surviving cells 

from pH 5 grown biofilms was still limited compared to biofilms formed in pH 7 

THB, consistent with the data from planktonic cultures. 

 

3.2.6.2. Biofilm survival following ‘feeding’ with nutrient broth 

Experiments were performed to determine if feeding biofilms with nutrient broth 

improved survival and recovery of GBS. As in earlier experiments, GBS A909 

inoculated into pH 5 THB (planktonic cells) showed very low recovery of 

CFU/mL after 1 week, as there was only one culture from which cells could be 

recovered (Table 3.13). As in initial experiments, unfed biofilm cultured GBS 

A909 yielded notably lower CFU/mL after 24 hr than planktonic cells 

(4.1±3.1×104 versus 1.9±0.8×106 CFU/mL i.e. 2.%). Bacteria in biofilm cultures 
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that were fed with 1/10th strength pH 5 THB were much more readily detected 

(≥103 CFU/mL) at the 1 week timepoint compared to previous data (as starved 

biofilms yielded ca. 102 CFU/mL after 7 days, Table 3.12). Biofilm cultured cells 

fed with 1/10th human serum yielded slightly lower CFU/mL than biofilm cells 

fed with 1/10th THB (yield 9x103 vs 16.7x103 CFU/mL i.e. 54%). These fed 

biofilms also gave notably higher counts (≥103 CFU/mL) at the 1 week timepoint 

compared to unfed extended stationary phase biofilms (Table 3.12). Therefore, 

these data suggest that feeding with low nutrient media may increase biofilm 

persistance, which may better reflect low delivery of nutrients in vivo than the 

simple starvation conditions of extended stationary phase cultures. 

 

3.2.6.3. Assay for improving biofilm formation by coating culture plates 

with extracellular matrix molecules (hyaluronic acid and heparin) 

CFU/mL of GBS A909 biofilm cultures was measured following coating of the 

microtitre plates with heparin, hyaluronic acid and heparin & hyaluronic acid 

(Table 3.14). The counts obtained were 209%, 245% and 191% of those on 

plates without coating. This result showed coating plates with extracellular 

matrix molecules could improve biofilm formation. Similar results were obtained 

with GBS strain NEM316, which notably could form better biofilms than A909 

under all conditions. There was no obvious additive effect on biofilm formation 

of plate coating with heparin and hyaluronic acid combined than either one 

alone. 
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Table 3.13. Biofilm survival following ‘feeding’ with nutrient broth. 

Cultures were established in different modes of growth in pH 5 THB. Yellow 

highlighting shows that the CFU/mL recovery was improved in fed biofilm 

cultures after 1 week point compared with unfed cultures. 

Time Sample Replicate 1 Replicate 2 Replicate 3  Mean S.D. 

24hrs Planktonic 

culture 

26×105 20×105 11×105 19×105 8×105 

24hrs Early biofilm 41×102 570×102 610×102 407×102 317×102 

1 week Planktonic  

culture 

20 0 0 6.7 11.5 

1 week THB fed 

biofilm 

38×103 5×103 7×103 16.7×103 18.5×103 

1 week Human serum 

fed biofilm 

17×103 8×103 2×103 9×103 7.5×103 

 

 

Table 3.14. Assay for improving biofilm formation by coating culture 

plates with extracellular matrix molecules (hyaluronic acid and heparin) 

Strain Uncoated Heparin Hyaluronic 

acid 

Heparin + 

Hyaluronic acid 

A909 3.3±0.8 x 108  6.9±2.2 x 108  8.1±2.9 x 108  6.3±1.5 x 108  

 100% 209% 245% 191% 

NEM316 4.9±2.6 x 108  9.1±0.6 x 108  8.5±2.8 x 108  9.2±3.3 x 108  

 148 276% 257% 278% 
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3.3. Discussion of GBS growth characteristics 

3.3.1. GBS long term survival in stationary phase 

The growth phases of GBS A909 observed in pH 7 TH medium are in 

agreement with the proposal of Finkel (2006) that the bacterial life cycle can be 

divided into five phases: lag phase, exponential phase, stationary phase, death 

phase and long-term stationary phase (Finkel, 2006). After 4-6 hours culture, 

GBS A909 entered into stationary phase with a high density of cell numbers 

between ca. 108 and 109 CFU/mL maintained up to 2 days. In this phase, the 

cells likely had a high metabolic rate and eventually exhausted the limited 

environmental nutrition. Due to the absence of nutrition, most of cells entered a 

„death mode‟, in which cells lose viability, and cell numbers dropped to ca. 106 

CFU/mL. Surviving cells can then use the components from dead cells as 

nutrition. After 2 weeks, cells entered into long term stationary phase, in which 

cells numbers were maintained at 105-106 CFU/mL for more than 8 weeks. In 

this phase, cells preserve a dynamic balance of cell „birth‟ and „death‟ (Finkel, 

2006). It is reported that other bacteria, notably S. pyogenes, also showed long 

term survival and remained culturable for more than 1 year (Wood et al., 2005). 

Bacteria survive in long-term stationary phase by remaining metabolically 

active: S. pyogenes lost culturability in less than 72 hours when cells at long-

term stationary phase were transferred from glucose depleted rich medium to 

phosphate buffered saline or when antibiotics were added (Wood et al., 2009). 

Amino acids are necessary for S. pyogenes long term survival as cell numbers 

decreased rapidly when S. pyogenes was cultured in nitrogen limited medium 

(Trainor et al., 1999). The pyruvate pathway and amino acid catabolic pathway 
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are the main metabolic pathways of S. pyogenes surviving during long-term 

stationary phase (Wood et al., 2009). This was supported by measuring the 

medium components before S. pyogenes entered into stationary phase and at 

12 weeks. The results showed there was an increase of formate and acetate 

concentration and decrease of lactate levels (Wood et al., 2009). After 4 weeks 

of stationary phase S. pyogenes produced two kinds of colonies: atypical large 

colonies and microcolonies, which expressed both common and unique 

characters when analysed by proteomic methods (Wood et al., 2005). This 

suggested there was an accumulation of mutants surviving in long-term 

stationary phase and these expressed differences in more than metabolism 

(Wood et al., 2009). Global regulators (e.g. RelA, Rgg/RopB, CsrR/CovR, CcpA 

and CodY) regulate S. pyogenes expression of metabolic genes and virulence 

factors (Wood et al., 2009). There was RpoS accumulation at stationary phase, 

which can help cells adapt and resist stress environments. RpoS regulates 

genes involved in cell morphological changes, stress resistance, metabolic 

activity and virulence factor expression (Llorens et al., 2010).  

GBS strains survived for much shorter periods in extended stationary 

phase in pH 5 medium compared to pH 7 medium.  The data showed GBS 

A909 could not typically be recovered at 1 week in pH 5 medium (Figure 3.6) 

and these findings were supported by replicates with other GBS strains, with a 

highly sensitive lower limit of detection (200 CFU/mL; Table 3.3). Therefore 

these data show that the starting pH of the culture medium can affect long term 

survival of bacteria. This data was very surprising given that normal vaginal pH 

is lower than pH 5 and GBS colonisation may be prolonged in vivo. However, 
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how GBS arrives in the acid medium of the vagina is not known but may be 

important. It is generally assumed that the major reservoir for GBS is rectal 

colonisation but it is not known if transfer to the vagina is a „gradual‟ or „abrupt‟ 

colonisation event.  GBS may mount an adaptive ATR which improves growth 

and long term survival. The ATR has been extensively studied in other bacteria, 

including streptococci (Weilin-Neilands and Svensater, 2007; Martin-Galiano et 

al., 2005).  GBS growth experiments were therefore developed that allowed 

GBS to be given „transient exposure‟ or „habituation‟ to low pH before the 

extended incubations to measure cell survival at low pH. However the data 

showed there was no improvement of GBS A909 survival in pH 5 THB after the 

strategy of exposure to acid conditioning.   

 

3.3.2. Acid Adaptation 

In vitro GBS growth in unbuffered THB broths will „autoacidify‟ the medium due 

to fermentation producing acids (for GBS, mostly lactic acid, Michelson 1972). 

Note that the main cause of the acid environment in pH 7 broths is 

streptococcal metabolism (i.e. an „endogenous‟ phenomenom). Moreover, this 

will be a gradual acidification and should induce some acid tolerance. A 

different scenario is entry of streptococci into an acid environment generated by 

an „exogenous‟ source e.g. in vivo movement to a new body site such as the 

vagina which is already acid. However, it is important to consider whether this 

is a gradual process down a pH gradient, perhaps similar to stepwise 

movement across tissue surfaces such as the perineum, which has a pH ca. 6 

(Runeman et al. 2003; Runeman et al. 2005) or an abrupt exposure to acid by 



 

151 

 

direct inoculation into the new environment (e.g. rapid transfer from rectum to 

vagina). There is no clear evidence which of these situations (or both) reflects 

the mode of entry of GBS into the vagina. In vitro inoculation into low pH broths 

(as in experiments described earlier in this chapter e.g. Fig 3.6) typically 

models an „abrupt‟ transfer. As gradual colonisation from rectum to vagina may 

involve transient colonisation of the perineum (typical pH 6), GBS in vivo may 

be able experience conditions allowing an ATR to develop. 

It is important to note that studies of the ATR phenomena are very hard to 

interpret and it is clear that there may be important species and strain specific 

variations in the mechanisms underlying how the ATR is achieved.  A good 

example of different ATR induction strategies is given by Papadimitriou et al. 

(2007), who used three main methods: (1) Autoacidification – the effect of 

fermentation during growth releasing acid end products to acidify non-buffered 

media. (2) Transient exposure to non-lethal pH – cells grown in pH 7 buffered 

medium were harvested and resuspended in medium at pH 5.5 or 6 for 1 hour. 

(3) Acid “habituation” – growth of inoculum overnight at pH 6 (i.e. to stationary 

phase) followed by subculture into medium at pH 6. The cells were then 

challenged by exposure to pH 3.5 for 15 or 30 minutes. The data of 

Papadimitriou et al. (2007) showed that all three strategies induced an ATR, 

although autoacidification was less effective at the 15 min time point. Another 

important point is that many studies focus on ATR of log phase cells. However, 

Papadimitriou et al. (2007) showed that entry to stationary phase induced an 

ATR, although this was ineffective after prolonged incubation (48hr) in 

stationary phase. There are also previous reports of a strain variable stationary 
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phase ATR in Strep. mutans (Svensäter et al. 2001) and Lactococcus lactis. 

The strategy here for exposure to acid showed there was no improvement of 

GBS A909 long term survival in pH 5 THB (Figure 3.8). This result was 

consistent with the data of Papadimitriou et al. (2007).  

 

3.3.3. Possible ‘viable but non-culturabale’ survival of GBS 

Bacteria in the VBNC state are unable to grow on standard media and form 

colonies but are still alive (Bogosian & Bourneuf 2001; Oliver 2004; Oliver, 

2009). Live-Dead staining with acridine orange/ethidium bromide can be used 

to determine whether the cells are in a living or dead state based on cell 

membrane integrity. Viable cells have intact cytoplasmic membranes and a 

functional electron transport system. The total number of bacteria was 

determined by acridine orange staining. Acridine orange is a cell permeable 

fluorescent dye, which can interact with DNA and RNA present and gives a 

green fluorescence. Dead cells that have lost membrane integrity are stained 

as red flourescence by ethidium bromide. The staining of ethidium bromide 

dominates over acridine orange. The viable cells were visualized as green 

fluorescence under Simens Olympus BX40 microscope in fluorescence mode, 

while dead cells were visualized as red fluorescence.  

The Live-Dead staining results showed that there were still a significant 

number of cells that are still alive at long-term stationary phase (>48 hrs) both 

in pH 5 and pH 7 medium, which are much higher than the live cells recovered 

by THA plate sampling methods. Thus a large number of cells were shown to 
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be alive with the Live-Dead Staining method than could be grown on agar 

plates, which suggested the cells may survive in a „viable but non-culturable‟ 

(VBNC) state. 

VBNC cells also can be confirmed by using reverse transcriptase (RT)-

PCR to detect gene expression. Nonculturable cells continued to express 

bacterial mRNA, which has a half life of only 3-5 mins. Expression of bacterial 

mRNA was deemed as an indicator of cells being alive (Oliver, 2009). Other 

methods, including redox indicators and flow cytometry, have also been used to 

detect VBNC cells (Bogosian & Bourneuf, 2001).  

Environmental stresses such as starvation, thermal stress, oxidative 

stress and pH changes have been reported to induce bacteria to enter into a 

VBNC state (Oliver 2009). Bacteria in the VBNC state are considered to be in a 

dormant phase, accompanied by very low levels of metabolic activity, 

macromolecular synthesis and respiration, but ATP levels and membrane 

potential are still high. VBNC cells can be resuscitated in favourable 

environments (Oliver 2009).  

Bacterial entrance into a VBNC state is accompanied by metabolic 

changes including in nutrient transport, respiration rates and macromolecular 

synthesis (Oliver 2004). Proteomic analysis of E. faecalis revealed there are 

different metabolic levels including glycolysis, oxidative phosphorylation and 

phospholipid biosynthesis between growing and VBNC cells (Heim et al., 

2002). Muela et al. (2009) found the E. coli outer membrane subproteome 

changed under stress conditions (Muela et al 2009). E. coli underwent 

modification of the peptidoglycan when undergoing the transition from a growth 
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state to the VBNC state. These changes of bacterial metabolism and cellular 

components may be explained as a cellular adaptation to the stress 

environment. RT-PCR experiments showed nonculturable E. coli continually 

expressed the genes of mobA, rfbE, stxl, gfp and for 16S rRNA synthesis 

(Muela et al., 2009). These suggested the cells were viable. Continued 

expression of the stress σ factor RpoS was found by E. coli in the VBNC state. 

The expression of the virulence factors CagA, VacA and UreA by Helicobacter 

pylori in the VBNC state suggested the bacteria remains infectious in this state 

(Muela et al., 2009). 

The possibility identified here that GBS cells entered into a „VBNC‟ state 

should be further confirmed by other methods, such as RT-PCR and 

proteomics. 

 

3.3.4. Biofilm formation contributes to GBS survival 

The results obtained here showed that there was biofilm formation when GBS 

A909 was grown in TH broth medium using tissue culture flasks and microtitre 

trays. Bacterial biofilms are composed of surface-associated bacteria 

surrounded by an  extracellular polysaccharide matrix (Kaur et al., 2009; Hall-

Stoodley and Stoodley 2009). This three dimensional complex is a coordinated 

community and allows bacteria to adapt to and survive in host environments 

(Hall-Stoodley and Stoodley 2009).  

Live-Dead staining results showed the percentage of live cells in biofilm 

cultures was improved compared with planktonic cells. This may be explained 
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as the biofilms may provide a protection to the cells against stress 

environments. Hall-Stoodley and Stoodley (2009) reviewed that bacteria in 

biofilms can detect environment changes and respond to it in order to survive in 

diverse and stressful conditions. Biofilms protect bacteria against antibiotics by 

decreasing the antibiotic‟s penetration rate and mediating bacterial gene 

expression. Transmission electron micrographs reveal biofilms protect bacteria 

against phagocytes (Hall-Stoodley and Stoodley 2009). S. mutans biofilm cells 

expressed significant greater acid tolerance ability compared with planktonic 

cells both at 3 hours and 3 day time points and bacterial acid tolerance was 

increased with increased biofilm density (Welin-Neilands and Svensäter 2007).  

Biofilm formation coating culture plates with extracellular matrix molecules 

(hyaluronic acid/ heparin) results showed GBS strain NEM316 could notably 

form better biofilm than A909 under all conditions. Konto-Ghiorghi et al. (2005) 

characterized the gbs1479-1474 locus of NEM316, which encoding the pilus 

proteins, and found that PilA and PilB are necesary for biofilm formation. There 

was an impaired biofilm formation in pilus deletion stains compared with wild 

type strains (Konto-Ghiorghi et al., 2005).  

Previous results (Section 3.2.2) showed GBS A909 grown in pH 5 TH 

medium without feeding could not be recovered after 1 week point. Biofilm 

cultures fed with 1/10th THB pH 5 or human serum were readily detected at the 

1 week time point (Table 3.13). Vaginal fluid is the main source of host derived 

nutrients for the vaginal bacteria and is produced by reproductive age women 

at a rate of 1-3 g per day. Vaginal fluid is an acid complex mixture, which is 

composed of cervical mucus, endometrial fluid, desquamated vaginal epithelial 
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cells and leukocytes. Other nutrients come from menstrual fluid, which is 

composed of 30-50% whole blood, carbohydrates, amino acids, proteins, urea, 

lipids and fatty acids. Both pH and components of vaginal fluid are variable 

during menstruation cycle. Moreover, transepithelial delivery of nutrients may 

be relevant depending on the precise location of GBS in vivo which appears to 

be as yet unknown. An in vitro model of GBS A909 feeding with low 

concentration medium (1/10th strength) is therefore arguably more like in vivo 

conditions, in which bacteria can continue to acquire fresh nutrition from the 

environment.  

The most important finding of the present chapter is that GBS long term 

survival is affected by pH. GBS could survive in pH 7 THB for more than 8 

weeks and maintained high cell numbers. GBS could not be recovered from pH 

5 THB after 1 week using THA plates, except on a few occasions (Table 3.5 

and 3.13), and never after longer than 1 week. Acid adaptation experiments 

showed there was no significant improvement of GBS growth in pH 5 THB. 

These data suggest that it will be important to study further how GBS is able to 

colonise the low pH environment of the vagina for apparently long periods of 

time.  Live-dead staining results suggested that a large number of cells might 

enter into „VBNC‟ state. Biofilm results showed there was biofilm formation of 

GBS and the biofilms were improved when „feeding‟ with low nutrient media 

and coating surfaces with extracellular matrix molecules. 
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Chapter 4  

Results and Discussion of proteomic investigation of GBS 

grown under conditions associated with neonatal exposure 

 

4.1. Background 

The rapid progression of early onset GBS disease (typically within 24 hr of 

birth) suggests that the most common route of vertical transmission is 

ascending infection, with the bacteria gaining access to the amniotic fluid 

followed by aspiration into neonatal lung. During the development of GBS 

disease, bacteria must adapt from conditions associated with vaginal carriage 

to those of neonatal infection and invasion. Proteomic investigations of GBS 

protein expression under conditions representing those associated with benign 

maternal colonisation and foetal exposure may help our understanding of the 

molecular basis of GBS virulence. To do this, an in vitro model of GBS growth 

under conditions reflecting material colonisation and neonatal exposure has 

been established. Proteins expressed under each growth condition were 

separated by 2D SDS-PAGE. Gel images were analyzed using PDQuest 8.0 

and differentially expressed proteins were determined. Individual proteins were 

subjected to in-gel trypsin digestion and identified using LC/ESI-MS with 

peptide fragment fingerprinting. Proteins were then identified using Mascot 

searches and investigated using NCBI Blast searches and Uniprot searches.  
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4.2. Results 

4.2.1. An in vitro model of GBS growth under conditions associated with 

neonatal exposure 

An in vitro model of GBS growth under conditions associated with maternal 

colonization and neonatal exposure was established. GBS A909 grown in pH 5 

THB with standing at early stationary phase reflected bacterial maternal 

colonization as the vagina is very acidic (pH normally less than 4.5), with low 

oxygen and, likely, limited nutrition. Inoculation of GBS A909 from pH 5 THB at 

early stationary to pH 7 THB medium with shaking and harvesting at mid-late 

exponential phase reflected GBS passage from the mother to the neonate as 

the neonatal lung and blood are near neutral pH and high oxygen conditions, 

with plenty of nutrients (as indicated by the known rapid growth of GBS in vivo).  

GBS growth curves were determined by measuring the OD at 600 nm. 

The experiments were performed in triplicate. Figure 4.1 shows GBS A909 

growth in pH 5 THB medium reached the onset of stationary phase at ca. 6 

hours, with an OD600 of 0.6. GBS A909 growth in pH 7 THB medium reached 

mid-late exponential phase at 3 hours with an OD600 of 0.6 and entered 

stationary phase at 4 hours with OD600 of 0.9. These data are consistent with 

that previously presented in Figure 3.1. For proteomic analysis, GBS cells were 

harvested following growth to points P1 and P2 (Fig. 4.1). Thus cells at P1 

represent GBS A909 grown in pH 5 THB with standing (i.e. low O2) and were 

harvested at early stationary phase. Cells at P2 represent GBS A909 grown in 

pH 7 THB with shaking and were harvested at mid-late exponential phase. 

Growth of GBS A909 yielded the same biomass at points P1 and P2. This in 
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Figure 4.1. Representative GBS A909 growth curves under different 

growth conditions. Arrows indicate the two growth conditions considered 

relevant for proteomics.  

Condition 1: 50 ml THB pH 5 broth with microaerophilic conditions (standing 

culture).  Condition 2: 50 ml THB pH 7 broth with aerated conditions (shaking, 

150 rpm). Data are representative of triplicate experiments. 

 

 

 

 

 

 



 

160 

 

vitro model of the growth conditions such that cells harvested at P2 are adapted 

directly from cells grown under the conditions that prevail at point P1 also 

mimics the bacterial progression from colonisation to ascending infection via 

the amniotic fluid. 

 

4.2.2. 2D SDS-PAGE and gel analysis 

The optimised conditions of 2D SDS-PAGE for samples from GBS A909 were 

found to be (1) 50 ml of GBS A909 culture from each condition (P1 and P2, Fig. 

4.1). (2) 100 µl of lysis solution (urea 8M, CHAPS 4% (w/v)) with 2% (w/v) IPG 

buffer (pH 4-7) was used to extract proteins. (3) a 2D clean-up kit (GE 

Healthcare) was used to precipitate protein and reduce interfering substances. 

(4) 350 µl rehydration solution was used to resuspend protein samples and 

load them on to Immobiline DryStrips. (5) Immobiline DryStrips pH 4-7, 18cm 

were used for IEF. (6) The first dimension was run for 8.5 hrs. (7) 14% SDS-

PAGE was performed for the second dimension. (8) Colloidal Coomassie blue 

stain was used to visualize the gels.  

Six good quality 2DE gels from independent experiments for each 

growth condition were acquired (Figures 4.2 and 4.3). The gels were digitally 

photographed using a Bio-Rad GB-710 calibrated imaging densitometer and 

analyzed using PDQuest V8.0 software. After detecting and editing spots, the 

MatchSet analysis showed approximately 85 and 95 protein spots that were 

reproducibly visible on the gels from P1 and P2 harvested cells, respectively, 

and 89% of the protein spots were matched between the gels, with a correlation  
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 Condition P1 (1)                                           Condition P1 (2) 

                    

 Condition P1 (3)                                           Condition P1 (4) 

              

Condition P1 (5)                                            Condition P1 (6) 
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Figure 4.2. The six good quality 2D gels showing protein spots from cells 

harvested at condition P1. 100 µl lysis solution (urea 8M, CHAPS 4% (w/v)) 

was used to extract cells. Immobiline DryStrips pH 4-7, 18 cm were used for the 

first dimension (IEF), 14% (w/v) SDS-PAGE for the second dimension. Colloidal 

Coomassie blue stain was used to visualize the gel. Protein standards are 

shown at the left hand side of each gel (250kDa, 150kDa, 100kDa, 75kDa. 

50kDa, 37kDa, 25kDa, 20kDa, 15kDa, 10kDa).  
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Condition P2 (1)                                            Condition P2 (2) 

            

Condition P2 (3)                                            Condition P2 (4) 

             

Condition P2 (5)                                            Condition P2 (6) 
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Figure 4.3. The six good quality 2D gels showing protein spots from cells 

harvested at condition P2. 100 µl lysis solution (urea 8M, CHAPS 4% (w/v)) 

was used to extract cells. Immobiline DryStrips pH 4-7, 18 cm was used for the 

first dimension (IEF), 14% (w/v) SDS-PAGE for the second dimension. Colloidal 

Coomassie blue stain was used to visualize the gel. Protein standards are 

shown at the left hand side of each gel (250kDa, 150kDa, 100kDa, 75kDa. 

50kDa, 37kDa, 25kDa, 20kDa, 15kDa, 10kDa). 
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Figure 4.4. Merged master 2D gel of proteins from  GBS A909 cultured in 

50 ml pH 5 TH medium. Protein spots up-regulated at this growth condition 

(P1) are numbered (6 of the 16 differentially expressed proteins identified). 

Protein molecular weight standards are indicated at the left hand side of the 

gel. 
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Figure 4.5. Merged master 2D gel of proteins from GBS A909 cultured in 

50ml pH 7 TH medium. Protein spots up-regulated at this growth condition 

(P2) are numbered (10 of the 16 differentially expressed proteins identified). 

Protein molecular weight standards are indicated at the left hand side of the 

gel. 
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coefficient for 2 representative gels of 0.73. Merged master gels from this 

image analysis are shown in Figures 4.4 and 4.5. The quantitation of all of the 

protein spots was reviewed using the analysis tool of the Spot Quantity Table 

Report based on the „spots‟ density. All protein spots from one condition 

expressed more strongly than the other condition were listed (Table 4.1 and 

Table 4.2) and the expression ratio (Table 4.3) was calculated. The 

Independent-sample t-test was used to determine statistically significant 

differences in the spot quantities from the two different conditions. Since 

p<0.05, there is a statistically significant difference in the mean scores of spot 

quantities from two different conditions. 

 

4.2.3. Protein in-gel trypsin digestion, mass spectrometry analysis and 

protein identification 

Following in-gel trypsin digestion, 7 µl of digested peptide sample with buffer 

was loaded and analysed by LC/ESI-MS (Section 2.2.6.). The mass spectrum 

data produced were up-loaded into Mascot search (MS/MS Ion Search) 

software. Protein identification, accession number, protein mass, score, 

matched peptides and percent amino acid coverage of the entire protein were 

produced for each spot. These data are summarised in Table 4.4 (proteins 

expressed without significant difference between the two growth conditions), 

Table 4.5 (proteins upregulated under condition P2) and Table 4.6 (proteins 

upregulated under condition P1).  
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Table 4.1. Spot quantification of 2D gels analyzed by PDQuest (all 

differentially expressed protein spots, quantified from cells harvested at 

condition P1). (SSP is sample spot protein.) 

SSP pH 5(1) pH 5(2) pH 5(3) pH 5(4) pH 5(5) pH 5(6) Mean S.D. 

2321 6.2 0 0 0 0 0 1.0 2.5 

3307 31.8 19.9 22.9 46.8 24 30.7 29.4 9.7 

4101 31.2 19.9 22.9 46.8 24 30.7 29.4 9.7 

4103 85.8 25.2 73.7 71.3 3.4 185.8 79.4 57.3 

4205 393.1 529.2 212.3 297.5 65.5 896.4 399.0 290.1 

4423 7.7 0 0 0 0 0 1.3 3.1 

5104 163 107.5 14.1 195.4 45.8 228.6 125.7 84.9 

5203 37.4 27.5 13.9 25.7 35.8 15.2 25.9 9.9 

5204 175.8 180.8 300 308.5 68 288.8 210.3 89.8 

5413 0 0 0 0 0 0 0 0 

6206 152.3 89.9 81.5 118 42.4 132.4 102.8 39.6 

6310 8.6 7.7 4.3 11.6 0.6 4.7 6.3 3.9 

7007 11.9 29.7 10.7 39.8 29.3 53.7 29.2 16.5 

7515 74.8 42.1 25.0 65.7 27.9 77.9 52.2 23.6 

7530 1.1 0 0 0 0 0 0.2 0.5 

8722 0.1 0 0 0 0 0 0 0 
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Table 4.2. Spots quantification of 2D gel analyzed by PDQuest (all 

differentially expressed protein spots, quantified  from cells harvested at 

condition P2). 

SSP pH 7(1) pH 7(2) pH 7(3) pH 7(4) pH 7(5) pH 7(6) Mean S.D. 

2321 15.5 2.7 4.2 4.1 1.7 22 8.4 8.4 

3307 62.7 63.8 129.3 88.9 25.9 162.8 88.9 49.8 

4101 0 0 0 0 0 0 0 0 

4103 15.3 25.2 16.9 14 29.1 11.1 18.6 7 

4205 29.3 7.6 0 74.7 90.2 31.6 38.9 36.2 

4423 4.4 6 17 8.6 0 13.4 8.2 6.2 

5104 211.2 379 206.1 519.5 426.4 394 356 124.2 

5203 0 3.2 0 0 4.7 3.8 2.0 2.2 

5204 15.9 5.1 22.6 10.4 13 29.2 16.0 8.7 

5413 7 6 5.4 3.3 9.1 13 7.3 3.4 

6206 159.4 269.9 229.7 298.5 226.7 288.4 245.4 51.5 

6310 15.2 24 65 31.5 29.3 47.7 35.5 18 

7007 0 0 0 0 0 0 0 0 

7515 88.6 146.5 179.1 233.2 163.3 85.0 149.3 56.5 

7530 0 21.3 22.5 14.6 24.2 34.1 19.5 11.4 

8722 11.4 15.3 0 11.4 68 0 17.7 25.5 
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Table 4.3. Spot quantification and expression ratios of proteins expressed 

differentially between conditions P1 and P2. The final column shows the 

spot number for each protein as indicated on Figs. 4.4. and 4.5. 

SSP Protein Spot density Ratio 
P1:P2 

Spot 
number 

T test 
P 
value 

P1 P2 

2321 Uracil phosphoribosytransferase 1 8.4 0.12 8 0.065 

3307 Alkyl hydroperoxide reductase, subunit C 29.1 88.9 0.33 10 0.016 

4101 Co-chaperonin GroES 21.9 0 ↑ 16 0.001 

4103 30S ribosomal protein S6 79.4 18.6 4.27 14 0.058 

4205 Ribosomal protein L21 399 38.9 10.26 12 0.013 

4423 ABC transporter, ATP-binding protein 1.3 8.2 0.16 2 0.034 

5104 30S ribosomal protein S6 125.7 356 0.35 9 0.004 

5203 Adenine phosphoribosyltransferase 25.9 1.95 13.28 11 0.002 

5204 Hypothetical protein SAG1654 210.3 16 13.14 13 0.003 

5413 Thioredoxin reductase 0 7.3 ↓ 3 0.000 

6206 50S ribosomal protein L10 

Hypothetical protein SAG0739 

102.8 245.4 0.42 6 0.003 

6310 Glutamine ABC transporter, ATP-binding 
protein  

Hypothetical protein SAG1211 

6.3 35.5 0.18 7 0.003 

7007 PTS system, IIB component, putative 29.2 0 ↑ 15 0.001 

7515 Cysteine synthase A 52.2 149.3 0.35 4 0.003 

7530 Dihydro orotate dehydrogenase 1A 

F0F1 ATP synthase subunit gamma 

0.2 19.5 0.01 5 0.002 

8722 C protein beta antigen 0 17.7 ↓ 1 0.120 
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A total of 76 protein spots could be confidently identified. Of these, 57 spots 

showed no statistically significant difference in expression between the 2 

growth conditions (Table 4.4). These included 2 separate spots identified as 

glyceraldehyde-3-phosphate dehydrogenase. In addition to the 57 stably 

expressed proteins, 21 protein spots were reproducibly differentially expressed, 

19 of which could be identified by LC-MS (Table 4.3). Of these, 13 proteins 

were more abundantly expressed in cells harvested at point P2 (Figure 4.5; 

Table 4.5), where as 6 proteins were more abundantly expressed in cells 

harvested at point P1 (Figure 4.4; Table 4.6). 

 

4.3. Discussion 

4.3.1. An in vitro model of GBS grown under conditions associated with 

neonatal exposure 

The growth experiments demonstrated that growth of GBS at pH 5 is both 

slower and yields less biomass (lower final OD600 nm) compared to growth at 

pH 7, although the maximum growth rate at exponential phase was similar in 

each case (Figure 4.1.). These data are consistent with that in Chapter 3 (e.g. 

Fig 3.1), which showed slower GBS growth at pH 5 and lower final yields. In 

contrast, at each pH, GBS growth with aeration (shaking) was the same as that 

observed without aeration, as observed previously for GBS strain NEM316 

grown in M17 medium (Yamamoto et al., 2005).  

For proteomic analysis, GBS cells were harvested following growth to 

points P1 and P2 (Fig. 4.1). Cells at P1 represent GBS A909 grown in pH 5 
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Table 4.4. Proteins identified without change in expression level under growth conditions P1 and P2. Proteins in bold 

were also identified in a proteomics study of GBS surface proteins (Hughes et al., 2002). 

SSP Protein identification Accession 
number 

Score Protein code Matched 
peptides 

% protein 
coverage 

2111 Hypothetical protein SAG2091 gi|22538226 107 SAK_2030 2 21% 

2704 Trigger factor gi|76788439 255 SAK_0155 5 22% 

3103  50S ribosomal protein L7/L12 gi|22537448 141 SAK_1334 2 19% 

3119 30S ribosomal protein S16 gi|22537505 80 SAK_1391 2 33% 

3305 Co-chaperone GrpE gi|76788374 127 SAK_0146 2 12% 

4204 Transcription enlongation factor GreA gi|22537752 266 SAK_1627 4 35% 

4214 Thiol peroxidase gi|22537289 103 SAK_1217 2 15% 

4305 ATP-dependent Clp protease proteolytic subunit gi|22537725 101 SAK_1600 2 23% 

4409 Triosephosphate isomerase gi|22536927 411 SAK_0888 5 31% 

4410 Peptidyl-prolyl cis-trans isomerase gi|22536506 268 SAK_0393 5 18% 

4420 Phosphoglycerate mutase gi|22536928 206 SAK_0889 4 26% 

4421 50S ribosomal protein L3 gi|22536243 148 SAK_0091 3 30% 

4605 Phosphopyruvate hydratase gi|22536801 369 SAK_0713 4 17% 

4612 Dipeptidase PepV gi|76787443 769 SAK_1305 10 29% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
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4614 Cell dividion protein FtsZ gi|22536658 813 SAK_0581 14 46% 

4804 Molecular chaperone DnaK gi|22536282 734 SAK_0147 15 34% 

5202 Gls24 protein, putative gi|22537295 798 SAK_1223 10 72% 

5218 Methionine sulfoxide reductase A gi|22537653 122 SAK_1534 3 24% 

5304 Hypothetical protein gbs1202 gi|22511251 300 SAK_1221 5 45% 

5307 Manganese-dependent superoxide dismutase gi|2765187 106 SAK_0931 2 13% 

5313 Deoxyribose-phosphate aldolase gi|22538205 69 SAK_2009 1 5% 

5609 Elongation factor Ts gi|22537970 683 SAK_1851 9 39% 

5617 Aldehyde dehydrogenase family protein gi|22537282 229 SAK_1211 4 17% 

5621 F0F1 ATP synthase subunit beta gi|22537026 1289 SAK_0986 20 65% 

5701  Chaperonin GroEL gi|22538209 1435 SAK_2013 20 54% 

6112 Hypothetical protein SAG1760 gi|22537899 173 SAK_1782 4 67% 

6113 Hypothetical protein SAG2138 gi|22538272 68 SAK_2096 2 42% 

6205 Hypoxanthine-guanine phosphoribosyltransferase gi|22536200 73 SAK_0014 2 13% 

6305 dTDP-4-keto-6-deoxyglucose-3,5-epimerase gi|22537357 280 SAK_1286 5 36% 

6309 Hypothetical protein SAG1751 gi|22537890 509 SAK_1774 9 52% 

6402 Transcriptional repressor CodY gi|76786992 178 SAK_1687 4 22% 

6403 Acetoin reductase gi|22536701 571 SAK_0674 6 31% 

6406 Adenylate kinase gi|76787497 677 SAK_0122 12 63% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
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6412 Fructose-bisphosphate aldolase gi|22536312 525 SAK_0178 7 31% 

6521 Acetoin dehydrogenase, thymine PPi dependent gi|22537042 496 SAK_1002 9 41% 

6522 L-lactate dehydrogenase gi|22537120 311 SAK_1054 5 21% 

6524 Phosphotransacetylase gi|22537250 376 SAK_1177 9 26% 

6604 Glucose-6-phosphate isomerase gi|22536585 706 SAK_0475 14 36% 

6607 DNA-directed RNA polymerase subunit alpha gi|76787566 369 SAK_0166 9 31% 

6609 Phosphoglycerate kinase gi|19171967 1075 SAK_1788 14 48% 

7225 Hypothetical protein SAG1677 gi|22537817 301 SAK_1689 4 37% 

7311 Dihydroxyacetone kinase family protein gi|22537791 277 SAK_1663 5 44% 

7406 Uridylate kinase gi|22537656 328 SAK_1537 5 35% 

7413 Purine nucleoside phosphatase gi|19171971 308 SAK_1267 4 32% 

7513 Glyceraldehyde-3-phosphate dehydrogenase gi|22537907 507 SAK_1790 8 34% 

7613 Glyceraldehyde-3-phosphate dehydrogenase gi|22537907 312 SAK_1790 4 18% 

7526 UDP-glucose 4-epimerase gi|22538061 71 SAK_1882 1 3% 

7731 Pyruvate kinase gi|22537102 704 SAK_1073 10 30% 

7810 ATP-dependent Clp protease, ATP-binding subunit gi|22537450 683 SAK_1336 13 30% 

8205 50S ribosomal protein L6 gi|22536258 229 SAK_0106 4 43% 

8304 Ribosome recycling factor gi|22537655 271 SAK_1536 4 34% 

8401 Hypothetical protein SAG0963 gi|22537124 268 SAK_1058 5 22% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
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8416 1-Phosphofructokinase gi|22537494 184 SAK_1378 3 13% 

8502 6-Phosphofructokinase gi|22537101 466 SAK_1036 6 25% 

8609 Phosphocarrier protein HPr gi|22536985 68 SAK_0945 1 11% 

6603 Inositol-5-monophosphate dehydrogenase gi|22536517 639 SAK_2117 9 34% 

9107 Hypothetical protein SAG0302 gi|22536486 190 SAK_0373 4 48% 

 

 

 

 

 

 

 

 

 

 

 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
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Table 4.5. Proteins upregulated in cells harvested at growth point P2. Cysteine synthase A (bold) was also identified in 

a proteomics study of GBS surface proteins (Hughes et al., 2002). 

Spot 
#a 

Protein identification Accession 
numberb 

Scorec Protein 
code 

Matched 
peptides
d 

% Protein 
coverage
e 

Expressio
n ratio 

1 c protein beta antigen gi|46521 113 SAK_0186 2 2% ↓ 

1 c protein beta antigen gi|37572662 111 SAK_0186 2 2% ↓ 

2 FeS assembly ATPase SufC  gi|22536326 221 SAK_0199 4 23% 0.16 

3 Thioredoxin reductase gi|22536478 130 SAK_0366 6 26% ↓ 

4 Cysteine synthase A gi|22536517 616 SAK_0404 13 53% 0.35 

5 Dihydroorotate dehydrogenase 1A gi|22536686 446 SAK_0657 9 36% 0.01 

6 Hypothetical protein SAG0739 gi|22536903 74 SAK_0865  1 11% 0.42 

5 F0F1 ATP synthase subunit gamma gi|22537025 57 SAK_0985 1 6% 0.01 

7 Hypothetical protein SAG1211 gi|22537369 91 SAK_1297  2 16% 0.18 

6 50S ribosomal protein L10 gi|22537449 512 SAK_1335 27 60% 0.42 

7 

Glutamine ABC transporter, ATP-binding 

protein gi|22537610 266 SAK_1498 

8 25% 0.18 

8 Uracil phosphoribosytransferase gi|22537726 105 SAK_1601 2 17% 0.12 

9 30S ribosomal protein S6 gi|22537853 98 SAK_1722 1 16% 0.35 

10 Alkyl hydroperoxide reductase, subunit c gi|22537972 186 SAK_1853 5 31% 0.33 

 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090123/FtTTCeuat.dat&hit=gi%7c46521&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090123/FtTTCeuat.dat&hit=gi%7c37572662&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090121/FtTTIzawS.dat&hit=gi%7c22536326&px=1&ave_thresh=58&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090116/FtTTiiuaR.dat&hit=gi%7c22536478&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixeae.dat&hit=gi%7c22536517&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090121/FtTTIxYnt.dat&hit=gi%7c22536686&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEah.dat&hit=gi%7c22536903&px=1&ave_thresh=45&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090121/FtTTIxYnt.dat&hit=gi%7c22537025&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090116/FtTTiicTO.dat&hit=gi%7c22537369&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEah.dat&hit=gi%7c22537449&px=1&ave_thresh=45&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090116/FtTTiicTO.dat&hit=gi%7c22537610&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20090115/FtTTSzTOt.dat&hit=gi%7c22537726&px=1&ave_thresh=58&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081127/FtTpmzYnR.dat&hit=gi%7c22537853&px=1&ave_thresh=45&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081202/FtTplrTnh.dat&hit=gi%7c22537972&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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a Spot number refers to the proteins labelled in Fig 4.3. 

b Accession ID of each protein is the GenInfo number in the NCBI protein database. 

c Mascot score. 

d Number of nonredundant peptides identified for each protein. 

e Percent amino acid coverage of entire protein. 

f Ratio of the protein quantity in condition P1 versus condition P2 (values less than 1 indicate greater expression at P2). 
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Table 4.6. Proteins upregulated in cells harvested at growth point P1.  

Spot 
#a 

Protein identification Accession 
numberb 

Scorec Protein code Matched 
peptidesd 

% Protein 
coveragee 

Expression 
ratio 

11 Adenine phosphoribosyltransferase gi|22537363 58 SAK_1292 
1 8% 13.28 

12 Ribosomal protein L21 
 
Q3D9Y2_STRAG 91 SAK_1403 

1 16% 10.26 

13 Hypothetical protein SAG1654 gi|22537794 192 SAK_1666  
4 34% 13.14 

14 30S ribosomal protein S6 gi|22537853 68 SAK_1722 
2 16% 4.27 

15 PTS system, IIB component, putative gi|22538072 280 SAK_1894 
16 59% ↑ 

16 Co-chaperonin GroES gi|22538210 109 SAK_2014 
3 41% ↑ 

 

a Spot number refers to the proteins labelled in Fig. 4.4. 

b Accession ID of each protein is the GenInfo number in the NCBI protein database. 

c Mascot score. 

d Number of nonredundant peptides identified for each protein. 

e Percent amino acid coverage of entire protein. 

f Ratio of the protein quantity in condition P1 versus condition P2. 

 

 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081210/FtTufbSOt.dat&hit=Q3D9Y2_STRAG&px=1&ave_thresh=41&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081127/FtTpSncOt.dat&hit=gi%7c22537794&px=1&ave_thresh=45&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSiEem.dat&hit=gi%7c22537853&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081201/FtTpixSOh.dat&hit=gi%7c22538072&px=1&ave_thresh=46&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxStE.dat&hit=gi%7c22538210&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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THB with standing (low O2, microaerophilic) and were harvested at early 

stationary phase. The autoacidification data (Chapter 3, Table 3.7.) indicate 

that at early stationary phase the pH will have dropped to approximately 4.5. 

Cells at P2 represent GBS A909 grown in pH 7 THB with shaking and were 

harvested at mid-late exponential phase. An important feature of the 

experimental design was the sequential nature of the growth conditions such 

that cells harvested at P2 are adapted directly from cells grown under the 

conditions that prevail at point P1. This was designed to mimic the bacterial 

progression from colonisation to ascending infection via the amniotic fluid. 

Conditions at P1 reflect GBS colonisation in the maternal vagina, which is acid 

and predominately anaerobic. Conditions at P2 reflect GBS infection of the 

neonate, which typically occurs at neutral and aerobic environments (e.g. the 

neonatal lung and blood).  

There are some spots which were identified as containing more than one 

individual protein. Where this mixed spot is considered to be significantly 

differentially expressed between two conditions, this will affect the interpretation 

of the results as only one protein or both proteins in the spot may be expressed 

differentially. This needs further studies on this mixed spot by protein 

quantification. Protein quantification in MS-based proteomics is most commonly 

achieved by using the stable isotope method. Isotope-coded affinity tag (ICAT) 

and stable isotope labelling with amino acid in cell culture (SILAC) have been 

recently used to label proteins in protein quantification experiment (Lane, 

2005).  Moreover, it is also conceivable that some spots identified as containing 

more than one protein may in fact contain unrecognised differentially expressed 
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proteins, if one protein is induced and the other reduced, thereby cancelling any 

change in total spot levels. 

Confidence in the protein identification was achieved by applying the 

following criteria: 1) the protein hits (positive peptides) were from Group B 

Streptococcus ; 2) only peptides for which the MS/MS spectra exceeded 

Mascot‟s significance level (mascot score >40) were included; 3) the query 

matched peptides ≥2. The mass spectra detected by MS was compared with 

the MS/MS fragment masses calculated from peptide sequences in the 

database and a match score is calculated (Lane, 2005). The Mascot peptide 

score reflects the statistical significance of the match between the experimental 

and theoretical spectra. Each peptide ID is an independent measurement and 

the protein score is a total of the peptide scores. A high confidence protein 

identification can be assumed with a high mascot score (Chepanoske, et al., 

2004). Average Peptide Score (APS) has recently been proposed for 

determining accurate protein identification. This method is approached by first 

filtering out low-scoring peptide identifications and then eliminating protein 

identifications with APS scores lower than the level of a correct score. Thus a 

high average APS reflect a more confident protein identification (Shadforth, et 

al., 2005). 

 

4.3.2. Expressed proteins that showed no significant differences between 

the two growth conditions 

57 protein spots showed no statistically significant difference in expression 

between the two growth conditions (Table 4.5). These included 2 separate 
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spots identified as the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

which has been identified as a surface associated virulence factor in GBS and 

other streptococci, being notable for its ability to bind human plasminogen and 

fibrinogen (Hughes et al., 2002; Madureira et al., 2007; Magalhães et al., 2007). 

Although lacking a signal peptide directing protein secretion, GAPDH has 

previously been identified as a GBS surface protein (Hughes et al., 2002). Both 

the data here and that of Hughes et al. (2002) suggest that GAPDH is produced 

as at least two isoforms. Surface associated GAPDH may contribute to GBS 

virulence by binding host plasminogen and activating it to the plasmin protease. 

GAPDH is also involved in an indirect plasmin binding pathway via initial 

binding of fibrinogen at the cell surface and assisting plasminogen activator 

complex formation. GBS GAPDH binding to plasminogen by either the direct or 

indirect pathway may contribute to bacterial invasion and infection in the host 

(Magalhães et al., 2007). Madureira et al. found that GAPDH could induce B 

cell activity in both in vitro and in vivo models and that recombinant GADPH 

could increase CD69 expression on B lymphocytes. This effect was abolished 

in the presence of antibodies to recombinant GAPDH or inactive recombinant 

GAPDH. GAPDH can increase bacterial growth in mice, as mice were more 

susceptible to a GBS GADPH over-expression strain than the wild type strain 

(Madureira et al., 2007). These data suggested GBS GADPH may have an 

immunomodulatory function (Madureira et al., 2007). Terao et al. (2006) 

revealed S. pyogenes soluble GAPDH binds C5a directly and enhances ScpA 

cleavage of C5a. GAPDH also inhibited C5a induced neutrophil chemotaxis 

and H2O2 production in a dose-dependent manner. Since C5a plays an 

important role in the complement pathway of the immune system, GAPDH 
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binding and further cleavage of C5a may help S. pyogenes escape host 

immune cleance (Terao et al., 2006). GAPDH is an essential enzyme of 

bacteria involved in carbohydrate metabolism. S. pneumoniae GAPDH also 

showed affinity for plasmin and plasminogen (Bergmann et al., 2003).  

As well as GAPDH, this study identified 8 other proteins (Table 4.4, Table 

4.5) from the 14 GBS proteins previously identified by Hughes et al. (2002). All 

of these proteins are cytoplasmic proteins that, despite lacking signal peptides, 

are also apparently present as cell surface proteins (Hughes et al., 2002). 

Notably, in the present study, these proteins were recovered from whole cells 

but their localisation (cytoplasmic or surface associated) was not determined. 

 

4.3.3. Proteins more abundantly expressed in cells harvested at point P2  

 The putative GBS virulence factor C protein β antigen (Bac, SAK_0186) was 

expressed more abundantly in cells from point P2. This analysis detected a ca. 

55-kDa form of Bac (Fig. 4.5, spot 1). Mature Bac is predicted to be a protein of 

ca. 123 kDa, which is wall anchored as the protein contains a canonical C-

terminal LPXTG motif for anchoring of proteins to the peptidoglycan by sortase 

(Lindahl et al., 2005). However, release of a ca. 55 kDa form of Bac by GBS 

strains, including A909, has been reported by Brady and Boyle (1989). Thus, it 

is likely that it is this form of the protein has been detected in the present study. 

Moreover, the tryptic peptides detected here were localised to the N-terminus of 

the protein, i.e. that region likely to be released by proteolysis of the C-

terminally anchored mature form.  
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The Bac protein C-terminal part includes a proline-rich region, a highly 

periodic XPZ sequence of amino acid residues, which is an important structure 

for protein-protein interactions. However, the function of the XPZ region in GBS 

is not clear. This sequence varied in length among different GBS strains 

(Areschoug et al., 2002). NCBI Blast analysis of the Bac sequence showed 

there are other functional domains located in Bac (Fig. 4.6): a YSIRK motif is 

located within the N-terminal signal peptide, which is strongly correlated with 

the C-terminal LPXTG Gram positive anchoring motif; the immunoglobulin-like 

region is located in the central part of Bac; and a fibronectin-binding motif is 

located close to the C-terminus, which can bind to host fibronectin in the 

extracellular matrix (Fig. 4.6).  

           The approximate cleavage site of the low molecular weight Bac from 

whole Bac is shown in Fig. 4.6. The presence of low molecular weight Bac may 

be caused by cleavage of Bac during protein extraction or proteolysis by 

enzymes produced by GBS itself.  

The upregulation of Bac under condition P2, where cells were growing at 

a faster growth rate (mid-exponential phase) is clearly consistent with the data 

of Ross et al. (1999) who observed 5.5 fold more Bac production in strain A909 

at faster growth rates than at slower growth rates. Expression of bac 

(SAK_0186) is under control of a two component regulatory system (sak_0188-

sak_0189) associated with bac in a ca. 9 kb genomic island (Tettelin et al.,  
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                                                                                                  Cleavage site 

N -terminal                          IgA -Fc                                                                                                                                                        Factor H                             C-terminal                                                                                                                                

 YSIRK           Ig        RICH       FAP   LPXTG 

2             39          71                                                 422                      534         577                                      740                820   841       917                           1124      1162 

                                                                     SMC-N 

 

 

Figure 4.6. Schematic diagram of GBS A909 C protein beta antigen structural domains. 

YSIRK: Gram positive signal peptide, YSIRK family, (2-39). 

SMC-N: SMC N-terminal domain, (71-577). IgA-Fc: Immunoglobulin binding domain 

Ig: Immunoglobulin-like domain, (442-534). 

RICH: RICH („rich in charged residues‟) domain, (740-820). 

FAP: Fibronectin-attachment domain, (841-917). 

LPXTG: LPXTG cell wall anchor domain, (1124-1162). 
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2005; Dmitriev et al., 2006; Nagano et al., 2006; Rozhdestvenskaya et al., 

2010). Two component regulatory systems (TCS) are composed of a sensor 

histidine kinase and a DNA-binding response regulator that control gene 

expression in response to environmental signals such as stress. Higher levels 

of Bac expression have been detected in invasive GBS strains compared to 

vaginal carriage strains (Nagano et al., 2002) but the data presented here and 

that of others (Ross et al., 1999; Rozhdestvenskaya et al., 2010) clearly 

indicate that the levels of this protein can be regulated in response to specific 

growth conditions in individual strains. Consequently, growth enviroment rather 

than simply strain origin (carriage versus invasive) may be the key to Bac gene 

expression. 

Bac is able to simultaneously bind the Fc region of IgA antibodies and 

the complement regulator factor H, which suggests a role in immune evasion 

(Areshoug et al., 2002; Lindahl et al., 2005). Bac specifically binds to the Fc 

region of IgA, the binding site for which is located at the Bac N-terminal region 

(the region detected here; Figure 4.6). Human IgA is an important 

immunoglobulin on mucosal surfaces and protects the host against bacterial 

invasion. Bac binding to the Fc portion of IgA may also block IgG or 

complement deposition on the GBS surface. Alternatively, this binding may 

inhibit IgA binding to the human IgA receptor, CD89, to allow GBS to evade 

immune elimination (Pleass et al., 2000; Nagano et al., 2002). Bac also binds 

human complement regulator factor H (FH), a 150 kDa single chain plasma 

glycoprotein. The Bac binding site for FH is localized in the C-terminal part of 

the protein, which is separate and non-overlapping with the IgA binding site 
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(Fig. 4.6). FH plays an important role in regulation of complement activation via 

the alternative pathway. FH bound to Bac retains its complement regulating 

ability and may lead to the destruction of the surface bound complement 

component C3b, which in turn may prevent phagocytosis (Areshoug et al., 

2002b). Bac binding to IgA and FH may therefore play an important role in GBS 

disease by contributing to immune evasion. As condition P2 is hypothesised to 

mimic conditions associated with invasive foetal GBS exposure (e.g. entry into 

the amniotic fluid or blood), it is clearly of interest that this putative virulence 

factor linked to immune evasion is upregulated despite the absence, under the 

in vitro conditions used, of the actual components of the immune system that 

might be predicted to upregulate Bac expression. However, it is unclear why a 

mutant in which the sak_0188-sak_0189 TCS was inactivated showed 

decreased bac expression but also showed moderate increase in virulence in a 

mouse intraperitoneal infection model (Rozhdestvenskaya et al., 2010).  

Although Bac elicits protective antibodies in mice (Yang et al., 2007), its 

utility as a vaccine candidate is limited by its restricted distribution within the 

GBS population, being associated primarily with serotype Ib, some sereotype II, 

Ia and V strains (Nagano et al., 2002, 2006; Lindahl et al., 2005; Kong et al., 

2006; Manning et al., 2006), and the recently described serotype IX (Slotved et 

al., 2007). This restricted distribution was confirmed in a recent typing study of 

238 GBS isolates from both clinical and bovine sources (Sørenson et al., 2010). 

The bac gene was only associated with the largest cluster identified (cluster A, 

117 isolates in total) and was detected in only 36 isolates (31% of „cluster A‟ 

isolates; 15% of the total isolates studied).  
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 Several of the other proteins upregulated at P2 can be linked to 

responses to oxidative stress, consistent with the shift from microaerophilic to 

aerobic culture of the cells harvested at this point. SAK0199 is a predicted SufC 

ATPase belonging to a putative SUF cluster for the biogenesis of [Fe-S] 

proteins, as in other Firmicutes (Ayala-Castro et al., 2008; Riboldi et al., 2009). 

Fe-S clusters provide redox-active cofactors for a wide variety of biological 

processes and so this machinery may therefore be needed to assist in the 

adaptive response to growth in oxidative conditions. Exposure of E. coli to 

oxidative stress environments leads to a significant upregulation of suf 

transcription (Ayala Castro et al., 2008; Riboldi et al., 2009). Interestingly, the 

SAK0404 cysteine synthase (CysK) was also upregulated along with SAK0199. 

CysK has also been implicated as part of the stress response of several 

bacteria, including Lactococcus lactis, and may also as a source of sulphide for 

(Fe-S) cluster biogenesis (Fernandez et al., 2002). 

SAK0366 is a predicted thioredoxin reductase (TrxB). The thioredoxin-

thioredoxin reductase interaction is likely to be of significance in sensing 

oxidative stress in streptococci as thioredoxin reductase has been shown to be 

a component of the oxidative stress response of lactococci and lactobacilli 

(Vido et al., 2005; Serrano et al., 2007). TrxB is a member of the flavoprotein 

oxidoreductase family, which provide protection against oxygen species. 

NAD(P)H TrxR-dependent Trx reduction provides electrons to peroxidases for 

conversion of peroxide to alcohols. Serrano et al. (2007) found overproduction 

of TrxB in L. plantarum triggered the induction of 16 gene transcripts which 

were associated with oxidative stress responses (Serrano et al., 2007). TrxB 
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was also found to be upregulated under respiration conditions in L. lactis. A 

TrxB inactive L. lactis strain grown in aerobic conditions had a longer lag phase 

compared with wild type strain (Vido et al., 2005). This suggests trxB1 

inactivation may lead to hydrogen peroxide (H2O2) accumulation. The growth 

defect was restored by adding antioxidants including catalase, glutathione, 

cysteine and pyruvate. Thus the Trx system provides protection against 

oxidative stress (Vido et al., 2005).   

SAK1853 is a putative alkyl hydroperoxide reductase, which is encoded 

in an operon with SAK1854, the associated AhpF subunit. AhpCF is thought to 

be involved in the response to peroxide stress of other Gram-positive bacteria 

(Brenot et al., 2005; Vido et al., 2005; La Carbona et al., 2007). In an S. 

pyogenes AhpC deletion strain, peroxide degradation was 60% slower than in 

the wild type strain (Brenot et al., 2005). The GBS ahpCF operon has been 

shown to be part of the CsrRS (CovRS) regulon, which has an important impact 

on virulence factor expression (Jiang et al., 2008; Santi et al., 2009). Recently, 

GBS AhpC has been shown to be a haem-binding protein that may influence 

both respiration metabolism, which depends on exogenous haem and 

menaquinone (Yamamoto et al., 2005) and may affect a haem dependent 

catalase activity (Lechardeur et al., 2010). AhpC can bind haem without change 

in its catalytic activity. Respiration was decreased in a GBS ahpC mutant 

(Lechardeur et al., 2010). Thus is it is likely that the observed induction of AhpC 

in this proteomics study reflects the increased oxidative stress of growth in 

aerated culture. In contrast to these observations, it was notable that the SodA 

superoxide dismutase (SAK0913) was identified among the proteins not found 
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to be differentially expressed in the present study, consistent with previous 

observations that expression of SodA is not affected by aerobic growth or 

growth at lowered pH (Gaillot et al., 1997).  

Several of the proteins upregulated in cells at P2 can be linked to the 

increased growth rate of mid-exponential phase cells. These include 

dihydroorotate dehydrogenase 1A (SAK0657) and uracil 

phosphoribosytransferase (SAK1601), which are needed for pyrimidine 

nucleotide biosynthesis, the F0F1 ATP synthase gamma subunit (AtpG, 

SAK0985), and ribosomal proteins L10 and S6 (SAK1335, SAK1722). The 

upregulation of the SAK1498 ATPase component of the putative glutamine 

ABC transporter (SAK1497-SAK1498) also emphasises the likely need for 

increased amino acid uptake to support growth. 

In addition to these proteins, two proteins of unknown function were 

upregulated in cells grown under condition P2. SAK0865 is a predicted 

secreted protein and its gene is located in the predicted 4-gene operon 

sak0862-sak0865, also encoding HPr kinase, the lipoprotein biosynthetic 

enzyme Lgt (Bray et al., 2009) and a conserved hypothetical protein belonging 

to PFAM family PF06103. SAK_0862 is HPr kinase/phosphorylase, which 

catalyzes phosphorylation of the phosphocarrier protein HPr of the GBS 

phosphotransferase system. Bioinformatic analysis and biochemical evidence 

have demonstrated that SAK_0863 is the GBS prolipoprotein diacylglyceryl 

transferase (Lgt protein), which lipidates lipoprotein precursors and is involved 

in Lpp anchoring into plasma membrane (Bray et al, 2009). SAK_0864 is a 

conserved hypothetical protein of unknown function, which belongs to protein 
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family PF06103. This genetic locus is well conserved in streptococcal genomes 

and although none of the other 3 proteins encoded were detected as 

differentially expressed in this study, it is intriguing that PF06103 proteins may 

be associated with general stress responses and a GBS Lgt deletion strain also 

showed sensitivity to oxidative stress (Bray et al, 2009). The protein shown 

here to be induced at P2, SAK0865, has also been identified as a component 

of the GBS phosphoproteome that is responsive to the eukaryotic type 

serine/threonine kinase Stk1 (Silvestroni et al., 2009). Stk1 has been well 

established as one of the key GBS regulators of both virulence factor 

expression (Rajagopal et al., 2005; Rajagopal, 2009) and purine metabolism 

(see below; Rajagopal et al., 2005). However, it is also noted that 3 proteins 

belonging to the Stk1-responsive phosphoproteome (SAK0373, SAK0581, and 

SAK2030; Silvestroni et al., 2009) were identified among those proteins stably 

expressed in the present study (Table 4.4). Two of these proteins (GpsB, 

SAK0373; FtsZ, SAK0581) are linked to the cell division process whereas the 

function of SAK2030 remains unknown, although this gene is apparently not 

essential (Silvestroni et al., 2009).   

The gene for the other protein of unknown function identified, SAK1297, 

is apparently located in an operon with SAK1298, which encodes an HflX family 

GTPase. This operon structure is well conserved in streptococcal genomes and 

it is noted that the N-terminus of SAK1297 is distantly related to putative 

galactose-1-phosphate uridylytransferase proteins, most likely as it represents 

a nucleotide-binding domain which could suggest a functional interaction with 

the GTPase.  



 

191 

 

4.3.4. Proteins more abundantly expressed in cells harvested at point P1  

Only six proteins were identified as being more abundant in cells harvested at 

point P1 (Table 4.6), which is hypothesised to reflect conditions associated with 

GBS colonisation (i.e. low pH and O2, nutrient stress). Consistent with this, the 

increased expression of the SAK2014 GroES chaperonin was observed in 

these cells. Mascot search results showed GroES is composed of 94 amino 

acids and the theoretical molecular weight was 10 kDa (Figure 4.7).  GroES 

has previously been linked to the stress responses of diverse lactic acid 

bacteria, including acid tolerance or adaptation of S. mutans (Lemos et al., 

2001), L. lactis (Frees et al., 2003), and Lactobacillus bulgaricus (Fernandez et 

al., 2008), and so its induction in early stationary phase (following auto-

acidification of the medium to pH 5) is expected. As in S. mutans, S. 

pneumoniae and S. pyogenes (Lemos et al., 2001; Chastanet et al., 2001; 

Woodbury and Haldenwang, 2003), the GBS groES-groEL locus is preceded by 

a perfect CIRCE („controlling inverted repeat of chaperone expression‟) element 

suggesting comparable regulation by the stress response regulator HrcA 

(SAK0145 in GBS strain A909). Sequence analysis has shown that the 

sequence of CIRCE is TTAGCACTC-N9-GAGTGCTAA (Woodbury and 

Haldenwang, 2003), which is located 37 bp upstream from the groES start 

codon (Figure 4.8). HrcA binding to the CIRCE element negatively regulates 

groES and groEL expression in Gram positive bacteria. mRNA levels of groES 

and groEL were up-regulated in a S. mutans hrcA inactivation strain compared 

with the wild type strain (Lemos et al., 2001). GroES and GroEL are stress 

proteins, which respond to environmental changes. These proteins also play 
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important roles in assisting the folding of new or denatured proteins and protein 

assembly, transport and degradation (Lemos et al., 2001). Moreover, as in S. 

pneumoniae (Chastanet et al., 2001), a binding site for the CtsR regulator 

(SAK1849 in GBS strain A909) is located 16 bp upstream from the highly 

conserved CIRCE regulator of groESL, suggesting this operon may be 

regulated by both CtsR and HrcA (Fig. 4.8). However, whilst upregulation of 

GroES was observed at point P1, GroEL was identified among the stably 

expressed proteins, suggesting some differences in the regulation of the 

expression of these proteins, which are typically cotranscribed (Lemos et al., 

2001; Woodbury and Haldenwang, 2003).  

Also upregulated in cells harvested at point P1 were SAK1292 and SAK1894. 

SAK1292 is the putative GBS adenine phosphoribosyltransferase, which is 

linked to both the salvage and de novo pathway of purine biosynthesis 

(Rajagopal et al., 2005). The regulation of GBS purine biosynthesis by the Stk1 

serine/threonine kinase (Rajagopal et al., 2005) suggests that it is important for 

GBS to be able to respond to nutrient stress in vivo. 

SAK1894 is a predicted PTS phosphotransferase protein, which Sutcliffe 

et al. (2008) have previously speculated is a part of a galactitol uptake system 

that supplies precursors needed for the biosynthesis of the GBS Group B 

carbohydrate. The PTS pathway is composed of four proteins, EI, HPr, EIIA 

and EIIB, which can catalyze the transportation and phosphorylation of 

carbohydrates and regulate their activity (Rajagopal et al., 2005).  

Two other proteins (SAK1403 and SAK1722) were identified as the 

ribosomal proteins L21 and S6. Of these, a distinct protein spot upregulated at  
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MLKPLGDRVI ISFVETEEKS VGGFVLAGAS HDATKTAKVL AVGDGIRTLT 

GELVAPSVAE GDTVLVENGA GLEVKDGNEK VTVVRESDIV AVVK 
 

Figure 4.7. GroES (SAK_2014) amino acid sequence. Sequences 

highlighted in red: matched peptides identified by LC-MS; Protein sequence 

coverage is 41%. 

 

 

 

 

 

  2009161 tcttttgcca taatttaata cccaggccta aaatttaaca aagtctactt tctttacaaa 

  2009221 gcaacttttc tctaataggc ctatatcctt tcttgcttaa taaaacctat ttaacgacag 

  2009281 caacaatgtc actttcacga acaactgtca ctttttcgtt accgtcttta acttccaaac 

  2009341 cagcaccatt ttcgactaaa acagtatcac cctctgcaac gctaggtgca actaattccc 

  2009401 ctgttaaggt acgaataccg tcacccacag caagaacttt ggctgtcttt gtcgcatcat 

  2009461 ggcttgctcc tgcaagaaca aaaccaccga cagatttctc ttcagtttca acaaacgaaa 

  2009521 tgatcacacg atcacctaat ggttttaaca taataaacga acctccatac gagatatatt 

  2009581 ttgatttttt agcactccta tacagagagt gctaactaca aaaactattc tatcacttgg 

  2009641 tcagaattag tcaagagaaa aggcacgttt caaacaagaa aaatttccct agttatcctg 

  2009701 tccattcact agagaaattt atattttaac ctaagacaag ggcatcatct atcaactgtt 

  2009761 gacctgagtt tttatggaaa agttccatta attctgcaac tgttaagttt ctctttgctt 

 

Figure 4.8. DNA sequence of groES and groEL operon of GBS showing 

the intergenic CIRCE element. Blue highlight: CIRCE element; Grey highlight: 

groES (sak_2014) coding sequence (encoded on the complementary strand); 

Green highlight: start of the groEL/SAK_2013 coding sequence (encoded on 

the complementary strand); Purple highlight: heptad binding sites for the CtsR 

regulator; Yellow highlights: partial downstream coding sequences for 

SAK_2015, a putative ABC transport system ATP-binding protein. 
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 P2 was also identified as the ribosomal protein S6 (Table 4.6; Fig. 4.4), 

indicating that different isoforms of this protein are produced under the 

conditions examined here.  

Finally, a conserved hypothetical protein, SAK1666, a member of the 

cupin super family was identified. The function of this protein is difficult to 

predict as cupins are a very diverse protein superfamily (Dunwell et al., 2004). 

The cupin domain is composed of conserved motifs connected with β-strands, 

which form a small β-barrel (Dunwell et al., 2003). SAK1666 has a distant 

sequence similarity to the cupin sugar-phosphate isomerase subfamily. Cupin 

type phosphoglucose isomerases (cPGIs), play an important role in sugar 

metabolism, catalyzing the reversible isomerisation of glucose-6-phosphate to 

fructose-6-phosphate (Hansen et al., 2004). Notably, the closest protein 

homologues of SAK1666 identified by BLAST searches are archaeal proteins 

from member of the genus Methanosarcina, which exhibit very high (75%) 

amino acid sequence identity and it is intriguing that lateral gene transfer of 

cupin phosphoglucoisomerases between Archaea and Proteobacteria has been 

postulated previously (Hansen et al., 2005). The possibility that SAK1666 is a 

cupin sugar-phosphate isomerase and the similar induction of the predicted 

PTS phosphotransferase protein SAK1894 at condition P1 suggest that 

changes to carbohydrate metabolism may be relevant during colonisation. 
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4.3.5. Comparison with transcriptome studies and other proteomic 

studies  

The proteomic data presented here can be compared with several recently 

published GBS transcriptome analyses (Mereghetti et al., 2008a, 2008b; 

Sitkiewicz and Musser, 2009; Santi et al., 2009; Sitkiewicz et al., 2009). Firstly, 

it is clear that the majority of the proteins detected here as stably expressed are 

differentially regulated under other conditions: 53 out of these 57 proteins 

(93%) respond to at least one of the stimuli studied in transcriptome 

experiments (Table 4.7), confirming the likely importance of flexibility in gene 

regulation to the adaptability of GBS (Rajagopal, 2009; Santi et al., 2009).  

With regard to upregulation of virulence determinants, it can be assumed 

that proteins upregulated at P2 would likely be also upregulated in 

transcriptomic studies modelling host invasion i.e. growth in blood (Mereghetti 

et al., 2008a) or amniotic fluid (Sitkiewicz et al., 2009), growth at elevated 

temperature (Mereghetti et al., 2008b) and exposure to near-neutral pH (Santi 

et al., 2009). As Bac is absent from the GBS strains NEM316 (serotype III) and 

2603.V (serotype V) used in the transcriptome studies, it is not possible to 

relate the data for this putative virulence factor to that from the previous 

transcriptomic profiling studies of GBS. Seven out of the 12 other proteins 

identified in the present study as more abundant at P2 were upregulated in at 

least one of the transcriptome studies (Table 4.7). Six of 12 proteins abundant 

at P2 were up-regulated either at mid-log or stationary phase at 40oC compared 

with 30oC. These results are consistent with the bacteria having the capacity to 

survive in a wide range of environments. Conversely, it would also be expect  
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Table 4.7. Compare proteins differentially expressed in P1 and P2 conditions with transcriptome studies. C protein beta 

antigen (Bac) is not encoded in the strains studied by transcriptomics (purple highlighting). Genes that were significantly down 

regulated (blue highlighting) or upregulated (green highlighting) in transcriptome studies are indicated. 

Proteins identified in GBS strain A909 Mereghtti et al., 2008a Mereghtti et al., 2008b Sitkitwicz & 

Musser 2009 

Sitkitwicz et al., 2009 

Exposure to blood  Elevated temperature  Growth phase  Growth  in Amniotic fluid  

Up regulated at P2 37 oC , 

30min 

40 oC , 

30min 

37 oC , 

90min 

40 oC , 

90min 

40vs30 oC , 

Mid-log 

40vs30 oC , 

Stat. 

Stat. vs mid-log AF at Mid-

log 

AF at Late-

log 

AF at Stat. 

C protein beta antigen absent Absent absent absent absent absent absent absent absent absent 

FeS assembly ATPase SufC same Same same down same same same same down same 

Thioredoxin reductase same Same same same same same same same down same 

Cysteine synthase A same Down same down same up down down down same 

Dihydroorotate dehydrogenase IA same Same up up same down down up up up 

Hypothetical protein GAG 0739 same Same up up same same up    

F0F1 ATP synthase, subunit gamma  down Down same same same up same same same down 

Hypothetical protein SAG 1211 down Down same same same same same same down down 

50S ribosomal protein L10 same Same same same same up down same up same 

Glutamine ABC transporter, ATP 

binding protein 

down Down down down same up down same up down 

Uracil phosphoribosytransferase same Same same same same same down same same down 
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30S riboxomal protein S6 same Same same same same same same    

Alkyl hydroperoxide reductase, 

subunit C 

same Same same same up same up    

Up regulated at P1  

Ademine phosphoribosyltransferase down Down same same same same down same down same 

Ribosomal protein L21 same Same same same same same down same down same 

Hypothetical protein SAG1654 up Up same same same same up same same down 

30S ribosomal protein S6 same Same same same same same same    

PTS system, IIB component, putative same Same same same same same up down down same 

Co-chaperonin GroES same Same same same same same down    
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that those proteins that have here been associated with colonisation conditions 

(i.e. upregulated at P1) would not to be induced in conditions associated with 

virulence in transcriptome studies. Consistent with this (Table 4.7), none of the 

6 proteins identified as induced in condition P1 (Table 4.6) were induced by 

elevated temperature (Mereghetti et al., 2008b) and only one out of 6 was 

upregulated in blood (Mereghetti et al., 2008a). Likewise, 2 of these 6 proteins 

were found to be upregulated in response to 30 min. exposure to pH 5.5, 

although the GroES co-chaperonin was found to be down regulated under 

these conditions (Santi et al., 2009). None of the 4 genes for which data is 

available were induced in amniotic fluid (Sitkiewcz et al., 2009). Proteins 

abundant at P1 are thus less induced in conditions reflecting disease (exposure 

to blood, high temperature and growth in amniotic fluid). This is consistent with 

the proteomic results here as condition P1 is considered to reflect maternal 

colonization. 

Cumulatively, the transcriptome data available for the genes encoding 

proteins that were here identified as being differentially expressed can be 

considered to be in reasonable agreement with the present hypothesis that 

cells at point P1 express proteins that might be associated with maternal 

colonisation whereas cells at point P2 express proteins that might be 

associated with GBS growth in utero and/or during neonatal invasive disease. 

Hughes et al. (2001) first identified GBS surface proteins using 2D and 

MALDI mass spectrometry methods. A total of 14 proteins were identified in 

their study, among which phosphopyruvate hydratase, molecular chaperone 

DnaK, managanese-dependent superoxide dismutase, chaperonin GroEL, 
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glucose-6-phosphate isomerase, phosphoglycerate kinase, glyceraldehyde-3-

phosphate dehydrogenase were also identified in the present study. Johri et al. 

(2006) studied the cell wall-associated and membrane proteins expressed by a 

GBS type V strain using transcriptomic and proteomic methods. They 

compared GBS at a fast growth rate of 1.8 h (with oxygen and without oxygen) 

and at low growth rate time of 11 h. The proteins were separated by 1D SDS-

PAGE and a fused-silica capillary column and further identified by tandem 

mass spectrometry. 130 proteins were found to expressed by GBS and 78 of 

these proteins were detected as exclusively expressed at the condition 

associated with high cell invasion (fast growth, with oxygen). 111 of the 158 

total proteins identifed were found to be exclusively expressed by GBS at the 

fast growth rate compared with the low growth rate. The results showed GBS 

proteins are expressed differentially at different growth rates and oxygen levels. 

However, the study did not show which method was used to compare protein 

expression and what criteria were set for the significance of the changes. 
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Chapter 5 

A proteomic investigation of Streptococcus agalactiae 

 grown in the presence of human serum 

 

5.1. Background 

In early onset GBS disease, the organism is transferred from mother to neonate 

and so disease progression is characterised by bacterial adaptation from 

conditions associated with commensal maternal vaginal colonisation to those 

associated with neonatal disease, including exposure to amniotic fluid and 

blood. GBS exposure to human serum is highly relevant to its pathogenesis as 

septicaemia is an important disease manifestation and mechanism for GBS 

dissemination (Henneke and Berner, 2006; Mereghetti et al., 2008; Rajagopal, 

2009). To explore this in vitro, this study used a proteomic approach to identify 

proteins differentially expressed following growth on Todd Hewitt agar in the 

presence or absence of 10% human serum. Biomass from the plate surfaces 

was harvested and the proteins expressed under these conditions were 

analysed. Specific proteins were also investigated by using western blotting. 

These data may contribute to understanding GBS virulence factor expression 

under conditions reflecting those in vivo and thus their contribution to bacterial 

survival and invasion.  
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5.2. Results 

5.2.1. GBS growth on pH 6 THA square plates in the presence or absence 

of 10% human serum 

Previous experiments (Chapter 3) have shown that GBS grows well in human 

serum. However, centrifugation of serum grown cultures also spun down large 

amounts of serum derived materials which might interfere with proteomic 

analyses. To expose GBS to human serum, and in order to facilitate recovery of 

bacterial cells away from medium components, GBS strain A909 was grown as 

lawns on 132 cm2 plates containing 100 mL Todd Hewitt agar (THA) or THA 

supplemented with 10% human v/v serum (THA-HS). After inoculation for 48 

hrs, biomass from the plate surfaces was removed by scraping and washed 

three times by resuspension into 10 ml PBS and centrifugation. Biomass 

equivalent to 25% of the bacteria from the surface of 1 plate was used as the 

sample for each gel (Section 2.2.1.2.1).  

Prior to harvesting the biomass, the cell numbers were determined by 

CFU/ml counting (Table 5.1). A 0.38 cm2 circular plug from each plate was 

removed and colony forming units/cm2 determined to confirm similar growth 

yields were obtained on each medium.  The CFU counts of GBS A909 grown 

on pH 6 THA for 48 hrs was 227±37×106/cm2 while on THA-HS was 

194±87×106/cm2. SPSS independent-sample t-test results showed the Sig. 

P=0.579 >0.5. Thus, there was no significant difference in GBS A909 biomass 

formation on the THA medium between presence and absence of human 

serum. 
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Table 5.1. CFU/cm2 of GBS A909 grown on pH 6 THA square plate in the presence or absence of 10% human serum. 

Results are shown for 3 separate plate growths for each condition, used to generate biomass for proteomics. 

pH 6 plate CFU/ cm2 (1) CFU/ cm2 (2) CFU/ cm2 (3) Mean CFU/ cm2 S.D.  

THA 216×106 268×106 197×106 227×106 37×106 

THA-HS 142×106 145×106 295×106 194×106 87×106 
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5.2.2. 2D SDS-PAGE gel and gel analysis 

The optimised conditions of 2D SDS-PAGE were the same as described in 

Chapter 4.2.2. except that the protein samples were precipitated by using 

acetone. Six replicate 2D gels (Figure 5.1 and Figure 5.2) for each growth 

condition were image analysed and differentially expressed spots identified 

using the PDQuestTM V 8.0 software. After detecting and editing spots, there 

were more than 200 proteins present on each of the master gel sets (Figure 5.3 

and 5.4). The MatchSet analysis showed approximately 130 and 150 protein 

spots were reproducibly visible on the gels from condition 1 (THA) and 

condition 2 (THA-HS) cells, respectively, and approximately 80% of the spots 

were matched between the gels, with an average correlation coefficient for gels 

from the two different conditions of 0.75. All protein spot quantities were 

reviewed based on their density in the Spot Quantity Table Report. All spots 

from one condition that expressed stronger than the other condition are listed 

(Table 5.2 and Table 5.3) and the expression ratios were calculated (Table 

5.4). The Independent-sample t-test was used to determine statistically 

significant differences in the spot quantities from the two different conditions. 

Since p<0.05, there is a statistically significant difference in the mean scores of 

spot quantities from two different conditions. 
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(1) 25 ml THA.                                                       (2) 25 ml THA. 

     

                 (3) 25 ml THA.                                                       (4) 25 ml THA. 

     

(5) 25 ml THA.                                                         (6) 25 ml THA. 
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Figure 5.1. The six good quality 2D gels showing protein spots from cells 

harvested after growth on THA (condition 1). 100 µl lysis solution (urea 8M, 

CHAPS 4%) was used to extract cells. Immobiline DryStrips pH:4-7, 18cm were 

used for the first dimension (IEF), 14% SDS-PAGE for the second dimension. 

Colloidal Coomassie blue stain was used to visualize the gels. Protein 

standards are shown at the left hand side of each gel (150kDa, 100kDa, 75kDa. 

50kDa, 37kDa, 25kDa, 20kDa, 15kDa, 10kDa).  
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(1) 25 ml THA- HS.                                                (2) 25 ml THA- HS. 

     

                 (3) 25 ml THA- HS.                                                 (4) 25 ml THA- HS. 

     

 (5) 25 ml THA- HS.                                                 (6) 25 ml THA- HS. 
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Figure 5.2. The six good quality 2D gels showing protein spots from cells 

harvested after growth on THA-HS (condition 2). 100 µl lysis solution (urea 

8M, CHAPS 4%) was used to extract cells. Immobiline DryStrips pH:4-7, 18cm 

were used for the first dimension (IEF), 14% SDS-PAGE for the second 

dimension. Colloidal Coomassie blue stain was used to visualize the gels. 

Protein standards are shown at the left hand side of each gel (150kDa, 100kDa, 

75kDa. 50kDa, 37kDa, 25kDa, 20kDa, 15kDa, 10kDa).  
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Figure 5.3. Master 2D gel of proteins from GBS A909 cultured on pH 6 

THA plates. Gel image is the merged master from the six gels shown in Fig. 

5.1. Protein standards (left hand side): 150kDa, 100kDa, 75kDa. 50kDa, 

37kDa, 25kDa, 20kDa, 15kDa, 10kDa.  
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Figure 5.4. Master 2D gel of proteins from GBS A909 cultured on pH 6 

THA-HS plates. Gel image is the merged master from the six gels shown in 

Fig. 5.2. Protein standards (left hand side): 150kDa, 100kDa, 75kDa. 50kDa, 

37kDa, 25kDa, 20kDa, 15kDa, 10kDa.  
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Table 5.2. Spot quantities of the differentially expressed protein spots on 

the master 2D gel shown in Figure 5.3. Spots were analyzed by PDQuest. 

SSP THA-

HS(1) 

THA-

HS(2) 

THA-

HS(3) 

THA-

HS(4) 

THA-

HS(5) 

THA-

HS(6) 

Mean S.D. 

2221 185.1 141.1 40.9 76.1 57.6 119.8 103.4 55.0 

4209 5946.7 2940.3 3206.6 2487.9 5357.6 5283.4 4203.8 1488.0 

5212 9506.3 7603.1 2429.2 6255.8 10388.8 10681.8 7810.8 3136.4 

5213 1337.3 55.0 871.3 557.1 1221.9 1026.7 844.9 474.7 

5527 260.6 260.6 218.2 297.9 364.3 99.2 250.1 88.7 

5528 109.7 0 73.2 96.4 40.1 72.0 65.2 39.9 

6316 350.7 112.2 239.2 288.6 87.7 276.5 225.8 104.2 

6419 1175.4 529.3 370.0 509.1 621.6 379.0 597.4 298.8 

6615 294.2 11.3 376.2 535.4 305.1 338.9 310.2 170.6 

7310 166.6 0.7 126.7 76.4 93.6 163.0 104.5 62.4 

8820 223.6 80.1 362.6 255.0 419.8 314.5 275.9 119.4 
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Table 5.3. Spots quantities of the differentially expressed protein spots on 

the 2D gel shown in Figure 5.4. Spots were analyzed by PDQuest. 

SSP THA(1) THA(2) THA(3) THA(4) THA(5) THA(6) Mean S.D. 

2221 258.3 289.3 412.1 74.5 687.6 586.8 384.8 206.0 

4209 0 0 186.1 74.7 0 0 43.5 69.4 

5212 200.9 63.9 692.8 423.3 16.1 0 232.8 251.2 

5213 22.4 21.8 36.5 0 74.4 24.7 30.0 22.6 

5527 31.0 47.8 117.9 9.2 35.4 0 40.2 38.3 

5528 0 0 0 0 0 0 0 0 

6316 344.7 353.3 318.7 321.6 385.6 322.5 341.1 23.7 

6419 765.8 737.4 917.8 730.8 780.8 877.2 801.6 70.8 

6615 208.2 115.7 137.9 213.2 51.0 0 121.0 77.4 

7310 0 0 0 0 0 0 0 0 

8820 0 0 0 0 0 0 0 0 
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Table 5.4. Spot quantification and expression ratios for the differentially expressed protein spots between the two growth 

conditions.  

SSP Protein Mean spot density Ratio 
THA-
HS:THA 

Spot number 

Figs 5.3 and 5.4 

T test P 
value 

THA-HS THA 

2221 Alkyl hydroperoxide reductase, subunit C 103.4 384.8 0.3 11 0.014 

4209 30S ribosomal protein S3 4203.8 43.5 96.6 7 0.001 

5212 30S ribosomal protein S3 7810.8 232.8 33.6 8 0.002 

5213 Peptide deformylase 844.9 30 28.2 5 0.002 

5527 Arginine deiminase 250.1 40.2 6.2 6 0.001 

5528 Acetate kinase 65.2 0 ↑ 2 0.002 

6316 AtsA/ElaC family protein 225.8 341.1 0.7 9 0.025 

6419 3-hydroxybutyryl-CoA dehydrogenase 597.4 801.6 0.7 10 0.136 

6419 conserved hypothetical 597.4 801.6 0.7 10 0.136 

6615 Glyceraldehyde-3-phosphate 
dehydrogenase NADP-dependent  

310.2 121 2.6 4 0.035 

7310 ABC transporter, substrate-binding protein 104.5 0 ↑ 3 0.002 

8820 C protein beta antigen 275.9 0 ↑ 1 0.000 
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5.2.3. Protein in-gel trypsin digestion and mass spectroscopy analysis 

Proteins spots were excised from the gels and identified by in-gel trypsin 

digestion followed by liquid chromatography-electrospray ionisation mass 

spectrometry. The data for protein identification, accession number, protein 

mass, score, matched peptides and percent amino acid coverage of the entire 

protein are shown in Table 5.5 (proteins expressed without significant 

difference between two conditions) and Table 5.6 (proteins upregulated after 

growth on THA-HS and after growth on THA). Protein functions were explored 

using NCBI BlastP searches (with conserved domain analysis) and their 

UniProtKB entries. 

         A total of 103 proteins in 84 distinct protein spots could be confidently 

identified by LC/ESI-MS. Of these, 73 protein spots showed no statistically 

significant difference in expression between the two growth conditions (Table 

5.5). In addition to these stably expressed proteins, 11 protein spots were 

reproducibly differentially expressed (Table 5.6). Of these, 8 proteins were 

more abundantly expressed in cells harvested after growth on THA-HS (Figure 

5.4, Table 5.6), which included 2 separate spots that were identified as 30S 

ribosomal protein S3, whereas 4 proteins were more abundantly expressed in 

cells harvested after growth on THA (Figure 5.3, Table 5.6). 
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Table 5.5. Proteins without change in expression under condition 1 and condition 2 identified using LC/ESI-MS. Condition 

1: GBS grown on pH 6 THA. Condition 2: GBS grown on pH 6 THA-HS.  

SSP Protein identification Accession 
number 

Score Protein code Matched 
peptides 

% protein 
coverage 

1013 Hypothetical protein SAG0490 gi|22536669 58 SAK_0591 1 30% 

1104 50S ribosomal protein L7/L12 gi|25011416 212 SAK_1334 3 42% 

1107 Hypothetical protein SAG0739 gi|22537903 103 SAK_0865 1 11% 

1108 Hypothetical protein SAG2091 gi|22538226 104 SAK_2030 2 45% 

1114 Thiol peroxidase gi|22537289 323 SAK_1217 6 43% 

1115 Gls 24 protein, putative gi|22537295 226 SAK_1223 4 36% 

 Hypothetical protein SAG0377 gi|22536560 101 SAK_0451 1 14% 

1220 Hypothetical protein gbs1202 gi|25011251 537 SAK_1221 3 22% 

1410 Cell division protein DivlVA, putative gi|22536663 389 SAK_0586 6 33% 

2101 Hypothetical protein SAK_0613 gi|76786947 335 SAK_0613 3 46% 

2113 Co-chaperonin GroES gi|22538210 97 SAK_2014 2 41% 

2116 30S ribosomal protein S6 gi|22537853 164 SAK_1722 2 33% 

2120 Hypothetical protein gbs1204 gi|25011253 511 SAK_1223 7 47% 

2125 Glycerophosphoryl phosphodiesterase, putative gi|77405398 61 SAK_1307 1 1% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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2213 Manganese-dependent superoxide dismutase gi|2765187 229 SAK_1223 3 22% 

2219 50S ribosomal protein L4 gi|22536244 321 SAK_0092 6 44% 

2307 Acetoin reductase gi|22536701 704 SAK_0674 8 50% 

2309 Glucose-1-phosphate thymidylytransferase gi|22537385 490 SAK_1287 6 28% 

 Chaperonin GroEL gi|22538209 269 SAK_2013 4 12% 

 Phosphopyruvate hydratase gi|22536801 261 SAK_0713 3 11% 

2313 Fructose-bisphosphate aldolase gi|22536312 160 SAK_0178 2 12% 

2516 Phosphopentomutase gi|76787408 201 SAK_1269 5 17% 

2629 Cell dividion protein FtsZ gi|22536658 725 SAK_0581 12 45% 

 Dipeptidase PepV gi|76787443 379 SAK_1305 4 14% 

 Aldehyde dehydeogenase family protein gi|22537282 312 SAK_1211 7 29% 

 Elongation factor Tu gi|22536926 179 SAK_0887 2 7% 

3215 Adenylate kinase gi|76787497 844 SAK_0112 10 55% 

 50S ribosomal protein L1 gi|22537662 192 SAK_1543 2 13% 

4106 30S ribosomal protein S8 gi|22536257 143 SAK_0105 2 24% 

4108 Hypothetical protein SAG1677 gi|22537817 603 SAK_1689 6 50% 

4109 Hypothetical protein SAK_0181 gi|76787208 382 SAK_0181 4 69% 

4110 PTS system, IIB component, putative gi|22538072 311 SAK_1894 5 80% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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4111 Hypothetical protein SAG0793 gi|22536903 552 SAK_0865 12 47% 

4211 Purine nucleoside phosphorylase gi|22537336 465 SAK_1537 7 45% 

4212 Uridylate kinase gi|22537656 268 SAK_1537 3 21% 

4213 Phosphomethylpyrimide kinase gi|22536288 226 SAK_0151 3 23% 

4214 Uridine phosphorylase Q3D7D3STRAG 649  9 57% 

 Phosphoglycerate mutase family protein Q3C2R1STRAG 289 SAK_0889 5 27% 

 Phosphate transport system regulatory protein PhoU Q3CYA6STRAG 212 SAK_1082 2 15% 

 Ribosomal protein L1 Q3DKXDSTRAG 151 SAK_1543 2 14% 

4310 F0F1 ATP synthase subunit gama gi|22537025 583 SAK_0985 8 32% 

4312 Fructose-bisphophate aldolase gi|22536312 715 SAK_0178 10 39% 

4316 Glucokinase gi|22536650 709 SAK_0573 9 35% 

4420 Glyceradehyde-3-phosphate dehydrogenase gi|22537907 549 SAK_1790 10 41% 

 Ornithine carbamoytransferase gi|22538299 206 SAK_2123 5 26% 

4421 Nephritis-associated plasmin receptor gi|71040526 462 SAK_1790 8 31% 

4425 Cysteine synthase A gi|22536517 722 SAK_0404 12 60% 

4427 UDP-glucose 4-epimerase gi|22538061 197 SAK_1882 4 25% 

4428 L-lactate dehydrogenase gi|22537120 348 SAK_1054 4 20% 

4431 Tagatose 1,6-diphophate aldolase  gi|22538066 654 SAK_1887 11 41% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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 Acetoin dehydrogenase, thymine PPi dependent, E1 
component, beta subunit 

gi|22537042 581 SAK_1002 11 37% 

4518 Malate oxidoreductase gi|22538057 777 SAK_1878 9 35% 

5102 Riboflavin synthase, beta subunit gi|22536913 143 SAK_0875 3 33% 

5106 Dihydroxyacetone kinase family protein gi|22537791 410 SAK_1663 6 31% 

5107 Single-strand DNA-binding protein gi|22537852 178 SAK_1721 2 11% 

 50S ribosomal protein L6 gi|22536258 97 SAK_0106 1 6% 

5214 Phosphoglyceromutase gi|22536928 597 SAK_0889 8 57% 

5319 Aldo/keto reductase family oxidoreductase gi|22537619 288 SAK_1506 5 23% 

5320 1-Phosphofrutokinase gi|22537494 337 SAK_1378 4 19% 

5432 Alcohol dehydrogenase gi|22536239 300 SAK_0087 5 27% 

5429 PTS system, mannose-specific IIAB components gi|22536544 537 SAK_0436 9 43% 

5524 3-oxoacyl-(acyl carrier protein) synthase II gi|22536532 345 SAK_0423 17 37% 

6205 Ribosome recycling factor gi|22537655 368 SAK_1536 5 34% 

6416 Alcohol dehydrogenase, zinc-dontaining gi|22537777 437 SAK_1651 6 22% 

7102 Galactose-6-phosphate isomerase subunit LacA gi|22538069 477 SAK_1890 6 54% 

7103 Hypothetical protein SAG0302 gi|22536486 215 SAK_0373 4 48% 

7104 GntR family transcriptional regulator gi|22537099 133 SAK_1034 2 19% 

7611 Inositol-5-monophosphate dehydrogenase gi|22538293 490 SAK_2117 7 20% 

http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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http://www.matrixscience.com/cgi/protein_view.pl?file=../data/20081128/FtTpSxEwO.dat&hit=gi%7c22537363&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=0.001
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8108 Hypothetical protein gbs0457 gi|25010530 276 SAK_0503 4 32% 

8109 Adc operon repressor AdcR gi|22536339 78 SAK_0217 1 16% 

8110 PTS system mannose/fructose/sorbose family IIB subunit gi|76788194 441 SAK_1910 8 65% 

9104 Galactose-6-phosphate isomerase subunit LacB gi|22538068 269 SAK_1889 3 30% 

9208 Universal stress protein gi|22537872 351 SAK_1741 4 32% 
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Table 5.6. Proteins expressed differentially under condition 1 or condition 2 identified by LC/ESI-MS.  Condition 1: GBS 

grown on pH 6 THA. Condition 2: GBS grown on pH 6 THA-HS.  

Spot Protein identification                                             
Proteins up-regulated in condition 2                                                      

Accession 
number 

Score Protein 
code 

Matched 
peptides 

% protein 
coverage 

Expression 
ratio 

1 C protein beta antigen gi|76150609 249 SAK_0186 4 6% ↑ 

2 Acetate kinase gi|22536352 179 SAK_0234 4 16% ↑ 

3 ABC transporter, substrate-binding protein gi|22536474 142 SAK_0362 2 10% ↑ 

4 Glyceraldehyde-3-phosphate dehydrogenase 
NADP-dependent 

gi|22536987 952 SAK_0749 16 40% 2.56 

5 Peptide deformylase gi|22538033 128 SAK_1863 2 18% 28.16 

6 Arginine deiminase gi|76787000 321 SAK_2121 5 13% 6.22 

7 30S ribosomal protein S3 gi|76798223 395 SAK_0097 6 39% 96.63 

8 30S ribosomal protein S3 gi|76798223 131 SAK_0097 3 19% 33.55 

 Proteins up-regulated in condition 1       

9 AtsA/ElaC family protein gi|22536582 168 SAK_0473 6 36% 0.66 

10 3-hydroxybutyryl-CoA dehydrogenase gi|76788407 396 SAK_1685 9 27% 0.74 

10 Conserved hypothetical gi|22537295 192 SAK_1223 2 21% 0.74 

11 Alkyl hydroperoxide reductase, subunit C gi|22537972 397 SAK_1853 6 32% 0.27 
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5.2.4. Western blotting 

Western blotting was performed to confirm the differential expression of Bac 

(spot 1 Figure 5.4, Table 5.6).  Protein samples from GBS A909 pH 6 THA and 

THA-HS were extracted using the same procedure as for preparation of 

proteomics samples. Proteins were separated by 12% 1D SDS-PAGE and 

transferred onto nitrocellulose membranes. Anti-Bac, anti-Sip and anti-HPr 

were used as the primary antibodies. Anti-rabbit IgG alkaline phosphatase 

conjugated secondary antibody (Sigma) was used to develop blots for Bac and 

HPr and alkaline phosphatase conjugated anti-mouse IgG was used as 

secondary antibody for the Sip blot.  

There were bands with MW of approximately 53 kDa on the anti-Sip 

western blot membrane (Figure 5.5B) from both GBS A909 THA culture and 

THA-HS cultures (the calculated molecular weight of mature Sip is 53 kDa 

[Brodeur et al., 2000]). Likewise, the anti-HPr western blot membrane (Figure 

5.5C) showed there were bands with MW of approximately 15 kDa from both 

THA culture and THA-HA cultures (the calculated molecular weight of HPr is 9 

kDa,). This indicated that both proteins were expressed in GBS A909 during 

growth on both THA and THA-HS. There was no pronounced difference in the 

expression of these proteins between these two conditions. Neither protein was 

detected in the stably expressed protein group by proteomics (Table 5.5), 

suggesting Western blot detection is more sensitive than Coomassie Brilliant 

Blue. Expression of HPr is consistent with the expression of several other PTS 

transport system components in the stably expressed protein group (SSP 4110, 

5429, 8110; Table 5.5). In contrast to HPr and Sip, a band of MW around 120  
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(A) 12% 1D SDS-PAGE.                 (B) Western blotting of anti-Sip. 

                    1      2       3                                          3        2        1 

                                               

           (C) Western blotting of anti-HPr.           (D)  Western blotting of anti-Bac. 
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Figure 5.5. Western blotting analysis of proteins expressed following 

growth on THA and THA-HS. In each panel Lane 1 contains prestained 

protein MW standards (labelled in  Figure A, left hand side); Lane 2: GBS A909 

cultured in pH 6 THA plate; Lane 3: GBS A909 cultured in pH 6 THA-HS. Cross 

reacting bands of expected MW for the target proteins are labelled with arrows 

A (Sip), B (HPr) and C (Bac)  
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kDa was detected on the anti-Bac Western blot membrane (Figure 5.5D) from 

the THA-HS grown culture but not from the THA grown culture. This suggested 

C protein beta antigen was expressed differentially between GBS A909 THA-

HS and THA cultures i.e. THA-HS can induce bac expression, confirming the 

data from the proteomics experiments. However there were also some 

additional cross-reacting bands on the anti-Bac western blot membrane, 

suggesting some lack of specificity of the antibody. 

 

5.3. Discussion 

5.3.1. An in vitro model of GBS growth with human serum and 2D gel 

analysis  

The work in this chapter describes how an in vitro model of exposure of GBS to 

human serum was established. In order to facilitate recovery of bacterial cells 

away from medium components, notably components of human serum that 

pelleted with bacterial cells on centrifugation, GBS strain A909 was grown as 

lawns on square plates containing THA or THA-HS. These experiments should 

allow proteins induced by human serum to be detected. The growth experiment 

showed there was no significant difference in GBS A909 biomass formation on 

the THA medium following growth in the presence and absence of human 

serum. As plates were incubated for identical lengths of time, this strongly 

suggests bacterial cells from each plate condition are in the same phase of 

growth. 

The optimised conditions for the 2D gel handling were the same as in 

the previous proteomic experiment except that the protein samples were 



 

224 

 

precipitated by using acetone. There were more than 130 protein spots visible 

on each gel. As some protein spots contained more than one identifiable 

protein, a total of 103 proteins in 84 protein spots could be confidently identified 

by LC/ESI-MS. Of these, 73 spots showed no statistically significant difference 

in expression between the two growth conditions. In addition to the 73 stably 

expressed proteins, 11 protein spots were reproducibly differentially expressed.  

The Mascot search showed the theoretical molecular weight of each 

identified protein, which is listed in Table 5.7. The observed molecular weight of 

protein was determined by comparing migration positions with protein MW 

standards on the left side of the 2D gels (Figure 5.3 and Figure 5.4) and are 

listed in Table 5.7. For example, Mascot search showed the MW of C protein β 

antigen is around 135 and the protein spot of Bac on 2D gel (Figure 5.4), spot 

number 1 is located between 100kDa and 150kDa. More precisely, the MW of 

mature Bac without its signal peptide and its C-terminal cell wall sorting 

(LPXTG) signal can be calculated as 124 kDa.  The observed MW for 10 of 12 

proteins correlates well with the theoretical MW. The theorical MW of protein 

SAK_1685, 3-hydroxybutyryl-CoA dehydrogenase is 42kDa, but the observed 

MW is around 25-37kDa. This may be caused by loss of some peptide during 

protein extraction or aberrant mobilty on SDS-PAGE. Protein SAK_1223, a 

conserved hypothetical, may be present as dimers as the observed MW (25-

37kDa) is approximately two times the theoretical MW (19kDa). 

 

5.3.2. Proteins more abundantly expressed in cells harvested after growth 

on THA-HS 
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Seven proteins were expressed more abundantly after growth on THA-HS. 

These proteins included the Bac protein, a putative virulence factor linked to 

immune evasion (Lindahl et al., 2005; Chapter 4). However, growth under in 

vitro conditions mimicking those associated with invasive disease previously 

identified the soluble 55-kDa form of Bac as being upregulated (Chapter 4). In 

the present experiments, the mature ca. 120 kDa form of Bac was detected 

(Figure 5.4, spot 1). The upregulation of a ca. 120 kDa protein was confirmed 

by Western blotting using a polyclonal anti-Bac antibody (Fig. 5.5) although 

extensive cross-reactivity of this antibody with other high molecular weight 

proteins was noted.  Cumulatively, these in vitro data are consistent with the 

likely in vivo upregulation of Bac expression in response to the shift from 

maternal colonisation to neonatal colonisation and disease. Bac is able to 

simultaneously bind the Fc region of IgA antibodies and the complement 

regulator factor H with separate binding sites (Figure 4.6). Bac binding to IgA 

may allow GBS to evade immune elimination and binding to factor H may inhibit 

complement attack and phagocytosis, thus contributing to the ability of GBS to 

evade the immune system (see Chapter 4). Gene expression of bac 

(sak_0186) has recently been shown to be under the control of an adjacent two 

component system, sak_0188-sak_0189 (Rozhdestvenskaya et al., 2010). 

Clearly, in those strains that possess the bac gene (notably GBS serotype Ib 

and some serotypes Ia and II strains (Lindhahl et al., 2005; Sørenson et al., 

2010)), Bac antigen expression is likely to be closely coordinated during 

infection and further studies are needed to elucidate this process. Deletion of 

51 amino acid residues, including part of Bac IgA-binding region might cause 

strain loss the IgA-binding ability in strain Ib separated from infact crebrospinal
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Table 5.7 Comparison between observed proteins molecular weight for differentially expressed proteins with their 

theoretical molecular weight. 

Spot a Protein identity 

Calculated 

MW 

Observed MW 

1 SAK_0186, C protein beta antigen (Bac)  135 full 100-150 

2 SAK_0234, Acetate kinase  43 

top end of 37-

50 range 

3 SAK_0362, ABC transporter substrate-binding protein 30 ~25 

4 SAK_0947, Glyceraldehyde-3-phosphate dehydrogenase   51 ~50 

5 SAK_1863, Peptide deformylase  22.8 20-25 

6 SAK_2121, Arginine deiminase  46 ~50 

7 SAK_0097, 30S ribosomal protein S3 23 20-25  

8 SAK_0097, 30S ribosomal protein S3 23 20-25  

9 SAK_0473, metal dependent hydrolase of the beta-lactamase superfamily 29 ~25 

10 SAK_1685, 3-hydroxybutyryl-CoA dehydrogenase 42 25-37  

10 SAK_1223, conserved hypothetical 19 

Top end of 25-

37 range 

11 SAK_1853, alkyl hydroperoxide reductase, subunit C 20 ~25 
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fluid (CSF) (Nagano et al., 2006), further complicating the contribution of Bac to 

GBS virulence. 

In addition to Bac, the proteomic data indicated that arginine deiminase 

(ArcA, SAK_2121) was also upregulated by growth on THA-HS. These data are 

consistent with a previous preliminary report of GBS ArcA induction by human 

serum as determined by RT-PCR analysis (Aymanns et al., 2006).  

Transcriptome analyses have also shown expression of GBS ArcA was induced 

5- to 15-fold by exposure to human blood (Mereghetti et al., 2008); at later 

stages of growth in amniotic fluid (Sitkiewicz et al., 2009); and at stationary 

phase in Todd Hewitt broth (Sitkiewicz and Musser, 2009). However, Sitkiewicz 

et al. (2010) also found recently that in S. pyogenes, gene expression of 

arginine deiminase was down-regulated about 900 fold in amniotic fluid. They 

proposed the lack of arginine deiminase may link to the decreased host 

immune recognition and help bacteria survival in an amniotic fluid environment 

(Sitkiewicz et al., 2010). However, this explanation is not consistent with the 

observation that these two streptococci regulate ArcA differently in amniotic 

fluid. It is notable that GBS, as an organism whose pathogenicity more 

commonly results in exposure to amniotic fluid up-regulates rather than down-

regulates ArcA. 

ArcA is an enzyme of the ADI pathway, by which bacteria convert L-

arginine to ornithine and with the production of ammonia (Ryan et al., 2009, 

Figure 5.6). The enzymes of the ADI system include arginine deiminase, 

catabolic ornithine carbamoyltransferase and carbamate kinase, which are 

encoded by the arcA, arcB and arcC genes. ArcA catalyzes L-arginine 

conversion to citrulline and ammonia. The citrulline is then converted to 
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ornithine and carbamoyl phosphate, catalysed by arcB. Carbamoyl phosphate 

is converted to carbon dioxide, ammonia and ATP by the action of arcC. 

Ornithine is secreted out of the cell by ArcD in exchange for arginine in an 

energy independent manner (Ryan et al., 2009, Degnan et al., 1998) (Figure 

5.6). ATP is used to extrude protons across the membrane and maintain pH 

homeostasis and also provides energy for growth. ATP generation is likely to 

be an important source of energy during carbohydrate limitation (hence its 

induction in stationary phase) and ArcA may also contribute to acid tolerance by 

generating ammonia (Liu et al., 2008; Ryan et al., 2009). The production of 

ammonia can neutralize acid and protect bacteria from lethal acidic 

environments. RT-PCR analysis of L. monocytogenes revealed ADI genes 

were upregulated in both acid and anaerobic environments with the addition of 

arginine (Ryan et al., 2009). ArcA may also contribute to immune evasion by 

inhibiting the proliferation of blood mononuclear cells (Degnan et al., 2000). 

Degnan et al. (2000) found in S. pyogenes, that cell extracts originally identified 

as streptococcal acid glycoprotein were associated with arginine deiminase 

activity and were able to inhibit human peripheral blood mononuclear cell 

proliferation in a dose dependent manner. The inhibition could be restored by 

adding L-arginine. Bioinformatic analysis showed 31% to 39% protein 

sequence identity of streptococcal acid glycoprotein to arginine deiminase of 

Mycoplasma hominis, Mycoplasma arginini, Pseudomonas putida and 

Pseudomonas aeruginosa (Degnan et al., 2000). ArcA expression in E. coli also 

inhibited the growth of mouse tumour cells (Misawa et al., 1994). Morphologic 

analysis showed that ArcA induced human T lymphoblastoid cell death via the 

apoptosis pathway (Komada et al., 1997). A possible explanation is that the 
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Figure 5.6. Arginine deiminase metabolic pathways. The main pathway is 

cytoplasmic but exchange of ornithine and arginine across the cell membrane 

(green) is also shown.  
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presence of ArcA will deplete L-arginine, which is essential for the optimal cell 

growth (Degnan et al., 2000).  

Cumulatively, these data point to an important role of ArcA in adaptation 

of GBS to the neonatal environment. In GBS strain 090R, ArcA expression 

appears to be under the control of the RgfAC two component system 

(Spellerberg et al., 2002; Aymanns et al., 2006). However in GBS strains A909 

and H36B, a single nucleotide substitution in the RgfA sequence (SAK_1918 in 

A909) prematurely truncates this putative response regulator such that it may 

be non-functional.  Moreover, whereas ArcA is part of the GBS core genome, 

the RgfAC two component system is not. Consequently, ArcA expression in 

different GBS strains is likely to be regulated by several interacting 

mechanisms involving both two components systems and other transcriptional 

regulators (such as Flp and ArgR), as in other streptococci (Liu et al., 2008; Liu 

and Burne, 2009). Notably, Flp (SAK_2119) and ArgR (SAK_2118) 

transcriptional regulators are encoded adjacent to GBS arcA.  

Two other notable proteins were induced by THA-HS: SAK_0362 is a 

putative substrate binding protein for an ABC transport system for amino acids. 

ABC transporters are involved in import and export of substrates through the 

cell membrane, and are typically composed of two ATP-binding proteins 

(ATPase) and two membrane-spanning proteins (permeases). Substrate import 

across the cell membrane is directed by binding to substrate-binding proteins 

which then transfer the substrate into the cell through the two membrane-

integrated permeases (Eitinger et al., 2010). ABC transporters are not only 

involved in nutrient acquisition but also involved in adhesion, protein secretion, 

stress adaption, cell to cell communication and cell integrity maintenance 
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(Basavanna et al., 2009; Eitinger et al., 2010; Samen et al., 2003). Normally the 

substrate binding proteins of ABC import systems in GBS are bacterial 

lipoproteins (Sutcliffe and Harrington, 2004). However, SAK_0362 is unusual in 

being a predicted secreted (non-lipoprotein) substrate binding protein.  Johri et 

al. (2007) previously observed induction of the SAK_0362 protein in GBS strain 

2603/V grown under in vitro conditions associated with increased cervical 

epithelial cell invasion.  Similarly, the proteomic data showed induction of 

glyceraldehyde-3-phosphate dehydrogenase (SAK_0947; GapN, GADPH) by 

growth on THA-HS and Johri et al. (2007) reported increased expression of this 

gene (by microarray analysis) by GBS strain 2603/V grown under in vitro 

conditions associated with increased cervical epithelial cell invasion. In 

contrast, Mereghetti et al. (2008) observed a ca. 2.5-fold decrease in gapN 

expression following 90 minutes exposure to human blood (Table 5.7).  GBS 

GapN is bacterial surface protein which can interact with plasminogen and 

fibrinogen in vitro. Although lacking a signal peptide, surface associated GapN 

may contribute to GBS virulence by directly or indirectly binding host 

plasminogen and activating it to the plasmin protease (see section 4.3.2). 

Streptococcal GAPDH plays multiple roles in bacterial survival by interaction 

with plasminogen, cleaving C5a to evade complement system clearance and is 

involved in energy metabolism (see section 4.3.2).  

Acetate kinase (SAK_0234) was also expressed abundantly following 

growth in THA-HS. Acetate kinase is involved in the glucose metabolic 

pathway, which converts glucose to pyruvate, and then converts pyruvate to 

acetyl phosphate. Acetate kinase catalyses acetyl phosphate conversion to 

acetate, with the production of ATP. Taniai et al. (2008) proposed that in 
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aerobic conditions, S. pneumoniae pyruvate oxidase (SpxB) catalyzed pyruvate 

conversion to acetyl phosphate with the production of H2O2. Since H2O2 may 

play an important role in helping bacteria avoid immune clearance, so glucose 

metabolism to acetate not only provides energy for bacterial growth but also 

helps an organisms survival in host.  However, GBS lacks a clear homologue of 

S. pneumoniae SpxB and so the role of this pathway and the acetate kinase 

SAK_0234 in GBS is still unclear. 

Peptide deformylase (SAK_1863) and two protein spots identified as the 

30S ribosomal protein S3 (SAK_0097) were upregulated following growth in 

THA-HS suggesting there was a need for new protein synthesis. Peptide 

deformylase is an essential enzyme in protein synthesis, which has the function 

of removing of the formyl group from the N-terminal methionine of newly 

synthesized proteins. Peptide deformylase has been recognized as a potential 

drug target for antibiotics (Lee et al., 2010). 

 

5.3.3. Proteins that were more abundantly expressed in cells harvested 

after growth on THA 

In addition to those protein spots that were more abundant following growth on 

THA-HS, three spots (containing 4 proteins) were less abundant in this growth 

condition (Table 5.6). These included SAK_1853, the putative alkyl 

hydroperoxide reductase which was previously observed to be induced under 

conditions modelling neonatal exposure (Chapter 4). Notably, SAK_1853 was 

not induced by brief (up to 90 min.) exposure to blood (Mereghetti et al., 2008; 

Table 5.7). One spot up regulated at condition 1 was identified as two proteins, 

3-hydroxybutyryl-CoA dehydrogenase (SAK_1685) and a conserved 
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hypothetical protein (SAK_1223). SAK_1685 is involved in fatty acid and 

phospholipid metabolism and transport. SAK_1223 is annotated as a putative 

alkaline shock protein 23 (PFAM PF03780; domain of unknown function 

DUF322), which may be involved in stress responses (Sitkiwicz & Musser, 

2009, Mereghetti et al., 2008a). Also upregulated on THA was SAK_0473, a 

metal dependent hydrolase of the beta-lactamase superfamily protein. Beta-

lactamases can protect bacteria by inactivating penicillins (Brook & Gober, 

2008) but it remains unclear whether this is the function of SAK_0473 or 

whether this protein has a more distantly related function in relation to cell wall 

peptidoglycan metabolism. 

 

5.3.4. Comparison of proteomics data with transcriptome studies  

The proteins expressed differently after growth in the presence and absence of 

human serum were compared with recently published GBS transcriptome 

analyses (Mereghetti et al., 2008a, 2008b; Sitkiewicz and Musser, 2009; 

Sitkiewicz et al., 2009) as listed in Table 5.8. Proteins abundant in THA-HS 

were upregulated at mid log phase compared with stationary phase (except for 

arginine deiminase; Sitkiewicz and Musser, 2009). The data showed proteins 

expressed in the presence of human serum have the characteristics expected 

for a fast growth phase. The capability of GBS adherence and invasion to 

epithelial cells is higher at fast growth rate than at low growth rate (Johri et al., 

2005). Transcriptome analyses have also shown expression of GBS arcA was 

induced 5- to 15-fold by short (up to  90 min.) exposure to human blood 

(Mereghetti et al., 2008b); at later stages of growth in amniotic fluid (Sitkiewicz 



 

234 

 

et al., 2009), and at stationary phase in Todd Hewitt broth (Sitkiewicz and 

Musser, 2009). In contrast to the proteomics data, Mereghetti et al. (2008b) 

observed a ca. 2.5-fold decrease in gapN expression following 90 min exposure 

to human blood. SAK_1223, a conserved hypothetical protein, which may be 

involved in stress response, was abundantly expressed following growth on 

THA and was observed to be up-regulated when GBS cells were exposed to 

blood at 90 mins, elevated temperature at mid log phase and stationary phase 

(Mereghetti et al., 2008a, 2008b; Sitkiewicz and Musser, 2009). Three proteins 

abundant following growth on THA-HS were up-regulated at 40oC compared 

with 30oC at stationary phase. The transcriptome data showed GBS is able to 

modulate its gene expression in response to changing temperature, which may 

be relevant to increased temperature (fever) during infection (Mereghetti et al., 

2008b). 

 

5.3.5. Concluding commments 

These data add to the growing body of knowledge on GBS gene and protein 

expression. They confirm the previous observations (Chapter 4) that Bac likely 

has a prominent role in vivo in those GBS strains that encode this protein. 

Likewise, they extend previous studies implicating arginine deiminase 

specifically and arginine catabolism generally in GBS adaptation to host 

environments (Mereghetti et al., 2008; Sitkiewicz and Musser, 2009; Sitkiewicz 

et al., 2009). Although these experiments were designed to mimic GBS 

exposure to fluid phase human serum components, surface growth as lawns on 

agar plates might also be relevant as a model for topologically defined in vivo 

biofilm/microcolony growth with transepithelial nutrient delivery, which has 
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recently been shown to be relevant for growth of Helicobacter pylori (Tan et al., 

2009). 
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Table 5.8. Comparison of proteins differentially expressed following growth on THA and THA-HS with transcriptome 

studies. Green highlighting: protein up-regulated in the transcriptome study. Blue highlighting: Protein down-regulated in the 

transcriptome study. Purple highlight: Protein absent from the strain assayed in the transcriptome studies. 

 

 

Proteins identified in GBS strain A909 Mereghtti et al., 2008a Mereghtti et al., 2008b Sitkitwicz & 

Musser 2009 

Sirkitwicz et al., 2009 

Exposure to blood  Elevated temperature  Growth phase  Growth  in Amniotic fluid  

Up regulated on THA-HS 37 oC , 

30min 

40 oC , 

30min 

37 oC , 

90min 

40 oC , 

90min 

40vs30 oC , 

Mid-log 

40vs30 oC , 

Stat. 

Stat. vs mid-log AF at Mid-

log 

AF at Late-

log 

AF at Stat. 

C protein beta antigen absent absent absent absent absent absent absent absent absent Absent 

Acetate kinase same same same same same same down same down Same 

ABC transporter, substate-binding 

protein 

same same same same same up down down down Same 

Glyceraldehyde-3-phosphate 

dehydrogenase  GapN 

same same down down same up down same same Up 

Peptide deformylase same same same Same same same down    

Arginine deiminase up up up up same up up same up Up 

30S ribosomal protein  S3           

30S ribosomal protein S3           
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Up regulated on THA  

Metal dependent hydrolase of the 

beta-lactamase superfamily 

same same same same up same up same same Down 

3-hydroxybutyryl-CoA dehydrogenase same same up up up up up same down Down 

Conserved hypothetical same same up up up same up    

Alkyl hydroperoxide reductase, 

subunit C 

same same same same up same up    
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Chapter 6 

Conclusions and future work 

GBS is a major neonatal pathogen that is able to survive in several very 

different host environments, including both the women‟s vagina, amniotic fluid 

and the neonate‟s lung, blood and cerebral fluid. A considerable amount of work 

has been done on the GBS pathogen in relation to specific virulence factors 

(Doran and Nizet, 2004), but only recently has the research has been focused 

on the ability of bacteria to adapt to different environments and few proteomic 

studies of GBS have been carried out.  Proteomic investigations of GBS may 

help us understand what kind of mechanisms help the bacteria to be able to 

survival in these very different environments and to cause a serious disease in 

a short time of onset. 

Long term survival of GBS under conditions of nutrient limitation and 

acid exposure, including planctonic and biofilm modes of growth were 

investigated. GBS A909 could survive in pH 7 THB for more than 8 weeks and 

maintained high cell numbers. In contrast, GBS A909 could not be recovered 

from pH 5 THB after the 1 week time point using THA plate. Acid adaptation 

experiments showed there was no significant improvement of GBS A909 

growth in pH 5 THB after acid exposure. However, Live-Dead staining results 

suggested that the live cell numbers were comparatively higher than the live 

cells counted by CFU/mL. This suggested that cells might have entered into a 

„viable but non-culturable‟ state. Biofilm results showed there was biofilm 

formation of GBS and the biofilms were improved by feeding with low nutrient 
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media and coating plate with extracellular matrix molecules.  

An in vitro model of GBS growth under conditions reflecting those 

associated with maternal vaginal carriage (low pH, low oxygen, nutrient stress) 

or exposure to body fluids during invasive disease (neutral pH, aeration, 

nutrient sufficient) has been established and followed by proteomic 

investigation of proteins differentially expressed under these two conditions. A 

total of 76 proteins were identified and 16 of these were expressed 

differentially. The putative virulence factor C protein β antigen (in its ca. 55 kDa 

low MW form), which is linked to evading immune elimination, and proteins 

involved in responses to oxidative stress including Fe-S assembly protein SufC, 

cysteine synthase A and thioredoxin reductase were up-regulated under the 

conditions reflecting neonatal exposure. The GroES chaperonin, which is linked 

to stress responses and acid tolerance, and adenine 

phosphoribosyltransferase, which is linked to nutrient stress, were found to be 

abundant under conditions reflecting maternal carriage.  

Proteomic investigation of GBS growth on Todd Hewitt agar in the 

presence or absence of 10% human serum was used to model conditions 

associated with GBS neonatal septicaemia. A total of 84 proteins were 

identified, 11 of which were expressed differentially. The putative virulence 

factor C protein β antigen (in its high MW ca. 123 kDa form); arginine 

deiminase, which is induced by human serum and may contribute to immune 

evasion; an ABC transporter substrate-binding protein; and glyceraldehyde-3-

phosphate dehydrogenase were each up-regulated in the presence of human 

serum.   
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These data help us understand the molecular basis of GBS adaption to 

different environments and disease development. The data are important as the 

only previous report on differential protein expression by GBS appears to be 

the study of Johri et al. (2006).  Although there were not as many proteins 

differentially expressed under the different conditions in the present study 

(Chapters 4 and 5) as was hoped for, two important classes of proteins may be 

under-represented in this study: membrane proteins and secreted proteins. 

Future work may use alternative methods to extract membrane proteins and to 

recover secreted proteins and analyse their differential expression. Some new 

techniques, such as multi-dimensional protein identification technology 

(MudPIT) may be used for proteomics to increase the identification of proteins. 

MudPIT has been used in a wide range of proteomics including identification of 

protein complexes, membrane proteins and post-translational modifications of 

protein expression (Claire and Yates, 2007).   

The use of mutant strains may help further in establishing the significance 

of key proteins in the cause of GBS disease. The mutant strains are 

constructed by deletion of pathogen genes by strategies such as insertional 

inactivation or allelic replacement. Comparing the characteristics between 

mutant strains and wild strains will help determine the functions of the gene of 

interest. Investigations of key putative virulence factors identified in this study, 

notably Bac and arginine deiminase, are now needed.  

As part of this study a proteomic model reflecting the long term survival, 

comparing GBS growth at 6 hours and 1 week time points was designed. 

However due to the limited time available, the proteins expressed between 
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these conditions were not able to be identified by LC-ESI/MS. Once these 

proteins are identified, the data can be added to the knowledge of GBS protein 

expression in conditions reflecting colonisation. 
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