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Abstract Climate change induced permafrost thaw in the Arctic is mobilizing ancient dissolved organic
carbon (DOC) into headwater streams; however, DOC exported from the mouth of major arctic rivers appears
predominantly modern. Here we highlight that ancient (>20,000 years B.P.) permafrost DOC is rapidly utilized by
microbes (~50% DOC loss in <7days) and that permafrost DOC decay rates (0.12 to 0.19day�1) exceed those
for DOC in a major arctic river (Kolyma: 0.09day�1). Permafrost DOC exhibited unique molecular signatures,
including high levels of aliphatics that were rapidly utilized bymicrobes. Asmicrobes processed permafrost DOC,
its distinctive chemical signatures were degraded and converged toward those of DOC in the Kolyma River.
The extreme biolability of permafrost DOC and the rapid loss of its distinct molecular signature may explain the
apparent contradiction between observed permafrost DOC release to headwaters and the lack of a permafrost
signal in DOC exported via major arctic rivers to the ocean.

1. Introduction

Frozen soils or permafrost regions in the Arctic are estimated to contain 1700 Pg of organic carbon (OC), more
than twice the carbon (C) stock of the entire current atmospheric C pool [Tarnocai et al., 2009; Schuur et al.,
2013]. Climate change in the Arctic is amplified with current warming estimates leading to the projected
release of 41–288 PgC by 2100 and up to 616 PgC by 2300 [Schaefer et al., 2011; Schuur et al., 2013] as a
consequence of permafrost thaw. As the OC that has been locked away in permafrost thaws into the
contemporary C cycle it can be metabolized by microorganisms in soils and exported into aquatic
ecosystems where it can be further metabolized by microorganisms and becomes susceptible to
photochemical degradation [Striegl et al., 2005; Osburn et al., 2009; Cory et al., 2014; Mann et al., 2014]. If
these processes are efficient at mineralizing thawed permafrost OC, ultimately this large ancient C
reservoir will be transferred to the atmosphere driving a positive feedback on climate change [Schuur
et al., 2013; Vonk et al., 2013].

Numerous studies have highlighted long-term permafrost degradation and a deepening in the active layer in
arctic watersheds [Payette et al., 2004; Zhang et al., 2005; Osterkamp, 2007]. However, the fate of liberated OC
in arctic rivers remains unclear and is focused on dissolved organic carbon (DOC) for three reasons. First,
approximately 80% of the total OC flux from arctic watersheds is estimated to occur in the form of DOC;
second, as permafrost thaws and the active layer deepens this results in a new source pool of OC for DOC
production; and finally, DOC is the most important intermediate in the global C cycle fuelling microbial
metabolism [Striegl et al., 2005; Battin et al., 2008; Frey and McClelland, 2009]. Headwater streams in arctic
watersheds have exhibited DOC with ancient permafrost-derived radiocarbon ages [Neff et al., 2006; Vonk
et al., 2013]. However, major arctic rivers export predominantly modern DOC to the ocean that is derived
from recently fixed plant material and organic-rich surface soils [Neff et al., 2006; Raymond et al., 2007;
Spencer et al., 2008; Aiken et al., 2014]. This raises the question, where is the ancient OC mobilized by
permafrost degradation and deepening of the active layer?

In this study we examine DOC radiocarbon age, biolability, and composition in small-order streams and the
main stem of a major arctic river (Kolyma, Siberia), with a focus on the period of maximum permafrost thaw
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and active layer depth (late summer). In addition to measuring bulk DOC, we employed Fourier transform ion
cyclotron resonance mass spectrometry (FTICR-MS) on nonfractionated samples to develop molecular
fingerprints for the different dissolved organic matter (DOM) samples and their biomodification during
28 day microbial incubations. The resultant changes in the radiocarbon age of ancient permafrost-derived
DOC were used to determine whether rapid loss of permafrost DOC in headwater streams could account
for the apparent disconnect between extensive permafrost mobilization and the apparent modern age of
DOC in major arctic rivers. FTICR-MS characterization allowed us to investigate whether permafrost DOM
exhibits unique molecular signatures and if these signatures are persistent enough to show up in the main
stems of large arctic rivers, thereby enabling a means to examine catchment-wide permafrost degradation
by taking samples at major river outflows.

2. Materials and Methods

The Kolyma River Basin covers ~ 650,000 km2 of northeastern Siberia and represents the largest watershed on
Earth completely underlain by continuous permafrost. Water samples were collected from two sites: one
representing the main stem Kolyma River (9 September 2013) approximately 2 km upstream from Chersky
(68.767°N, 161.333°E) and one representing small-order permafrost thaw streams which drained from the
yedoma exposure known as Duvanni Yar (68.631°N, 159.151°E). The permafrost thaw stream site was
sampled twice in early September, and the individual samples are referred to in this manuscript as
permafrost stream A (1 September 2013) and permafrost stream B (9 September 2013). Samples were
collected in precleaned (acid and Milli-Q rinsed) high-density polyethylene plasticware and kept on ice and
in the dark until return to the laboratory (<6h) where they were filtered through precombusted (450°C)
47mm 0.7μm glass fiber filters to remove particulates. Aliquots were then frozen for subsequent DOC
concentration, Δ14C-DOC, and FTICR-MS analyses.

To determine the biolability of DOC, dark laboratory incubations were begun immediately, in triplicate, in 60mL
precleaned (acid and Milli-Q rinsed) high-density polyethylene plasticware at 20°C using 0.7μm filtered waters
and establishedmethodology [Holmes et al., 2008; Vonk et al., 2013; Spencer et al., 2014]. These incubations were
kept oxygenated, and triplicates were stopped after 2, 7, 14, and 28days and subsequently frozen. DOC
concentration was measured on a Shimadzu TOC-V analyser using established protocols [Mann et al., 2014].
DOC samples for 14C analysis (Δ14C-DOC) were freeze dried directly in precombusted (850°C for 5 h) quartz
glass tubes. Samples were then acidified to remove carbonates and flame sealed with precombusted CuO
under vacuum. CO2 was cryogenically captured and quantified (~30μg carbon) before 14C measurement
using a miniaturized radiocarbon dating system and gas feeding system at the Laboratory of Ion Beam
Physics, Eidgenössiche Technische Hochschule (ETH) Zurich [Wacker et al., 2010].

Samples for FTICR-MS were analyzed without isolation or fractionation following Stubbins et al. [2010, 2014].
Permafrost stream samples A and B were diluted to the concentration of Kolyma River water DOC with
ultrapure water (Milli-Q). All samples were then mixed 1:1 with methanol to aid ionization in negative mode
electrospray ionization (ESI) and infused into the ESI source of a 15 T FTICR-MS (Solarix Bruker). Molecular
formulas were assigned to peaks with signal-to-noise ratios >5 based on published rules [Stubbins et al.,
2014] (see Supplemental Methods in Text S1 in the supporting information) Peaks below a standardized
detection limit were filled to prevent false negatives for the absence of a peak within samples with low
dynamic range. For this assessment elemental formulas were defined as biolabile if they experienced a 40%
or greater reduction in relative peak intensity after 28 days. Assigned formulas were categorized by
compound class based upon elemental stoichiometries [Stubbins et al., 2014] (see Supplemental Methods
in Text S1).

3. Results and Discussion

Concentrations of DOC varied greatly between the study sites, from 5.5mgC L�1 in the Kolyma River main stem
to 152.4 to 165.8mgCL�1 in permafrost thaw streams A and B (Figure 1). DOC in permafrost streams A and B
ranged in radiocarbon age from 21,000 to 22,100 years B.P. (Δ14C-DOC: �927 to �937‰), whereas Kolyma
River main stem DOC was modern (Δ14C-DOC: 22‰) consistent with DOC ages in previous studies of
permafrost headwater sites in the Kolyma and the main stem of major arctic rivers [Raymond et al., 2007;
Vonk et al., 2013; Aiken et al., 2014]. In 28day bioincubations permafrost thaw streams A and B exhibited
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high biolability as evidenced by large DOC
loss (79.5 to 102.7mgC L�1; 52.2 to 61.9%)
in comparison to modern Kolyma River
water (DOC loss= 0.36mgC L�1; 6.6%;
Figure 1). Comparable bioincubations from
major arctic rivers during late summer have
shown similar DOC losses to the Kolyma
main stem (<10%) whereas the > 50%
loss of DOC observed in the permafrost
headwater site bioincubations represent the
largest DOC losses reported to date from
arctic fluvial systems [Holmes et al., 2008;
Wickland et al., 2012; Vonk et al., 2013].
The permafrost-derived DOC utilized
by microbial communities was always
>20,000 years B.P. Conversely, in the
Kolyma River main stem bioincubation,
the DOC utilized was always modern as
determined from the lack of significant
changes in the Δ14C-DOC values during
the bioincubations (Figure 1).

All bioincubation data were fitted to
a single, three-parameter exponential
decay model: f= y0 + a × exp(�b × x), in
which y0 = nonbiodegradable component,
a= biodegradable component at t0, and
b= rate of decay. The decay model fit the
data well ranging from r2 = 0.97 to 0.98
across the sites (Figure 1). The rate of
decay of DOC was greater in permafrost
thaw streams A and B (0.12 to 0.19 day�1)
than for the Kolyma River main stem
(0.09day�1). These results clearly show the
high biolability of ancient (>20,000 years B.P.)
permafrost-derived DOC in small-order
streams and the rapid loss (<7 days) of
approximately 50% of the DOC in these
systems. Although we recognize the
limitation of extrapolating DOC loss data
from bottle bioincubations it is worth
noting here that water residence times
from the permafrost thaw stream sites to

the Kolyma River main stem site are typically 3–7 days [Vonk et al., 2013]. This rapid loss of ancient
permafrost DOC subverts the perception that young, freshly produced DOC will be the most biolabile in
arctic fluvial systems and argues for a strong disconnect between permafrost thaw inputs and the DOC
that is ultimately exported to the ocean from major arctic rivers. This is the first time that the age of
permafrost-derived DOC has been determined prebioincubation and postbioincubation (Figure 1). As
such, this is the first definitive demonstration that ancient DOC derived from permafrost C stores will be
rapidly mineralized when released into contemporary aquatic ecosystems.

The rapid loss of ancient permafrost DOC suggests that bulk-level measurements of Δ14C-DOC in major arctic
rivers may not provide a good integrative tracer of permafrost thaw throughout their catchments. Therefore,
we characterized the bioincubation samples using FTICR-MS to determine if the molecular signature of
permafrost DOM might offer an alternate tracer. The ultrahigh resolution and mass accuracy of FTICR-MS
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enabled exact molecular formulas to be assigned to thousands of mass spectral peaks based solely upon
mass [Stubbins et al., 2010; Flerus et al., 2012]. Encouragingly, the permafrost thaw DOM had unique
molecular characteristics, including the presence of a suite of high H/C compounds (aliphatic) not normally
observed in whole water riverine DOM samples (Figure 2 and Tables 1, and S1) [Stubbins et al., 2010].
During the 28 day bioincubations of permafrost DOM, more pronounced changes in molecular signatures
were observed than in the Kolyma River DOM (Figures 2a and 2b and Tables 1 and S1) or than within
previous bioincubation studies of natural riverine DOM [Rossel et al., 2013]. These modifications, even
visible as a reduction in the intensity of biolabile peaks in the raw FTICR mass spectra (Figure S1), were
characterized by reductions in the peak intensities of hydrogen-rich, aliphatic molecules and
carbohydrates, and concurrent increases in relative peak intensity in the area of van Krevelen space
generally associated with high intensity peaks in both riverine and marine DOM (Figure 2a) [Stubbins et al.,
2010; Flerus et al., 2012]. The aliphatic and carbohydrate-like molecular formulas unique to permafrost-
derived DOM (i.e., peaks present in permafrost DOM but absent in Kolyma River DOM; Figure 2c and
Table 1) could provide a means to track permafrost DOM through fluvial networks. However, 83%
(including 96–97% of CHO-only peaks) of them were degraded during the bioincubation (Table 1),
suggesting that the majority of these unique molecular formulas are unlikely to be found in the Kolyma
River main stem.

The decreasing intensities of aliphatics and carbohydrates are interpreted as indicating these moieties were
biodegraded. However, as these peaks are degraded, the relative peak intensities of compounds that were
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biorefractory (i.e., conserved during the
incubation) are expected to increase in
relative intensity. Thus, those peaks that
showed increasing intensities over the
course of the incubation are likely
dominated by conserved molecules
rather than bioproducts. The peaks
that increased in intensity throughout
the permafrost DOM incubations were
identified. The relative increase in peak
intensity of these peaks was then plotted
against the intensity of those same peaks
in the original Kolyma River sample.
The resultant plot reveals a significant
linear correlation (Figure 2d), indicating
that the peaks that demonstrated
the highest increases in intensity during
the permafrost DOM bioincubations (i.e.,
those that were likely preserved during
incubations with potential minor
contributions from bioproducts) also
occurred at high intensity in the
Kolyma River initial sample. Thus, the
microbial reworking of permafrost DOM
will rapidly result in a molecular
fingerprint similar to that found in the
Kolyma River.

The finding that the molecular signatures
of permafrost DOM rapidly converge
toward those of DOM in major arctic
rivers such as the Kolyma highlights
the difficulty of tracking permafrost
inputs utilizing DOM characterization
approaches on samples from the mouths
of major arctic rivers. That said, despite
the convergence of average molecular
properties, subtle differences exist
between the molecular populations
within the Kolyma and biodegraded
permafrost DOM (Tables 1 and S1),
offering hope that collection of larger
sample numbers may reveal statistically
significant signatures of permafrost
DOM transport and modification within
arctic river networks. However, the rapid
utilization of ancient (>20,000 years B.P.)
DOC in bioincubations of permafrost
small-order streams may help to explain
the apparent offset between mobilization
of permafrost-derived OC in arctic
watersheds and the current predominantly
modern age of DOC at the mouth of
major arctic rivers. Small headwater streams
are disproportionally important sites forTa
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carbon dioxide (CO2) outgassing, and estimates of stream areas continue to grow as measurement
techniques increase in accuracy [Battin et al., 2008; Mann et al., 2014; Benstead and Leigh, 2012]. Thus, while
tracking the fate of permafrost DOC through river networks is required to assess its translocation to the
atmosphere as CO2, improved studies of small, permafrost-impacted streams appear to represent the
highest priority sites for capturing the signature and influence of permafrost thaw-derived DOC in fluvial
networks. Further study of the impact of climate warming upon these small stream ecosystems is essential
as our current data clearly demonstrates that the ancient permafrost DOC entering these streams is rapidly
metabolized, adding to the buildup of ancient CO2 in the contemporary atmosphere with clear
ramifications for positive feedback between permafrost thaw and climate.
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