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Eroding coastlines composed of sequences of till, carbon rich peat and sand layers are characteristic of many
formerly glaciated coastlines due to the interplay of relative land and sea levels. Dune cliffs cut into these materials
represent one of the most sensitive systems to the processes of coastal change. Establishing appropriate scales for
the quantification and analysis of change in coastal dune cliffs remains limited by the speed and nature of change,
the intensity of environmental processes and the challenges of achieving adequate survey control. This paper
presents the results from multi-scale analyses into the behaviour of dune cliffs on the northeast coast, UK, over a
118 year period. Repeat unmanned aerial vehicle (UAV) survey differences have been used to identify and quantify
systembehaviour, set in contextwith historicmap comparisons. At the landformscale,monthly dune cliff dynamics
have been analysed over the course of a year with terrestrial laser scanning (TLS) in order to gain insights into the
drivers of contemporary dune cliff behaviour. Finally, pseudo three-dimensional ground-penetrating radar (GPR)
data are used to trace subsurface stratigraphy from which the potential extent of stored carbon (in excess of
100 t over 50mofmonitored dune cliff) at risk of release by coastal erosion over thenext 50 years can be calculated.
The consideration of multi-scale changes over time periods relevant to well-constrained sea level change has re-
vealed a complex combination of failure mechanisms that have resulted in an acceleration in dune cliff recession
(particularly over the last decade) and a form change to shallower, divergent profiles. This potential acceleration
in contemporary dune cliff response holds significant implications for both coastal management and the contribu-
tion of this poorly quantified input to the coastal carbon flux.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The interplay of glacial–interglacial environments has left many
modern mid- to high-latitude coastlines dominated by interleaved
deposits of till (glacial), peat (interglacial) and sand (Holocene accumu-
lations). The beach and dune systems that result from erosion and
reworking of these deposits are thought to account for 34% of ice-free
coastlines globally (Hardisty, 1994). They are widely distributed, occur-
ring at every latitude (Barbier et al., 2011), and dominate shorelines
throughout Northern Europe (de Ceunynck, 1985; Wilson, Orford,
Knight, Braley, & Wintle, 2001), the coastal lowlands of Australia
(Taffs, Logan, Parr, & Jacobsen, 2012; Whinam et al., 2003) and even
the Great Lakes of North America (Hill, 1974) for example. Despite
their pervasive distribution across European coastlines (Ritchie, 2001),
the cessation of large quantities of sand to the coastal zone and the
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onset of marine influence has led to the widespread erosion of mature
dune systems. Subjected to rising and accelerating sea levels (Shennan,
Milne, & Bradley, 2009) and a predicted increase in extreme (storm)
events (Min, Zhang, Zwiers, & Hegerl, 2011), low coastal cliffs that are
cut into these interleaved deposits currently form some of the most
rapidly eroding coastlines worldwide (Wilson et al., 2001).

Barbier et al. (2011) suggest that the economic value of dune systems
is amongst the highest of any coastal system, providing an accumulation
of ‘ecological services’ including limiting marine erosion, the provision of
materials, protection of the coastal hinterland, the capture and filtration
of water contaminants, habitat provision, carbon sequestration, tourism,
recreation and education. The benefits of dune systems, both direct and
indirect, remain poorly quantified and often specific aspects are consid-
ered individually rather than collectively (Brown & McLachlan, 2002;
Zarnetske, Seabloom, & Hacker, 2010) and are fixed both spatially and
over time (Koch et al., 2009).

The importance of understanding the true rates and nature of dune
cliff erosion and its consequences for low-lying hinterlands has long
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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been acknowledged in a management context (Lemauviel & Roze,
2003). However, the activation of significant amounts of stored organic
carbon within these systems also adds impetus to the need to monitor
and interpret the behaviour of these systems (Beaumont, Jones,
Garbutt, Hansom, & Tobermann, 2014; Grayson, Holden, Jones, Carle,
& Lloyd, 2012; Romankevich, Vetrov, & Peresypkin, 2009). Peat accounts
for up to 50% of all the carbon stored in soils globally (Holden, 2005;
Limpens et al., 2008), but the rate atwhich it is eroded is a poorly under-
stood component of the carbon flux (Grayson et al., 2012). Coastal
peatlands, in particular, are a significant but often underrepresented
component within the global carbon budget (Taffs et al., 2012). Dating
and palynological evidence from peat layers within dune systems has
been used to reconstruct former coastlines and make tentative connec-
tions to periods of marine transgression and regression associated with
several kilometres of coastal erosion (de Ceunynck, 1985). Estimates
of global terrigenous organic carbon from coastal erosion processes
have put the amount at 25 × 106 tons a−1 (Romankevich et al., 2009),
although establishing the true figure remains constrained by the limited
availability of quantitative monitoring data (Grigoriev, Rachold,
Hubberten, & Schirmeister, 2004). It is evident that peat bearing coast-
lines are often highly erosive and thus may respond rapidly to changes
in sub-aerial or marine conditions (Semiletov et al., 2011).

The potential for continuous morphological changes to both the cliff
and the fronting beach (Short & Hesp, 1982) make the collection of ac-
curate, quantitative data on dune cliff systems particularly challenging
(Carter, 1991). Therefore, changes in dune cliffs need to be considered
over a range of spatial and temporal scales (Feagin, Williams, Popescu,
Stukey, & Washington-Allen, 2012). The aim of this paper is to quantify
the rates and mechanisms of change in a monitored section of coastal
dune cliffs and to consider the implications for understanding dune
cliff behaviour, sensitivity to environmental processes and potential
contribution to the coastal carbon flux.

2. Dune cliff systems

There is a fragile relationship between physical and biological agents
acting to shape and stabilise dune systems, resulting in ecosystems that
are particularly sensitive indicators of environmental change. Alterations
in sediment supply, vegetation characteristics (such as composition,
structure or extent) or destabilising processes produced by waves, wind
or rainfall can lead to significant morphological adjustments over rela-
tively short periods of time (Clemmensen, Fornos, & Rodriguez-Perea,
1997). These changes can be instantaneous and event driven or gradual
long term shifts associated with altered process conditions such as a ma-
rine transgression or regression (Psuty, 2008). Dune system sensitivity
has been shown to operate over time periods of individual storm
events (Splinter & Palmsten, 2012; Zhang, Whitman, Leatherman, &
Robertson, 2005), seasonal forcing (Esteves, Brown, Williams, &
Lymbery, 2012) and even decadal trends in storm tide occurrence
(Pye & Blott, 2008). In rare considerations of post-storm behaviour
there have been conflicting results. Feagin et al. (2012) demonstrate
rapid recovery potential over several months following hurricane ero-
sion, whereas Suanez, Cariolet, Cancouët, Ardhuin, and Delacourt
(2012) identify an ongoing recovery period where hydrodynamic
changes to the post-storm system result in a secondary development
stage and an altered equilibrium beach profile over a two year recovery
period.

The connectivity and sensitivity of dunes and dune cliffs mean they
cannot be considered in isolation from the coastal system, but questions
remain over the most appropriate spatial and temporal scales at which
to consider their changes. Distinct thresholds for significant erosion of
dunes have been identified that suggest sea level often provides a fun-
damental control on the geomorphic effectiveness of storms (Esteves
et al., 2012; Furmańczyk, Dudzińska-Nowak, Furmańczyk, Paplińska-
Swerpel, & Brzezowska, 2012). Pye and Neal (1994) also identify a
close relationship between dune behaviour and beach characteristics;
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a negative dune sediment budget was associated with falling beach
levels and a reduction in dune erosion rates was expected following
rising beach levels. Geochemical analyses of ‘perched’ (cliff top) dune
systemshas shown the close coupling between cliff anddune sediments
and their contribution to the coastal system (Saye, Pye, & Clemmensen,
2006). Other factors such as precipitation characteristics can influence
dune morphology, both directly through sheet wash and rain splash
erosion and indirectly through controls on vegetation development
and the redistribution of chemicals and minerals within the dunes
(Saye et al., 2006). Mountney & Russell (2009) also highlight the poten-
tial influence of the water table in controlling dune development and
behaviour.

Williams et al. (2001) use a multi-parameter checklist including
dune and beach morphology, vegetation and anthropogenic impact to
assess and classify vulnerability to change. Such studies have demon-
strated that dune systems often reflect regional trends, although these
can become muted by local processes (Davies, Williams, & Curr, 1995;
Williams et al., 2001). Despite significant advances to the understanding
of dune cliff development and evolution (Gilbertson, Schwenninger,
Kemp, & Rhodes, 1999; Knight, Orford, Wilson, Wintle, & Braley, 1998;
Orford, Wilson, Wintle, Knight, & Braley, 2000; Wilson & Braley, 1997),
there remains a scarcity of detailed monitoring studies, particularly
along the late-Holocene dune systems that are found extensively across
the Atlantic coasts of northwestern Europe (Wilson et al., 2001).

3. Quantifying dune cliff morphology

The importance of coastal dune cliffs as both ecosystems and protec-
tive barriers or buffers to marine influence has led to numerous attempts
to map and monitor responses over time. Olivier and Garland (2003)
monitored foredune development with total station topographic surveys
and Esteves et al. (2012) used differential global positioning system
(DGPS) surveys to quantify thresholds for dune erosion beyond a mea-
surement accuracy of 2 m, although both approaches achieve sparse spa-
tial coverage. The generally smooth undulations of dune fields have
proven suitable for the application of airborne light detection and ranging
(lidar) survey data. Saye, van der Wal, Pye, and Blott (2005) used lidar
surveys at five sites to map changes in dunes and fronting beach systems
and suggested that critical beach characteristics (width and slope) were
site specific and,where present, tended to lead changes in dunemorphol-
ogy. A critical element in the quantification of change in geomorphic
systems is the relative accuracy achieved between surveys (Zhang
et al., 2005). Richter, Faust, and Maas (2013) used airborne lidar to
map dune cliff retreat and highlighted the problemof comparingmul-
tiple lidar datasetswith various degrees of post-processing and interpo-
lation, which have the potential to result in significant offsets and
positional errors. The sharp breaks of slope on dune cliffs can bemissed
by lidar point posting and, although this error can be reduced in some
circumstances (Brzank, Lohmann, &Heipke, 2005), it often poses partic-
ular problems for identifying and interpreting change. Perhaps the
greatest limitation for airborne lidar surveys of dune cliff systems has
been the logistical limitations (such as expense and planning) that
often make surveys of sufficient frequency impractical.

The application of repeated ground based lidar or terrestrial laser
scanning (TLS) has enabled the quantitative investigation of a wide
range of environments, primarily involving the geomorphological analy-
sis of slope changes (Abellan et al., 2013). Feagin et al. (2012) discuss
both the potential and the limitations of TLS surveys for quantifying and
monitoring dune systems. Using apparently stable features, concordant
across survey datasets, dune changes were identified beyond standard
error ranges of sub-metre to sub-decimetre. However, the challenges
associated with establishing stable benchmarks and the variation in pro-
cessing approaches have limited the effectiveness of TLS monitoring of
change. For example, despite the strong relationships between vegetation
anddune behaviour (Camacho-Valdez,Murillo-Jimenez, Nava-Sanchez, &
Turrent-Thompson, 2008), vegetation poses particular problems for the
of change in organic carbon bearing coastal dune cliffs: A multiscale
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Fig. 1. Hauxley dune cliff headland (red box) located on the northeast coast of England
(inset map) between Amble and Druridge Bay. Dune cliff systems front almost the entire
coast within this area. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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alignment of TLS surveys (Feagin et al., 2012) and should bemasked from
convergence procedures and change analysis rather than removed with
ground extraction algorithms that can enhance interpolation errors. It
has been shown that careful planning, error assessment and validation
can produce higher levels of confidence in the results produced from
TLS data (Day, Gran, Belmont, &Wawrzyniec, 2013a). Whilst TLS surveys
remain the most consistently accurate and high resolution method of
quantifying dune cliff change, they are generally restricted to short
time periods and, when viewed in isolation, do not allow patterns iden-
tified to be set with a wider spatial and temporal context (Feagin et al.,
2012).

Newmethods of aerial survey in the formof unmanned aerial vehicles
(UAVs) now offer the potential to practicably collect more frequent
surveys at high spatial resolutions, comparable to that achieved by TLS
surveys (model cell size of a few centimetres is possible; Lejot et al.,
2007). Recent developments in UAV platforms, digital cameras and
image processing have facilitated the effective use of UAV surveys
for applications such as landscape classification (Laliberte, Goforth,
Steele, & Rango, 2011), DEM extraction (Eisenbeiss and Sauerbier,
2011), feature mapping (Mozas-Calvache, Pérez-García, Cardenal-
Escarcena, Mata-Castro, & Delgado-García, 2012) and erosionmonitoring
(d'Oleire-Oltmanns, Marzolff, Peter, & Ries, 2012). The use of UAV imag-
ery addresses a critical scale of analysis, covering areas up to several
square kilometres in size, which fits between conventional aerial and
ground surveys. However, significant challenges remain in the collection,
processing and error-checking of UAV derived data (Aber, Marzolff, &
Ries, 2010; Hardin & Jensen, 2011; Niethammer, James, Rothmund,
Travelletti, & Joswig, 2012) and the results produced need to be viewed
with caution. As with other aerial surveys, use of UAV imagery requires
a sufficient number and distribution of ground control points to be col-
lected. This can be time consuming and limit applications where accessi-
bility is restricted (e.g. intertidal environments), hazardous, or constantly
changing during and between surveys (Laliberte, Winters, & Rango,
2008). New image processing approaches such as structure frommotion
(SfM) can derive high resolution surface models from overlapping im-
ages with minimal ground control (Niethammer et al., 2012), although
careful and considered validation is required when such high levels of
automation exist within the processing workflow.

4. Regional setting

The Northumberland coastline in the northeast of the United
Kingdom contains extensive coastal dune systems, extending over
45 km and covering 1374 ha (Wilson et al., 2001). The dune cliffs selected
for the multi-scale analyses of geomorphic behaviour form a headland
section within a 10.5 km long dunefield that buffers wetlands, croplands,
visitor centres, infrastructure and settlements from marine processes
(Fig. 1). The cliffs reach a height of 5.5 m, with cuspate scars cut into
weakly cemented sand anchored on sheer-sided peat (up to 1.6 m
thick) and till units (up to 1 m exposed above average beach level). The
Holocene accumulations of peat have been documented (Raistrick &
Blackburn, 1932) and dated (Frank, 1982), forming between 4900 14C
yr BP and 2800 14C BP (Innes & Frank, 1988). The peat has been used to
determine an environmental chronology through the intercalated
deposits to establish a record of marine transgression and regression
(Plater & Shennan, 1992) and vegetation changes associated with
human activity during the Bronze Age (Innes & Frank, 1988). The dune
systems are also of considerable archaeological interest, having produced
flints from the Mesolithic (O'Sullivan & Young, 1995). Recent (unpub-
lished) studies claim to have identified tsunami deposits produced by
Storegga slide activity that make the site of particular interest for under-
standing the development and response of the coast to extreme events
(also identified and analysed 16 km to the north at Howick by Boomer,
Waddington, Stevenson, & Hamilton, 2007).

The dune cliffs are cut into the most seaward dune that fringes a
narrow (b350 m) zone of more stable (vegetated), low hummocky
Please cite this article as: Lim, M., et al., Quantification and implications
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dunes as is typical for dune systems associated with headlands in the
area (Wilson et al., 2001). Vegetation succession ranges from marram
grasses and shrubs on the dune cliffs to hawthorn, nettles, brambles
and wetland vegetation in the lee of the foredunes. The dune cliffs are
fronted by a sand beach and inundated by a mean spring tidal range
of 4.3 m (neap range 2.1 m). Mean spring high tide reaches 2.4 m
above British ordnance datum, submerging the till and partially inun-
dating the peat layers. However, the easterly aspect of the cliffs means
they are sheltered from the prevailing westerly-south-westerly winds
(Wilson et al., 2001). Wind velocity and rainfall at Hauxley generally
peak in winter months at around 6.2 m s−1 (January mean) and
78 mm (November mean) respectively, although strong convectional
storms can also lead to high summer rainfall.
5. Data collection and results

5.1. Long-term (centennial) dune cliff change

A comparison of the dune cliff position at Hauxley in historic
maps dating back to the 1897 Country Series (1:2500) production
demonstrates a continuously retreating headland, although the calculated
annual rate varies both spatially and betweenmap epochs (Fig. 2). A com-
parison of the position of permanent features with within each of the
mapped datasets produced mapping and registration errors of 5.4 m
(1897–1923), 4.3 m (1923–2005) and 0.7 m (2005–2013) respectively.
The retreat distances have been derived from averaging the shortest
of change in organic carbon bearing coastal dune cliffs: A multiscale
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Fig. 2. Historic map cliffline positions at Hauxley dune cliffs (a) and derived annual retreat rate data measured northwards up the headland (b). Note the southern half of the headland
(pictured) has been selected for detailed monitoring and analysis because the northern half of the dune system has been modified by management practises. Based on Digimap Historic
Map data © Crown Copyright and Landmark Information Group Limited (2014). All rights reserved (1897; 1923; 2005).
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distance to a point on the (more recent) comparison line at 0.1 m inter-
vals, providing near continuous records of mapped cliffline positions
and highlighting localised failures rather than the coarser intervals used
where shoreline behaviour is more uniform (Ford, 2013). The period
between 1897 and 1923 reflects a general tendency at the site for the
area of peak headland amplitude to record greater cliff top retreat than
the southern section, which has retreated at approximately half the
base rate of retreat. The next epoch, from 1923 to 2005 shows a reduced
(mean retreat 49% lower) and more spatially consistent site response
with retreat rates increasing progressively to a maximum of 0.35 m a−1

at the headland crest. The average retreat during this period is compara-
ble to that of the earliest mapped change. The most recent cliff line
comparison is between 2005 MasterMap data (provided by Edina) and
a DGPS survey conducted in May 2013. The rates of retreat since 2005
have significantly increased (average rate over five times higher) and
show a more flashy distribution across the headland. The higher resolu-
tion of the 2013 line resulted in greater roughness, which may account
for some of the greater variability noted, but the magnitude andmultiple
scales at which the variations occur appear to suggest genuine responses
beyond any methodological differences. It is not possible to get reliable
volumetric estimates from the historic map data but the cliffs appear to
be undergoing a reduction in face gradient, with the distance between
the cliff base and cliff top increasing across the epochs (cliff toe positions
not presented). The average distance between the top of the cliff to the
base increases from 5.04 m in 1897, through 7.07 m in 1923, to 7.18 m
in 2005 and 7.41m in 2013. However, the lack of contiguousfixed control
(i.e. buildings) near the dune cliff base mean that mapping accuracy
cannot be ascertained, nor can it be determined whether, if genuine,
these changes in top to base horizontal distance are due to a relative
reduction in the retreat rate of the till and peat base or an acceleration
of the sand crest retreat.
Please cite this article as: Lim, M., et al., Quantification and implications
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5.2. Medium-term (interannual) dune cliff change

A key challenge in quantifying change in dynamic systems such as
dunes is to identify the patterns of difference at representative scales
(landform or greater) and at sufficient monitoring frequency (regularly
sub-seasonal). A Panasonic DMC-LX3 digital camera was mounted into
a Quest 100 UAV and (semi-)autonomously flown over a pre-defined
flight path at a height of 90 m, collecting 10 MP images of the study
area with a minimum 60% overlap between images. Identifiable ground
features located throughout the area of interest have been surveyed
with a Trimble R4-3 DGPS rover and corrected to a fixed base station
to generate ground control points (GCPs). The GCPs produced a mean
horizontal post-processed accuracy of 0.02m and 0.05m in the vertical.
Of the surveyed features, sixwere selected as GCPs due to their distribu-
tion across the survey area and the remaining four where used as check
points for error assessment. AgiSoft PhotoScan, a structure frommotion
(SfM) processing package, was used to model surface elevations from
the UAV image sequences: aligning images automatically with a scale
invariant transform procedure, automatically detecting common fea-
tures and extracting 3D structure, positioned, scaled and orientated
with the GCP network. The surveys, collected in April 2010 and again
in July 2013, were processed to produce DEMs with a ground sample
distance of 0.1 m. The processed DEMs had a mean computed control
point error of 0.13 m once blunders were excluded (Agisoft Software),
although the limited check points available had a significantly higher
mean error (0.87 m). The increase in errors recorded in the check
point data suggest that further investigation is required into interpola-
tion effects and the potential variability in accuracy achieved by SfM
elevation data, although this is beyond the scope of the present study.
Given these uncertainties, the volumetric differences between surveys
beyond an error threshold of 1 m have been calculated by rasterising
of change in organic carbon bearing coastal dune cliffs: A multiscale
ttp://dx.doi.org/10.1016/j.rse.2015.01.034
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Fig. 3. An orthophoto overlain by recent changes at Hauxley, Northumberland, detected with UAV survey data, beyond a unified control and check point error threshold of 1 m for each
0.1 m2 cell. The profiles labelled A–A′ and B–B′ relate to Fig. 8, the boxed area to the TLS survey extent (Fig. 4) and the labelled dashed line to the GPR grid in Fig. 5.
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the SfM elevation data at 0.1 m cell sizes and summing the differences
(Fig. 3). It should be noted that shadowing and lighting differences
may have resulted in variations in inter- and intra-survey quality
(point density and accuracy) and the lack of permanent identifiable
features seaward of the dune system restricted the distribution of
both control and check points.

The changes detected between April 2010 and July 2013 show large
scale dune cliff erosion and isolated area of vegetation gain. The gains
may be partly due to genuine growth but the imagery also shows that
leaf coverage and shadowing may have contributed to the differences
detected. The monitored dune cliff area recorded a volumetric loss of
1914.33 m3 and a maximum step-back distance of 5.22 m over the
40 month period, producing an average retreat rate of 0.39 m a−1. The
change model also highlights areas of gain at the base of the dune cliffs,
likely to be failed dune cliff material. However, it is notable that these
gains increase towards the northern and southern extremities of the
Please cite this article as: Lim, M., et al., Quantification and implications
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survey area where ground control was limited and occur on the beach
where reduced image texture and features may potentially reduce
model quality. Caution is therefore exercised over cliff toe and beach
level changes detected between UAV surveys. Despite the planimetric
viewpoint produced from the airborne data collection, the darker red
banding in the middle and upper (particularly to the south) portions
of the cliff face suggest that the less cohesive upper sand units have
suffered greater losses between surveys than the more cohesive basal
peat and till layers.

5.3. Shot-term (intra-annual) dune cliff change

To complement thewider scale changes detectedwith UAV imagery,
high spatial and temporal resolution losses have been monitored with
TLS. Monthly repeat surveys were conducted to establish changes
occurring in a 100 m section of dune cliffs throughout a year-long
of change in organic carbon bearing coastal dune cliffs: A multiscale
ttp://dx.doi.org/10.1016/j.rse.2015.01.034
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monitoring period (January–December 2013). In accordance with the
methodology for bluff erosion described by Feagin et al. (2012) the
scanner, a Reigl LMS-Z620, was positioned at multiple locations (the
precise number varied between four in winter and 6 in summer) in
front of the cliff face using large overlap to reduce shadowing from the
discrete clusters of vegetation wherever possible. Cylindrical targets
were located throughout the scanning scene, across the beach area
and over a network of cliff top ground stakes, surveyed with DGPS.
In addition, fixed ‘benchmark’ (Day, Gran, Belmont, & Wawrzyniec,
2013b) featureswithin the scanning scene such as a Coastguard lookout
mast were used to check inter- and intra-survey errors. Each survey
contained three scan positions, which were internally registered and
iteratively converged in RiScan Pro (all to within a standard deviation
error of 0.04 m). The DGPS control point network was used for the reg-
istration and check point assessment of the separate monthly surveys
because the dynamism of the dune cliff system and seasonal changes
Fig. 4.Dune cliff slopemodel (top) andmonthly dune cliff losses at Hauxley, Northumberland, i
model.
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in vegetation limited the success of iterative convergence procedures.
The monthly datasets were then transformed and translated into a
local coordinate system (in accordance with Lim et al., 2005) for volu-
metric change analyses. The monthly losses beyond a maximum check
point error threshold of 0.1 m are presented in Fig. 4. Only losses are
presented because the majority of gains over a monthly period repre-
sented loose material deposited on a lower tier of the dune cliff system,
such as sand cones deposited onto the protruding peat layer (higher
sand retreat rates mean there is often a step in the cliff line) or peat
and till blocks that have collapsed onto the fronting beach. It should
be noted that someof the losses reflect the subsequent removal of failed
material and that lateral changes along the base of the till relate to fluc-
tuations in beach level (see November change for example, Fig. 4). The
losses are characterised by seepage fluting as well as occasional under-
cutting and cantilever collapse within the till, shallow (face-parallel)
stress relief sheet failures and block removal from the peat and more
dentified with TLS data differencing and presented over a January 2013 dune cliff hill shade
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continuous, curvilinear losses from the sand. There are concentrations of
erosion at layer boundaries, particularly at the interface between the till
and peat layers.

5.4. Dune cliff carbon stores

The erosion of soil and peat within dune cliffs releases stores of
organic carbon into the coastal system, but there remains much uncer-
tainty over the extent and significance of these carbon pools (Mitra,
Wassmann, & Vlek, 2003). Site stratigraphy was investigated using a
Sensors and Software Inc. pulseEKKO PRO Ground-penetrating radar
(GPR) system (Fig. 5). A total of 275 m of 200 MHz common offset (CO)
GPR lines were collected as a pseudo three-dimensional grid ~4m inland
(closest line, X1, Fig. 5) from the cliff section that was surveyed using the
TLS. During CO data collection, antennas were kept at a constant separa-
tion of 1m and datawere collected in stepmode (0.25m) along the lines
to improve ground coupling and trace stacking (32 traces). The GPR
antennas were co-polarised and perpendicular broadside to the survey
line in order to reduce reflections from offline sources (Arcone, Lawson,
& Delaney, 1995). A subsurface radar wave velocity of 0.1 m/ns was
used to convert two-way travel time into depth and for further data
processing. The optimal velocity has been established by applying a
range of velocities to the data (the range applied was that expected for
the materials at the site: cf. Neal, 2004) and using that which resulted
Fig. 5.Photomosaic of theHauxley cliff section,with themain units demarcated by thewhite line
black lines and theprinciple radar elements are labelled A–C (b). Interpretation of GPRdata (c):
to the observed units (image a). Grid line positions and orientation are shown in the inset map
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in reflection depths that best corresponded with those surveyed in the
exposed cliff section. GPR processing was carried out in REFLEXW v6.0
and included static correction, ‘dewow’ filtering, bandpass filtering,
migration, background removal filtering, application of a gain function
and topographic correction (topographic data were collected simulta-
neously using a DGPS).

Three radar elements are identified (labelled A–C in Fig. 5b and
referred to as RE-A to RE-C in the text) and these correspond to the
unit boundaries in section (Fig. 5a). RE-A, which corresponds to the
till in section, is traced through the grid by a sub-horizontal, but slightly
irregular upper bounding surface belowwhich theGPR signal rapidly at-
tenuates due to the high fine content within the till (Fig. 5b, labelled ‘A’).
RE-B is composedof strong, continuous sub-horizontal reflections that are
conformable to the lower bounding surface. It forms an ~1–3 m thick
radar element, the position and characteristics of which corresponds to
that of the peat in section (Fig. 5b, labelled ‘B’). Large diffractions (point
source reflectors) are occasionally observed in un-migrated data, which
likely correspond to the large wood fragments or root structures embed-
ded within this peat. Local variations in thickness largely correspond to
irregularities in the basal till. RE-C is composed of discontinuous sub-
horizontal reflections that correspond to the aeolian sediments in section,
and it has an irregular geometry that thins in a landward direction,
conforming to the morphological expression of the dunes here (Fig. 5b,
labelled ‘C’).
s (a). Fence diagramof processedGPRprofiles. Bounding surfaces are indicated by the bold
A (Till), B (Peat) and C (aeolian Sand),with each radar element colour-coded to correspond
and the location is shown in Fig. 3.
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6. Analysis and discussion

6.1. Dune cliff behaviour

Over the 118 year period for which data exist (sea level records, cliff
line mapping, UAV surveys and TLS data), an average dune cliff retreat
rate of 0.27 m a−1 has been recorded at Hauxley, Northumberland
under rising sea level. The historical data show a generally consistent
rate of between 0.3 m a−1and 0.2 m a−1, followed by a five-fold acceler-
ation in the post 2005 rate (Fig. 6). The new 3D survey data (Fig. 6, inset)
also record higher rates than those mapped pre-2005, but neither the
inter-annual UAV surveyed retreat (0.39 m a−1) nor the intra-annual
TLS surveyed retreat rates (0.61 m a−1) reached the post-2005 rate gen-
erated by cliff line mapping (0.92 m a−1). The broad agreement across
the different datasets (all higher than the pre-2005 average retreat
rates) indicates that there has been a genuine increase in the rate of
cliff recession over the last decade (and potentially beyond, within the
confines of historic map data). The three year change map (Fig. 3) illus-
trates the widespread retreat that occurred over the dune cliff with all
exposed areas incurring losses over this period, although the change
was not uniform. However, the significance of larger failures in determin-
ing these variations is difficult to establish in such dynamic systems due
to the tendency for eroding areas to coalesce, superimpose or infill. The
increase in variability may also reflect a reduction in data smoothing
over time with more recent data having a higher spatial resolution (and
greater accuracy).

It has been noted above (Section 5.2) that higher concentrations of
change in recent years have occurred at the (mapped) cliff top relative
to the rest of the cliff. Indeed, a cliff line analysis conducted on the
UAV survey data derived an annual retreat rate of 0.84 m a−1 (within
10% of the rate produced from map data). These data indicate that cliff
line mapping may be sufficient to record long term change in dynamic
systems, but is not appropriate to gain an understanding of geomorphic
behaviour, particularly when interacting processes and multiple
constituent materials are involved. Furthermore, caution should be
exercised over the comparison between the one-dimensional retreat
detected by cliff line mapping and the three-dimensional change
Fig. 6. Retreat rates produced from historic maps and, most recently, a DGPS survey (2013) w
retreat rates (extent shown in the black box) derived from UAV and TLS surveys (inset, a). Sup
data (secondary Y-axis), downloaded from the Permanent Service for mean sea-level (http://w
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resulting from DEM differencing. The differences noted in the three-
dimensional datasets highlight the variability of dune cliff system
response. The recession rate monitored during a year with TLS was
64% higher than that recorded by UAV surveys over an overlapping
40 month period. This suggests that a one year monitoring strategy may
not be adequate to avoid the influence of short term events. However,
the sub-annual frequency achieved with TLS surveys has provided valu-
able insights into the event driven variability of dune cliff behaviour.

The processes controlling dune cliff erosion and sediment production,
particularly those systems containing vegetation or where dunes are
perched on layers with different geotechnical competence such as rock,
till or peat, are poorly understood (Feagin et al., 2012). The dune behav-
iour and the interaction between the different constituentmaterial layers
can now be distinguished over monthly timescales (Fig. 7). Frequency
density profiles show the normalised distribution of change with height
up the cliff face for each month (Fig. 7a). The total amount (volume) of
material lost from the dune cliffs peaked in August, with in excess of
48m3 removed from themonitored cliff section. The greatest losseswith-
in the basal unit of till also occurred during August, although the peaks in
erosion in both the peat and the sand layers were recorded in January.
This appears to be a response to the highest astronomical tides and
winter storms that occur in January and, although the till also recorded
significantly higher (almost twice the average) monthly losses, the full
extent of the damagemayhave partially obscured by beach level changes.
The linkages between dune cliff behaviour and environmental drivers are
discussed below (Section 6.2). The power law scaling exponent pro-
vides a measure of the gradient of the relationship between the size
and frequency of changes occurring each month (Fig. 7b). The expo-
nents of the peat and sand changes are broadly similar throughout the
year suggesting that both the pattern and the timing of responses re-
main consistent. However, the exponents of the size distribution of till
losses are generally greater, indicating a steeper gradient that may re-
flect a curtailed distribution caused by variations in the till exposure,
often masked by fluctuating beach levels. In the months of largest
change the exponents of all three layers converge and produce values
generally within the range (−1.5 to−3.5) usually associated with slid-
ing type slope failures (Turcotte, 1999). The high exponents may also
ith site-based error bounds calculated from permanent features and, additionally, recent
erimposed on these data are local (North Shields, ~30 km to the south) sea-level change
ww.psmsl.org/data/).
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Fig. 7. Frequency density profiles for each month (showing where on the dune cliffs changes are most concentrated) separated by an arbitrary distance (a) and the volumetric losses
recorded from the dune cliffs each month superimposed with the power law scaling exponents calculated for the monthly failure magnitude–frequency relationships (b).
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result from the difficultly of isolating discrete events, particularly from
the aeolian layers that have little cohesion. The convergences in scaling
exponents coincide with frequency density profiles that are more
normally distributed (Fig. 7a), suggestive of a coherent dune cliff system
response. These data demonstrate that the entire dune cliff system can
respond to single periods of high energy events.

6.2. Sensitivity to environmental drivers

Historicmap comparisons and recent geospatial survey data indicate
that there has been an increase in both the rate and the variability of
dune cliff retreat (Figs. 2 & 6). The amount and nature of recorded
changes are beyond method-specific error bounds, raising important
questions regarding the processes driving change. The main drivers of
dune cliff changes are thought to be associated with wave, rain and, in
particular, wind processes (Lindenbergh, Soudarissanane, de Vries,
Gorte, & de Schipper, 2011). During the last 118 years sea level is estimat-
ed to have risen at the study area by approximately 0.22 m (Shennan &
Horton, 2002; see also Fig. 6), but other drivers of change over this period
are less well quantified. The incidence of storms is thought to have risen
since the 1950s (Alexander, Tett, & Jonsson, 2005), but the sequencing
and patterns of events (such as flood rich and flood poor periods that
can last several years) and the interaction ofmultiple factors and process-
es limit the effectiveness of such metrics.

There appears to be a greater and distinct sensitivity in the weakly
cemented aeolian (sand) deposits than in the compact, cohesive till
and, to a lesser extent, the humified organic carbon (peat) locatedwith-
in the intertidal zone (Fig. 7b). However, when normalised by area,
greater dynamism is recorded in the basal layers (particularly the
peat) during isolated months (Fig. 8). Whilst the basal erosion events
occur duringmonthswhere sea levels submerge the cliff base for longer
periods than average (January, May, August and November), other
Please cite this article as: Lim, M., et al., Quantification and implications
analysis from the Northumber..., Remote Sensing of Environment (2015), h
months of similar inundation amounts did not trigger such responses.
High rainfall events in general are not associated with large dune cliff
responses, the most significant of which occur during dry periods,
potentiallywhen the cliffmaterial has lowest cohesive strength. In addi-
tion, desiccation cracks in the peat and upper portion of the till are
suggestive of wetting and drying processes. There is little evidence for
environmental drivers of change on a monthly timescale, therefore,
accelerations in recession may be linked to individual storm events (in
agreement with Splinter and Palmsten, 2012) rather than periods of
altered forcing conditions. Accordingly, a key control on these responses
appears to be wind directions between approximately 200°–260°,
which produce wave approaches perpendicular to the coastline.

Thematerial responsesmay be triggered by extremeweather events
(for example months where sea level exceeds the cliff toe for a higher
proportion of time and wind directions between 200 and 260 that
drive higherwaves), but they also seem to follow an internalmechanistic
response, with a month of quiescence following a large recession event.
This may be caused by the protective effects of large amounts of failed
material armouring the intact cliff face. The peaks in basal till and peat
erosion are followed by a switch in dominance to sand recession, sugges-
tive of an upwardly propagating cliff response. Both the TLS and the UAV
survey data demonstrate an increase in sand cliff retreat relative to till
and (to a lesser extent) peat in recent years, resulting in a reduction
of dune cliff face gradient. This can be seen in repeated profiles
through the UAV elevation models (Fig. 9) and the retreating sand
is likely to increase the exposure of the peat and till layers in the
future. There are several areas along the coastline where the more
sensitive response of the sand has led to the abandonment of basal
layers including peat, relict forest and till outcrops that persist within
the intertidal zone (Wilson et al., 2001), a process that will be
compounded by predictions of sea level rise and increases in storm oc-
currence and intensity.
of change in organic carbon bearing coastal dune cliffs: A multiscale
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Fig. 8.Monthly rain andwind variations through the year (top), cumulative sea level exceedance of the dune cliff toe (middle) and volumetric losses normalised bymonitored surface area
(bottom).
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6.3. Carbon contribution

The historic data and contemporary monitoring results presented in
this paper have highlighted the significant and increasing rate of dune
Fig. 9. Comparison of cross sections through DEMs produced from SfM processing of UAV
imagery at the headland crest (A–A′) and at theminimum headland amplitude (B–B′); refer
back to Fig. 3 for cross section locations.
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cliff erosion at Hauxley. In addition to potential impacts of land (habitat),
infrastructure and asset losses, the dune cliffs also contain variable
amounts of peat, rich in organic carbon. The contributions ofmajor carbon
sources such as tundra melting (Schuur et al., 2009), fluvial erosion of
upland peat catchments (Worrall, Reed, Warburton, & Burt, 2003) or
landslide processes within forested mountain belts (Hilton, Meunier,
Hovius, Bellingham,&Galy, 2011) have beenwell documentedbut the re-
lease of stores through coastal erosion remains poorly constrained (Taffs
et al., 2012). The unit of peat has been identified throughout the GPR
grid and the geometry of the contacts between the upper (to aeolian
deposits) and lower (to till deposits) layers has been used to constrain
the volume of peat within the dune cliffs over the surveyed section
(Fig. 5). The radar reflections suggest that the peat thickness continues
landward, with localised increases that appear to reflect both the uneven
topography of the basal till and the undulations of the palaeo dunes. The
next 5 m to be eroded from the surveyed sub-section (50m) of cliffs will
release 481 m3 of peat followed by a significant (20%) increase with the
following 5 m of landward retreat, mobilising 579 m3. In total the dune
cliff area investigated has the potential to yield 2264m3 of organic carbon.
A retreat rate of 0.39 m a−1 as derived from UAV surveys (producing a
total of 19.5 m landward retreat in 50 years) could release 106.38 tonnes
of organic carbon fromthe50mstretch of dune cliffs, basedon an approx-
imation and formula suggested by Cannell, Dewar, and Pyatt (1993). This
figure does not consider the additional potential for sea-level rise over the
next 50 years (estimated to be in excess of 0.3 mm yr−1; Shennan et al.,
2009), or the increased exposure of peat contained in the cliffs resulting
from enhanced sand retreat (Sections 6.1; 6.2). Exposed peat can be erod-
ed by subaerial and marine processes and also provides a mature carbon
source for the leaching of dissolved organic carbon and methanogenesis
(Mitsch & Gosselink, 2007). Beyond the direct loss of peat and soil layers,
dune cliff systems also buffer extensive wetland areas frommarine inun-
dation anderosion, as is the case throughoutmany coasts of northwestern
Europe (Wilson et al., 2001). Therefore, the activation of wetland carbon
could hold the greatest global significance in terms of long-term dune
of change in organic carbon bearing coastal dune cliffs: A multiscale
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system retreat (Ramsar Convention Secretariat, 2006). In a first attempt
to value the both the sequestration potential (18.36–45.9 £/ha/yr) and
the potential losses resulting from dune erosion, Beaumont et al. (2014)
estimate that between 2000 and 2060 the UK will incur a £257 m loss
with continued trends of erosion. Achieving consistently collected,
multi-scale analyses remains essential to addressing the pervasive uncer-
tainties in both establishing dune wetland carbon pool size and flux rates
and the responsiveness of dune cliff systems to environmental changes
(Mitra et al., 2003).

7. Conclusion

The dynamism associatedwith dune systemsmeans that few datasets
achieve sufficient accuracy, spatial coverage and temporal frequency to
adequately quantify dune cliff behaviour. This study combines historic
map analyses with airborne and ground based remote sensing ap-
proaches to quantify over a century of dune cliff changes. The use of
unmanned aerial imagery processed with SfM provides an effective
method with which to rapidly quantify trends in coastline change
over wide areas, although (sub-)monthly TLS surveys adds valuable
detail on themechanics of change at the process scale. The layerswithin
the dune cliff system appear to be responding as a whole to specific
storm events, with wind direction acting as an overriding control (in
accordance with the findings of Saye et al., 2006). Dune cliff recession
appears to be both increasing in rate and getting more variable when
compared to historic behaviour. Within this driver-response relation-
ship internal mechanisms play a significant role in determining behav-
iour. Periods of increased basal retreat have been observed to precede
slumping and enhanced mobilisation of the perched sand dunes that,
in turn, armour the cliff base and produce a negative feedback to the
short-term dune cliff response. There is evidence that over recent
years this coupling may be breaking down with relative increases in
the rate of sand recession potentially leading to the abandonment of
the basal layers; a process that appears to have occurred elsewhere
along the coast during the late-Holocene (Wilson et al., 2001). In addi-
tion to well-documented management and conservation impacts, the
erosion of coastal peat volumes quantified with GPR has the potential
to rapidly release significant amounts of organic carbon from concentrat-
ed source locations that are currently unaccounted for in global carbon
budgets.
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