
Northumbria Research Link

Citation: Saghar, Kashif (2010) Formal modelling and analysis of denial of services
attacks in wireless sensor networks. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/222/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

FORMAL MODELLING AND ANALYSIS OF DENIAL OF

SERVICES ATTACKS IN WIRELESS SENSOR NETWORKS

KASHIF SAGHAR MALIK

A thesis submitted in partial fulfilment

of the requirements of the

University of Northumbria at Newcastle

for the degree of

Doctor of Philosophy

Research undertaken in the School of Computing, Engineering and Information Sciences

November 2010

ABSTRACT

Wireless Sensor Networks (WSNs) have attracted considerable research attention in recent years

because of the perceived potential benefits offered by self-organising, multi-hop networks con-

sisting of low-cost and small wireless devices for monitoring or control applications in difficult

environments. WSN may be deployed in hostile or inaccessible environments and are often

unattended. These conditions present many challenges in ensuring that WSNs work effectively

and survive long enough to fulfil their functionalities. Securing a WSN against any malicious

attack is a particular challenge. Due to the limited resources of nodes, traditional routing pro-

tocols are not appropriate in WSNs and innovative methods are used to route data from source

nodes to sink nodes (base stations). To evaluate the routing protocols against DoS attacks, an

innovative design method of combining formal modelling and computer simulations has been

proposed. This research has shown that by using formal modelling hidden bugs (e.g. vulner-

ability to attacks) in routing protocols can be detected automatically. In addition, through

a rigorous testing, a new routing protocol, RAEED (Robust formally Analysed protocol for

wirEless sEnsor networks Deployment), was developed which is able to operate effectively in

the presence of hello flood, rushing, wormhole, black hole, gray hole, sink hole, INA and jam-

ming attacks. It has been proved formally and using computer simulation that the RAEED

can pacify these DoS attacks. A second contribution of this thesis relates to the development of

a framework to check the vulnerability of different routing protocols against Denial of Service

(DoS) attacks. This has allowed us to evaluate formally some existing and known routing pro-

tocols against various DoS attacks iand these include TinyOS Beaconing, Authentic TinyOS

using uTesla, Rumour Routing, LEACH, Direct Diffusion, INSENS, ARRIVE and ARAN pro-

tocols. This has resulted in the development of an innovative and simple defence technique

with no additional hardware cost for deployment against wormhole and INA attacks. In the

thesis, the detection of weaknesses in INSENS, Arrive and ARAN protocols was also addressed

formally. Finally, an efficient design methodology using a combination of formal modelling and

simulation is propose to evaluate the performances of routing protocols against DoS attacks.

ii

Contents

1 Introduction 1

1.1 Wireless Sensor Networks (WSNs) . 1

1.1.1 Differences Between WSNs and Other Networks 3

1.1.2 Applications of WSN . 3

1.2 Routing and Security in WSN . 4

1.3 The Dissertation . 5

1.3.1 Motivation and Overview . 5

1.3.2 Problem Statement . 6

1.3.3 Main Contributions to Research . 6

1.3.4 Structure of the Dissertation . 7

2 WSN, Security and Formal Modelling 9

2.1 Introduction . 9

2.2 Routing in WSN . 10

2.3 Attacks and Security Issues in WSNs . 12

2.4 Denial of Service Attacks . 13

2.4.1 Spoofing Attack . 14

2.4.2 False Injection Attack . 14

2.4.3 Hello Flood Attack . 15

2.4.4 Wormhole Attack and Invisible Node Attack (INA) 15

2.4.5 Sinkhole Attack . 17

2.4.6 Sybil Attack . 17

2.4.7 Rushing Flood Attack . 18

2.4.8 Jamming Attack . 18

2.4.9 Black hole Attack and Selective Forwarding Attack 19

2.5 Classification of Secure/Robust Routing Protocols 20

2.5.1 Protocols using Multiple-paths . 21

2.5.2 Probabilistic Path Selection Protocols . 22

2.5.3 Protocols that Overhear Neighbor Communication 22

2.5.4 Protocols using Specialized Hardware . 22

iii

2.5.5 Topology Mapping Protocols . 23

2.5.6 Protocols using Cryptographic Techniques 23

2.6 Formal Modelling and WSN . 23

2.6.1 Formal Modelling in WSNs . 24

2.6.2 Formal Modelling of Routing Protocols 24

2.6.3 Formal Modelling and Security in WSN 25

2.7 Chapter Summary . 26

3 Proposed Formal Specifications of WSNs and Attacks 27

3.1 Introduction and Motivation . 27

3.2 Motivation . 27

3.3 Proposed Formal Specifications for WSN . 28

3.3.1 Basic Definitions . 28

3.3.2 Basic Operations . 29

3.3.2.1 Receive Operation . 29

3.3.2.2 Transmit Operation . 30

3.3.2.3 In Range Operation . 31

3.3.2.4 Connected Operation . 31

3.3.2.5 Neighbour Definitions . 31

3.3.2.6 Cryptography . 32

3.3.2.7 Eavesdrop Key . 33

3.3.2.8 Node Capture . 33

3.3.2.9 Encryption Fail . 34

3.4 Proposed Formal Specifications for Denial of Service Attacks 34

3.4.1 Wormhole Attack . 34

3.4.2 Invisible Node Attack (INA) . 35

3.4.3 Black hole Attack . 36

3.4.4 Spoofing Attack . 37

3.4.5 False-Injection Attack . 38

3.4.6 Sybil Attack . 38

3.4.7 Node Replication Attack . 39

3.4.8 Hello-Flood Attack . 39

3.4.9 Jamming Attack . 40

3.4.10 Sinkhole Attack . 40

3.5 Chapter Summary . 41

4 Formal Analysis of Routing Protocols 42

4.1 Introduction . 42

4.2 Methods Adopted in the Research . 43

iv

4.3 Formal Framework . 44

4.3.1 The Framework . 44

4.3.2 Modelling Topologies . 45

4.3.3 Assumptions for the Formal Framework 47

4.3.4 Modelling a Channel . 47

4.4 The Flooding Protocol . 48

4.4.1 Semi Formal Notation . 48

4.4.2 Formal Model . 48

4.4.3 Verification . 51

4.4.4 The Trace . 52

4.5 The TinyOS Beaconing Protocol . 52

4.5.1 Protocol Description . 52

4.5.2 Formal Model . 53

4.5.3 Verification . 55

4.5.4 Black hole Attack . 55

4.5.5 Sinkhole Attack . 55

4.5.6 Wormhole/INA Attack . 56

4.5.7 Hello Flood Attack . 57

4.5.8 Spoofing Attack . 57

4.5.9 Other DoS Attacks . 57

4.6 The Authentic TinyOS Protocol using uTESLA 58

4.6.1 Protocol Description . 58

4.6.2 Formal Model . 58

4.6.3 Performance of Authentic TinyOS against DoS attacks 59

4.7 Other Unsecured Routing Protocols . 59

4.7.1 The Direct Diffusion Protocol . 60

4.7.2 The Rumour Routing Protocol . 61

4.8 The Enhanced INSENS Protocol . 62

4.8.1 Protocol Description . 62

4.8.2 The Formal Model . 63

4.8.3 Invisible Node Attack (INA) . 65

4.8.3.1 Formal Analysis . 65

4.8.3.2 Simulation Results . 65

4.8.4 Wormhole Attack . 67

4.8.5 Black hole Attack . 68

4.8.5.1 Formal Analysis . 68

4.8.5.2 Simulation Results . 68

4.9 Arrive Routing Protocol . 70

v

4.9.1 Protocol Description . 70

4.9.2 Formal Model . 71

4.9.2.1 Model . 71

4.9.2.2 Verification . 73

4.9.3 Black hole Attack . 74

4.9.3.1 Black hole Attack with a Single Path 74

4.9.3.2 Black hole Attack with Multiple Paths 75

4.9.4 INA . 76

4.9.5 Wormhole Attack . 76

4.9.6 Other DoS Attacks . 77

4.10 ARAN Routing Protocol . 78

4.10.1 Protocol Description . 78

4.10.2 Formal Model . 79

4.10.2.1 Model . 79

4.10.2.2 Verification . 81

4.10.3 Worm Hole Attack/INA . 82

4.10.4 Black Hole Attack . 83

4.11 Summary . 83

5 A Proposed New Protocol RAEED: Design and Evaluation 84

5.1 Introduction . 84

5.2 Evaluation of Secure Routing Protocols . 85

5.3 The New Protocol: An Overview . 86

5.4 Message Format . 89

5.5 Key Setup Phase (KSP) . 90

5.5.1 The Design . 90

5.5.2 Formal Verification of Bidirectional Property 93

5.5.2.1 Formal Model . 93

5.5.2.2 Verification . 94

5.5.3 Simulation Results to Evaluate Efficiency 94

5.5.4 Effect of Noise and Collision on the KSP 96

5.5.4.1 Formal Model . 96

5.5.4.2 Simulation Results . 100

5.5.5 Confirmation that Security Properties Hold 101

5.5.5.1 Formal Model . 102

5.5.5.2 Verification . 103

5.5.6 Simulation Results: Effect of Different Factors on KSP 103

5.5.6.1 Effect of Time to Send ASK (Delay) on KSP 103

vi

5.5.6.2 Effect of Time to Send ASSIGN (Delay) on KSP 105

5.5.6.3 Effect of Redundancy in ASK 106

5.5.6.4 Effect of Redundancy in ASK with 2 Assign Attempts 107

5.6 Route Setup Phase (RSP) . 109

5.6.1 Available Techniques for Route Setup . 110

5.6.2 The Proposed Design . 111

5.6.3 Neighbour Propagation Phase (NPP) . 111

5.6.4 Loud Test Phase (LTP) . 113

5.6.5 Level Propagation Phase (LPP) . 114

5.6.6 Node Synchronization Phase (NSP) . 116

5.6.7 Message Sequence Diagram . 117

5.6.8 An Example to Explain Level Propagation Phase 118

5.6.9 Formal Verification of SPP and LPP . 120

5.6.9.1 Model . 120

5.6.9.2 Verification . 121

5.6.10 Simulation Results without Synchronization Propagation 122

5.6.10.1 Effect of Density . 122

5.6.10.2 Effect of Level Propagation Delay 124

5.6.10.3 Effect of Utilization Time . 125

5.6.11 Simulation Results after Synchronization Propagation 126

5.6.11.1 Effect of Synchronous Propagation Delay 127

5.6.11.2 Effect of Utilization Time . 128

5.6.11.3 Effect of Level Propagation Delay 130

5.6.11.4 Simulation Results Summary . 132

5.6.12 Simulation Results with Multiple BSs . 132

5.6.12.1 Effect of Density . 133

5.6.12.2 Effect of Density with Slot Time for each BS 136

5.6.12.3 Effect of Scalability and Density 140

5.7 Data Forwarding Phase (DFP) . 143

5.7.1 DFP Design:Lost Indication Scheme . 144

5.7.2 Evaluation of Lost Indication Scheme . 145

5.7.2.1 Formal Verification of Lost Indication Scheme 145

5.7.2.2 Simulation Results . 148

5.7.3 Effect of Noise on DFP . 148

5.7.3.1 Formal Verification . 148

5.7.3.2 Simulation Results . 148

5.8 Chapter Summary . 150

vii

6 Evaluation of RAEED Against DoS Attacks 152

6.1 Introduction . 152

6.2 Prevention Against the Hello Flood Attack . 152

6.2.1 Formal Verification . 153

6.2.2 Computer Simulation . 154

6.2.3 Practical Implementation . 154

6.3 Prevention Against the INA and Wormhole Attack 155

6.3.1 Traditional INA and Wormhole Attack . 155

6.3.2 Formal Verification . 156

6.3.2.1 Model . 156

6.3.2.2 Verification . 160

6.3.2.3 A Successful Wormhole Attack 161

6.3.3 Practical Implementation . 161

6.3.4 Intelligent Wormhole/INA (Encryption Failure) 162

6.3.4.1 Model . 162

6.3.4.2 Verification . 163

6.3.5 Intelligent Wormhole Attacker with Signal Detection 164

6.4 Prevention Against the Sinkhole Attack . 165

6.4.1 Formal Modelling . 165

6.4.1.1 Model . 165

6.4.1.2 Verification . 166

6.4.2 Computer Simulation . 167

6.5 Prevention Against the Tunnel Attack . 167

6.5.1 Formal Modelling . 168

6.5.2 Computer Simulation . 169

6.5.3 Tunnel Attack in Combination with Framing Attack 169

6.6 Prevention Against the Rushing Attack . 170

6.7 Prevention Against the Black hole Attack . 171

6.7.1 Formal Verification . 173

6.7.2 Simulation Results . 173

6.7.2.1 A 1000 Node Network with Black holes 173

6.7.2.2 A 200 Node Network with Black holes 175

6.7.3 Intelligent Black hole Attack Prevention 177

6.8 Prevention Against the Gray hole Attack . 180

6.8.1 Formal Verification . 180

6.8.2 Simulation Results . 181

6.9 Prevention Against the Jamming Attack . 181

6.9.1 Formal Verification . 181

viii

6.9.2 Computer Simulation . 182

6.10 Chapter Summary . 183

7 Conclusions and Future Work 184

7.1 Conclusions . 184

7.2 Summary of the Contribution to Research . 188

7.2.1 Main Contribution to Research . 188

7.2.2 Other Contributions to Research . 189

7.3 Future Work . 189

A Assumptions, Methods and Database 192

A.1 Introduction . 192

A.2 Assumptions . 192

A.2.1 Network Assumptions . 192

A.2.1.1 Node Placement and Topology 192

A.2.1.2 Network Size . 193

A.2.1.3 Node Density . 193

A.2.1.4 Limited Resources . 193

A.2.1.5 Powerful Base Station . 193

A.2.2 Radio Links Assumptions . 193

A.2.2.1 Circular Links . 193

A.2.2.2 Bidirectional/Unidirectional Links 194

A.2.2.3 Adjustable Radio Transmission Power 194

A.2.2.4 Ideal Link Layer . 194

A.2.3 Cryptography Assumptions . 194

A.2.4 Attacker Assumptions . 194

A.3 Formal Modeling Tool: Uppaal . 195

A.4 Computer Simulation . 197

A.4.1 Simulator Selected: TOSSIM . 197

A.4.2 Aims of Simulation in the Thesis . 198

A.4.3 Noise in Computer Simulation . 199

A.5 Practical Implementation . 200

A.6 DFP: The Handshake Scheme . 200

A.6.1 Design of the Handshake Scheme . 200

A.6.2 Comparison of the Handshake Scheme with Flooding 201

A.6.2.1 Visual Inspection . 202

A.6.2.2 Formal Modelling . 203

A.7 Database Required in the New Protocol . 205

A.7.1 Neighbour Table (NT) . 206

ix

A.7.2 BS Information Table (BT) . 207

A.7.3 Event Table (ET) . 208

A.7.4 Data storage Table (DT) . 208

A.7.5 Forward Table (FT) . 209

B Verification of Claims 210

B.1 Claims on Models of Different Routing Protocols 210

B.1.1 Arrive Routing Protocol Claims . 210

B.1.2 ARAN Routing Protocol Claims . 211

B.2 Claims on the Models of RAEED Routing Protocol 212

B.2.1 Bidirectional Property Claim in RAEED 212

B.2.2 Effect of Noise and Collision on the KSP 213

B.2.3 Confirmation that Security Properties Hold 213

B.2.4 Verification of SPP and LPP (RSP) . 214

B.2.5 Verification of Lost Indication Scheme (DFP) 216

B.3 Claims involving the Evaluation of RAEED Against the Attacks 217

B.3.1 Prevention Against the INA and Wormhole Attack 217

B.3.2 Prevention Against the Intelligent Wormhole Attack 219

B.3.3 Prevention Against the Sinkhole Attack 219

x

List of Figures

1.1 Wireless Sensor Network . 2

2.1 Attacks in WSN . 13

4.1 Approach adopted in the research . 43

4.2 Examples of Connectivity Matrix . 46

4.3 Connectivity Matrix Implementation . 47

4.4 UPPAAL model for Flooding protocol . 49

4.5 Confirmation by Uppaal that a topology satisfies the property 50

4.6 Trace generated by Uppaal in case the property fails 51

4.7 Node model for the TinyOS beaconing Protocol 53

4.8 Uppaal model for the TinyOS beaconing Protocol 54

4.9 Traces for a topology in which the formal model detected successful attacks in

the TinyOS protocol . 56

4.10 Trace for a topology for which formal model detected successful attacks in Au-

thentic TinyOS (uTESLA) protocol . 60

4.11 Traces for a topology in which the formal model detected successful sinkhole

attack in the Directed Diffusion protocol . 61

4.12 Uppaal models for Enhanced INSENS protocol 64

4.13 Node model for Phase III & IV (Enhanced INSENS) 68

4.14 Node model for the Arrive Protocol . 71

4.15 UPPAAL models for the Arrive Protocol . 73

4.16 Trace of Uppaal showing that black hole is possible in Arrive 74

4.17 Trace of Uppaal showing that wormhole is possible in Arrive 76

4.18 Trace of Uppaal showing other DoS attacks are possible in Arrive 77

4.19 Uppaal models for the ARAN Protocol . 79

4.20 Uppaal models for the ARAN Protocol . 80

4.21 Node model of the ARAN Protocol . 82

4.22 Trace of UPPAAL showing other DoS attacks are possible in ARAN 83

5.1 RAEED Protocol Phases . 88

xi

5.2 Two cases in initiating the Bidirectional Verification Phase 91

5.3 Uppaal model for improved Key Setup Phase in RAEED 93

5.4 The effect of density on total messages exchanged in KSP 95

5.5 Uppaal model to check effect of message loss on INSENS with separate channel

model . 96

5.6 Uppaal model to check effect of message loss on INSENS without separate chan-

nel model . 98

5.7 UPPAAL model to check effect of message loss on RAEED 99

5.8 The percentage of messages lost in the KSP in 100 node grid network 100

5.9 Uppaal model to check security of INSENS and RAEED is same 102

5.10 The effect of time to send ASK (delay) in the KSP 104

5.11 The effect of of time to send ASSIGN (delay) on Collision in the KSP 105

5.12 The effect of sending redundant ASK messages in KSP 106

5.13 The effect of sending redundant ASK messages in KSP 108

5.14 The effect of density on percentage of Neighbour message lost in 100 node network112

5.15 Message Sequence Diagram for RSP . 117

5.16 A 9 node network to explain level propagation 119

5.17 Sink model to verify the SPP and LPP of RAEED 120

5.18 Node model to the SPP and LPP of RAEED . 121

5.19 The effect of density on level propagation in RSP 123

5.20 The effect of Level propagation delay on RSP . 125

5.21 The effect of utilization time on RSP . 126

5.22 The effect of delay in sending the SYNCHRONOUS message on RSP 128

5.23 The effect of different time spans used to send LEVEL beacons in RSP 129

5.24 The effect of Level propagation delay on RSP . 131

5.25 The effect of density on RSP using multiple BSs 134

5.26 The error percentage in NT entries using multiple BS 136

5.27 The effect of density on RSP using multiple BSs with independent slot time . . . 137

5.28 The effect of density on RSP error percentage in NT entries using multiple BS

with independent slot time . 139

5.29 The effect of scalability on RSP using multiple BSs 140

5.30 The effect of scalability on RSP error percentage in NT entries using multiple BS 142

5.31 Node model used in verification of DFP . 146

5.32 Sink model used in verification of DFP . 147

5.33 The effect of noise on the DFP . 149

6.1 Models used in the hello flood attack solution . 153

6.2 Event generator model used in the wormhole solution 157

xii

6.3 Attacker models . 157

6.4 Node model to check the wormhole attack . 158

6.5 Topologies used in the wormhole attack . 160

6.6 One of the topologies used in a hardware implementation of INA 161

6.7 Wormhole Attacker Model . 162

6.8 Node model to check the wormhole attack . 163

6.9 Sink model to check the sinkhole attack . 166

6.10 Node model to check the sinkhole attack . 167

6.11 Attacker model to check the sinkhole attack . 168

6.12 Sink model to check the tunnel attack . 169

6.13 Node model to check the tunnel attack . 170

6.14 Attacker model to check the tunnel attack . 171

6.15 Modified node model to check the tunnel attack 172

6.16 Black hole Attacker model . 173

6.17 Percentage of nodes blocked due to black hole in 1000 node network 174

6.18 Case 1:The effect of the black hole attack on INSENS and RAEED in a 200 node

network with a density of 8 and asymmetric attacker position 175

6.19 Case 2: The effect of the black hole attack on INSENS and RAEED in a 200

node network with a density of 8 and symmetric attacker position 177

6.20 Intelligent black hole attacker model . 178

6.21 Gray hole attacker model . 180

6.22 Attacker model to test the Jamming Attack . 181

6.23 Node model to test the Jamming Attack . 182

A.1 An example of Transmitter/Receiver system to explain Uppaal modelling 195

A.2 Percentage of message lost due to noise . 199

A.3 Message sequence diagram to describe DFP (Handshake scheme) 201

A.4 Sink model used in UPPAAL to compare results with flooding 204

A.5 Node model used in UPPAAL to compare results with flooding 204

A.6 Database Interface Diagram . 206

xiii

List of Tables

4.1 The number of symmetric and asymmetric topologies for a given number of nodes 46

5.1 Table comparing number of messages in KSP of RAEED,LEAP and INSENS . . 92

5.2 Noise samples categorized by samples of 10k used to test noise 101

5.3 Parameters used in different experiments on Key Setup Phase parameters 104

5.4 Assigned levels and time spans when TIMELEVEL is 100 msec 119

5.5 Levels and time spans when TIMELEVEL is 50 msec 119

5.6 Parameters used to perform simulations without synchronization propagation in

RSP . 122

5.7 Parameters used in experiments performed using the Synchronization Propaga-

tion in RSP . 127

5.8 Parameters used to check the effect of Level propagation delay on RSP 133

5.9 Delay time introduced in multiple BSs for 100 node network 138

5.10 Delay time introduced in multiple BSs for 1000 node network 141

A.1 Parameters used to check the effect of Level propagation delay on RSP 203

xiv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and thanks to my supervisors Dr William Henderson,

Dr. David Kendall and Professor Ahmed Bouridane for their generous provision of their time,

advice, guidance and patience throughout the whole project and dissertation process. Finally, I

would like to express my gratitude to my parents, my wife, little son and other family members

whom prayers and wishes were always with me during the whole course of my studies.

xv

DECLARATION

I declare that the work contained in this thesis has not been submitted for any other award

and that it is all my own work.

Name: Kashif Saghar Malik

Signature:

Date: 04 November 2010

xvi

PUBLISHED WORK

The work presented in the thesis is entirely my own, except where explicitly acknowledged. The

papers, in chronological order, are:

• K. Saghar, W. Henderson, and D. Kendall. Formal modelling and analysis of routing

protocol security in wireless sensor networks. In PGNET ’09, June 2009.

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Formal modelling of a ro-

bust wireless sensor network routing protocol. In NASA/ESA Conference on Adaptive

Hardware and Systems (AHS-2010), June 2010.

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Applying Formal modelling

to detect DoS attacks in wireless medium. In IEEE, IET International Symposium on

COMMUNICATION SYSTEMS, NETWORKS AND DIG- ITAL SIGNAL PROCESS-

ING NASA/ESA(CSNDSP 2010), July 2010.

Submitted/Future Papers

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Formal specifications of de-

nial of service attacks in wireless sensor networks. Submitted at Pervasive and Mobile

Computing Journal, 2010.

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Automatic detection of black

hole attack in wireless network routing protocols. Submitted at IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), 2011.

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. An innovative solution for

the INA and wormhole attack in wireless sensor networks (WSNs). Submitted at IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Vulnerability of INSENS to

denial of service attacks. 2010.

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. RAEED - A formally evaluated

routing protocol for WSN against DoS attacks. 2010.

xvii

• K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Formal Modelling of Wireless

Sensor Networks. 2010.

xviii

Chapter 1

Introduction

1.1 Wireless Sensor Networks (WSNs)

Advances in digital and radio frequency microelectronics have enabled the development of low

cost, low power, small sized, multi-functional embedded devices called nodes (also referred to

as motes to emphasise their small size) which can communicate wirelessly. These individual

nodes, in spite of their limitations (restricted in CPU speed, RF power, memory capacity and

bandwidth) and simple radio communication, may be combined together to physically sense

and report information relating to their environment (temperature, vibration, humidity, light,

radiation, etc). This combination (usually a large number) of the distributed nodes is called a

Wireless Sensor Network (WSN). The nodes in a WSN, by communicating with one another in

a multi-hop network with a base station (BS), can collect data over a large geographical area.

WSN can be deployed randomly in inaccessible areas and the positions of the nodes need not

be predetermined.

WSN nodes are usually battery powered and may be required to operate for long periods.

When batteries get exhausted, a node becomes out of service and network performance is

degraded. Wireless transmission and reception makes significant demands on available energy

in addition to the need to process the data, sense the environment etc. Thus, energy efficiency

is an important consideration in a protocol design for multi-hop networks like WSNs. This had

strong influence on the design of protocols.

The nodes that are used to detect environmental events and send these as message to the

other nodes are called source nodes; while the nodes that are dedicated as gathering points

are called the sink nodes. The sink nodes absorb message packets and do not retransmit data

messages. Sometimes special nodes called base stations are also deployed, which contain higher

resources (laptop class) than a normal node; these normally control the WSN and gather all

the environmental data. A base station (BS) is always a sink but a sink might not be a BS. The

remaining nodes of a network act as routing/intermediate nodes and are used to forward data

from the sources to the sinks. The number of sinks or sources required in a network depends

1

Figure 1.1: Wireless Sensor Network

on the application of the WSN. In some WSNs a sink node acts as gateway node. The gateway

nodes are connected to external networks (by wireless or wired communication) and the data

from the complete WSN is gathered. Figure 1.1 illustrates a typical WSN, showing source, sink,

gateway, base station and intermediate nodes. The arrows indicate bidirectional links.

An important consideration in WSN is the communication medium. Choices include radio

frequency (RF), optical link, infrared, and ultrasound (US). Optical link are appropriate for

certain applications like smart dust [1], which contain sand-sized nodes that scavenge energy

from their environment. Some networks also use a different frequency optical link called in-

frared. Both require line of sight between nodes and are influenced by weather conditions. RF

on the other hand is widely applicable because it doesn’t require line of sight. Finally, both RF

and the optical signals fail under water, whilst ultrasound (US) has been successfully used for

submarine communications. Communication in all of these media may be adversely effected by

the environment in which the WSN operates. As WSNs most often employ RF for communica-

tion, the environmental factors like interference (noise) and signal fading can cause substantial

message loss.

In a WSN, the nodes need to interact with their environment. Thus WSNs use different

operating systems (OS) to manage interaction and resources in the nodes. Most notable is the

event driven OS, TinyOS [2], which is suitable for minimal hardware resources and concurrency

intensive operations. TinyOS is intended to be incorporated into Smart Dust [1] which may

become as small in size as dust particles or grains of sand. Some applications are also built on

TinyOS e.g. a query processing system for extracting information called TinyDB [3]. OS like

PEEROS (Preemptive EYES Real Time Operating System) [4] and Salvo Pumpkin [5] are real

2

time kernel base operating systems. PEEROS has a preemptive scheduler (relieving the pro-

grammer from controlling the hardware), whereas Salvo provides priority-based multitasking,

inter-task communication and synchronization. Other operating systems developed for WSN

include CMX [6], MagnetOS [7], PalmOS [8], and Mate [9].

1.1.1 Differences Between WSNs and Other Networks

In contrast to wired networks, in WSNs each node may act as a router and WSNs do not require

any infrastructure. These properties enable WSNs to monitor data in hostile environments

which would be difficult for wired networks. WSNs, if used wisely, can also be deployed in a

wilderness for some time without being charged.

Another category of wireless network type is the ad-hoc. These networks may be a set of

laptops connected together wirelessly, for a specific purpose. These networks self-configure and

they operate without management or infrastructure. A combination of mobiles and PDAs also

falls within the description of ad-hoc networks. The WSN [10] is different from traditional ad-

hoc networks in several ways e.g. (i) WSN nodes have limited memory, power (nonrenewable),

and computational capacities instead of the ad-hoc network’s powerful nodes like laptops and

PDAs; (ii) energy efficiency is less important for the ad-hoc nodes; (iii) the number of nodes

(scalability) in a WSN is much higher; (iv) the nodes are more densely deployed in WSN; (v)

WSN always has one or more powerful nodes (base stations) instead of all being the same role

(homogeneous) nodes in ad-hoc networks; (vi) nodes in WSNs must cope with frequent topology

change due to addition or deletion of the nodes (as a result of node/power failure, intermittent

radio interference, and environmental factors); (vii) WSN nodes may fail due to their harsh

environment and (viii) the nodes in WSN are usually considered stationary whereas the ad-hoc

network nodes may be mobile (MANET).

Although the resources of WSNs have some limitations compared to the ad-hoc network,

these limitations do yield certain advantages e.g. (i) dense/large deployment of WSN (a great

number of nodes) give a high level of fault tolerance and large area coverage; (ii) the small radio

range of WSN means nodes may always be near to their sensed object and thus environmental

factors such as interference in the measurement will be small as compared to ad-hoc networks;

(iii) high density may enable several nodes to measure the same variable which improves the

quality of sensing and may support the authentication of the sensed data. Thus, WSN in most

cases provide precision in monitoring as compared to the ad-hoc networks.

1.1.2 Applications of WSN

WSNs have numerous applications [11]. They have been used to measure the temperature,

humidity, pressure, noise level, lightening conditions, soil make up, movements (vehicles or living

objects) including speed and direction, the presence or absence of certain kinds of objects, and

3

mechanical stress levels in the structures. The fault tolerance, self organisation and rapid/low

cost deployment enables WSN to be used in some military applications. If the nodes are

deployed densely and in large numbers, the desired results can still be achieved by WSN,

even in the hostile environments and following the destruction of some nodes by the attackers.

In traditional networks a minor failure may incapacitate the whole system. WSNs also have

been used in environmental, health, commercial and home applications. Some of the potential

applications of WSN are categorized below:

• Military applications include military command and control; military communication and

intelligence; battle damage assessment and surveillance; reconnaissance of opposing forces

and terrains; monitoring friendly forces, equipment and ammunition; guidance and navi-

gation systems; and biological and chemical attack detection.

• Environmental applications include track the movement of insects, small animals and

birds; monitoring environmental conditions affecting crops; irrigation monitoring; earth

and environmental monitoring; planet exploration; precision agriculture; forest fire de-

tection; flood detection (rainfall, water level and weather sensors); pollution study and

geophysical research.

• Health applications include patient monitoring (especially for disabled patients); telemon-

itoring of human physiological data (help doctors identify predefined symptoms earlier);

tracking doctor’s location in hospital; monitoring patients (heart rate, blood pressure etc);

and drug administration.

• Commercial/home applications like environmental control in rooms (air conditioning and

heating); remotely controlling commercial/home appliances (VCR, ovens, microwave, vac-

uum cleaners, refrigerators etc); monitoring product quality in factories; robot control and

guidance in automatic manufacturing environments; machine diagnosis (faults/working

etc); transportation; preventing car theft; and vehicle tracking on highways and roads.

1.2 Routing and Security in WSN

As WSNs are severely limited with respect to CPU speed, power, memory and bandwidth,

innovative techniques are required to overcome these limitations and route data from the source

nodes (which sense data from environment) to the sink (or BS). The process of determining the

path of data from sources to the destination or sink is called routing. Routing techniques are

continuously evolving and improving the performance of WSNs. Designing routing protocols is

a challenging area [12]. Routing protocols for WSN are quite different from traditional routing

protocols. A routing protocol for WSNs must be designed to satisfy properties like connectivity

(most nodes must be reachable); coverage (maximum environmental area should be covered);

4

fault tolerance (WSN should work even following the failure of some nodes); high scalability (the

number of nodes may be high); varying density (the number of neighbours of a node may vary

widely throughout a network); severe hardware constraints (memory, computation, bandwidth);

low cost development; power efficiency; and varying topologies (nodes may be deleted or added

at any time). Routing is a central research activity in WSN and many innovative techniques

are developing and being improved.

Due to the limitations of nodes, the broadcast nature of transmission, hostile/harsh envi-

ronment and unattended nature, many attacks are possible on WSNs. An intruder can easily

eavesdrop all the broadcast traffic between the nodes. An attacker may modify the messages,

inject false messages or later replay the same message. A node can be compromised enabling

the dropping of all data packets; the selective forwarding of data messages; spoofed message

injection; or presenting multiple identities of the same node. The laptop class attackers can

cause unidirectional links or virtual links between long distant nodes. Thus, routing protocols

are vulnerable to a number of attacks. Considerable recent research has focussed on making

routing more robust against possible interference.

1.3 The Dissertation

This dissertation addresses denial of services (DoS) attacks on WSN routing. A potent tech-

nique, called formal modelling, is applied to detect the attacks in some published routing pro-

tocols. The results achieved from formal evaluation are supported by computer simulation. On

the basis of this work a new protocol is developed that is proved to be secure against many

DoS attacks using formal modelling. Computer simulation is also undertaken to confirm that

the new protocol is scalable.

1.3.1 Motivation and Overview

This research concerns attacks on WSN routing protocols, particularly the attacks which prevent

the data from reaching the end points (sinks). These attacks are categorised as denial of services

(DoS) attacks [13, 14, 15] and are most challenging to detect and avoid. The term denial of

service is used in a general sense to mean the adverse effect of any malicious external agent

(attacker) on the correct delivery of data from the source nodes to the sink nodes. This research

work focuses on the effects of DoS on routing protocols in WSNs. Some examples of DoS

attacks are black hole, invisible node attack (INA), hello flood, rushing, sinkhole, spoofing, and

wormhole. This research does not address encryption issues; it is assumed that an encryption

mechanism is already in place and the attacks specifically related to encryption have been

excluded.

Recently, numerous solutions have been presented to detect and avoid the DoS attacks on

WSN. Many of these schemes are only designed to address one type of attack while a few schemes

5

address multiple attacks. Moreover, some of these protocols require specialized hardware such

as GPS, directional antennas, etc. Specialized hardware may be available for ad-hoc networks

but are not justified for resource constrained WSN nodes deployed in large numbers.

INSENS has been widely regarded [16] as secure against multiple DoS attacks. The earlier

version of INSENS [17, 18] however possess some weakness/flaws and an improved version [19]

was later presented to solve the hello flood and rushing attacks. The current research however

detects some problems in this new version as well and thus proposes a new protocol. An attack

’wormhole’ has also long been the center of attention for researchers and solutions presented

for the wormhole attack usually require some specialized hardware. A similar kind of attack,

INA, is also believed [20] to be possible in all routing protocols. The thesis considers these two

attacks and proposes a simplified solution that is possible in WSN nodes not equipped with

additional resources.

This research uses an innovative design method of combining a formal modeling and the

computer simulation (sometimes hardware implementation as well) to evaluate the routing

protocols. Formal models have been used by researchers for quite some time. It has been

shown that the formal models can automatically detect the hidden bugs and the worst cases.

Researchers have realized that the computer simulation alone is often inadequate for finding

errors in the routing protocols. Many bugs in secure schemes were found using formal meth-

ods [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. This research uses a formal

modelling technique to evaluate different routing protocols and then compare the results with

the already published work. Some of the results of the formal modelling were also supported

using computer simulation. By use of this formal modelling technique, bugs (vulnerability to

attacks) have been found in all the routing protocols considered including INSENS. Therefore,

a new protocol that can possibly address those attacks is purposed in this thesis. The new

protocol was then rigorously tested by applying the formal modelling techniques. The results

were then supported using computer simulation. Computer simulation were also done to check

scalability (large node networks) and to quantify the results. For some cases practical hardware

implementation was also undertaken to check real world behaviour such as real radio links,

fading effects, other practical issues etc.

1.3.2 Problem Statement

The purpose of this research is to explore the following hypothesis: ”The application of formal

modelling automatically detects the vulnerability of WSN routing protocols to DoS attacks and

supports the development of routing protocols resistant to DoS attacks in WSNs”

1.3.3 Main Contributions to Research

The main contributions to research are:

6

• Formal Specification/definition of recognised WSN attacks. These definitions are more

widely applicable to ad-hoc networks and MANETs.

• Development of a Formal Framework to check the vulnerability of different routing pro-

tocols. The initial framework was based on the Andel’s framework [37]. However, a much

improved framework was later developed to accommodate many other routing protocols

within the limitation of the state space explosion.

• Formal verification of routing protocols that have not been previously studied, including

TinyOS Beaconing, Authentic TinyOS using uTesla, Rumour Routing, LEACH, Direct

Diffusion, INSENS, ARRIVE and ARAN.

• An unique and innovative defence against the wormhole attack and INA is presented; it

does not require any additional hardware and is suited to WSN nodes.

• The detection of weakness in INSENS, Arrive and ARAN - WSN protocols which are

widely regarded as secure.

• Development of a new routing protocol that can work better in the presence of hello flood,

rushing, wormhole, black hole, gray hole, sink hole, INA and jamming.

• An innovative design method of using the combination of formal modelling and simulation

is presented to evaluate performance of existing and the new protocols against attacks.

1.3.4 Structure of the Dissertation

This dissertation is organised as follows:

Chapter 2 presents a literature review undertaken for this research. It begins by reviewing

routing in WSN and then describes recognised attacks/threats to WSN routing and the different

secure protocols published for these attacks. The chapter finally addresses some formal modeling

techniques applied to WSN, WSN routing and in particular the WSN security against the

attacks.

Chapter 3 describes the assumptions adopted for this research. The chapter discusses the

method adopted and developed formal framework in detail. Finally, an innovative design

method (a combination of formal model-checking and simulation) to address (DoS) attacks

on WSN routing is presented which is a contribution to research.

Chapter 4 is dedicated to the formal specifications of WSN and DoS attacks. These spec-

ifications are used to define the attacks separately as one generalized attacker model does not

have sufficient details and to present specifications of different DoS attackers in a precise and

formal manner. This is a contribution to research.

Chapter 5 evaluates some previously published routing protocols, against the WSN attacks,

by applying formal modelling. The results were compared with the published work and if

7

were found to be different, the formal modelling work was augmented by using computer sim-

ulation. The protocols considered are TinyOS [15], Authentic TinyOS using µTESLA [38],

Rumour Routing [39], LEACH [40], MCF [41], Directed Diffusion [42], LEAP [43], Enhanced

INSENS [19], ARRIVE [44] and ARAN [45]. Note that this is a contribution of this research as

the formal verification of these routing protocols had not been done before against the attacks

like black hole, hello flood, invisible node attack (INA), rushing attack, wormhole etc.

Chapter 6 introduces a new routing protocol, RAEED. The protocol is presented in 3 phases:

Key Setup Phase (KSP); Route Setup Phase (RSP) and Data Forwarding Phase (DFP). An

innovative design approach of using a combination of formal modelling and simulation has been

adopted in this chapter.

Chapter 7 evaluates the new protocol using formal modeling and computer simulation

against different attacks such as hello flood attack, rushing attack (KSP); invisible node at-

tack, sinkhole attack, tunnel attack, wormhole (RSP); black hole attack, gray hole attack and

jamming attack (DFP). The limitations existing in the new protocol are also discussed in the

chapter. The solution presented for wormhole attack and INA is a contribution to research.

Chapter 8 presents some conclusions and proposes future work. The chapter highlights a

variety of results obtained in the dissertation from different experiments (formal/simulation),

the main achievements obtained, and shortcomings present. Finally, based on the shortcomings

identified, the chapter introduces the areas for future investigation and possible research.

8

Chapter 2

WSN, Security and Formal

Modelling

2.1 Introduction

WSNs are composed of small sized, low cost, limited resourced embedded devices (nodes) that

communicate wirelessly in multi-hop manner. The communication protocol stack in a WSN

is similar to the OSI model (TCP/IP) of the internet. The protocol stack is composed of

Physical layer, Link/Medium Access Control (MAC) layer, Network layer, Transport layer and

Application layer.

• The Physical Layer deals with the hardware issues of nodes such as frequency selection,

carrier frequency generation, data encryption and detection and signal modulation etc.

The protocols/algorithms of WSNs depend on the requirement of physical layer compo-

nents [46] e.g. type of micro-controller, type of receivers etc.

• The Medium Access Layer (MAC) or Data Link Layer is responsible for minimizing the

collisions with the neighbor node broadcast; error control; multiplexing of data streams;

data frame detection and medium access control (i.e. basic WSNs communication infras-

tructure; efficient communication resources between the nodes); and message encryption.

• The Network Layer is responsible for routing data from the source nodes to the sink

nodes. This layer is normally designed by taking into account the resource constraint,

scattered/random distribution and power limitations of the nodes.

• The Transport Layer maintains the flow of data when a WSN needs to interact with some

external networks or Internet. The communication may be performed by UDP or TCP

via internet or satellite.

• The Application Layer makes the hardware and software of lower layer transparent to

WSN management applications when a WSN interacts with other networks and different

9

application softwares are used.

As indicated earlier the communication between the nodes is broadcast and in multi-hop

manner. An individual node will not be able to transmit the data to the destination directly

due to low power used in the transmission. The communication is broadcast thus all nodes near

the transmitting node can receive the message. The position of the nodes is unknown before

the deployment and the topology of a network might change at any time due to the addition or

deletion (power depletion, failure etc) of nodes. The nodes remain unattended once deployed.

The total number of nodes including those within the radio range might vary from very few

to extremely large in a network. A node may have a number of constraints including memory,

computation power, and bandwidth. The biggest issue being that the nodes must consume

as less power as possible to give them a long life. These concepts are quite different from

traditional networks and thus the process of routing is also different in a WSN. This chapter

discusses the issues related to routing (Section 2.2) with the focus given to attacks in routing

(Section 2.3) and in particular denial of services attacks (Section 2.4), which is the main aim

of this research. Finally the chapter discusses the application of formal modelling on WSN

(Section 2.6).

2.2 Routing in WSN

The routing process in WSN involves forwarding the data from the source nodes to the sink

nodes. Due to the peculiarity of WSNs, their routing protocols are different from those used

in conventional networks. When designing a routing protocol the following features of WSN

nodes must be taken into account:

• The Coverage which refers to covering all possible area of environment under study with

the nodes.

• Fault Tolerance which refer to the ability of the WSN to operate reliably without any

interruption since some nodes in the network may fail. This failure might be due to

physical damage, environmental interferences (affecting the signal propagation), or power

depletion. This fault tolerance depends on the environment and varies depending on the

type of WSN deployment (home, battlefield, etc)

• Scalability means the increase in number of nodes must have no affect on the WSN. The

number of nodes may range from few to thousands of nodes. The routing protocol should

be designed to accommodate any network size. Since new nodes may be deployed at

anytime.

• Node density means the number of nodes in a region. The higher the node density, the

larger will be the number of neighbors of each node and vice versa. The protocol should

10

work correctly irrespective of whether the density is high or low.

• Hardware constraints of the nodes are also considered when a routing protocol is designed

such as small size, extremely low power consumption, low development and production

cost, environment adaptability (even to high humidity and temperature), etc.

• The routing protocol must accommodate the low cost of WSN nodes. Since a WSN

usually consists of a large number of nodes thus the cost of a single node should be very

low. The nodes may perform many functions and require built-in ADC, DAC, and other

sensors. However, expensive hardware such as GPS should be avoided.

• Power Consumption of WSN determines the actual life of a WSN. No matter how many

fault tolerance techniques may be present in a WSN, there will always be a point where

failure of some nodes will partition the network and thus the WSN as a whole may fail.

Since significant power is lost in the message transmission, appropriate effort should be

made by a routing protocol to route the data intelligently and consume the least possible

power.

• Connectivity which ensures the maximum WSN nodes which must be reachable. A WSN

topology is mostly undefined and unknown because the nodes may be deployed through

various ways. After the node deployment, the topology might change due to possible

failure of the deployed nodes or redeployment of the new nodes.

As stated earlier, the routing protocol’s design depends mainly on the application at hand.

Generally, it is chosen by considering the cost, energy efficiency, latency, distribution density,

scalability, quality of service (QoS), or security. Since there exists no protocol which can provide

all these features, the main emphasis is often placed on only a few features. This research is

based on routing protocols that address the security issues; in particular the attacks on routing

that will lead to denial of services (DoS) attacks [13, 14]. Since WSNs are often deployed in

hostile environments which requires that the WSN must not only be protected by providing

encryption at the link layer, but also some mechanisms at the network layer to avoid DoS

attacks. These protections must also consider the limitations of the nodes (Section 1.1.1).

Traditional encryption schemes, specially the public key encryptions are not possible in a WSN

due to its limitations (mostly modified versions of schemes are used). Moreover, mounting extra

hardware or tamper providing resistance mechanisms on the nodes will increase the cost of each

node. It is also noteworthy to know that most schemes presented so far address one type of

attack and ignore other attacks thus rendering them not feasible in the hostile environments.

Although a lot of research work is being done on secure routing protocols but being a novel

field plenty of gaps still exists. This research work intends to expose, explore and solve those

gaps.

11

Overall, WSN routing protocols can be classified based on the network structure or the

applications it provide. This leads to dividing all WSN routing protocols into one of the

following 5 categories namely:

1. Flat routing (Flooding [47], Gossiping [48], SPIN [47], TinyOS beaconing protocol [15], Di-

rected Diffusion [42], Rumor routing [39], CADR [49], Energy-aware routing protocol [50],

ACQUIRE [51], Gradient-Based Routing [52], SAFE [53], etc)

2. Hierarchical routing (LEACH [40], PEGASIS [54], TEEN [55], APTEEN [56],

COUGAR [57], etc)

3. Geo-routing (GPSR [58], Location Aided Routing [59], DREAM [60], MECN [61], SMECN [62],

GAF [63], GEAR [64], GeoGRID [65], GMP [66], etc)

4. Qos-routing(MCF [41], SAR [67], SPEED [68], MMSPEED [69], Energy-Aware QoS pro-

tocol [70], GRAB [71], Lifetime Routing [72], Upper Bounds Lifetime Protocol [73])

5. Secure/Robust routing (Section 2.5).

2.3 Attacks and Security Issues in WSNs

In the recent past, networks relied strongly on physical security e.g. network firewall. The

firewall provides access control division between the insecure public network (internet) and

secure private internal corporate network. Conversely, the wireless medium is shared and is

completely exposed to the outsiders. This makes security infrastructure of the wired network

unrealistic to be used because any of the OSI/ISO layers can be attacked by an outsider. The

physical layer can be jammed, the link layer coordination packet can be disrupted, and the

routing is susceptible to DoS attacks. Also, the transport protocols can suffer targeted attacks

(attacks against packets addressed to a specific port) and the applications can be attacked

at the application layer. Some of these attacks at different layers are explained in [74]. In

WSNs, a message usually takes multiple hops before arriving at the destination. The broadcast

communication, unattended deployment and hostile environment make WSN nodes vulnerable

to many attacks. This research work is aimed at addressing attacks at Network layer or routing.

All attacks on WSN routing can be categorized as ’passive’ or ’active’(Figure 2.1). In a

passive attack, the attacker passively observes (eavesdrops) ongoing communication and does

not send any message. Examples are eavesdropping attack and traffic analysis attack. In

eavesdropping attack, an attacker observes the sensed data or application specific content of

messages. The traffic analysis attack involves measurement of the angle of arrival of a packet

and the signal strength to locate and destroy the important nodes such as source and BS. All

protocols that provide some kind of cryptography (Section 2.5.6) can address eavesdropping

12

Figure 2.1: Attacks in WSN

attacks. Some solutions for traffic analysis attack are described in [75, 76, 77, 78, 79, 80, 81,

82, 83, 84, 85].

In an active attack an attacker observes the communication and involves in communication

by injecting the packets in the network. The active attack is further classified into ’Misbehavior’

and ’Denial of Service (DoS)’. Misbehaviour is an attack in which an attacker behaves selfishly

by deviating from the legitimate protocol operations. Some of the solutions presented to address

misbehaviour attack are described in [86, 87, 88, 89, 90]. In Denial of Service attacks [13, 13],

the attacker does not directly manipulate the protocol parameters and instead aims at indirect

benefits by unconditionally disrupting the network operation.

2.4 Denial of Service Attacks

The aim of DoS attacks is to disrupt the routing and prevent data generated from the source

nodes to reach the sink or destination nodes. DoS attacks can further be classified into ’Control

traffic attacks’, ’Data traffic attacks’ and ’Path based DoS (PDoS) attacks’. The Control

traffic attacks are targeted at monitoring the liveness of the nodes, topology discovery, and the

disrupting routes. For example hello flood, wormhole attack, invisible node attack, sybil attack,

sinkhole attack and rushing flood attack come under this category. In Data traffic attacks, an

attacker drops or attempts to drop data packets e.g. black hole attack, selective forwarding

and jamming. The Control attacks are more potent than Data attacks because they are used

to disrupt the functionality of the routing protocol and create opportunities to launch Data

13

traffic attacks. Moreover, due to limited resources, the Control attacks are more challenging

in WSNs than in ad hoc wireless and wired networks. Finally in the PDoS attack, an attacker

overwhelms distant nodes by flooding a multihop end-to-end communication path using replayed

or false messages [91]. Spoofing attack and false injection attack come under this category. A

strong encryption scheme can prevent PDoS attacks. The research is aimed towards proposing

solutions to DoS attacks that prevail even in the presence of strong encryption schemes. A brief

introduction to all these DoS attacks and some of the notable solutions are explained below:

2.4.1 Spoofing Attack

Spoofing is based on altering or replaying the routing information (data, beacon or acknowledge-

ments) exchanged between the nodes. Spoofing leads to many routing problems e.g. routing

loops are created, routes can be extended or shortened, the network traffic is attracted or re-

pelled, the generation of false/error messages which might lead to network partition (forged

routing packets to prevent one set of nodes from reaching another) and an increase of an end-

to-end latency by adding the virtual nodes to the route. Spoofing attacks can only be avoided

by using some encryption techniques. Therefore, all protocols that provide some cryptographic

mechanisms (Section 2.5.6) are potential solutions to spoofing attack. Some other DoS attacks

like framing and stealthy attack also come under spoofing.

’Framing’ is a form of spoofing in which an attacker maligns another node without provo-

cation or a justified cause. The malicious nodes thus frame the legitimate nodes. This attack

is common in protocols where the nodes cast votes to incriminate suspect nodes [92].

Stealthy attack is another extension of spoofing in which an attacker’s goal is to allow

acceptance of false aggregation results, which are significantly different from the true results

determined by the measured values, as well as not being detected by the user. Secure Infor-

mation Aggregation (SIA) [93] presents the aggregate-commit-prove framework for designing

secure data aggregation protocols.

2.4.2 False Injection Attack

False Injection attack is similar to spoofing attack. The difference is that the attacker injects

extra messages (data or control) into the network instead of modifying the received messages

before the forwarding process. The aim is to extract the maximum resources from the legitimate

nodes i.e. exhausting the limited energy, memory, and CPU of resource-limited sensor nodes, to

consume the communication bandwidth and sometimes to cause routing loops. By flooding the

replayed or spurious messages, an attacker can even overwhelm the nodes a long distance away

from it. To defend against this attack, a node must detect spurious and relayed messages and

reject them. Possible solutions to this attack are separate shared key schemes (Enhanced IN-

SENS [19], LEAP [43]); Protocols using message authentication code (SEF [94], Interleaved key

14

scheme [95]) and schemes using one-way hash chains [96] (Enhanced INSENS [19], Ariadne [97],

PDoS defense scheme [91]).

2.4.3 Hello Flood Attack

Some routing protocols require the nodes to announce themselves (to neighbours) using a ’Hello’

message. This message enables the receiver nodes to assume that the sender is within their radio

range. However, this leads to hello flood attacks [15], in which a laptop-class attacker broadcasts

the routing/other information with large enough transmission power to convince many or all

the nodes in the network that the adversary is a genuine neighbour. The attack thus causes

unidirectional links between the attacker and the legitimate nodes. Some notable solutions

for this attack are Hello Flood Attack and Defense scheme [98], LEAP [43] and Enhanced

INSENS [19].

2.4.4 Wormhole Attack and Invisible Node Attack (INA)

In a wormhole attack [99], an attacker or malicious node records the packets (or bits) at one

location in the network and tunnels them to another malicious node at a distant location, which

then replays (retransmits) them locally. The tunnel can be established in many different ways,

such as through an out-of-band hidden channel (e.g., a wired link or using a different radio

frequency), a packet encapsulation, or high powered transmission. As the aim of the tunnel

is to enable the tunneled message to arrive either sooner or with fewer hops compared to the

packets transmitted over legitimate multihop nodes, so the hidden channel attracts legitimate

traffic. Packet encapsulation is less effective because the same channel must be used and a few

nodes have to be compromised for its success. Some researchers also call it as Tunnel attack

and encryption can solve some of these problems. This research’s wormhole definition states

that a wormhole attack is possible only using hidden channels and invisible nodes, which is

much more potent than the tunneling attack.

Invisible Node Attack (INA) [20] can be considered as a simple form of a wormhole attack

in which a single malicious node simply retransmits whatever messages it receives during the

route discovery process, without adding itself to the routing path. The node remains invisible

to other nodes and creates virtual links between 2-hop unconnected nodes. This attack is less

potent than a wormhole attack as the attacker uses the same channel. The sender nodes can

detect INA as they will observe receiving the same packet which they transmitted earlier which

is not possible in the wormhole. As INA is a variation of a wormhole attack, some of the

solutions for the wormhole can also be used for INA.

The nodes within the radio range of both wormhole tunnel nodes (or a single invisible

node) believe that they are all neighbours. In practice there is only a virtual connection

between them. A wormhole tunnel may be very useful if used for forwarding all the packets.

15

However, the attackers may drop the messages at any time especially the data packets. This

leads to black hole (drop all data packets) or gray hole (drop some data packets) attacks. In

wormhole, the attacker does not need to know the encryption mechanism or any keys and the

attack is possible even if the attacker has not compromised any nodes or even if the encryption

scheme provides authenticity and confidentiality in all communication. Hence wormhole is

rather difficult to detect. Finally, the attacker does not need to allocate any computational

resources to compromise the communication, thus rendering the wormhole attack to be launched

very easily. Many solutions have been presented to solve the wormhole attack. However some

solutions like the RF fingerprinting [100] and Directional Antennas approach [101] are not

feasible in resource constrained WSN node. Some of the other wormhole solutions are described

bellow:

• Some schemes use a specialized hardware to solve the wormhole attack. SECTOR [102]

uses a special hardware transceiver module and an authenticated distance-bounding pro-

tocol to estimate the distance between two neighbours. There are some disadvantages

though. Apart from requiring the nodes to measure the local timings with nanosecond

precision (very difficult in WSNs), the random delays introduced by MAC layer jeopardize

this method of protection.

• Some techniques are centralized and use statistical methods to detect wormhole after gath-

ering information about the node neighbourhood and sending this data to BS. The BS

then checks the probability of the wormhole attack using the data received and making

a statistical graph of the neighbours of all the nodes. Notable examples are Statistical

Graph Test [103], Acoustic signals under water scheme [104] and Connectivity Informa-

tion Knowledge scheme [105]. Shortcomings in these schemes are that (i) they can only

detect the presence not the location of wormhole, (ii) are successful only when the radius

of the wormhole is comparable to the radio range of the sensors, and (iii) waste band-

width (overhead of sending neighbor information to BS). Moreover the acoustic signals

scheme [104] can have an error of up to 40% of the radio range.

• Some protocols use local monitoring to detect, isolate, remove or at least mitigate the

wormhole attack. Notable examples are LITEWORP [106, 107] and ODSBR [108]. Some

shortcomings in these schemes are that (i) a number of data messages are lost before

detection, (ii) large number of shortest paths will be through the wormhole so causing

more data loss and thus increasing time taken to detect wormhole and (iii) a lot of overhead

as every data packet needs to be acknowledged by the destination.

• Some schemes use the geographical position of the nodes to detect wormhole attack. In

these cases either the nodes are equipped with GPS or their positions are known through

some secure way. Two important schemes are TIK [109] (Geographical Packet Leashes

16

and Temporal Packet Leashes) and COTA [110]. The disadvantages of both TIK ap-

proaches are that they require either location information of each node (GPS) or tight

clock synchronization between the nodes (nanosecond precision clock is required which is

very hard in WSN). On the other hand, apart from requiring the location information,

COTA keeps a constant space for every node on the path and the computation overhead

increases linearly to the number of detection packets.

• Some schemes use ’Time of Flight’ to detect a wormhole attack. Examples are RF based

solutions [111, 103, 112], TrueLink [113], Ultrasound (US) based scheme [114] and Ranging

protocol using US [115, 116]. Problems with these schemes are that (i) they require

tight clock synchronization (nanosecond precision clocks) (ii) and light speed propagation

of RF waves. Additional disadvantages in US-based solution are that (i) the distance

measurement is not secure and (ii) an attacker can decrease the distance by relaying a

slow US signal over a fast relay link.

• Some schemes use a few special nodes (Guards) to monitor other nodes e.g. Trusted

Specialized Guards [99]. The guards have a larger radio range than the other nodes and

are the only nodes equipped with GPS thus helping other nodes to get their location

information. The disadvantages in these schemes are that (i) the guards are distinguished

nodes (high resource) in the network that differ from the regular nodes, (ii) requires

extremely tight time synchronization (not easily feasible in WSN), (iii) placement of

guards is important (very hard in random deployment) and (iv) and the existing protocols

cannot be easily modified using that technique.

2.4.5 Sinkhole Attack

In a sinkhole attack, the intruder attracts all the data traffic towards itself and does not forward

it further. A sinkhole can be (i) a laptop with high range that can provide less hop paths to other

nodes, (ii) a spoofed message indicating a node is near to BS or a BS, (iii) a wormhole providing

low latency and less hop distance links or (iv) a hello flood attack providing unidirectional links

to unreachable nodes. A few sinkhole solutions are described in [117, 118].

2.4.6 Sybil Attack

In a sybil attack [119, 120] a single attacker node presents multiple identities to other nodes

in the network. A sybil attack will thus make a node to be present in more than one place

at a time. It is stated in [15] that a sybil attack can disturb a multi-path routing where

seemingly disjoint paths could in fact go through a single malicious node presenting several

sybil identities. Geographic routing is also vulnerable to sybil attack since, instead of having

one set of coordinates, a sybil node could claim having multiple coordinates and thus appear at

more than one place simultaneously in other nodes. Typical sybil attack solutions are Enhanced

17

INSENS [19] (develops a pair-wise key between nodes in KSP and marks secure neighbours using

bidirectional verifications), Radio resource testing scheme [120] (multiple channel broadcast for

individual neighbour) and Sybil-free pseudonyms [121] (self-certified cryptographic IDs).

A similar attack is Clone or Node Replication attack, in which the attacker present same

ID for multiple physical nodes. Some of the solutions for clone attack are [122, 123].

2.4.7 Rushing Flood Attack

Most routing protocols require flooding of some route information at some stage. In order

to flood the duplicate information, the nodes suppress any duplicate message. This dupli-

cate suppression property leads to rushing attack [124], in which the attacker disseminates the

route information quickly (via hello flood/wormhole) throughout the network. This leads to

nodes receiving incorrect information, and dropping the legitimate route information received

later as a result of the duplicate suppression. The rushing attack can be made more effec-

tive when the attackers near to source of legitimate information jams the surrounding nodes

after receiving the information. This further prevents the legitimate information to reach the

nodes timely. On the other hand a fast link between the attackers will rush data enabling

the information to reach farther end nodes. This results in increasing the chances of rejecting

legitimate messages due to the duplicate suppression. Some of the rushing attack solutions

are Enhanced INSENS [19], Rushing Attack Prevention (RAP) [124], Secure Implicit Sampling

scheme (SIS [125] and ODSBR protocol [126, 108].

2.4.8 Jamming Attack

A possible attack on WSNs relates to create a noise or collisions in particular areas where all

the nodes are jammed. Jamming is usually aimed at the physical layer by broadcasting high

transmission power signal to corrupt a communication link or an area. Jamming is also an

attack to the routing as it makes all traffic in that area useless and prevents data from reaching

the destination. This type of attack is very effective because no special hardware or extra

cost is needed by the attacker and it can be launched by listening and broadcasting the same

frequency the network is using. Spread spectrum modulation [127], or directional antennas

have been extensively studied to improve the resistance to physical jamming. But it can be

too much energy-consuming and is not suitable for WSNs. The works carried out in [14, 128,

129, 130, 131, 132, 133, 134] involve different research works on jamming involving network and

MAC layer. Some of the jamming solutions in routing protocols are Enhanced INSENS [19],

JAM [135], Wormhole base Anti-Jamming Solution [136], Channel hopping schemes [137, 138],

Switch frequency scheme [139], MMSN [140], DEEJAM [141], Jamming monitor scheme [142],

Denial of message attacks scheme [143], and Link-layer denial of service scheme [144].

18

2.4.9 Black hole Attack and Selective Forwarding Attack

In a black hole attack a malicious node discards any data message it receives after joining the

network. The malicious node might join the network via a virtual (INA or wormhole) or real

(node capture or encryption failure) connection. If a node discards all the data messages, the

neighbours might realize that the node is dead and thus find an alternative path. A better

attack would be to forward a small percentage of the messages and drop the remaining. This

attack is called selective forwarding or gray hole.

Both these attacks might be launched in many ways. A malicious node on the data route

path intentionally drops, delays or alters the data traffic passing through it. Moreover, the

malicious node can advertise itself (impersonate) as having the shortest path and cause data

traffic to route in a wrong way (sinkhole attack). The solution to node dropping data is to

deploy neighbourhood watch i.e. observe that the next node on the path forwards the data as

expected. However, a more potent form of attack called ’colluding black hole’ can overcome this

mechanism. In a colluding attack multiple black hole attackers work together and thus might

route data between themselves instead of forwarding to the required route. Solution to the

problem of attractive advertising is to solve wormhole/INA and making route decisions locally.

A version of black hole on aggregation protocols is called as ’denial of message’ attack by [125].

In this attack, an intruder drops other nodes readings, or deprives other nodes from receiving

broadcast messages of the BS (by dropping them). Some of the notable black hole/gray hole

solutions are explained next:

• Some schemes use neighbour transmissions and node’s neighbourhood link estimates to

avoid black hole attack. Examples are REWARD [145], Mint protocol [146], Watchdog

and Pathrater scheme [147], Passive Trust building scheme[148], DICAS [149], Parent

Monitor scheme [150], etc. Some of the disadvantages are that (i) they are vulnerable to

blacklisting (framing attack), (ii) do not work correctly in the presence of colluding black

holes, (iii) can have a high error rate due to RF noise/collisions in the wireless channel,

(iv) overhearing does not always work (collisions, weak signals etc), (v) in some schemes

(Parent Monitor scheme) lot of energy is consumed in probing, (vi) sometimes (Mint

protocol) nodes need to periodically broadcast its routing information (communication

overhead) and (vii) each node needs to maintain a table which contains its neighbour

nodes routing information (storage overhead).

• Some schemes require end-to-end acknowledgments (ACK) from the destination/sink

nodes to detect the presence of any black hole attack. Examples are ODSBR [126, 108],

Symmetric key based solution [151], Secure Message Transmission (SMT) protocol [152],

Secure Implicit Sampling (SIS) [125] etc. Some of the shortcomings in these schemes are

that (i) they come at the expense of extra bandwidth usage and node energy because of

ACK messages, (ii) sometimes they require more time to detect black holes because one

19

path can only be checked at a time, (iii) the source nodes must receive unmodified ACK

from the destinations that cannot be guaranteed in case any node has been compromised

in between, (iv) they can only detect presence of black hole in a path and not the exact

attacker and (v) some schemes (SRP) are vulnerable to rushing attack.

• Some schemes choose a forwarding node for data with some probability and forward

single/multiple copies of the same data in multiple-paths e.g. ARRIVE [44]. The disad-

vantages of such schemes are (i) unidirectional links and hidden terminal problems may

cause the passively participating nodes to act erroneously, (ii) passive forwarding adds ex-

tra communication overheads and (iii) probability can never guaranty data is regenerated

every time it is lost.

• Some schemes use statistical methods or the nodes convey the topology of network to

the BS to avoid black hole attack. Examples are Monitor Topology by base station [153],

LITEWORP [106, 107]. Disadvantages in these schemes are (i) most of times they can

only detect the presence not the location of attacker and (ii) waste bandwidth (overhead

of sending neighbour information to BS).

• Some schemes use a detection mechanism to avoid black hole attack. Sometimes, a node

is elected periodically as an agent (cluster head) to detect intrusions for all nodes in the

cluster e.g. Intrusion Detection System (IDS) [154]. Some of the shortcomings of these

schemes are that (i) the cluster head can be compromised and (ii) attacks on cluster heads

cannot be detected. A similar technique used by some schemes e.g. SODESN [155] is

to use a learning method to train the nodes for fault detection and misbehaving nodes

(malicious and non-malicious) during local communication between nodes. Some disad-

vantages in these schemes are that (i) lot of time and messages are wasted before the

attack is detected and (ii) colluding black hole attack is possible.

• The schemes used to discover the dead or faulty nodes in the network can also be used

as a solution for black hole attack. Examples are SPINS (Security Protocols for Sen-

sor Networks) [38], centralized schemes that use BS [156, 157]; neighborhood listening

schemes [92, 147], neighbours collaboration schemes [158, 159, 160, 161] and schemes in-

dicating energy depletion like residual energy scan (eScan) [162]. Finally the protocols

designed for misbehaving nodes can also be used as a solution for black hole.

2.5 Classification of Secure/Robust Routing Protocols

Although a number of schemes were proposed for different WSN attacks, this thesis categorizes

the solutions into 6 different classes or mechanisms namely protocols using: multiple-paths,

probabilistic path selection, overhear neighbour communication, specialized hardware, topology

20

mapping and cryptographic techniques. Researchers in some cases have not focussed on one of

the mechanism. In many cases they used a combination of one or more mechanisms to provide

a solution to WSN attacks. Usually the mechanism relies on one of these 6 categories to provide

security. A brief description of these techniques is given below:

2.5.1 Protocols using Multiple-paths

Some protocols employ path diversity techniques to increase the route robustness, reliable data

delivery and to avoid attacks. In this case multipath routes are first discovered and data is then

routed to these independent paths along with the primary path to provide data transmission

redundancy between the sources and sink. There are many ways in which data can be sent in

multiple paths. Some schemes send multiple copies of the same data along the different paths,

while others fragment data into packets and send these fragments in multiple paths (load

balancing). The load balancing is achieved in such a way that even if some of the sub-packets

are lost the original data message can be reconstructed.

Multiple-path routings can either be disjoint or braided multi-paths. In disjoint multi-path

routing, all nodes in separate routing paths are different. Advantages are that a failure of

a primary path will not effect the overall transmission but at the expense of longer latency

and more energy consumption. Disjoint path are more problematic in lower density networks

(longer and high cost paths) as compared to high density networks, where many routes are

available. In braided multi-path routing, the nodes in the path need not be disjoint from the

primary path and thus some nodes share multiple paths. Advantages are low latency and better

energy consumption than disjoint multi-path counterpart. However a failure of any common

nodes due to attack/power failure will fail more than one path.

The main and obvious drawback of multipath routing is the overall increase of the traffic

which is proportional to the number of multiple paths adopted. Moreover some attacks such as

sybil attack can lower the effect of multiple paths by presenting multiple identities. The most

effective attack against multipath routing is hello flood, wormhole and INA that create virtual

links between the nodes enabling false routes.

Some notable examples of disjoint multiple path schemes are basic INSENS [17, 18], en-

hanced INSENS [19], Directed Diffusion [42], Split Multipath Routing (SMR) [163], AR-

RIVE [44], Temporally Ordered Routing Algorithm (TORA) [164] etc. Examples of braided

multipath schemes are Braided multi-path routing [165], Meshed Multi-Path Routing (MPR) [166].

Some famous ad-hoc network multipath schemes are Dynamic Source Routing (DSR) [167] and

its extensions e.g. [168], Multipath On-Demand Algorithm (MDR) [168]. An example of scheme

using load balancing technique is [169].

21

2.5.2 Probabilistic Path Selection Protocols

Some schemes select the routing path probabilistically. A sender selects one of its neighbouring

node with some probability. Since, there exists no fixed path to forward the data, an attacker

cannot block all routes to BS. This results in the routes taking longer time and data loss is still

possible with some probability. Some examples are ARRIVE [44] and Rumor routing [39].

2.5.3 Protocols that Overhear Neighbor Communication

Some protocols utilize the broadcast nature of a WSN communication to overhear neighboring

communication to detect misbehaving nodes. This mechanism is simple to implement. Extra

storage space might be required if the nodes are required to save a log book of their neighbour’s

performance. Moreover the scheme fails if some links are unidirectional. Some important

schemes using this mechanism are Watchdog [147], Passive Trust building [148], DICAS [149],

Parent Monitor scheme [150], SODESN [155]; ad-hoc network solutions like CONFIDATNT

protocol [87], Passive Trust building scheme [148]; and MANET solutions like Intrusion Detec-

tion System (IDS) [154], Lightweight Robust Routing [88] and Cooperation protocols [89, 90].

These schemes have some limitations. For example, they are vulnerable to blacklisting or

framing attack (Section 2.4.1), in which a malicious node claims legitimate nodes to be the

attacker. In addition most of the schemes fail in the presence of colluding black holes, where

multiple black hole neighbouring nodes work in collaboration. Also, the schemes can have high

error rate due to collisions in the wireless channel and overhearing does not always work because

of collisions and weak signals.

2.5.4 Protocols using Specialized Hardware

This category consists of protocols that use either tight time synchronization, location awareness

through GPS based hardware or directional antennas. These schemes are mostly used to detect

and solve wormhole attack. Schemes using tamper resistance hardware also come under this

category. As such these techniques are very costly they are not feasible in cost effective resource

constrained WSNs.

Some examples using special hardware are the RF-fingerprinting scheme [100] , direc-

tional antennas approach [101] and SECTOR [102]. Examples of temper resistance schemes

are Security-aware Ad-hoc Routing (SAR) [170] etc. Notable schemes using GPS are Geo-

graphical packet leashes scheme in TIK [109] and Trusted Specialized Guards [99]. Important

examples using tight clock synchronization are Temporal packet leashes scheme in TIK [109],

TrueLink [113],and [103]. Some schemes use a mix of GPS, tight timers or extra hardware e.g.

Secure Location US based scheme [114] (GPS and US generator), Ranging Protocol [115, 116]

(Tight clock and US generator) etc.

22

2.5.5 Topology Mapping Protocols

In topology mapping schemes the whole topology of the network is detected usually at the BS.

This scheme uses a message passing between different nodes and conveying the information to

the BS. Thus, the raw picture of a network can be developed and some attacks such as wormhole,

black hole etc can be addressed. Potential drawbacks of these schemes are that they are not

scalable and require high traffic overheads. Examples are Basic INSENS [17, 18], Statistical

Graph Test [103], MDS-VOW [104] (under water scheme using delays of acoustic signals),

Connectivity Information Knowledge [105] and Monitor Topology by base station) [153].

2.5.6 Protocols using Cryptographic Techniques

Cryptographic techniques have been used as building blocks for the security of the protocols. By

using simple keys the data can be encrypted at the source and later decrypted at the destination

thus preventing malicious nodes from reading the data. Using cryptographic techniques in

WSNs are quite different from traditional wired and ad-hoc networks. The cryptographic

schemes in WSN can be further divided into 3 major categories:

• Symmetric Key cryptography (SKC) solutions like TinySec [171], ZigBee [172], SPINS [38],

MiniSec [173], SEF [94], LEAP [43], LKHW [174], LIGER [175], Hetrogenous SKC solu-

tions [176, 177] etc

• One-way hash chains solutions like Sluice [178], SIS [125] , INSENS [17, 18] , Enhanced

INSENS [19] , Path base DoS solution [91], SLIMCAST [179], STAPLE [180], Hop-by-Hop

Authentication scheme [95], SDAP [181], SEF [94] etc

• Public Key Cryptography (PKC) solutions like RSA based solutions [182, 183, 184]), El-

liptic Curve Cryptosystem (ECC) schemes [185, 186, 187, 188, 189, 190], TinyPBC [191],

DoS Resistance PKC [192], Innovative Signature Algorithms [193], Energy Efficient Se-

curity [194], One-Time Signature scheme [195] etc.

In WSNs, the symmetric key is preferred over the public-key cryptography (PKC) because

nodes have insufficient resources for PKC. The symmetric-key ciphers and cryptographic hash

functions are cheaper and faster (orders of magnitude) and data packets in sensor networks are

generally small.

2.6 Formal Modelling and WSN

Formal models translate the state diagrams of a program to formal mathematical models. It

then asserts to negate the formulas describing the desired properties. In case an assertion is

violated it generates a trace to show as to why the assertion is negated. Computer simulation

can only execute one of all the possible program traces. Formal modelling on the other hand

23

can check all the possible executions. The computer simulations thus may or may not check

the desired properties of a program. General purpose model checking tools e.g. Spin [47, 196],

Uppaal [197], PRISM [198, 199, 200] allow to verify not only the functional properties of a system

(e.g. Spin), but also the performance of real-time system (e.g. Uppaal). For example PRISM is

a probabilistic model checker, used for formal modelling and analysis of systems which exhibit

random or probabilistic behaviour. The fundamental principal underlying a model-checking

approach is that of exhaustive search, implying that a ”model checked system” is guaranteed

to satisfy the specified properties. Some tools such as Casper/FDR2 toolbox and AVISPA are

used to verify the authentication issues in protocols. Of all these modelling techniques, Uppaal

is extensively used for formal modelling of Real-time Control Network [201, 202].

2.6.1 Formal Modelling in WSNs

The use of formal modelling in WSN community is becoming common now. Fehnker at. el [203]

use a graphical specification style to enable the study of the effect of topologies in the perfor-

mance analysis. GLONEMO [204] is an approach presented for the formal modelling and

analysis of ad-hoc sensor networks, at various levels of abstraction, e.g. the hardware that

implements a single node; the protocol layers; the application code; and an abstract model of

the physical environment. Frederiksen et. al [205] used the Uppaal framework to analyze the

energy consumption in WSNs. A state-oriented model of ad-hoc network nodes is presented

in [206]. Kwiatkowska et al [207] used PRISM to analyze the randomized back-off procedure in

the 802.11 wireless protocols. The work in [208] verifies the correctness of the WSN application

focusing on concurrency using Spin. The work in [209] presents a theory of calculus for WSN

that combines a network layer of nodes with a local object model to describe the nodes. A

clock synchronization algorithm for link layer (TDMA) protocol of WSN ’gMAC protocol’ is

modelled using Uppaal in [210, 211].

2.6.2 Formal Modelling of Routing Protocols

It has been realized by researchers that computer simulation alone is inadequate in checking a

routing protocol and the development of formal models to check different aspects of routing pro-

tocols is now becoming common. Many wireless routing protocols (WSN and ad-hoc networks)

have been verified using formal modelling. Camara et. al [212] applied formal methods (Spin)

to verify the design bugs in protocols for MANET networks such as LAR, DREAM and OLSR.

Fehnker et. al [213] used Uppaal to model and verify the link layer protocol LMAC. Henderson

et. al [214] used Uppaal to identify flaws in the MCF protocol. The work in [215, 216, 217]

evaluate different aspects of flooding in WSN using PRISM. The work in [215] also considers

aspects of gossiping protocols. The work in [218, 219] focuses on improving the effectiveness of

data dissemination and gathering by optimizing tree-based routing topologies. Krishnamachari

24

et al [219] studied the performance of different data aggregation algorithms for different network

topologies. Nair et al [220] extends the formal model in [215] to include the S-MAC broadcast

and unicast. They later use TLA [221, 222] to write specifications of the diffusion family of

data dissemination and gathering protocols.

2.6.3 Formal Modelling and Security in WSN

Some important work in WSN security schemes using formal modelling are:

• TinySec [171]and LEAP [43] were modelled in [21] using high level formal language

HLPSL. The authors found two attacks (i) a man-in-the-middle attack and (ii) a type flaw

attack which shows that confidentiality is compromised. They later analyzed SNEP [22]

which is the base component of the security protocol SPINS [38]. By using a formal

analysis it disclosed an attack ’false request message from an intruder’.

• The strand spaces model [23] was developed for the formal verification of key exchange

protocols. Routing security is defined in terms of a safety (discovered routes do not

contain adversarial nodes) and a liveness (it is possible to discover Routes) property. A

similar work was presented later in [24] which proposed formal model for ad hoc routing

protocols and insider attacks.

• The work in [25], uses a formal method CPAL-ES, to analyze an ad-hoc protocol SRP

[223]. It discovers attacks such as wormhole etc.

• The work in [224] articulates a formal security framework which is used for the analysis

of protocols for constrained systems applications involving MANET and RFID systems.

• Slede [26, 27, 28] is a framework developed using Spin for automatic verification of WSN

security protocol implementations. It extracts models from the protocol implementations

and verifies them against generated intruder models. In the case of a property viola-

tion, Slede translates the counterexample back to a domain language (nesC). Using this

technique they verified µTESLA [38] and LEAP [43].

• A flexible and mathematically rigorous modeling framework (ABV model) was presented

by Gergely Acs et. al [29] for analyzing the security of ad-hoc routing protocols in [30,

31, 32] and WSN routing protocols in [33, 34] respectively. They found attacks in both

versions of Ariadne ([97, 225]), SAODV [226] and ARAN [45]). They updated their

attacker model in each subsequent work. They also developed an extension of Ariadne

protocol called endairA and verified it using the mathematical model. However, the model

has some weaknesses. Liqiang et al [35] claim that ABV model has incorrectly merged

the adjacent adversarial nodes, has improperly defined the system state of the model,

and has flaws in the proof for ARAN protocol. Moreover, Burmester et al [36] claim that

25

the security proof for endairA is inadequate and the model described in [31] has flaws.

Finally, Andel using Spin model checker proposed in [37] confirmed that author’s claim in

[31] that false paths should not be successfully returned to the initiator with the correct

appended signatures is incorrect. This puts the credibility of security model in doubt.

• T. Andell et. al [37] used Spin to analyze the security properties in the route discovery

phase for on-demand source routing protocols that were the extensions of ad hoc routing

protocols for DSR (Ardiadne and endairA). By using their automated security evaluation

process, they were able to produce and analyze all topologies for a network size of up to

5 nodes. They were able to detect some flaws in both protocols using Spin tools.

2.7 Chapter Summary

This chapter has discussed the reasons why routing protocols are different in WSNs. The chapter

later classified the possible attacks in WSN into two groups passive and active. Eavesdropping

and traffic analysis are categorized as passive attacks. Active attacks are further classified

as misbehaviour and DoS attacks. The DoS attacks, their existing solutions and shortcomings

present in these solutions were briefly discussed. The chapter then classified the secure protocols

into different groups namely multiple path, probabilistic path, overhear neighbour, specialized

hardware, topology mapping and cryptographic based solutions. Finally the formal modelling

was discussed in the chapter and some related work in WSN applications, WSN routing and

WSN security protocols was described briefly.

26

Chapter 3

Proposed Formal Specifications of

WSNs and Attacks

3.1 Introduction and Motivation

This chapter discusses formal definitions of WSNs in general and different attackers used in the

research. The chapter is organized in two main parts. Section 3.3 presents formal building blocks

necessary to define DoS attacks. This includes the formal specifications of basic components

such as nodes, messages etc as well as basic operations in WSN such as receive, transmit, links,

cryptography etc. Section 3.4 formally defines the attacker models considered in the research.

The specifications of each attack is written in Z formal mathematical notation. This formal

specification is a contribution to research as this concept is novel.

These definitions of attacks are used later to describe attacker models within the formal

framework.

3.2 Motivation

This research is based on applying exhaustive formal modelling techniques on different routing

protocols to expose their susceptibility to DoS attacks. Before applying formal modelling it was

observed that the definitions of attacks in the literature are somewhat vague and ambiguous.

For example, it was found that different authors give their own informal definitions of attacks;

these are not always consistent. It was realized that there is a strong need of defining the

attacks in a concise manner. The specifications were first written in TLA [221, 222] since some

WSN specifications have been so far written in this formalisation [220]. However, it was found

that TLA has some shortcomings such as type checking etc. So the specifications were later

rewritten in Z.

Note that this work is different from exhaustive model checking which is addressed in Chap-

ter 4. The aim here is mainly to define an attacker’s specifications in a concise and formal way

27

rather than to perform exhaustive checking. These definitions of attacks are used later to de-

scribe attacker models within the formal framework. These precise definitions of attacks are

then modelled during analysis/evaluation of the published protocols such as TinyOS Beacon-

ing, MCF, LEACH, Rumour Routing, Directed Diffusion, Authentic TinyOS with µTESLA,

ARAN, Arrive, INSENS in Chapter 4 and the newly developed protocol RAEED (Chapter 6).

The attacker models in all these protocols are developed by employing the definitions of attacks

presented in Section 3.4. Note that the formal framework presented later in Section 4.3 requires

semi formal or formal definitions to implement all sub models. This is the main reason for em-

ploying semi formal notations of different protocols to model the nodes and the BS; while the

formal specifications presented in this chapter are employed for the attacker models. These DoS

attacks, to the best of knowledge, have not been defined before, thus making it a contribution

to WSN research. This can be useful to researchers in the future because they can consult these

definitions, rather than the vague informal definitions, to describe solutions for DoS attacks.

3.3 Proposed Formal Specifications for WSN

3.3.1 Basic Definitions

Some basic parameters need to be defined before defining DoS attacks. We define KEY as a

special variable of alphanumeric type and FLAG of boolean type which can only have two values

TRUE or FALSE and used throughout the specifications to set or clear a FLAG. We define some

constants: the maximum number of nodes in the network and maximum data of 1000 and 2048

(11 bits), respectively. These constants are defined to limit the maximum value of the node ID

and the data size in a message.

Since the definitions are made at the abstract level, a message needs to be defined first.

It is composed of Message Sender, Message Destination and Message Data. The sender and

destination are integers with values ranging from 0 to MAXNODE, indicating node IDs. The

message data must have a value up to MAXDATASIZE. In the case of broadcast message the

MsgDestination value is ignored.

Message =̂ [MsgData : 0..MAXDATASIZE ; MsgSender ,MsgDestination : 0..MAXNODE]

We then define a schema, InitMessage, which initializes the message by assigning to it the

initial value before writing a theorem to state that there exist a message satisfying the initial

conditions of a message. A Node is then defined as follows:

Node =̂ [NodeIsSink : BOOL; NodeID : 0..MAXNODE]

Note that it contains a FLAG indicating that it is a sink (base station) or a normal node;

and a node ID. Similarly, we define a schema, InitNode, to initialize Node by assigning values

28

to all fields of the node and write a theorem to indicate that there exist a node satisfying the

initial conditions of the node.

We define a Network as a set of such nodes. The Network is composed of all nodes whether

they are legitimate (nodes that are still operating in the correct manner and have not been

captured) or compromised (nodes that have been captured by an attacker). All nodes that can

communicate (operate on a standard frequency) with one another, if they are within the radio

range of each other, are part of the Network.

Network : PNode

CompromisedNode is a set of nodes and a subset of network. We have not defined legitimate

nodes separately as they can be calculated by subtracting the Network and CompromisedNode

sets. We have also not placed any restriction on compromised nodes but later on we will restrict

this so that a compromised node cannot be the sink or base station.

CompromisedNode : PNode

CompromisedNode ⊆ Network

Wireless sensor network properties are defined in a WSN schema. Neighbour is defined as a

mapping from a node to a set of nodes. Recall that a node may have no neighbour (NULL set)

or any number of neighbouring nodes. We model the channel by two message buffers which

are updated on reception and transmission. NodeMessage and ChanMessage are mappings from

Node to Message. A NodeMessage is a message recently received by a node and lies inside the

node buffer. While ChanMessage is the message present in the channel of a node i.e. within the

radio range of that node which can be received. As each node has a unique set of neighbours,

messages, channels and the domains of all the three must be similar.

WSN

Neighbour : Node → PNode

NodeMessage,ChanMessage : Node → Message

domNodeMessage = domChanMessage = domNeighbour

3.3.2 Basic Operations

3.3.2.1 Receive Operation

Now that the specification has defined the messages, nodes and other basics (network, WSN,

etc), we define the basic operations that will be used later when defining DoS attacks. A

Receive operation is defined by the following schema:

29

Receive

∆WSN

Nrec? : Node

Mrec? : Message

Nrec? ∈ domNodeMessage ∧ Nrec? ∈ domChanMessage ∧ Nrec? ∈ domNeighbour

NodeMessage ′ = NodeMessage ⊕ {(Nrec? 7→ Mrec?)}
ChanMessage ′ = ChanMessage

Neighbour ′ = Neighbour

As this is an abstract model we are not concerned with the internals of the message such as

destination, sender etc. In this schema we use the WSN schema since its values will be updated.

We define two inputs, Nrec (the Receive operation will always be performed on a node), and

Mrec (a message will always be updated). Note that Nrec is the receiving node and must

be part of the domain of all WSN schema. Upon receiving a message, the channel message is

unchanged but the node message (or node’s buffer for message) is updated as it has received a

new message. The Receive operation also has no effect on Node neighbours. Finally, we define

a theorem to confirm that preconditions of Receive operation are satisfied.

3.3.2.2 Transmit Operation

In the Transmit operation, such as Receive we use WSN schema as its values will be updated:

Transmit

∆WSN

Ntra? : Node

Mtra? : Message

Ntra? ∈ domChanMessage

NodeMessage ′ = NodeMessage

ChanMessage ′ = ChanMessage ⊕ {(Ntra? 7→ Mtra?)}
Neighbour ′ = Neighbour

Again, the Transmit operation will always be performed on a node and a message will always

be updated. Therefore, we define both Ntra and Mtra as inputs . When a node transmits

a message, the NodeMessage is unchanged as nothing has come from the channel whereas

the ChanMessage is updated since the node transmits a new message into the channel. The

Transmit operation has also no effect on Node neighbours. A theorem is then used to confirm

that the preconditions of the Transmit operation are satisfied.

30

3.3.2.3 In Range Operation

Next, we define a schema which checks whether a node is within the radio range of another

node i.e. when a node transmits something, whether or not the other node is able to receive it.

InRange

∆WSN

Ncen?,Nran? : Node

∀msg : Message

| Ncen? 6= Nran? ∧ Ncen? ∈ domNodeMessage ∧ Ncen? ∈ domChanMessage

∧ Nran? ∈ domChanMessage ∧ Nran? ∈ domNodeMessage

• Transmit [Ncen?/Ntra?,msg/Mtra?] ⇒ Receive[Nran?/Nrec?,msg/Mrec?]

Neighbour ′Nran? = NeighbourNran? ∪ {Ncen?}

This schema uses two nodes as inputs: Ncen, the current node and Nran, the node within the

radio range of Ncen. Both nodes are in the domain of NodeMessage as well as ChanMessage,

and any message transmitted by Ncen is received by Nran. These conditions show that Nran is

within the radio range of Ncen. Also, as node Nran can listen for messages from node Ncen, so

Ncen is added to the neighbour list of Nran. Here Nran is not added to the neighbour list of

Ncen since Ncen may not picks up signals of Nran. Therefore, InRange is a unidirectional link

as it checks only that a node is within the radio range of another. A theorem is later employed

to check preconditions of this schema.

3.3.2.4 Connected Operation

The Connected schema asserts a bidirectional link between two nodes i.e. in the radio range

of each other. It takes as inputs two nodes Nfir and Nsec and asserts whether they are in the

radio range of each other:

Connected

ΞWSN

Nfir?,Nsec? : Node

InRange[Nfir?/Ncen?,Nsec?/Nran?] ∧ InRange[Nsec?/Ncen?,Nfir?/Nran?]

3.3.2.5 Neighbour Definitions

We have already seen that a node is within the radio range of another node if InRange or

the Connected operations are used. In practical situation, a neighbour node can be either

legitimate or malicious. A Legitimate Neighbour is defined as:

31

LegitimateNeighbour

ΞWSN

Ncur?,Ngood? : Node

Connected [Ncur?/Nfir?,Ngood?/Nsec?]

Ngood? ∈ Network ∧ Ngood? /∈ CompromisedNode ∧ Ncur? ∈ Network

This schema uses two nodes as input, Ncur and Ngood. Ngood becomes a legitimate neighbour

of node Ncur because it belongs to the network but does not belong to a set of compromised

nodes. A malicious neighbour is defined by:

MaliciousNeighbour

ΞWSN

Ncur?,Nbad? : Node

Connected [Ncur?/Nfir?,Nbad?/Nsec?]

(Nbad? /∈ Network ∨ Nbad? ∈ CompromisedNode) ∧ Ncur? ∈ Network

Nbad is a malicious neighbour of node Ncur if either Nbad does not belong to the network or

belongs to a set of compromised nodes.

3.3.2.6 Cryptography

The cryptography schema describes all the keys or cryptography used in a node. A PrivateKey

is a unique key assigned to a node whereas the PairKey is a key shared by each node within a

set of nodes, particularly its communicating neighbours. Note that further details about keys

may be added here. We refer to private key as a node key that is not shared with any other

node in the network at the the deployment stage. As the specification states a private key is

not shared between any of the legitimate nodes. However, the base station or sink might share

private keys of all the nodes. Also, for each neighbor of a node Ncur, in the network, there is a

pair of keys which are shared between the Ncur and the neighbour. The cryptography schema

is defined as:

32

Cryptography

PrivateKey : Node ½ KEY

PairKey : Node ½ PKEY

ΞWSN

∀Ncur ,Nother : Node; AllNeighbor : PNode | Ncur /∈ CompromisedNode ∧
Nother /∈ CompromisedNode ∧ AllNeighbor = NeighborNcur ∧
Nother .NodeIsSink = FALSE • ∀Nneigh : Node | Nneigh ∈ AllNeighbor

• ∃Kpair : KEY • PrivateKeyNcur 6= PrivateKeyNother ∧
Kpair ∈ PairKeyNcur ∧ Kpair ∈ PairKeyNneigh

3.3.2.7 Eavesdrop Key

This schema defining the eavesdropping of a shared key, PairKey, by an attacker is as:

EavesdropKey

ΞCryptography

Ncur? : Node

∃Ngood ,Nbad : Node; Kpair : KEY

| LegitimateNeighbour [Ncur?/Ncur?,Ngood/Ngood?]

∧ MaliciousNeighbour [Ncur?/Ncur?,Nbad/Nbad?]

∧ Kpair ∈ PairKeyNcur?

∧ Kpair ∈ PairKeyNgood • PairKey ′Nbad = PairKeyNbad ∪ {Kpair}

Where node Ncur is the node being considered and is the input in this schema. The conditions

predicate the existence of at least a legitimate neighbour within the radio range of Ncur to

which Ncur was communicating otherwise the data cannot be eavesdropped. There is also a

malicious neighbour node, Nbad, in the node’s radio range from which the attack is launched.

Kpair is the pair key shared between Ncur and Ngood for communication and the EavesdropKey

operation means an attacker’s node Nbad also gets that key and is added into its pair key list.

Note that this operation is also possible when an attacker fabricates keys for a legitimate node

without capturing the node Ncur. However, this process does not involve capturing the private

(individual key) of node which is not exchanged in message passing with neighbours.

3.3.2.8 Node Capture

The capture of a node by an attacker is defined using the following schema:

33

NodeCapture

ΞWSN

ΞCryptography

Ncur? : Node

∃Ngood ,Nbad : Node

| Ncur?.NodeIsSink = FALSE ∧ LegitimateNeighbour [Ncur?/Ncur?,Ngood/Ngood?]

∧ MaliciousNeighbour [Ncur?/Ncur?,Nbad/Nbad?]

• PairKey ′Nbad = PairKeyNbad ∪ PairKeyNcur? ∪ {PrivateKeyNcur?}
∧ CompromisedNode = CompromisedNode ∪ {Ncur?}

The node Ncur is the node being considered and is the input in this schema. The base station

is assumed to be secure and cannot be compromised. There is at least one legitimate neighbour

within the radio range of Ncur to which Ncur communicates. There must also be a malicious

node, Nbad, from which the attack is launched. Once the node is captured, all its keys including

the private key are captured by the malicious node or attacker.

3.3.2.9 Encryption Fail

Encryption is considered to have failed in a node if either the current node has been captured

or its key has been eavesdropped:

EncryptionFail

ΞWSN

ΞCryptography

Ncur? : Node

NodeCapture[Ncur?/Ncur?] ∨ EavesdropKey [Ncur?/Ncur?]

3.4 Proposed Formal Specifications for Denial of Service At-

tacks

Now that the basic operations of WSN have been defined in section 3.3, let us define DoS

attacks using Z specifications:

3.4.1 Wormhole Attack

In a wormhole attack, an attacker records packets (or bits) at one location in the network,

tunnels them to another location, and retransmits these into the network. A wormhole attack

not only hinders correct routing but is also the precursor to many other attacks such as black

hole, sink hole, etc. In a wormhole attack the tunnel is usually a low latency link. However,

34

wormhole is tunnel spanned over multiple hops and we assume that the delay in propagation

depends on the number of hops a message has traveled, thus making the wormhole tunnel a low

latency link. Perhaps, the specifications can be improved by defining a HopCount metric and

by considering that the two legitimate nodes at the end of the tunnel are more that four hops

away (HopCount>4). This may be the subject of future work. Our definition of a wormhole

attacker is described in the following schema:

WormholeAttack

ΞWSN

Nleg1?,Nleg2? : Node

∃Nmal1,Nmal2 : Node

| Connected [Nmal1/Nfir?,Nmal2/Nsec?] ∧ ¬ Connected [Nleg1?/Nfir?,Nleg2?/Nsec?]

∧ MaliciousNeighbour [Nleg1?/Ncur?,Nmal1/Nbad?]

∧ MaliciousNeighbour [Nleg2?/Ncur?,Nmal2/Nbad?] • ∀m1,m2 : Message

• (Transmit [Nleg1?/Ntra?,m1/Mtra?] ⇒ Receive[Nleg2?/Nrec?,m1/Mrec?]

∧ ¬ Receive[Nleg1?/Nrec?,m1/Mrec?]) ∧ (Transmit [Nleg2?/Ntra?,m2/Mtra?]

⇒ Receive[Nleg1?/Nrec?,m2/Mrec?] ∧ ¬ Receive[Nleg2?/Nrec?,m2/Mrec?])

In this type of attack, a tunnel (can be wired or wireless) exists between the two malicious nodes

Nmal1 and Nmal2. Nmal1 is the malicious hidden neighbour in the legitimate node Nleg1’s radio

range and Nmal2 is the malicious neighbour of Nleg2. As the two legitimate nodes Nleg1 and

Nleg2 are not connected i.e. there is no link between the two, they must not hear each other.

Due to the wormhole tunnel, whatever the two nodes transmit is received by the other. Thus

a virtual link exists between the two legitimate nodes via the wormhole tunnel. Note that

both legitimate nodes never receive back their own message indicating that the attacker used

a hidden channel for tunnelling.

3.4.2 Invisible Node Attack (INA)

Researchers define the wormhole attack in two different ways. One definition uses the out of

bound channel as defined in Section 3.4.1 where two attacker nodes are required. Some argue

that the wormhole is even possible with a single attacker’s node using the packet relay. But

the packet relay is also defined as an invisible node attack (INA) by many researchers and

we also treat it as a different type of attack from wormhole attack in which, the attackers

range is different, more devastating and the use of hidden channel means the attackers remain

undetected. On the other hand, in INA the radio range is limited by the attacker’s capability

and because it uses the same channel and the nodes also detect the same message coming back

to them. Note that in the specifications of INA, the same attacker is a neighbour of both the

legitimate nodes. This makes the specifications of INA quite similar to a wormhole attack in

35

a sense that there is one malicious node which is a neighbour of both unconnected legitimate

nodes and the legitimate nodes can receive the same message back when an attack is launched.

InvisibleNodeAttack

ΞWSN

Nleg1?,Nleg2? : Node

∃Nmal : Node | ¬ Connected [Nleg1?/Nfir?,Nleg2?/Nsec?]

∧ MaliciousNeighbour [Nleg1?/Ncur?,Nmal/Nbad?]

∧ MaliciousNeighbour [Nleg2?/Ncur?,Nmal/Nbad?] • ∀m1,m2 : Message

• (Transmit [Nleg1?/Ntra?,m1/Mtra?] ⇒ Receive[Nleg2?/Nrec?,m1/Mrec?]

∧ Receive[Nleg1?/Nrec?,m1/Mrec?]) ∧ (Transmit [Nleg2?/Ntra?,m2/Mtra?]

⇒ Receive[Nleg1?/Nrec?,m2/Mrec?] ∧ Receive[Nleg2?/Nrec?,m2/Mrec?])

3.4.3 Black hole Attack

In a black hole attack, a malicious node joins the network and then either discards all the

messages it receives or performs selective forwarding. Our specifications for this attack is as

follows:

BlackholeAttack

ΞCryptography

Ncur?,Nbh? : Node

∃Nc : Node | Nc ∈ Network ∧ Nbh?.NodeIsSink = FALSE

∧ Connected [Ncur?/Nfir?,Nbh?/Nsec?] ∧ Connected [Nbh?/Nfir?,Nc/Nsec?]

∧ (WormholeAttack [Ncur?/Nleg1?,Nbh?/Nleg2?] ∨ NodeCapture[Nbh?/Ncur?])

∨ InvisibleNodeAttack [Ncur?/Nleg1?,Nbh?/Nleg2?]

• ∃m1,m2 : Message | m1.MsgData = m2.MsgData

• Transmit [Ncur?/Ntra?,m1/Mtra?] ⇒ Receive[Nbh?/Nrec?,m1/Mrec?]

∧ ¬ Transmit [Nbh?/Ntra?,m2/Mtra?]

Ncur and Nbh are the input nodes with Ncur being the current node from which the attack

is launched while Nbh is the node that acts as the black hole neighbour. Nc is another node

that is part of the network and is connected to the Nbh node to which Nbh can forward the

data. Also Nbh is not a sink so node Nbh must forward the data it receives in normal conditions.

Nbh becomes a black hole because either this node is captured or there is a hidden attacker

(wormhole tunnel/INA) between Nbh and Ncur. We have already defined encryption failure

as a result of Nbh having been captured by the attacker or its keys captured via other means.

In order to perform a black hole attack node Nbh upon receiving data from Ncur, does not

36

retransmit it. It is worth noting that the messages m1 and m2 have the same data but different

sender and destination IDs.

3.4.4 Spoofing Attack

A spoofing attack is the process of altering or replaying routing information (data, beacon or

acknowledgement packets). It can lead to the creation of inaccurate or unstable routes. A

spoofing attack can be defined as (i) direct spoofing, in which an attacker node, upon receiving

a message, changes the contents of the message before retransmitting it or (ii) indirect spoofing,

in which an attacker, node upon eavesdropping a message, sends it to another node by modifying

the message. Indirect spoofing is defined as:

IndirectSpoofing

ΞCryptography

Ncur?,Natk? : Node

∃Ngood : Node | Ngood ∈ Network ∧ Connected [Ncur?/Nfir?,Natk?/Nsec?]

∧ Connected [Ncur?/Nfir?,Ngood/Nsec?] ∧ EncryptionFail [Natk?/Ncur?]

• ∃m1 : Message | m1.MsgSender = Ncur?.NodeID ∧
m1.MsgDestination = Ngood .NodeID • ∃ d : N | m1.MsgData = d

• Transmit [Ncur?/Ntra?,m1/Mtra?] ⇒ Receive[Natk?/Nrec?,m1/Mrec?]

⇒ (∃m2 : Message | m2.MsgSender 6= m2.MsgSender ∨
m2.MsgDestination 6= m1.MsgDestination ∨ m1.MsgData 6= d

• Transmit [Natk?/Ntra?,m2/Mtra?])

This schema has two inputs the current node, Ncur, and an attacker neighbour node, Natk.

There exists a legitimate node, Ngood, connected to Ncur to which Ncur transmits the message.

As Natk is a neighbour of Ncur it also receives this message and modifies some of the contents of

the message. It then retransmits this spoofed message into the channel. Note that the contents

of m2 are not correct and an attacker has either modified parts(s) of or the whole message.

Direct spoofing is defined as:

DirectSpoofing

ΞCryptography

Ncur?,Natk? : Node

Connected [Ncur?/Nfir?,Natk?/Nsec?] ∧ EncryptionFail [Natk?/Ncur?]

∃m1 : Message | m1.MsgSender = Ncur?.NodeID ∧ m1.MsgDestination = Natk?.NodeID

• ∃ d : N | m1.MsgData = d • Transmit [Ncur?/Ntra?,m1/Mtra?]

⇒ Receive[Natk?/Nrec?,m1/Mrec?] ⇒ (∃m2 : Message | m2.MsgSender 6=
Natk?.NodeID ∨ m2.MsgData 6= d • Transmit [Natk?/Ntra?,m2/Mtra?])

37

In a direct spoofing attack the attacker, upon receiving a message, either retransmits it with a

fake sender or alters its data. Note that the destination is not important here rather, the node

ID to which the message is forwarded is more important. The spoofing attack is of either direct

spoofing or indirect spoofing:

SpoofingAttack

ΞCryptography

Ncur?,Natk? : Node

DirectSpoofing ∨ IndirectSpoofing

3.4.5 False-Injection Attack

A false injection attack refers to the introduction of extra data or control packets into the

network. It consumes bandwidth and may cause routing loops. The aim of this attack is to

consume resources wastefully. In our definition of a false injection attack a malicious neighbor

Natk, of legitimate node Ncur, injects extra message packets into a network. Unlike the spoofing

attack, the message injected might not be the same as the one received earlier (Mr) or some

fake message, Mf. Therefore, the main aim here is to add extra traffic. It is also different from

INA as the attacker may inject the messages many times.

FalseInjectionAttack

ΞCryptography

Ncur?,Natk? : Node

MaliciousNeighbor [Ncur?/Ncur?,Natk?/Nbad?]

∃Mr ,Mf : Message | Receive[Natk?/Nrec?,Mr/Mrec?]

• ∃FalseMsgs : PMessage

• ∀Mt : Message | Mt ∈ FalseMsgs ∧ (Mt = Mr ∨ Mt = Mf)

• Transmit [Natk?/Ntra?,Mt/Mtra?]

3.4.6 Sybil Attack

A sybil attack occurs when a malicious node presents multiple identities simultaneously within

the network. Such a node may be used to subvert the routing protocols that rely on redun-

dancy, such as multi-path protocols. The specifications of a sybil attack states that a malicious

neighbour, Natk uses a set of fabricated IDs, FalseIds, instead of using its original node ID

as message sender in the message transmission. The fabricated IDs must be an ID of a node

present in the Network. How the attacker gets these IDs is not important here.

38

SybilAttack

ΞCryptography

Ncur?,Natk? : Node

MaliciousNeighbor [Ncur?/Ncur?,Natk?/Nbad?]

∀m : Message; FalseIds : PN | m.MsgSender ∈ FalseIds ∧ Natk?.NodeID /∈ FalseIds

• ∃N : Node | N .NodeID ∈ FalseIds ∧ N ∈ Network

• Transmit [Natk?/Ntra?,m/Mtra?]

3.4.7 Node Replication Attack

A node replication attack is similar to a sybil attack except that the attacker uses the same

identity (SameId) for multiple nodes. Thus, a single adversary node may represent many virtual

locations in the network. These multiple nodes must be MaliciousNodes because these are

either the attackers or compromised nodes. All these malicious nodes have a common ID i.e.

SameId. One of these malicious nodes, Natk, lies within the radio range of the current node

Ncur. Thus whenever Natk transmits a message, the sender ID is always the ID, SameId.

NodeReplicationAttack

ΞCryptography

Ncur?,Natk? : Node

∃MaliciousNodes : PNode; SameId : N; m : Message | ∀Badnode : Node

• Badnode ∈ MaliciousNodes ∧ Badnode.NodeID = SameId ∧ (Badnode /∈ Network

∨ Badnode ∈ CompromisedNode) ∧ m.MsgSender = SameId ∧ Natk? ∈ MaliciousNodes

∧ Connected [Ncur?/Nfir?,Natk?/Nsec?] • Transmit [Natk?/Ntra?,m/Mtra?]

3.4.8 Hello-Flood Attack

A hello flood attack involves the use of a high power transmitter by an attacker to broadcast

routing or other information, with the purpose of convincing every node within the radio range

that the attacker is a legitimate neighbour. The attacker may then be established in routes that

are unusable by other nodes since their transmitters are much less powerful. The specifications

state that attacker node Natk has a number of nodes within its radio range from the Network

described as allnodes. Note that these links are unidirectional (InRange), e.g. Natk can

be a laptop class or a powerful transmission node i.e. can broadcast the message with large

transmission power. Only some of the nodes, somenodes, have this attacker node within its

radio range as well. The remaining nodes do not have Natk in their radio range and the current

node Ncur, is part of that group. Therefore, whenever an attacker node transmits, it is heard

by all nodes and thus could convince most nodes in the network that Natk is their neighbour.

39

HelloFloodAttack

ΞCryptography

Ncur?,Natk? : Node

∃m : Message; allnodes, somenodes : PNode

| somenodes ⊆ allnodes ⊂ Network ∧ somenodes 6= ∅ ∧ Ncur? ∈ allnodes \ somenodes

• ∀Nall ,Nsome,Nrem : Node | Nall ∈ allnodes ∧ Nsome ∈ somenodes

∧ Nrem ∈ allnodes \ somenodes • InRange[Natk?/Ncen?,Nall/Nran?]

∧ InRange[Nsome/Ncen?,Natk?/Nran?] ∧ ¬ InRange[Nrem/Ncen?,Natk?/Nran?]

∧ Transmit [Natk?/Ntra?,m/Mtra?]

3.4.9 Jamming Attack

Jamming is a physical layer attack instigated by creating radio noise in a particular phys-

ical area. The specifications for a jamming attack state that there is a malicious neigh-

bour, Natk, within its radio range. When Ncur transmits a messages some of its neighbours

(someneighbors) receive this transmission but the remaining neighbouring nodes do not re-

ceive due to the RF noise created by Natk. Note that the receiving neighbours might be null

as stated by the specifications. Thus, jamming can prevent a few or all neighbours to receive

the messages transmitted by the node Ncur.

JammingAttack

ΞCryptography

Ncur?,Natk? : Node

MaliciousNeighbor [Ncur?/Ncur?,Natk?/Nbad?]

∀m : Message; allneighbors, someneighbors : PNode | someneighbors ⊆ allneighbors

⊂ Network ∧ someneighbors 6= ∅ ∧ allneighbors = NeighborNcur?

• ∀Nall ,Nsome,Nrem : Node

| Nall ∈ allneighbors ∧ Nsome ∈ someneighbors

∧ Nrem ∈ allneighbors \ someneighbors • Connected [Ncur?/Nfir?,Nall/Nsec?]

∧ Transmit [Ncur?/Ntra?,m/Mtra?] ⇒ Receive[Nsome/Nrec?,m/Mrec?]

∧ ¬ Receive[Nrem/Nrec?,m/Mrec?]

3.4.10 Sinkhole Attack

The specifications for this attack are:

40

SinkholeAttack

ΞCryptography

Ncur?,Natk? : Node

HelloFloodAttack [Ncur?/Ncur?,Natk?/Natk?]

∨ SpoofingAttack [Ncur?/Ncur?,Natk?/Natk?]

∨ WormholeAttack [Ncur?/Nleg1?,Natk?/Nleg2?]

∨ InvisibleNodeAttack [Ncur?/Nleg1?,Natk?/Nleg2?]

⇒ Network = Network ∪ {Natk?} ∧ BlackholeAttack [Ncur?/Ncur?,Natk?/Nbh?]

In a sinkhole attack, a malicious node, Natk, attracts all the surrounding traffic by making

itself attractive to all nodes within the radio range. This attack is possible if Natk with a long

range can provide nodes within the radio range a smaller hop path (hello flood), claim that

Natk is the base station itself (or near to the base station) by a spoofing attack, or provides a

shorter/faster hop path using wormhole/INA. After adding itself to the network by becoming

attractive the attacker launches a black hole attack and thus drops data packets.

3.5 Chapter Summary

This chapter formally defines WSNs and DoS attacks which are considered in this research.

The aim of these specifications is (i) to define the attacks separately as one generalized attacker

model does not have sufficient details and (ii) to present specifications of different DoS attacks

in a precise and formal manner. The specifications are represented from grass root level so Z

is used as a formal mathematical notation useful for detailed description. The use of accepted

programming/modelling techniques such as Z provides advantages that researchers agree on

the same specification and the specification, which should be readable and acceptable, so that

a solutions to DoS attacks can be found on the same sound basis. It also gives the research a

possibility to annotate the DoS specification in a structured way thus enabling future modifi-

cation. Many published and widely recognized WSN attacks are formally defined, a task which

has not been done before. Researchers have used different definitions for same attacks and there

exists no concise and formal definition so far. This research attempts to fill this gap by writing

the specifications of DoS attacks in a formal way. Once the specifications of the attacks were

made using Z notation; this work can assist in the development of a formal framework used to

check different routing protocols. This can be seen as the foundation where specifications can

be improved in the future. Moreover, these specifications present just an abstract model for

different attacks and more detailed models can be extracted in conjunction with the specifica-

tions of a routing protocol thereby assisting the researchers in detecting the vulnerabilities of

the protocols against different DoS attacks.

41

Chapter 4

Formal Analysis of Routing

Protocols

4.1 Introduction

This dissertation presents an innovative design method (a combination of formal model-checking

and simulation) to address denial of services (DoS) attacks on WSN routing. Formal modelling

is applied to detect the attacks in some published routing protocols, the results of which are

supported by computer simulation. It also confirms the results achieved by formal modelling are

repeatable. Many DoS attacks have been recognized in the literature [15, 13]. The vulnerability

of routing protocols to these attacks has been discussed and new protocols have been developed

or older protocols modified to guard against them [15]. But the techniques used so far generally

rely on visual inspection and simulation and often are not adequate for the detection of worst

case scenarios. The work described in this chapter investigates to what extent the application of

formal methods leads to more effective bug detection in routing protocols for WSNs. Finite state

models of protocols are described and simple specification properties are checked. Properties

are checked for all possible topologies of N nodes, where N is typically small (< 6) in order

to allow automatic verification to complete with the available computing resources (memory

and CPU time). This has proved to be an effective bug-hunting approach and weaknesses in

existing protocols have been discovered. The work presented here extends and improves the

methodology adopted by Andel [227]. This chapter is organized as follows: Section 4.2 explains

the methods adopted to analyse previous protocols and to evaluate rigorously a newly developed

protocol for use against DoS attacks. A formal framework is presented in Section 4.3 which

is used to the resilience of wireless routing protocols against DoS attacks. An example of a

routing protocol, flooding, is also presented in Section 4.4 to illustrate the application of the

formal framework. The application of the framework to different routing protocols is explained

in Sections 4.5 to 4.10. Finally, a summary of the chapter is presented in Section 4.11.

42

(a) Methods adopted main block diagram (b) Formal Framework Block Diagram

Figure 4.1: Approach adopted in the research

4.2 Methods Adopted in the Research

This research addresses DoS attacks on WSN routing. Formal modelling (Section 2.6), is

applied to detect the attacks in published routing protocols and a newly developed protocol.

The results achieved from formal evaluation are supported by computer simulation. By using

formal methods, not only are the assumptions of protocols clearly modelled, but also all possible

behaviours of the models can be examined for error conditions. This enables strong guarantees

on behaviour for a range of scenarios, including scenarios in which nodes can fail. Formal model

checking has two main advantages over other techniques (simulation and testing):

1. There is no need to build a prototype of the system,

2. It is possible to check all execution paths of the system. This is very important because

simulation or testing is likely to examine only a small fraction of possible states and

cannot provide assurance that the whole system behaves as expected (some errors may

remain hidden until the system is in the production stage).

The methods adopted to analyse wireless routing protocols is shown in Figure 4.1(a). The

protocol state model is a semi formal definition of a routing protocol. The semi formal definition

includes message sequence diagrams and message passing expressed as formal equations. Both

high level and low level models are then generated from the state model of a routing protocol.

The high level model was converted into a formal model and specification properties defined to

check the presence of any faults (vulnerability to attacks) present in the routing protocol. The

properties included basic sanity checks (confirmation that the model possesses some fundamen-

tal properties, debugging checks, etc.), the liveness (something good will eventually occur) and

the safety (nothing bad ever occurs). In case a property fails, the formal model-checker auto-

matically generates a trace providing the reason as to how the attack occurred in the protocol.

43

The low level model is then used to implement the protocol in a low level simulator (and perhaps

a practical implementation on hardware). The same topology were used to confirm that the

results of the formal model could be replicated by simulation. The topologies are mostly fed

manually one at a time and are the model is then checked against properties. This is done to

save state space. For certain cases, when the model is simple an automatic topology generator

is used inside the model.

The simulator used is TOSSIM which operates at the bit level (high fidelity). Moreover, the

TOSSIM simulation code can directly be programmed on hardware without any modification.

The practical implementation is only required if one wants to check the real world radio model.

Environmental effects are not the main concern in this research so the practical implementation

is used sparingly.

This research deliberately considered only routing protocols whose semi-formal definitions

are available in the literature. Thus, in order to check a routing protocol using this framework,

the only requirement is to write the protocol specifications in a semi-formal notion or as message

sequence diagrams. The drawback however in the framework is that the process is not automatic

and a formal model has to be developed manually.

4.3 Formal Framework

In order to rigorously check routing protocols against DoS attacks, a modelling framework has

been developed that supports an automatic analysis of the protocols. Models were initially

developed and analysed using PROMELA and Spin [47, 196]. But it was discovered that

more compact and efficient models can be developed in Uppaal [197] and Spin/PROMELA was

abandoned.

4.3.1 The Framework

The framework comprises a model for the wireless medium and models representing wireless

nodes acting in one of the following roles: source, sink (BS), normal node or attacker. Each

wireless node model is instantiated from a Uppaal template that represents the node behaviour

as determined by the role in the protocol and the attack under consideration. The block

diagram of the formal framework is shown in Figure 4.1(b). The formal model comprises 5

main parts: attacker model, sink model, channel model, event generator (EG) model and node

models. The protocol is checked against different DoS attacks independently, thus the attacker

model is replaced for each specific attack. Apart from INA and wormhole attackers, which are

modelled separately (the attacking node(s) are hidden and forward all messages except data),

the remaining attacks are incorporated inside the node model in a function GenerateAttack().

A black hole is modelled simply by modifying the node model which forwards all messages

correctly except data messages. A hello flood attack is modelled by modifying the connection

44

matrix to represent the fact that the attacker can establish unidirectional link with all the

other nodes in the network. A sinkhole attacker is modelled by having the attacker, initiate the

broadcast of a BS. Finally, the spoofing attacker is a node model which transmits the messages

by replacing the ID of the source node instead of its own.

The channel model represents the topology and the capacity for communication between

both legitimate (including BS) and malicious nodes. The channel model is explained in detail

later in this section. The remaining three models are developed using the high level model of a

particular routing protocol.

The node model is developed by transforming the semi formal information, in the protocol

state model, into a formal way. The node model contains a number of states depending on the

protocol’s specifications. Each particular message passed between nodes in a protocol enables

at least 2 states in the node model ’send’ and ’receive’. Sometimes more than 2 states are

needed, e.g. before sending the data from the source node a ’sense’ state models sensing data

from environment. Apart from these states there is always a state in which a node does nothing

and remains idle (listen state). Some other states in the node model are the ’finish’ and ’initial’

states, indicating the starting and the terminating states of a protocol.

Multiple concurrent node models are used in the formal framework because WSN comprised

of more than one node. The node can be a source, a target, the destination or relay (inter-

mediate) depending upon particular routing protocol requirements. The base station (BS) or

sink is also a node. But in order to save the state space, sometimes, the framework models

it separately from the node model. The reason for this is that the sink model does not em-

ploy complex functionality as required in nodes and some details can be removed in modelling.

When an N node network is employed with one BS, there are N-1 node models and one sink

model.

Finally the event generator model is used to generate different events required in the pro-

tocol. The events are triggers to enable nodes to sense data from environment, generating a

timer’s timeout or finishing a particular phase, etc. In Uppaal, sometimes, instead of using

quantified time (clocks), an event generator is employed to generate timeouts to indicate that

a phase has been completed.

4.3.2 Modelling Topologies

The essence of our approach is to model N nodes and to check a network’s resistance against

DoS attacks for all possible network topologies. A network topology is represented by a boolean

N × N matrix, where N is the total number of nodes in the network. A ’1’ in the matrix at

(i , j) indicates the presence of an RF link between nodes i and j ; ’0’ indicates the absence of

an RF link between nodes i and j .

This approach has been used by other researchers [214, 228, 37] to model network topologies.

For a 2 node network all possible topologies and the matrix values are shown in Figure 4.2(a).

45

(a) All possible 2 node topologies (b) Topology matrix for a 4 node network

Figure 4.2: Examples of Connectivity Matrix

The arrow head in the figure indicates that message can be received by that node. The four

possible cases are: (i) A and B are not connected (ii) B can hear A (iii) A can hear B and (iv)

Both A and B can hear one another. A larger 4 node network is shown in Figure 4.2(b) for a

single topology. All the links are bidirectional so the arrow notation has been dropped. The

framework checks all the possible topologies for a given number of nodes N.

Table 4.1: The number of symmetric and asymmetric topologies for a given number of nodes

Nodes Number of topologies Number of topologies

for Symmetric links for Asymmetric links

N 2
N (N−1)

2 2N (N−1)

2 2 4

3 8 64

4 64 4096

5 1,024 1,049,000

6 32,768 1,074,000,000

The number of possible links is shown by Table 4.1 for different node networks. The num-

ber of topologies increase quadratically if the links are asymmetric instead of symmetric. So

symmetric links are usually assumed. For asymmetric links, networks of up to 4 nodes were

checked. Note that some protocols, including the new protocol developed in this research, re-

move unidirectional links before routing data and thus there is no need to check for asymmetric

cases. Moreover, checking all the possible combinations for with symmetric links is not neces-

sary. This is because in some of these networks the source is not connected to the sink. As the

research considers only attacks that prevent data from reaching the sink these topologies are

46

(a) Matrix converted from array for 5 node

network with symmetric links

(b) Array used in a 5 node network

Figure 4.3: Connectivity Matrix Implementation

omitted. In symmetric networks the matrix can be represented simply by an array as shown in

Figure 4.3(b).

4.3.3 Assumptions for the Formal Framework

For the formal framework it is assumed that:

• The channel is error-free, i.e. no message is lost in the communication. The presence

of bugs detected in such an ideal radio environment is a clear indication that a protocol

will exhibit similar problems in a more realistic RF environment. When required, a

noise model is introduced in the model that enables a network to lose some messages

non-deterministically.

• The channel is collision free. It is assumed that the link layer protocol eliminates loss

resulting from collisions.

• Networks have symmetric links unless stated otherwise.

• Network contains at least one legitimate path (without an attacker) between the source

and sink nodes.

4.3.4 Modelling a Channel

Broadcast message passing in Uppaal conveniently models WSN message passing. The channel

is modelled using a global flag ChannelBusy to indicate whether a channel is busy or free. This

flag can be used to check if a node is allowed to broadcast a message or not. Multiple receptions

47

are modelled by another variable, BusyNodes. The node models wait, where appropriate, until

this variable becomes 0, signalling that all the recipients have performed their necessary actions

and are now free. Message reception is performed by checking the Topology matrix. In case the

message is unicast instead of broadcast, the guard contains additional information so that only

the message addressed to a node is received. The rest of the nodes ignore this message. The

contents of the message are declared as global variables starting with Msg . Once a node needs to

transmit any message it sets the ChannelBusy flag and then updates these global variables. The

receiving nodes increment BusyNodes and read these global variables. No further transmission

is allowed unless the ChannelBusy flag is cleared and BusyNodes becomes 0. Unicast messages

have an additional guard for Msg ID. However, in most cases, another global variable Node is

used to indicate the actual message sender in the Topology matrix. This is because the Msg ID

is a field of a message and is sometimes used as a sender and destination ID for some protocols

(Section 4.5).

4.4 The Flooding Protocol

To show the application of the formal framework and the methods adopted in this thesis an

example of the Flooding protocol is presented. In Flooding, each node, on receiving any data

packet, broadcasts it to all of its neighbours. This process is repeated until the packet arrives

at the sink or destination or the maximum number of hops for the packet is reached. Duplicate

message packets are suppressed to avoid duplicate messages sent by the same node.

4.4.1 Semi Formal Notation

The first step is to express this informal definition of the protocol as a series of formal commu-

nications (equations). These are then later transformed into a formal model. There is only one

message exchanged between the nodes i.e. the broadcast of data. The semi formal notation for

this message is:

N → ∗ : (data, IDN)

The notation A → B : M is used in this thesis to denote that the node A transmits the message

M to the node B . A broadcast transmission is indicated by the use of ∗ in place of B indicating

that message M is transmitted to all nodes within radio range of A.

4.4.2 Formal Model

As indicated earlier, a formal model in the framework comprises of (i) a send and a receive

location indicating each message exchanged between nodes in the protocol (ii) additional func-

tions in a protocol e.g. sense environment location (iii) a start and finish location and (iv) a

listen location in which a node continuously monitors the channel to receive a message. These

48

(a) Source model (b) Sink model

(c) Node model

Figure 4.4: UPPAAL model for Flooding protocol

are evident by looking at the model parts which comprises a source node, a sink node and a

node model as shown in Figure 4.4(a) 4.4(b) and 4.4(c) respectively. As only data messages are

exchanged between nodes, the two respective locations are SEND DATA and REC DATA.

The source model acts as source node, this simply senses data (SENSE) and transmits it

(SEND DATA). In later models, an event generator (EG) model is used to trigger a node to

sense data in this case the EG model is not required. The first location (initial) of the source

model START is critical. This means this location is restricted and among all the active states

the only possible transition is from this location. Node topologies are generated on taking this

transition using the TopologyMaker() function, which simply converts the array (presented in

Figure 4.3(b)) into the Topology matrix (presented in Figure 4.3(a)). The next location in the

source model (SENSE) is also critical immediately enabling the next transition.

The source node transmits the data as indicated by ’Data!’ and the receiver nodes receive

49

Figure 4.5: Confirmation by Uppaal that a topology satisfies the property

it using ’Data?’. As the message is broadcast all node models will receive this message. Each

node model utilizes the Topology matrix in a guard to determine if it is within the transmiting

node’s radio range (can receive the message). The receiver node increments the BusyNode

variable to indicate there is at least one node busy in some receiving operation. This variable is

decremented when the receiver node becomes free again (FINISH location). The receiver node

then continuously monitors the ChannelBusy flag and can only transmits once this flag is false

(guard before the REC DATA location). Once the flag is found to be false, the node enters

the transmission phase; the node sets the ChannelBusy flag and transmits immediately. Note

that the SEND DATA location is critical indicating this state must be executed next time at

all costs. Once data is transmitted (Data!), the ChannelBusy flag becomes false again allowing

any other node to transmit. Finally, the global variable Msg ID, which indicates the sender ID

in the flooding protocol, is assigned the node’s current ID (NID) before message transmission.

The value of this global variable is updated only after a node makes the ChannelBusy flag true.

This prevents access to this global variable by any other node at that time. Similarly in all the

other protocols examined in this thesis, all message fields (starting with Msg) are updated by

making ChannelBusy true. The implemented flooding protocol will also confirm if the source

and the sink are connected in a given topology. If both are connected the data message from

the source will eventually reach the sink.

The node model represents all the intermediate nodes. A node stays in the LISTEN location

until it receives a data message (REC DATA). It then waits for the channel to become free and

50

(a) Original Uppaal Trace (b) Trace presented in this Thesis

Figure 4.6: Trace generated by Uppaal in case the property fails

retransmits the data (SEND DATA). When the channel becomes free, it moves to the FINISH

location and deadlocks there. A sink model remains in the LISTEN location until it receives

the data and then moves to the REC DATA location.

4.4.3 Verification

The verification process involves first confirming some sanity checks e.g. whenever a source

node senses data it will always send it. Formally this property can be written as:

Source.SENSE DATA Ã Source.SEND DATA

The most important test is the data transport property that whenever a source model trans-

mits the message (SEND DATA), it leads to the sink model receiving that data (REC DATA):

Source.SEND DATA Ã Sink .REC DATA

Note that the model allows transmission of only a single message so the above property

can confirm the data transport check. The above properties are satisfied for all possible com-

binations of 5 nodes. By applying the above property to the flooding protocol, for all possible

combinations of 5 nodes, topologies in which the source is not connected to the sink are elim-

inated. A successful verification of the above property in Uppaal is shown in Figure 4.5 and

a trace generated by Uppaal in case the above property fails is shown in Figure 4.6(a). It is

obvious that the property fails because although source node has sensed a data but the sink

model remains in the LISTEN location. The sink model hasn’t received transmitted message

from any node that will move it to the REC DATA location.

51

4.4.4 The Trace

The trace is converted into another graphical form as shown in Figure 4.6(b). The nodes are

represented using circles annotated with the node ID. The sink or BS is represented by B ,

a source node is denoted by S , an attacker node is represented by A and normal nodes are

represented by N . As the network contains multiple node models, these are represented using

IDs Na, Nb,... or N1,N2,... etc. Messages are shown using arrows with the arrow tail indicating

the message sender. The messages are numbered as 01,02, and message details are written

separately. The message format employed in Uppaal is as follows: (Type, ID). Type is the

message type (data in this case) and ID is the sender node’s ID. This trace shows that there

are four data messages exchanged between the nodes and data does not reach sink. Note that

Uppaal automatically checks for all possible combinations when the property is tested for proof.

In case the property fails in a message sequence, the trace is generated.

The research is based on checking the vulnerability of routing protocols against the DoS

attacks, and DoS attacks are aimed at preventing data from the source reaching the destina-

tion (sink), there is no point in considering topologies where the source and the sink are not

connected. For the analysis of future protocols such topologies are therefore avoided.

4.5 The TinyOS Beaconing Protocol

4.5.1 Protocol Description

We begin with an analysis of the TinyOS protocol [15], one of the simplest WSN routing

protocols. This protocol constructs a spanning tree rooted at the BS. The data then flows from

the source nodes back to the BS using paths in the spanning tree. Two types of messages are

involved: hello beacon messages and data messages. A brief description of the protocol is as

follows.

The BS periodically broadcasts a hello beacon which is flooded throughout the network.

B → ∗ : (beacon, IDB)

A node N , on first hearing a hello beacon, makes the transmitting node its parent and

ignores any future beacons. The node then rebroadcasts the beacon with its own ID:

N → ∗ : (beacon, IDN)

This process is repeated throughout the network until the spanning tree is established. A source

node S , upon sensing a significant event in its environment, unicasts the data back to its parent

P . Data messages are unicast from the node to the parent node until the BS is reached.

52

Figure 4.7: Node model for the TinyOS beaconing Protocol

S → P : (data, IDP ,PAYLOAD)

4.5.2 Formal Model

The model used to evaluate the TinyOS beaconing protocol consists of an event generator model

(Figure 4.8(c)), a sink model (Figure 4.8(b)), an attacker model and node model (Figure 4.7).

The event generator (EG) model generates a timeout to move all the nodes from their setup

phase (SETUP PHASE) to their data forwarding phase (DATA FORWARD). The EG model

moves to the next phase only when variable BusyNodes becomes 0 indicating that all nodes

become free (Section 4.3.4). The sink model consists of 4 locations. The START location is

the initial location that is critical; so the sink model immediately moves to next location. The

GenerateAttack() function is used to inform black hole attacker models that they are attackers

(Attacker flag is true). The next location is SEND BEACON after which the beacon message

is generated in the next transition. The global variable, Msg ID, is thus assigned the sink’s

ID. This location is again critical and thus is executed immediately on the next transition.

The two critical locations are executed one after the other, preventing any other node model

from modifying the Msg ID variable. The sink model then moves to the LISTEN location and

remains there until it receives a data message addressed to it. The Topology matrix is utilized

to check the radio link connections between nodes for message reception. When data is received

53

(a) Attacker model(INA) (b) Sink model

(c) Event Generator model (d) GenerateAttack() function

Figure 4.8: Uppaal model for the TinyOS beaconing Protocol

by the sink, it moves to the FINISH location, sets the DataRec flag and the model deadlocks

in this location.

The node model (Figure 4.7) starts in the LISTEN location and remains there unless it

receives any message (data or beacon) or a timeout event from the EG model. The mes-

sage is only received by a node model if the Topology matrix confirms that a link exists

between the current node (NID variable) and sender node (Node variable). Upon receiving a

beacon message (REC BEACON), the node checks if this beacon is received the first time

(ParentID==MAXNODE). If this guard is satisfied the sender node (Msg ID) is assigned the

parent (ParentID) of the current node model. The node then waits for channel to become

free (ChannelBusy flag is false). In case the channel is free the node makes the channel busy

(ChannelBusy becomes true), updates Msg ID and the Node variable (Sender node ID) by as-

signing them its node ID (NID). As the global variables have been modified the next location

is a critical one so that it is executed on the next transition. Finally, the node model trans-

54

mits a beacon (SEND BEACON) and moves back to the LISTEN location decrementing the

BusyNodes variable and clearing the ChannelBusy flag. The BusyNodes variable is incremented

when the model receives the beacon and is decremented after the model becomes free. The

same procedure is adopted when data is received (REC DATA) by a node or if it senses new

data (SENSE DATA) enabled by a timeout generated by the EG model.

4.5.3 Verification

For the attacks considered, it was verified that data always reaches the BS from the source

node, in all topologies where there is a path between them. This is achieved by writing a data

transport property as was written for flooding:

Source.SENSE DATA Ã Sink .REC DATA

First the model was checked without any attacker model. It was confirmed that the above

property is satisfied for all possible combinations of 5 nodes where the source and the sink are

connected. This confirms that in the TinyOS protocol, in the absence of an attack, the data

transmitted by a source will always reach the sink. Finally, the confirmation that attacks are

successful in TinyOS is discussed in the next sections.

4.5.4 Black hole Attack

A black hole is modelled simply by having the node model forward beacon messages correctly

but drop data messages. This is incorporated in the node model using a global flag, Blackhole,

that enables the black hole attacker. The required property is violated and the trace confirms

that when the attacker is a parent in the data forwarding path, the data may not reach the BS.

Figure 4.9(b) illustrates a successful black hole attack in one topology detected using Uppaal;

there is a BS B , a source node S , an intermediate N and an attacker A. Note that here the

node A behaves normally during beacon forwarding but drops the data once it becomes the

parent of the source node S .

4.5.5 Sinkhole Attack

A sinkhole attack is modelled by having not only the BS, but also the attacker, initiate the

broadcast of hello beacons. The attacker also ignores legitimate beacons from the BS. The

attacker model is similar to the sink model shown in Figure 4.8(b). In this model, the data

transport property is violated and the trace confirms that when the attacker acts as a sink hole,

the source and intermediate nodes transfer the data to it rather than to the BS. Figure 4.9(b)

illustrates one such trace detected using Uppaal in an analysis of one of all 4-node topologies.

In this example, node A imitates a BS and broadcasts a hello beacon (msg01). The source

node receives this beacon before the legitimate beacon (msg03) and so transfers the data to the

attacker (msg04).

55

(a) Spoofing Attack (b) Black hole and sinkhole attack

(c) Worm hole Attack (d) Hello flood Attack

Figure 4.9: Traces for a topology in which the formal model detected successful attacks in the

TinyOS protocol

For this simple protocol in such a small network, the scenarios illustrating the sink hole

and the black hole attacks show identical results in their traces. However, the behaviour of the

attackers is different in each case and in general, the scenarios illustrating the attacks will be

different.

4.5.6 Wormhole/INA Attack

In an INA and wormhole attacks the attacking node is hidden and only forwards beacons from

the BS to the source node. The attacker does not transfer data received from the tunnel, as the

aim of a wormhole attack is to drop data transmitted in the tunnel. The INA model is shown

in Figure 4.8(a).

Analysis of this model shows that the data transport property is not satisfied and the trace

reveals that when a virtual connection (INA/wormhole) exists between the BS and a source

56

node, the source establishes the BS as its parent instead of one of the nodes within its range.

Thus, when it transmits the data, it is lost as it is transmitted to a node that is reachable only

via the virtual link. Figure 4.9(c) illustrates a successful INA in one of the topologies detected

using the formal framework in an analysis of all 4-node topologies. Note that msg01 is replayed

by the INA attacker A without adding itself, the attacker however does not forward the data

(msg05). Similar results are obtained when the wormhole attackers were deployed instead of

the INA.

4.5.7 Hello Flood Attack

The high power transmitter of the attacker in a hello flood attack is modelled by modifying

the connection matrix to allow the attacker to establish unidirectional links with all the other

nodes in the network; this is contrary to the usual assumption of symmetric links but accurately

reflects the ability of the hello flood attacker.

Analysis of such a model shows that the required property is not satisfied and the trace

reveals the cause of the problem. When the attacker broadcasts hello beacons it is heard by

all the other nodes which then establish the attacker as their parent in the spanning tree.

Data from any source node whose transmitter is not powerful enough to reach the attacker is

lost. Figure 4.9(d) illustrates one 5-node topology, detected using the formal framework, that

illustrates the problem. Notice that msg02 is received by all the nodes, including the source

node S , which ignores the legitimate beacon from node N and establishes A as its parent. The

transmission of msg05 does not reach the attacker due to the low power transmitter of the

source node. Of course, it is trivial for the attacker in this case to act also as a sink hole if it

so chooses.

4.5.8 Spoofing Attack

In a spoofing attack, the attacker transmits the hello beacon using the ID of the source node

instead of its own. The data transport property is violated and the trace reveals that the

problem is caused by the creation of a routing loop in topologies in which the source node and

the attacker share a neighbour. Since the source node and its neighbour are established as each

other’s parent and data relays between them indefinitely. Figure 4.9(a) illustrates one such

topology, detected using the formal framework from an analysis of all 4-node topologies.

4.5.9 Other DoS Attacks

The research has also studied the effects of the false injection, rushing and sybil attacks on

the TinyOS protocol. In fact, the sink hole attack discussed earlier relies on the false injection

of a hello beacon by the attacker. Hello flood enables the rushing attack. The sybil attack

has been modelled by having the attacker transmit hello beacons using both its real ID and a

57

fake ID. The data transport property is not satisfied in this case and the trace showed that the

neighbours of the attacker might establish a non-existent node as their parent and then attempt

to forward the data to it. In the TinyOS protocol this attack resembles a spoofing attack.

4.6 The Authentic TinyOS Protocol using uTESLA

4.6.1 Protocol Description

The Authentic TinyOS protocol uses µTESLA [38] to authenticate messages. µTESLA is a

lightweight authentication protocol aimed at reducing the computing resource requirements

of nodes that implement it. This makes it practicable for use with the resource constrained

nodes of a WSN. The Authentic TinyOS protocol is similar to the TinyOS Beaconing protocol

considered in Section 4.5. The main difference is that the BS uses a µTESLA key, Ki , in the

ith beaconing interval to generate a message authentication code (MAC) for the beacon. Ki is

derived using a public hash chain whose seed is known only to the BS and thus no other node

can generate or predict the next key. The BS starts by broadcasting the following message in

first beaconing interval (t=0):

B → ∗ : (beacon, IDB , 0, [MAC]Kt+1
)

The receiving node N checks if the beacon has been received in the first beaconing interval. If

this does not hold, the beacon is ignored otherwise it is pushed into a FIFO queue as the pair

(ID,MAC) and the node broadcasts the beacon, using its own ID.

N → ∗ : (beacon, IDN , 0, [MAC]Kt+1
)

This process is repeated throughout the network. When the next interval begins, the BS

discloses the key for the previous interval by broadcasting:

B → ∗ : (beacon, IDB ,Kt+1, [MAC]Kt+2
)

This is again broadcast to all the neighbours and each node chooses the first authentic

beacon sender as its parent and then ignores further beacons. Each node also retransmits the

authentic beacon.

N → ∗ : (beacon, IDN ,Kt+1,MACKt+2)

4.6.2 Formal Model

It is not necessary to model the details of the authentication mechanism to undertake a useful

formal analysis of the protocol. It is assumed that µTESLA provides a reliable authentication

58

mechanism. The focus of the analysis is on the effect of the attacks on the protocol, given this

assumption.

In order to model the Authentic TinyOS protocol, the model of the TinyOS Beaconing

protocol is modified so that the BS sends two beacons. The first with a null Key field and the

second with a key that can be used easily to authenticate the previous beacon. The message

format is now (Type, ID, Key, MAC). The MAC is modelled simply by using a number. The

BS sends the first message as (id beacon,B , 0, 1) i.e. the MAC is 1 and the Key is null. Then the

second message (id beacon,B , 1, 2) is sent, where the key 1 will authenticate the previous MAC

and the new MAC is set to 2 for future use. Using this simple model, the whole protocol can

be analyzed. Nodes check the authenticity of a beacon by testing if the MAC field of an entry

(ID, MAC) in the FIFO matches the key received in the beacon. Beacon intervals are modelled

simply by waiting until all nodes have received a beacon before a new beacon is transmitted by

the BS.

4.6.3 Performance of Authentic TinyOS against DoS attacks

Analysis of this model shows that the Authentic TinyOS protocol successfully resists the sink

hole and the false injection attacks to which the simpler TinyOS Beaconing protocol was shown

to be susceptible (Sections 4.5.5 and 4.5.9). The data transport property is satisfied, confirming

that the data generated by the source node will always arrive at the sink in spite of the presence

of these attacks.

However, the analysis shows that several other attacks succeed, despite the use of authen-

ticated broadcasts. Figure 4.10(a) shows a successful spoofing attack, Figure 4.10(b) shows

a successful black hole attack, Figure 4.10(c) shows a successful wormhole attack and Fig-

ure 4.10(d) shows a successful hello flood attack. All of these scenarios were discovered using

the counter-examples generated by the formal framework in an analysis of all 4-node and 5-node

topologies.

4.7 Other Unsecured Routing Protocols

This research includes modelling and checking of other unsecured routing protocols such as

Minimum Cost Forwarding (MCF) [41], Rumour Routing(RR) [39], LEACH [40], and Directed

Diffusion(DD) [42]. As expected, they are susceptible to spoofing, black hole, sinkhole, hello

flood, wormhole and sybil attacks. The rediscovery of these attacks strengthen confidence in

our approach. These protocols have already been identified as susceptible to such attacks in

several literature reviews. Moreover, some interesting results have also been obtained using the

formal approach in the DD and RR protocols which had not previously been reported. These

are discussed briefly below:

59

(a) Spoofing attack (b) Black hole and sinkhole attacks

(c) Worm hole attack (d) Hello flood attack

Figure 4.10: Trace for a topology for which formal model detected successful attacks in Au-

thentic TinyOS (uTESLA) protocol

4.7.1 The Direct Diffusion Protocol

In Direct Diffusion(DD) [42], the BS flood (broadcast) interest messages with its node ID with

the format:

B → ∗ : (interest , IDB)

The node, upon receiving the interest, checks its cache (memory). If no match is found it

creates an entry in the cache and rebroadcast the interest by replacing the ID with its own:

N → ∗ : (interest , IDN)

The source S, upon receiving this message, sends a gradient message back to the node N

from which it has received interest:

S → N : (gradient , IDS , IDN)

60

Figure 4.11: Traces for a topology in which the formal model detected successful sinkhole attack

in the Directed Diffusion protocol

All the previous nodes forward this gradient until it reaches the BS, B . The BS then

reinforces the first gradient it received by sending a positive reinforcement to N:

B → N : (reinforcement , IDN , IDB)

It can also send negative reinforcement to cancel a route developed. The data is then

forwarded back by the nodes into the reinforced path.

Consider Figure 4.11, showing a topology and trace of the Directed Diffusion protocol in

the presence of a sink hole attack. Here the attacker behaves just like the BS. As soon as it

hears an interest message from the legitimate BS, the attacker replays that message, identifying

itself as the BS. Thus the source node will now send the data matching the interest message

to both the attacker and the legitimate BS. The effect of a sinkhole attack was modelled by

flooding an interest message from the attacker in which the ID is shown as the ID of the BS.

Earlier research has suggested that the data in this case will reach both the attacker and the BS.

But the formal framework trace in Figure 4.11 identifies a worse scenario in which sometimes

the data may never reach the BS in the presence of a sink hole attack. From Figure 4.11, it

can be observed that the attacker floods an interest message (msg02) as soon as it receives a

legitimate one (msg01) from the BS. In this case, node Nb receives the interest message from

the attacker (msg02) before the legitimate message from the node Na (msg09), which it then

ignores. Thus, the gradient is set only towards the attacker, node A. In this way, a gradient is

never established with the node Na and so the data will never reach the BS. Whenever the BS

broadcasts its interest message again, the same process may be repeated.

4.7.2 The Rumour Routing Protocol

Rumour Routing [39] is a probabilistic protocol (Section 2.5.2) where queries are matched

against events. Each node starts with a hello message informing neighbours of its ID:

N → ∗ : (hello, IDN)

61

The neighbour tables are developed using that technique. After going through this process a

source node of any event generates an agent. The agent contains the complete paths for all

events, corresponding hop counts to each event, the nodes it has visited (to avoid loops) and

time to live (TTL) in hops. The agent is sent to any neighbour (randomly) in the network;

however, an unseen node is preferred by looking at the visited nodes field in the agent. The

TTL is decremented at each node and the agent dies when the TTL becomes 0. Each node,

upon receiving the agent, updates its ’Node Event Table’ in memory as well as copying the

complete path for each event. The format of an agent message is:

S → N : (agent , IDN ,TTL,HopCount ,Path[],Visits[])

Here S is the node sending the agent and N is a randomly selected neighbour node. Any node

can generate a query for any event. The query has a similar format to that of the agent and

also moves randomly until it reaches a node which knows the path to that event i.e. has been

visited by the agent before.

The framework discovered an unreported bug in the Rumour Routing protocol [39] using

the model-checking approach. The bug can be illustrated using the same topology as for the

Directed Diffusion, shown in Figure 4.11. Consider the case in which a query has visited all the

nodes before the agent has started. In that case, the agent arrives at each node after the query

has been passed on. The exhaustive search made by the formal framework reveals the problem.

Suppose in the topology in Figure 4.11 the query has taken a path of B −Na −Nb −A− B −A.

As the node A has no unseen neighbours, it forwards the query again to the node B which

forwards it back to A since it had sent it the last time to the node Na. Now suppose the agent

has started and takes the path S −Nb −Na − B , the query and the agent will never meet

and the data transport property is violated. It is extremely unlikely that this scenario will be

detected using visual inspection even in smaller networks, but the formal analysis of all possible

topologies of a 5-node network revealed it.

4.8 The Enhanced INSENS Protocol

4.8.1 Protocol Description

The Enhanced INSENS [19] is a modification of the Basic INSENS protocol to remove the

danger of hello flood and rushing attacks as well as to reduce data traffic. INSENS is widely

recognised as robust against certain DoS attacks. The basic INSENS [17] has 3 phases. In

Phase 1 a route request is initiated by the BS; the neighbour table is routed back by all the

nodes in Phase 2; and finally the BS sends the routing tables to all the nodes in Phase 3.

Instead of 3 phases the Enhanced INSENS starts with a bidirectional verification before the BS

initiates a route request. In this protocol each node, upon booting, establishes a pairwise key

with its neighbours by broadcasting an echo containing a random nonce and its ID encrypted

62

using the global key, KG , known to all the nodes:

N → ∗ : (echo, [IDN ,nonceN]KG
)

The receiving node, R, replies with an echoback message containing the received nonce plus

one and the pair key, KR,N , between the nodes N and R; this is generated using a random

number:

R → N : (echoback , [IDN ,nonceN + 1,KR,N]KG)

During the data forwarding phase, depending upon which node has the lower ID, either

KR,N or KN ,R is used as a key. The nodes delete the global key, KG , when it has setup pair

keys with all its neighbours. After this a node establishes a cluster key with all its neighbours.

This is done by generating a random number, KC , and unicasting it using the pair key:

N → R : (cluster , [IDN ,KCN]KN ,R)

This cluster key is used later to broadcast a request beacon and thus INSENS uses this

mechanism to prevent the hello flood and rushing attacks as the nodes will only accept requests

generated by the known neighbours. The format of request message is:

B → ∗ : (request , IDB , [OHC , IDB ,MAC request
KB

]KCB
)

The receiving node N first checks the sender ID. If it is found in its verified neighbour list it

will process the message, otherwise it drops the message. Then the cluster key of the neighbour

is used to decrypt the message and check if the hash is correct by iteratively applying the public

hash function. This confirms that the message has originated from the BS. It then checks if

the request is fresh by calculating the most recent element of the hash chain. If it is not fresh

N drops the request. Otherwise it stores the hash and IDB , appends the message with its ID

and re-computes the message authentication code (MAC) by using its own key over the newly

developed request and the MAC embedded in the received request message. Then it encrypts

the message with its own cluster key, KCN , and broadcasts the request:

N → ∗ : (request , IDN , [OHC , IDB , IDN ,MAC request
KN

]KCN
)

where

MAC request
KN

= (request , IDB , IDN ,OHC ,MAC request
KB

)

4.8.2 The Formal Model

The complete model is split into 4 parts: the node model, the event generator (EG) model, the

sink model and an attacker model. The complete node model performs 4 phases:

63

(a) Node model for Phase 1 (Enhanced INSENS) (b) Attacker model (INA)

Figure 4.12: Uppaal models for Enhanced INSENS protocol

1. Pair keys are exchanged by echo beacons;

2. Cluster keys are unicast to all verified neighbours;

3. A request is flooded by the BS;

4. Data is unicast by the Source node.

For simplicity and to save state space, only the required phase of the node model is used

when the attacker models are deployed. The node model for Phase 1 and Phases 3 & 4 are

shown in Figures 4.12(a) and 4.13 respectively. The nodes exchange the messages of echo and

echo back and using the same format as explained in the Section 4.8.1. All the locations are self

explanatory in Figure 4.12(a) as in the names suggest these indicate sending/receiving either

echo or echo back. Similarly, the states in Figure 4.13 depict sending/receiving the request

or the data. The data is generated only by the source node. An attacker model (INA) is

shown in Figure 4.12(b). The model shows that the attacker remains in the LISTEN location

unless it receives any message (echo, echoback, cluster, or request) other than the data. It then

retransmits that message without adding its own ID to the message fields.

The formal verification is used to test the following hypothesis:

”INSENS is vulnerable to the wormhole and the INA attacks in Phases 1&2 and also when

the new nodes are deployed at a later stage. Moreover, a black hole attack is possible after the

node is compromised or on success of the wormhole/INA at any stage.”

The assumptions stated in Section 4.3.3 persist in this model. Additionally, it is assumed

that the INA, the wormhole and the hello flood attackers are deployed before Phase 1; while

the black hole attack can be deployed during any phase.

Section 4.8.3, Section 4.8.4 and Section 4.8.5.1 explain how the formal framework detects

successful DoS attacks in INSENS and confirmation of these results using computer simulation.

64

4.8.3 Invisible Node Attack (INA)

4.8.3.1 Formal Analysis

All 5-node network topologies with 2 multiple paths were checked. The model confirmed that in

most topologies data does not reach the BS in the presence of an INA even if a legitimate path

exists. To check for additional multiple paths, a 9 node network was employed. As checking all

possible topologies (236 combinations) for 9 nodes is much more computationally demanding

than for 5 nodes (210 combinations), only a square grid node placement was checked. An error

in a 9 node network was disclosed due to an INA even in the presence of 8 multi-paths. The

property checked was the data transport property that after the source node has sensed the

data it leads to the sink receiving that data:

Source.SENSE DATA Ã Sink .DataRec

The issue of the data not reaching the BS, due to the addition of unconnected nodes in

the verified neighbour list of the source and the other nodes was subsequently investigated. In

order to check the success of an INA one needs to model only the echoback part (Phase 1) of

the protocol. The reason being INA and wormhole attack will remain unsuccessful if they are

unable to create virtual links in the Phase 1. The messages are only accepted from verified

neighbours after Phase 1. The node model (Phase 1) is shown in Figure 4.12(a). The check is a

property claiming that a source node possesses fewer than N unconnected nodes in its verified

neighbour list, i.e.

Source.FINISH Ã (Source.Problems <= N) (4.1)

Here Problems is a local variable in the node model which counts the errors in the neighbour

list in the node after Phase 1.

4.8.3.2 Simulation Results

The formal modelling has rigorously tested the INSENS protocol and has detected its suscepti-

bility to INA. In this section the results are examined using computer simulation. Reasons for

using computer simulation in the research includes checking scalability (large node networks)

and to generate quantified results. The formal modelling checks each and every possible exe-

cution of a system but suffers from state space explosion in larger networks. Simulation not

only allow replicating the results achieved by formal modelling but also allow checking bigger

networks.

A fault in the Enhanced INSENS protocol was detected in the presence of INA in a particular

topology using model-checking. To confirm this result the same network topology was tested

using the TOSSIM simulator [229]. A complete protocol implementation was developed using

the nesC [230] programming language. However, the encryption/decryption operations and the

65

message authentication code (MAC) were simplified. As the attacker need not know about

the encryption details, the CBC mode technique was not used to generate the MAC (block

cipher algorithm RCA [231]) as in the INSENS protocol. The emphasis of this research does

not concern these encryption techniques so these were not implemented.

An ideal channel was used in the simulation in which no messages are lost as a result of

RF noise. The reason for this decision was that the loss of messages as a result of an INA

alone were to be examined. However, in the development of the Enhanced INSENS protocol

the hidden terminal problem was faced. As most link layer protocols use CSMA/CA, the

collision of messages is reduced but a problem arises when two nodes which are not within

the range of each other, simultaneously transmit to the same node after detecting that the

channel is free. In this situation the receiving node receives neither from the first node nor

from the second. Physical node arrangements causing this problem are likely to be common

in real networks. The 802.11 WiFi protocol provides an optional RTS/CTS protocol to reduce

the hidden terminal collisions. However, 802.15.4, upon which many WSN are implemented,

does not provide RTS/CTS. To avoid collisions due to the hidden terminal problem, a certain

time slot is used for each node to send data depending on its node ID. The echo backs are also

transmitted after inducing a random delay to avoid collisions. The other message transmissions

are also adjusted so that the collisions were avoided. When this random delay was not employed

in earlier experiments, it led to the loss of messages due to collisions and the results obtained

were worse than the presented one. As the aim of this research was to find errors due to attack

and cancel all other effects, these delays were introduced to avoid collisions.

The simulation were run both in the presence and the absence of INA. The attacker affected

the data throughput in all cases, however, maximum damage was done when the attacker was

not on the boundary of the grid. The data was sent periodically from the source to a single

BS for a total of 1000 times and the BS maintained a record of the received data using the

message ID attached to each message. Each experiment was repeated 20 times. The developers

of INSENS do not explain how the data will flow towards the BSs. However, they do refer to

forwarding data back to the nodes from which they received their first request beacon (parent

nodes). In order to test the INSENS model for data forwarding three different methods were

used to forward the data. In the first method, the source node randomly selected the next

neighbour (if multi-paths are used) and then the data was subsequently sent back throughout

to node parents. In the second method, the sender neighbour was always selected randomly.

In the third method, each node adopts load balancing in forwarding data to its neighbours i.e.

selecting all the neighbours before repeating any. Note that in the last 2 methods some data

packets may take a long path and thus may collide with later data packets, e.g. for a 9 node

network the average data delivery to the BS might reduce to 96% on average. But this data

loss increased with the size of the network. For a 36 node network it was found that the data

loss may reach 24% on average (76% throughput) in the absence of any attack and under ideal

66

conditions.

A 9 node network (3x3 grid), for which our formal framework detected a successful INA, was

implemented. The simulation results confirmed that if the data was sent through the parent

nodes, the data delivery percentage at the BS was reduced to 0%. This is because the links via

an INA will always be marked as the parents (provides the shortest path) for all nodes within

the source node’s range. In the case of random selection, throughput was reduced to 10% on

average [range: 4% to 17%] even if 8 multiple paths were used. (INA will enable 8 paths in this

network). Thus, the simulation results confirmed that the formal framework correctly detected

INSENS being vulnerable to the INA.

4.8.4 Wormhole Attack

It has been pointed out in the Section 4.8.3.1, that using the bidirectional verification phase of

the model and using the property in equation 4.1, one can check in which topology a wormhole

attack will have a detrimental effect. Later, networks of 25 and 36 nodes placed in regular

grids of (5x5) and (6x6) were checked. It was confirmed that the Uppaal model always detected

virtual connections. The same topologies were checked using TOSSIM as was done for the

INA. It was confirmed that the data delivery rate reduced dramatically in the presence of a

wormhole, even with multiple paths (up to 8).

A number of different tests were performed on a 36 node network (6x6 regular grid) with a

density of 8 neighbours (non-boundary). There was one BS and one source in the network and

both were placed at the opposite corners of the grid. The source node sent 1000 data packets

to the BS and a total of 20 tests were performed. One end of the wormhole was placed near

the BS while the other end was placed in the network near the opposite corner of the BS (near

the source). It was confirmed that even if 4 multiple paths were available, only those nodes

which were one hop away from the BS managed to transfer all their data correctly to the BS.

In the case of parent selection (random selection for the first hop because of multiple paths),

the percentage of data reaching the BS was reduced to 0%. Again, as with the INA, all nodes

will mark the nodes via the wormhole tunnel as their parent.

If nodes are randomly selected, the average throughput of data reaching the BS was reduced

to 78% on average [range: 75% to 80%] in the absence of an attack (1-4 multi-paths) and,

surprisingly, to 2% on average [range: 0% to 6%] in the presence of a wormhole. Even in the

absence of an attack, as nodes are selected randomly, the message transfer may take a very long

time to complete and the collisions may occur at some point between the old and the fresh data

packets. Thus, on an average, 20% of the data is lost because of randomness alone. Further

throughput loss results from the selection of virtual neighbour in the data forwarding.

67

Figure 4.13: Node model for Phase III & IV (Enhanced INSENS)

4.8.5 Black hole Attack

Formal analysis and simulation have been applied also to an investigation of the black hole

attack. The findings are reported in this section.

4.8.5.1 Formal Analysis

For the black hole attack, apart from replacing the attacker model, the node model (Figure 4.13)

was modified (Phases 3 & 4 part). Similar to the wormhole study, the tests were performed using

a subset of the complete protocol model containing only the related phase (request flooding and

data forwarding phases in this case). This was checked for a 25 node network (5x5 grid) and

with 2 BSs positioned at opposite corners. The data transport property was modified since

receiving the data at either of the two BSs or sinks was acceptable:

Source.SENSE DATA Ã (Sink1.DataRec || Sink2.DataRec)

It was found that data transport property was violated when the number of attackers was

increased to 2, each being placed near the individual BSs.

4.8.5.2 Simulation Results

The 25 node network checked above (Section 4.8.5.1) was implemented in TOSSIM in the

presence of 2 and 4 BSs. The number of attackers and paths were also kept equal to the

number of BSs for this network. A central BS was also added to the network to gather the

data from all the BSs. For all these experiments 200 data packets were generated by the source

node and 20 different tests were performed. Using random selection and then forwarding it to

68

the parent nodes, the average percentage of the data reaching the BS was 80% [range: 38%

to 100%] (2 BSs; 2 attackers; 2 paths) and 55% [range: 44% to 72%] (4 BS; 4 paths; and 4

attackers). This percentage reduced in the presence of 4 BSs because 4 attacker nodes were

deployed in this case.

The black hole attack was further tested using random and then the parent routing tech-

niques with 4 BSs, 4 attackers and 100 nodes in 10x10 square grid. BSs were located one at

each corner of the grid. Two series of tests were completed for this 100 node network:

• Case 1: First the source node position was kept constant in the middle of the network

and the data was sent to all the 4 BSs a total of 1000 times. These tests showed that an

average delivery percentage of 32% [range: 0% to 67%], 63% [range: 54% to 67%] and

100% for node density of 8, to 12 and then 20 neighbours for non-boundary nodes in the

presence of 4 attackers (at each corner). However, the average throughput reduced to 5%

[range: 0% to 16%], 42% [range: 0% to 63%] and 53% [range: 0% to 68%] in the presence

of 8 attackers respectively.

• Case 2: In the second series of tests each node acted as a source but send data only

once. With a density of 8 neighbours the average delivery percentage was 37% [range:

16% to 61%] and 5% [range: 1% to 18%] in the presence of 4 and 8 attackers respectively.

However, by increasing density to 20 neighbours the average throughput improved to 80%

even in the presence of 8 attackers.

As pointed out by the developers of INSENS in [19], the position of the BSs is influential,

so this was placed at 4 opposite corners as was done in [19]. The source node is placed at the

centre. We confirmed that the position of the attacker nodes strongly determined the reception

of the data at the BSs. For example, in a 100 node network, four attackers present at a one hop

distance from each BS caused considerable data loss. Similarly, when all the 4 attacker nodes

were positioned near the source node, a significant data loss was observed. All attackers near

one BS will have little effect as all remaining 3 BSs will receive all data and thus defeated the

aim of the attacker.

The developers of INSENS claim that with 4 BSs and 4 multi-paths, data will eventually

reach the BS as the density of WSN is normally high. It has been confirmed that although this

is true, a high density cannot be guaranteed in all the networks and on every path. Therefore,

even by reducing the number of neighbours to 8 and in presence of 4 attackers, the resulting loss

is very high. Moreover, it has also been confirmed that, even with high density networks (20

neighbours), if the black hole nodes are chosen carefully (after observing data traffic) throughput

may be reduced to about 15%. The reason being that some nodes transfer the data more than

others and if these are chosen as attackers more data will be lost. Further simulation results

on INSENS are provided in Section 6.7

69

4.9 Arrive Routing Protocol

4.9.1 Protocol Description

The Arrive protocol [44] has been developed to provide robustness against malicious and failed

node attacks by observing the performance of neighbour nodes reputation. Unlike some other

routing protocols, the reputation is maintained locally and is not shared with other nodes.

Therefore, nodes cannot misrepresent their data. Also the packets are routed in multiple paths

to prevent a single failure affecting the data to reach the BSs. The nodes not only forward the

data designated to them to reputed nodes (Direct Participation) but also eavesdrop the traffic.

In the case of a message failure in the neighbourhood (a neighbour does not forward message

after receiving a message from another neighbour), the node forwards the same message that

is not addressed to it (Passive Participation). Although this method creates extra traffic, it

provides robustness.

The Arrive protocol uses first a breadth technique to assign nodes a level as in the TinyOS

beaconing protocol [15]. The BS has a level of 0, the nodes one hop away from the BS have a

level of one and so on. The authors have not explained this issue in detail but it is expected

that a message of the following format is initiated and broadcast by the BS ’B’:

B → ∗ : (level , IDB ,LB)

Here ’level’ is the message type, followed by the sender ID and the level L attached. The

BS initiates with the level 0. A node upon receiving a lower level updates its current level by

adding one into the received level. It then rebroadcast the level message with the new level L:

N → ∗ : (level , IDN ,LN)

Moreover, if a node receives a lower level beacon it will mark the sender as its parent. On the

other hand, senders with the same level are assigned as neighbours. The sender nodes with

higher levels are ignored. Note that the neighbour definition in Arrive is different from usual

definition used in this thesis. Once the setup phase is completed, a source node S unicasts its

data to either its parent or a neighbour depending upon the node’s reputation. A neighbour

node with a reputation lower than a certain threshold is not selected. The data message format

is:

S → N : (data, IDN , [IDS ,EventE])

The data message contains the source ID and event number E. A node N upon receiving

this message again forwards it to either the parent or the neighbour:

N → P : (data, IDP , [IDS ,EventE])

In case a node hears data sent to one of its parents or neighbours by another node, it acts as

a passive forwarder and broadcasts the data if either of the following two conditions exist: (i)

70

Figure 4.14: Node model for the Arrive Protocol

the receiver node has either not forwarded the data or (ii) forwarded data to a node not in that

node’s radio range. The developers of Arrive, however, warned that the Passive participation

must be used with caution because unidirectional links and hidden terminal problems may

cause the passively participating nodes to act erroneously.

4.9.2 Formal Model

4.9.2.1 Model

The message format employed for Arrive in Uppaal is as follows: (Type, Sender ID, Level Sent)

for level message and (Type, Destination ID, Source ID, Event ID) for data message. Type is

the message type (i.e. level or data); Level Sent is level broadcasted by a node; Source ID is

the Source ID and Event ID is the unique Event ID for each event; and the remaining fields

are self explanatory.

The complete Uppaal model is split into 4 parts: the node model, the event generator (EG)

model, the sink model and an attacker model. In Arrive, the wormhole and INA attacker

models are developed by creating a unidirectional link between the sink and source node. This

was done to generate a tunnel between these, which only forwards level messages from the sink

to the source. Note that the tunnel does not transfer data because the source can hear the sink

but opposite is false. This modification in attacker model is done to save state space as larger

networks are checked in this protocol.

71

The node model is shown in Figure 4.14. All nodes start from the INIT PHASE, the

setup phase. A node waits for a level message and upon its reception it updates its level. It is

worth noting that all the node levels are initialized to a very high value and get updated only

if a lower level value is received. There is a flag LevelRec in the model which is set when a

level beacon is received and is cleared when the level beacon is broadcasted (SEND LEVEL).

A variable BusyNodes indicates how many nodes are busy receiving or sending messages. The

EG model reads this variable and moves to the next phase when this variable becomes 0. All

the node models leave the setup phase and move to the data forwarding phase when the EG

model triggers them using the timeout message. This broadcast message is used to indicate an

event to all the nodes simultaneously. All nodes initialize their parents and neighbours using

the InitializeParentOrNeighbor() function which utilizes the topology matrix and the levels

received in the setup phase. If a node is a source node, it senses data (location SENSE DATA)

and broadcast (location SEND DATA) it. Another function SelectParentOrNeighbor() is

used to select a neighbour before the data is forwarded. Data for multiple paths can be generated

by sending more than one data message in this part of the model.

If a node is not the source, it will move to the LISTEN mode and will expect data messages.

Upon receiving data addressed to it (REC DATA DIRECT), a legitimate node forwards it

(FORWARD DATA). If the data is not addressed to a legitimate node (Msg Level != NID),

it checks if the data has been addressed to its neighbour/parent (Topology[NID][Msg Level]

is true). If so, the node moves to the passive forwarding phase (PASSIVE FORWARD) and

remains in this phase for a certain time (10 clock cycles). The model checks two conditions

here: (i) Data has been forwarded by the observed node during this time and (ii) Data has been

forwarded to a neighbour within the range of current node, i.e. Topology[NID][Msg Level]

is true. If any of the above conditions is not satisfied and a certain time has elapsed (DELAY),

the node model checks the probability to forward the data (PROBABILITY CHECK) using a

global function ProbabilityCheck(). If the probability is higher than the threshold value, the

node model will forward data (FORWARD DATA) otherwise it moves back to the LISTEN

location. Another local variable Sender is used to track the sender ID of the data message in

order to ensure that the data is not sent back to it.

The event generator model is shown in Figure 4.15(a). The EG model generates the event

timeout to indicate the source nodes to sense data from the environment. The model starts with

the SETUP PHASE. When all the node models complete the setup phase (BusyNodes becomes

0), the nodes are triggered to move to the operation phase by sending their corresponding

timeout to all the node models. This message also triggers the source to initiate the data

message. The model tracks the data flow and when all the nodes become idle (BusyNodes is 0),

it generates a new timeout message to enable the source node to generate a new data message.

A variable TotalSent is incremented each time the source generates a new message and thus

tracks the total number of messages generated by the source. When all messages have been

72

(a) Event Generator model (b) Sink model

Figure 4.15: UPPAAL models for the Arrive Protocol

sent, the EG model moves to the FINISH location. The maximum number of data messages

generated is limited by using the MAXSENT constant to reduce the state space.

The sink model is shown in Figure 4.15(b). The sink model immediately moves out of the

initial location (START). The function GenerateAttack() is used to generate different attacks

if needed. The sink model then broadcasts the level message (SEND LEVEL) with level 0.

Once this is done, the model remains in the LISTEN location with a self loop. This loop is only

triggered if a node within the radio range broadcasts the data. The flag DataRec is set even if

a single data message is received. A global variable DataRec keeps track of the total number

of data messages received by the sink.

4.9.2.2 Verification

The properties checked include following claims:

1. All nodes will broadcast a level message

2. The source node eventually senses and broadcasts data

3. The Arrive protocol will always finish its setup phase

4. The Arrive protocol will not deadlock

5. All nodes attain the correct level

6. Neighbours and parents are assigned correctly

7. The BS will receive at least one data message from the source

8. The BS receives a number of data messages from the source

73

(a) Black hole attack with a single path (b) Black hole attack with multiple paths

Figure 4.16: Trace of Uppaal showing that black hole is possible in Arrive

A detailed description of the above claims in terms of Uppaal properties is explained in

Section B.1.1. Next, different attack models have been applied to the Arrive protocol to check

whether the properties were still valid in the presence of these attacks. In the case of any

property failing, the Arrive protocol is considered susceptible to that particular attack and

Uppaal automatically generates a trace. This trace shows how an attacker has succeeded. In

the next sections we will discuss these attacks and the extent of their successes or failures.

4.9.3 Black hole Attack

4.9.3.1 Black hole Attack with a Single Path

For networks up to 5 nodes, it was confirmed that the Arrive protocol successfully defeats

a single black hole attack. However, a problem arises when there are 2 black hole attackers

within any node’s range especially when there is no legitimate parent/neighbour of that node.

Figure 4.16(a) shows a trace generated by Uppaal in which the properties fails in the presence

of 2 black hole nodes. In this trace the level propagation phase is excluded because the attack

is launched in the data propagation phase.

Note that the 2 black holes do not need to collude (within one another’s range). The source

nodes keeps on sending data to node Nc as it always eavesdrops to check if the node Nc has

forwarding the data to A1 or A2. This also improves the ranking of Nc. Node Nd will not

forward data passively as it has not eavesdropped the data sent to any of its neighbours (Nc

and Nd are not the neighbours). Node Nc first attempts to forward data to node A1. A1 does

not forward the data, so the ranking is lowered and at the next time Nc selects A2 for data

forwarding. Unfortunately A2 is also an attacker node so the data is lost again. Nc lowers the

ranking of A2 and tries to transmit the data to A1 and this process continues. Note that even

the presence of another node having a lower level than node Nc will not help here because the

nodes only forward data to their neighbours (same level nodes) or parents (lower level nodes).

74

We later confirmed this by employing 4x4 and 5x5 grids instead of 3x3 grid. Thus a flaw in

the Arrive protocol was detected through the use of our framework. Even if the nodes A1 and

A2 are dead, the same error is still possible. Note that a route does exist between S and B

via S-Nd-Ne-Nb-B. Any other node’s message forwarded by the node S (higher level nodes in a

larger network) will be lost as well because this will also follow the same path.

4.9.3.2 Black hole Attack with Multiple Paths

In Section 4.9.3.1 even if Arrive uses 2 or more disjointed paths to transmit the same data,

the data may eventually reach the BS. However, in the case of 2 paths, the source node S

sends half the packets through node Nd, the other half that goes through Nc will be lost and

Arrive cannot detect it. To confirm this finding and to model the disjoint multipath technique

used in Arrive, a larger network of 16 nodes was considered. The node model presented earlier

was modified so that the source nodes can unicast data using multiple paths. In the function

SelectParentOrNeighbor() another flag array Sent[] is introduced which becomes set when

data is sent to a neighbour. The flag is then cleared when the event generator model generates

a timeout. A function ClearEventTable() clears the Sent array. Thus all flags are cleared

before a new event is generated by the source. A simple flag is used to model the whole event

table to reduce state space. This ensures that the same neighbour node is not selected in

data forwarding for a single event as intended by Arrive. This had not been modelled earlier

(Section 4.9.3.1) because then only one path had been considered.

The properties are violated again as shown by the trace of Figure 4.16(b). The message

format (Type, Destination ID, Source ID, Event ID) in the trace is amended this time and the

Sender Node’s ID is added at the beginning of the message. This has been done to make the

trace more readable. Moreover, to simplify the process, the level beacons are omitted from the

trace and only those messages are placed in the trace which are directly received.

In the Arrive protocol a node only stops forwarding to a neighbour/parent if the reputation

or ranking is below a threshold. This value was set to 1 in the model. Therefore, a node will

not select a neighbour/parent even if it drops a single packet. Still the data transport property

fails for N up to 4. The trace confirms the path taken by the nodes. Although the data is sent

to 2 disjoint paths via nodes N11 and N13, both the data packets are eventually lost.

An interesting point to note here is that the nodes use reputation in the model after a single

message loss. However, this is not actually the case in a real scenario and many data packets

may be lost before the black hole nodes are isolated. Moreover, this is a small network and for

larger networks, more routes can pass through the black holes resulting in further loss of the

data. As explained in Section 4.9.3.1 passive forwarding is also not efficient here.

75

Figure 4.17: Trace of Uppaal showing that wormhole is possible in Arrive

4.9.4 INA

The formal-checker confirmed that INA is unsuccessful in Arrive. Although the nodes gain an

incorrect level, the data transport property (Claim 8) holds confirming that the data is received

by the sink. The only side-effect of INA is that the nodes next to the INA will get a level

lower than the true one, their parents become neighbours, and their neighbours are removed.

Moreover, INA creates virtual parents. However, INA still remains unsuccessful because when a

node forwards data to its virtual parent (2 levels away) the nodes which are one level away from

the sender node perform passive forwarding so the data is eventually forwarded. The ranking

of the virtual parent is lowered resulting in excluding the INA for future data forwarding. The

developers of Arrive seem to have been unaware of this fact and do not claim this behaviour.

The formal framework, however, has proved that the passive forwarding fails in INA.

4.9.5 Wormhole Attack

Figure 4.17 shows a trace generated by Uppaal in which the data transport property fail in the

presence of a wormhole attack. Here the tunnel indicates two connected wormhole nodes exists

between the nodes B and S. One attacker is within the radio range of B and other is next to S.

Thus nodes B and S are virtually connected. Thus the node S gets a level of 1 and the nodes

which should be its parents (Ne and Nf) get a level 2 which is higher than that of node S. The

messages msg01 to msg09 show the setup phase and how the nodes acquire their levels. When

the source node S sends data, it has only one parent node B which is not within its radio range.

Therefore, whenever a node transmits the data to B, the node ranking of B is lowered. But as

there is no other node (neighbour/parent) that can be chosen to be the next hop, the data is

always sent to B (via virtual link) and thus gets lost. Moreover, the nodes Ne and Nf cannot

act as passive forwarders. The reason is that the necessary condition for a passive forwarding

(i.e. B is within their range) is nonexistent. This clearly shows that the wormhole attack can

76

(a) Hello flood attack (b) Sinkhole attack

Figure 4.18: Trace of Uppaal showing other DoS attacks are possible in Arrive

succeed in the Arrive protocol.

4.9.6 Other DoS Attacks

It has also been confirmed that the Arrive protocol is susceptible to many other DoS attacks

such as hello flood, rushing, sink hole, spoofing attacks etc. It has been confirmed that if

the hello flood attacker’s transmissions reach all the network nodes (unidirectional), then the

hello flood eventually fails in the Arrive protocol. Since all nodes have the same level, passive

forwarding will enable the data to eventually reach the sink. However, as the probability of

passive forwarding should be low [44], the hello flood attack can cause considerable message

loss before being detected. Our formal analysis confirms that, if all the nodes are not within

the attacker’s radio range, the hello flood is successful in the Arrive protocol (Figure 4.18(a)).

In many cases, only a few nodes will receive these unidirectional transmissions. Our formal

framework has confirmed that in one such case, the nodes get an incorrect level and data will

not reach the sink (data transport property fails).

A trace shown in Figure 4.18(b) confirms that both spoofing and sink hole attacks are

successful in the Arrive protocol especially when the attacker node behaves as if it is a BS by

sending a level of 0 (msg09). Even if the attacker is within the radio range of the other nodes,

passive forwarding will not be adopted by any node, assuming that this node is the BS. It has

also been confirmed that the spoofing attack is successful since any node can spoof level of 0

and thus can disrupt the whole network.

In a rushing attack, an attacker transmits incorrect messages, prior to the legitimate ones,

with the aim that the nodes reject the legitimate messages and accept the incorrect messages.

The successful wormhole, sinkhole and hello flood attacks in the Arrive protocol make the

rushing attack possible. The nodes accept incorrect messages in the level propagation and

reject the correct level beacons.

77

4.10 ARAN Routing Protocol

4.10.1 Protocol Description

ARAN [45] uses public key cryptography to ensure the integrity of routing messages. It is

based on finding the quickest paths instead of the shortest ones. This means that ARAN avoids

hop counts to discover routes. Initially, a source node S begins a route discovery process by

broadcasting a route discovery message identifying the target node T:

S → ∗ : (RDP ,T , certS ,nonceS , t , sigS)

Here RDP means that this is a route discover phase, S and T are the identifiers of the source

and the target, respectively, nonceS is a nonce generated by node S, t is the current time-stamp,

certS is the public-key certificate of the source, and sigS is the signature of the source on all

of these elements. Later, as the request is propagated in the network, intermediate nodes also

attach their signatures. Therefore, upon receiving an RDP, a node A transmits the following

message:

A → ∗ : (RDP ,T , certS ,nonceS , t , sigS , certA, sigA)

When a neighbour of A (e.g. B) receives this route request, it verifies the signatures and

the freshness of the nonce. If the verification is successful, then B updates its routing table for

the source node S with A being the next hop node. Node B then replaces the certificate and

the signature of A with its own and rebroadcast:

B → ∗ : (RDP ,T , certS ,nonceS , t , sigS , certB , sigB)

A target node T, upon receiving the first route request verifications, updates its routing

table as done by the previous nodes. T then unicasts a route reply message (REP) to source

node S in the reverse path (node B) of the discovered route:

T → B : (REP ,S , certT ,nonceS , t , sigT)

Here nonceS and t are the nonce and the time-stamp obtained from the RDP message,

respectively. S, certT and sigT are the identifier of the source, the public-key certificate of T

and the signature of T on all of these elements, respectively. Similar to RDP, REP is also signed

by the intermediate nodes, as well. Hence, the route reply sent by B to A is:

B → A : (REP ,S , certT ,nonceS , t , sigT , certB , sigB)

Upon receiving the REP, the node A verifies both signatures. If both are valid, A forwards

the REP in the reverse path after replacing the certificate and the signature of B, with its own,

in the message:

A → S : (REP ,S , certT ,nonceS , t , sigT , certA, sigA)

78

(a) Event Generator

model

(b) Target model

Figure 4.19: Uppaal models for the ARAN Protocol

Node A also updates its routing table for the target node T with B being the next hop.

Although, nothing is stated in published protocol regarding data propagation we believe it has

the same pattern as that of REP. For example, suppose the source node is sending data to

target T via the verified path starting with node A:

S → A : (DATA,T , certS ,nonceS , t , sigS)

The nodes then again communicate the data in the same pattern:

A → B : (DATA,T , certS ,nonceS , t , sigS , certA, sigA)

4.10.2 Formal Model

It is believed that DoS attacks such as black hole, hello flood and wormhole attacks are still

possible in ARAN protocol and can lead to a significant loss of data. Therefore, the formal

framework is designed to detect ARAN’s vulnerability to DoS attacks. While modelling ARAN

it is assumed that the channel is ideal i.e. no message is lost because of collision or noise;

the nodes are placed in a rectangular grid and have the same radio range; and the density of

network is limited to 4 maximum neighbouring nodes.

4.10.2.1 Model

The message format employed in Uppaal is as follows: Type, ID, TID, Source/Target Certificate,

Source/Target Signature, Node Certificate, Node Signature. Type is the message type (i.e.

79

(a) Attacker models (INA) (b) Source model

Figure 4.20: Uppaal models for the ARAN Protocol

RDP, REP or data); ID is used to address the nodes in unicast messages (RDP or data) and

remains null in broadcast (RDP); TID is the target ID to which the message is addressed

(target in RDP/data and source in REP). The remaining fields are self explanatory. The nonce

field and the time stamp are not modelled since it has been assumed that these will remain

unchanged throughout due to public key signature security, saving state space. Therefore, the

source signatures are based on TID and Source Certificate which serves the purpose of the

encryption in the model. The complete Uppaal model is split into 5 parts. These are the event

generator model; attacker model; target model; source model and node model.

The event generator model has the task of generating different events in the protocol as

shown in Figure 4.19(a). The event generator starts in the START location and generates a

sense data event from the environment (SENSE DATA). The nodes are informed of these events

through the message and it models as a trigger that enables a node to do a specific job. Upon

receiving this message the source node generates an RDP. The function GenerateAttack()

creates attacks like black hole attack etc in the ARAN model. If all the nodes become free

along with the channel the event generator moves to the FINISH location.

The attacker model comprises different attackers. For the black hole attack the model is

a simple node that does not forward data, the attack model differs for other attacks. The INA

model is shown in figure 4.20(a).This attacker simply duplicates the message it receives either

RDP (DUPLICATE RDP) or REP (DUPLICATE REP) without adding itself to the route.

The attacker does not forward any data. A wormhole attacker is modelled by using a separate

message tunnel that models the tunnel which lies between 2 wormhole nodes.

The source model is shown in Figure 4.20(b). The source node starts in the INITI-

80

ATE RDP location and builds the RDP message when the event generator triggers an event

message. It then broadcast RDP (SEND RDP) to its neighbours. Note that the certificate

field is replaced by the node ID in the models. The signature is then calculated using a global

function MakeSignature() which simply adds the variables passed to it. The source node then

moves to the LISTEN phase and waits for the reply, REP. Upon receiving the REP message

(REC REP) it checks if the signature is similar for both the sender and the target nodes

(CHECK SIGNATURE). If any of the 2 signatures are incorrect the model moves back to the

LISTEN location. If both the signatures are correct, the source node unicasts (SEND DATA)

the data message. A variable PathID has been used to save the ID of the first node which had

authentically sent the reply message. The data is then unicast to that node and the source

node again moves back to the LISTEN phase.

The target model is shown in Figure 4.19(b). The target node (or sink) starts in the

LISTEN location. Upon receiving an RDP message, it checks three conditions: (i) that the

message is addressed to it (ii) the signature of the sender is correct and (iii) that the signature of

the source node is correct (CHECK SIGNATURE). If all three conditions are met, the target

node replies in the reverse path (stored ID in SavedID variable) by sending the REP message

(SEND REP). The target adds its own signature similar to what the source node had done

initially while sending an RDP message. It then moves back to the LISTEN location. Upon

receiving the data message, the target again performs two tests i.e. checking the sender node’s

signature and the source node’s signature (DATA SIGNATURE). If both the signatures are

correct, the target model moves to SUCCESS location, otherwise it moves back to the LISTEN

location.

The node model is shown in Figure 4.21 and models all the intermediate nodes that are

neither the sources nor the targets. The node model starts in the LISTEN location and upon

receiving any message (RDP, REP or data) it checks if the sender node’s signature is correct. If

the signature is correct, then the node rebroadcasts that message by adding its own signature.

It is worth noting that the signature and the certificate of source/target pair as well as the

Target ID remains unchanged in all the cases. A variable SavedID stores the first node from

which the RDP was received so that it can later send REP to it. Another variable PathID

stores the first node which sends back the REP, so that data can be sent to it later on.

4.10.2.2 Verification

The claims/properties checked for ARAN protocol were:

1. Nodes always rebroadcast the RDP message

2. Nodes always rebroadcast the REP message

3. Legitimate node forwards the data fairly

81

Figure 4.21: Node model of the ARAN Protocol

4. No deadlock in the ARAN protocol

5. Data from the source node always reaches the target node

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.1.2. By applying different attack models to the ARAN model we have been able to

confirm whether or not the property that checks the successful data transport property (Claim

5) is still valid in their presence. In the case of a data transport property failure, ARAN is

considered susceptible to that particular attack.

4.10.3 Worm Hole Attack/INA

Figure 4.22(a) shows a trace generated by Uppaal in which the data transport property (Claim

5) fails in the presence of INA. Here the node A is INA and retransmits the messages msg01,

msg02 and msg04 which it eavesdrops from its neighbours without adding itself. Note that

the node A does not duplicate data message (msg03). Thus, it creates a virtual link between

the nodes B and S. Node S then transmits the data to node B which was not forwarded,

thus causing the data transport property to fail. A similar behaviour was observed when the

wormhole attacker was employed. However the legitimate RDP message (msg05) was rejected

by the target node B as it had arrived late. This must also have enabled the rushing attack.

82

(a) INA/Wormhole Attack (b) Black hole attack

Figure 4.22: Trace of UPPAAL showing other DoS attacks are possible in ARAN

4.10.4 Black Hole Attack

Figure 4.22(b) shows a trace generated by Uppaal in which the claim (5) performing the data

transport property fails in the presence of a black hole attack. The black hole node A behaves

normally when forwarding the RDP (msg02) and REP (msg03). But when the node S transmits

the data (msg04), the black hole node does not forward it. Note that the RDP message (msg07)

from the node Na is ignored by the node B as it accepts the first arriving message i.e. via the

black hole attacker.

4.11 Summary

This chapter presents the results obtained after rigorous analysis of wireless routing protocols

by using the formal framework. Any given protocol is checked in all possible topologies of

networks of up to 5 nodes. The framework is utilized to check routing protocols in 3 categories:

(i) routing protocols not intended to be secure (TinyOS Beaconing, MCF, LEACH, Rumour

Routing, Directed Diffusion etc) (ii) secured protocols whose vulnerability to the DoS attacks

has already been identified by researchers (Authentic TinyOS with µTESLA) and (iii) protocols

currently considered secure against DoS attacks with no weakness identified (ARAN, Arrive

and INSENS). The model-checker generates a trace automatically confirming how an attack is

possible in a particular topology for all these routing protocols. Computer simulation were used,

where appropriate, to augment the results of formal modelling. This research has demonstrated

that the combination of formal modelling, model-checking and computer simulation is capable

of generating new results in the analysis of DoS vulnerabilities in wireless routing protocols.

The approach has been used also to assist in the development of a new protocol that can be

shown to be more resistant to DoS attacks. This work is described later in the dissertation.

83

Chapter 5

A Proposed New Protocol RAEED:

Design and Evaluation

5.1 Introduction

In Chapter 2 some published secure routing protocols have been briefly discussed. It was

obvious that most of the protocols are designed to address a single DoS attack and still have

some drawbacks. Chapter 4 further confirmed that some well known secure routing protocols

still fail against DoS attacks when they are tested rigorously using a formal modelling. It

therefore leads to development of a new routing protocol that should pacify most of the attacks

and to be verified against all possible executions using formal modelling. This Chapter describes

the design of the new protocol in detail. We named this new protocol RAEED (Robust formally

Analysed protocol for wirEless sEnsor networks Deployment). An innovative design method of

using the combination of formal modelling and simulation is presented in this chapter. RAEED

has been tested under different conditions like noise, varying node densities, different network

sizes (scalability) etc. RAEED gives high throughput even by using a single path, has a low

message overhead, does not require any special hardware and is suitable for resource constraint

WSN nodes. For simplification RAEED is divided into 3 main phases: Key Setup Phase (KSP);

Route Setup Phase (RSP) and Data Forwarding Phase (DFP). The KSP involves exchange of

keys between nodes. In the RSP, nodes exchange the route information between themselves e.g.

neighbour node IDs and hop distance from the BS. Finally the DFP involves data forwarding

towards the BS. Different options have been discussed in each phase. Moreover, each phase is

checked independently using formal modelling and computer simulation. The only unique thing

in this protocol is that it requires nodes to transmit some messages using high power, a feature

available in most WSN nodes. The protocol assumes an encryption scheme already present

and the information regarding cryptography is exchanged in the KSP. The only overhead in

RAEED is that, apart from neighbour information, a small data base needs to be stored in

each node. However, the size of that data base is not so large that it cannot fit into the limited

84

memory space of WSN.

The chapter is organized as follows: the shortcomings in the previous secure protocols is

briefly discussed in Section 5.2; a brief overview about RAEED is presented in Section 5.3,

the three phases (KSP, RSP and DFP) of RAEED are explained in Sections 5.5, 5.6 and 5.7

respectively. Finally, a summary of the chapter is discussed in Sections 5.8.

5.2 Evaluation of Secure Routing Protocols

The current thesis has divided secure routing protocols into classes in Section 2.5 namely

Multiple-paths schemes, Probabilistic path selection schemes, schemes that overhear a neigh-

bour communication, schemes using use specialized hardware, schemes using topology mapping

and cryptographic schemes. In WSNs the usage of extra hardware and topology mapping are

discouraged because the former will increase the cost of nodes and the later will increase com-

munication overheads. Normally the use of built-in hardware is preferred in WSN. Topology

mapping periodically consumes a significant bandwidth and node energy. Due to their asso-

ciated problems, both mechanisms, are not feasible for large networks. Thus, these solutions

are mostly adopted in ad-hoc networks and rarely in small sized WSN networks. A notable

example is INSENS [17, 18] which, after careful consideration, developers replaced a topology

mapping technique by a modified version [19]. It is worth noting here that most of the solutions

that use extra hardware are presented for ad-hoc networks rather than WSNs acknowledging

the constraints of WSN.

Most routing protocols rely on cryptographic techniques to protect against WSN attacks

in the belief that encryption solves all kinds of attacks. These protocols require configuring

encryption keys and the creation of a centralized/distributed key repository. WSN, having

limited resources, lack the computational power to support such encryption overheads. Some

secure routing protocols do make use of efficient SKC; however these have other extraneous

requirements (clock synchronization or geo-positional systems). These solutions thus might be

possible for an ad-hoc networks where nodes may have high resources but not for the WSN

nodes. It has been proved that the traditional encryption mechanism is not feasible in the WSN

(high storage and bandwidth overhead). Moreover, the modified versions of cryptography used

in the WSN cannot achieve the desired security requirements. Work on the EYES Project [232]

claims that a brute force cryptographic framework is incapable of solving all the problems. Due

to the lack of infrastructure in WSNs, the attacks like wormhole, INA, hello flood, rushing and

jamming etc. are still possible in the presence of secure encryption schemes. On the other hand

all the routing protocols must have some kind of cryptographic mechanism to get at least a

secure data transfer. This is because the attacks like spoofing, sybil, etc can only be avoided if

encryption remains intact.

Probabilistic path schemes can delay the attacker’s job but cannot pacify attacks. Moreover,

85

the data is always routed towards the BS, so the attacker can launch attacks on nodes near the

BS, as is the case with multiple paths. It enables protocols to be more robust against attacks at

the expense of extra energy consumption. But removal of attacks altogether is not guaranteed.

An attacker might be present in all the paths. Again, if an attacker is near to a BS it can

control all data traffic. Thus the belief that multiple paths will eventually prevent the DoS

attacks is also not true. A centralized approach (using BS) is not economical in WSN, so the

nodes themselves must locally employ some neighbourhood watch approach locally.

The neighbourhood watch schemes are sometimes vulnerable to the framing attack and high

error rate due to collisions, unidirectional links and the weak signals. But if the nodes only

monitor themselves and decide to forward data depending on neighbour’s performance, the

framing attack threat will vanish straight away. The collisions will occasionally induce some

errors enabling the nodes to exclude neighbours that have a weak transmission signal. As the

bidirectional links are a must for neighbourhood watch, the neighbours that have unidirectional

links should also be removed.

Finally, most of the protocols only address one or a few attacks but not all. A user must

be given a solution that prevents most of the attacks and not just one or two. It is infeasible

to use a combination of different protocols to address all attacks. Even if it has been feasible

this combination will add more burdens on the WSN resources and available bandwidth. The

current research is of the view that there is a serious need for developing a single protocol that,

in some way, should addresses most of the attacks. Also it should not require considerable

additional resources so that it can fit into the WSN environment. The protocol may not avoid

all attacks but should be workable in the presence of most of the attacks. Further other factors

should be considered such as cost, limited resources, low overhead traffic, high density and

scalability. The enhanced version of INSENS does fulfill some of these requirements. It is

claimed to be a solution against number of DoS attacks like black hole, gray hole, hello flood,

rushing, jamming, spoofing, wormhole and sinkhole. The encryption is provided using OHC,

the robustness is provided by the multi paths to multiple base stations and the new INSENS

version avoids topology mapping thus providing scalability. However, the formal framework

confirmed (Chapter 4) that the INSENS protocol only pacifies hello flood and spoofing attacks;

while other attacks are still successful (Section 6.7.2.1).

5.3 The New Protocol: An Overview

By analyzing several published routing protocols, both secure and insecure, it was evident

that there remains a need for a new routing protocol that is more robust than the existing

routing protocols. Formal analysis of one of the most robust protocols, INSENS, confirms

that there is still room for improvement in it. Both the INSENS and the LEAP protocols

use bidirectional verification techniques which, the formal framework had confirmed, can avoid

86

the hello flood attack. Moreover one way hash chain, used by both the protocols, can provide

authentication and confidentiality. So instead of starting from the scratch, it was decided to

employ the bidirectional verification and the key exchange characteristics of the INSENS and

the LEAP. The bidirectional verification method was improved so that it preserves the security

with reduced traffic. Note that the research is not concerned with encryption weakness in both

schemes and it is rather concerned on issues related to the DoS attacks. The encryption issues

are left as future work and any cryptography scheme can later replace the one presented in the

research to improve encryption. Therefore, this research only proves (Section 6.2), by using

formal modelling, computer simulation and practical implementation, that RAEED is immune

from the hello flood attack.

The path/route propagation of the RAEED involves the time stamps propagated by the

BS, that assigns each node an authentic level or hop count distance from the BS using one-way

hash chains (OHC). It is believed that if the path is accumulated in route update phase, e.g.

in protocols like INSENS etc, a high overhead is added on message size especially in the large

networks. The path accumulation is thus avoided to overcome this overhead. Moreover, almost

all the protocols are vulnerable to the INA and the wormhole attack in the route propagation.

Therefore, to avoid these attacks a new methodology has been presented in Section 6.3 that

employs transmission power to avoid these attacks. Again the encryption issue related to OHC

are simulated rather than the actual implementation of OHC schemes. However the one way

property of OHC is preserved when implementing attackers.

Data forwarding to the parents and the use of multiple paths is also avoided in RAEED.

The formal framework and simulation have confirmed that, in several routing protocols, data

may not reach the destination even by employing the multiple paths especially in low density

networks. An innovative technique is used for data propagation that depends on the neighbour’s

performance, (evaluated at runtime by each node). Thus the main aim of different attacks

(wormhole, INA, black hole, jamming etc) to prevent data from reaching the destination is

pacified through this technique. The current research calls this technique Neighbourhood Watch.

It neither requires any special hardware (GPS, Directional Antennas etc), nor highly resource

nodes (like Guards [99] etc). Instead, by employing the resource constraint nodes, the attacks

are pacified by finding an alternative path. Thus data will eventually be received at the BS.

Finally, the protocol does not require multi-path routing; it provides high throughput even by

employing a single path. This makes the RAEED useful in terms of low bandwidth overheads

and avoids employing multiple BSs.

The only overhead with RAEED is the maintenance of a small data base (DB). This database

is a required as each node has to store the neighbour’s performance, the data payload history,

and the events/source information. An important table to point out is the Neighbour Table

(NT). NT contains all the information about the neighbour nodes. This DB is discussed in

detail in Section A.7.

87

Figure 5.1: RAEED Protocol Phases

The complete protocol design can be divided into 3 main phases namely Key Setup Phase

(KSP), Route Setup Phase (RSP) and Data Forward Phase (DFP). Each phase is further

subdivided into different phases, the aim of each is to pacify a particular attack. A complete

block diagram of all the phases and the attacks that are rectified is shown in Figure 5.1.

Note that some attacks rectification is dependent on cryptography and the protocol requires

encryption to be successful for rectification of those attacks. As previously stated this research

is not concerned with the cryptography; it is assumed that an encryption mechanism is already

present. The 3 phases are briefly as follows:

Key Setup Phase (KSP) is subdivided into Bidirectional Verification Phase (BVP) and

Key Exchange Phase (KEP). The BVP involves broadcasting a message and expecting a reply

in response to confirm that the links are bidirectional. The BVP thus resists the unidirectional

links and the hello flood attackers. The KEP involves the exchange of keys used in cryptography.

The message in the next phases are encrypted with those keys to pacify the attacks like spoofing

and eavesdropping. The encryption involved in the current protocol piggybacks keys in the

BVP and thus skips the KEP. But if a different encryption mechanism is used the keys can be

exchanged in the KEP. Note that as the key mechanism of the INSENS/LEAP is adopted, the

protocol is vulnerable to the shortcomings associated with them like the global key revocation.

Thus the protocol should finish KEP very quickly if the current scheme is used. As stated

earlier the improvement in KEP is left for future work.

Route Setup Phase (RSP) is subdivided into Neighbour Propagation Phase (NPP), Loud

Test Phase (LTP), Node Synchronization Phase (NSP) and Level Propagation Phase (LPP).

88

NPP involves exchange of verified (authentic if encryption is strong) node IDs of neighbours

detected in the KSP. All the nodes of a network will have knowledge of 2-hop neighbours after

the NPP. Nodes already know their 1-hop neighbours after the BVP of KSP. The LTP involves

loud beacons exchanged between 2-hop neighbours to discover virtual links between nodes (INA

and wormhole attack). The NPP enables all nodes to roughly synchronize with the BS time.

Finally, the LTP involves assigning each node hop distance from BS in an authentic manner.

The nodes also discover their neighbour’s hop count distance in the LTP. The LTP, along with

an encryption technique (one way hash chain), can solve attacks like sinkhole and the false

injection.

Data Forward Phase (DFP) or Operation phase involves local monitoring and neighbour

ranking based on the data forwarding performance of the neighbours in order to solve attacks

like the black hole, gray hole and jamming. This phase also enables the protocol to pacify the

misbehavior (selfishness) and the framing attacks.

5.4 Message Format

The protocol follows a specific message format for all the three phases. The format of message

used in RAEED is:

Type,SenderID ,TargetID ,Nonce,PairKey ,ClusterKey ,MAC ,OHC ,Payload

These fields are defined as:

• The Type is the 8-bit message type or header.

• SenderID and TargetID are the 16-bit IDs of Sender and Target nodes.

• Nonce is an 8-bit nonce attached to a message in the Key Setup Phase (KSP) and later

it is the time stamp attached by a BS in the Route Setup Phase (RSP).

• The PairKey (PK) and ClusterKey (CK) are the 8-bit keys used in KSP. Note that the

cluster key is piggybacked along with the pair key in the KSP. Depending upon encryption

and size of the keys, one can increase the sizes of Nonce, Pair Key and Cluster Key if so

required. In DFP the PK and CK are combined to address a 16 bit Event ID.

• The MAC is the 8-bit Message Authentication Code attached to the message by the BS

using a one-way hash chain (OHC). OHC works in one way so a node can decrypt to

confirm that the hash is correct but cannot generate a new hash. Depending upon the

size of the MAC this field can be increased in length.

• The OHC (8-bits) contains the next chain value of the hash function and is updated by

the BS. Combined with the MAC it forms a 16 bit Source ID in data forwarding. This

field can be increased in length depending upon size of the OHC.

89

• Payload is reserved for the data payload

5.5 Key Setup Phase (KSP)

This research assumes that there is a cryptographic scheme already present in the protocol. In

the Key Setup Phase (KSP) this research explains how to employ the cryptographic technique

in RAEED. This also enables key exchanges between the nodes. Moreover, the protocol also

requires the bidirectional verification, as it has been proved by the formal framework in Chap-

ter 4 that the bidirectional verification will prevent the hello flood attacker from launching an

attack. The KSP addresses all of these issues. The schemes that adopt bidirectional verification

are LEAP and its extension INSENS. RAEED is a modified version of these two schemes.

This section is further categorized as: Section 5.5.1 explains the design of KSP in a semi

formal manner using equations and message sequence diagrams; Section 5.5.2 describes formal

modelling to confirm that the KSP provides the bidirectional property; Section 5.5.3 uses com-

puter simulation to confirms that the KSP presented has low message overhead and thus high

efficiency; Section 5.5.4 employs the formal modelling and computer simulation to check the

effect of the noise and the collisions on KSP; Section 5.5.5 involves confirming that the KSP

provides the same security properties as INSENS by employing formal modelling; while further

simulation results on the KSP e.g. examines the effect of different factors (different delays and

redundancy employed in the low level software) are described in Section 5.5.6.

5.5.1 The Design

When a node is booted it tries to verify its neighbours by employing bidirectional verification.

The keys are also exchanged during this phase. The principle of using 4 different keys suggested

by LEAP and used by INSENS is adopted. The fields of a message reserved for KSP are Type,

SenderID, TargetID, Nonce, PairKey, ClusterKey. All the fields are self explanatory with

fields reserved for IDs of sender and the target nodes, nonce, a random number generated for

cryptography, the pair-key used between a pair of neighbour nodes; and cluster key employed

by a group of neighbours.

It is assumed that all the nodes are preloaded with a common global key, KG . This is

the principle adopted by both LEAP [43] and INSENS [19] and it is assumed that the key is

deleted after a few seconds of deployment. After a node is booted, it broadcasts an ASK beacon

containing a random nonce and its own ID encrypted using the global key, KG , known to all

nodes:

N → ∗ : (ASK , [IDN ,−,nonce,−,−]KG
)

The receiving node, R, updates its NT by adding this new neighbour N. R also randomly

generates a pair-key and a cluster key, if these keys are nonexistent for the neighbour N. The

90

(a) Case 1 (b) Case 2

Figure 5.2: Two cases in initiating the Bidirectional Verification Phase

ASK message is then replied with an ASSIGN beacon which contains the received nonce, pair

key KR,N and a cluster Key KC . The message is encrypted with the global key, KG :

R → N : (ASSIGN , [IDR, IDN ,nonce,KR,N ,KC]KG)

If both nodes generate separate pair keys then each node will have two pair keys instead of one

for each neighbour. In order to resolve this issue, the node with lower ID generates a key while

the node with higher ID sends a junk number instead to fulfill the bidirectional verification

process. Note that unlike INSENS, and like LEAP, RAEED unicasts the cluster key in the

bidirectional verification phase. The receiving node then sends an ASSIGNACK beacon to

complete the bidirectional verification at both ends. The ASSIGNACK contains a nonce and

the keys similar to the ASSIGN beacon:

N → R : (ASSIGNACK , [IDN , IDR,nonce,KR,N ,KC]KG)

In all the circumstances, there will be two cases: (i) either the node with higher ID initiates

ASK first or (ii) the node with the lower ID initiates it first. Both cases are addressed in

Figure 5.2(a) and Figure 5.2(b) respectively. The figure shows communication between the two

nodes having IDs 1 and 2 for both cases. In the case, where Node1 has initiated ASK first, it

broadcasts its nonce with other fields being null. The Node2 in return replies with the ASSIGN,

containing the nonce of Node1 instead of the pair-key and its cluster key. Note that as Node2

has the higher ID it has no right to send its pair-key. Instead it attaches its own nonce that

will be used in bidirectional verification from Node1 to Node2 and the cluster key. The Node1,

on receiving the ASSIGN message, adds Node2 as a verified neighbour. It then responses back

with the ASSIGNACK. However, at this time it transmits the nonce of Node2, the pair-key

(it has lower ID) and its cluster key. When Node2 receives this message, it also adds Node1

as its verified neighbour and updates the keys. All the messages having been encrypted using

91

the global key known to all nodes. The Node2, on receiving the ASSIGNACK message, adds

Node1 as a verified neighbour.

In the second case, when Node2 initiates the ASK beacon by sending its own nonce, Node1

replies back with the Node2’s nonce and the newly generated pair-key because Node1 has lower

ID. On receipt of the ASSIGN beacon, Node2 adds Node1 as the verified neighbour. It then

responds back with its nonce encrypted with the pair-key sent by Node1 instead of the global

key. Note that Node1 has not sent the nonce in this case. So the verification process can only

be done if the pair-key sent by Node1 is used. On receipt of the ASSIGNACK, Node1 decrypts

the nonce and if correct, it adds Node2 as its verified neighbour.

In noisy conditions or because of collisions, some messages are likely to be lost. So the

ASK beacon is sent after 3 random times intervals. A node, upon receiving the ASK beacon,

only responds back with the ASSIGN beacon if it has not received the ASSIGNACK beacon

from the same node. Thus redundant messages are avoided. The overhead here is the extra 2

ASK beacons per node. A timer is fired in a node, after the KSP has finished. This enables

the unicast of a redundant ASSIGN beacon to all the unverified nodes (verified flag is clear in

NT). An entry in NT indicates that the neighbour has sent an ASK beacon but hasn’t replied

with an ASSIGNACK when it unicasted the ASSIGN beacon. This may result from either the

non-malicious (collision/noise) or the malicious (DoS attack) reasons. This attempt should be

made a limited number of times say n, to limit the depletion of energy of the nodes caused by

a hello flood attacker.

The KSP in RAEED is different from LEAP and INSENS. A node, after receiving an

ASSIGNACK from a particular node, will not send any ASSIGN beacon to that node again.

The reception of ASSIGNACK is a guarantee that the node has already received an ASSIGN

beacon along with the keys. Thus, further ASSIGN beacons are not required; this reduces the

message traffic in this KSP. In INSENS and LEAP, each node broadcasts an initial beacon,

and then unicasts a reply & cluster key beacon. Table 5.1 compares the number of messages

transmitted in the KSP for LEAP, INSENS and RAEED in an N-node fully connected network:

Table 5.1: Table comparing number of messages in KSP of RAEED,LEAP and INSENS

Protocol First message Second message Third message Total messages

INSENS N echo N(N-1) echoback N(N-1) CLUSTER N(2N-1)

LEAP N HELLO N(N-1) ACK N(N-1) ACKBACK N(2N-1)

New protocol N ASK
∑N−1

1 ASSIGN
∑N−1

1 ASSIGNACK N + 2
∑N−1

1

Looking at Table 5.1, it is clear that the RAEED requires fewer message exchanges compared

with INSENS/LEAP in any N node network with N-1 neighbours. Thus RAEED is an efficient

92

Figure 5.3: Uppaal model for improved Key Setup Phase in RAEED

form of KSP of INSENS and LEAP because it piggybacks cluster key along with the pair-key

exchange. This point will later be demonstrated using simulation (Section 5.5.3).

5.5.2 Formal Verification of Bidirectional Property

In this section formal verification is used to test the following hypothesis:

”The modified Key Setup Phase of RAEED will provide the same bidirectional verification

properties as provide by INSENS and LEAP”

The assumptions stated in Section 4.3.3 are persisted in this model and no attack is con-

sidered in this model.

5.5.2.1 Formal Model

RAEED is different from LEAP/INSENS so a formal model in Uppaal is developed to verify if

it still fulfils the required bidirectional properties. The formal framework presented earlier in

Section 4.3 is used for evaluation of RAEED in this chapter. The model to confirm bidirectional

property is composed of two parts a node model and an event generator model. The node

model is shown in Figure 5.3. It starts from the INIT location and tries to broadcast ASK

beacon after finding that the channel is free by going to the SEND ASK location. In case a

node receives an ASK beacon from a neighbour it moves to the REC ASK location. If the node

has already sent ASSIGN (checked using the AssignSent flag) then it will go back to the INIT

location, otherwise it will move to the SEND ASSIGN location, transmits the ASSIGN beacon

and go back to the INIT location. Upon receiving an ASSIGN beacon, the model moves to

the REC ASSIGN location, sets the VerifiedNodes flag and then goes to the ACK ASSIGN

93

location. It then transmits the ASSIGN beacon and moves back to the INIT location again.

The event generator model has 2 locations. It starts in the KEY SETUP PHASE and then

moves to the ROUTE SETUP PHASE when all nodes finish the KSP.

5.5.2.2 Verification

The claims verified were:

1. All nodes will finish the KSP

2. When the KSP finishes, then all the nodes have correct verified neighbours

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.2.1.

Both the claims were proved confirming the desired behaviour hold true in RAEED.

5.5.3 Simulation Results to Evaluate Efficiency

It has been stated earlier that RAEED reduces the number of messages exchanged between

nodes. In this section the computer simulation has been employed to perform this evaluation

in terms of scalability. To confirm this the total number of the messages exchanged between

the nodes in the KSP have been measured for different densities (nodes in range) of a 100 node

network, placed in a grid placement of 10x10. A total of 20 experiments were performed for

each density value and their average value was computed. For these experiments, each node

broadcasts 3 ASK messages. For a valid comparison the results were calculated by modifying

INSENS also to send 3 echo messages instead of 1. The results are shown in Figure 5.4(a) for

RAEED along with the INSENS protocol. The average number of neighbour nodes (density)

was varied between 4 and 28 (Section A.2.1.3). It is evident that the number of messages is

reduced by about 30% for all cases. To confirm that the KSP fulfills its requirements, the

Neighbour Table (NT) of all nodes were also checked in all the experiments to confirm that

they contained the correct entries.

For each of the tests performed to check KSP, two problem files were generated to confirm

whether the objectives of this phase were achieved. The first file contained the entries in

the Neighbour Table (NT) that could not be verified during that phase. This percentage

remained 0% up to 12 node density and then it is increased gradually to 0.05%, 0.11% and

0.45%. Note that even for the 28 node neighbours, the highest average density considered,

the unverified legitimate neighbour percentage was very low (less than 0.5%) and so can be

neglected. The reason for this problem is the collision (even after using 3 redundant messages)

as the experiments were performed in ideal conditions (i.e. no noise). To solve this issue a one

time redundant ASSIGN message was sent once for all unverified neighbours. If in return an

ASSIGNACK was received, then that neighbour’s status was altered to have been verified.

94

(a) Total messages exchanged in KSP in 100 nodes

grid network

(b) Total messages exchanged in KSP in 1000 nodes

grid network

(c) Time needed to complete the KSP in 1000 node

grid network

Figure 5.4: The effect of density on total messages exchanged in KSP

The second problem file recorded the number of missed neighbours. The results in this file

were different from the last case mentioned. These are the neighbour entries totally missing

in the NT because not all the sent ASK beacons are received as a result of collisions. In the

previous case, it was the entries in NT that had not been verified. This percentage remains 0%

up to 20 node densities and then it is gradually increases to 0.02% and 0.68% for 24 and 28

average neighbours respectively. This was expected because of the large number of nodes within

each other’s radio range; which increases collisions and some neighbours may have been missed.

The solution to this problem is to increase the number of ASK beacons from 3. However, as

the error percentage is quite low so this problem can be ignored.

The experiments were then repeated on RAEED for a larger network of 1000 nodes. The

results are shown in Figure 5.4(b). Note that the density was also increased up to 28 average

neighbour nodes. The results again confirmed that even at high density and high number of

nodes RAEED resulted in about one third of the message overhead compared to INSENS. The

95

(a) Channel model (b) Node model

Figure 5.5: Uppaal model to check effect of message loss on INSENS with separate channel

model

error percentage in NT was also checked for 1000 nodes. This time, as the density was high,

so both values increased as expected. The entries in the NT that cannot be verified during

this phase remained 0% up to a density equal to 12 and then increased by 0.01%, 1.8%, and

5.57% for higher densities of 20, 24 and 28 respectively. The number of missed neighbours also

remained 0% up to 12 node density and then is increased to 0.1%, 0.7%, and 1.8% respectively.

Note that these errors are again negligible considering the number of neighbours available to

each node at higher densities.

The total time spent to complete the KSP was also studied. This is shown in Figure 5.4(c).

Note that the expected time to finish for all the network topologies is less than 3.0 seconds (3

ASK beacons per second). Extra time is taken in sending the redundant beacons as a result of

missed neighbours following collisions. This shows that with high density and in the presence

of noise this setup time may increase. However, one can decrease this extra time by sending

ASSIGN beacons at a lower interval after the expected setup time is finished (i.e. to reduce

the delay between sending ASSIGN beacons later). This issue has been discussed later in

Section 5.5.6.2.

5.5.4 Effect of Noise and Collision on the KSP

This section involves testing the KSP under noisy conditions, i.e. when a channel is not ideal.

Formal modelling is first employed to check the effect of noise and the results are later confirmed

with those obtained using computer simulation.

5.5.4.1 Formal Model

The hypothesis for this model is:

96

”RAEED is more robust to noise than INSENS and LEAP”.

The assumptions for this modelling are different from the ones stated in Section 4.3.3. The

channel is no longer ideal and data may be lost due to noise or external effect. Also it is

assumed that the first message from each node (e.g. echo for INSENS) will always arrive at the

destination node, i.e., it is never lost. Finally, only a single topology in which all the nodes are

connected is considered.

Initially the KSP part of INSENS (Phase 1) is modelled in the presence of noise. The model

is divided into 3 parts the node, the event generator and the channel. Note that the channel is

separately modelled to introduce message loss instead of the normal reception of messages.

The node model (Figure 5.5(b)) has only one location (LISTEN) and 4 self transitions. Each

self transitions depends on what message is received or transmitted from/to channel and it is

either echo or echoback. An echo can be sent at the most MAXATTEMPTS times. Upon receiving

an echo, the EchoBackPending flag is set along with the corresponding node’s EchoRec[] flag

to indicate which neighbour should be sent an echoback. The EchoBackPending flag enables

sending of the echoback message to the channel and a function UpdateNonce() finds the node

to which the message should be sent (ID). For simplicity, the nonce is modelled using the node

ID, i.e. each node sends its ID in the nonce field instead of a random number. This is done to

save state space so that each node does not have to store its nonce separately along with the

nonce of each neighbour. Finally, upon receiving the echoback, a node sets the corresponding

Verified[] flag. Note that all messages are encrypted with the global key. Also, all the

transitions execute the CheckPhaseFinish() function to check if the node has finished its

Phase 1. This will set the corresponding global boolean array FinishNode[ID].

The channel model (Figure 5.5(a)) starts in the LISTEN location. If any node transmits a

message a global variable ChannelBusy is set and model goes to the MESSAGE IN CHANNEL

location. If the message type is echo, the corresponding recipients are added to the message

using the AddRecipents() function. The model then moves to BROADCAST MESSAGE,

which is a critical location. Thus the message is broadcast to recipients and ChannelBusy is

cleared enabling other nodes to transmit a message. In case the message is not echo, the function

NoiseModel() checks if the messages received by the receiver are below a threshold (e.g. 70%) or

not. In case a message is below that level, it will always be transmitted to that node (Success is

true) otherwise the message may or may not be received by channel (nondeterministic manner).

The Channel model always updates the number of messages received and lost by all nodes to

calculate the threshold stated earlier.

The event generator model has 2 locations PHASE1 and PHASE2. The model remains

in the PHASE1 until all node models moves out of the PHASE1 location. A self transition

checks status of the node models using function CheckNodesState().

Although the model yields the desired results when simulated, due to the model complexity,

the state space explosion problem hinders the verification process. A simple sanity check that

97

(a) Event Generator model (b) Node model

Figure 5.6: Uppaal model to check effect of message loss on INSENS without separate channel

model

the event generator eventually goes to PHASE2 takes more than an hour to verify even with 3

nodes network:

E <> Protocol .PHASE2

The introduction of the channel model induced the state space explosion problem, also

experienced while modelling with Spin. Note that the Spin models also employed a separate

channel model. So a simplified model of INSENS was developed to accommodate message

loss inside the node model instead of the separate channel model. All unnecessary details like

encryption etc are also removed as the aim is to check effect of noise. The modified node model

is shown in the Figure 5.6(b). It is almost the same as in Figure 5.5(b). Note that the echoback

might be lost if the number of messages lost (MessageLost) is below a threshold (15% set for

model). The threshold is calculated by the model before transmitting by:

Threshold = 100×MessageLost/TotalMessage

The function NoiseModel() calculates the threshold and then determines if the message must

be forwarded or lost (to simulate noise). If the noise is below the threshold it will always

be received by a neighbouring nodes (DataMustNotLost). The function CheckNodeStatus()

is available in most transitions and confirms if the current node has get out of the PHASE1

location i.e. it has sent echo and no echoback is pending to be sent to any neighbour. A flag

NodeFinish[NID] is set or cleared based on the outcome of these results. When all nodes

have move out of the PHASE1 location, the protocol moves to the PHASE1 location as shown

in Figure 5.6(a). On receipt of echoback, the corresponding Verified[NID] flag is set and a

function CheckAllNeighbours() updates the problems left in the NT of that node. Note that

98

(a) Event Generator model (b) Node model

Figure 5.7: UPPAAL model to check effect of message loss on RAEED

any remaining unverified node will update the Problems variable. A flag EchoBackPending is

set when an echo is received as well as the corresponding EchoRec[] variable for a neighbour.

A function SelectNeighbour() is used to update the message nonce before sending echoback

which will depends on EchoRec variable.

The claims/properties verified in this model were:

1. All nodes eventually enter Phase 2

2. All 3 echo messages can be sent by each node

3. When nodes enter Phase 2 there is no unidirectional link in the NT

A detailed description of the above claims in terms of Uppaal properties is explained in

Section B.2.2. The liveness property (Claim 3) however fails for INSENS even with a 10%

message loss threshold. The formal model for RAEED was then implemented in Uppaal to

accommodate the noise, as it was done for the INSENS protocol. The new RAEED model is

composed of an event generator and a node models. It is evident that an extra location VER-

IFY, has been added in the event generator model (Figures 5.7(a)) for RAEED comparing

with that of the INSENS model. This is done because RAEED, after finishing Phase 1, and

before going to Phase 2, checks the unverified neighbours by making one further attempt at

rectifying unverified neighbours. The VERIFY location triggers a timeout in all the nodes. The

nodes, upon receiving a timeout, call the TimeOutOccured() function, in which nodes try to

re-establish links with unverified neighbours by sending an extra ASK beacon.

The node model for RAEED (Figure 5.7(b)) has 2 locations NOISE MODEL and LISTEN.

This model is similar to the node model presented earlier for INSENS protocol (Figure 5.6(b)).

99

(a) No Noise and Complete Meyer Noise Model (b) Different samples of 10,000 from Node Meyer

Noise Model

Figure 5.8: The percentage of messages lost in the KSP in 100 node grid network

The RAEED node model starts in the LISTEN location and the self transitions update the

model upon receiving Ask/Assign message or a timeout. When an Ask message is received,

the model sets the AssignPending flag, which indicates that the model must send an Assign

message in reply. The functions CheckNodeStatus() and CheckAllNeighbours() are already

explained in the INSENS node model. Upon receiving an Assign message, the Verified flag is

set indicating the sender is added as a verified neighbour. The model keeps on transmitting the

Ask messages until they have been sent MAXATTEPMTS times. The variable AskSent counts this

parameter. If the channel is free and an Assign message is pending (AssignPending flag is set),

the node model moves to NOISEMODEL location. The message is then sent by employing the

model as explained earlier in Figure 5.6(b).

It has been confirmed that now the liveness property (Claim 3) is satisfied and only fails if

the noise threshold is increased to 21%. Below this value this property is satisfied, whereas in

INSENS’s case this property fails even if the threshold value is 10%. Note that by adding more

redundancy the threshold value can be increased above 21%.

The INSENS and RAEED models confirmed that a loss of 10% of messages (noise) will

introduce errors in NT. It is evident that even a 3 node network may contain wrong entries in

NT. Note that even in the absence of noise, collisions may enable message loss in the practical

systems. So some redundancy is necessary to improve robustness in presence of noise.

5.5.4.2 Simulation Results

This section focuses on applying computer simulation to quantify the number of messages lost

due to collision and noise. The experiments were performed 20 times and average values noted.

In this research, the average values are mostly plotted when the variation between experimental

values is less. The first set of experiments involved testing a 100 node grid network with various

100

densities (i.e. average numbers of neighbours); these results are shown in Figure 5.8(a) and

Figure 5.8(b) respectively. It is evident that in high density networks, the number of messages

lost due to collision is very high. Message collision are quite low when the average number of

neighbours are less 12 (i.e. 12% maximum) but it increases as the density is increased. The

message lost is about 38% when the average number of neighbours is 28. This is quite logical as

more nodes within the range will always cause more collisions. It is also evident that the effect

of noise remains low throughout (1-3%). Note that the increase in the number of nodes should

not affect the message lost due to the noise as noise is an external effect and is independent of

the number of nodes in range.

As indicated in Section A.4.3, the current research did not intend to model noise accurately.

Rather the aim is to check the overall message loss affect. That is why Section A.4.3 introduces

the division of the Meyer files into different samples of 10,000 and then observes its effects on

data loss. The samples are then applied to a 100 node network acting in KSP. The results are

shown in Figure 5.8(b). Note that these results are symmetric when compared with to results in

Figure A.2(b). Although the percentage of the messages lost is different in both cases (as noise

trace for each node will be different) the over all pattern remains the same for all the samples.

For further noise tests, performed later (Section 5.7.3, Section 5.5.6.3 and Section 5.5.6.4) four

noise samples are employed to check noise; these are shown in Table 5.2:

Table 5.2: Noise samples categorized by samples of 10k used to test noise

Category Noise file use Expected message loss

No noise The file containing no noise 0%

Low noise Sample 18 1.3% to 2.0%

Medium noise Sample 05 3.0% to 4.0%

High noise Sample 16 5.0% to 6.0%

5.5.5 Confirmation that Security Properties Hold

Although there are no major changes in RAEED as compared to LEAP and INSENS in the

KSP, confirmation that security of the protocol is valid is still required. The thesis adopts two

methods: visual inspection and formal modelling.

Applying visual inspection it is evident that if the global key has been captured at any

stage then both the cluster key and the pair keys of a node will be revealed to the attacker,

possibly by recording the messages while eavesdropping; the same is true of INSENS. The pair

key is encrypted with the global key and the cluster key is encrypted with the pair key. So

it is obvious that if the attacker is recording the messages, and later the global key has been

revealed to the attacker, the attacker will be able to disclose the pair keys. This will also enable

101

(a) Node model (b) Attacker model

Figure 5.9: Uppaal model to check security of INSENS and RAEED is same

the attacker to disclose the cluster key because it was encrypted with pair keys. So it is evident

that both in INSENS and RAEED the security capabilities are the same. Both depend on

hiding the global key from the attacker. Hence, decreasing the number of messages by piggy

bagging the cluster keys in bidirectional verification has no effect on the security requirements.

It is also now proved using the formal model.

5.5.5.1 Formal Model

The hypothesis for this model is:

”The compromise of the global key in INSENS always means an attacker has access to both

the pair and the cluster key of nodes, eavesdropped earlier”.

Apart from the assumptions stated in Section 4.3.3, it is assumed that an attacker can

eavesdrop all the nodes in range and record all the keys whether it can decrypt them or not.

Also the global key might be disclosed at any time between the start of setup phase and its

completion.

The formal model is composed of 3 parts namely an event generator, the node and an

attacker. The event generator model has 2 locations making the start and the end of the

phase. The phase ends if all the nodes of the network enter the FINISH location. A global

variable NodeFinish is incremented each time a node enters the FINISH location. The node

model is shown in Figure 5.9(a). It begins in the INIT location. If it finds the channel to be free,

it broadcasts the pair key (SEND PAIRKEY), waits for some time (WAIT), and then unicasts

the cluster key (SEND CLUSTERKEY). Note that the channel becomes free when the node is

in the WAIT location allowing other nodes to broadcast their messages. These three locations

model the two phases and delay between them in real world. Once the process is complete

the node model moves to the FINISH location by incrementing the global variable NodeFinish

102

(indicates how many nodes have finished the phase) and then stays in this location.

The attacker model (Figure 5.9(b)) starts in the LISTEN location and eavesdrops all

messages of the legitimate nodes. Note that the attacker model tries to decrypt the global

key (TRY TO DECRYPT) when channel is free and no node is transmitting any data as

otherwise it must record that message. This attempt is nondeterministic. The attacker may

(DECRYPT GLOBALKEY) or may not decrypt the key. When the attacker model receives

a pair key and it possesses the global key at that moment, it will be able to decrypt the pair

key. Non availability of the pair key will enable the attacker to record the pair key for later

use. Similarly, if the attacker possess the pair key when the cluster key is sent by a node, it can

decrypt the key otherwise it records that key. Note that whenever the attacker is able to access

the global key (DECRYPT GLOBALKEY) the function CheckRecordedData() executed to

decrypt all the stored data.

5.5.5.2 Verification

The claims verified were:

1. All nodes eventually enter Phase 2 (RSP)

2. All 3 echo messages can be sent by each node

3. Global key compromise does not allow the attacker to capture the other keys

4. Global key compromise leads to all further pair keys being captured

5. Global key compromise leads to all further cluster keys being captured

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.2.3. All the above claims/properties were proved confirming both INSENS and RAEED

possesses same security properties in terms of node compromise.

5.5.6 Simulation Results: Effect of Different Factors on KSP

This section presents a parametric study performed to explore the different parameters in the

KSP. The list of all parameters used are shown in the Table 5.3. Only one of this parameter

was varied while others were kept constant. This allows finding the most suitable value for a

particular parameter, to acheive the best performance.

5.5.6.1 Effect of Time to Send ASK (Delay) on KSP

The ASK beacon is sent by nodes after a random time from a span of values. In these ex-

periments this time span is varied. The values are varied from 0.5 to 32 seconds in a binary

exponential manner. Note that the smaller the value, the quicker will the KSP finish. The

other parameters are constant and appear in Table 5.3. The percentage of messages lost and

103

Table 5.3: Parameters used in different experiments on Key Setup Phase parameters

Parameter Standard Value Variation

Number of experiments 10 5 to 10

Number of Nodes 100 100

Node Density 16 Average 4 to 26 Average

Noise conditions No noise No noise

Time span for ASK 4 seconds 0.5 to 32 seconds

Time span for ASSIGN 50 msec 6.25 to 400 msec

Number of attempts to send ASK 1 time 1 to 2 times

Number of attempts to establish neighbours 5 times 0 to 6 times

(a) Percentage of message lost in KSP as a function

of ASK delay

(b) Time taken to complete KSP as a function of

ASK delay

Figure 5.10: The effect of time to send ASK (delay) in the KSP

time taken to complete KSP are shown in Figure 5.10(a) and Figure 5.10(b) respectively. As

there is no noise model in these simulations, all the message are lost as a result of collisions.

The message loss graph indicates the average total messages lost in KSP after performing 10

experiments. The average ASK, ASSIGN and ASSIGNACK messages lost are also plotted.

It is evident by looking at the graph in Figure 5.10(a) that the collision is reduced when

the time span to send ASK is increased. The average total message loss is below 5% when

the time is increased to 16 seconds. It was also observed that a similar affect is evident on

ASK and ASSIGNACK beacons but not on ASSIGN beacons. The message loss (collisions)

in ASSIGN beacon decreases in the same manner up till 4 seconds. If, however, the time is

increased further there is no further change and the message loss remains around 20%. This

means there is another factor affecting this message loss (collision). That will be discussed in

a later section.

104

(a) Percentage of message lost in KSP as a function

of ASK delay

(b) Time taken to complete KSP as a function of

ASK delay

Figure 5.11: The effect of of time to send ASSIGN (delay) on Collision in the KSP

Although the increase in time has decreased collisions considerably, one has to pay the price

in the form of more time to complete the KSP and increased vulnerability to attacks. This is

evident from Figure 5.10(b) where the setup time increases. Also, there is not much variation

in the results between experiments. Note that the standard total time must be less than 3

times the span of an ASK beacon (ASK is sent 3 times by each node). It also depends on

collisions, as the nodes try to resend the messages that are lost in the collision. When the time

span is increased to 4.0 seconds, the time to complete is almost 3 times the ASK span time.

Considering collisions again, in Figure 5.10(a), shows that it is because the collision is reduced

to below 8% in these cases, thus supporting the claim.

5.5.6.2 Effect of Time to Send ASSIGN (Delay) on KSP

It was evident from Figure 5.10(a) that there is a factor causing the collisions in ASSIGN

beacons. In these set of experiments the time span to send ASSIGN was started from 6.25 msec

and was doubled up to 400 msec; the other parameters were kept constant. The time span for

ASK was fixed to 4 seconds as it had given a good performance in both collisions (<10%) and

setup time (12 seconds). Considering the Figure 5.11(a), it is evident that the collision in the

ASSIGN beacons decreases considerably with the increase in the time span for the ASSIGN

beacon. The collisions on both ASK and ASSSIGNACK beacons remain constant, but the

overall collisions decreases because of the decrease in the collisions in ASSIGN beacons. It is

also evident that after 200 msec time there is not much decrease in collisions. Therefore it

appears that, in high density networks, all the collisions cannot be eliminated.

The effect of the ASSIGN time span on completion time for KSP is shown in Figure 5.11(b).

It is evident that this time the effect is the opposite to that of the ASK time span. The time to

complete the KSP is quite high until the span for the ASSIGN is reduced to 25 msec and then

105

(a) Percentage of message lost in KSP (b) Time taken to complete KSP

(c) Percentage of missed neighbour in NT of all

nodes

(d) Percentage of unidirectionsl links present in NT

Figure 5.12: The effect of sending redundant ASK messages in KSP

it stays constant. This results from a lot of messages being lost because of collision if the time

span is low. Thus, the protocol will try to resend more messages to establish the KSP. This

will eventually increase the time to complete the KSP. It is already evident that collisions are

greater if the time span is less than 25 msec. This indicates that if the ASSIGN is sent before

25 msec, no advantage is achieved because most of the messages are lost because of collision

and KSP will also not be completed early.

5.5.6.3 Effect of Redundancy in ASK

The effect of collisions have been reduced considerably by adjusting different parameters. A

further series of test was focused on checking the effect of the number of times the ASK beacon

is sent. Consider that the ASK beacon is the first beacon a node broadcasts after it is booted.

It is never a guaranteed that all the neighbours will receive the ASK beacon. So, in order to

provide redundancy, the ASK beacon was sent multiple times. It has a side effect though. The

setup time is directly proportional to number of times ASK is sent. So by broadcasting the

106

ASK twice, the setup time will be doubled. Thus, there must be a justification for sending ASK

more than once. The experiments were performed in the presence of different noise samples as

described in Table 5.2. Other parameters of Table 5.3 were unaltered.

Considering Figure 5.12(a) it is clear that message loss is higher when the noise is high.

There is a slight increase in message loss as the number of attempts to send ASK is reduced

from 3 to 1. This time the important thing to check, instead of message loss, was non-existent

entries in NT. These are the number of neighbour nodes missing in NT of different nodes

(Figure 5.12(c)). It is evident that sending the ASK beacon once has created more problems in

the NT of nodes. The error increases if a high RF noise sample is used (3.5%) and quite low

in the absence of RF noise (0.5%). In the absence of noise, errors results form collisions alone.

The results are far better if the ASK is sent twice. In the presence of noise samples the error

rises to a maximum of 0.6%. When the ASK beacon is sent 3 times, there is not a single error

entry even in the presence of high noise.

It is necessary to check the number of unidirectional links present in the NT, i.e. neighbours

that were not verified due to message loss in the KSP; the results are shown in Figure 5.12(d).

Again, the percentage loss is more if the ASK is sent once especially under high RF noise

conditions. The lowest error percentage were achieved when the ASK was sent 3 times; although

in the presence of high noise, the error is only 0.5%. This is negligible considering the high

number of neighbour nodes.

Finally, the time taken to finish the KSP is examined for different cases in Figure 5.12(b).

The expected time to finish should be 4 times the number of attempts made to send ASK (ASK

time span is 4 seconds). Considering the graph, most of these followed this trend except in the

case when ASK is sent once and the noise sample is medium or high. This is because in the

presence of noise, the messages are lost more often and the protocol tries at least one time

to rebuild the unidirectional links in NT (ASSIGN attempts=1). This will increase the setup

time. Note that this has already been verified by the Figure 5.12(d), where ASK is sent once,

the errors are greatest under in medium and high noise conditions.

5.5.6.4 Effect of Redundancy in ASK with 2 Assign Attempts

The only difference in this experiment compared to the previous experiments was that 2 at-

tempts were made to establish unidirectional links. The ASK beacon attempts ware again

varied between 1 and 3 with other parameters kept constant. However, the 4 different noise

samples were also applied. As expected, the results of message lost (Figure 5.13(a)) remained

constant.

The errors in the NT, i.e. the number of neighbour nodes missing in the NT of different

nodes, is much lower than in the previous case, as shown in Figure 5.13(b). The error this time

is lower than 2.5% in the presence of high RF noise when sending the ASK only once. There

is a little improvement when the medium noise sample is employed. It is worth noting that

107

(a) Percentage of message lost in KSP (b) Percentage of missed neighbour in NT of all

nodes

(c) Percentage of unidirectionsl links present in NT (d) Time taken to complete KSP

Figure 5.13: The effect of sending redundant ASK messages in KSP

the error remains the same for low noise. It increased however when the no noise sample is

employed. The reason for this may be that messages collide more under no noise conditions.

In the presence of low noise conditions, some of these collided messages are lost due to RF

noise, enabling at least a few to reach their destination. Note that data traffic has also been

increased by sending redundant ASSIGN beacons. Thus they may have collided with the only

ASK beacon sent. The results get better with the increase of the number of the ASK beacons

sent. As in the previous case, the NT entries are 100% correct when ASK is sent 3 times.

The number of unidirectional links present in the NT (i.e. neighbours that were not able

to be verified due to message loss in the KSP) has also decreased a lot by trying to attempt

twice to establish the unidirectional links; the results are shown in Figure 5.13(c). Comparing

this with the previous case in Figure 5.12(d), the error has reduced and when 3 ASK beacons

are sent the results are ideal even in the presence of high RF noise.

Finally, the time taken to finish the KSP is plotted for the different ASK beacons attempts

in Figure 5.13(d). As stated earlier, the expected time to finish should be 3 times the number of

108

attempts made to send the ASK beacon. As the ASK time span is 4 seconds, the standard time

should be 4, 8 and 12 for 3 cases respectively. Looking at the graph, in almost all cases, the

protocol took extra time to complete the KSP. The reason being, in case of unidirectional links,

the network tries to establish paths with unidirectional nodes twice and so times accumulate.

Therefore, the finish time might go up to a maximum of 5 times the ASK time span. When there

is no noise and the ASK is sent 3 times, the protocol was able to complete within the expected

time (12 seconds). During this period all nodes establish the correct entries in the NT in the

absence of RF noise and leads to KSP finishing in time. It is not so in the presence of noise

because some of the messages are lost and nodes again need to re-establish the unidirectional

links. Note in Figure 5.13(c) that it is clear that when ASK is sent 3 times the unidirectional

links are less 0.1% even in high noise.

Finally, the number of attempts to re-establish the incorrect links should not be increased too

much because, in the presence of hello flood attacker, it will lead to a lot of message overhead.

That is the reason that the experiments were not performed for more than 3 attempts for

redundancy.

5.6 Route Setup Phase (RSP)

The main function of the RSP is that the nodes know their own as well as their neighbour’s

relative hop distance from the BSs in an authenticated way. Thus, a node captured in this

phase will not affect wrong/false message propagation. Another task of the RSP is that the

virtual links, because of INA and wormhole attack, are avoided.

The general assumptions for RSP are:

• Links may be unidirectional or bidirectional.

• A node can be captured by attackers in this phase.

• The KSP has been completed before this phase.

• The base stations can be one or more.

• The one way hash chain used by the the BSs cannot be decrypted.

• The BSs are in safe locations and cannot be captured.

• Network scalability and density may vary.

• High noise spikes might be present and cause considerable message loss.

• The hidden terminal problem exists at the link layer.

• A square grid topology is used for the simulation throughout.

109

• For certain cases, the messages are sent with a higher power than normal.

This section is further organized as follows: The available techniques that can be used in

the RSP are briefly discussed in Section 5.6.1; the scheme adopted by RAEED for the RSP

is explained in Section 5.6.2; the four sub-phases of the RSP NPP, LTP, NSP and LPP are

explained in Section 5.6.3, Section 5.6.4, Section 5.6.5 and Section 5.6.6 respectively. The mes-

sage sequence diagram for the RSP is explained in Section 5.6.7 and a formal model to verify

the correct working of RSP is explained in Section 5.6.9. Computer simulation are later per-

formed to confirm the working of RSP without a synchronization process (Section 5.6.10), with

a synchronization process (Section 5.6.11) and in the presence of multiple BSs (Section 5.6.12).

5.6.1 Available Techniques for Route Setup

There were many different techniques discussed in the literature review to route data to the

sinks or BSs. Some of these are: (i) flood data by broadcasting, (ii) send data to the node that

is nearest to the sink by using location, hop count, cost, and low latency, (iii) assign a parent

in the setup phase and always forward the data to the parent. and (iv) Send data randomly to

a neighbour.

Flooding data is not normally employed by routing protocols as it is the worst case of data

routing. Sending the data by randomly selecting a neighbour may cause the data to take longer

route and may result in the message loss in some cases. Our experiments on INSENS confirmed

that sometimes old messages collided with the messages arriving later and thus both messages

are lost. Sending data to a parent is a good technique but will fail if the parent has died or has

been compromised. In that case the parent becomes a single point of failure. Although solutions

like the Parent Monitor scheme [150], to monitor parents if they are still active do exist, they

cannot avoid node compromise and cannot be regarded as secure. The technique most often

used by routing protocols is forwarding data to the node nearest to the sink/destination or BS.

These schemes are identical to forward data to a parent. The node nearest to the sink uses one

of the following methods to determine the next hop node: (i) geographical distance, (ii) hop

count distance, (iii) message latency or time taken to receive message and (iv) cost in terms of

energy etc.

Geographical distance normally involves GPS or some other technique to measure the actual

locations of nodes. As RAEED avoids any additional hardware, this technique has not been

adopted. The hop distance is a technique in which a tree is built up starting from the BS (sink)

to all nodes, where the BS is on top of the tree. In this case, the BS initiates the route broadcast

which is propagated by each node once and ignored the next time. A similar technique uses

time as a metric rather than the hop distance. The nodes try to forward the data to the node

which provides the least latency. In that case the time taken to receive a message involves the

synchronisation of the nodes. The nodes might be synchronised before deployment or by some

110

authentic manner. The last option uses energy or cost involved in message passing as a metric

for data routing. This metric is used to indicate how much cost is required by a node in terms

of power etc. Note that false information might also be propagated in such cases.

5.6.2 The Proposed Design

RAEED adopts a combination of the time taken to receive a message and the hop count

technique. Both are simple and require no additional hardware. Moreover, the authentication

can be provided in this technique; this is discussed in later sections. The fields of a message

used in RSP are:

Type,SenderID ,TargetID ,Nonce,PairKey ,ClusterKey ,Time,HMAC

Note that the fields used in the KSP are no longer required so the Nonce field can be re-

placed by the OHC, the new one way hash chain attached in the message. The PairKey and

the ClusterKey fields can be replaced by 8-bit representations of the BS time in seconds and

milliseconds. The Target field is no longer required in this as the messages are broadcast in

the LPP (and NSP). So this field can be reserved for the BS ID (index) if multiple BSs are

deployed. Lastly, a new field HMAC is used. This is the hashed message authentication code

using a one-way hash chain (OHC) which is stored in all nodes and the BS. So the modified

message format in the RSP is:

Type,SenderID ,SinkID ,OHC ,Timesecond ,Timems ,Timeminute ,HMAC

The RSP can further be divided into the Neighbour Propagation Phase (NPP), the Node

Synchronization Phase (NSP) and the Level Propagation Phase (LPP). The NPP unicasts

neighbour information gathered in the KSP to all the neighbouring nodes. The NSP involves

synchronising the nodes by flooding the authenticated message from the BS using a OHC. The

LPP involves assigning the nodes hop distance levels from the BS in an authenticated manner.

The NSP is a precursor to the LPP as the LPP presented in this thesis requires the nodes to be

roughly synchronized. The NPP can take place before or after the combination of NSP/LPP

but performing it just after the KSP is advantageous. This will be discussed in later sections.

5.6.3 Neighbour Propagation Phase (NPP)

This phase could be started at any time in the RSP, even after finishing the Level propagation,

but sending neighbour information earlier is advisable as it will prevent an attacker from sending

fake information after node capture. This will also enable the protocol to remove the wormhole

attack using the Loud Test Phase (LTP) presented later on in Section 5.6.4 and Section 6.3

before the Level Propagation Phase (LPP). Thus, the preferred time is to do it straight after

the KSP. Three methods by which neighbour information is generally exchanged are:

111

Figure 5.14: The effect of density on percentage of Neighbour message lost in 100 node network

1. First method is to send it randomly in a selected time. This will enable collisions but will

be finished very quickly.

2. A second method is to synchronize node clocks and then send the neighbour information

according to node ID, i.e. the lower ID should send data first and so on. This will prevent

collisions but will increase the time to finish this phase. But this is only possible after

the LPP.

3. A third method is that each node divides the time reserved to send neighbours into

different slots, depending on the total number of neighbours, and then messages are sent

depending on how high the node ID is compared to others. Instead of sending data

immediately, a random time might be chosen in this available time slot to avoid further

collisions.

Considering the above three options the third one is a combination of the first two options

and looks more efficient. It will result in fewer collisions compared to option 1 and will also

finish in the same time duration as that of option 1. Hence, this option has been chosen for

neighbour propagation. The constant used for time slot is called MAXNEIGHBORTIME in the

TOSSIM software and the time slot is calculated using the equation:

TimeSlot =
MAXNEIGHBORTIME

TotalNeighbor

Another concern is that the MICAZ motes did not support large size messages and even

for 28 neighbour nodes (28x2=56 bytes) multiple messages have to be sent. A possible solution

could be to send the difference in node ID in 8 bits but sometimes the node IDs might have

values greater than 256. So this is not practicable.

The sender node must also know that it has received all the NEIGHBOR messages from a

node. To provide this, a stamp is included in NEIGHBOR message which is simply sum of all

neighbour node IDs a node must send. More complexity in stamp is left for future work. Using

112

this stamp the receiver node can confirm that all node IDs have been received (by adding the

received node IDs of the neighbours).

It is expected that some of the NEIGHBOR messages will be lost as a result of collisions.

Figure 5.14 shows the effect of density on the percentage of the NEIGHBOR message lost in

a 100 node network. Thus some nodes will miss the 2-hop information from some of their

neighbours. The data stamp will ensure that the nodes correctly receive all 2-hop neighbour’s

update. The format of NEIGHBOR message is:

N → ∗ : (NEIGHBOR, [IDN , ID1,Stamp, ID2, ID3,, ID12]KG)

where

Stamp =
n∑

i=0

IDi

Here n is the total number of neighbours and IDi is the 16 bit ID for ith neighbour stored

in the node. The same stamp is attached for multiple NEIGHBOR messages (if total number

of neighbours is more than 12). After a suitable time the nodes check if the stamp is correct

for a neighbour. If the stamp is incorrect for a particular neighbour a MISSNEIGHBOR is

broadcasted:

N → ∗ : (MISSNEIGHBOR, [IDN , ID1,−, ID2, ID3,, ID12]KCN
)

This time IDi contains IDs of neighbour nodes whose stamps are incorrect and thus nodes

require them to resend the NEIGHBOR messages. The neighbour nodes check the MISS-

NEIGHBOR message and if their ID exists in this message, they rebroadcast the NEIGHBOR

message. In this way all the missing 2-hop neighbours can be recovered. Also, the total time

reserved for NEIGHBOR message propagation was 1 second so the number of collision has

increased. This time is relaxed and later increased to 10 seconds to avoid collisions.

The MISSNEIGHBOR message might be sent anytime even after the LPP is finished, i.e.

levels have been assigned. The missed neighbour nodes can then be checked by looking at

the neighbour stamp, sent by each neighbour, which was temporarily stored in the NT (Rank

field). If the stamp is incorrect, the node builds a MISSNEIGHBOR message by inserting

that neighbour’s node ID in the message and broadcasts it. Note that these missed neighbours

will be omitted in the loud test if the missed neighbours are broadcasted later after LPP. One

solution is to broadcast these missed neighbour messages straightaway after NPP, before the

BS initiates SPP. Even if the node has been compromised, the attacker cannot later send fake

neighbour IDs because the stamp and a few neighbour messages have already been received by

legitimate nodes.

5.6.4 Loud Test Phase (LTP)

The LTP scheme assumes that nodes can transmit a powerful message. This will enable a node

to transmit the message to a node 2-hop away, which, in normal transmission, is not in radio

113

range of the node. This assumption is realistic as the node’s transmission can be adjusted

at run time without adding any extra hardware. The aim here is to use this powerful signal

sparingly (at the most once) only to detect the virtual links between nodes.

The main aim of this phase is to remove virtual links created because of wormholes and

INA. These issues are explained in detail in Section 6.3. In this section only the design of LTP is

presented. Two hand shake messages LOUD and LOUDREPLY are exchanged between 2-hop

nodes similar to what has been done in the KSP (ASK and ASSIGN) between 1-hop nodes.

This scheme is only possible if NPP has successfully finished, which enables all individual nodes

to be aware of their possible 2-hop neighbours. The design is flexible and the LOUD messages

can be broadcast or unicast. The LOUDREPLY is always a unicast message and is addressed

to a particular node. If the global key (encryption) is assumed to be unknown to intruders until

the end of this phase (no node can be compromised before LTP finishes), broadcast LOUD can

be used. This will have a low message overhead as a single LOUD message is sent by nodes to

all 2-hop nodes instead of individual LOUD message to all 2-hop neighbours.

If the broadcast technique is to be used, the message format of LOUD is the same as used

in the ASK beacon. The only difference being that it is sent with more power:

N ³ ∗ : (LOUD , [IDN ,−,nonce,−,−]KG
)

A receiving 2-hop node, R, updates its NT and responses with a powerful LOUDREPLY beacon

which contains the nonce it received from the 2-hop sender node. This message is also encrypted

with the global key, KG . Note that the message must be powerful enough to reach 2-hop

neighbour nodes (indicated by ³ instead of →). If required, the 2-hop neighbour nodes can

also generate and send a new pair key KR,N (as well as new cluster key for 2-hop nodes KC)

which can be later used for communication between these two nodes.

R ³ N : (LOUDREPLY , [IDR, IDN ,nonce,KR,N ,KC]KG)

Note that the above 2 equations are modified by replacing the global key KG by the corre-

sponding cluster key if the LOUD messages are unicasted instead of broadcast.

5.6.5 Level Propagation Phase (LPP)

An innovative technique, using authentic time stamps, is presented to assign levels to nodes

instead of the usual incremental hop count message passing. The BS initiates this phase by

broadcasting a LEVEL beacon. It contains the time at which the beacon is initiated, TimeB ,

and next element of the hash chain OHC1 encrypted using a one-way hash chain (OHC). Here

TimeB comprises 3 bytes reserved for time in minute, seconds and milliseconds. Due to the one

way property of the OHC, receiving nodes can confirm authenticity of the LEVEL beacon that

114

it has been generated by a legitimate BS. The complete message is then encrypted again using

the cluster key, KCB , of the BS:

B → ∗ : (LEVEL, IDB , IDB ,OHC1,TimeB ,HMACLEVEL
OHC0

]KCB
)

where

HMACLEVEL
OHC0

= IDB ,OHC1,TimeB

and

TimeB = Timesecond ,Timemsec,Timeminute

The receiver node N, upon receiving this message, first confirms if the sender has a verified

entry in the NT and thus can decrypt the message with the sender’s cluster key stored in the

KSP. It can then authenticate the message, the time received using one way hash function and

its cached OHC number OHC0. If OHC is valid, the cached OHC number OHC0 is updated

to OHC1 which will be used by the BS for future authentication. This process is repeated and

OHC1 is updated to OHC2, OHC3 etc in the next generated authentic messages by the BS.

Because of the one way hash function, a node can authenticate all lower hash values. The node

decrypts the time stamp attached by the BS, TimeB , and assign itself the level by calculating

the time difference between the current time at the node and the BS stamped time. As the

OHC has been used, only authentic BS messages will be accepted by the nodes. Thus the nodes

will calculate the legitimate level. This is the reason that a timing mechanism is used to assign

the node levels. Moreover, the nodes need not be synchronized perfectly as one can use the

difference of time (e.g. 100ms has been employed in this thesis) to assign a particular level.

This value is saved in each node in a constant called TIMELEVEL. Each node N calculates its

level by using following equation:

LevelN =
TimeB − TimeN

TIMELEVEL
+ 1

Each node rebroadcasts the LEVEL message after a random time between 0 and TIMELEVEL

(100 ms). It is expected that the error between the node clocks is less than TIMELEVEL. The

whole message is encrypted with node’s key KCN
:

N → ∗ : (LEVEL, IDN , IDB ,OHC1,TimeB ,HMACLEVEL
OHC0

]KCN
)

The sender is assigned the level depending on the time stamp. A node only broadcasts the

LEVEL beacon once when LEVEL beacon is received the first time from the neighbour node.

Later LEVEL beacons merely update the NT giving each node the level depending on its node

time stamp. This eventually becomes the hop count from the BS as each node broadcasts data

after 100ms at most. Nodes then can check the time by looking at the authentic time of the BS

(OHC). Thus in spite of node capture before this phase, the attacker cannot propagate a false

115

level by assigning any value to the hop count. If however a wormhole or INA was present just

before deployment, the node can still get incorrect levels. So these two attacks must be avoided

before this phase. The method to avoid these attacks is discussed later in Section 6.3. A level

is only a guide to each node informing how far this and its neighbours are from a particular

BS. Also the nodes do not always send data to the parent node from which it first receives the

LEVEL beacon. Hence a parent node’s compromise will not fail RAEED.

The receiving node will first find the entry in the NT to get the cluster key to decrypt this

message. It then verifies the hash value and the time stamp of BS using the OHC as explained

earlier. Then the receiver node reads the time stamp sent by node N to determine how long

it takes the message to reach that node. If the sender node broadcasts a fake time it will be

detected straightaway and that message will be discarded.

Note that because of the random time, the time to send will decrease as the LEVEL beacon

moves forward because the random delay time may be of any value from 0 to TIMELEVEL. In this

way, the nodes may get incorrect levels. To avoid this happening, each node checks to which

time span of TIMELEVEL (e.g. 100ms) the LEVEL beacon belongs. It then adds the remaining

time in the time span to the delay to broadcast the LEVEL beacon. The time span can be

determined by using the node level that has been authentically assigned:

TimeSpanN = TimeB + (LevelN ∗ TIMELEVEL)

The error is the difference between this time span and the current time at the node when the

Level beacon was received. This error is added to the random time to rebroadcast the LEVEL

beacon:

SendTimeN = (TimeSpanN − CurrentTimeN) + (RandomTime + TIMELEVEL)

The RSP is explained using a simple example in Section 5.6.8.

5.6.6 Node Synchronization Phase (NSP)

It was realized that lot of errors in level resulted because node’s clocks were not synchronized.

It had been stated in the assumptions that no special hardware will be used in RAEED. Thus,

synchronization of clocks was the issue the current research wanted to avoid. However during

deployment the nodes may have had different start times in which case there will be lot of errors

in level propagation. Also the researchers have shown that nodes might have a maximum worst

drift of 40 ppm. This means 40 us in one second and therefore the issue is to synchronize node

clocks somehow before level propagation so that even the worst drift would have no effect on

them. To solve this problem, each BS, floods the network with its time stamp before initiating

the LEVEL beacon. Each node will then update its time according to that time stamp. This

would be authentic as it will utilize one-way hash chain as was in the case of LEVEL beacons.

116

Figure 5.15: Message Sequence Diagram for RSP

The messages are treated in the same manner as in LEVEL beacons i.e. accepting the first

message and ignoring the rest. The format of the message will be:

B → ∗ : (SYNCHRONOUS , IDB ,−,TimeB ,HMACTIME
OHC0

]KCB
)

where

HMAC SYNCHRONOUS
OHC0

= IDB ,TimeB

Nodes simply forward this message without delay. Nodes can confirm authenticity by using the

OHC and thus update their time if required be. This synchronization is required only before

the BSs propagate the LEVEL beacons. A compromised node delaying the message will gain

no advantage as the delayed messages are rejected. The only possible attack is hello flood or

wormhole, the attackers propagating this message earlier than the normal propagation time.

The hello flood attack has already been removed from the protocol in the KSP and the solution

for wormhole will be presented later in Section 6.3.

5.6.7 Message Sequence Diagram

Figure 5.15 shows the message sequence diagram of a 4 node network to demonstrate the SPP

and LPP in the RSP. Node0 is the BS that has 2 neighbours Node1 and Node2, which thus

must have a level of 1 because they are one hop away from BS. There is another Node3 that is

117

within the range of Node1 and Node2 but not that of Node0. This node is thus two hops away

from BS and therefore must have a level of 2. The message format used for this beacon is (Type,

SenderID, TargetID, BaseStationID, NextHash, TimeSecond , TimeMsec , TimeMin , HMAC).

The BS initiates the SYNCHRONOUS message with time stamp of 15.0 seconds. Node1

and Node2, upon receiving this message, synchronize their node time according to the BS

time, i.e. 15.0 seconds. Both nodes then rebroadcast the message. In this case Node1 has

transmitted before Node2. This enables Node3 to receive message from Node1 before Node2

and would have synchronised its clock. Node2 also receives this new SYNCHRONOUS message

but ignores it, as the node has already been synchronized. Similarly, later on when nodes Node1

and Node3 receive SYNCHRONOUS message from Node2 they would also ignore it. Finally,

Node3 rebroadcasts the SYNCHRONOUS message which will be ignored by both the nodes

Node1 and Node2.

The BS, after 500 ms, initiates the LEVEL message with new time stamp of 15.5 seconds.

Node1 and Node2, upon receiving this message, check their own clocks and calculate that the

message has been sent within 1 second. The clocks of nodes Node1 and Node2 have already

been synchronized. Therefore, both nodes will receive the message after almost 15.5s. The

difference in time is thus approximately 0. As the difference in time is less than 1 second,

compared to a BS’s stamped time, both nodes will update their level to 1 and the level of the

sender node (BS) to 0 in the NT. Both nodes then wait for 1 second and then both will try

to broadcast the message between 1 and 2 seconds. Suppose that Node3 receives the message

earlier from Node1, it checks the time stamp in the message (15.5) and compares it with its

own time clock. On comparison the Node3 will realize that the message has been sent within a

range of 1-2 seconds after the time stamp. The Node3 thus will assign the Node1 a level of 1 in

the NT and a level of 2 (one higher than the sender) to itself. On receipt of this message, the

Node2 also updates the level of Node1 to 1 in the NT. Similarly, the level of Node2 is updated

in the NT of Node1 and Node3, when Node2 sends LEVEL beacon. Finally the NT of Node1

and Node2 are updated when Node3 tries to broadcast the LEVEL in the time between 2 and

3 seconds after the time stamp.

5.6.8 An Example to Explain Level Propagation Phase

The RSP is presented using a simple network shown in Figure 5.16. Suppose the base station B

initiates the LEVEL beacon at exactly 15 seconds. The time stamp will then be 15.00. Taking

the constant TIMELEVEL value of 100 msec, the different time spans for each level and the node

IDs that get that level are shown in Table 5.4.

Both nodes 1 and 2 will receive the message at 15+e seconds, where e is the synchronization

error in the node times. This error should be small compared to the TIMELEVEL. Both nodes

will assign themselves the level 1 and check their current time difference from stamp time. As

both these times will almost be the same, the nodes add 100-e msec error delay. The reason

118

Figure 5.16: A 9 node network to explain level propagation

Table 5.4: Assigned levels and time spans when TIMELEVEL is 100 msec

Level Time span (msec) Node IDs

0 15.00 0

1 15.000 - 15.099 1 and 2

2 15.100 - 15.199 3, 4, and 8

3 15.200 - 15.299 5 and 7

4 15.300 - 15.399 6

being that both the nodes must send level message in time span of level 2, i.e. 15.100 to 15.199.

Suppose the random time values are 73 msec and 21 msec respectively for node 1 and 2, then

node 1 will transmit at 15.173 and node 2 will transmit at 15.121. The receiving nodes are thus

assigned level 3 as they receive this LEVEL message between the time span 15.100 to 15.199.

Note that the random time is introduced to avoid collisions of the LEVEL messages generated

by the same level (hop distance) nodes. The nodes that receive message at 15.121 will add

0.79 msec (15.200-15.121) to the random time before rebroadcasting the LEVEL beacon. This

will enable the time to move in the next span i.e. 15.200 to 15.299. This process is repeated

throughout and thus all the nodes will get the correct level. For 50 msec value of TIMELEVEL,

the table is modified to indicate different time spans for each level, The node IDs that get that

level are shown in Table 5.5.

Table 5.5: Levels and time spans when TIMELEVEL is 50 msec

Level Time span (msec) Node IDs

0 15.00 0

1 15.000 - 15.049 1 and 2

2 15.050 - 15.099 3, 4, and 8

3 15.100 - 15.149 5 and 7

4 15.150 - 15.199 6

119

Figure 5.17: Sink model to verify the SPP and LPP of RAEED

5.6.9 Formal Verification of SPP and LPP

The hypothesis for this model is that:

”The nodes can be synchronized using the time stamps and 1-hop neighbours will receive the

LEVEL beacon earlier than 2-hop neighbours”.

Apart from the assumptions stated in Section 4.3.3, it is assumed that the time tick is in

milliseconds and errors less than 1 ms are ignored. Also instead of all 5 node networks, a single

9 nodes grid topology is tested.

5.6.9.1 Model

The model is composed of a node model and a sink model shown in Figure 5.17 and Figure 5.18

respectively. In this formal model the sink model is acting as both sink and event generator.

The sink model starts in the KSP location. It then moves to the KSP FINISH location

and waits there until all node models end up at the KSP. Before moving to next location the

model resets/restarts its clock (clk). The sink model waits for some time, using the guard

(NodeCount==MAXNODE) before initiating the SYNCHRONOUS message. This is done so that

all the node models move to the LISTEN location from the KSP location. The NodeCount

variable is used to track the number of nodes that have finished the KSP. The sink model

then broadcasts the time synchronization message (BROADCAST SYNCHRONOUS). The

sink model stays in this location until all nodes are synchronised (NodeCount==MAXNODE),

the channel becomes free and all nodes go back to their LISTEN locations (BusyNodes==0).

The sink model then builds LEVEL beacon (INITIATE LEVEL) and broadcasts it (BROAD-

CAST LEVEL). Finally the sink waits for the same guard and then moves to the DFP location

when all nodes receive LEVEL beacon. This location indicates the end of the RSP.

The node model starts non-deterministically by moving out of KSP location and thus enter-

120

Figure 5.18: Node model to the SPP and LPP of RAEED

ing the RSP. The model then remains in the LISTEN location. If a SYNCHRONOUS message

is received (REC SYNCHRONOUS) from the sink or any other node, the node model will

update its clock and rebroadcasts the SYNCHRONOUS message, (SEND SYNCHRONOUS)

if it has not been sent earlier (SynchSent flag is false). The channel remains busy throughout

this process disabling any other communication during this period. Note that clock is initial-

ized to 0 whenever this SYNCHRONOUS beacon is received.Typically this error may be in

microseconds. This being negligible, and can be ignored. When a node or sink broadcasts a

LEVEL beacon, the node moves to the RECEIVE LEVEL location if it has not sent/received

the LEVEL beacon before (LevelSent is false). The level is calculated using the function

CalculateLevel() in this transition. It then waits for exactly 10 clock ticks (milliseconds) and

if the channel is free, it tries to broadcast the LEVEL beacon immediately. The delay clock

in the node is reset when the node receives its level. This clock is used to indicate differences

between clocks in different nodes when verifying properties.

5.6.9.2 Verification

Following claims have been verified using properties:

1. The RSP will finish

2. The sink will be synchronized with all nodes

3. The sink will initiate the LEVEL only after the node clocks have been synchronized

4. The lower hop nodes will always receive the LEVEL beacon earlier

5. The clock difference between two hop nodes is always less than the maximum time reserved

for each hop

121

6. The clock difference between nodes 3-hop away from the BS is always less than the

maximum time reserved for them

7. The clock difference between nodes 4-hop away from the BS is always less than the

maximum time reserved for them

8. All nodes get the desired correct level

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.2.4. All the above claims, including the liveness (Claims 4-7) and safety check(Claims 8),

were proved true. This confirms the hypothesis that the nodes can be synchronized using the

time stamps and 1-hop neighbours will receive the LEVEL beacon earlier than 2-hop neighbours

5.6.10 Simulation Results without Synchronization Propagation

The initial simulation experiments were performed when SYNCHRONOUS message was not

induced in the protocol and the nodes were assumed to be turned on at almost the same time.

The parameters used for these experiments are shown in Table 5.6, with the parameter name,

its fixed value and the full range between which the parameter value is varied.

Table 5.6: Parameters used to perform simulations without synchronization propagation in

RSP

Parameter Standard Value Variation

Number of experiments 5 5 to 10

Maximum number of nodes 100 100 and 1000

Maximum number of BSs 1 -

Node Density 20 4 to 28

Noise conditions no noise -

Time span for LEVEL 100 msec 100 to 1000 msec

Percentage of time span used to send 75% 10% to 100%

5.6.10.1 Effect of Density

The previous experiments (Section5.5.3) on the KSP have shown that the density has a sub-

stantial effect on the results. So the first set of experiments involve varying the density for

a 100 node grid network. It is expected that the LEVEL messages lost due to the collisions

will increase as the density is increased. The results are shown in Figure 5.19(a), where aver-

age, maximum and minimum values of results are plotted. It confirms that the percentage of

message lost increases with density.

122

(a) Error percentage in RSP (b) Setup Time in RSP

(c) Error percentage in node levels and NT entries

Figure 5.19: The effect of density on level propagation in RSP

The time to complete the RSP reduces as the density is lowered as is shown in Figure 5.19(b).

The reason being that the node’s hop distance from the BS reduces as the density is increased.

The time to complete this phase is directly proportional to the hop distance. So in case of high

density, this phase will finish early because the nodes have less hop distance (level) from the

BS.

The effect on the percentage of messages loss is symmetric to the error percentage in these

experiments. The reason being that only the LEVEL beacons are considered in the experiments

so the message loss will be similar to the errors in the NT which is shown in Figure 5.19(c). This

is so because the messages which are lost will cause an error or missing entries in the NT. It was

observed that in most of the cases the incorrect level assignment was 0 (no level), confirming

that all the error in the NT is due to messages lost. Looking at the graph, about 1% percent

of the nodes get incorrect level in case the density is lowest(4). Otherwise the error is almost

0%. The reason being that some correct level beacons have collided due to hidden terminal

problem when the density was 4. This happened when the two low level nodes simultaneously

sent the level. Thus the receiver node received the levels from neither. It then had to rely on

123

the remaining 2 neighbours to get its level. As the other 2 nodes in that case will have a level

higher or equal to the current node so the node may eventually get a level error of 2 (a level

2 more than what it actually should be). Note that the error in the node level is reduced to 0

in higher densities because a node eventually has more chances of getting a correct level. The

reason being that in spite of collision, more neighbours are available to it now.

The level error percentage in the NT entries increases with the density. It was expected

because high density enabled more level messages lost due to the collisions. Thus level for

some of the neighbour nodes cannot be updated correctly. Also note that in case of high error

(higher densities), the time to complete RSP is as low as half second. This means that all

the messages are exchanged within 500 msec. This automatically increases the probability of

collisions. These collisions can be reduced by increasing the value of TIMELEVEL which will

enable more time to complete this phase but will also reduce collisions. Almost the same error

values in case of density 24 and 28 resulted because in one of the experiments of 24-node density

the number of collisions are very high (Figure 5.19(a)). This increases the error in the entries

and thus increases the overall average error as well. Finally the results for the lowest density

i.e. 4 are different from the normal pattern. This is because of hidden terminal problem which

has already been explained.

5.6.10.2 Effect of Level Propagation Delay

These set of experiments check the effect of time span for level. This is the maximum time

(defined as a constant TIMELEVEL in TOSSIM software) within which the node tries to rebroad-

cast the LEVEL beacon. The percentage of message loss is shown in Figure 5.20(a) and as was

discussed in last section, it is symmetric to the error in NT shown in 5.20(c).

Looking at the Figure 5.20(b), the time to complete level propagation phase (LPP) increases

with time. This was obvious as the time span to broadcast level has been increased and obviously

it will take more time to complete. It was expected that as the time span is increased, the

chances of message collisions will decrease because nodes can now choose from a longer time

span. Thus the chances of nodes getting the same random time are less. Looking at the

Figure 5.20(c), the error percentage decreased with increase of time span initially but after the

time span of more than 400 msec the error percentage stayed unchanged (minor change). The

reason being that some spikes (maximum error values) in the graph, which are still quite high,

cause the average error to rise. This is so because no random system can guaranty different

values and no matter how large the span is, there are still chances of some values remaining the

same. However the reduction of minimum value indicates that as the time span is increased,

the chances are that less number of LEVEL messages are sent at the same time and thus less

collisions. Note that the minimum value becomes 0 from 800 msec time span and the maximum

and average values reduced considerably for the last 2 values (900 msec and 1000 msec). It

was also noted that when the time span is 1000 msec the values of the message lost and the

124

(a) Percentage of Level messages lost (b) Setup Time in RSP

(c) Error percentage in node levels and NT entries

Figure 5.20: The effect of Level propagation delay on RSP

error in the NT were different. The message loss was always 0.8% (negligible) confirming the

error was due to incorrect calculations for some neighbour nodes. So future value of 1 second

is recommended for the level propagation time span (TIMELEVEL). But note that the time to

finish the LPP will always be high and can be expressed using following equation:

TimeSpanMax = HopDistance × TIMELEVEL (5.1)

The minimum value can be calculated using:

TimeSpanMin = (HopDistance − 1)× TIMELEVEL (5.2)

5.6.10.3 Effect of Utilization Time

These set of experiments check the effect of percentage of the time span utilized. Note that

the complete level propagation delay is set as constant (1000 msec) and instead of using full 1

second to send the LEVEL message, a time varying between 500 msec to 950 msec is used to

broadcast the LEVEL. This is effectively 50% to 95% of the actual time span. Figure 5.21(a)

shows the percentage of LEVEL beacons lost due to collisions, Figure 5.21(b) shows the time

125

(a) Error percentage in RSP (b) Setup Time in RSP

(c) Error percentage in node levels and NT entries

Figure 5.21: The effect of utilization time on RSP

taken to complete level propagation and Figure 5.21(c) shows the average error percentage of

level entries in NT in the complete network. As expected the time to complete will be increased

slightly as the percentage is increased. It is interesting to see that the values of message lost and

error remain the same till the utilization is 65% and then the error percentage is increased. This

is so because the nodes are not synchronized and the nodes thus get incorrect level. Note also

that the collisions are lowered at higher value except at 95% where the messages do collide. This

is because of unsynchronized nodes i.e. two different LEVEL beacons collide with one another.

These results prove that in order to get improved functioning the node synchronization is a

must. Finally the node error is reduced to almost 2% for all other cases.

5.6.11 Simulation Results after Synchronization Propagation

It had been observed in the previous experiments that some kind of synchronization is needed.

Otherwise lot of messages were lost because of collisions and nodes attained incorrect levels.

These experiments thus involve the SYNCHRONOUS message which were explained earlier

in Section 5.6.6. The parameters used for these experiments are almost the same as those in

126

previous experiments, in Section 5.6.10 and were described in Table 5.6. The only addition being

the time span reserved for SYNCHRONOUS message i.e. the maximum time between which

the SYNCHRONOUS message is sent randomly. All the parameters for these experiments are

listed in Table 5.7.

Table 5.7: Parameters used in experiments performed using the Synchronization Propagation

in RSP

Parameter Standard Value Variation

Number of experiments 10 5 to 15

Number of Nodes 100 100 and 1000

Number of BS 1 -

Node Density 24 -

Noise conditions no noise -

Time span for LEVEL 1 second 500 msec and 1 second

Time span for SYNCHRONIZE 10 msec 1 to 25 msec

Percentage of time span used to send 95 -

5.6.11.1 Effect of Synchronous Propagation Delay

Figure 5.22(a) shows the percentage of SYNCHRONOUS beacons lost due to collisions; Fig-

ure 5.22(b) shows time taken to complete the RSP and Figure 5.22(c) shows the average error

percentage of level entries in NT in the whole network. The time to complete remains almost

the same with a little increase as the levels are sent after one second and the synchronous

delay time span is increased from 1 msec to 25 msec. This is negligible when compared to 1

second. The collision percentage is decreased as the time delay span for the synchronization

propagation is increased. This was expected as nodes now have more time span to choose and

thus probability of 2 or more nodes sending it simultaneously decreases.

Finally, the result of the NT error entries, which is mostly due to collisions in LEVEL

messages, has varying results for different values. The results are better (lesser error) for smaller

values of synchronous time span (1, 5, and 10). This is so because lower the synchronous time

span, lesser is the difference of clocks of nodes; meaning timers of nodes are enabling nodes to an

improved synchronization. At 1 msec value the clocks have a maximum error of 1 msec plus the

delay due to MAC layer. But this means sending the SYNCHRONOUS message immediately.

As all the values gave similar results so a value of 10 msec is chosen for future experiments.

Note that a lower value must be preferred to reduce error in the node times. Due to high

collisions the first 2 values (1,5) are rejected and 10 is selected as the optimal value.

127

(a) Percentage of SYNCHRONOUS beacons lost in

RSP

(b) Setup Time in RSP

(c) Error percentage in node levels and NT entries

Figure 5.22: The effect of delay in sending the SYNCHRONOUS message on RSP

5.6.11.2 Effect of Utilization Time

These set of experiments repeat the effect of percentage of time span utilized for LEVEL

messages in the presence of synchronization. This is similar to what has been done in Sec-

tion 5.6.10.3. Note that, as expected, the nodes are not perfectly synchronized so the clocks

of nodes will drift. If the time span is selected randomly, the values might contain the border

maximum values. This may induce an error in levels especially if neighbour node’s clock is

moving in advance. So the border maximum values must be avoided. But selecting a very low

value will limit the chosen range. Hence a value around 70% - 80% is expected to give better

results. But to reconfirm, different values are plotted in these experiments. To view the effect

in a clearer way, the experiments were carried out using two time constant spans. First with

the normal span of 1 second was used and then the time span for level was reduced to half

i.e. 500 msec. Other parameters remained the same as described in Table 5.7. The results are

plotted for 1 second time span.

Looking at Figure 5.23(b), which shows time taken to complete the level propagation, it is

128

(a) Percentage of SYNCHRONOUS beacons lost in

RSP

(b) Setup Time in RSP

(c) Error percentage in node levels and NT entries (d) Error percentage NT entries: Different

catogeries

Figure 5.23: The effect of different time spans used to send LEVEL beacons in RSP

evident that the completion time increased slightly as the percentage of time span is increased.

The difference is not much as only the last level nodes (furthest from the BS) can get level

earlier than the desired time. The maximum level is 5 so the nodes will finish this phase at

4 + (Percentage × 1second) time. The graph in Figure 5.23(b) confirms that.

Figure 5.23(a) shows the percentage of lost SYNCHRONOUS beacons which almost re-

mained the same for all values indicating that these experiments had no effect on them. Again,

similar to the last experiment, the percentage is quite high because of flooding in high density

in such a small time span. The percentage of LEVEL beacons is quite low and also it decreases

as the time span has increased.

Looking at Figure 5.23(c), it is evident that error in both levels and neighbours level in the

NT is quite high for 10% utilization of the time span, i.e. during the rest of the 90% time (900

msec), when the nodes did not send LEVEL beacon. There are many reasons for that. With

high density lot of messages will be exchanged in 100 msec resulting in lot of collisions. In 100

129

msec the nodes may not be synchronized completely (the error of the node time can be up to

100 msec). Thus the nodes may broadcast levels very early, say within 1 msec, and that will

induce a level error of one. As the time spans are divided into spans of 1 second, it will also

enable collisions of 2 different level nodes in the presence of such a high density. But main

reason in the error is the assumption of incorrect level.

For the span percentage greater than 10% the error is quite low. There are some higher

values at 30%, 60% and 80%. But these values are because of one odd maximum value. Note

that in spite of greater time span the random values may have one odd value in the lower range

(<10 msec) and this value may cause higher error. To confirm this logic the error in the NT

entries was plotted for different categories in Figure 5.23(d). This graph was only plotted for

percentages between 60% to 100%. The NT error was categorized as (i) no level achieved for a

neighbour in this period (due to message loss etc), (ii) error of up to 1 level and (iii) up to 2

levels. It is evident that no neighbour node has achieved the level error up to 2 in the NT and

the effect of message loss is also the same throughout. The higher values were present in the

same values as were in Figure 5.21(c) i.e. at 60% and 80% and it is confirmed that they had

achieved an error of 1 level. As already explained it was due to the earlier dispatch of some

LEVEL beacons. Note that this error may be present for any percentage value but chances are

less when a larger percentage of time span was used.

For follow up experiments a value of 90% was chosen as the results were improved compared

to other percentages. The 100% is ignored as the nodes are not strictly synchronized and if this

value is chosen the values at maximum edges will cause errors.

The experiments performed with 500 msec of total time span also gave similar results with

some higher values in error percentage coming at different points. When the time was further

reduced to half (comparing with 1 second) the errors in the NT and the levels increased.

5.6.11.3 Effect of Level Propagation Delay

These set of experiments check the effect of time span for level in the presence of SYN-

CHRONOUS messages as compared to in their absence as in Section 5.6.10.2. The only pa-

rameter changed from those defined in Table 5.6 is the level propagation delay which is varied

from 100 msec to 1000 msec.

Looking at the Figure 5.20(b), time to complete level propagation phase increases with time.

This was expected as the time span to broadcast the LEVEL has been increased and obviously

will take more time to complete. The percentage of SYNCHRONOUS messages lost is also

expected to remain the same because these experiments only effect the LEVEL beacons. The

graph in Figure 5.24(a) confirmed this.

Looking at the Figure 5.24(c), it is obvious that except for the last 2 values (900 msec and

1000 msec) the error percentage varies lot. It was noted that there was a substantial difference

between the maximum and the minimum values. At 300 msec there was a very high error

130

(a) Error percentage in RSP (b) Setup Time in RSP

(c) Error percentage in node levels and NT entries

Figure 5.24: The effect of Level propagation delay on RSP

percentage and it was noted that for this value there are some entries in the NT that have level

error of up to 2. Moreover about 4% of the nodes get level error up to 2. Again it is one off

random test that has increased error percentages. For all other cases the error varies between

0% to 20%. Experiments were carried out only 10 times and in some cases the error did not

achieve the minimum value of 0% though these remained less than 5%. The results for 100 msec

were almost the same as those of higher values but the minimum possible error value of 0% was

not achieved even after performing 15 experiments compared to 10 in other cases. The reason

being that 100 msec lot of level error (1 level error) was expected as the node clocks were not

perfectly synchronized. The error is only reduced when the maximum span of 900 msec and 1

second were used. As the nodes were not perfectly synchronized so the nodes must send levels

with as much delay as possible. This is the reason that 1000 msec gave the best results and 900

msec results were better than the previous cases (maximum error of less than 10%). Moreover

the 400 msec produces best results (0.22% to 3.24% error). This was only by chance and there

was nothing special in 400 msec experiments. A total of 15 instead of 10 experiments were

performed for this case but still a maximum error of 3.24% was achieved. The results plotted

131

for the maximum error in the node levels and the NT level entries in Figure 5.24(c) confirmed

that the error is reduced in case of higher time span i.e. 900 msec and 1000 msec.

5.6.11.4 Simulation Results Summary

It was confirmed that by broadcasting a SYNCHRONOUS message by the BS, before the

LEVEL message, allows an accurate level assignments if the time span for LEVEL (TIMELEVEL)

is increased to 1 second. Thus nodes do not need to be perfectly synchronized. Note that after

deployment the node’s clocks will normally obtain different times as they will start at different

times. Initiating the SYNCHRONOUS message also solves this issue. By using one way hash

chain the authenticity of message by the BS is also achieved. As this research is not concerned

with the encryption issues, so the effect of one way hash chain is simulated by implementing

a dummy function which makes the provision rather than the implementation by use of a well

defined encryption mechanism.

It was observed that in spite of maximum error creating conditions (high density) the

peak error in the node’s neighbour and node’s level is 1, for 100 node networks, which being

too low is negligible. Later it was confirmed that better results can be obtained if utiliza-

tion time percentage is truncated from both ends rather than from one end (maximum val-

ues). This has been renamed to Percentage of time span removed to send from both the ends

(REOMOVEPERCENTTIMELEVEL defined in software) and it is chosen to be 10% (90-10). This

will effectively give 80% of total random values from TIMELEVEL but will remove the initial

and the final 10% values and helped lot in achieving the correct level. For future experiments

REOMOVEPERCENTTIMELEVEL term will be used (The percentage of time truncated from edges)

instead of Effect of utilization time, which was the percentage of TIMELEVEL time used. The

effect of density, scalability and the noise is revisited in future sections when effect of multiple

BSs will be checked. Therefore these are not presently being considered in this section.

5.6.12 Simulation Results with Multiple BSs

In this section the RSP was implemented using more than one BS. It has been done to confirm

that RAEED works perfectly under the multiple BSs. For the BS placement and quantity, the

steps taken by INSENS were followed. The experiments deploy 1, 2 and 4 BS. The developers

of INSENS [19] claim that the best results are achieved when BSs were placed at opposite

corners. Therefore the BSs were placed at opposite diagonal corners. The simulation results

also include experiments involving 1 BS. As the effect of different factors like Time span for

LEVEL (TIMELEVEL), Time span for SYNCHRONIZE (TIMESYNCHRONIZE) and Percentage of

time span removed to send from both the ends (REOMOVEPERCENTTIMELEVEL) had already been

tested using the single BS and best values were found, therefore these values were taken as

constant in these experiments. The test perimeters for these experiments are shown in Table 5.8,

132

with parameter name, its mostly used value and the range in which that parameter is varied:

Table 5.8: Parameters used to check the effect of Level propagation delay on RSP

Parameter Standard Value

Number of experiments 5

Number of Nodes 100 and 1000

Number of BSs 1,2 and 4

Node Density 4-28

Noise conditions no noise

Time span for LEVEL 1 second

Time span for SYNCHRONIZE 10 msec

Percentage of time span removed to send from both ends 10%

5.6.12.1 Effect of Density

Figure 5.25(c) shows the effect of density on time to complete the RSP using different number

of BSs. It is evident that number of BSs had no effect on the setup time. The reason being that

all BSs start the RSP simultaneously and as it was a 10x10 grid placement (100 nodes), so all

nodes finish nearly at the same time. Also evident from the figure is that the time decreases as

the density is increased, the reason being that the node’s maximum hop distance from the BSs

decreases by increasing the radio range of nodes. Note that to increase the density of network,

the placement of nodes remained the same and only the range was increased. As the LEVEL

beacons were sent after 1 second so the setup time informs the rough maximum level (hop

distance from BSs) of nodes. Maximum level of N roughly means the network will finish the

RSP between N and N+ 1 second.

Figure 5.25(a) shows the effect of density on the average percentage of SYNCHRONOUS

messages lost in the RSP using different number of BSs. It is obvious that with the increase in

density the collisions increased which increased the percentage of messages lost. Except for the

case of 4-node density, by increasing the number of BSs, there was an increase of 2% in message

loss. The reason being that SYNCHRONOUS messages of different BSs collided at the centre of

the network. This is so because all the BSs broadcast SYNCHRONOUS messages at the same

time and reach at the centre of network simultaneously. As these collisions were few so their

effect was minimal. The thing to note here is that the message lost or the collisions increased to

about 70% in case the node density was 28. But as each node contained about 28 neighbours so

nodes were eventually synchronized. Even if nodes were not perfectly synchronized then there

would be a synchronous error of 10 msec if the nodes receive the SYNCHRONOUS message in

next phase and so on. For higher densities this time (TIMESYNCHRONIZE) should be increased

133

(a) Percentage of SYNCHRONOUS messages lost

in RSP

(b) Percentage of LEVEL messages lost in RSP

(c) Setup Time in RSP (d) Average error percentage in node levels

Figure 5.25: The effect of density on RSP using multiple BSs

to more than 10 msec. But the drawback is that this will induce an error in multiple of more

than 10+t msec, where t is the time increase of more than 10 msec e.g. 5 for 15 msec.

Figure 5.25(b) shows the effect of density on the number of LEVEL messages lost in the

RSP using different BSs. Note that the percentage was quite low for 1-BS for all densities and

it increased considerably as BSs were increased to 2 and 4 respectively. Remember that the

protocol was designed in such a way that the collisions in the LEVEL beacons are minimized

because it will assign incorrect levels to nodes and neighbours. But as the BSs broadcast the

LEVEL beacons simultaneously, a lot of these will collide in the middle if multiple BSs are

deployed. The percentage will increase as the number of BSs are increased. Secondly, by

increasing the density, the collisions will increase and so will the percentage of LEVEL message

lost. It is rather recommended to broadcast SYNCHRONOUS and LEVEL beacons one by one

from each BS, if multiple BSs were deployed. Although this will increase the time to finish RSP

with each BS (directly proportional to number of BSs), but will result in the low percentage of

message loss compared to the single BS. These experiments will be performed later.

134

Figure 5.25(d) shows the effect of density on the percentage of error in the node levels using

different BSs. It is evident that the error parentage remains less than 1% throughout for all

the cases. In 4 density network, the error in node level exists even if 1 and 2 BSs were used.

The reason is similar to the previous cases. Loss of a single LEVEL message will induce more

error as the number of neighbours is quite low. A node can attain correct level if it receives

LEVEL message from any of its lower level neighbours. The collisions will be lesser even in

case the density is 4. This is so because of lesser neighbours. The error percentage will not

be very high. The reason of error in levels for denser networks, when 4 BSs are deployed, is

because of collisions of some LEVEL beacons in the middle as explained earlier. Except for 4

node network the node level error is 0% for 1 and 2 BSs for whatever the density may be. In

case of 4 BSs, the error increased up to 1%. These results are encouraging as it indicates that

only 1% of nodes will get incorrect levels. It has also been confirmed that this error was up to

1 level for all cases except for 4 neighbour networks.

For 4 average density networks the error was always a level of 2 for 1 BS and 2 BSs. While

for the 4 BS network the error is split to 0.25% and 0.33% for 1 and 2 level errors respectively.

The reason being that the correct LEVEL beacons sent to that node were lost due to collisions.

Thus the node gets incorrect level from the next 2 nodes which of course are the higher level

nodes in the network tree. Note that in a 4-neighbour grid placement, 2 neighbour nodes are

one level higher and the other 2 are one level lower. No two nodes of same level are neighbours.

So if the correct level beacons are lost because of noise or collision, the error in levels will always

be 2. Moreover when this node will propagate its LEVEL beacon the neighbours will record a

wrong level for that node because of propagation of incorrect level. So, same error is expected in

NT entries as well which will be discussed later. However the higher level nodes will not assign

incorrect levels to themselves. This is so because these get correct LEVEL beacons already

arriving from other nodes and nodes accept the best (smallest) level. Hence the error remains

small i.e. 1%. If the incorrect node levels were propagated throughout this percentage would

have increased. Figure 5.26(a) shows the effect of density on percentage of error in NT levels

using different base stations. Note that like the previous case (in Figure 5.25(d)), the error

percentage is quite high when 4 BSs are used. This occurred as a result of more collisions. To

confirm this effect the error in the level is plotted for different categories for each BS separately

in Figure 5.26(b), Figure 5.26(c), and Figure 5.26(d) for 1, 2 and 4 BSs respectively.

Figure 5.26(b) shows that in case of a single BS, the error is mostly because nodes did not

attain any level for neighbours. This is due to the loss of message levels because of collisions.

For 4-neighbour node network there is however an error of up to 2 levels (0.37%) . The reason

for this has already been explained and discussed earlier that in such low density network the

error will always be of 2 levels instead of 1 level.

Figure 5.26(c) shows that the results of 2 BS network are similar to that of one BS. Again

the error in NT is mostly because nodes did not attain any level for neighbours. This again is

135

(a) Total Average Error percentage in NT entries (b) Total Average Error percentage in NT entries

using 1 BS

(c) Total Average Error percentage in NT entries

using 2 BS

(d) Total Average Error percentage in NT entries

using 4 BS

Figure 5.26: The error percentage in NT entries using multiple BS

due to the loss of message levels because of collisions. Again for 4-neighbour node network the

error of up to 2 levels (0.92%) is attained.

Figure 5.26(d) shows that for 4-BS network the error in NT level entries is mostly due to

the loss of LEVEL messages (no level obtained). However 1 level error is also attained in many

cases. The reason is the collision in the middle due to 4 level beacons propagated at the same

time by different BSs as described earlier. Thus a small percentage (<3% for worst case) of

the NT entries attain an error in level up to 1 level. Note that the 4 neighbour networks also

attained this error along with the traditional 2 level errors. This was explained while discussing

earlier cases.

5.6.12.2 Effect of Density with Slot Time for each BS

It has been pointed out in the last section that by delaying the level propagation of each BS, the

results achieved for the multiple BSs can be improved a lot. In these experiments this approach

136

(a) Percentage of SYNCHRONOUS messages lost

in RSP

(b) Percentage of LEVEL messages lost in RSP

(c) Setup Time in RSP (d) Average error percentage in node levels

Figure 5.27: The effect of density on RSP using multiple BSs with independent slot time

was employed. Decision to be taken now was as to how much delay should be introduced. One

possible solution is to introduce a fixed delay for all cases. Note that a random delay, without

any reason, will also increase the setup time of the RSP. So a logical and compromising delay

must be induced. It has earlier been pointed out that the time to complete the RSP depends on

maximum level of the node (or maximum hop distance from BSs). So the delay to be introduced

depends on the level or hop distance. Repeating the same experiments, as done in previous

section on different densities and BSs, the levels were altered for different density networks. By

increasing the range, the nodes get closer to the BSs. Thus a delay induced was 1 second more

than the maximum level or of same value as shown in the Table 5.9. The Table 5.9 confirms

that different delay values are used for each density. Each BS will wait for its turn by that

much period of time before initiating the SYNCHRONOUS and LEVEL beacons. So if there

are n BSs, the nth BS will send its SYNCHRONOUS beacon n times the delayed time as shown

in the table.

Figure 5.27(c) shows the effect of density on the time to complete RSP using different BSs.

137

Table 5.9: Delay time introduced in multiple BSs for 100 node network

Density Max Level Time Value

4 18 18 seconds

7 9 10 seconds

10 9 10 seconds

16 6 7 seconds

19 5 6 seconds

21 5 6 seconds

It now confirms that by increasing the number of BSs, the time gets doubled. This is what

had already been predicted. The reason being each BS will now take its independent time slot

to complete the RSP. So by improving the results the price to be paid is that the network will

take more time to complete the RSP.

Figure 5.27(a) shows the effect of density on average percentage of SYNCHRONOUS mes-

sages lost in the RSP using different BSs. Comparing it with previous case experiments in

Figure 5.25(a), as anticipated,there is no major change. The reason being that nothing had

been done to improve the SYNCHRONOUS beacon collisions. The collisions increase as the

number of neighbour nodes (density) are increased. Note however that the 2% increase in the

message loss per BS has vanished now and the result is almost the same for all number of BSs.

This supports our claim in the previous section that it was due to collision of different BS SYN-

CHRONOUS messages in the middle because this time the BSs sent messages independently

in their own time slot.

Figure 5.27(b) shows the effect of density on number of LEVEL messages lost in the RSP

using different number of BSs. Comparing it with the results in Figure 5.25(b) it is evident

that now the percentage of message lost for each BS is almost the same. The little variation in

each case is because only 5 experiments have been performed. It is a substantial improvement

for 4-BS networks where the percentage of message lost has reduced to one third.

Figure 5.27(d) shows the effect of density on the percentage of error in the node levels using

different BSs. Again comparing it with Figure 5.25(d) the results for 4 BSs are much improved

now. The error is reduced to 0.25% for 4 BS experiments except for 4 neighbour density

network. It has already been debated earlier that due to less number of available neighbours,

4 neighbour networks will give different results. There is a slight increase in error for 2-BS

network with 4 neighbour nodes from 1% in Figure 5.25(d) to 2%. But it is anticipated that

by experimenting with more than 5 samples, both the results may get closer. Note that due to

the unpredictability of 4 neighbour nodes (where message loss plays a major role) the results

may still vary with increased number of samples.

Figure 5.28(a) shows the effect of density on the percentage of error in NT levels using

138

(a) Total Average Error percentage in NT entries (b) Total Average Error percentage in NT entries

(c) Total Average Error percentage in NT entries (d) Total Average Error percentage in NT entries

Figure 5.28: The effect of density on RSP error percentage in NT entries using multiple BS

with independent slot time

different BSs. Comparing it with Figure 5.26(a), the errors in NT entries have now considerably

improved. The maximum error now is about 4% whereas it was touching 14% as displayed in

Figure 5.26(a). Also now the error is independent of the number of BSs. While in the previous

case as in Figure 5.26(a), the error was dependent on BSs and was increasing with the number

of BSs deployed.

Interesting to note here is that the results in Figure 5.28(a) are almost the same as that

of Figure 5.27(b) indicating that the error in NT now is only due to the LEVEL message lost

(no level attained). To confirm this effect, the error in level is plotted for different categories

for each BS separately in Figure 5.28(c), Figure 5.28(c) and Figure 5.28(d) for 1, 2 and 4 BSs

respectively.

The results for 1 BS are almost the same in Figure 5.26(b) and Figure 5.28(b). The results

for 2 BS in Figure 5.28(c) show that like in Figure 5.26(c) , the error in the NT is mostly

because nodes did not attain any level for neighbours. This is due to the loss of message levels

139

(a) Percentage of SYNCHRONOUS messages lost

in RSP

(b) Percentage of LEVEL messages lost in RSP

(c) Setup Time in RSP (d) Average error percentage in node levels

Figure 5.29: The effect of scalability on RSP using multiple BSs

because of collisions. Again for 4-neighbour node network the error of up to 2 levels (0.92%) is

attained. Figure 5.28(d) shows that for 4-BS network most of the error in NT level entries is

due to the loss of LEVEL messages (no level obtained) instead of the case as in Figure 5.26(d).

Here 1 level error was also obtained for many cases. The reason for this is because of collisions

in the middle due to 4 LEVEL beacons propagated at the same time have now been removed,

as described earlier. Thus a small percentage (3% for worst case) of NT entries that attained

an error in level up to 1 level in the previous experiments in Figure 5.26(d) have now been

successfully removed. Note also that the 4-neighbours network still obtained 1 level error along

with traditional 2-level error. This has earlier been discussed in detail.

5.6.12.3 Effect of Scalability and Density

These experiments involve scalability check i.e. a 1000 nodes network placed in square grid is

checked. The radio range is varied to observe the results for different densities. Again the delay

introduced is 1 second more than the maximum level as shown in the Table 5.10:

140

Table 5.10: Delay time introduced in multiple BSs for 1000 node network

Density Max. Level Time Value

4 62 63 seconds

8 31 32 seconds

12 31 32 seconds

20 21 22 seconds

24 16 17 seconds

28 16 17 seconds

Figure 5.29(c) shows the effect of density using 1000 nodes network on time to complete RSP

with different number of BSs. It confirmed that the time to complete has increased considerably

as compared to 100 node network. The reason being that nodes are placed at greater distance

because these are 10 times the number and thus have a higher level as evident in Table 5.10. It

had already been indicated that the time to complete is directly proportional to maximum level

in the network. Therefore, with increase in maximum level the time to complete also increased.

Figure 5.29(a) shows the effect of density on an average percentage of SYNCHRONOUS

messages lost in the RSP, using different number of BSs, for 1000 nodes network. Comparing

it with 100 node network it is obvious that there is no major change and the results are

identical. The reason being that the topology remained constant and only the size of network

was increased. Hence, it is obvious that the message loss depends on network topology rather

than scalability.

Figure 5.29(b) shows the effect of density on the number of LEVEL messages lost in the

RSP through use of different number of BSs, for 1000 nodes network. The results were similar

as in 100 nodes network. The message loss increased with increase in density and shot up to

maximum of 4%. This confirms that the message loss depends on topology as well as density

and not on scalability.

Figure 5.29(d) shows the effect of density on the percentage of error in the node levels by

using different number of BSs, for 1000 nodes network. As can be seen, the results are identical

as that of 100 nodes except for 4 density network. The error has increased to 4% for one BS

network and gone quite high for multiple BS networks. The large value of node error in the

case of 4 density node for the multiple BSs (2 and 4 BSs) test has not been plotted properly

to enable a better view of the other results. For a clearer view of other values the maximum

limit of the graph is set to 5%. The actual values are 31% and 25% for node level errors for

2 and 4 BS networks. This level error also has caused error in the NT entries of 32% and

26% respectively. Further investigation and graph in Figure 5.30(c) as well as Figure 5.30(d)

confirmed that the error was mostly minus one level. It was observed that this error was due

to the fact that a node in the middle has lost all the SYNCHRONOUS messages and thus was

141

(a) Total Average Error percentage in NT entries (b) Total Average Error percentage in NT entries

(c) Total Average Error percentage in NT entries (d) Total Average Error percentage in NT entries

Figure 5.30: The effect of scalability on RSP error percentage in NT entries using multiple BS

not properly synchronized. This is quite possible in a small density network. When the node

receives LEVEL beacon it erroneously assigns itself a lower level. This enables the node to

fire LEVEL beacon earlier than when it should have been. Thus whichever node receives that

level will also assign itself a lower level and this error spreads throughout. If nodes get a level

higher than the actual the error would not propagate because nodes always accept the best

level. That is the reason that most of the nodes and the NT entries get many wrong levels of

-1. These experiments confirmed that in case of low density networks, the chances of nodes

getting incorrect level is high but is still negligible (-1). As already stated, a level error of 1

makes no difference. But this error reduced down to less than 2% as with more neighbours the

node is eventually synchronized despite more message loss.

Figure 5.30(a) shows the effect of density on percentage of error in the NT levels using

different BSs. The reason for high values in case of 4 neighbours network has already been

explained earlier. To confirm this effect the error in level is plotted for different categories

for each BS separately in Figure 5.30(b), Figure 5.30(c) and Figure 5.30(d) for 1, 2 and 4

142

BSs respectively. The graphs again confirm no variation from 100 node network except for

4-neighbour networks.

5.7 Data Forwarding Phase (DFP)

The aim of this phase is to forward data from the source nodes to the BS and pacify the attacks

like the gray hole, black hole, jamming, etc. despite the malicious activities like node compro-

mise, node destruction or jammed area. The presented Data Forwarding Phase (DFP) has some

resemblance with the Arrive [44] protocol explained earlier in the Section 4.9. However, Arrive

has some shortcomings, a few of which have been mentioned by the authors themselves [44]

and others identified in this thesis (Section 4.9.3.2). RAEED has attempted to address most of

these problems and is thus differs from Arrive. The main differences between RAEED and the

Arrive protocol are summarized below:

• Arrive assumes that the nodes already know their level, whereas RAEED uses an authen-

ticated scheme in the RSP to assign levels to each node.

• Arrive acknowledges a defect in the protocol that a malicious node may lie about its level,

whereas RAEED uses authenticated level assignment using one way hash chains which

prevents a malicious node from successfully lie about its level.

• Passive Participation is employed in Arrive to send redundant data; this has many draw

backs. In RAEED all decisions are taken locally and no passive participation is performed.

• Unidirectional links are a problem for Arrive. RAEED removes unidirectional links in the

KSP.

• Arrive does not support any encryption mechanism and thus is susceptible to many cryp-

tographic based attacks. The Key Setup Phase (KSP) in the beginning of RAEED assigns

each node a pair key for unicast messages and cluster keys for the broadcast. The mes-

sages are then accepted only from the nodes which are verified in KSP and possess a

correct key.

• Arrive is susceptible to the hello flood and rushing attacks. RAEED removes these threats

in the KSP.

• The wormhole attack is not addressed by Arrive and the attack can occur at any time. A

black hole attack is always possible in the presence of the wormhole attack. In RAEED

an innovative scheme is presented in the RSP (LSP) that rectifies the wormhole attack.

• In Arrive a node may forward a message to oblivion whereas in RAEED it is ensured that

a neighbour forwards the data only to a correct two hop node. A Lost signal is generated

in the case when no further forwarding is possible.

143

• The black hole attack is still possible in Arrive, if all parents and neighbours become

black holes. This will enable all the higher level nodes attached to that node to lose their

data messages. This will also remain undetected throughout. RAEED sends back a Lost

beacon thus enabling the node to inform its forwarder that it has been unable to forward

the data.

• Arrive employs up to 8 multi-paths, whereas RAEED only selects one path. This reduces

the traffic overhead.

This thesis presents two different schemes for data forwarding. The first scheme is named as

the handshake scheme (Section A.6.1) and the second is termed as the lost indication scheme.

The first scheme involves handshake and multiple paths in data forwarding while the second

scheme requires neither of these. The hand shake scheme has some drawbacks including ad-

ditional message overhead. Moreover, it relies on multiple BSs and multiple paths to work

efficiently. This leads to development of a lost indication scheme that has a lower message

overhead and avoids handshake, multiple paths, multiple BSs etc. The remaining part of this

chapter explains the Lost indication scheme in detail.

5.7.1 DFP Design:Lost Indication Scheme

A node S, upon detecting an event in the environment, generates the data that contains the

event or message ID, node’s own ID and a source ID (saved in TargetID field). The source

node also attaches a data stamp in the HMAC field which is used later by the BS to confirm

that the data has not been altered in the relay process by any node (integrity). Moreover

the data is encrypted with the node’s Independent key (authenticity) so that only the BSs

can decrypt what the actual data is (confidentiality). The other nodes just relay/forward this

encrypted data without knowing the contents of the data. This provides data authentication,

integrity and confidentiality from the source to the destination. The complete message is again

encrypted by the source node S using the cluster key KCS
. It is then unicasted to the neighbour

node T having a high ranking (reputation). All the neighbours initially have equal ranking.

The ranking is based on throughput (number of messages sent versus received) history and the

neighbour’s level (hop distance from BS). The format of the DATA message is:

S → T : (DATA, [IDS , IDT ,MIDm ,StampS , IDS , [datapayload]KIS
]KCN

)

The target node, upon receiving the data, forwards it to its best ranked neighbour. Here S,

T and N are the IDs of the source, the target and the sender nodes respectively:

N → T : (DATA, [IDN , IDT ,MIDm ,StampS , IDS , [datapayload]KIS
]KCN

)

This data forwarding is repeated throughout until the message is received by a node at

level 1, which will always forward the data to the BS. If all nodes behave correctly the path

144

eventually is the best path to the BS. As a follow up some extra parameters like the number of

messages forwarded by a node etc can be added to provide load balancing. Note that neighbour

nodes can receive the data (as it is broadcast) but they do not forward the data that is not

targeted to them. Each node saves the (event, source) pair for some period of time to detect if

the same message is received again. It also determines to which neighbours the data has already

been sent (eavesdrop or forwarded by the node). This is done to avoid nodes that have already

forwarded the same (event,source) pair. After unicasting data to a neighbour, the sender node

eavesdrop for a small period, to check has the receiver node forwards the data further. As nodes

have knowledge of 2-hop neighbours, so they can also be checked if the data is forwarded to a

legitimate node or resulted in oblivion. Thus all possible black hole attackers will be detected.

In case a legitimate node does not have any available neighbours to forward the data (i.e. if the

event source pair has already been sent to all 1-hop neighbours), a LOST beacon is generated

and is sent back in the reverse path. The format of the LOST beacon is:

N → T : (LOST , [IDN , IDT ,MIDm ,StampS , IDS]KP(N ,T)
)

The data payload can also be placed in a LOST beacon if required. But the (event,source)

pair and data stamp are sufficient for the node to infer which data packet has been lost. This

also requires the help of a small data base (DB) maintained in each node. This DB is discussed

in detail in Section A.7. The node, upon receiving the LOST beacon, attempts once to forward

that lost data to another node. Note that this LOST message is only propagated up to one

level instead of all the way back to the source. This is to avoid an extra message overhead. The

ranking process involved in each node also maintains the number of messages lost by a node

(LOST beacon received).

5.7.2 Evaluation of Lost Indication Scheme

5.7.2.1 Formal Verification of Lost Indication Scheme

The hypothesis for this model is that:

”The DFP of RAEED achieves 100% throughput”.

It is assumed that all the nodes have already finished KSP and RSP successfully. The model

is composed of a sink and the node models. The event generator model is not used because the

two events, timeout and sense, are generated by the node model. The node model is shown in

Figure 5.31. All nodes start in the LISTEN location. If node is a source (Source flag is set) and

all nodes are free (BusyNodes is 0), the channel is free (ChannelBusy is clear), and the maximum

number of messages (TotalSent<MAXMESSAGE) have not been sent, the node model senses and

sends new data (SEND DATA). A sense message is used to indicate to all nodes that a new data

message must/will be sent. In the real world the data is sensed after a fixed time interval and

the message IDs are used to indicate the new data. To save state space additional details have

145

Figure 5.31: Node model used in verification of DFP

been removed. The source node increments the global variable TotalSent (indicating the total

data packets sent in a network) each time a new data is sensed. The BusyNode variable is also

incremented as the node model becomes busy and will be free once it goes back to the LISTEN

location. The target of a data message is determined using a function SelectNeighbor(),

that determines the next hop node, depending upon its ranking. The source node then moves

to the SEND DATA location and broadcasts the data. The corresponding Send[] variable

is incremented to indicate the number of messages sent to a neighbour. It then remains in

the OBSERVE location until either the neighbour node to which the data has been forwarded

broadcasts the data or a timeout occurs. Note again that, instead of using the clocks, the

timeout is modelled by a simple message to save the state space. The node of course will get

out of the OBSERVE location straightaway if the data has been sent to the sink. The Rec[]

variable is incremented in case a neighbour has successfully forwarded the data. In case the

neighbour has not forwarded the data, the node moves to the RECEIVE DATA location and

tries to send the data to another node. A flag (Select []) is set each time the data is sent to a

particular node. This avoids sending the data again to the same node. The flag is also used by

the sender node if and when the data is received from another node. These flags are then reset

using the Reset() function which is executed in all the nodes each time new data is sensed.

If a node, in the OBSERVE location, does not eavesdrop any of its neighbour forwarding

data further, a Lost message is generated (SEND LOST), informing the previous node that,

although the current node has received data, further forwarding has failed. This triggers the

previous node to transmit the data (FORWARD DATA) to another node. The current node’s

ranking is lowered because it did not have any path available.

146

Figure 5.32: Sink model used in verification of DFP

The sink model is shown in Figure 5.32. The sink model starts in the IDLE location and

moves to the LISTEN location after receiving a Sense signal. Note that the Sense is used as a

timeout or as an indication that the new data must be sensed. The sink remains in this location

unless either it receives the data (that takes it back to IDLE) or all the nodes, including the

source node, have finished forwarding the data (which takes it to the FINISH location). Note

that the sink model moves to the IDLE location upon receiving the data and increments the

global TotalRec variable (indicating the total number of data packets received). This is done

so that the variable is not incremented more than once in a single sense event. Note also that,

when multiple paths are used, the sink model can receive multiple copies of the same data.

But the variable should be incremented only once. In case the maximum number of messages

allowed have been sensed (TotalSent is equal to MAXMESSAGE), the channel becomes free and all

the nodes are in their idle location (BusyNodes is 0), the sink model then moves to the FINISH

location and the model deadlocks here.

The Verification process involves verifying the following claims/properties:

1. The data is transmitted fairly

2. The nodes after broadcasting the data never deadlock

3. No deadlock in the RAEED protocol

4. The source node will always send the desired number of data messages

5. The source node will always receive the desired number of data messages

6. The throughput of the data messages is always 100%

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.2.5. All the claims were proved for a variety of topologies confirming that the DFP has

been implemented successfully with 100% throughput.

147

5.7.2.2 Simulation Results

Computer simulation were undertaken to confirm the working of the DFP. It was observed that

the throughput remained unaffected for different sizes and densities of networks. For these

experiments, each individual node acted as a source and broadcast data only once. A single BS

was used and always placed at the corner. Ten experiments were performed under noise free

conditions and the average throughput received at the BS computed. The density was varied

for a 100 node network placed in a 10x10 grid. A throughput of 100% was observed for all cases.

For scalability testing the networks of 100, 200, 500 and 1000 nodes were placed both in grid

and random placement. It was observed that the throughput remained unaffected. Another

important parameter to note was that the average number of hops taken by the data message

to reach the BS. Because there is neither an attacker nor noise, data followed the shortest path

without needing any LOST beacon or regenerating on any of data packet more than once. The

average number of hops also indicated that the best path was selected for the data forwarding

by all the nodes.

5.7.3 Effect of Noise on DFP

This section evaluates the DFP, or in fact the complete protocol, under noisy conditions. The

protocol is designed in such a manner that it should withstand message loss due to noise. The

methods involved for evaluation are formal modelling and computer simulation.

5.7.3.1 Formal Verification

The model used in the Section 5.7.2.1 was reemployed but modified to accommodate the RF

noise (message loss), as was done in the Section 5.5.4. The threshold value for RF noise

was varied between 10% to 40% and it confirmed that all the properties presented in the

Section 5.7.2.1 are satisfied including the data transport property which has confirmed 100%

throughput. The model was checked for all possible 5 node networks and grid networks of node

size 9 and 16 were also checked. The data transport property confirmed that the throughput

remained unchanged despite the presence of noise.

5.7.3.2 Simulation Results

To quantify the results and to test larger networks, computer simulation were undertaken to

confirm the effect of noise on the DFP. There noise samples as indicated in Section A.4.3 and

Section 5.5.4 were reused. A 100 node network, in a 10x10 square grid, was used with a single

BS at the corner. Node density was varied by increasing the radio range of the nodes.

Figure 5.33(a) shows the effect of noise on the data throughput. The throughput remained

unchanged (100%) in the absence of any noise and despite the presence of the hidden terminal

problem. Except for the lower density networks (4 & 8), the throughput remained above 90%

148

(a) Effect on data throughput (b) Effect on hop counts taken

Figure 5.33: The effect of noise on the DFP

for all the noise samples. The slight decrease in throughput was because of the messages loss

due to the RF noise at the BS. Note that the messages lost at the BS will not be detected

by the neighbour nodes as the BS is a sink and does not forward the data messages further.

However, any data loss before reaching the BS will enable the sender node to resend the data.

The data, thus, eventually reaches the BS. The only cost paid is the redundant messages, i.e.

a greater number of hops the data will travel instead of following the ideal path.

A notable results is low throughput when a medium/high noise sample is employed in a low

density (4) network. This is because of two reasons (i) excessive loss of data message and (ii)

fewer available paths. Each node can have a maximum of 4 neighbours with one node being

the message sender. Sometimes because of the message loss, the route takes the data to the

border nodes which will not be able to forward it further (has one more neighbour to which the

data can be forwarded and this could be the border node as well). The graphs indicate a low

throughput data percentage and the high average number of hops taken in this case. It is thus

proved that the protocol attempts to find the path for all cases. However, in presence of high

noise sample and extremely low density (4) the throughput is quite low. For the 8 node density

networks, the throughput is increased as the available paths have increased. Finally, for the

higher density networks the throughput is above 90% and as indicated, this loss of throughput

is due to the RF noise at the BS. The protocol avoids selecting the same neighbour again for

particular data forwarding. Hence this is one of the reasons that throughput suffers in the

presence of fewer available neighbours (4 & 8). The results showed that RAEED supports high

throughput even under noisy environments.

Figure 5.33(b) shows the average hop count taken in data forwarding, showing that this

increases by a factor of 3 for lower densities in the presence of medium/high noise. The neigh-

bourhood scheme suffers, as the nodes eavesdropping messages after forwarding data, may not

receive the feedback. Some of these messages are lost because of noise. The nodes, thus, re-

149

send the data if the feedback data message is lost because the data has been considered lost.

Thus sometimes data is received multiple times via multiple paths. This value is highest when

the routes are the longest and settles down as the density is increased thus enabling smaller

paths (nodes become near to the BS). Note that the low unexpected value for a 4 node density

network, as compared to 8 node density, in the presence of high noise is because most of the

messages are lost (60% throughput). The average hop count approaches the ideal (shortest

path) value as the density is increased. Note that for average density of 24 and 28 nodes, the

hop count is almost the same, in the presence of all the noise samples.

This is one of the shortcomings present in RAEED, that in the presence of high noise,

the data can be sent multiple times (message overhead). This drawback exists for other noise

samples but becomes more pronounced and substantial in the presence of high noise sample.

However, note that the same overhead is present if multiple paths are employed for message

passing. In case of multiple paths the overhead will exist in the presence of all the noise samples

and even in the absence of noise. On the contrary, in RAEED this overhead is prominent only

in the presence of high noise. Moreover, this overhead enables high throughput as compared to

the multiple paths schemes (INSENS) in the presence of high noise. Another reason why the

average hop count increases because of noise is that a lot of LEVEL messages are also lost which

enables the nodes to get incorrect levels for themselves and for their neighbours. An error in

the KSP and the RSP will always be inherited by the DFP, thus enabling a lower throughput

and higher average hop counts. Finally, because of the lower ranking of the nodes, in cases

where messages are lost due to noise, the nodes are ignored the next time. Thus, an alternative

path is taken for data routing.

The protocol is proved to be robust against the noise but the only drawback is that the

noise near the BS, should be low. This assumption may be realistic because the BS is in a safe

place and it is the more distant nodes that are usually deployed in hostile conditions. Moreover

this problem is solved by adding an ACK beacon sent by the BS when it receives the data.

This message will only travel one hop and it is similar to the FAIL beacon:

B → N : (ACK , [IDB , IDN ,MIDm ,StampS , IDS]KIN
)

After employing the ACK message it was confirmed that throughput recovered to 100% for

higher densities. The problem still persists with low density networks in the presence of

high/medium noise.

5.8 Chapter Summary

This chapter presents a new routing protocol design that can be a potential solution against

many DoS attacks. The protocol design has been rigorously tested using formal modelling to

remove the hidden bugs/errors. Computer simulation were performed later to support and

150

quantify the results as well as to check the effects of scalability and node density. The complete

protocol is divided into 3 main phases KSP, RSP and DFP. The KSP involves exchange of keys

and bidirectional verification. As the protocol assumes that an encryption mechanism is already

in existence so the KSP of the INSENS and the LEAP protocols are used as an example. It

was also proved that the KSP presented in RAEED is more efficient as it provides the same

security properties and has a lower message overhead. This lower overhead is because the keys

are piggy bagged in the bidirectional verification phase and a three way message exchange is

performed which reduces a lot of data traffic. Finally the effect of noise is also monitored on

the KSP using formal modelling and simulation.

The RSP involves authentic level assignment to each node, which is the hop distance from

the BS. The nodes also perform neighbour ID exchange and loud test to verify 2-hop neighbours.

This is done to remove any virtual connection between the nodes. The authenticity is provided

using one way hash chain known only to the BS. However, only the effect of hash chain is

modelled and details are avoided. Each sub phase is explained and tested separately. The RSP

is extensively tested using both formal modelling and the simulation.

The DFP involves propagation of data from the source to the sink. Node reputation and level

is used in the data routing. The nodes are ranked based on their performance by eavesdropping

their activities after forwarding the data. The scheme uses a single path and BS. A lost

message is generated in case a legitimate node cannot forward the data further. This enables

the predecessor node to forward the data on another path. The scheme was evaluated using the

formal modelling and computer simulation. Finally, the effect of noise on DFP was evaluated.

151

Chapter 6

Evaluation of RAEED Against DoS

Attacks

6.1 Introduction

This chapter evaluates the new protocol, RAEED, against different DoS attacks. The thesis

has already rigorously checked some published routing protocols against DoS attacks in Chap-

ter 4. The method adopted was formal modelling and the results were than supported using

computer simulation. The same approach is adopted in this chapter to evaluate RAEED. The

rest of this chapter is organized as follows: The attacks rectified by RAEED are explained in

Section 6.2 (hello flood), Section 6.3 (wormhole and INA), Section 6.4 (sinkhole), Section 6.5

(tunnel attack), Section 6.6 (rushing attack), Section 6.7 (black hole), Section 6.8(gray hole) and

Section 6.9 (jamming) respectively. Finally, a summary of chapter is presented in Section 6.10.

6.2 Prevention Against the Hello Flood Attack

It has already been proven (using formal modelling) that the INSENS and LEAP protocols are

immune to the hello flood attack because of its bidirectional verification. As the KSP in RAEED

is a modified version of LEAP/INSENS and the protocol employs the bidirectional verification,

it is indeed expected to be immune from the hello flood attack. Thus, formal modelling and

computer simulation are employed to confirm that the hello flood fails in RAEED. The results

are later supported by the practical implementation. Note that, unlike INSENS, this work does

not claim that solving the hello flood also solves the rushing attack. It has been indicated in

Chapter 4 that the rushing attack is possible in the presence of INA and wormhole attacks.

Therefore this thesis will only assert that RAEED will resist the rushing attack once it is proved

that it can avoid the hello flood attack, INA and wormhole attack.

152

(a) Event generator model (b) BuildTopology() function

Figure 6.1: Models used in the hello flood attack solution

6.2.1 Formal Verification

The hypothesis for this model is :

”The hello flood attack is unsuccessful and the unidirectional links are always avoided in

RAEED”.

It is assumed that the hello flood attacker is very powerful and has a radio transmission

range that covers all the nodes. Moreover, in this model, all possible topologies of network of

up to N nodes are checked using a function BuildTopology() which simply converts the array

Value[] into the Topology matrix as was done for the Flooding protocol (Section 4.4.2).

In performing the formal verification to confirm that the protocol is immune from the hello

flood attack, the node model that was employed earlier in Section 5.5.2.1 was reemployed. For

this model it has already been verified, that in the absence of any attacker, all the neigh-

bouring nodes are updated correctly. The requirement is to prove the properties presented

in Section 5.5.2.2 in the presence of a hello flood attacker. The formal framework employed

in Section 5.5.2.1 requires all the possible N topologies to be tested one by one. This time,

however, the model checks for all the possible N topologies automatically. This modification

is performed by amending the event generator part of the model. The new event generator

model is shown in Figure 6.1(a). In previous cases this modification was not adopted because

of the state space explosion problem. In this case, however, the model being small (only the

KSP has been modelled), all topologies can be checked. The claim to prove that hello flood is

unsuccessful involves proving following properties:

A[](Problems == 0)

Protocol .ROUTE SETUP PHASE ⇒ (Problems == 0)

Both the properties proved true, confirming that the hello flood attacker was not able to add

153

itself to a single node in all possible N node network topologies. Note that Problems is a global

variable that is incremented if a verified neighbour is found to be different from that in the

connection matrix. Up to 6 node networks were checked with one node being the attacker and

the remaining 5 nodes forming different topologies. It is worth noting that Uppaal checked all

1024 node symmetric link topologies automatically and confirmed that the nodes were immune

from the hello flood attack for all those topologies. Only topologies where all nodes possessed

bidirectional links were checked in the presence of a hello flood attacker. Note that a hello

flood attacker is actually a unidirectional link that must be avoided and the examination of

asymmetric links for 5 nodes would involve checking 1,049,000 topologies. There is no advantage

in checking all those topologies when it has been confirmed that the protocol ignores nodes with

asymmetric links. Furthermore, the formal model was limited to 5 legitimate nodes because by

increasing it to 6 symmetric links one has to check 32,768 different topologies. This will cause

a state space explosion problem when the automatic topology generator is used and it is not

feasible when topologies are employed manually (one at a time). To further confirm the results

all the possible 4 node networks were checked using the formal framework in the absence of

any attacker. It was confirmed that the unidirectional links were not accepted as legitimate

neighbours.

6.2.2 Computer Simulation

The hello flood attacker was implemented using TOSSIM and 100 and 1000 node grid networks

were checked for different densities. Two types of hello flood attackers were employed:

• One hello flood attacker that has unidirectional links with all the legitimate nodes. Thus

all network nodes can receive the message transmitted by this intruder.

• Four hello flood attackers placed at the four corners of the grid such that each attacker’s

message can be picked up by 25% of network nodes.

After applying both types of the hello flood attackers on 100 and 1000 node networks, it was

confirmed that the attackers had not been added as neighbour by any node. All the nodes

marked the hello flood attackers as unverified neighbours in the NT.

6.2.3 Practical Implementation

Finally, RAEED’s KSP was implemented in hardware using MICAZ motes [233]. Different

networks up to 10 nodes were implemented and checked. Each node, upon completion of

KSP, displayed its neighbour’s ID using the LEDs confirming that nodes always detected the

legitimate neighbours. It was also observed that neighbours placed far apart, having fading

signals, sometimes did not add to one another. Sometimes one node adds a neighbour in such

conditions but others reject it because of unidirectional link. This, therefore, supports that the

unidirectional links are avoided in the KSP.

154

Finally a 10 node network with a hello flood attacker was also placed in such a way that

the attacker can be heard by all legitimate nodes. It was observed that all the nodes did not

add the hello flood attacker as their verified neighbour. These experiments confirmed that the

hello flood attack presented in RAEED is also practicable. These experiments also proved that

nodes in the protocol always reject unidirectional links.

6.3 Prevention Against the INA and Wormhole Attack

6.3.1 Traditional INA and Wormhole Attack

It has been previously shown using the formal framework (Chapter 4), that both INSENS

and LEAP are susceptible to the wormhole attack in the KSP. RAEED is also vulnerable to

the wormhole attack in the KSP and RSP if the wormhole attacker is already present in the

deployment area. This attack will also be possible when new nodes are later deployed. The

chance of a successful wormhole attack at the deployment stage is small as the attackers must

know a node’s frequency. Moreover, as the KSP is finished very quickly so any deployment of

the wormhole after KSP will have no affect. The reason being that the nodes will reject the

tunneled messages as they will be from unverified nodes. But as the chances of wormhole still

exist so an innovative solution for wormhole is presented in this section that with an assumption

that nodes can transmit a more powerful message if required after the RSP. This will enable

a node to transmit message to a node two hops away, which in case of a normal transmission

is not within the radio range of a node. This assumption is realistic as a node’s transmission

usually can be adjusted at the run time without adding any extra hardware.

If the current KSP is adopted, the chances of a successful wormhole attack at the deployment

stage are low as the attacker must know node’s frequency. Moreover, the KSP finishes very fast

and any deployment of the wormhole after the KSP will not have any effect because nodes will

reject the tunnelled messages as they will be from unverified nodes. As the chances of wormhole

still exist, an innovative solution for wormhole is presented in this section to pacify the INA

and wormhole attacks. This solution is universal and thus can be adopted by any other routing

protocol to avoid these attacks. This will also enable the KSP to be modified if required in

future work because the scheme does not rely on the KSP.

As stated earlier in Section 5.6.4, the scheme assumes that nodes can transmit a powerful

message to a node two hops away. The nodes have already acquired information about their 1-

hop and 2-hop neighbour node’s IDs after the Neighbour Propagation Phase (NPP). Therefore,

without a wormhole tunnel or INA between the nodes, the high power messages, through use

of a high power transmission, must reach nodes which are actually located within two hops.

A node unicasts a high power LOUD beacon to each independent 2-hop node or may send a

single broadcast LOUD beacon using high power. Although, the unicast technique may induce

more traffic in the network (thus requiring more energy and overhead); it will enable the nodes

155

to transmit messages using the cluster key of that 2-hop neighbour. It will also enable nodes to

delete the global key before this phase. If the current KSP is adopted, deleting their global key

as early as possible is very important (for immunity from node capture attacks). When a node is

captured by a wormhole attacker, it might enable the other tunnel adversary to generate LOUD

signals similar to this scheme. A solution for such a case is presented later in Section 6.3.4.

However, it is worth noting that whenever a wormhole attack takes place, it is always

assumed that the attacker did not know anything about encryption. In this context, this

assumption gives flexibility to the scheme presented in this thesis. Note the assumption in

this context that the global key cannot be captured and effort to finish the KSP within 2-3

seconds will also prevent an adversary from capturing the nodes before launching the wormhole

attack. In future, if a new KSP or a different cryptography scheme has to be adopted, care

must be taken to adopt this loud scheme as soon as possible to avoid nodes being captured.

The preferred sequence is to perform bidirectional verification followed by the wormhole test

and then perform the key exchange. But again this should be done only if wormhole or INA is

assumed to be launched after node capture. This, up to our current knowledge, has not been a

characteristic recognized in the wormhole/INA. These attacks are assumed to be both powerful

and cheap because they did not depend on cryptography.

6.3.2 Formal Verification

The hypothesis for this model is that:

”The INA and wormhole attack are unsuccessful in RAEED”.

In addition to the assumptions stated in Section 4.3.3, it is assumed that the wormhole

tunnel is at least 4 hops. The wormhole attack is likely to span many hops to cause maximum

damage, it is assumed that the 2-hop nodes are closer to the current node compared to the

tunneled node. Moreover, it is assumed that the legitimate nodes can increase their transmission

power.

6.3.2.1 Model

The formal framework used 3 types of messages:

• The ’Event’ is an event occurring in the system and is generated by an event generator.

This event could be elapse of time, an occurrence in the environment, etc.

• The ’Message’ represents the messages exchanged between the nodes. The Topology

matrix is used to determine which nodes will receive a message sent by a particular node

in the network. The message’s fields are expressed using global variables starting with

Msg . The RF power of a message is modelled using a global flag Msg Power with the

value true indicating transmission with the high power and normal transmission otherwise.

156

Figure 6.2: Event generator model used in the wormhole solution

(a) INA Model (b) Wormhole Model

Figure 6.3: Attacker models

• The ’Tunnel’ uses a different RF frequency or is a wired connection used by the wormhole

nodes. This message can only be read by attackers; the legitimate nodes know nothing of

it.

The formal model to test wormhole attack and INA consists of an event generator, an

attacker and multiple node models. The event generator model is shown in Figure 6.2 and

starts in a DEPLOY location. This model starts all nodes by triggering an Event message

and moves to the START location. It waits in this location using a guard that checks that

all the nodes go through the KSP (FinsihNodes variable has value MAXNODE) and no node is

busy handling any received message (BusyNodes becomes 0). The model then triggers all nodes

and itself to move to the KSP FINISH location. Later the model moves to the RSP FINISH

location and finally to the FINISH location by checking if all the node models become idle

(BusyNodes becomes 0).

The attacker models are shown in Figure 6.3(a) and Figure 6.3(b) for INA and worm-

hole attacks respectively. Both attacker models moves out of the START location using the

157

Figure 6.4: Node model to check the wormhole attack

event generator’s Event signal and the Attacker flag is set to indicate that the current node

is an attacker. It then remains in the LISTEN location and eavesdrops messages. If any

message is received the INA simply retransmits this message and goes back to the LISTEN lo-

cation; whereas the wormhole attacker tunnels the message to another wormhole attacker node

(TUNEL MESSAGE). The wormhole attacker, upon receiving a tunnel message, retransmits

it (RETRANSMIT MESSAGE). Note that the attacker node remains hidden throughout and

does not take part in the KSP. It can also receive a high power message but treats it in a similar

way.

The node model, shown in Figure 6.4 starts in a START location and moves out of it when

triggered by the Event generated by event generator. It then remains in the LISTEN location

during the entire Key Setup Phase (KSP). The KSP includes send ASK beacon (SEND ASK),

receive ASK (REC ASK) and send ASSIGN (SEND ASSIGN) locations. The node sends the

ASK beacon as it is turned on and expects a reception of the ASSIGN beacon in response. This

two way handshake provides the bidirectional verification solution. This models the simplified

version of the KSP in the protocol. A self transition in the LISTEN location provides the

receive ASSIGN operation and the corresponding Neighbor flag for the receiver node is set to

true, indicating that the neighbour has passed the bidirectional verification phase.

Once all nodes have finished their KSP, the model moves to the KSP FINISH location.

The node model then checks, using a function CheckErrors(), if there is any error in the

158

neighbourhood information, i.e. existence of any neighbour in the node’s memory that is not

part of Topology matrix. Factually this test is not possible, so in the real world a node

will assume that an error is present in its neighbourhood information and would perform the

wormhole attack check test. However, for INA this test is feasible because in the presence of

a INA, a node always receives back its own messages therefore INA is always detectable. In

the presence of a wormhole attack a node usually has more neighbours than are expected so

this can be used as a indicator in real world networks to perform the wormhole attack check.

Therefore, a node can detect a wormhole attack, in most cases, and INA, in all cases. In the

model, however, the Topology matrix is used to check this error to reduce the state space. This

test was performed only for nodes that have incorrect node IDs in their neighbourhood list. The

model also skips the Neighbour Propagation Phase of the protocol and assumes that when the

model moves from the KSP FINISH to the RSP FINISH location this task has been performed,

again to save state space. As the Neighbor[] array (models NT in a node) is global, so nodes

can automatically check their 2-hop neighbour nodes without performing message passing in

the model. In real situations each node would broadcast its neighbour information protected

by the cluster key.

A little modification is performed here to enable each node to check its 2-hop neighbours first

before allowing the other nodes to perform the same process. A variable Turn is used to indicate

which node has its turn and is used in the wormhole detection so that one node is checked at

a time. Note that initially Turn has the value MAXNODE and when a node starts processing its

2-hop nodes, the variable is updated to a node’s ID (NID). It is then reset to MAXNODE again

after a node checks all the neighbours for a wormhole. The node uses a function GetNextID()

to get next valid 2-hop nodes and thus sends a LOUD message to it. If all neighbours (NNIndex)

of the current neighbour (NeighborNode) have been checked the variable NNIndex is reset to

0 (NEXT NODE) and goes back to the RSP FINISH location. The function returns a value

that is stored in the Msg Nonce variable. If the value is valid (not equal to MAXNODE), the node

transmits a LOUD message with high power; a flag Msg Power is used to indicate that the

message is transmitted with a high or low power. Moreover the Topology matrix contains 1-

hop nodes and the TwoHop matrix contains 2-hop nodes. A flag, Verified, is set when sending

a LOUD beacon to 2-hop nodes for a particular neighbour and is cleared if a LOUDREPLY

is received from that 2-hop node (self transitions in RSP FINISH location). This process is

done to save state space as in the real world the messages are sent randomly. If a random

transmission is used at the modelling process, the node model would have to be modified to

add more locations with no additional advantage.

Upon receiving the LOUD beacon (REC LOUD) from a 1-hop or 2-hop neighbour, the

node replies back with the LOUDREPLY using high power (SEND LOUD REPLY). When a

node verifies all its neighbour’s neighbours by sending them the LOUD beacon, one by one, a

function RemoveWormholes() removes the neighbour nodes for which their verified flag is still

159

(a) A topology in which wormhole has failed using loud

scheme

(b) A topology in which formal framework de-

tected wormhole is successful

Figure 6.5: Topologies used in the wormhole attack

high. This means that the 2-hop nodes connected to them are not reachable and thus these

nodes are neighbours via a wormhole tunnel. When all nodes finish this wormhole attack check,

the event generator moves the node models to their FINISH locations.

6.3.2.2 Verification

In this formal model some of the properties require node IDs to determine if these nodes have

detected the wormhole or not. The nodes next to a wormhole should detect the wormhole

while the nodes outside the radio range of wormhole should not detect wormholes. For these

properties an example topology is shown in the figure 6.5(a). The white coloured nodes are the

legitimate ones with their IDs shown. The red coloured nodes are the malicious nodes with the

red link showing the tunnel. Note that for INA the properties remain the same but IDs will

change depending on the topology. In order to check whether the system operates as desired

the following claims/properties must be proved:

1. The ASK beacon is received by legitimate neighbours

2. The protocol will finish the KSP

3. The protocol will finish RSP

4. No deadlock in the system

5. No legitimate node is declared as a wormhole

6. All the wormhole tunnels are detected

7. All wormhole tunnels are removed by the LOUD scheme

160

Figure 6.6: One of the topologies used in a hardware implementation of INA

8. All the nodes record their correct neighbours after the LOUD scheme

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.3.1. All the claims including the safety (Claim 5,6,7) and the liveness checks (Claim 4,8)

were proved. This confirms that the wormhole attack and INA fails in RAEED.

6.3.2.3 A Successful Wormhole Attack

It was observed that there is possibility that the scheme may not detect the wormhole attacks

in certain topologies (Figure 6.5(b)). A reason for such failure is that the tunnel is too short

(contradicting the assumptions earlier on). When nodes 0 and 3 exchange LOUD messages they

are received by nodes 2 and 1, respectively, since they are the only 2-hop neighbours. Note

that even a single neighbour at either end of the tunnel which is not a 2-hop neighbour of other

nodes can detect the presence of the wormhole attacks and thus can remove it.

The formal model has confirmed that the only case, in which INA or wormhole attacks are

not detected (and removed), is when the nodes next to these virtual nodes do not have a single

neighbour pair of nodes which are outside the range of two hops. It is worthwhile to note that

this type of network is highly unlikely (normally nodes have many neighbours) so one can safely

say that the scheme proposed will be able to detect wormhole attacks in most cases. Moreover,

the wormhole tunnel is normally far apart (spans many hops) to give maximum damage. This

further reduces the chances of getting such a topology in network (3 hop limit). Therefore, it

will be a rare case that such a topology may exist to fail the proposed loud scheme.

6.3.3 Practical Implementation

A number of topologies were implemented with 5 and 6 nodes in hardware using MICAz

motes [233]. This was carried out to confirm that the LOUD scheme can check the effect

of INA in different topologies. One such topology is shown in Figure 6.6. However this work

needs extensive refinements and more details. Also, more hardware experiments would have to

161

Figure 6.7: Wormhole Attacker Model

be performed to examine environmental affects like radio fading etc.

6.3.4 Intelligent Wormhole/INA (Encryption Failure)

It was stated earlier that if the intruder launches INA or wormhole attack after overcoming

encryption, it can fail this newly presented scheme. This is because the attacker can observe

the nodes sending the LOUD beacon by decrypting the messages and can also broadcast the

LOUD beacons with the higher power as well, thus jeopardizing the effectiveness of this scheme.

It was also stated earlier that such attacks have not been characteristic of a wormhole or INA

intruders because these attacks are launched without the help of cryptographic failure. However,

as this kind of attack may be launched in the future, so a solution for that scheme is presented

in this section.

The solution to this attack is to unicast the multiple LOUD beacons with the variable

power. Only individual nodes will know whether the LOUD beacon is transmitted with the

high power or not. The received LOUDREPLY thus can determine the presence of wormhole

or INA. An INA or wormhole attacker will be in uncertain here as what to do. If it transmits

all the LOUD beacons with powerful signal to reach 2-hop neighbours, the legitimate node will

receive unexpected 2-hop neighbour’s LOUDREPLY even when low power LOUD is sent. If it

does not transmit LOUD with high power the wormhole/INA is detected straightaway. Thus a

wormhole or INA can easily be detected even if the intruder utilizes knowledge of cryptographic

details. The only drawback being that extra LOUD beacons will consume more energy in nodes.

6.3.4.1 Model

The modified wormhole attacker model is shown in Figure 6.7. The attacker is an im-

proved version of the one shown in Figure 6.3(b). Whenever it receives a tunnelled LOUD or

162

Figure 6.8: Node model to check the wormhole attack

LOUDREPLY message, it rebroadcast it using a high power at the other end. It was observed

that such a wormhole will fail the initial scheme as mentioned in Section 6.3.1 (the properties

mentioned in Section 6.3.2.2 failed).

To avoid such an attack the node model is modified as mentioned earlier. The modified

node model is shown in Figure 6.8. The model is simplified after the RSP FINISH location as

compared to the one in Figure 6.4 because unnecessary details have been removed. Moreover,

the LOUD beacon is broadcasted instead of being unicasted to individual neighbours, further

simplifying the model. The LOUD beacon is sent MAXLOUD times instead of once and only

sender node has the knowledge that the LOUD beacon is a fake (normal power) or original (high

power). The received response (LOUDREPLY) is then evaluated using the CheckLoudReply()

the function. A 2-hop neighbour, responding back with the LOUDREPLY when a LOUD

beacon is sent with normal power, is declared as a wormhole link. A flag TestFail is used to

indicate such a neighbour. In the RemoveWormholes() function any neighbour having either the

Verified or the TestFail flag set is removed from neighbour list.

6.3.4.2 Verification

All the properties in Section 6.3.2.2 have been proved as true in presence of the new node model

indicating that the scheme is not vulnerable to the wormhole attack/INA even if the attacker

uses the cryptographic information in rebroadcasting the tunnelled message. The properties in

163

claims 5 and 6 have been modified now because the flag TestFail is used to indicate a wormhole

is detected by the node model. The modified claims are described again in Section B.3.2. Both

the claims were proved true confirming that the wormhole fails even if encryption is inefficient.

6.3.5 Intelligent Wormhole Attacker with Signal Detection

This scheme has a flaw if both the wormhole attackers can detect the signal strength of all the

nodes within their range and transmit message at the same RF power as received messages.

If a message received by one end of the wormhole has a high RSSI value (i.e., sent with high

power), this end notifies the other end of the wormhole to also transmit the relayed message

at high power. This will allow the 2-hop neighbours to receive this message. An attacker node

can use the higher transmission power when it receives a LOUD message, therefore the nodes

that are two hops away from the end of the wormhole will receive this message and reply back.

This becomes evident when the attacker model is allowed to detect signal strength by giving

access to the Msg Power flag and the attacker then transmits messages depending on received

signal’s strength. In such a case the properties will fail. Note that the attacker in this case does

not even have to overcome the encryption as mentioned in Section 6.3.4.

However, detecting signal strength accurately to confirm that the message is sent by a

node with high or low signal is very difficult to implement, especially when nodes are scattered

randomly. It also adds a delay in message received via virtual links due to process involved in

signal measurement etc. But as the possibility does exist, some wormhole and INA connections

may persist after the loud scheme has finished. RAEED however solves this issue in the later

phase as the virtual link will only be continuously used for data forwards if it behaves correctly

i.e. forwarding each data message that it receives. Otherwise the neighbourhood watch scheme

adopted by the protocol will detect the misbehaving links and will transmit data via another

link. To prove this all possible 5 node topologies were checked in the presence of one virtual

link as was done in the formal framework earlier for other protocols. The model used was

the one presented for DFP in Section 5.7.2.1 with ACK sent by the BS to 1-hop nodes. It

was confirmed that all the virtual links (INA/wormhole) had failed to prevent data routed by

the source node to reach the sinks. This confirms that RAEED eventually will fail INA and

wormhole attack no matter how intelligent the attacker is. To our best knowledge, this solution

using formal modelling to overcome the wormhole attack and INA has not been presented

before. Nor does there exist a solution that works in resource constrained WSN nodes without

any extra cost. More experiments however should be performed on hardware implementations

of this new scheme under different environmental conditions. This has been left the subject of

future work.

164

6.4 Prevention Against the Sinkhole Attack

In order to confirm if RAEED is immune from the sinkhole attack, the model used to verify

functionality of the RSP in Section 5.6.9 is reused; this model has already verified the function-

ality of SPP and LSP, each part of RSP. The sinkhole is only possible in these two sub-phases of

the RSP. The other two possibilities of the sinkhole, through the use of hello flood or wormhole

have been removed in Section 6.2 and Section 6.3. Thus only possibility remaining is if the

intruder enables the legitimate nodes to believe that it is a BS.

The one-way hash chain is used to calculate the MAC, attached in the message. The nodes

and the attacker can only calculate if the MAC is correct but cannot generate the MAC; only

the BS is able to generate the MAC. Thus the possible attacks for the sinkhole attacker is to

attach a spoofed (fake) MAC or replay an old MAC received by the BS. Another intelligent

sinkhole attack is an attempt to disturb the routing process by becoming attractive to other

legitimate nodes. This can be achieved by broadcasting the LEVEL beacon immediately instead

of after the usual time delay. Therefore, the important thing to verify is how much maximum

damage it can inflict. For the protocol to run without any side effect, like message overhead

etc, the maximum damage should be within 1 level error even if the sinkhole has a hidden link

with the BS. This section verifies the effect of a sinkhole attack by employing formal modelling

and computer simulation.

6.4.1 Formal Modelling

The hypothesis for this model is:

”RAEED is immune from the sinkhole attack”.

Apart from the assumptions stated in Section 4.3.3, it is further assumed that the time

tick is in milliseconds and errors less than 1 ms are ignored. Moreover, apart from all 5 node

topologies, a single 9 node grid topology is also checked. It is also assumed that the one way

hash chain employed by the BS for authentication cannot be decrypted by an attacker.

6.4.1.1 Model

The model is similar to that presented in Section 5.6.9. Some modifications are made, however,

for additional details required for the sinkhole attack prevention. First the message authentica-

tion code is added to the messages. Second, in order to determine which nodes in the network

can receive the message in the channel, Msg ID is not used in the Topology matrix. The reason

being that the attacker can replay old messages in this model and when attacker transmits

replayed messages Msg ID will not be the ID of an attacker. So, persisting with Msg ID in the

channel will become a cause of error in the message reception/transmission. An extra global

variable, Sender, is used instead, which is adjusted before each message transmission. This

has been added to allow the correct working of the radio channel. A third addition is that the

165

Figure 6.9: Sink model to check the sinkhole attack

nodes, upon receiving any message, check if the sender node is present in its NT entries. In

RAEED, the nodes always verify whether the sender node is a verified neighbour and that the

cluster key is valid. This test was missing in the last model (Section 5.6.9) because there was

no attacker and model was simplified. Instead of adding an extra field for the cluster key, the

model confirms the sender node’s verification by looking at the Topology matrix for the sender

node. This check employs Msg ID, which is the message sender ID present in actual message.

Thus each legitimate node, upon receiving any message, has an additional guard of Topology

matrix using Msg ID. The modified models are shown in Figure 6.9 and Figure 6.10 for sink

and node model respectively.

The attacker model used for sinkhole is shown in Figure 6.11. It is obvious that the attacker

does not follow the protocol specifications. It can transmit fake LEVEL or SYNCHRONOUS

beacons at anytime, just after the KSP is finished. In order to save state space the attacker

undergoes a single attempt to broadcast the two messages independently. Note, however, that

the Uppaal tool will automatically check for all the possible cases. Thus an attacker’s attempt

at any possible time is checked automatically. The attacker also records the legitimate messages

and replays them.

6.4.1.2 Verification

The verification involves all the properties verified earlier in Section 5.6.9. Moreover, the fol-

lowing additional claims were checked:

1. Attacker’s SYNCHRONOUS messages will always be rejected

2. Legitimate node’s SYNCHRONOUS messages will always be accepted

3. Attacker’s LEVEL messages will always be rejected

166

Figure 6.10: Node model to check the sinkhole attack

4. Legitimate node’s LEVEL messages will always be accepted

A detailed description of the above claims in terms of Uppaal properties is explained in Sec-

tion B.3.3. The proof of the new claims confirmed that the sinkhole attacker fails to become

attractive by sending fake messages. The claims presented in Section 5.6.9 were also proved

true confirming that replay attack by the sinkhole to behave as a BS had also failed. RAEED

with the help of the encryption technique thus resists the sinkhole attack.

6.4.2 Computer Simulation

As stated earlier, this research does not evaluate encryption. However, using the property of

the one-way hash chain, that messages can be decoded by nodes but cannot be encoded, the

encryption was modelled in the simulation. The sinkhole attacker cannot create an authentic

MAC generated by the BS. But it can replay or generate fake messages. It was confirmed that

the sinkhole fails in RAEED.

6.5 Prevention Against the Tunnel Attack

It has been indicated earlier that the current research considers the wormhole attack different

from the tunnel attack; in the wormhole attack the attacker remains invisible, while in tunnel

attack the attackers are the compromised nodes of the network which are also connected via

hidden tunnel (wired or through different frequency wireless link). If the tunnel attack becomes

successful in the RSP, the attackers becomes attractive enabling the sinkhole attack as well.

167

Figure 6.11: Attacker model to check the sinkhole attack

The rushing attack is also possible as the legitimate LEVEL beacons will be later rejected. In

order to totally resist the sinkhole attack, it is necessary to avoid the tunnel attack.

6.5.1 Formal Modelling

The hypothesis for this model is that:

”RAEED is immune from the Tunnel attack”.

The assumptions used in sink hole attack evaluation (Section 6.4) have been retained. Also

it is assumed that the BVP of KSP and NPP of RSP have successfully completed.

The model used is similar to that presented in Section 5.6.9 which was later extended

in Section 6.4.1. More modifications are made, however, for additional details required in the

models to avoid the tunnel attack. The Source field, used in the LEVEL beacon to indicate from

which node the LEVEL beacon was received, is added in the message format. The additional

check then upon receiving the LEVEL beacon is to confirm that the Source is indeed a legitimate

2-hop neighbour. Note that the 2-hop neighbour’s information is gathered in the NPP and the

model assumes this phase has finished. In the node model a third guard is thus added on

reception of a LEVEL beacon (RECEIVE LEVEL) to confirm the 2-hop test. The same check

can also be added for the Synchronous messages. But as the attacker gains no advantage

in tunnelling those messages, the test is not added in the model or the protocol. Note that

Synchronous beacons are flooded in the network and are transmitted as soon as these are

received. So their earlier dispatch does not give any advantage to that intruder. The modified

models are shown in Figure 6.12 and Figure 6.13 for the sink and the node models respectively.

The attacker model for tunnel attack is shown in Figure 6.14. The model starts in the

KSP location and then moves to the LISTEN location. Upon receiving the LEVEL or the

SYNCHRONOUS message it tunnels this message to its other counterpart attacker model

168

Figure 6.12: Sink model to check the tunnel attack

using a Tunnel message. Note that this message is only known to the attacker and is missing

in the node or sink model. Upon receiving a tunnelled message, the attacker broadcasts the

same message to other legitimate nodes. The message remains unchanged and the sender ID is

replaced to enable legitimate nodes to accept this data.

The verification involves all the properties verified earlier in Section 5.6.9. The verification

results indicate that the tunnel attacker fails in RAEED as the nodes reject the tunnel level

and the attacker fails to persuade any node to assign an incorrect label.

6.5.2 Computer Simulation

Computer simulation were later performed to check the effect of a tunnel attack on larger

networks. A 100 node grid network was chosen first and experiments were performed for

different densities. Two tunnel attackers were placed, first one near the BS and the second

one near the opposite corner of BS. It was observed that the tunnel attackers did not have any

effect on the results and nodes got their correct levels with a maximum error of up to 2 levels.

Later, the effect of scalability was also checked and a 1000 node grid network was tested for

different densities. The results again confirmed that the tunnel attacker fails in RAEED.

6.5.3 Tunnel Attack in Combination with Framing Attack

It has been shown that the tunnel attack fails in RAEED. However, if a tunnel attacker is

designed in a more complex way, and the framing attack is associated with it, the current

protocol might fail to avoid the tunnel attack. Although this form of the tunnel attacker, to

our knowledge, has not been presented the current research explains how by combining these two

169

Figure 6.13: Node model to check the tunnel attack

attacks, a tunnel attacker can be successful. The intruder, by realizing that the legitimate nodes

check the 2-hop neighbour before accepting the LEVEL beacon, can add a spoofed legitimate

2-hop neighbour ID in the message. The legitimate nodes now will accept a tunnelled message

in the current scheme. This has been proved through modelling a new attacker model and

the properties presented in Section 5.6.9 about node levels now failed. It therefore confirms

that the tunnel attack is successful in this modified form. So, in order to avoid this kind of

tunnel attack, a solution is presented which utilizes the loud messages. A node, upon hearing

that another neighbour node has framed it by sending a fake LEVEL beacon, transmits a loud

beacon similar to as presented in Section 6.3. Thus all the 2-hop neighbours which may possibly

have received the tunnelled message will reject the message. The message format is:

N → ∗ : (LOUD , [IDN , IDF ,nonce,−,−]KC)

Here F is the ID of the node which has sent a spoofed LEVEL beacon in the name of node N

and KC is the cluster key of the sender node N. This additional LOUD message is added in

the node model which is shown in Figure 6.15. The properties presented in Section 5.6.9 about

node levels are verified and were now proved correct. This confirmed that the modified tunnel

attack has also been rectified by RAEED.

6.6 Prevention Against the Rushing Attack

The only way a rushing attack is possible in RAEED is during the RSP by propagating SYN-

CHRONOUS or LEVEL messages in advance. As SYNCHRONOUS messages are flooded and

170

Figure 6.14: Attacker model to check the tunnel attack

are propagated very fast (retransmitted within 10 ms) the LEVEL beacons are a potential prey

to the rushing attack launchers. The LEVEL beacons propagated in advance will enable nodes

to assign incorrect levels to itself and to its neighbours. This will enable longer routes than

normal and thus the average hop count the data travels will increase.

The nodes perform bidirectional verification in the KSP. Thereafter only messages from the

verified neighbours are accepted. Any attempt to relay data far away without a wormhole or

tunnel will be avoided straight away. The issues related to hello flood attack, that can enable

rushing attack, have already been addressed in Section 6.2. The INA and wormhole attack have

been avoided (Section 6.3) before any of these messages are sent. The solution for a tunnel

attack has also been incorporated as discussed in Section 6.5. Thus all possible doors for the

rushing attack have been closed in RAEED. The formal model presented in Section 5.6.9, which

was later extended in Section 6.4.1 and 6.5.1, can be used to verify that the rushing attack is

unsuccessful in RAEED. The proof of the property in Equation B.1 confirms the resistance to

the rushing attack.

6.7 Prevention Against the Black hole Attack

It has been proved using the formal framework (Chapter4) that both INSENS and LEAP are

susceptible to the black hole attack in the Data Forwarding Phase. It was also confirmed that

a black hole is possible in Arrive both by employing a single path (Section 4.9.3.1) or with

multiple paths (Section 4.9.3.2). Note that the black hole is not possible simply because of an

INA and wormhole, which have been addressed by the current thesis earlier, but also because

171

Figure 6.15: Modified node model to check the tunnel attack

of node capture. A node can be captured at any stage which may then act as a black hole

attacker.

This section confirms that the black hole can be pacified using the neighbourhood watch

approach adopted by RAEED. Each node observes the performance of its neighbour after

forwarding data to that node. This eavesdropping enables nodes to detect if the neighbour

has forwarded the data further to a legitimate 2-hop node. Each node builds a log of data

sent (forwarded) and received by eavesdropping (further forwarded to another node) for each

individual neighbour. The neighbours are then ranked based on these points. When forwarding

data, a neighbour with the best ranking is chosen as a potential data forwarding node. In the

case of equal ranking, the node’s level (hop distance from BS) is considered. When nodes have

equal rank and level, then any neighbour among them is randomly chosen. A better option here

is to select a node that has been sent the least number of messages to provide load balancing

in the protocol. This ranking system is the subject of further improvement in future work.

The thesis proves that the employed neighbourhood watch scheme can solve most of the

black hole issues. The formal model confirms that the black hole possibility in ARRIVE has been

removed. The lost mechanism employed by the scheme informs the higher level node that there

is no further node available for forwarding the data and thus the lost beacon enables the higher

level node to forward data again to another neighbour. The formal modelling and simulation

results also confirm that RAEED has higher throughput than INSENS in the presence of a

black hole.

172

Figure 6.16: Black hole Attacker model

6.7.1 Formal Verification

The hypothesis for this model is that:

”The Black hole Attack is unsuccessful in RAEED”.

The assumptions used to evaluate the DFP in Section 5.7.2.1 are retained here. However,

for networks greater than 5 nodes only the grid topologies and topologies that were proven to

be successful for black hole attacks in previous protocols in Chapter 4 were checked.

The model remains unchanged for node and sink as was used in Section 5.7.2.1. An

attacker model, however, is introduced for the black hole attack and is shown in Figure 6.16.

The attacker model starts in the NODE COMPROMISED location indicating that node has

been compromised and thus the Blackhole flag is set. This is a simple black hole model

that drops data upon receiving it. So the model just moves between the two locations the

LISTEN and the DROP DATA when the data is received. Note that a timeout is triggered by

the attacker which indicates that the attacker has not forwarded the data for a specific time

threshold. As before, this was done to save state space.

The verification involves proving the same properties as described in Section 5.7.2.1. The

successful proof of all properties confirms that the black hole attacker has no effect on RAEED

and the throughput remains 100%.

6.7.2 Simulation Results

6.7.2.1 A 1000 Node Network with Black holes

It has been discussed in Section that INSENS is vulnerable to the black hole attack in spite of

there being 4-BS and 4 paths. The results were worst when low density networks were employed.

To confirm that the low level INSENS model was correctly developed, the results obtained were

compared with published INSENS results [19] in Figure 6.17. As the research is limited to a

network of 1000 nodes and an average density of 16, employed in published INSENS results,

cannot be achieved using grid network (Section A.2.1.3), the research employed 1000 node

173

Figure 6.17: Percentage of nodes blocked due to black hole in 1000 node network

network with an average density of 20. The experiments were repeated 30 times and results

were then plotted for maximum, minimum and average values as appears in Figure 6.17. For

comparison the results plotted in INSENS [19] and the results achieved by RAEED under the

same conditions are also plotted. Note that the x-axis is the percentage of attackers deployed

which was what effectively plotted in INSENS [19] for 2000 nodes. The percentage of legitimate

nodes blocked is the percentage of nodes whose data was not received by BSs.

It is evident that the average results obtained here for the INSENS protocol are almost the

same as those presented in INSENS [19] for a lower percentage of attackers. The results vary

for a higher percentage of attackers. The reason for the variance is because the research already

proved that the position of attacker is very critical and determines the number of data packets

lost. INSENS authors do not mention this effect in their protocol. As the number of attackers

is increased the variation between the results also get increased. A number of experiments

were performed (for fewer numbers of attackers), to vary attacker position and thus got average

results similar to what had been published. However, as the number of attackers was increased

these experiments became more difficult to conduct (in a 1000 nodes network there are 100

attackers for 10% attackers). Finally, the maximum value attained in the experiments was

always more than the published average value and minimum value attained was always less

than the published average value. This confirmed that the INSENS protocol implemented in

nesC can replicate previously published behaviour.

Considering Figure 6.17, it is obvious that in spite of an increase in the percentage of

compromised nodes (black holes), the percentage of blocked nodes is 0% for any percentage of

attackers. Moreover, the protocol employs a single path for data routing instead of 4 paths and

4 BS used by INSENS. This indicates that RAEED is more robust and possess lower overheads

than INSENS.

174

(a) Percentage of nodes blocked due to black hole (b) Average number of hops taken to reach BS

Figure 6.18: Case 1:The effect of the black hole attack on INSENS and RAEED in a 200 node

network with a density of 8 and asymmetric attacker position

6.7.2.2 A 200 Node Network with Black holes

These experiments tested INSENS and RAEED in a 200 node network with a non-boundary

density of 8. The experiments were repeated 30 times for both INSENS (1 BS, 2 BS and 4 BS)

and RAEED. Two graphs are plotted after experiments; the first one shows the percentage of

nodes blocked in the presence of attackers and the second plots the average number of hops the

data messages travel before reaching the BS. The second parameter is effectively the message

overhead involved in routing.

The experiments were performed in 2 different ways. In Case 1 the attacker’s position is not

always the same for all BS. Note that as BSs are placed at the four corners for a 4 BS network,

the attackers must be distributed at each of the four corners, because if the attackers are not

present near all BSs, any one of the BS receiving a data message will enable 100% throughput.

For a fair test each BS must have an attacker near it. In the first set of experiments the

attackers are only placed near BSs. So for 2 BS networks half of the attacker nodes are the

same as those of 4 BS but other half are different as there is no need to place attackers near

the other 2 corners containing no BS. Thus the rest of the attackers are concentrated near the

2 BS. Similarly for a single BS the attackers are only concentrated near the single BS corner.

This means that only half of the total attacker nodes are similar as in the case of 2 BS and

a quarter of the total attackers are same as were on 4 BS network. The attacker position for

RAEED and 1 BS INSENS protocol were the same as both contain a single BS. The attackers

are first placed at a 1-hop distance from BS, then at a 2-hop distance and so on. In all the

cases it was always ensured that at least one legitimate path to each BS was available. The

attackers are placed in symmetric positions in case of multiple BSs.

The results for Case 1 are shown in Figure 6.18(a) and Figure 6.18(b). Figure 6.18(a)

175

shows that the average number of nodes blocked increased with the increase in percentage of

attackers for all INSENS cases. However, for the case of RAEED no node is blocked up until

8% attackers and only 2.5% of legitimate nodes are blocked when the number of attackers is

20. Moreover, the throughput is high (blocked nodes are fewer) in a case where more BSs are

employed in the INSENS protocol.

Figure 6.18(b) displays the average number of hops that the data messages took before

reaching the BS. This effectively is the total number of hops taken divided by the total number

of nodes (200). As anticipated, the value is doubled in the INSENS protocol each time the BSs

are doubled. This is because the paths are doubled and thus data is sent multiple times. Note

however that the average number of hops decreases for all networks, in the INSENS protocol,

as the percentage of attackers is increased. This is again expected since an increased number

of attackers cause more messages to be lost before reaching their destination decreasing the

average hop count. Conversely, the average number of hop counts for RAEED increases with

the percentage of attackers. Comparing it with the INSENS results, the average hop count is

increased from 12 to 16; whereas the average hop count for INSENS for 1 BS and 2 BS is 12 and

22 respectively, in the absence of any attacker. This means that the actual increase in message

overhead is 33% in the presence of 10% attackers for RAEED. The reason for this increase,

in the presence of attackers, is that some messages are lost and thus nodes try to resend data

starting from the point of loss. In the presence of many attackers this attempt may be made

many times increasing the average throughput. This was not possible even in the presence

of 4-BS which had 4 times the message overhead. Finally, it is noteworthy that this message

overhead occurs only during the first phase. In the next phase most of these black holes had

been detected and thus were avoided by the nodes. It enabled a lower overhead and an increase

in throughput.

For Case 2, as explained earlier, the position of attackers remains the same for all the

experiments whether it uses a single BS or multiple BSs. The results are shown in Figure 6.19(a)

and Figure 6.19(b) respectively. The average hop count result pattern remains the same with the

increase in number of attackers. However, the average number of nodes blocked (Figure 6.19(a))

are different from those obtained using the INSENS protocol depicted in Figure 6.18(a). This

emphasises the importance of attacker position in the network. The attackers are distributed at

each of the four corners, whereas in Case 1, the attackers were concentrated near the available

BSs. So, even for 1-BS and 2-BS networks, the results improved for the lower percentage

of attackers. The throughput for RAEED, however, gets even better. No legitimate node is

blocked and the throughput of 100% is achieved. The maximum and minimum throughput, for

INSENS and RAEED, is also plotted in Figure 6.19(c) and Figure 6.19(d) respectively. These

results confirm lots of variations for the INSENS protocol. However, the results for RAEED

remain stable at 0% nodes blocked.

176

(a) Percentage of nodes blocked due to blackhole (b) Average number of hops taken to reach BS

(c) Percentage of nodes blocked due to blackhole (d) Average number of hops taken to reach BS

Figure 6.19: Case 2: The effect of the black hole attack on INSENS and RAEED in a 200 node

network with a density of 8 and symmetric attacker position

6.7.3 Intelligent Black hole Attack Prevention

In this section, the black hole attacker is made more intelligent to check its effect on RAEED.

The topologies containing multiple black hole nodes where ARRIVE has failed were checked. It

was confirmed that RAEED can successfully prevent the black hole attack in these topologies.

The protocol thwarts the attack by employing a single path instead of multiple paths used in

INSENS and ARRIVE to prevent the black hole. This gives RAEED an edge over the previous

protocols. A black hole attacker with a spoofing attack will also fail here if an intelligent black

hole attacker sends data to oblivion i.e. to a non-existent node because the protocol will consider

a node to be a black hole if the data is not sent to a valid node. Note that 2-hop neighbours

were recorded in the NPP by exchanging NEIGHBOR messages and such an attacker will be

spotted straight away.

This, however, does not prove that the black hole is not possible in RAEED. The formal

framework detects a flaw in RAEED. An intelligent black hole attacker, if it has another attacker

node as a neighbour (which is not within the range of a sender), can always forward data to it

177

(a) Attacker Model (b) CheckColludingAttackers()

Function

Figure 6.20: Intelligent black hole attacker model

and the colluding attacker can drop the data packets. The legitimate nodes observe the first

black hole node acting in correct manner and will never lower its ranking. The second attacker’s

cannot be observed by the sender of data because it is two hops away. In this case the black

hole will be successful. A modified attacker model is shown in Figure 6.20(a). The attacker,

when it receives a data packet, checks if there is another attacker present within its range using

function CheckColludingAttackers(). The decision to drop data is then made depending on

if the colluding attacker is present or not (Colluding flag). If an attacker is present within

range, the data is always sent to that node. The attacker node will only drop data coming from

another attacker node. There are a number of solutions to this problem:

One solution is by providing multiple paths to avoid this kind of attacker. However, a

modified node model which uses multiple paths confirms that there is a case where all data

packets still go through the colluding nodes if they are near the BS. The legitimate nodes still

remain unaware of the situation throughout. Thus braided multiple paths (some nodes share

multiple paths) is not a general solution to this kind of attack. If the paths were disjointed,

however, then the colluding nodes would have been avoided. But multi-paths will always add

extra overhead which our research attempts to avoid.

Another solution to this intelligent attack is to employ LOUD acknowledgements from 2-

hop nodes. This incurs additional traffic overhead however. Another solution is to send a FAIL

message when any neighbour has not forwarded its data. That will inform the 2-hop distant

nodes that the data has not been forwarded and that the sender node should regenerate the

data. This will reduce data traffic and messages would be broadcast only when a successful

attack is detected. However, this could lead to framing attack and also violates one of the

178

assumptions made that the data forwarding decisions are taken locally and independently by

each node. The solution to framing is to act only if most of the 2-hop neighbours broadcast

this FAIL message excluding the node to which the message has been forwarded. All nodes

have information identifying which 2-hop nodes are neighbours of the target node after NPP.

Thus, after performing this check, the legitimate nodes will lower the target node’s ranking.

The sender node then regenerates data to another neighbour. The legitimate node only lowers

the ranking of the suspected node and does not totally avoid it afterwards (by declaring it as

an attacker). This is because the message could have been lost due to noise or collisions as well.

Moreover, by only lowering the ranking, the impact of framing attack will be reduced. The

only unresolved problem in this solution is the RF fading effect as the time passed and traffic

overhead, specially when the data is sent frequently.

A solution to above problems is to broadcast a FAIL beacon to 1-hop neighbours using

the normal power transmission. In this case some of the nodes transmitting FAIL will be

immediate neighbours of the sender. This will enable the sender to retransmit data again to

the same target node and observe if the target still transmits data to the suspect node in the

future. Note that if the target is not the black hole attacker; it should avoid the suspected

node next time because the ranking of the suspected node would have been reduced. Thus by

keeping the target under observation for some time, this colluding attack can be detected and

the attacker can be totally avoided. There are two further advantages in this scheme. First

the framing attack is not now possible, because neither the ranking is lowered nor the node is

added as a suspected neighbour. On the contrary, the neighbour is kept under observation for

some time and is deleted from the NT on confirmation that it is acting maliciously. Secondly,

as FAIL is broadcast, the neighbour nodes will also observe the suspected node immediately

rather than waiting until that suspected node acts maliciously on their data. Thus the solution

can quickly detect the colluding black hole acting intelligently and can fail this attack. The

message overhead is also low for this scheme. However, it will fail in case the node density is so

low that the colluding nodes have no common legitimate neighbour. In that case no legitimate

node can detect that the data has been dropped and thus FAIL cannot be generated. This

setback exists with the earlier 2-hop FAIL broadcast as well.

The solution to all the drawbacks in previous schemes is to use load distribution in data

forwarding. A node must not forward all data packets to the same neighbour and a node

performing that act must be avoided. This will give two advantages. First the life of the

network will increase as the load is distributed in all nodes. Second, the colluding black hole

will be less successful. However, if the attacker is aware of this situation it can act smartly

and perform the node distribution as the other nodes do. In that case the black hole is not

fully avoided but only pacified and some packets might be lost through that colluding black

hole without detection. Also the load distribution will enable some routes to take a longer time

than normal ones. This will add latency and will engage more nodes than in the absence of

179

Figure 6.21: Gray hole attacker model

load balancing. Most of these modifications discussed are left as future work.

6.8 Prevention Against the Gray hole Attack

6.8.1 Formal Verification

The hypothesis for this model is that:

”The gray hole or selective forwarding attack is unsuccessful in RAEED”.

The assumptions and models remain the same for node and sink models as those for the

black hole attack prevention in Section 6.9.1. Only the attacker model is modified as shown in

Figure 6.21. The attacker model is a combination of the node model and the attacker model

(black hole). Since the gray hole attacker selectively drops data packets and acts normally

otherwise. This decision is made by the attacker by keeping a history of the data it has

received (TotalRec) and forwarded (TotalSent). The model includes a threshold percentage

named PERCENTAGE, which determines what percent of data messages will be dropped. This

option is adopted before the DECISION location. The attacker then either drops data or

forwards it further by behaving like a normal node.

The verification involves proving the same properties as described in Section 5.7.2.1 and

Section 6.9.1. The successful proof of all properties confirms that the gray hole attacker has no

effect on RAEED and the throughput remains 100%.

180

Figure 6.22: Attacker model to test the Jamming Attack

6.8.2 Simulation Results

The computer simulation were performed to confirm the effect of selective forwarding on

RAEED. As expected, the results were similar to those observed for the black hole attack.

The experiments performed were a scalability check (1000 nodes) and the effect of density on

a 200 node network, as done for the black hole attacker in Sections 6.7.2.1 and 6.7.2.2. The

results were checked for different percentages of attackers up to 10%. The attackers transmit

50% of data packets and block the rest. It was observed that the gray hole attacker failed to

create any impact, the throughput remaining unchanged. The average hop-count, however, was

reduced because the attackers forward only half the packets correctly. So a smaller number of

data packets were resent thus reducing the average hops it took before reaching the BS.

6.9 Prevention Against the Jamming Attack

6.9.1 Formal Verification

The hypothesis for this model is that:

”The Jamming Attack is unsuccessful in RAEED”.

Apart from the assumptions stated in Section 4.3.3, it is further assumed that nodes have

already successfully completed KSP and RSP. Instead of testing all possible 5 node topologies,

the grid topologies of 16, 25 and 36 nodes were checked. The reason for this strategy is that

the jammer will jam neighbour nodes so small networks cannot guarantee a legitimate path in

presence of an attack.

The sink model used is the same as was for the black hole attack (Section 6.9.1). The new

attacker model is shown in Figure 6.22. It has two committed states and thus generates a

Jam message before moving to final state (JAM). This Jam signal jams all the neighbours of the

attacker. The node model used earlier in black hole attack is modified to accommodate the

ACK message as explained in Section 5.7.3, shown in Figure 6.23. The additional two locations

are used to show that the node is jammed. Note that the Timeout message is used to indicate

no action is taken on any data, thus the jammed node generates that message upon receiving

181

Figure 6.23: Node model to test the Jamming Attack

any data in the jammed state.

The verification process involves the same properties as in Section 5.7.2.1. All properties

were proved thus confirming that the jamming attack remains unsuccessful in RAEED. The

data transport property confirms that the messages received at the BS are the same as those

generated by the source node.

6.9.2 Computer Simulation

Computer simulation were performed on 200 and 1000 nodes grid networks. The density was

varied for each case between 4 to 28 non-boundary nodes. Two jammer nodes were placed near

the opposite corners of the network, one jammer near to the BS and the other at the opposite

corner. The jammer’s range was limited to 1-hop i.e. a jammer can block all its surrounding

(radio range) nodes. It was observed that apart from 4 node density networks, the average

number of blocked nodes remained 0%. The data was routed through the other nodes once

it was lost in the jammed area. Even the jammed nodes were able to send data to the BS,

because the jammed nodes broadcast data one by one to each neighbour and it eventually was

received by a node outside the jammer’s range. The only problem was that the jammed nodes

did not receive the feedback and thus will kept on sending the data to all neighbours. This

drawback can be removed by limiting the number of attempts a node makes for forwarding any

data. The consequences, however, would be that the jammed node’s data will not reach the

BS. This is left as a future decision regarding the importance of jammed area data or energy

savings. For the 4 density networks, the average number of blocked nodes are increased to 5%.

This is because of the smaller number of the available neighbours.

182

6.10 Chapter Summary

This chapter rigorously evaluates RAEED against different DoS attacks as was done in Chap-

ter 4 for the other routing protocols. The bidirectional verification solved the hello flood attack

and computer simulation as well as hardware implementation confirmed that not a single node

is affected by the hello flood attacker. Only the legitimate nodes were tagged as verified neigh-

bours. A unique and innovative scheme is presented to solve both the INA and the wormhole

attack, which utilize the transmission power to communicate with 2-hop neighbours and detect

any virtual link between them. The results were verified using formal modelling and hard-

ware implementation. The formal frame work also detected some vulnerability of new schemes

against an intelligent wormhole attacker, which utilizes cryptographic knowledge to fail the

scheme. Although such a wormhole/INA attacker has not been discussed before, the chapter

provides a solution for this probable attacker. It has been proved formally that the attacker will

be unsuccessful even by using the cryptographic information. The solution of wormhole/INA

is a unique contribution to secure WSN research.

The sinkhole and tunnel attack solutions have also been verified using formal modelling

and computer simulation. These attacks were proved unsuccessful in RAEED. Furthermore, a

solution for a tunnel attack, in combination with framing attack, has also been incorporated

in RAEED. The rushing attack is automatically solved once hello flood, wormhole, INA and

tunnel attack have been resolved. The proof of a property that nodes always get their correct

levels proves that the rushing attack has been unsuccessful. Finally, the neighbourhood watch

scheme in DFP is evaluated exhaustively against black hole, gray hole and jamming attacks

using the formal modelling. The attacks are later analysed on different size networks for varying

densities, using computer simulation. The number of nodes blocked as a result of these attacks

were compared with the INSENS protocol. It was confirmed that RAEED, in spite of its low

message overhead (single path), present few nodes to be blocked as compared to INSENS with

multiple paths and BSs. Some intelligent black hole attackers have also been presented, which

had been detected by the formal framework; these can fail the new scheme. The solution for

those kind of attack has also been annotated and proved using formal modelling.

183

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This research work applies formal model checking to investigate the security of various wireless

sensor network (WSN) routing protocols. This research suggested that the formal modelling

approach is a useful verification process and should be performed at an early development stage

(design phase) so that any hidden error present in the design can be rectified and removed.

This research, therefore, first formally defined most of the published and widely recognized

DoS WSN attacks, a task which had not been done before. Researchers have used different

definitions for the same attacks and no concise/formal definitions have been available to them.

This research has filled this gap by writing the specifications of DoS attacks in a formal way.

Once the specifications of the attacks had been outlined (using Z specifications), it significantly

has assisted in developing a formal framework, which has been used for checking various routing

protocols. A formal framework was then implemented to perform rigorous testing of recognised

routing protocols against the DoS attacks. The same criteria has been adopted for evaluating

the newly developed protocol.

In summary, the most potent available technology has been used to verify various routing

protocols using a formal framework. The framework can automatically generate traces in the

cases where an attack is successful in any possible topology of N nodes. Some of these protocol

failures against the DoS attacks have already been reported in the literature [15, 234]. However,

the current modelling method has successfully detected these failures automatically. This has

the potential to save a lot of calculation time for the future detection of attacks through visual

inspection or computer simulation. Moreover, some worst cases have also been detected, which

to our best knowledge, have not been reported. Among these sinkhole attack which prevents

data from reaching the BS in TinyOS, a bug in Rumor Routing and a worst case in the Direct

Diffusion. Secure protocols have also been analysed such as Authentic TinyOS Beaconing (using

uTesla), LEAP/INSENS, Arrive and ARAN. Although the vulnerabilities of Authentic TinyOS

have already been identified earlier by researchers, some undiscovered faults in INSENS, Arrive

184

and ARAN protocols have been exposed, such as their vulnerabilities to the black hole/gray

hole attack, INA and wormhole attack. The results obtained in the formal framework have

improved the confidence that the framework can successfully model and verify if an attack is

possible in a routing protocol even though such models have been limited to just 5 nodes. One

may use the proposed framework to analyse new or existing protocols. The framework was later

enhanced to test up to 36 nodes. Finally, the framework has been verified by implementing the

successful attacked topologies of INSENS in the TOSSIM to validate the previous results.

Arrive protocol provides robustness against malicious and failed nodes by maintaining a

neighbour reputation. The developers of the protocol themselves suspected that there would

be an abundance of additional messages when using passive participation due to the hidden

terminal problems. Also, unidirectional links were another cause of concern. Finally, the Arrive

protocol assigns levels to each node based on their hop distance from the BS, their developers

were aware that malicious nodes may lie about their level or replicate these levels to draw more

traffic (spoofing). In addition, the attackers may forward the packets into oblivion to increase

their reputation (sinkhole). Despite these problems, the formal framework has confirmed that

Arrive is still vulnerable to the black hole attack when a node in the network has only black

hole(s) as parent(s) and neighbour(s). A black hole is also not detected by off-spring nodes

when they have forwarded the data, leading to all the down stream traffic being lost. The

formal framework has also confirmed that the wormhole attack will assign incorrect levels to

the nodes enabling the data to be sent to oblivion. Because a wormhole is usually composed

of multi-hop tunnels, the passive forwarding will also not be possible since a tunnelled node

will not lie within the radio range of these nodes. In addition, a hello flood attack is also

possible in Arrive. However, the problem of INA has been addressed successfully using passive

forwarding, as confirmed by our formal model. The developers of Arrive were unaware of the

fact that passive forwarding has solved INA. This research has demonstrated that the developed

framework can detect this previously unknown attack. Finally, the formal framework has also

confirmed that, as indicated by its developers, the Arrive protocol is susceptible to both sinkhole

and spoofing attacks.

A robust routing protocol ARAN, which employs the public key cryptography, has also

been evaluated using the proposed formal framework. ARAN does not utilize the hop count

and accepts the fastest links to avoid attacks. The formal framework has confirmed that there

are some weaknesses in ARAN. Cryptographic techniques alone cannot defeat the INA and

the wormhole attack. By creating virtual links the routes can be corrupted. The proposed

formal model is able to automatically detect this type of attack in ARAN and generate the

trace indicating why and how ARAN fails in the presence of INA/wormhole. Moreover, the

nodes can be captured and a compromised node may act as a black hole attacker. The formal

model also confirms the vulnerabilities of ARAN to the black hole attack. The proposed model

confirms that, in spite of the data-signature mechanism, the data may not reach the target

185

nodes.

The developers of INSENS claim that the Enhanced INSENS has solved vulnerabilities to

many attacks by using authentic broadcast and multiple paths for data propagation. Formal

modelling and later the simulation results refute this claim. It has been successfully demon-

strated that INSENS is vulnerable to many DoS attacks such as the black hole, INA, wormhole

etc even in the presence of an ideal channel (with minimum collision and no noise), multiple

paths and a small network. A rushing attack can easily be launched during the request prop-

agation period, once a wormhole is successfully in place. This proves that the findings of [19]

are not correct. However, a bidirectional verification has successfully removed the hello flood

attack. It was later confirmed that the black hole attack can cause a low throughput especially

in low density networks. Even in denser networks than those adopted in [19] and with a lower

percentage of attackers, many messages can be blocked during the data forwarding phase, espe-

cially if the attackers are near each sink, even under ideal conditions. Further experiments have

confirmed that the throughput suffers in large networks with dense deployment. The effect of

attacks will be more detrimental if noise and other environmental effects are also considered.

Chapter 4 has shown that by using formal modelling, the hidden bugs in routing protocols

can be detected automatically. Next, a new routing protocol, RAEED, has been developed;

this has been rigorously shown to be resistant to DoS attacks. It was designed to mitigate the

effects of the most powerful DoS attacks such as the black hole, the hello flood, the gray hole,

the INA, the jamming, the rushing, and the wormhole attacks. RAEED can also resist against

the sinkhole and the tunnel attacks in the presence of strong encryption. It is worth noting

that the research was not intended to develop any encryption mechanism, rather it assumed

that an encryption technique is already in place. The protocol design has been rigorously tested

using formal modelling to remove the hidden bugs/errors. The computer simulation were later

performed to support and quantify the results as well as to check the effects of scalability and

node density. Moreover, different phases of RAEED were tested in the presence of noise using

formal modelling and simulation. The complete protocol is divided into 3 main phases: KSP,

RSP and DFP. The KSP involves the exchange of keys and bidirectional verification. As the

protocol assumes that an encryption mechanism already exists, the KSP of INSENS and LEAP

protocols are adopted as the foundation. It was also shown that the KSP presented in RAEED is

more efficient as it provides the same security properties and has a lower message overhead. The

keys were piggy bagged in the bidirectional verification phase and a three way message exchange

performed to reduce data traffic. The RSP involved an authentic level assignment to each node

using the hop distance from the BS. The nodes also perform neighbour ID exchange and the

loud test to verify 2-hop neighbours in order to remove any virtual connections between the

nodes. The authenticity was provided using a one way hash chain known only to the BS. Each

sub-phase was tested separately, through extensive use of the formal modelling and simulation

for larger networks. The DFP involves the propagation of the data from the source to the sink.

186

Node reputation and the level was used in data routing. The nodes were ranked based on their

performance by eavesdropping their activities after forwarding the data. A lost message was

generated if a legitimate node could not forward the data further. This enables the predecessor

node to forward the data to another path. The scheme was evaluated using formal modelling

and computer simulation. Finally, the effect of noise on RAEED was evaluated and it was

confirmed that the protocol can work in the presence of both multiple paths and BSs. However,

a single BS and path are used to reduce the number of messages. It was proved that the protocol

is robust, works well in noisy conditions as well as in different sizes of networks with varying

density.

Finally, RAEED was rigorously evaluated against different DoS attacks by employing the

formal framework with the support of either the computer simulation or a hardware implemen-

tation to demonstrate the findings. The DoS attacks verified included the hello flood attack, the

wormhole attack, the INA, the sinkhole attack, the tunnel attack, the rushing attack, the black

hole attack, the gray hole attack and the jamming attack. The formal modelling confirmed

that the bidirectional verification has solved the hello flood attack. The computer simulation

and the hardware implementation have concluded that not a single node has been effected by

the hello flood attacker. Only legitimate nodes were tagged as verified neighbours. A unique

and innovative scheme has been used to solve the INA and wormhole attack, utilizing trans-

mission power control in communicating with 2-hop neighbours to detect any virtual link. The

results were verified using both formal modelling and hardware implementation. The formal

frame work later detected some vulnerability of new schemes against an intelligent wormhole

attacker, which utilizes cryptographic knowledge to fail the scheme. Although such a worm-

hole/INA attacker had not been identified before, this thesis proposes a solution for this type of

attacker as well. The sinkhole and the tunnel attacks, both simple and complex, solutions have

also been proved unsuccessful using the formal modelling, when RAEED is used. The rushing

attack is automatically solved once the hello flood, wormhole, INA and tunnel attack have

been pacified. Finally, the neighbourhood watch scheme in the DFP was exhaustively checked

against the black hole, gray hole and jamming attacks using the formal modelling. These at-

tacks were then considered on different size networks, for varying densities and scalability, by

experimenting on the computer simulation. The number of nodes blocked because of these

attacks were compared with the INSENS protocol. It was confirmed that RAEED, in spite of

low message overhead (single path), enabled fewer nodes to be blocked as compared to INSENS

with the multiple paths and BSs. The intelligent black hole models were also considered and

the formal framework was used to confirm that they would remain unsuccessful in RAEED.

187

7.2 Summary of the Contribution to Research

7.2.1 Main Contribution to Research

The principal research contributions of this work are:

• The development of a new routing protocol [235] that works better in the presence of the

attacks including hello flood, rushing, wormhole, black hole, gray hole, sink hole, INA

and jamming.

• The formal Specification/definition of the published WSN attacks. These specifications

present an abstract model for different attacks. More detailed models can be developed

later which, in conjunction with the specifications of a routing protocol, can help re-

searchers in detecting the vulnerabilities of those protocols against different DoS attacks.

These definitions are also more widely applicable to ad-hoc networks and MANETs. These

results are expected to be published in [236].

• A unique and innovative defence against the wormhole attack and the INA has been

presented. It does not require any additional hardware and it is well suited to WSNs.

Adaptive power transmission is used to confirm virtual links between the nodes. It has

been proved formally that the attacker will be unsuccessful even if they use cryptographic

information to launch these attacks. This solution can be incorporated in any protocol

and, is expected to be published in [237].

• A formal framework [238, 239, 240, 241, 242] has been developed to check the vulnerability

of different routing protocols. The initial framework was based on Andel’s framework [37].

However, a much improved framework was later developed to accommodate many other

routing protocols within the limitation of state space explosion. The formal framework

has detected the worst cases for different routing protocols which to our knowledge have

not previously been detected.

• A formal verification of routing protocols that had not been formally studied previously

against the DoS attacks, has been performed. These include TinyOS Beaconing, Authen-

tic TinyOS using uTesla, Rumour Routing, LEACH, Direct Diffusion, INSENS, ARRIVE

and ARAN. These results are published in [238, 239, 240, 241].

• Vulnerability has been detected in the widely regarded secure/robust WSN protocols

INSENS [241], Arrive [239] and ARAN [240].

• An innovative design analysis of using a combination of formal modelling and the simula-

tion has been presented [235] to evaluate the robustness of existing and the new protocols

against all possible attacks.

188

7.2.2 Other Contributions to Research

• A neighbourhood watch scheme has been presented to solve the black hole [242] and the

jamming attacks.

• An improved KSP is presented that has low message overhead compared to INSENS.

• A worse case has been discovered in both Direct Diffusion and Rumour Routing. These

result are published in [238]

• The protocol presented can not only be used as a solution against the DoS attacks, it is

equally applicable for WSN applications placed in the noisy environments as the protocol

is robust against noise.

• The solution presented in this thesis to solve DoS attacks and especially the black hole

attack, also automatically solves misbehavior and selfish node problems. It also isolates

the dead and failed nodes. The ranking of the dead nodes will drop and thus they will

not take part in the future routing of data. Therefore, the new protocol, RAEED, offers

an excellent solution for insecure WSNs as well.

• This protocol is also a solution for the neighbour nodes whose transmission range de-

teriorates with time. Their ranking will be lowered immediately when the throughput

starts to deteriorate. The neighbours whose links become unidirectional are also removed

automatically as nodes no longer select these nodes for data forwarding.

7.3 Future Work

The formal specifications of DoS attacks written in Z present an abstract model for different

attacks and can be a starting point for future improvements for new attacks on wireless net-

works. Further detailed models may be extracted in conjunction with the specifications of a

routing protocol to assist researchers in detecting the vulnerabilities of the protocols against

different DoS attacks.

Encryption issues have not been addressed by this research. The KSP involves the exchange

of keys between nodes. Different encryption mechanisms, both symmetric and public cryptog-

raphy, may be examined in future. DoS attacks such as the sinkhole attack and the tunnel

attack require a strong encryption mechanism. Although, a one-way hash chain, is assumed to

be present to solve these attacks; practical implementation of actual OHC can be adopted in

future work e.g. to check message and computation overhead etc. Some DoS attacks, such as

spoofing, false injection etc, are still partially dependent on encryption. Moreover, considerable

research is being carried out to improve encryption in resource constrained nodes. This work

might be incorporated in the newly proposed protocol.

189

The use of a global key (the encryption mechanism adopted in this research) also has some

drawbacks and the protection of the global key as well as its authentication update for future

node addition is an important challenge. The proposed scheme, which uses the global key

to set up the keys between the neighbour nodes, inherits the same vulnerability as LEAP

(i.e. it is vulnerable to attackers which remain active during the KSP). This is the motivation

for completing KSP quickly, thus avoiding any node being compromised during that period.

Therefore, when additional nodes need be added later, the global key will be non-existent at

that time. µTESLA [38] is one possible solution that can be adopted for an authentic update.

If the global key mechanism has to be retained, these weaknesses must also be addressed.

Moreover, any other key management scheme can be used to address these issues; this research

has not committed to a specific key management scheme.

The loud scheme presented as the initial wormhole/INA protection has also some limitations.

A simple wormhole is unsuccessful in RAEED. A wormhole failing the encryption scheme and

knowing that the signal coming is the LOUD message also remains unsuccessful. However,

a problem arises if the attacker is able to measure the signal strength accurately and act

accordingly by tunneling with the modified signal strength, since the scheme will fail. Although

this process is very difficult to achieve with the random sensor deployment, it indicates that

a weakness does exist in this scheme. The proposed protocol, however, solves this issue by

employing a neighbourhood watch approach to prevent the links that do not the forward data.

Thus any successful wormhole and INA links will be removed. But this drawback must be

addressed before implementing the proposed loud scheme in any other routing protocols.

The ranking system used in the protocol needs further improvement. Different issues such

as node balancing and loss of messages due to noise must be taken into consideration. As

a result, data takes multiple paths if the message feedback is not eavesdropped and multiple

copies of data are received at the BS. Although, this has increased the throughput it comes

at the expense of an increased average hop count and additional power consumption. These

multiple copies must be suppressed in future, in such a manner that the rushing attack is not

possible by intruders.

The proposed new protocol, RAEED, has been verified empirically using practical imple-

mentations (a few attacks). This work can also be improved by implementing all DoS attacks

considered to study real radio effects including fading, memory consumption, other hardware

issues etc. Work can also be done to implement RAEED in different applications e.g. by imple-

menting it in a forest, disaster relief situations, a battle field etc. Moreover, energy efficiency

of RAEED can also be studied practically.

The methodology for the analysis of routing protocols, presented by this research can also be

improved. Although, different formal model checkers have been studied before implementing

the formal framework the model development is not automatic. Currently, researchers are

implementing models directly from source code or vice versa without a human interference.

190

This type of work might be incorporated in the formal framework so that the model is developed

directly from nesC [230] code. The conversion of event driven style of nesC to a formal modelling

is a challenging task so another solution is required to enable the framework to convert the

protocol specifications automatically to nesC code and Spin/Uppaal. A low fidelity simulator

can be used to test networks with more than 1000 nodes. A higher level simulator with different

radio models (NS2 simulator) can be used to assess the effects of different radio models and

noise on larger networks. Finally, work may be extended to measure the energy efficiency of

RAEED using both formal modelling and simulation.

191

Appendix A

Assumptions, Methods and

Database

A.1 Introduction

This appendix is organized as follows: Section A.2 briefly describes the assumptions adopted

when modelling networks (e.g. size of nodes, number of neighbours, etc.), radio links, cryptog-

raphy, attacker capability and RF noise. Section A.3 briefly explains the formal modelling tool

Uppaal used in the research with an example. The need of computer simulation in the research

and adopted noise model is discussed in Section A.4 and Section A.5 briefly introduces the prac-

tical implementation. The alternative scheme for DFP, the Handshake scheme, is presented in

Section A.6. Finally, the database required in RAEED is presented in Section A.7.

A.2 Assumptions

Certain assumptions are made concerning RF radio, networks, cryptography and attackers.

These assumptions are important for verification and simulation. Most of these assumptions

are the ones generally adopted by most researchers. Apart from these assumptions, which are

generally applied in both simulation and formal model-checking, some additional assumptions

are considered for formal model-checking which are discussed later in Section 4.3.3.

A.2.1 Network Assumptions

A.2.1.1 Node Placement and Topology

The topology of a WSN may change slightly at any time as some nodes may die or get damaged

and new nodes may be added to the network. The nodes can be scattered (random placement)

or placed manually in a rectangular grid. Experiments were performed using both types of node

placement. Although a random topology imitates a real world scenario; grid placements are

preferred because this will keep the effects of the topology constant while other factors can be

192

reproducibly studied. Random topologies are only used, when the effect of all other factors have

been evaluated and the aim is to ascertain the effect of the topology on the routing protocol

considered.

A.2.1.2 Network Size

A WSN may be composed of a large number of nodes. The current research has been restricted

to a maximum of 1000 nodes. The reason being the simulator chosen has high fidelity so

checking a big network becomes infeasible. The networks larger than this size may be the

subject of future work.

A.2.1.3 Node Density

Node density is the average number neighbours each node possess in a network. WSN nodes are

assumed to be operating in both high and low densities. Usually a WSN has high density (>20)

but the scattered nature and unknown deployment might cause a WSN to have a low density.

Moreover, power depletion and environmental effects might cause the densities to be reduced

with time. In this research node densities of 4, 8, 12, 20, 24 and 28 square grid networks have

been used. These values refer to non-boundary neighbour nodes in grid networks. The actual

average density will be little less for each case because the boundary nodes in a grid network

always contain fewer neighbouring nodes. Note that a density of 16 is not possible in a grid

network if the radio range is considered symmetric.

A.2.1.4 Limited Resources

One of the most important properties of WSN nodes relates to their limited memory and

computational power. Therefore, expensive hardware like GPS, tight time synchronisation

(nanosecond precision) etc are considered unavailable. These assumptions are decisive when

cryptographic scheme is chosen for message protection.

A.2.1.5 Powerful Base Station

The base station is assumed to be containing unlimited resources (e.g. a laptop). Also it is

assumed that a BS cannot be compromised.

A.2.2 Radio Links Assumptions

A.2.2.1 Circular Links

Nodes are assumed to be having omnidirectional antennas so that data sent by a node will be

captured by all neighboring nodes i.e. nodes within the radio range of the node. Unlike the

real world, the RF range is considered as circular in computer simulation and formal modelling.

Essentially, the radio model considered is a two-dimensional model of radio propagation with

193

circular range. The circular range is common practice in research using in computer simulation

and formal modelling to avoid using complex RF models.

A.2.2.2 Bidirectional/Unidirectional Links

To reflect real world RF conditions, it is considered that links between nodes can be bidirectional

or unidirectional. Previous research often has assumed links to be bidirectional. For the new

protocol, it is assumed that the radio links might fade with passage of time. However, the

neighbourhood watch scheme adopted will remove those weak links automatically.

A.2.2.3 Adjustable Radio Transmission Power

A node is assumed to be working in two different transmission modes. A low power mode

in which data and other information is exchanged and a high power mode, in which the node

increases the power of transmission to transmit some special messages. By using the high power

mode a node’s transmissions can be received by the nodes located two hops away. Note that

the current MICAZ motes [233] provide this flexibility in the data transmission, and no extra

circuit is required to fulfill this assumption.

A.2.2.4 Ideal Link Layer

It is assumed that the link layer handles issues like data collision, RF channel access etc.

However, the hidden terminal may cause the collision of messages.

A.2.3 Cryptography Assumptions

It is assumed that some variety of data encryption such as a message authentication code

(MAC) is deployed. This encryption might be symmetric key cryptography (SKC), one way

hash chain (OHC) or public key cryptography (PKC), depending on the application and the

capabilities of nodes.

A.2.4 Attacker Assumptions

An attacker is assumed to be very powerful compared to normal sensor nodes; it can launch

any attack on the WSN. The attacker can eavesdrop the keys if a weak encryption technique

is applied and can capture/compromise a node if a strong encryption technique is used. This

enables an attacker to launch an attack in all possible situations. Moreover, an attacker is

assumed to be equipped with antennas enabling a long transmission range and unlimited power.

Thus the attacker model employed here resembles the Dolev-Yao model [243]. Dolev and Yao

define the attacker as: ”someone who first taps the communication line to obtain messages and

then tries everything it can to discover the shared secret” [243]. The Dolev-Yao model assumes

that the attacker may eavesdrop all messages, the attacker is a trusted user and can initiate a

194

(a) Transmitter model (b) Receiver

model

Figure A.1: An example of Transmitter/Receiver system to explain Uppaal modelling

connection to any node. The current research is concerned with DoS attacks on WSN. Thus

each DoS attacker is defined (Section 3.4) separately assuming the properties of Dolev-Yao

model.

A.3 Formal Modeling Tool: Uppaal

In this section, we introduced here an informal description of Uppaal; more complete and fully

formal description are available in [197]. Uppaal is extensively used for the verification of

real time systems. The system is modelled using a timed automata(s), which is a finite-state

machine extended with clock variables. A system state is defined as the automata location

and values of clock and other variables. A automata may fire transitions synchronously (with

other automata) or separately, leading to new states. There are three types of location in

Uppaal: normal, urgent and critical. A normal location may or may not contain an invariant

(a condition that must be true on clock or variable in a state). In an urgent location time is not

allowed to pass but interleaving with other normal states is allowed. A committed location is

a restrictive state enabling the next transition immediately. So of all the possible transition in

the model the committed location must execute at all costs. In addition to enforcing particular

behaviour, the use of urgent and committed locations reduces state space and improves time

efficiency. The locations in Uppaal are represented using circles and transitions are represented

using direct arcs. The urgent and critical locations are represented using U and C inside the

circle. Each process (model) in Uppaal must have a initial location indicated using a double

circle. The complete Uppaal model is a parallel composition of all the processes or models.

195

In summary, the system in Uppaal is composed of timed automata(s) called templates. The

independent models are then implemented from these templates. All possible states are the

cross products of all the model transitions and locations. To explain how Uppaal is used, a

simple transmitter/receiver system is modelled as an example as shown in Figure A.1(a) and

Figure A.1(b). This simple system consists of a transmitter that transmits five messages and

the receivers receiving these messages. The two independent sub systems, as shown in the

figures, are the templates. If one transmitter and two receivers are considered in the complete

system then transmitter state model is developed from transmitter template and two receiver

state models are developed from receiver template by Uppaal as a parallel composition. The

transmitter model consists of 4 locations and 5 transition including a self transition (arc head

and tail are attached to the same location). The receiver model, on the other hand, consists of

only a single location and a self transition that is only triggered whenever it receives a message.

Each model has an initial location indicated by double circle. When the system starts, all

models are always in their initial locations. The messages exchanged in Uppaal may be unicast

or broadcast; but in this thesis broadcast mode is chosen to model RF communication transition.

The ’ !’ indicates a messages transmitted and ’?’ indicates that a message is received. In case

a message is broadcasted in Uppaal using ’ !’ all models having ’?’ in active transmissions will

receive this message.

The message exchanged in this model is a global channel variable, Message, which is trans-

mitted by transmitter. The transmitter model starts in the START location. An invariant

on local clock variable clk keeps the model in this location until the clock is updated to 3

ticks. The time passes automatically in Uppaal. Note a self transition is present in the START

location that will execute until the clock value becomes 3. If this transition is not present the

model will deadlock here. When the clock value becomes equal to 3 ticks a guard on the second

transition moves this model to the SENSE location. This location is critical indicated by a

C inside circle. This means a system cannot delay in the SENSE location and among all the

available active states the only possible transition is from the SENSE location. This transition

updates Sent variable which indicates the number of messages sent by transmitter. The next

location, SEND, is urgent (U inside circle) which means time cannot pass when the system is

in the SEND location. This is equivalent to having an extra clock c which is reset (c=0) before

model enters the SEND location and presence of an invariant of c<=0 on this location. The

model cannot move to the FINISH location until the value of Sent variable becomes equal to 5

(guard at this transition) so the only possible transition is moving back to the SENSE location

and transmits Message. The Sent, which is a local variable, is incremented each time and when

its value becomes equal to 5 the model moves to the FINISH location and deadlocks there.

The main purpose of the Uppaal model-checker is to verify that the model satisfies the

required specifications. These specifications are expressed in a formally defined query language

based on CTL (computation tree logic). The query language consists of theorems (claims) which

196

are either state formula (which describe individual states) or path formula (which quantify over

paths or traces of model). ”A state formula is an expression that can be evaluated for a state

without looking at the behaviour of the model” [197]. The path formulas are further classified

as safety, liveness and reachability properties. The reachability properties are simply sanity

checks, the liveness properties are defined as ’something good will eventually happen’ while the

safety properties are defined as ’nothing bad will never happen’. Thus the data which never

reaches the sink can be termed as a safety violation. The protocol deadlock is termed as the

liveness failure. A data generated by a source node eventually reaching the sink is also termed

as liveness check. The path formulas supported in Uppaal are A[] Φ, A<> Φ, E[] Φ, E<> Φ,

Ψ Ã Φ and Ψ ⇒ Φ. Here Φ and Ψ are state formulas. Whereas in Uppaal E and A indicate

’eventually’ and ’always’, respectively, while <> and [] are symbols for ’one path’ and ’all paths’

respectively. Other important symbols used in properties are ⇒ and Ã meaning implies and

leads to respectively. More details about these properties can be found in Uppaal manual [197].

For example in the Receiver/Transmitter system a property of interest is that eventually the

transmitter model moves to the FINISH location. This can be expressed formally as:

E <> Transmitter .FINISH

A.4 Computer Simulation

Computer simulators can simulate WSNs comprising thousands of nodes. Modern tools and

low level details (high fidelity with the actual software) implementation in node’s design in

most computer simulation enables debugging/checking easy to handle. Moreover, one can run

a simulation at a convenient speed, or even pause a simulator and thus can check all the results

desired, this is not feasible when run time checking during physical implementation. Simulation,

however, no matter how accurately they are developed, are not physical experiments; it is quite

possible that a WSN may work perfectly on a simulator but fails if implemented. Moreover,

they also cannot perform exhaustive testing possible using formal model-checkers. Most of the

ongoing research efforts in the development of simulation tools focus on the study of two main

WSN characteristics:

• New protocols and control mechanism to facilitate fast configuration and management of

WSN. The aim is to prove and validate the specific protocols of MAC and routing.

• Development of tools capable of emulating the actual behavior of wireless nodes and the

main aim is to check implementation issues such as energy, usage etc.

A.4.1 Simulator Selected: TOSSIM

Most simulators are aimed at one of these two objectives. Many simulators have been de-

veloped to check wireless routing protocols. Some aim to be versatile allowing both wired

197

and wireless medium to be examined like Ns-2 [244], GloMosim [245] and OmneT++ [246].

Some simulators aim for high fidelity in wireless nodes like ATEMU [247], Avrora [248],

JSim [249] and TOSSIM [229]. Some are focussed on sound propagation and acoustics like Vi-

sual Sense[250] and SENS [251]. Some aim for high scalability and performance like Shawn [252]

and TOSSF [253]. Some implement accurate radio models like Powler [254] and JProwler [255].

No simulator is, however, perfect in all fields. Of all these simulators TOSSIM and Ns-2 provide

features of use here and are most widely adopted by WSN researchers.

The Ns2 simulator, although widely used, but it has some shortcomings. It requires a

lot of learning, has given more attention is given to TCP and UDP (wired) protocols instead

of wireless protocols, object-oriented design introduces quite an unnecessary interdependency

between modules making the addition of new protocol models extremely difficult, and does not

have high fidelity for wireless simulations in spite of providing highly detailed packet level.

The simulator used in research, TOSSIM [229], operates at a very low level. It is imple-

mented using C that provides high level of accuracy (bit level) by using models of only a few

low-level components and otherwise running the source code unchanged. However, the nodes

must be Crossbow AVR processors or MICA2 motes (also known as motes). TOSSIM compiles

nesC [230] source code together with TinyOS [2] operating system libraries into a binary code

for the development workstation, replacing the software modules that interface hardware with

emulation libraries, including timers, communication channels, sensors, and the radio. TOSSIM

compiles code written for TinyOS to an executable file that can be run on a standard PC. Using

this techniques developers can test their implementation without using hardware motes.

TOSSIM was not developed with high scalability in mind and could initially simulate net-

works of up to 1000 nodes. This was later increased up to 8,192 nodes. TOSSIM can measure

packet losses, packet CRC failure rates, and the length of the send queue during simulation.

TOSSIM is not as accurate as other high fidelity simulators like ATEMU [247] and Avrora [248].

Moreover TOSSIM uses an inaccurate probabilistic bit error model for the wireless medium.

Also TOSSIM does not simulate the Mote’s devices (Digital I/O and A/D) it just generates

a random number for ADC etc. TOSSIM enables the simulation of sensors and actuators;

however, it does not simulate the physical phenomena that are sensed.

A.4.2 Aims of Simulation in the Thesis

Computer simulation allow the analysis in this thesis to be extended in a number of ways:

• It can confirm the existence of bugs discovered theoretically by model-checking.

• It provides some quantitative insight into the likely detrimental effects of bugs.

• It offers some measure of confidence in the robust behaviour of protocols in networks

which are too large for model-checking.

198

(a) Using sample sizes of Meyer (b) All samples of 10,000 from Meyer Noise

Model

Figure A.2: Percentage of message lost due to noise

In this research, the experiments are usually performed 20 times and average values noted. In

case when the effect of a certain factor was to be observed (Appendix A), the experiments

are reduced to 10 (or below). In case the results obtained vary a lot between maximum and

minimum values, additional experiments up to 30 are performed.

A.4.3 Noise in Computer Simulation

RF Noise is always present in the real world. The current research also aims to test the effect

of noise. TOSSIM’s radio model are based on the CC2420 radio (MICAZ etc). It uses an SNR

curve derived from experimental data collected using two MICAZ nodes. TOSSIM uses the

Closest Pattern Matching (CPM) algorithm which takes a noise trace as input and generates a

statistical model from it. The Meyer-heavy noise trace is normally used in TOSSIM to model

noise and it is believed to be accurately represent a noisy WiFi environment [256]. However, its

use consumes a lot of memory (10MB per node) and so is not feasible when large networks are

studied. A possible solution could be to sample the file with the aim of simply model the effect of

noise (loss of some messages due to noise). To choose a suitable sample the research performed

two different types of experiment. First the Meyer file is divided into blocks of 500 lines (500,

1000, 2000, 4000). Second the whole Meyer file is divided into 20 samples of 10,000 lines. For

both cases, 20 tests were performed and then average, minimum, and maximum percentage

message loss were calculated. The results are displayed in Figure A.2(a) and Figure A.2(b)

respectively.

The effect of message lost due to noise was measured at different nodes and it was observed

that, although the percentage of message loss differed, the pattern of message loss remained

the same. The results presented are those obtained on a single node. It was observed that by

using different samples of 10,000, different noise percentage loss can be achieved. The Meyer

file includes peak values of noise (evident in sample 15, 16). On the other hand there are some

199

very low noise periods (sample 7, 18). These different samples are used in the current research

to simulate effects of high and low noise. A further discussion on these noise samples appears

in Section 5.5.4.2.

A.5 Practical Implementation

Some parts of the newly developed protocol were implemented in hardware to confirm that the

protocol can be implemented practically and investigate other issues such as memory size, real

radio effects etc. The hardware used was MICAZ motes [233] equipped with a 4Mhz Atmel

microprocessors with 4 KB of RAM and 128 KB of code space, a 2.4 GHz radio running at 50

kb/s, 512kB of EEPROM and two AA batteries. The network size was limited (a maximum

of 10 nodes). The in-built LEDs and an external buzzer board are used to provide debugging

information. However, this implementation was limited and much remains as future work.

A.6 DFP: The Handshake Scheme

As stated earlier, this thesis presents two different schemes for the DFP: Lost Indication Scheme

presented earlier in Section 5.7.1 and Handshake scheme that is presented in this section.

A.6.1 Design of the Handshake Scheme

A node N upon detecting an event in the environment generates the DATA that contains the

event or message ID, node’s own ID and a source ID (saved in TargetID field). The source node

also attaches a data stamp in HMAC field used later by the BS to confirm that the data has

not been altered in the relay process by any node (integrity). Moreover the data is encrypted

with node’s Independent key (authenticity) so that only BSs can decrypt what the actual data

is (confidentiality). The other nodes just relay/forward this encrypted data without knowing

what that data is. This provides data authentication, integrity and confidentiality from source

to the destination. The message is encrypted by the source node S using the cluster key KCS :

N → ∗ : (DATA, [IDS , IDS ,MIDm ,StampS , [datapayload]KIS
]KCS

) (A.1)

A node N upon receiving data from the source node S modifies the message (replace node

ID) before forwarding:

N → ∗ : (DATA, [IDN , IDS ,MIDm ,StampS , [datapayload]KIS
]KCN

) (A.2)

On receiving this DATA message, the neighbour node R unicasts back ACCEPT beacon if it

is free and is willing to forward the data. This is a unicast message and the target field contains

the sender’s ID. The Source ID and Message ID are also attached for which the response has

been sent. The message format is as follows:

R → N : (ACCEPT , [IDR, IDN ,−,−,−,−,−, IDS ,MIDm]KCN
) (A.3)

200

On receiving ACCEPT beacons, the node selects a neighbour based on its previous ranking

and broadcasts the DATA as well as it broadcasts SELECT beacon containing all the selected

neighbours ID that are chosen for data forwarding:

N → ∗ : (SELECT , [IDN ,−,−,−,−,−,−, IDS ,MIDm , ID1, ID2, ID3, ID4]KCN
) (A.4)

Figure A.3: Message sequence diagram to describe DFP (Handshake scheme)

Note that each ID can also indicate the BS if multiple BSs are used e.g. if 4 BSs are used the

first ID means data must be forwarded to the first BS etc. Also note that the BS information

is preloaded in the nodes before deployment. And that a node one hop distance away from the

BS does not need to perform this process, it merely broadcasts the DATA to that BS instead.

This complete scheme is explained in the message sequence diagram (Figure A.3).

A.6.2 Comparison of the Handshake Scheme with Flooding

It is evident that DFP has 2 additional messages for handshake apart from the DATA message.

So the protocol will use more bandwidth and energy than the single data broadcast. For

confirmation, the results are compared with the worst case i.e. flooding of data.

201

A.6.2.1 Visual Inspection

Let us suppose a network has a size of N nodes, density D, number of BSs is B and hop distance

from a BS is H. As a shortest route is normally selected in the absence of attack, so H is the

minimum hop distance from all the available BSs B. Let the messages be denoted by Mx where

x is data (D), accept(A) or select(S). Then for flooding the total messages will be:

Total = N ×MD (A.5)

For the new protocol, when a node broadcasts the data, each neighbour node will send

ACCEPT beacon and is finally followed by the node sending the Select beacon. So for each

data packet the total messages are:

Total = MD + (MA ×D) + MS (A.6)

Now in the protocol’s case as messages are not flooded, so the number of messages will be

depending upon the hop distance from the BS:

Total = (H − 1)× (MD + (MA ∗D) + MS) + 1 (A.7)

Note that it will take H-1 hops for the data to reach a node next to BS, which will forward

data directly to BS and thus handshake will not be required at that stage. Now if there are B

BSs at corners then the hop count is reduced by B times:

Total =
H − 1

B
× (MD + (MA ×D) + MS) + 1 (A.8)

The hop count H is inversely proportional to density D of the network i.e. hop count

decreases as the density is increased. So multiple of H × D will almost be the same for all

densities. For comparison of results, different size & density networks are compared in the

Table A.1. As the results are tabulated for the worst cases, only one BS is used. In case of

multiple BSs, the results will improve for the new protocol but not for flooding (data will always

be flooded to all nodes).

Note that the table containing the tabulated results for the new protocol are for the worst

cases (nodes that are farthest from the BS), nodes in the middle and the best cases (nodes next

to the BS). The total messages will be an average of all the nodes. Hence, the overall result

will improve. Whereas for flooding, even the one-hop nodes will flood the data. Therefore the

results will remain the same for all cases no matter how far away a node may be. Thus for

N nodes network a total of N 2 data messages have to be propagated. Whereas for the new

protocol the total messages will never reach N 2. As the results of protocol are worse for small

networks, this thesis confirms the results using a 25 node network by employing a formal model.

202

Table A.1: Parameters used to check the effect of Level propagation delay on RSP

Nodes Density Hop count Flooding Protocol

(N) (D) Distance (H) Results Farthest Middle OneHop

100 3.63 18 100 96.71 48.85 1

100 6.91 9 100 72.28 36.64 1

100 10.14 9 100 98.12 49.56 1

100 15.96 6 100 90.8 45.9 1

100 18.54 5 100 83.16 42.08 1

100 21.34 5 100 94.36 47.68 1

1000 3.88 62 1000 359.43 180.22 1

1000 7.63 31 1000 289.89 145.44 1

1000 11.37 31 1000 401.98 201.49 1

1000 18.64 21 1000 413.77 207.38 1

1000 22.15 16 1000 363.25 182.13 1

1000 25.74 16 1000 417.16 209.08 1

A.6.2.2 Formal Modelling

The hypothesis for this model is that:

”The new protocol’s data propagation has less message overhead than flooding of data”.

The assumptions stated in Section 4.3.3 are persisted in this model. Moreover it is assumed

that the protocol has successfully finished the RSP i.e. node levels have been assigned and

known.

The model used comprises 2 parts, a sink model and node model. The sink model is

shown in the Figure A.4. The model remains in the LISTEN location and receives data packets

until all nodes have sent their data packets. A guard (NodeCount==MAXNODE-1) then takes the

model to the FINISH location.

The node model is shown in the Figure A.5. The node model starts from the LISTEN

location. If no node model is sensing the data (Sensing flag is false), the model senses the data

and sends it (SEND DATA). If the node is one hop away from the sink (node level is 1), it

will send the data and then goes back to the LISTEN location. Otherwise the node will wait

and receive Accept beacons (REC ACCEPT). When all neighbour nodes have sent the Accept

messages (BusyNodes becomes 0), the node transmits Select beacon (SEND SELECT). Using

a self loop in REC ACCEPT location, the best neighbour is saved in SavedID variable. After

sending Select beacon, the node clears global flag Sensing so that the other nodes may also

send their sensed data and then it moves to the LISTEN location.

Note that sending sensed data at the same time is avoided to check the worst case and to

203

Figure A.4: Sink model used in UPPAAL to compare results with flooding

Figure A.5: Node model used in UPPAAL to compare results with flooding

simplify the model. A node upon receiving a data (REC DATA) replies with an Accept beacon

(SEND ACCEPT). When a node has received a Select beacon (REC SELECT), it tries to send

data by moving to the SEND DATA. Note also that the ChannelBusy flag is used to prevent

2 nodes transmitting any message simultaneously. Whenever a node transmits any message

a global variable TotalMessage is incremented, that will indicate total messages transmitted

by all nodes in the network. While the NodeCount variable is incremented each time a node

transmits its sensed data.

The verification involves following claims to be proved using properties:

Claim 1: All nodes forward their own or other node’s data

This is a sanity check in that all nodes will eventually either send their own sensed data or

204

another node’s data:

E <> NodeID .SEND DATA (A.9)

Claim 2: All nodes will transmit their sensed data

This is a sanity check in that all nodes will eventually send their own sensed data:

E <> NodeID .DataSent (A.10)

Claim 3: The nodes are always available for data forwarding

This is a sanity check that all nodes after sensing or forwarding data will always go back to the

LISTEN location to later perform further data forwarding.

NodeID .SEND DATA Ã NodeID .LISTEN (A.11)

Claim 4: The BS will receive data packets from all nodes

This is a check that eventually the BS will receive data packets from all nodes in the network.

The property used to prove this liveliness check is:

E <> Sink .FINISH (A.12)

Claim 5: Total messages transmitted by new protocol are always less than flooding

This is a safety check that the total messages transmitted by protocol are always less than the

case where flooding is employed. The property used for this claim is further extended to find

what the worst case is, i.e. what is the maximum number of messages sent by a network in a

worst case. For a 9-node grid network, this value was 37 for 8-neighbour network and 59 for

4-neighbour network. This is lesser when compared with flooding (64).

A[]TotalMessage <= N (A.13)

Note that in the model the flooding value considered is 64 instead of 8 and in visual in-

spection the total flooded messages were equal to network size which is 8 in this case. The

reason for the increase in number of total messages is because in the visual inspection only one

node was considered as the source; whereas in the formal modelling all nodes are the source

nodes. So each node will send 8 messages and thus a total of 64 (8x8). This means that total

messages sent in data forwarding, when flooding is employed, are N 2 instead of N , where N is

number of nodes excluding BS. So the formal model gives complete, accurate and better results

as compared to visual inspection.

A.7 Database Required in the New Protocol

As indicated in the earlier sections, the new protocol maintains a small data base (DB) in each

individual node. Apart from saving early information in KSP and RSP, the DB is required

to store DFP information such as the neighbour’s performance, data payload for sometime,

205

Figure A.6: Database Interface Diagram

and events/source information, etc. This DB can easily fit into WSN’s limited memory. Five

different tables have to be maintained by each individual node. These are Neighbour Table

(NT), BS information Table (BT), Event Table (ET), Data storage Table (DT) and Forward

Table (FT). The combination of these tables is a DB because all these tables are interrelated

as indicated by Figure A.6. The FT and DT contain a unique key ETable Index, which is the

address of ET. So entries in both these tables are related to an ET entry. Similarly, two fields

in FT Node Index and Sink Index are the addresses of NT and BT respectively. The tables are

discussed as follows:

A.7.1 Neighbour Table (NT)

The NT contains all the information about the neighbour nodes. In order to limit the effect of

a sybil attack the maximum number of allowed neighbours can be fixed, while discarding the

remaining. The entries in NT are created in the KSP when the BVP is performed. Nonce is

also temporarily stored in the NT. The entries in the table are:

• ID, is unique ID of a neighbour node.

• Pair Key, for that particular neighbour node.

• Cluster Key, used by this neighbour node.

• Rank, is the number of messages, eavesdropped from the neighbour after the data has

been forwarded to it. Initially, a nonce for that neighbour node is also saved in this field,

206

which is cleared after the KSP. Moreover if required the 2-hop Stamp is also saved in the

RSP during the LPP.

• TotalSent, is the total number of messages forwarded to a neighbour. In the KSP, this

field is used to save the number of attempts made to verify neighbours. Note that this

provision is available in the new protocol to accommodate the loss of messages in the

BVP.

• Lost, is the total data messages a neighbour node is unable to forward further and informed

of this issue using LOST beacon (DFP).

• AskRec flag, is set when a node receives an ASK beacon from a neighbour node and is

cleared when an ASSIGN beacon is sent back.

• Verified flag, is cleared initially and is set when a node receives back an ASSIGN in reply

to an ASK (KSP).

• AssignSent flag, is set when a node sends ASSIGNACK beacon to that neighbour node.

This will confirm that the 3 way verification (explained earlier) has been completed. After

that the node will ignore future ASK beacons from this neighbour node.

• Level, is an array containing the neighbour level with respect to a partcular BS. This is

updated in LPP (RSP).

• TwoHop, is an array of flags indicating the 2 hop neighbors witin radio range of the

current neighbour. This entry is updated at the NPP (RSP) and is used later in DFP to

confirm that a neighbour has sent data to a legitimate node rather than having been lost

in oblivion.

A.7.2 BS Information Table (BT)

The BT maintains information regarding the BSs. A complete description of different fields is:

• ID, which is the BS’s ID and is stored before node deployment.

• HashChain, which is hash chain stored for individual BS that should be used to later

authenticate BS messages. This hash chain is updated with passage of time.

• Level, is a node’s level (hop distance) with respect to a particular BS.

• Terror, is the time difference indicating when the node first receives LEVEL as compared

to BS Authentic time.

• Received, is a flag used in the LPP (RSP) indicating that a LEVEL message for a BS has

been received and has not been rebroadcasted as yet.

207

• Synchronize, is a flag used in the SPP (RSP) indicating that a SYNCHRONOUS message

has been received and has not been rebroadcasted as yet.

• MustSynchronize, which is a flag that becomes true when the SYNCHRONOUS message

is received and remains so until the LEVEL message is received.

• TimeMSec, is the time saved for a particular BS in one tenth of millisecond when LEVEL

message is received.

• TimeSec, is the time saved for a particular BS in seconds upon receiving LEVEL message.

• TimeMin, is the time saved for a particular BS in minutes upon receiving LEVEL message.

• HMAC, is the HMAC saved for a particular BS when level message is received.

A.7.3 Event Table (ET)

The ET is used in DFP to save the (source,event) pair and the neighbour nodes to which that

pair has been sent. Note that any sensed data from the environment has a unique pair to

differentiate between them. The fields used in this table are:

• SourceID, is a unique source node’s ID attached to a DATA message.

• EventID, is a unique event ID attached to a DATA message.

• Neighbors, is an array of flags representing respective neighbour nodes, to whom this

event has been sent. Note that a one bit flag is used instead of complete neighbour ID,

which is index to a NT.

A.7.4 Data storage Table (DT)

The DT temporarily stores the data in the node which has been forwarded to another node.

This is done so that in case a neighour node fails to forward data, the saved data can be

forwarded to another neighbouring node.

• ETableIndex, is the index or address of Event Table.

• DataStamp, is the data stamp which is stored.

• Data, is the complete data payload which has been saved.

• BSIndex, is the index or address of BT, indicating to which BS this data has been for-

warded.

• HasSent, is a flag indicating whether the node has sent this data or is still waiting to send.

208

A.7.5 Forward Table (FT)

The FT maintains the data forwarding information that indicates to which node data has been

forwarded.

• ETableIndex, is the index or address of Event Table.

• NTableIndex, is the index or address of Neighbour Table.

• FeedBack, is a flag indicating that the feedback has been received i.e. if the neighbor has

forwarded the data further.

209

Appendix B

Verification of Claims

B.1 Claims on Models of Different Routing Protocols

B.1.1 Arrive Routing Protocol Claims

Claim 1: All nodes will broadcast a level message

This is a sanity check to verify that all the nodes eventually broadcast a level message, where N

is a nodes’s ID. This claim must be verified for all the nodes in the network. The specification

property in Uppaal is:

E <> NodeN .SEND LEVEL

Claim 2: The source node eventually senses and broadcasts data

This is a sanity check to verify that a source node eventually senses and broadcasts data at

least once. The following property states this claim formally, where S is the ID of the source

node:

E <> NodeS .SENSE DATA

Claim 3: The Arrive protocol will always finish its setup phase

This is a sanity check to verify that the protocol eventually will enter the Data Forward Phase.

This also confirms that the protocol will always finish the setup phase. Formally the property

is written as:

E <> Protocol .DATA FORWARD

Claim 4: The Arrive protocol will not deadlock

The final sanity checks that the protocol will not deadlock and will finish eventually i.e. it

goes to the FINISH location. Note that the Uppaal model, however, does deadlock, when EG

is in the FINISH location, because only a limited number of messages are sent by the source.

If this condition is removed from the model, then the system will never move to the deadlock

state and will keep on sending the messages for ever. However, this has to be prevented, since

210

the main aim is to check certain properties and avoid the state space explosion problem. The

protocol moves to the FINISH location after the source node has sent the desired number of

data messages (set it to be 4) and no node is in its data forwarding mode. The following

property presents this claim formally:

E <> Protocol .FINISH

Claim 5: All nodes attain the correct level

This claim is a check that all the nodes get the correct level when the Arrive protocol is in the

operational phase:

Protocol .DATA FORWARD Ã (NodeLevel [N] == ExpectedLevel [N])

Claim 6: Neighbours and parents are assigned correctly

This is a property verifying that a source node S has at least one of its parents or neighbours

attaining a lower or equal level so that the source will send the data to this node after the

setup phase. The Arrive protocol will send data to only a parent (low level) or neighbour (same

level).

Protocol .DATA FORWARD Ã ((NodeLevel [N 1] <= NodeLevel [S]) ||
(NodeLevel [N 2] <= NodeLevel [S]))

Claim 7: The BS will receive at least one data message from the source

This is a property which checks that the BS will eventually receive at least one data message

from the source:

E <> Sink .DataRec

Claim 8: The BS receives a number of data messages from the source

This is a data transport property to check that when the protocol completes the number of

received data messages at the BS is more than N, where N≤TotalSent.

Protocol .FINISH Ã (TotalRec > N)

B.1.2 ARAN Routing Protocol Claims

Claim 1 ”Nodes always rebroadcast the RDP message:”

This is a sanity check to confirm that all the nodes fulfil the task of the route discovery phase

i.e. rebroadcast the received RDP message. This Uppaal notation for this claim is:

NodeN .REC RDP Ã NodeN .SEND RDP

Claim 2 ”Nodes always rebroadcast the REP message:”

This is a sanity check to confirm that all the nodes rebroadcast the received REP message. The

211

property in formal notation is:

NodeN .REC REP Ã NodeN .SEND REP

Claim 3 ”Legitimate node forwards the data fairly:”

This is a sanity check to confirm that all the legitimate nodes forward data fairly; i.e. these do

not drop data unless the node is a malicious black hole. The property in Uppaal notation is:

(!Blackhole[N]&&NodeN .REC DATA) Ã Node1.SEND DATA

The property states that all the nodes N in the network will always rebroadcast the data unless

it is a black hole node when the data message is received.

Claim 4 ”No deadlock in the ARAN protocol:”

This claim checks that the protocol will always finish after it has started and it never deadlocks

in between:

EventGen.START Ã EventGen.FINISH

Note that the event generator can only reach the FINISH location if all nodes including

the target and source become idle; i.e. they stop transmitting anything after the source has

initiated the RDP. A more potent proof can be performed by applying the following property:

A[]notdeadlock

This property verifies that all the models never deadlock. However, the ARAN protocol

model does have a deadlock; so this property fails and the trace generated confirms that the

model deadlocks with the event generator model in the FINISH location. This deadlock had

been intentionally introduced to save the state space. To confirm that the deadlock occurs

because of this deliberate introduction and not due to another cause, a self loop is placed in

the EventGen.FINISH location. Once done, the property did hold confirming that the model

never deadlocks after it has reached the FINISH location which was our intended final location

of the system.

Claim 5 ”Data from the source node always reaches the target node:”

This final and most important claim is the data transport property that when the system

finishes, the target node will have successfully received the data:

EventGen.FINISH Ã Target .SUCCESS

B.2 Claims on the Models of RAEED Routing Protocol

B.2.1 Bidirectional Property Claim in RAEED

Claim 1: All nodes will finish the KSP

This claim is a check that eventually the protocol will get out of the KSP i.e. all nodes will

212

begin the next phase of the protocol:

E <> NodeN .ROUTE SETUP PHASE

The claim is only proved when all N nodes of the network are checked. This claim can also

be proved by checking if the event generator moves to the ROUTE SETUP PHASE location,

which is only possible if all nodes have finished their KSP:

E <> Protocol .ROUTE SETUP PHASE

Claim 2: When the KSP finishes, then all the nodes have correct verified neighbours

This claim states that when the protocol has entered the Route Setup Phase(RSP) (and thus

all nodes have finished KSP), the nodes have correctly verified the neighbours. Note that a

function has been written in Uppaal that will increment a global variable Problems, in case a

verified neighbour is found different from that in the connection matrix. The following Uppaal

property proves this claim, where N indicates all the nodes:

Protocol .ROUTE UPDATE PHASE ⇒ (NodeN .Problems == 0)

B.2.2 Effect of Noise and Collision on the KSP

Claim 1: All nodes eventually enter Phase 2

This is a sanity check that all nodes eventually move to the PHASE2 location and is proved

using the following property:

E <> Protocol .PHASE2

Claim 2: All 3 echo messages can be sent by each node

This is a sanity check. Note that nodes send three echo messages instead of one. This is to

ameliorate the effect of message loss due to noise. The following property can prove this claim:

E <> (NodeN .EchoSent == 3)

Claim 3: When nodes enter Phase 2 there is no unidirectional link in the NT

This claim is a liveness check that when protocol has entered PHASE2 location, there is no

problem in the NT of any node. Thus no entry in the NT has a unidirectional link. The

property used to prove this claim is:

Protocol .PHASE2 Ã (NodeN .Problems == 0)

B.2.3 Confirmation that Security Properties Hold

Claim 1: The protocol does not deadlock

This is a liveness check to confirm that the model never deadlocks:

A[]!deadlock

213

Claim 2: All nodes eventually complete KSP

This is a sanity check that all nodes eventually complete their Key Setup Phase i.e. the event

generator moves to the FINISH location. This claim can be proved by the following property:

E <> EventGen.FINISH

Claim 3: Global key compromise does not allow the attacker to capture the other keys

This is a sanity check that capturing the global key alone does not mean that the attacker may

captured the other keys as well. The node must broadcast the respective message (containing

pair key etc), only then the attacker captures the key. This sanity test is proved if the following

2 properties are false for all N legitimate nodes:

Attacker .DECRYPT GLOBALKEY Ã Attacker .Pair [N]

(Attacker .DECRYPT GLOBALKEY) Ã Attacker .Cluster [N]

Claim 4: Global key compromise leads to all further pair keys being captured

This is a claim that after an attacker has decrypted the global key then any node N, upon

broadcasting its pair key (moving to WAIT location), will lead the attacker to capture the pair

key of that node. The property used for this claim is:

(Attacker .DECRYPT GLOBALKEY &&NodeN .WAIT) Ã Attacker .Pair [N]

Claim 5: Global key compromise leads to all further cluster keys being captured

This is a safety check. It claims that when an attacker has decrypted the global key, and any

node N has broadcast its cluster key (and thus moving to the FINISH location), it will allow

an attacker to capture the cluster key of that node.

(Attacker .DECRYPT GLOBALKEY &&NodeN .FINISH) Ã Attacker .Cluster [N]

B.2.4 Verification of SPP and LPP (RSP)

For the verification properties N1 and N2 indicate any 1-hop distant and 2-hop distant node

from the BS respectively. Following claims have been verified using properties:

Claim 1: The RSP will finish

This is a sanity check that the protocol will finish the RSP. In other words the sink model will

reach the DFP location, meaning that all nodes have been assigned their level. The property

that can prove this claim is:

E <> Sink .DFP

Claim 2: The sink will be synchronized with all nodes

This test states that eventually the sink model will be synchronized with all the nodes N in all

possible executions. The property proving this liveness check is:

E []Sink .clk == NodeN .clk

214

Claim 3: The sink will initiate the LEVEL only after the node clocks have been synchronized

This claim states that when the sink model initiate LEVEL message the clock of sink has

already been synchronized with all the node models clocks. Here N means all nodes.

Sink .INITIATE LEVEL Ã (Sink .clk == NodeN .clk)

Claim 4: The lower hop nodes will always receive the LEVEL beacon earlier

This claim is the liveness check. It states that whenever any node N2, 2-hop away from BS

(Node3,Node4,Node6) receives LEVEL beacon, any 1-hop (from BS) node’s clock (Node1,Node2)

is always greater than 2-hop node clocks. Following property can prove this claim:

A[](NodeN2.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN2.delay

This property is then repeated for other 1-hop and 2-hop nodes.

Claim 5: The clock difference between two hop nodes is always less than the maximum time

reserved for each hop

This is a liveness check. Note that time reserved between 2-hop nodes is 10 clock ticks in this

model. Thus this claim can be proved by using two properties:

A[](NodeN2.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN2.delay + 10

A[](NodeN2.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN2.delay + 9

The first property should be false whereas the second property should be true. The two proper-

ties claim that 2-hop nodes (Node3,Node4,Node8), on receiving the LEVEL beacon from 1-hop

neighbour (Node1,Node2), must receive it not more than 10 milliseconds earlier. Note that this

property should be satisfied for all values between 0 and 9 but not 10 as 10 means that 1-hop

nodes have received the LEVEL beacon 11 ms before 2-hop nodes which is not possible as the

model has set the time to be 10 ms to send LEVEL beacon after receiving it.

Claim 6: The clock difference between nodes 3-hop away from the BS is always less than the

maximum time reserved for them

This is a liveness check. It is similar to previous properties and can be proved by using two

properties:

A[](NodeN3.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN3.delay + 20

A[](NodeN3.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN3.delay + 19

Again the first property should be false whereas the second property should be true. The

two properties claim that the nodes 3-hop away from BS (Node5,Node7) when receive the

LEVEL beacon from any neighbour node the difference of clocks between them and 1-hop node

(Node1,Node2) should not be more than 20 ms.

215

Claim 7: The clock difference between nodes 4-hop away from the BS is always less than the

maximum time reserved for them

This is a liveness check. It is similar to claim 5 and 6. It can be proved by using two Uppaal

properties:

A[](NodeN4.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN4.delay + 30

A[](NodeN4.RECEIVE LEVEL) ⇒ NodeN1.delay > NodeN3.delay + 29

Again the first property should be false whereas the second property should be true. The two

properties claim that the nodes 4-hop away from BS (Node6) when receive the LEVEL beacon

from any neighbour node the difference of clocks between them and 1-hop node (Node1,Node2)

should not be more than 20 ms.

Claim 8: All nodes get the desired correct level

This is a safety check that all nodes N acquire the correct level when the protocol enters the

DFP. Converting time to integers is not possible in Uppaal (type checking error), so difference

between the BS time and node time is used to confirm if nodes have achieved the correct level.

Each node, including the BS, resets a clock called time when it broadcasts LEVEL beacon. As

nodes broadcast message after delaying it by 10ms, so a node H hops away from BS and it must

have a time difference of 10xH ticks. The property employed to verify this claim is:

A[](Sink .DFP) ⇒ (Sink .time == NodeN .time + TimeNodeN)

In this equation N is any legitimate node in the network and TimeNodeN is a constant, the

expected hop count of node N multiplied by 10. Thus for 1-hop nodes this constant value is 10,

for 2-hop nodes 20 and so on.

B.2.5 Verification of Lost Indication Scheme (DFP)

Claim 1: The data is transmitted fairly

This is a sanity check that all the nodes will eventually either transmit their own sensed data

or the neighbour node’s data. The property used to prove this claim is:

E <> NodeN .SEND DATA

Claim 2: The nodes after broadcasting the data never deadlock

This is a liveness check in that all the nodes upon broadcasting the data will not deadlock and

should move back to the LISTEN state:

NodeN .SEND DATA Ã NodeN .LISTEN

Claim 3: No deadlock in the RAEED protocol

This is the liveness check that the RAEED protocol will not deadlock. Thus the BS and all the

216

node models will finish. To prove this claim the following property must be false:

A[]!Sink .FINISH

To confirm the liveness property mentioned in the last equation the deadlock property is

checked:

A[]!deadlock

This property should be false. The system should deadlock with the BS in the FINISH state.

To reconfirm the liveness check, a self loop is placed in the sink model’s FINISH location. Now

the deadlock property is satisfied indicating that the system never deadlocks. Note that the

sink model only moves to the FINISH location when all the nodes are finished.

Claim 4: The source node will always send the desired number of data messages

This is a check that, eventually, the desired number of messages will be sent by the source node:

Sink .FINISH Ã (TotalSent == MAXMESSAGE)

Claim 5: The source node will always receive the desired number of data messages

This is the data transport property claiming that when all the nodes are finished, the BS

receives all the data packets generated by the source node:

Sink .FINISH Ã (Sink .TotalRec == MAXMESSAGE)

Another way to verify the data transport property is:

Sink .FINISH Ã (Sink .TotalRec == TotalSent)

Claim 6: The throughput of the data messages is always 100%

Note that the previous safety property can also be true if the source node does not send any

data packet at all. To confirm that the throughput was 100% it is checked that when a finite

number of messages (MAXMESSAGE) are broadcasted by the source node, the BS also receives the

same number. Following property proves this claim:

Sink .FINISH Ã (TotalSent == MAXMESSAGE)&&(Sink .TotalRec == TotalSent)

B.3 Claims involving the Evaluation of RAEED Against the

Attacks

B.3.1 Prevention Against the INA and Wormhole Attack

Claim 1: The ASK beacon is received by legitimate neighbours

This is a sanity check that when Node1 broadcast the ASK beacon it will always be received

217

by neighbours Node0 and Node2. It is then later checked for all nodes and their neighbour

combinations.

Node1.SEND ASK Ã (Node0.REC ASK&&Node2.REC ASK)

Claim 2: The protocol will finish the KSP

This is a sanity check that eventually the protocol will get out of the KSP, i.e. all nodes will

go to the next phase of the protocol:

E <> EventGen.KSP FINISH

Claim 3: The protocol will finish RSP

This is a sanity check that eventually the protocol will get out of the KSP and RSP, i.e. the

RSP will finish:

E <> EventGen.RSP FINISH

Claim 4: No deadlock in the system

This is both a sanity and the liveness check. It checks that all the nodes eventually finish and

does not remain deadlocked.

E <> NodeN .FINISH

A more potent liveness check is that the protocol does not deadlock:

A[]!deadlock

This property should be false. The system should deadlock with the event generator and all the

node models in their FINISH locations. To reconfirm the liveness check, a self loop was placed

in EG’s FINISH location. Now the deadlock property is satisfied indicating that the system

never deadlocks. Note that the model only moves to the EventGen.FINISH location when all

nodes are finished.

Claim 5: No legitimate node is declared as a wormhole

This safety check confirms that nodes attached to wormhole tunnels 0 and 4 do not detect any

legitimate node as a wormhole. This test is proved by using following property:

A[](EventGen.FINISH ⇒!Node0.Verified [1])

Claim 6: All the wormhole tunnels are detected

This is a safety check which confirms that a wormhole attack is detected by both nodes 0

and 4:

A[](EventGen.FINISH ⇒ Node0.Verified [4])

218

A[](EventGen.FINISH ⇒ Node4.Verified [0])

Claim 7: All wormhole tunnels are removed by the LOUD scheme

This is the safety test and checks that both neighbour nodes of the wormhole will have no

neighbour error when the node finally goes to the FINISH location. Note that a flag, Error,

remains set if the topology information updated in node is different from the Topology matrix.

The following properties prove this safety test:

A[](EventGen.FINISH ⇒!Node0.Error)

A[](EventGen.FINISH ⇒!Node4.Error)

Claim 8: All the nodes record their correct neighbours after the LOUD scheme

This is a liveness check that all the nodes (N=1,2,3) which are not neighbours of the wormhole

will have no incorrect neighbour i.e. no legitimate neighbour is removed because of loud test.

EventGen.FINISH Ã!NodeN .Error

B.3.2 Prevention Against the Intelligent Wormhole Attack

The claims 5 and 6 have been modified for this model because the flag TestFail is used to

indicate a wormhole is detected by the node model. The modified claims are described again:

Claim 5: No legitimate node is declared as a wormhole

This is a safety check and confirms that the nodes attached to the wormhole tunnels 0 and 4

do not detect any correct node as a wormhole. This is proved by using following property:

A[](EventGen.FINISH ⇒!Node0.TestFail [1])

Claim 6: All wormhole tunnels are detected

This is a safety check confirming that a wormhole attack is detected by both the nodes 0 and

4. This claim is proved using following two properties:

A[](EventGen.FINISH ⇒ Node0.TestFail [4])

A[](EventGen.FINISH ⇒ Node4.TestFail [0])

B.3.3 Prevention Against the Sinkhole Attack

Claim 1: Attacker’s SYNCHRONOUS messages will always be rejected

This is a claim that when an attacker broadcasts SYNCHRONOUS message, all legitimate

nodes will reject it. This claim is proved if the following property is false:

Attacker .FAKE SYNCHRONOUS Ã (NodeN .REC SYNCHRONOUS&&Msg ID == A)

219

In this equation N is any legitimate node ID and A is the message ID of the attacker.

Claim 2: Legitimate node’s SYNCHRONOUS messages will always be accepted

This is a claim that when a legitimate node broadcasts the SYNCHRONOUS message, all

legitimate neighbour nodes will accept it. This claim is proved if the following property holds

true:

NodeN .SEND SYNCHRONOUS Ã (NodeM .REC SYNCHRONOUS&&Msg ID == N)

In this equation N is the node ID of any legitimate sender node and M is ID of the neighbour

of node N.

Claim 3: Attacker’s LEVEL messages will always be rejected

This is a safety check. It claims that when the attacker broadcasts the LEVEL message, all the

legitimate nodes will reject it. This safety test is proved if the following property is false:

Attacker .FAKE LEVEL Ã (NodeN .RECEIVE LEVEL&&Msg ID == A)

In this equation N is any legitimate node and A is the message ID of an attacker.

Claim 4: Legitimate node’s LEVEL messages will always be accepted

This is a liveness check. It claims that when a legitimate node broadcasts the LEVEL message,

all legitimate neighbour nodes will accept it. This liveness check is proved if the following

property holds true:

NodeN .SEND LEVEL Ã (NodeM .RECEIVE LEVEL&&Msg ID == N)

In this equation N is the node ID of any legitimate sender node and M is the node ID of node

N’s neighbour.

220

Bibliography

[1] J. Kahn, R. Katz, and K. Pister. Emerging challenges: Mobile networking for smart dust.

pages 188–196. J. Comm. Networks, 2000.

[2] Tinyos. http://www.tinyos.net/, 2007.

[3] S. Madden. Tinydb:a declarative database for sensor networks.

http://telegraph.cs.berkeley.edu/tinydb, 2003.

[4] J. Mulder, S. Dulman, L. van Hoesel, and P. Havinga. Peeros - system software for wireless

sensor networks. http://wwwhome.cs.utwente.nl/ dulman/docs/systemsoft.pdf, 2007.

[5] Pumpkin. Salvo : The RTOS that runs in tiny places. http://www.pumpkininc.com/,

2007.

[6] Unicorn Web Services. Cmx systems. http://www.cmx.com/, 2006.

[7] R. Barr, J.C. Bicket, D.S. Dantas, B. Du, T.W.D. Kim, B. Zhou, and E. Sirer. On the

need for system-level support for ad hoc and sensor networks. Number 2, pages 1–5, New

York, NY, USA, 2002. ACM Press.

[8] Palm os. http://www.palmsource.com/, 2007.

[9] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. technical

reports:ACM SIGARCH Computer Architecture News 30, 2002.

[10] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

A survey. Computer Networks (Elsevier) Journal, pages 393–422, 2002.

[11] D. Estrin, R. Govindan, J.S. Heidemann, and S. Kumar. Next century challenges: Scalable

coordination in sensor networks. In Mobile Computing and Networking, pages 263–270,

1999.

[12] J.N. Al-Karaki and A.E. Kamal. Routing techniques in wireless sensor networks: A

survey. IEEE Journal on Wireless Communications, 11:6–28, 2004.

[13] A.D. Wood and J.A. Stankovic. Denial of service in sensor networks. In IEEE Computer,

volume 35, pages 54–62, 2002.

221

[14] G. Noubir and G. Lin. Low-power dos attacks in data wireless lans and countermeasures.

In Mobile Computing and Communications Review (IEEE MobiHoc), volume 7, pages

29–30, 2003.

[15] C. Karlof and D. Wagner. Secure routing in wireless sensor networks: Attacks and

countermeasures. Elsevier’s AdHoc Networks Journal, Special Issue on Sensor Network

Applications and Protocols, 1(2-3):293–315, 2003.

[16] J. Lopez and J. Zhou. Wireless Sensor Network Security. IOS Press, Fairfax, VA, USA,

cryptology and information security series (cis) edition, 2008.

[17] J. Deng, R. Han, and S. Mishra. The performance evaluation of intrusion-tolerant rout-

ing in wireless sensor networks. In IEEE 2nd International Workshop on Information

Processing in Sensor Networks (IPSN’03), Palo Alto, CA, USA, pages 349–364, 2003.

[18] J. Deng, R. Han, and S. Mishra. Insens: Intrusion-tolerant routing for wireless sensor

networks. Computer Communications, 29(2):216–230, 2006.

[19] J. Deng, R. Han, and S. Mishra. INSENS: Intrusion-tolerant routing for wireless sensor

networks. In Elsevier Journal on Computer Communications, Special Issue on Dependable

Wireless Sensor Networks, volume 29, pages 216–230, 2005.

[20] T.R. Andel and A. Yasinsac. The invisible node attack revisited. In Proceedings of IEEE

SoutheastCon, pages 686–691, 2007.

[21] L. Tobarra, D. Cazorla, F. Cuartero, G. Diaz, and E. Cambronero. Model checking wire-

less sensor network security protocols: Tinysec + leap. In Proceedings of the First IFIP

International Conference on Wireless Sensor and Actor Networks (WSAN’07), pages 95–

106. IFIP Main Series, Springer, 2007.

[22] L. Tobarra, D. Cazorla, and F. Cuartero. Formal analysis of sensor network encryption

protocol (snep). In IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems

(MASS 2007), Piscataway, NJ, USA, pages 767–772, Pisa (Italy), 2007.

[23] J. Guttman. Foundations of security analysis and design of lncs. In Foundations of

Security Analysis and Design, volume 2171, pages 197–261. Springer, 2000.

[24] S. Yang and J. Baras. Modeling vulnerabilities of ad hoc routing protocols. In Proceedings

of ACM Workshop Security of Ad Hoc and Sensor Networks, pages 12–20, 2003.

[25] J. Marshall. An analysis of the secure routing protocol for mobile ad hoc network route

discovery: Using intuitive reasoning and formal verification to identify flaws. Msc thesis,

Dept. of Computer Science, Florida State University, 2003.

222

[26] Y. Hanna. Slede: lightweight verification of sensor network security protocol implementa-

tions. In Proceedings of the doctoral symposium of the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE 2007).Dubrovnik, Croatia, pages 591–594, 2007.

[27] Y. Hanna, H. Rajan, and W. Zhang. Slede: a domain-specific verification framework

for sensor network security protocol implementations. In Proceedings of the first ACM

conference on Wireless network security (WISEC ’08), Alexandria, VA, USA, pages 109–

118, 2008.

[28] Y. Hanna and H. Rajan. Slede: Framework for automatic verification of sensor network

security protocol implementations. In Proceedings of the 31st International Conference

on Software Engineering (ICSE 2009), Vancouver, Canada, pages 109–118, 2009.

[29] A. Gergely. Secure Routing in Multi-hop Wireless Networks. Ph.d. dissertation, Labora-

tory of Cryptography and Systems Security (CrySyS), Budapest University of Technology

and Economics, 2009.

[30] L. Buttyan and I. Vajda. Towards provable security for ad hoc routing protocols. In

Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor networks (SASN),

Washington DC, USA, pages 94–105, 2004.

[31] G. Acs, L. Buttyan, and I. Vajda. Provably secure on-demand source routing in mobile ad

hoc networks. In IEEE Transactions on Mobile Computing, volume 5, pages 1533–1546,

2006.

[32] G. Acs, L. Buttyan, and I. Vajda. Provable security of ondemand distance vector routing

in ad hoc networks. In Proceedings of ESAS2005, LCNS3813, Berlin, pages 113–127.

Springer, 2005.

[33] G. Acs, L. Buttyan, and I. Vajda. Modelling adversaries and security objectives for

routing protocols in wireless sensor networks. In The Fourth ACM Workshop on Security

of Ad Hoc and Sensor Networks (SASN 2006), Alexandria, VA, 2006.

[34] G. Acs, L. Buttyan, and I. Vajda. The security proof of a link-state routing protocol for

wireless sensor networks. In IEEE Internatonal Conference on Mobile Adhoc and Sensor

Systems, 2007 (MASS 2007), pages 1–6, 2007.

[35] L. Mao and J. Ma. Towards provably secure on-demand distance vector routing in manet.

In International Conference on Computational Intelligence and Security (CIS ’08), vol-

ume 1, pages 417–420, 2008.

223

[36] M. Burmester, T. V. Le, and B. de Medeiros. Towards provable security for ubiquitous

applications. In Proceedings 11th Australasian Conference on Information Security and

Privacy (ACISP 2006), Melbourne, Australia, pages 295–312, 2006.

[37] T.R. Andel and A.Yasinsac. Automated evaluation of secure route discovery in MANET

protocols. In K. Havelund, R. Majumdar, and J. Palsberg, editors, Proceedings of 15th

International SPIN Workshop on Model Checking Software (SPIN 2008), Los Angeles,

CA, USA, volume 5156 of Lecture Notes in Computer Science, pages 26–41. Springer,

2008.

[38] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar. SPINS: Security Protocols for

Sensor Networks. In ACM Mobile Computing and Networking, volume 8, pages 521–534,

2002.

[39] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In Proceedings

of the First Workshop on Sensor Networks and Applications (WSNA), Atlanta, GA, pages

22–31, 2002.

[40] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-

cation protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii

International Conference on System Sciences (HICSS’00), page 223, 2000.

[41] F. Ye, A. Chen, S. Liu, and L. Zhang. A scalable solution to minimum cost forwarding in

large sensor networks. In Proceedings of the tenth International Conference on Computer

Communications and Networks (ICCCN), Scottsdale, AZ, USA, pages 304–309, 2001.

[42] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust

communication paradigm for sensor networks. In Mobile Computing and Networking,

pages 56–67, 2000.

[43] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient security mechanisms for large-scale

distributed sensor networks. In ACM Conference on Computer and Communications

Security (CCS’03), pages 62–72, 2003.

[44] C. Karlof, Y. Li, and J. Polastre. Arrive: Algorithm for robust routing in volatile environ-

ments. Technical Report UCBCSD-02-1233, Computer Science Department, University

of California at Berkeley, 2003.

[45] K. Sanzgiri, B. Dahill, B.N. Levine, C. Shields, and E.M. Belding-Royer. A secure routing

protocol for ad hoc networks. In Proceedings of the 10th IEEE International Conference

on Network Protocols (ICNP 02), pages 78–89, 2002.

224

[46] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A.Chandrakasan. Physical

layer driven protocol and algorithm design for energy-efficient wireless sensor networks.

Commun. ACM, pages 272 – 287, 2001.

[47] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dis-

semination in wireless sensor networks. In Proceedings of the 5th Annual ACM/IEEE

International Conference on Mobile Computing and Networking (MobiCom’99) , Seattle,

Washington, USA, pages 174–185, 1999.

[48] S. Hedetniemi and A. Liestman. A survey of gossiping and broadcasting in communication

networks. In Networks, number 4, pages 319–349, 1988.

[49] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and

routing for ad hoc heterogeneous sensor networks. The International Journal of High

Performance Computing Applications, 16(3):293–313, 2002.

[50] R.C. Shah and J. Rabaey. Energy-aware routing for low energy ad hoc sensor networks. In

Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC

’02), volume 1, pages 350–355, 2002.

[51] N. Sadagopan, B. Krishnamachari, and A. Helmy. The acquire mechanism for efficient

querying in sensor networks. In Proceedings of the First IEEE International Workshop

on Sensor Network Protocols and Applications (SNPA’03), pages 149–155, 2003.

[52] C. Schurgers and M.B. Srivastava. Energy efficient routing in wireless sensor networks.

In Proceedings of IEEE Military Communications Conference on Communications for

Network-Centric Operations (MILCOM): Creating the Information Force, McLean, VA,

volume 1, pages 357–361, 2001.

[53] S. Kim, S.H. Son, J.A. Stankovic, S. Li, and Y. Choi. Safe: A data dissemination protocol

for periodic updates in sensor networks. In 23rd International Conference on Distributed

Computing Systems Workshops (ICDCSW’03), pages 228–234, 2003.

[54] S. Lindsey and C.S. Raghavendra. Pegasis: Power-efficient gathering in sensor information

systems. In IEEE Aerospace Conference Proceedings, volume 3, pages 1125–1130, 2002.

[55] A. Manjeshwar and D.P. Agrawal. Teen: a routing protocol for enhanced efficiency in

wireless sensor networks. In 2nd International Workshop on Parallel and Distributed

Computing Issues in Wireless Networks and Mobile Computing (WPIM 2002), page 195,

2002.

[56] A. Manjeshwar and D.P. Agrawal. Apteen: A hybrid protocol for efficient routing and

comprehensive information retrieval in wireless sensor networks. In Proceedings of the

225

International Parallel and Distributed Processing Symposium (IPDPS 2002), pages 195–

202, 2001.

[57] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor

networks. In ACM SIGMOD Record archive, volume 31, pages 9–18, 2002.

[58] B. Karp and H.T. Kung. Gpsr: greedy perimeter stateless routing for wireless networks. In

Proceedings of the 6th Annual ACM/IEEE international conference on Mobile computing

and networking (MobiCom ’00), pages 243–254, New York, NY, USA, 2000. ACM Press.

[59] Y.-B. Ko and N.H. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. In

Mobile Computing and Networking, pages 66–75, 1998.

[60] Stefano Basagni, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A

distance routing effect algorithm for mobility (dream). In Proceedings of the 4th annual

ACM/IEEE international conference on Mobile computing and networking (MOBICOM

’98), Dallas, Texas, USA, pages 76–84, 1998.

[61] V. Rodoplu and T.H. Ming. Minimum energy mobile wireless networks. IEEE Journal

of Selected Areas in Communications, 17(8):1333–1344, 1999.

[62] L. Li and J. Y Halpern. Minimum energy mobile wireless networks revisited. In Proceed-

ings of IEEE International Conference on Communications (ICC’01), Helsinki, Finland,

volume 1, pages 278–283, 2001.

[63] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad

hoc routing. In Proceedings of the 7th Annual ACM/IEEE International Conference on

Mobile Computing and Networking (MobiCom’01), Rome, Italy, pages 70–84, 2001.

[64] Y. Yu, D. Estrin, and R. Govindan. Geographical and energy-aware routing: A recursive

data dissemination protocol for wireless sensor networks. Technical Report UCLA-CSD

TR-01-0023, Computer Science Department, UCLA, Los Angeles, California, USA, 2001.

[65] W.H. Liao, Y.C. Tseng, K.L Lo, and J.P. Sheu. Geogrid: A geocasting protocol for mobile

ad hoc networks based on grid. Journal of Internet Technology, 1(2):196–213, 2002.

[66] Shibo Wu and K. Selcuk Candan. Gmp: Distributed geographic multicast routing in wire-

less sensor networks. In Proceedings of 26th IEEE International Conference on Distributed

Computing Systems (ICDCS), page 49, 2006.

[67] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization of a

wireless sensor network. IEEE Journal of Personal Communications, 7(5):16–27, 2000.

226

[68] H. Tian, J.A. Stankovic, L. Chenyang, and T. Abdelzaher. Speed: A stateless protocol

for real-time communication in sensor networks. In Proceedings of the 23rd International

Conference on Distributed Computing Systems 2003, pages 46–55, 2003.

[69] E. Felemban, C.-G. Lee, E. Ekici, R. Boder, and S. Vural. Probabilistic qos guaran-

tee in reliability and timeliness domains in wireless sensor networks. In Proceedings of

the 24th Annual Joint Conference of the IEEE Computer and Communications Society

(INFOCOM 2005), volume 4, pages 2646–2657, 2005.

[70] K. Akkaya and M. Younis. An energy-aware qos routing protocol for wireless sensor

networks. In Proceedings of the 23rd International Conference on Distributed Computing

Systems 2003, pages 710–715, 2003.

[71] F. Ye, S. Lu, and L. Zhang. Gradient broadcast: A robust, long-lived large sensor network.

2001. http://irl.cs.ucla.edu/papers/grab-tech-report.ps.

[72] J.H. Chang and L. Tassiulas. Maximum lifetime routing in wireless sensor networks. In

Proceedings of the Advanced Telecommunications and Information Distribution Research

Program (ATIRP’2000),College Park, MD, pages 22–31, 2000.

[73] M. Bhardwaj, T. Garnett, and A.P. Chandrakasan. Upper bounds on the lifetime of sensor

networks. In IEEE International Conference on Communications (ICC 2001), Helsinki,

Finland, volume 3, pages 785–790, 2001.

[74] A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor networks. In Com-

munications of the ACM (2004), number 6, pages 53–57, 2004.

[75] M. Spreitzer and M. Theimer. Providing location information in a ubiquitous computing

environment. In Proceedings of 14th ACM Symposium on Operating System Principles

(SIGOPS), volume 27, pages 270–283, 1993.

[76] B. Hoh and M. Gruteser. Protecting location privacy through path confusion. In Pro-

cedings of First IEEE/CreateNet International Conference on Security and Privacy for

Emerging Areas in Communication Networks (SecureComm), pages 194–205, 2005.

[77] M. Gruteser, G. Schelle, A. Jain, R. Han, and D. Grunwald. Privacy aware location sensor

networks. In Proceedings of 9th USENIX Workshop on Hot Topics in Operating Systems

(HotOS IX) ,Lihue, Hawaii, volume 9, page 28, 2003.

[78] J. Al-Muhtadi, R. Campbell, A. Kapadia, M. D. Mickunas, and S. Yi. Routing through

the mist: Privacy preserving communication in ubiquitous computing environments. In

Proceedings of 22nd IEEE International Conference of Distributed Computing Systems

(ICDCS), pages 74–83, 2002.

227

[79] J. Deng, R. Han, and S. Mishra. Countermeasures against traffic analysis attacks in

wireless sensor networks. In First IEEE/CreateNet Conference on Security and Privacy

for Emerging Areas in Communication Networks (SecureComm), pages 113–124, 2005.

[80] J. Deng, R. Han, and S. Mishra. Decorrelating wireless sensor network traffic to inhibit

traffic analysis attacks. In Elsevier Pervasive and Mobile Computing Journal, Special

Issue on Security in Wireless Mobile Computing Systems, volume 2, pages 159–186, 2006.

[81] J. Deng, R. Han, and S. Mishra. Countermeasures against traffic analysis attacks in

wireless sensor networks. In Proceedings of the First International Conference on Security

and Privacy for Emerging Areas in Communications Networks (SECURECOMM’05),

pages 113–126, Washington, DC, USA, 2005. IEEE Computer Society.

[82] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk. Enhancing source-location privacy

in sensor network routing. In Proceedings of the 25th IEEE International Conference

on Distributed Computing Systems (ICDCS’05), pages 599–608, Washington, DC, USA,

2005. IEEE Computer Society.

[83] C. Ozturk, Y. Zhang, and W. Trappe. Source-location privacy in energy-constrained

sensor network routing. In ACM Workshop on Security of Ad Hoc and Sensor Networks

(2004), pages 88–93, 2004.

[84] Y. Yang, M. Shao, S. Zhu, B. Urgaonkar, and G. Cao. Towards event source unobserv-

ability with minimum network traffic in sensor networks. In Proceedings of the first ACM

conference on Wireless network security (WISEC 2008), Alexandria, VA, USA, pages

77–88, 2008.

[85] Y.X. Schwiebert and L.W. Shi. Preserving source location privacy in monitoring-based

wireless sensor networks. In Processing of 2nd International Workshop on Security in

Systems and Networks (SSN), in conjnuction with Parallel and Distributed Processing

Symposium (IPDPS), page 8, 2006.

[86] P. Kyasanur and N. Vaidya. Selfish mac layer misbehavior in wireless networks. In IEEE

Transactions on Mobile Computing, volume 4, pages 502–516, 2005.

[87] S. Buchegger and J.-Y. Le Boudec. Performance analysis of the confidant protocol: Co-

operation of nodes - fairness in distributed ad-hoc networks. In Proceedings of Mobile

Internet Workshop. Informatik 2002. Dortmund, Germany, pages 226–236, 2002.

[88] X. Huang, H. Zhai, and Y. Fang. Lightweight robust routing in mobile wireless sensor

networks. In Military Communications Conference (MILCOM 2006), pages 1–6, 2006.

228

[89] L. Buttyan and J.-P. Hubaux. Enforcing service availability in mobile ad-hoc wans. In

Proceedings of IEEE/ACM First Annual Workshop on Mobile and Ad Hoc Networking

and Computing, (MobiHOC 2000), Boston, MA, USA, pages 87–96, 2000.

[90] Levente Buttyan and Jean-Pierre Hubaux. Stimulating cooperation in self-organizing

mobile ad hoc networks. MONET Journal of Mobile Networks, 9(5):579–592, 2003.

[91] J. Deng, R. Han, and S. Mishra. Defending against path-based dos attacks in wireless

sensor networks. In Proceedings of the 3rd ACM Workshop on Security of Ad Hoc and

Sensor Networks (SASN 2005), Alexandria, VA, USA, pages 89–96, 2005.

[92] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing misbehaviour in mobile ad

hoc networks. In Proceedings of the Conference on Mobile Computing and Networking,

pages 255–265, 2000.

[93] B. Przydatek, D. Song, and A. Perrig. Sia: Secure information aggregation in sensor

networks. In The First ACM Conference on Embedded Networked Sensor Systems (SenSys

’03), Los Angeles, California, USA, pages 255–265, 2003.

[94] F. Ye, H. Luo, S. Lu, and L. Zhang. Statistical en-route filtering of injected false data in

sensor networks. In Proceedings of INFOCOM ’04, pages 2446–2457, 2004.

[95] S. Zhu, S. Setia, S. Jajodia, and P. Ning. An interleaved hop-by-hop authentication

scheme for filtering of injected false data in sensor networks. In IEEE Symposium on

Security and Privacy (2004), Oakland, CA, USA, pages 259–271, 2004.

[96] L. Lamport. Password authentication with insecure communication. In Communications

of the ACM, number 11, pages 770–772, 1981.

[97] Y.-C. Hu, A. Perrig, and D.B. Johnson. Ariadne: A secure on-demand routing protocol

for ad hoc networks. In Proceedings of the Eighth Annual International Conference on

Mobile Computing and Networking (MobiCom 2002), pages 12–23, 2002.

[98] M. A. Hamid, M.-O. Rashid, and C.S. Hong. Routing security in sensor network: Hello

flood attack and defense. In IEEE ICNEWS 2006, Dhaka, 2006.

[99] R. Poovendran and L. Lazos. A graph theoretic framework for preventing the wormhole

attack in wireless ad hoc networks. Wireless Networks, 13(1):27–59, 2007.

[100] K. B. Rasmussen and S. Capkun. Implications of radio fingerprinting on the security

of sensor networks. In International Conference on Security and Privacy for Emerging

Areas in Communications Networks (SecureComm), 2007.

[101] L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. Technical

report, Proceedings of NDSS, 2004.

229

[102] S. Capkun, L. Buttyan, and J. Hubaux. Sector: Secure tracking of node encounters in

multi-hop wireless networks. In Proceedings of Security of Ad Hoc and Sensor Networks

(SASN ’03), pages 21–32, 2003.

[103] L. Buttyan, L. Dora, and I. Vajda. Statistical wormhole detection in sensor networks. In

Security and Privacy in Ad-hoc and Sensor Networks, volume 3813/2005, pages 128–141.

Springer Berlin / Heidelberg, 2005.

[104] W. Wang, J. Kong, B. Bhargava, and M. Gerla. Visualization of wormholes in sensor

networks. In Proceedings of the 2004 ACM workshop on Wireless security (WISE), pages

51–60, 2004.

[105] R. Maheshwari, J. Gao, and S.R. Das. Detecting wormhole attacks in wireless networks

using connectivity information. In 26th IEEE International Conference on Computer

Communications (INFOCOM 2007), pages 107–115, 2007.

[106] I. Khalil, S. Bagchi, and N. B. Shroff. LITEWORP: A lightweight countermeasure for

the wormhole attack in multihop wireless networks. In International Conference on De-

pendable Systems and Networks (DSN), pages 612–621, 2005.

[107] I. Khalil, S. Bagchi, and N.B. Shroff. Liteworp: Detection and isolation of the wormhole

attack in static multihop wireless networks. In Computer Networks, number 13, pages

3750–3772, 2007.

[108] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H Rubens. Mitigating

byzantine attacks in adhoc wireless networks. Technical Report Version 1, Department

of Computer Science, Johns Hopkins University, 2004.

[109] Y. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against wormhole attacks

in wireless ad hoc networks. In Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2003), volume 3, pages 1976–1986,

2003.

[110] W. Wang, B. Bhargava, Y. Lu, and X. Wu. Defending against wormhole attacks in mobile

ad hoc networks. In Wiley Journal on Wireless Communications and Mobile Computing,

volume 5, pages 1–21, 2005.

[111] F. Nait-Abdesselam, B. Bensaou, and T. Taleb. Detecting and avoiding wormhole attacks

in wireless ad hoc networks. In IEEE Communications Magazine, volume 4, page 46, 2008.

[112] H. Alzaid, S. Abanmi, S. Kanhere, and C. T. Chou. Detecting wormhole attacks in

wireless sensor networks. Technical Report, Computer Science and Engineering School -

UNSW, The Network Research Laboratory, 2006.

230

[113] J. Eriksson, S.V. Krishnamurthy, and M. Faloutsos. Truelink: A practical countermeasure

to the wormhole attack in wireless networks. In Proceedings of the 14th IEEE International

Conference on Network Protocols, 2006. ICNP ’06., pages 75–84, 2006.

[114] N. Sastry, U. Shankar, and D. Wagner. Secure verification of location claims. In ACM

Workshop on Wireless Security (WISE03), pages 1–10, 2003.

[115] R. Shokri, M. Poturalski, G. Ravot, P. Papadimitratos, and J.-P. Hubaux. A practical

secure neighbor verification protocol for wireless sensor networks. In Proceedings of the

Second ACM Conference on Wireless Network Security (WISEC ’09), Zurich, Switzer-

land, pages 193–200. ACM New York, NY, USA, 2009.

[116] R. Shokri, M. Poturalski, G. Ravot, P. Papadimitratos, and J.-P. Hubaux. A low-cost

secure neighbor verification protocol for wireless sensor networks. Technical Report EPFL

LCA-REPORT-2008-020, Laboratory for Computer Communications and Applications

EPFL, Switzerland, 2008.

[117] E. C.-H. Ngai, J. Liu, , and M.R. Lyu. An efficient intruder detection algorithm against

sinkhole attacks in wireless sensor networks. In Computer Communications, volume 30,

pages 2353–2364, 2007.

[118] A.A. Pirzada and C.S. Mcdonald. Circumventing sinkholes and wormholes in ad-hoc wire-

less networks. In Proceedings of International Workshop on Wireless Ad-hoc Networks,

London, England, Kings College, London, 2005.

[119] J. Douceur. The sybil attack. Book Series Lecture Notes in Computer Science,

2429/2002:251–260, 2002.

[120] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor networks: Analysis

defenses. In Proceedings of IEEE International Conference on Information Processing in

Sensor Networks (IPSN ’04), Berkeley, California, USA, pages 259–268, 2004.

[121] L.A. Martucci, M. Kohlweiss, C. Andersson, and A. Panchenko. Self-certified sybil-free

pseudonyms. In Proceedings of the first ACM conference on Wireless network security

(WISEC ’08), Alexandria, VA, USA, pages 154–159, 2008.

[122] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor net-

works. In Proceedings of the IEEE Security and Privacy Symposium 2003, pages 197–213.

Berkeley, CA, United States, 2003. Institute of Electrical and Electronics Engineers Inc,

2003.

[123] L. Eschenauer and V. Gligor. A key management scheme for distributed sensor networks.

In Proceedings of the 9th ACM Conference on Computer and Communication Security

(CCS-02), Washington DC, pages 41–47, 2002.

231

[124] Y.-C. Hu, A. Perrig, and D.B. Johnson. Rushing attacks and defense in wireless ad hoc

network routing protocols. In Proceedings of the ACM Workshop on Wireless Security

(WISE ’03), pages 30–40, 2003.

[125] J. McCune, E. Shi, A. Perrig, and M. Reiter. Detection of denial-of-message attacks on

sensor network broadcasts. In IEEE Symposium on Security and Privacy, pages 64–78,

2005.

[126] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An on-demand secure routing

protocol resilient to byzantine failures. In ACM Workshop on Wireless Security (WiSe

’02), 2002.

[127] R.L. Pickholtz, D.L. Schilling, and L.B. Milstein. Theory of spread spectrum communi-

cationsa tutorial. In IEEE Transactions on Communications, number 5, pages 855–884,

1982.

[128] R. Negi and A. Perrig. Jamming analysis of mac protocols. Carnegie Mellon Technical

Memo, 2003.

[129] R. Mallik, R. Scholtz, and G. Papavassilopoulos. Analysis of an on-off jamming situation

as a dynamic game. In IEEE Trans. Commun., number 8, pages 1360–1373, 2000.

[130] J. Jung, V. Paxson, A.W. Berger, and H. Balakrishnan. Fast portscan detection using

sequential hypothesis testing. In Proceedings IEEE Symposium on Security and Privacy,

pages 211–225, 2004.

[131] V. Coskun, E. Cayirci, A. Levi, and S. Sancak. Quarantine region scheme to mitigate

spam attacks in wireless-sensor networks. In IEEE Trans. on Mobile Computing, volume 5,

pages 1074–1086, 2006.

[132] Y. W. Law, L. van Hoesel, J. Doumen, P. Hartel, and P. Havinga. Energy efficient link-

layer jamming attacks against wireless sensor network mac protocols. In Proceedings of

the 3rd ACM workshop on Security of ad hoc and sensor networks (SASN), Alexandria,

VA, USA, pages 76–88, 2005.

[133] Y.W. Law, P.H. Hartel, J.I. den Hartog, and P.J.M. Havinga. Link-layer jamming attacks

on s-mac. In Proceedings of EWSN, pages 217–225, 2005.

[134] T.X. Brown, J.E. James, and A. Sethi. Jamming and sensing of encrypted wireless ad

hoc networks. In Proceedings of the Seventh ACM international symposium on Mobile ad

hoc networking and computing, Florence, Italy, pages 120–130, 2006.

[135] A.D. Wood, J.A. Stankovic, and S.H. Son. Jam: A jammed-area mapping service for

sensor networks. In 24th IEEE International Real-Time Systems Symposium (RTSS),

pages 286–297, 2003.

232

[136] M. Cagalj, S. Capkun, and J.-P. Hubaux. Wormhole-based anti-jamming techniques in

sensor networks. In IEEE Trans. on Mobile Computing, volume 6, pages 100–114, 2007.

[137] W. Xu, T. Wood, W. Trappe, and Y. Zhang. Channel surfing and spatial retreats:

defenses against wireless denial of service. In Proceedings Workshop on Wireless Security

(WiSe ’04), pages 80–89, 2004.

[138] W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibility of launching and detecting

jamming attacks in wireless networks. In Proceedings of MobiHoc. ACM Press, pages

46–57, 2005.

[139] E. Ayday, Farshid D., and F. Fekri. Location-aware security services for wireless sensor

networks using network coding. In 26th IEEE International Conference on Computer

Communications (INFOCOM ’07), Anchorage, AK, USA, pages 1226–1234. IEEE, 2007.

[140] G. Zhou, C. Huang, T. Yan, T. He, J.A. Stankovic, and T. F. Abdelzaher. Mmsn: Multi-

frequency media access control for wireless sensor networks. In Proceedings of the 25th

IEEE International Conference on Computer Communications (INFOCOM), pages 1–13,

2006.

[141] A. Wood, J. Stankovic, and G. Zhou. Deejam: Defeating energy-efficient jamming in ieee

802.15.4-based wireless networks. In 4th Annual IEEE Communications Society Confer-

ence on Sensor, Mesh and Ad Hoc Communications and Networks,(SECON ’07), pages

60–69, 2007.

[142] M. Li, I. Koutsopoulos, and R. Poovendran. Optimal jamming attacks and network

defense policies in wireless sensor networks. In 26th IEEE International Conference on

Computer Communications (INFOCOM ’07),Anchorage, AK, USA, pages 1307–1315,

2007.

[143] J. M. McCune, E. Shi, A. Perrig, and M. K. Reiter. Detection of denial of message attacks

on sensor network broadcasts. In Proceedings IEEE Symposium on Security and Privacy,

pages 64–78, 2005.

[144] G. Lin and G. Noubir. On link-layer denial of service in data wireless lans. In Journal

on Wireless Communications & Mobile Computing, volume 5, pages 273–284, 2005.

[145] Z. Karakehayov. Using reward to detect team black-hole attacks in wireless sensor net-

works. In Proceedings of the Workshop on Real-World Wireless Sensor Networks (RE-

ALWSN’05), Stockholm, Sweden, pages 74–78, 2005.

[146] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable multihop

routing in sensor networks. In The First ACM Conference on Embedded Networked Sensor

Systems (Sensys’03), Los Angeles, California, USA, pages 14–27, 2003.

233

[147] S. Marti, T.J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile

ad hoc networks. In Proceedings of the Sixth Annual International Conference on Mobile

Computing and Networking (Mobicom ’2000), Boston, MA, pages 255–265, 2000.

[148] A. A. Pirzada and C. McDonald. Establishing trust in pure ad-hoc networks. In Proceed-

ings of 27th Australasian Computer Science Conference (ACSC’04), pages 47–54, 2004.

[149] I. Khalil, S. Bagchi, and C. Nita-Rotaru. Dicas: Detection, diagnosis and isolation of

control attacks in sensor networks. In First International Conference on Security and

Privacy for Emerging Areas in Communications Networks (SecureComm ’05), pages 89–

100, 2005.

[150] J. Deng, R. Han, and S. Mishra. A robust and lightweight routing mechanism for wireless

sensor networks. In Wireless Ad Hoc Networks and Sensor Networks, 2004.

[151] J. Yin and S. K. Madria. A hierarchical secure routing protocol against black hole attacks

in sensor networks. In IEEE International Conference on Sensor Networks, Ubiquitous,

and Trustworthy Computing (2006)., volume 1, pages 376 – 383, 2006.

[152] P. Papadimitratos and Z. J. Haas. Secure message transmission in mobile ad hoc networks.

In Adhoc Networks, pages 193–209, 2003.

[153] J. Staddon, D. Balfanz, and G. Durfee. Efficient tracing of failed nodes in sensor networks.

In Proceedings of the 1st ACM international workshop on Wireless sensor networks and

applications (WSNA’02), Atlanta, Georgia, USA, pages 122–130, 2002.

[154] Y. Huang and W. Lee. A cooperative intrusion detection system for ad hoc networks. In

Proceedings of the 1st ACM workshop on Security of ad hoc and sensor networks (SASN

02), Fairfax, Virginia, pages 135–147, 2002.

[155] O. Obst. Distributed fault detection using a recurrent neural network. In International

Conference on Information Processing in Sensor Networks (IPSN 2009), San Francisco,

CA, USA, pages 373–374, 2009.

[156] J. Staddon, D. Balfanz, and G. Durfee. Efficient tracing of failed nodes in sensor networks.

In ACM WSNA’02,Atlanta, GA, pages 122–130, 2002.

[157] S. Tanachaiwiwat, P. Dave, R. Bhindwale, and A. Helmy. Secure locations: Routing

on trust and isolating compromised sensors in location-aware sensor networks. In ACM

SenSys’03, Los Angeles, California, pages 324–325, 2003.

[158] M. Ding, D. Chen, K. Xing, and X. Cheng. Localized fault-tolerant event boundary

detection in sensor networks. In Proceedings of 24th Annual Joint Conference of the IEEE

234

Computer and Communications Societies (INFOCOM 2005), volume 2, pages 902–913,

2005.

[159] T. Clouqueur, K.K. Saluja, and P. Ramanathan. Fault tolerance in collaborative sensor

networks for target detection. In IEEE Transactions on Computers, number 3, pages

320–333, 2004.

[160] B. Krishnamachari and S. Iyengar. Distributed bayesian algorithms for fault-tolerant

event region detection in wireless sensor networks. In IEEE Transactions on Computers,

number 3, pages 241–250, 2004.

[161] K.K. Chintalapudi and R. Govindan. Localized edge detection in sensor fields. In IEEE

Ad Hoc Networks Journal, pages 59–70, 2003.

[162] Y. Zhao, R. Govindan, and D. Estrin. Residual energy scans for monitoring wireless

sensor networks. In IEEE WCNC’02, Florida, pages 78–89, 2002.

[163] S.J. Lee and M. Gerla. Split multipath routing with maximally disjoint paths in ad hoc

networks. In IEEE International Conference on Communications (ICC 2001), volume 10,

pages 3201–3205, 2001.

[164] D.P. Vincent and M.S. Corson. A highly adaptive distributed routing algorithm for mobile

wireless networks. In INFOCOM, pages 1405–1413, 1997.

[165] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient energy-efficient

multipath routing in wireless sensor networks. In ACM SIGMOBILE Mobile Computing

and Communications Review, volume 5, pages 11–25, 2001.

[166] S. De, C. Qiao, and H. Wu. Meshed multipath routing: An efficient strategy in sensor

networks. In Proceedings of the Wireless Communications and Networking Conference,

IEEE (WCNC’03), volume 3, pages 481–497, 2003.

[167] D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc wireless networks. In

Imielinski and Korth, editors, Mobile Computing, volume 353, pages 153–181. Kluwer

Academic Publishers, 1996.

[168] Nasipuri and S. Das. On-demand multipath routing for mobile ad-hoc networks. In 8th

International Conference on Computer Communications and Networks (ICCN 99), pages

64–70, 1999.

[169] S. Dulman, T. Nieberg, J. Wu, and P. Havinga. Trade-off between traffic overhead and

reliability in multipath routing for wireless sensor networks. In IEEE Proceedings of the

Wireless Communications and Networking Conference (WCNC’03), New Orleans, LA,

USA, volume 3, pages 1918–1922, 2003.

235

[170] S. Yi, P. Naldurg, and R. Kravets. Security-aware ad-hoc routing for wireless networks.

In Proceedings of the ACM international Conference on Mobile ad hoc networking and

computing (MobiHoc ’01), pages 299–302, 2001.

[171] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer security architecture for

wireless sensor networks. In Proceedings of the 2nd international conference on Embedded

networked sensor systems (SenSys ’04). NewYork, NY, USA: ACM Press, pages 162–175,

2004.

[172] ZigBee Alliance. Zigbee specification. Technical Report Document 053474r06, Version

1.0, ZigBee Alliance, 2005.

[173] M. Luk, G. Mezzour, A. Perrig, and V. Gligor. Minisec: A secure sensor network com-

munication architecture. In 6th International Symposium on Information Processing in

Sensor Networks,(IPSN ’07) Cambridge, MA,USA, pages 479–488, 2007.

[174] R.D. Pietro, L.V. Mancini, Y.W. Law, S. Etalle, and P. Havinga. LKHW: A directed

diffusion-based secure multicast scheme for wireless sensor networks. In 2003 International

Conference on Parallel Processing Workshops (ICPPW’03), pages 397–406, 2003.

[175] P. Traynor, R. Kumar, H.B. Saad, G. Cao, and T.L. Porta. Liger: Implementing efficient

hybrid security mechanisms for heterogeneous sensor networks. In Proceedings of the 4th

international conference on Mobile systems, applications and services (MOBISYS ’06),

Uppsala, Sweden, pages 15–27, 2006.

[176] P. Traynor, H. Choi, G. Cao, S. Zhu, and T. La-Porta. Establishing pair-wise keys in

heterogeneous sensor networks. In Proceedings of the 25th IEEE International Conference

on Computer Communications (INFOCOM 2006). Barcelona, Spain, pages 1–12, 2006.

[177] P. Traynor, R. Kumar, H. Choi, G. Cao, S. Zhu, and T. La Porta. Efficient hybrid

security mechanisms for heterogeneous sensor networks. In IEEE Transactions on Mobile

Computing, volume 6, pages 663–677, 2007.

[178] P.E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure dissemination of code

updates in sensor networks. In 26th IEEE International Conference on Distributed Com-

puting Systems (ICDCS 2006), pages 53–62, 2006.

[179] J. Huang, J. Buckingham, and R. Han. Level key infrastructure for secure and efficient

group communication in wireless sensor networks. In First IEEE/CreateNet Conference

on Security and Privacy for Emerging Areas in Communication Networks (SecureComm),

pages 249–260, 2005.

236

[180] N. Gui, R. Chen, Z. Cai, J. Hu, and Z. Cheng. A secure routing and aggregation protocol

with low energy cost for sensor networks. In International Symposium on Information

Engineering and Electronic Commerce, 2009 (IEEC ’09), pages 79–84, 2009.

[181] Y. Yang, X. Wang, S. Zhu, and G. Cao. Sdap: a secure hop-by-hop data aggregation

protocol for sensor networks. In Proceedings of the Seventh ACM international symposium

on Mobile ad hoc networking and computing (MobiHoc ’06), Florence, Italy, pages 356–

367, 2006.

[182] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus. Tinypk: Securing

sensor networks with public key technology. Workshop on Security of Ad Hoc and Sensor

Networks, pages 59–64, 2004.

[183] G. Gaubatz, J.-P. Kaps, E. Ozturk, and B. Sunar. State of the art in ultra-low power

public key cryptography for wireless sensor networks. In 2nd IEEE International Work-

shop on Pervasive Computing and Communication Security, Kauai Island, Hawaii, USA,

2005.

[184] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C. Shantz. Sizzle:

A standards-based end-to-end security architecture for the embedded internet. In Third

Annual IEEE International Conference on Pervarsive Computing and Communications

(PerCom), Kauai Island, Hawaii,USA, pages 247–256, 2005.

[185] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz. Comparing elliptic curve

cryptography and rsa on 8-bit cpus. In International Workshop on Cryptographic Hard-

ware and Embedded Systems, volume 31, pages 119–132, 2004.

[186] D.J. Malan, M. Welsh, and M.D. Smith. A public-key infrastructure for key distribution

in tinyos based on elliptic curve cryptography. In IEEE International Conference on

Sensor and Ad Hoc Communications and Networks, pages 71–81, 2004.

[187] A. Liu and P. Ning. Tinyecc: A configurable library for elliptic curve cryptography in

wireless sensor networks. In In International Conference on Information Processing in

Sensor Networks (IPSN ’08), pages 245–256, 2008.

[188] G. Bertoni, L. Breveglieri, and M. Venturi. ECC Hardware Coprocessors for 8-bit Systems

and Power Consumption Considerations. In Third International Conference on Informa-

tion Technology: New Generations (ITNG 2006), pages 573–574, 2006.

[189] B. Doyle, S. Bell, A. F. Smeaton, K. McCusker, and N. E. OConnor. Security con-

siderations and key negotiation techniques for power constrained sensor networks. The

Computer Journal, 49:443–453, 2006.

237

[190] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab. Nanoecc: Testing the

limits of elliptic curve cryptography in sensor networks. In Wireless sensor networks,

volume LNCS 4913, pages 305–320, 2008.

[191] L.B. Oliveira, M. Scott, J. Lopez, and R. Dahab. Tinypbc: Pairings for authenticated

identity-based non-interactive key distribution in sensor networks. In 5th International

Conference on Networked Sensing Systems (INSS 2008), pages 173–180, 2008.

[192] Q. Dong, D. Liu, and P. Ning. Pre-authentication filters: providing dos resistance for

signature-based broadcast authentication in sensor networks. In Proceedings of the first

ACM conference on Wireless network security (WISEC ’08), Alexandria, VA, USA, pages

2–12, 2008.

[193] B. Driessen, A. Poschmann, and C. Paar. Comparison of innovative signature algorithms

for wsns. In Proceedings of the first ACM conference on Wireless network security (WISEC

’08), Alexandria, VA, USA, pages 30–35, 2008.

[194] L. Yuan and G. Qu. Design space exploration for energy-efficient secure sensor network.

In The IEEE International Conference on Application-Specific Systems Architectures and

Processors, pages 88–97, 2002.

[195] S. Chang, S. Shieh, W.W. Lin, and C. Hsieh. An efficient broadcast authentication scheme

in wireless sensor networks. In Proceedings of the 2006 ACM Symposium on information

(ASIACCS ’06), Computer and Communications Security (Taipei, Taiwan), pages 311–

320. CM Press, New York, NY, 2006.

[196] G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison

Wesley, 2004.

[197] G. Behrmann, A. David, K.G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and M. Hen-

driks. UPPAAL 4.0. In Proceedings of the 3rd International Conference on the Quan-

titative Evaluation of SysTems (QEST) 2006, IEEE Computer Society, pages 125–126,

2006.

[198] M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model

checker. In Proceedings PAPM/PROBMIV’01 Tools Session, pages 7–12, 2001.

[199] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with

PRISM: A hybrid approach. International Journal on Software Tools for Technology

Transfer (STTT), 6(2):128–142, 2004.

[200] M. Kwiatkowska, G. Norman, and D. Parker. Prism 2.0: A tool for probabilistic model

checking. In Proceedings 1st International Conference on Quantitative Evaluation of Sys-

tems (QEST’04), pages 322–323. IEEE Computer Society Press, 2004.

238

[201] M. Naughton, D. Heffernan, and G. Leen. Use of timed automata models in the design

of real-time control network elements. In ETFA ’06, pages 433–436, 2006.

[202] G. Leen and D. Heffernan. Modelling and formal verification of a time-triggered network

protocol. In International Conference on Systems and International Conference on Mobile

Communications and Learning Technologies (ICN/ICONS/MCL 2006), pages 178–189,

2006.

[203] A. Fehnker, M. Fruth, and A. McIver. Graphical modeling for simulation and formal

analysis of wireless network protocols. Technical Report : MeMot, 2007.

[204] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel. Glonemo: global and accurate

formal models for the analysis of ad-hoc sensor networks. In Proceedings of the first inter-

national conference on Integrated internet ad hoc and sensor networks table of contents,

Nice, France, number 3, pages 138–145, 2006.

[205] T.F. Smit. Verification of sensor network models using uppaal. Master’s thesis, Infor-

matics and Mathematical Modelling, Technical University of Denmark, DTU, Richard

Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2005. Supervised by Prof. Jan

Madsen.

[206] J.A. Stine and G. de Veciana. A paradigm for quality-of-service in wireless ad hoc net-

works using synchronous signaling and node states. IEEE Journal on Selected Areas in

Communications, 22:1301 – 1321, 2004.

[207] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of the IEEE

802.11 wireless local area network protocol. In H. Hermanns and R. Segala, editors, Pro-

ceedings 2nd Joint International Workshop on Process Algebra and Probabilistic Methods,

Performance Modeling and Verification (PAPM/PROBMIV’02), volume 2399 of LNCS,

pages 169–187. Springer, 2002.

[208] O. Sharma, J. Lewis, A. Miller, A. Dearle, D. Balasubramaniam, R. Morrison, and J. Sven-

tek. Towards verifying correctness of wireless sensor network applications using insense

and spin. In 16th International SPIN Workshop on Model Checking of Software (SPIN

2009), Grenoble, France, pages 223–240. Springer 2009, 2009.

[209] M.S. Silva, F. Martins, L. Lopes, and J. Barros. A calculus for sensor networks. Technical

Report : CoRR abs/cs/0612093, 2006.

[210] F. Heidarian, J. Schmaltz, and F.W. Vaandrager. Analysis of a clock synchronization

protocol for wireless sensor networks. In 16th International Symposium of Formal Methods

(FM2009), Eindhoven, the Netherlands. Lecture Notes in Computer Science. Springer,

2009.

239

[211] M. Schuts, F. Zhu, F. Heidarian, and F.W. Vaandrager. Modelling clock synchronization

in the chess gmac wsn protocol. QFM, Eindhoven, 2009.

[212] D. Camara, A.A.F. Loureiro, and F. Filali. Methodology for formal verification of routing

protocols for ad hoc wireless networks. In IEEE Global Telecommunications Conference,

2007 (GLOBECOM ’07), pages 705–709, 2007.

[213] A. Fehnker, L. van Hoesel, and A. Mader. Modelling and verification of the lmac protocol

for wireless sensor networks. In IFM, pages 253–272, 2007.

[214] W. Henderson and S. Tron. Verification of the minimum cost forwarding protocol for

wireless sensor networks. In 11th IEEE International Conference Emerging Technologies

and Factory Automation, Prague, 2006.

[215] R. Cardell-Oliver. Why flooding is unreliable (extended version). Technical Report UWA-

CSSE-04-001, CSSE, University of Western Australia, 2001.

[216] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of manet simulators. In Principles

of Mobile Computing 2002, Toulouse, France, 2002.

[217] P. Downey and R. Cardell-Oliver. Evaluating the impact of limited resource on the

performance of flooding in wireless sensor networks. In International Conference on

Dependable Systems and Networks (2004), pages 785 – 794, 2004.

[218] J. Heidemann, F. Silva, and D. Estrin. Matching data dissemination algorithms to ap-

plication requirements. In Proceedings of the first international conference on Embedded

Networked Sensor Systems (ACM Press), pages 218–229, 2003.

[219] B. Krishnamachari and J. Heidemann. Application-specific modelling of information rout-

ing in wireless sensor networks. In USC ISI Technical report isi-tr-676, 2003.

[220] S. Nair and R. Cardell-Oliver. Formal specification and analysis of performance varia-

tion in sensor network diffusion protocols. In Proceedings of the 7th ACM international

symposium on Modeling, analysis and simulation of wireless and mobile systems, pages

170–173, 2004.

[221] L. Lamport. The temporal logic of actions. In ACM Transactions on Programming

Languages and Systems, number 3, pages 872–923, 1994.

[222] M. Abadi and L. Lamport. Conjoining specifications. In ACM Transactions on Program-

ming Languages and Systems, number 3, pages 507–534, 1995.

[223] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In Proceedings

of the SCS Communication Networks and Distributed Systems Modeling and Simulation

Conference (CNDS 2002), San Antonio, TX, USA, pages 27–31, 2002.

240

[224] M. Burmester and B. de Medeiros. Towards provable security for route discovery protocols

in mobile ad hoc networks. In ACM Transacions on Mobile Computing, 2009.

[225] Y.-C. Hu, A. Perrig, and D. Johnson. Efficient security mechanisms for routing protocols.

In Proceedings of Network and Distributed System Security Symp. (NDSS’03), pages 57–

73, 2003.

[226] N. Asokan M.G. Zapata. Securing ad hoc routing protocols. In Proc of WiSe’02, Atlanta,

Georgia, USA, pages 1–10, 2002.

[227] T.R. Andel and A. Yasinsac. Automated security analysis of ad hoc routing protocols.

In Proceedings of the Foundations of Computer Security and Automated Reasoning for

Security Protocol Analysis (FCS-ARSPA’07), Wroclaw, Poland, pages 9–26, 2007.

[228] T.R. Andel and A. Yasinsac. Adaptive threat modeling for secure ad hoc routing protocols.

In Proceedings of 3rd International Workshop on Security and Trust Management (STM-

07), Dresden, Germany, volume 197, pages 3–14, 2008.

[229] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and scalable simulation

of entire TinyOS applications. In First ACM Conference on Embedded Networked Sensor

Systems (Sensys03), pages 126–137, 2003.

[230] D. Gay, M. Welsh, P. Levis, E. Brewer, R. von Behren, and D. Culler. The nesC language:

A holistic approach to networked embedded systems. In Proceedings of Programming

Language Design and Implementation (PLDI), pages 1–11, 2003.

[231] R. Baldwin and R. Rivest. The RC5, RC5-CBC, RC5-CBC-Pad, and RC5-CTS algo-

rithms. Technical report, Department of Computer Science, Rice University, 1996.

[232] Y.W. Law, S. Dulman, S. Etalle, and P. Havinga. Assessing security-critical energy-

efficient sensor networks. CTIT technical reports series 02-18 (TR-CTIT), 2003.

[233] J.L. Hill, R. Szewczyk, A. Woo, S. Hollar, D.E. Culler, and K.S.J. Pister. System ar-

chitecture directions for networked sensors. In Proceedings of Architectural Support for

Programming Languages and Operating Systems (ASPLOS IX), pages 93–104, 2000.

[234] A.-S.K. Pathan, H.-W. Lee, and C.S. Hong. Security in wireless sensor networks: Issues

and challenges. In Proceedings of 8th IEEE ICACT 2006, Phoenix Park, Korea, volume 2,

pages 1043–1048, 2006.

[235] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Raeed- a formally evaluated

routing protocol for wsn against dos attacks. 2010.

241

[236] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Formal specifications of denial of

service attacks in wireless sensor networks. Submitted at Pervasive and Mobile Computing

Journal, 2010.

[237] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. An innovative solution for the

ina and wormhole attack in wireless sensor networks (wsns). 2010.

[238] K. Saghar, W. Henderson, and D. Kendall. Formal modelling and analysis of routing

protocol security in wireless sensor networks. In PGNET ’09, pages 73–78, 2009.

[239] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Formal modelling of a ro-

bust wireless sensor network routing protocol. In NASA/ESA Conference on Adaptive

Hardware and Systems (AHS-2010), 2010.

[240] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Applying formal modelling

to detect dos attacks in wireless medium. In IEEE, IET International Symposium on

COMMUNICATION SYSTEMS, NETWORKS AND DIGITAL SIGNAL PROCESSING

NASA/ESA(CSNDSP 2010), 2010.

[241] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Vulnerability of insens to denial

of service attacks. 2010.

[242] K. Saghar, W. Henderson, D. Kendall, and A. Bouridane. Automatic detection of black

hole attack in wireless network routing protocols. 2010.

[243] D. Dolev and A. Yao. On the security of public key protocols. In IEEE Transactions on

Information Theory, volume 29, pages 198–208, 1983.

[244] K. Fall and K. Varadhan. Ns-2: Network simulator-2. Technical report, UC Berkeley,

LBL, USC/ISI, and Xerox PARC, 2007.

[245] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel simulation of large-

scale wireless networks. In Proceedings of the 12th Workshop on Parallel and Distributed

Simulations - PADS ’98, pages 154–161, 1998.

[246] Andras Varga. Omnet++: Objective modular network testbed in c++. 2003.

[247] J. Polley, D. Blazakis, J. McGee, D. Rusk, and J.S. Baras. Atemu: A fine-grained sensor

network simulator. In First Annual IEEE Communications Society Conference on Sensor

and Ad Hoc Communications and Networks, (SECON ’04), pages 145–152, 2004.

[248] B.L. Titzer, D.K. Lee, and J. Palsberg. Avrora: scalable sensor network simulation

with precise timing. In Proceedings of the 4th international symposium on Information

processing in sensor networks (IPSN ’05), pages 477–482, Piscataway, NJ, USA, 2005.

IEEE Press.

242

[249] ILLINOIS. J-sim. The OHIO State University, 2007.

[250] Visaul Sense. University of California at Berkeley, 12 Febraury 2007.

[251] Sameer Sundresh, Wooyoung Kim, and Gul Agha. Sens: A sensor, environment and

network simulator. In 37th Annual Simulation Symposium (ANSS37), 2004.

[252] Alexander Kroeller, Dennis Pfisterer, Carsten Buschmann, Sandor P. Fekete, and Stefan

Fischer. Shawn: A new approach to simulating wireless sensor networks. Technical report,

2005. ”http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0502003”.

[253] L.F. Perrone and D. Nicol. A scalable simulator for tinyos applications. Proceedings of

the 2002 Winter Simulation Conference, 2002.

[254] Gyula Simon. Prowler : Probabilistic wireless network simulator. Vanderbilt University,

2004.

[255] Akos Ledeczi. Jprowler. DARPA, 2005.

[256] H. Lee, A. Cerpa, and P. Levis. Improving wireless simulation through noise modeling.

In IPSN ’07: Proceedings of the 6th international conference on Information processing

in sensor networks, pages 21–30. ACM Press, 2007.

243

