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Abstract

This paper presents analytical solution for vibration and buckling of functionally graded (FG) sandwich

beams using various quasi-3D theories, which consider effects of both shear and normal deformation.

Sandwich beams with FG skins-homogeneous core and homogeneous skins-FG core are considered.

By using the Hamilton’s principle, governing equations of motion are derived. Analytical solution is

presented, and the obtained results by various quasi-3D theories are compared with each other and

with the available solutions in the literature. The effects of normal strain, power-law indexes, skin-

core-skin thickness and slenderness ratios on vibration and buckling behaviour of sandwich beams are

investigated.
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1. Introduction

Sandwich structures have been widely used in automotive, marine and aerospace industries where

strong, stiff, and lightweight structures are required. Conventional sandwich structures, composed of

a soft core bonded to two thin and stiff skins, exhibit delamination problems at the interfaces between

layers. To overcome this problem, functionally graded (FG) sandwich structures are proposed due

to the gradual variation of material properties through their thickness. They commonly exist in

two types: FG skins-homogeneous core and homogeneous skins-FG core. With the wide application of

sandwich structures, understanding their vibration and buckling response using more accurate theories

becomes an important task. Due to shear deformation effects, the first-order shear deformation theory

and higher-order shear deformation theories are usually used in FG sandwich plates. First-order shear
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deformation theory ([1], [2]) assumes the constant shear strain distribution through the thickness and

thus, needs a shear correction factor in order to satisfy the stress-free boundary conditions on the

top and bottom surfaces of the plate. To avoid the use of a shear correction factor, various higher-

order shear deformation theories have been proposed ([3]-[11]). In these theories above, the transverse

displacement is considered to be independent of thickness coordinates, which means that the effect of

thickness stretching or normal deformation is neglected. This effect in FG plates was investigated by

Carrera et al. [12] using finite element approximations. The various higher-order shear and normal

deformable theories, which are also called quasi-3D theories, were proposed to analyse FG sandwich

plates by many researchers ([13]-[19]). However, there are limited papers using these theories for

FG sandwich beams. Carrera et al. [20] developed Carrera Unified Formulation, which included the

stretching effect, using various refined theories for FG beams. This formulation was latter on extended

for the free vibration of FG sandwich beams [21]. Based on the third-order beam theory, Vo et al.

[22] developed a simple quasi-3D theory for vibration and buckling of FG sandwich beams using finite

element model.

In this paper, various higher-order shear and normal deformation theories are developed for the

vibration and buckling analysis of FG sandwich beams. The effects of shear and normal deforma-

tion are included. Analytical solution is obtained for simply-supported sandwich beams. Numerical

studies are carried out and the obtained results by various quasi-3D theories, which are based on the

sinusoidal beam theory (SBT), hyperbolic beam theory (HBT), and exponential beam theory (EBT),

are compared with each other and with the available solutions in the literature. The effects of normal

strain, power-law indexes, skin-core-skin thickness and slenderness ratios on vibration and buckling

behaviour of sandwich beams are investigated.

2. FG sandwich beams

Consider a FG sandwich beam with length L and rectangular cross-section b×h, with b being the

width and h being the height. It should be noted that FG materials considered here work in elevated

or lowered temperature conditions. Besides, changes of material properties caused by temperature

and thermal expansions are neglected. For simplicity, Poisson’s ratio ν, is assumed to be constant.

The effective material properties, such as Young’s modulus E and mass density ρ, are assumed to vary

continuously through the beam depth by a power-law distribution [23] given as :

P (z) = (Pc − Pm)Vc + Pm (1)
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where subscripts m and c represent the metallic and ceramic constituents, Vc is the volume fraction

of the ceramic phase of the beam. Two different types of FG sandwich beam are studied:

2.1. Type A: sandwich beam with FG skins and homogeneous core

The core is fully ceramic and skins are graded from metal to ceramic (Fig. 1a). The volume

fraction of the ceramic phase is obtained by([3],[4]):

Vc =
(

z−ho
h1−h0

)k
, z ∈ [−h/2, h1] (bottom skin)

Vc = 1, z ∈ [h1, h2] (core)

Vc =
(

z−h3
h2−h3

)k
, z ∈ [h2, h/2] (top skin)

(2)

where k is the power-law index.

2.2. Type B: sandwich beam with homogeneous skins and FG core

The bottom skin is fully metal and the top skin is fully ceramic, while, the core layer is composed

of a FG material (Fig. 1b). The volume fraction of the ceramic phase is obtained by [15]:

Vc = 0, z ∈ [−h/2, h1] (bottom skin)

Vc =
(

z−h1
h2−h1

)k
, z ∈ [h1, h2] (core)

Vc = 1, z ∈ [h2, h/2] (top skin)

(3)

2.3. Constitutive Equations

The constitutive relations of a FG sandwich beam can be written as:
σx

σz

σxz

 =


C̄∗
11 C̄∗

13 0

C̄∗
13 C̄∗

11 0

0 0 C55




ϵx

ϵz

γxz

 (4)

where

C̄∗
11 = C̄11 −

C̄2
12

C̄22
=

E(z)

1− ν2
(5a)

C̄∗
13 = C̄13 −

C̄12C̄23

C̄22
=

E(z)ν

1− ν2
(5b)

C55 =
E(z)

2(1 + ν)
(5c)
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3. Theoretical Formulation

3.1. Kinematics

The present theory is based on the following displacement field:

U(x, z, t) = u(x, t)− zw′
b(x, t)− f(z)w′

s(x, t) (6a)

W (x, z, t) = wb(x, t) + ws(x, t) + g(z)wz(x, t) (6b)

where u,wb, ws and wz are four unknown displacements of mid-plane of the beam. Shape functions

f(z) and g(z) = 1− df(z)
dz are used to determine the distribution of the strain through the beam depth.

They are chosen to satisfy the stress-free boundary conditions on the top and bottom surfaces of the

beam, thus a shear correction factor is not required. Although many shape functions are available,

only the sinusoidal beam theory (SBT) based on Touratier [24], hyperbolic beam theory (HBT) based

on Soldatos [25] and exponential beam theory (EBT) based on Karama [26] are considered in this

study:

f(z) = z − h

π
sin(

πz

h
) for SBT (7a)

f(z) = z − h sinh(
z

h
) + z cosh(

1

2
) for HBT (7b)

f(z) = z − ze−2( z
h
)2 for EBT (7c)

The strains associated with the displacement field in Eq. (6) are as follows:

ϵx =
∂U

∂x
= u′ − zw′′

b − fw′′
s (8a)

ϵz =
∂W

∂z
= g′wz (8b)

γxz =
∂W

∂x
+

∂U

∂z
= g(w′

s + w′
z) (8c)

3.2. Variational Formulation

The variation of the strain energy can be stated as:

δU =

∫ l

0

∫ b

0

[∫ h/2

−h/2
(σxδϵx + σxzδγxz + σzg

′δwz)dz

]
dydx

=

∫ l

0

[
Nxδu

′ −M b
xδw

′′
b −M s

xδw
′′
s +Qxz(δw

′
s + δw′

z) +Rzδwz

]
)dx (9)

where Nx,M
b
x,M

s
x, Qxz and Rz are the stress resultants, defined as:

Nx =

∫ h/2

−h/2
σxbdz (10a)
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M b
x =

∫ h/2

−h/2
σxzbdz (10b)

M s
x =

∫ h/2

−h/2
σxfbdz (10c)

Qxz =

∫ h/2

−h/2
σxzgbdz (10d)

Rz =

∫ h/2

−h/2
σzg

′bdz (10e)

The variation of the potential energy by the axial force P0 can be written as:

δV = −
∫ l

0
P0

[
δw′

b(w
′
b + w′

s) + δw′
s(w

′
b + w′

s)
]
dx (11)

The variation of the kinetic energy can be expressed as:

δK =

∫ l

0

∫ b

0

[∫ h/2

−h/2
ρ(U̇δU̇ + Ẇ δẆ )dz

]
dydx

=

∫ l

0

[
δu̇(m0u̇−m1ẇb

′ −mf ẇs
′) + δẇb[m0(ẇb + ẇs) +mgẇz] + δẇb

′(−m1u̇+m2ẇb
′ +mfzẇs

′)

+ δẇs[m0(ẇb + ẇs) +mgẇz] + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′)

+ δẇz[mg(ẇb + ẇs) +mg2ẇz]
]
dx (12)

where

(m0,m1,m2) =

∫ h/2

−h/2
ρ(1, z, z2)bdz (13a)

(mf ,mfz,mf2) =

∫ h/2

−h/2
ρ(f, fz, f2)bdz (13b)

(mg,mg2) =

∫ h/2

−h/2
ρ(g, g2)bdz (13c)

By using Hamilton’s principle, the following weak statement is obtained:∫ t2

t1

(δK − δU − δV)dt = 0 (14a)∫ t2

t1

∫ l

0

[
δu̇(m0u̇−m1ẇb

′ −mf ẇs
′) + δẇb[m0(ẇb + ẇs) +mgẇz]

+δẇb
′(−m1u̇+m2ẇb

′ +mfzẇs
′) + δẇs[m0(ẇb + ẇs) +mgẇz]

+δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′) + δẇz[mg(ẇb + ẇs) +mg2ẇz]

+P0

[
δw′

b(w
′
b + w′

s) + δw′
s(w

′
b + w′

s)
]

−Nxδu
′ +M b

xδw
′′
b +M s

xδw
′′
s −Qxzδw

′
s −Rzδwz

]
dxdt = 0 (14b)
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3.3. Governing Equations

Integrating Eq. (14) by parts and collecting the coefficients of δu, δwb, δws and δwz, the governing

equations of motion can be obtained:

N ′
x = m0ü−m1ẅb

′ −mf ẅs
′ (15a)

M b
x
′′ − P0(w

′′
b + w′′

s ) = m0(ẅb + ẅs) +m1ü
′ −m2ẅb

′′ −mfzẅs
′′ +mgẅz (15b)

M s
x
′′ +Q′

xz − P0(w
′′
b + w′′

s ) = m0(ẅb + ẅs) +mf ü
′ −mfzẅb

′′ −mf2ẅs
′′ +mgẅz (15c)

Q′
xz −Rz = mg(ẅb + ẅs) +mg2ẅz (15d)

Substituting Eqs. (4) and (8) into Eq. (10), the stress resultants can be expressed in term of

displacements: 

Nx

M b
x

M s
x

Rz

Qxz


=



A B Bs X 0

D Ds Y 0

H Ys 0

Z 0

sym. As





u′

−w′′
b

−w′′
s

wz

w′
s + w′

z


(16)

where

(A,B,Bs, D,Ds,H, Z) =

∫ h/2

−h/2
C̄∗
11(1, z, f, z

2, fz, f2, g′2)bdz (17a)

As =

∫ h/2

−h/2
C55g

2bdz (17b)

(X,Y, Ys) =

∫ h/2

−h/2
C̄∗
13g

′(1, z, f)bdz (17c)

By substituting Eq. (16) into Eq. (15), the explicit form of the governing equations of motion can

be expressed:

Au′′ −Bw′′′
b −Bsw

′′′
s +Xw′

z = m0ü−m1ẅb
′ −mf ẅs

′ (18a)

Bu′′′ −Dwiv
b −Dsw

iv
s + Y w′′

z − P0(w
′′
b + w′′

s ) = m1ü
′ +m0(ẅb + ẅs)−m2ẅb

′′

− mfzẅs
′′ +mgẅz (18b)

Bsu
′′′ −Dsw

iv
b −Hwiv

s +Asw
′′
s + (As + Ys)w

′′
z − P0(w

′′
b + w′′

s ) = mf ü
′ +m0(ẅb + ẅs)−mfzẅb

′′

− mf2ẅs
′′ +mgẅz (18c)

−Xu′ + Y w′′
b + (As + Ys)w

′′
s +Asw

′′
z − Zwz = mg(ẅb + ẅs) +mg2ẅz (18d)
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4. Analytical solutions

The Navier solution procedure is used to determine the analytical solutions for a simply-supported

sandwich beam. The solution is assumed to be of the form:

u(x, t) =

∞∑
n=1

Un cosαx e
iωt (19a)

wb(x, t) =

∞∑
n=1

Wbn sinαx e
iωt (19b)

ws(x, t) =

∞∑
n=1

Wsn sinαx e
iωt (19c)

ws(x, t) =

∞∑
n=1

Wzn sinαx e
iωt (19d)

where α = nπ/L and Un,Wbn,Wsn and Wzn are the coefficients.

By substituting Eq. (19) into Eq. (18), the analytical solution can be obtained from the following

equations:


K11 K12 K13 K14

K22 − P0α
2 K23 − P0α

2 K24

K33 − P0α
2 K34

sym. K44

− ω2


M11 M12 M13 0

M22 M23 M24

M33 M34

sym. M44







Un

Wbn

Wsn

Wzn


=



0

0

0

0


(20)

where

K11 = Aα2; K12 = −Bα3; K13 = −Bsα
3; K14 = −Xα (21a)

K22 = Dα4; K23 = Dsα
4; K24 = Y α2 (21b)

K33 = Asα
2 +Hα4; K34 = (As + Ys)α

2; K44 = Asα
2 + Z (21c)

M11 = m0; M12 = −m1α; M13 = −mfα (21d)

M22 = m0 +m2α
2; M23 = m0 +mfzα

2; M24 = mg (21e)

M33 = m0 +mf2α2; M34 = mg; M44 = mg2 (21f)

5. Numerical Examples

The accuracy of the present theory is hereby demonstrated by various numerical examples discussed

in this section. FG sandwich beams made of Aluminum as metal (Al: Em = 70GPa, νm = 0.3, ρm =

7



2702kg/m3) and Alumina as ceramic (Al2O3: Ec = 380GPa, νc = 0.3, ρc = 3960kg/m3) with two

slenderness ratios, L/h = 5 and 20, are considered. The following dimensionless natural frequencies

and critical buckling loads are used:

ω =
ωL2

h

√
ρm
Em

(22a)

P cr = Pcr
12L2

Emh3
(22b)

Tables 1-8 show the fundamental natural frequencies and critical buckling loads of types A and B

for different values of power-law index, slenderness and skin-core-skin thickness ratio. The results are

compared with those obtained from zero normal strain models, which are based on third-order beam

theory (TBT) [27], higher-order beam theory (HOBT) [28] and from non-zero normal strain model,

which is based on TBT [22]. It can be observed from these tables that the present results agree very

well with the previous solutions for both zero normal strain and non-zero normal strain cases. It is

worthy of note that the inclusion of the normal strain results in an increase in the natural frequencies

and critical buckling loads. The results obtained by three higher-order shear deformation theories

considered in this study (SBT, HBT and EBT) are indeed very similar to each other. Moreover,

the maximum values were always obtained with EBT. As expected, for type A, when k = 0 (fully

ceramic beam, see Eq. (2)), fundamental natural frequencies and critical buckling loads are the

same irrespective of the beam configuration. However, for type B, when k = 0, which corresponds to

sandwich beam (see Eq. (3)), the results change with change in the beam configuration. The maximum

values are obtained with (1-8-1) and the minimum values with (2-1-1) configuration. As k increases,

these orders are changing and the minimum values are obtained from the (1-8-1) configuration at large

k values. For all configurations, it can be seen that the natural frequencies and critical buckling loads

decrease in a rapid manner with an increase in k. For type A, the decrease is much more significant in

the (2-1-2) configuration and least significant in the (1-8-1) configuration (Figs. 2a and 3a). However,

for type B, the variation is generally less pronounced and the maximum variation is recorded in the

(1-8-1) configuration (Figs. 2b and 3b). For all cases, the highest fundamental frequency and critical

buckling load value is obtained when k = 0, i.e the beam is fully ceramic for type A or the beam has

the highest portion of ceramic phase compared with others for type B. This behaviour is somewhat

expected since an increase in the power-law index value results in decrease in the elastic modulus. The

beam therefore becomes more flexible; buckles at much lower load, and the fundamental frequency

decreases. Figs. 3 and 4 show the effect of shear deformation on the fundamental frequencies and

critical buckling loads for varying L/h values. It can be seen that increase in L/h results in an increase

in the fundamental frequencies and critical buckling loads for both types. However, it should be noted

8



that although similar behaviour were obtained for both types A and B, the variation of frequency and

critical buckling load values between different beam configurations is more pronounced in type A than

type B.

Finally, the first three natural fundamental frequencies of (1-8-1) sandwich beams of types A and

B are presented in Tables 9 and 10 while Fig. 6 shows the corresponding mode shapes. It can be seen

again that all shear deformation beam theories give the same frequencies. For symmetric configuration

(1-8-1, type A), all vibration mode shapes show triply coupled mode (axial-shear-flexural), however, for

unsymmetric one (1-8-1, type B), fourfold coupled modes (axial-shear-flexural-stretching) are observed.

These fourfold modes highlight the effect of normal strain on the vibration and buckling of sandwich

beams.

6. Conclusions

Various quasi-3D theories for vibration and buckling of FG sandwich beams of two types, FG skins-

homogeneous core (type A) and homogeneous skins-FG core (type B), are developed. The equations

of motion are derived from Hamilton’s principle and analytical solution for simply supported beams

is presented. The effects of power-law index, slenderness and skin-core-skin thickness ratio on the

critical buckling loads and natural frequencies of FG sandwich beams are investigated. The following

points can be outlined from the present study:

1. The results obtained by three higher-order shear deformation theories considered in this study

(SBT, HBT and EBT) are indeed very similar to each other, and agree well with the existing

solutions.

2. The highest fundamental natural frequencies and critical buckling loads is obtained when power-law

index k = 0, i.e the beam is fully ceramic for type A or the beam has the highest portion of

ceramic phase compared with others for type B.

3. The increase of the power-law index leads to a decrease in the natural frequencies and critical

buckling loads for both types.

4. The inclusion of the normal strain results in an increase in the natural frequencies and critical

buckling loads for both types.
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Table 1: The fundamental natural frequencies  of FG sandwich beams (Type A, L/h=5).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1
0 TBT [27] ( 0z  ) 5.1528 5.1528 5.1528 5.1528 5.1528 5.1528

HOBT [28] ( 0z  ) 5.1528 5.1528 5.1528 5.1528 5.1528 -

SBT ( 0z  ) 5.1531 5.1531 5.1531 5.1531 5.1531 5.1531

HBT ( 0z  ) 5.1527 5.1527 5.1527 5.1527 5.1527 5.1527

EBT ( 0z  ) 5.1542 5.1542 5.1542 5.1542 5.1542 5.1542

Quasi-3D [22] (TBT, 0z  ) 5.1618 5.1618 5.1618 5.1618 5.1618 5.1618

Quasi-3D (SBT, 0z  ) 5.1665 5.1665 5.1665 5.1665 5.1665 5.1665

Quasi-3D (HBT, 0z  ) 5.1615 5.1615 5.1615 5.1615 5.1615 5.1615

Quasi-3D (EBT, 0z  ) 5.1789 5.1789 5.1789 5.1789 5.1789 5.1789

1 TBT [27] ( 0z  ) 3.7298 3.8187 3.8755 3.9896 4.1105 4.6795

HOBT [28] ( 0z  ) 3.7298 3.8206 3.8756 3.9911 4.1105 -

SBT ( 0z  ) 3.7303 3.8209 3.8759 3.9913 4.1104 4.6790

HBT ( 0z  ) 3.7297 3.8206 3.8755 3.9911 4.1106 4.6796

EBT ( 0z  ) 3.7311 3.8215 3.8764 3.9917 4.1105 4.6790

Quasi-3D [22] (TBT, 0z  ) 3.7369 3.8301 3.8830 4.0005 4.1185 4.6884

Quasi-3D (SBT, 0z  ) 3.7400 3.8349 3.8859 4.0046 4.1210 4.6909

Quasi-3D (HBT, 0z  ) 3.7366 3.8314 3.8827 4.0016 4.1183 4.6882

Quasi-3D (EBT, 0z  ) 3.7478 3.8425 3.8935 4.0120 4.1282 4.6989

5 TBT [27] ( 0z  ) 2.8439 2.9746 3.0181 3.1928 3.3771 4.3501

HOBT [28] ( 0z  ) 2.8440 2.9789 3.0181 3.1965 3.3771 -

SBT ( 0z  ) 2.8451 2.9796 3.0188 3.1970 3.3772 4.3492

HBT ( 0z  ) 2.8438 2.9788 3.0180 3.1964 3.3771 4.3502

EBT ( 0z  ) 2.8463 2.9804 3.0197 3.1976 3.3773 4.3487

Quasi-3D [22] (TBT, 0z  ) 2.8489 2.9912 3.0238 3.2087 3.3840 4.3589

Quasi-3D (SBT, 0z  ) 2.8526 3.0002 3.0271 3.2158 3.3864 4.3603

Quasi-3D (HBT, 0z  ) 2.8486 2.9944 3.0236 3.2115 3.3838 4.3588

Quasi-3D (EBT, 0z  ) 2.8609 3.0091 3.0349 3.2231 3.3926 4.3659

10 TBT [27] ( 0z  ) 2.7355 2.8669 2.8808 3.0588 3.2356 4.2776

HOBT [28] ( 0z  ) 2.7356 2.8715 2.8809 3.0629 3.2357 -

SBT ( 0z  ) 2.7369 2.8723 2.8817 3.0635 3.2359 4.2767

HBT ( 0z  ) 2.7353 2.8714 2.8807 3.0628 3.2356 4.2777

EBT ( 0z  ) 2.7384 2.8732 2.8828 3.0642 3.2362 4.2762

Quasi-3D [22] (TBT, 0z  ) 2.7400 2.8839 2.8860 3.0757 3.2422 4.2864

Quasi-3D (SBT, 0z  ) 2.7438 2.8939 2.8896 3.0839 3.2449 4.2876

Quasi-3D (HBT, 0z  ) 2.7397 2.8872 2.8858 3.0788 3.2420 4.2863

Quasi-3D (EBT, 0z  ) 2.7524 2.9037 2.8979 3.0919 3.2515 4.2929
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Table 2: The fundamental natural frequencies  of FG sandwich beams (Type A, L/h=20).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0

TBT [27] ( 0z  ) 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603

HOBT [28] ( 0z  ) 5.4603 5.4603 5.4603 5.4603 5.4603 -

SBT ( 0z  ) 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603

HBT ( 0z  ) 5.4603 5.4603 5.4603 5.4603 5.4603 5.4603

EBT ( 0z  ) 5.4604 5.4604 5.4604 5.4604 5.4604 5.4604

Quasi-3D [22] (TBT, 0z  ) 5.4610 5.4610 5.4610 5.4610 5.4610 5.4610

Quasi-3D (SBT, 0z  ) 5.4650 5.4650 5.4650 5.4650 5.4650 5.4650

Quasi-3D (HBT, 0z  ) 5.4610 5.4610 5.4610 5.4610 5.4610 5.4610

Quasi-3D (EBT, 0z  ) 5.4771 5.4771 5.4771 5.4771 5.4771 5.4771

1

TBT [27] ( 0z  ) 3.8768 3.9774 4.0328 4.1602 4.2889 4.9233

HOBT [28] ( 0z  ) 3.8768 3.9775 4.0328 4.1603 4.2889 -

SBT ( 0z  ) 3.8768 3.9776 4.0328 4.1603 4.2889 4.9233

HBT ( 0z  ) 3.8768 3.9775 4.0328 4.1603 4.2889 4.9233

EBT ( 0z  ) 3.8769 3.9776 4.0329 4.1603 4.2889 4.9233

Quasi-3D [22] (TBT, 0z  ) 3.8773 3.9822 4.0333 4.1641 4.2895 4.9239

Quasi-3D (SBT, 0z  ) 3.8800 3.9852 4.0360 4.1668 4.2921 4.9268

Quasi-3D (HBT, 0z  ) 3.8773 3.9822 4.0333 4.1641 4.2895 4.9240

Quasi-3D (EBT, 0z  ) 3.8875 3.9928 4.0435 4.1743 4.2997 4.9353

5

TBT [27] ( 0z  ) 2.9310 3.0773 3.1111 3.3028 3.4921 4.5554

HOBT [28] ( 0z  ) 2.9311 3.0776 3.1111 3.3030 3.4921 -

SBT ( 0z  ) 2.9311 3.0776 3.1111 3.3031 3.4921 4.5553

HBT ( 0z  ) 2.9310 3.0775 3.1111 3.3030 3.4921 4.5554

EBT ( 0z  ) 2.9312 3.0777 3.1112 3.3031 3.4921 4.5553

Quasi-3D [22] (TBT, 0z  ) 2.9314 3.0891 3.1115 3.3133 3.4926 4.5560

Quasi-3D (SBT, 0z  ) 2.9341 3.0943 3.1142 3.3171 3.4951 4.5582

Quasi-3D (HBT, 0z  ) 2.9314 3.0890 3.1115 3.3133 3.4926 4.5560

Quasi-3D (EBT, 0z  ) 2.9416 3.1030 3.1216 3.3244 3.5016 4.5647

10

TBT [27] ( 0z  ) 2.8188 2.9662 2.9662 3.1613 3.3406 4.4749

HOBT [28] ( 0z  ) 2.8188 2.9665 2.9662 3.1616 3.3406 -

SBT ( 0z  ) 2.8189 2.9665 2.9662 3.1616 3.3406 4.4749

HBT ( 0z  ) 2.8188 2.9665 2.9662 3.1615 3.3406 4.4749

EBT ( 0z  ) 2.8190 2.9666 2.9663 3.1616 3.3407 4.4748

Quasi-3D [22] (TBT, 0z  ) 2.8191 2.9786 2.9665 3.1732 3.3411 4.4755

Quasi-3D (SBT, 0z  ) 2.8217 2.9846 2.9694 3.1777 3.3437 4.4777

Quasi-3D (HBT, 0z  ) 2.8191 2.9785 2.9665 3.1732 3.3411 4.4756

Quasi-3D (EBT, 0z  ) 2.8292 2.9941 2.9771 3.1856 3.3505 4.4839
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Table 3: The fundamental natural frequencies  of FG sandwich beams (Type B, L/h=5).
k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1
0 TBT [27] ( 0z  ) - - - - - 4.6694

SBT ( 0z  ) 3.6637 3.5227 3.8162 3.6637 4.0698 4.6719

HBT ( 0z  ) 3.6620 3.5218 3.8146 3.6620 4.0689 4.6722

EBT ( 0z  ) 3.6655 3.5238 3.8179 3.6655 4.0709 4.6720

Quasi-3D [22] (TBT, 0z  ) - - - - - 4.6829

Quasi-3D (SBT, 0z  ) 3.7202 3.5894 3.8625 3.7202 4.1023 4.6872

Quasi-3D (HBT, 0z  ) 3.7126 3.5810 3.8570 3.7126 4.0996 4.6850

Quasi-3D (EBT, 0z  ) 3.7314 3.6009 3.8722 3.7314 4.1103 4.6953

1 TBT [27] ( 0z  ) - - - - - 3.8243

SBT ( 0z  ) 3.5466 3.4897 3.5878 3.5289 3.6640 3.8504

HBT ( 0z  ) 3.5458 3.4915 3.5871 3.5294 3.6635 3.8501

EBT ( 0z  ) 3.5476 3.4882 3.5888 3.5288 3.6649 3.8511

Quasi-3D [22] (TBT, 0z  ) - - - - - 3.8708

Quasi-3D (SBT, 0z  ) 3.6119 3.5559 3.6506 3.5928 3.7220 3.8962

Quasi-3D (HBT, 0z  ) 3.6039 3.5518 3.6434 3.5875 3.7162 3.8926

Quasi-3D (EBT, 0z  ) 3.6229 3.5629 3.6609 3.6013 3.7313 3.9042

5 TBT [27] ( 0z  ) - - - - - 3.4474

SBT ( 0z  ) 3.4860 3.4780 3.4822 3.4819 3.4889 3.4843

HBT ( 0z  ) 3.4866 3.4834 3.4840 3.4873 3.4922 3.4873

EBT ( 0z  ) 3.4858 3.4724 3.4709 3.4733 3.4746 3.4504

Quasi-3D [22] (TBT, 0z  ) - - - - - 3.5011

Quasi-3D (SBT, 0z  ) 3.5548 3.5393 3.5499 3.5398 3.5529 3.5351

Quasi-3D (HBT, 0z  ) 3.5481 3.5409 3.5454 3.5420 3.5512 3.5353

Quasi-3D (EBT, 0z  ) 3.5642 3.5407 3.5572 3.5410 3.5575 3.5386

10 TBT [27] ( 0z  ) - - - - - 3.4204

SBT ( 0z  ) 3.4782 3.4778 3.4734 3.4784 3.4791 3.4527

HBT ( 0z  ) 3.4792 3.4840 3.4763 3.4846 3.4843 3.4562

EBT ( 0z  ) 3.4775 3.4724 3.4709 3.4733 3.4746 3.4504

Quasi-3D [22] (TBT, 0z  ) - - - - - 3.4671

Quasi-3D (SBT, 0z  ) 3.5471 3.5371 3.5407 3.5325 3.5407 3.4952

Quasi-3D (HBT, 0z  ) 3.5412 3.5400 3.5378 3.5365 3.5420 3.4975

Quasi-3D (EBT, 0z  ) 3.5559 3.5372 3.5463 3.5320 3.5425 3.4971
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Table 4: The fundamental natural frequencies  of FG sandwich beams (Type B, L/h=20).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1
0 TBT [27] ( 0z  ) - - - - - 4.9141

SBT ( 0z  ) 3.8137 3.6806 3.9719 3.8137 4.2446 4.9142

HBT ( 0z  ) 3.8135 3.6805 3.9718 3.8135 4.2445 4.9142

EBT ( 0z  ) 3.8138 3.6806 3.9720 3.8138 4.2446 4.9142

Quasi-3D [22] (TBT, 0z  ) - - - - - 4.9196

Quasi-3D (SBT, 0z  ) 3.8697 3.7486 4.0162 3.8697 4.2728 4.9218

Quasi-3D (HBT, 0z  ) 3.8636 3.7405 4.0124 3.8636 4.2715 4.9198

Quasi-3D (EBT, 0z  ) 3.8797 3.7598 4.0246 3.8797 4.2801 4.9302

1 TBT [27] ( 0z  ) - - - - - 4.0462

SBT ( 0z  ) 3.7073 3.6878 3.7534 3.7176 3.8388 4.0478

HBT ( 0z  ) 3.7072 3.6879 3.7534 3.7177 3.8387 4.0478

EBT ( 0z  ) 3.7073 3.6877 3.7535 3.7176 3.8388 4.0478

Quasi-3D [22] (TBT, 0z  ) - - - - - 4.0874

Quasi-3D (SBT, 0z  ) 3.7736 3.7567 3.8168 3.7833 3.8967 4.0918

Quasi-3D (HBT, 0z  ) 3.7661 3.7505 3.8102 3.7772 3.8914 4.0887

Quasi-3D (EBT, 0z  ) 3.7844 3.7659 3.8270 3.7927 3.9058 4.0995

5 TBT [27] ( 0z  ) - - - - - 3.7363

SBT ( 0z  ) 3.6617 3.7226 3.6754 3.7377 3.7079 3.7388

HBT ( 0z  ) 3.6618 3.7230 3.6756 3.7382 3.7082 3.7391

EBT ( 0z  ) 3.6617 3.7222 3.6753 3.7373 3.7077 3.7387

Quasi-3D [22] (TBT, 0z  ) - - - - - 3.7871

Quasi-3D (SBT, 0z  ) 3.7327 3.7876 3.7458 3.7990 3.7748 3.7917

Quasi-3D (HBT, 0z  ) 3.7251 3.7840 3.7392 3.7963 3.7699 3.7894

Quasi-3D (EBT, 0z  ) 3.7432 3.7941 3.7554 3.8049 3.7828 3.7976

10 TBT [27] ( 0z  ) - - - - - 3.7387

SBT ( 0z  ) 3.6591 3.7351 3.6784 3.7548 3.7210 3.7410

HBT ( 0z  ) 3.6591 3.7356 3.6786 3.7553 3.7214 3.7413

EBT ( 0z  ) 3.6590 3.7346 3.6782 3.7544 3.7206 3.7408

Quasi-3D [22] (TBT, 0z  ) - - - - - 3.7825

Quasi-3D (SBT, 0z  ) 3.7304 3.7982 3.7487 3.8125 3.7862 3.7851

Quasi-3D (HBT, 0z  ) 3.7231 3.7954 3.7427 3.8109 3.7825 3.7848

Quasi-3D (EBT, 0z  ) 3.7408 3.8039 3.7576 3.8171 3.7928 3.7892
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Table 5: The critical buckling loads crP of FG sandwich beams (Type A, L/h=5).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1
0 TBT [27] ( 0z  ) 48.5959 48.5959 48.5959 48.5959 48.5959 48.5959

HOT [28] ( 0z  ) 48.5960 48.5960 48.5960 48.5960 48.5960 -

SBT ( 0z  ) 48.6037 48.6037 48.6037 48.6037 48.6037 48.6037

HBT ( 0z  ) 48.5960 48.5960 48.5960 48.5960 48.5960 48.5960

EBT ( 0z  ) 48.6253 48.6253 48.6253 48.6253 48.6253 48.6253

Quasi-3D [22] (TBT, 0z  ) 49.5906 49.5906 49.5906 49.5906 49.5906 49.5906

Quasi-3D (SBT, 0z  ) 49.6710 49.6710 49.6710 49.6710 49.6710 49.6710

Quasi-3D (HBT, 0z  ) 49.5890 49.5890 49.5890 49.5890 49.5890 49.5890

Quasi-3D (EBT, 0z  ) 49.8730 49.8730 49.8730 49.8730 49.8730 49.8730

1 TBT [27] ( 0z  ) 22.2108 23.5246 24.5596 26.3611 28.4447 38.7838

HOT [28] ( 0z  ) 22.2113 23.5246 24.5598 26.3609 28.4444 -

SBT ( 0z  ) 22.2185 23.5289 24.5641 26.3634 28.4429 38.7751

HBT ( 0z  ) 22.2100 23.5240 24.5590 26.3610 28.4450 38.7850

EBT ( 0z  ) 22.2289 23.5366 24.5715 26.3696 28.4450 38.7753

Quasi-3D [22] (TBT, 0z  ) 22.7065 24.0838 25.1075 26.9764 29.0755 39.6144

Quasi-3D (SBT, 0z  ) 22.7240 24.1010 25.1200 26.9890 29.0820 39.6290

Quasi-3D (HBT, 0z  ) 22.7070 24.0840 25.1090 26.9780 29.0780 39.6170

Quasi-3D (EBT, 0z  ) 22.7870 24.1650 25.1830 27.0540 29.1440 39.7230

5 TBT [27] ( 0z  ) 11.6676 13.0270 13.7212 15.7307 18.0914 32.7725

HOT [28] ( 0z  ) 11.6685 13.0272 13.7218 15.7307 18.0914 -

SBT ( 0z  ) 11.6778 13.0332 13.7286 15.7356 18.0927 32.7589

HBT ( 0z  ) 11.6670 13.0260 13.7210 15.7300 18.0910 32.7740

EBT ( 0z  ) 11.6888 11.8518 12.2782 14.2126 16.3846 31.5042

Quasi-3D [22] (TBT, 0z  ) 11.9301 13.3924 14.0353 16.1605 18.5092 33.4958

Quasi-3D (SBT, 0z  ) 11.9520 13.4250 14.0500 16.1800 18.5090 33.4820

Quasi-3D (HBT, 0z  ) 11.9300 13.3900 14.0360 16.1600 18.5110 33.5000

Quasi-3D (EBT, 0z  ) 12.0050 13.4830 14.0980 16.2280 18.5440 33.5260

10 TBT [27] ( 0z  ) 10.5348 11.8370 12.2605 14.1995 16.3783 31.5265

HOT [28] ( 0z  ) 10.5356 11.8372 12.2611 14.1995 16.3787 -

SBT ( 0z  ) 10.5464 11.8437 12.2691 14.2053 16.3811 31.5127

HBT ( 0z  ) 10.5340 11.8360 12.2600 14.1980 16.3780 31.5280

EBT ( 0z  ) 10.5588 11.8518 12.2782 14.2126 16.3846 31.5042

Quasi-3D [22] (TBT, 0z  ) 10.7689 12.1737 12.5393 14.5994 16.7574 32.2264

Quasi-3D (SBT, 0z  ) 10.7940 12.2120 12.5580 14.6260 16.7610 32.2090

Quasi-3D (HBT, 0z  ) 10.7680 12.1710 12.5390 14.5980 16.7590 32.2310

Quasi-3D (EBT, 0z  ) 10.8482 12.2747 12.6096 14.6788 16.7987 32.2462
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Table 6: The critical buckling loads crP of FG sandwich beams (Type A, L/h=20).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1
0 TBT [27] ( 0z  ) 53.2364 53.2364 53.2364 53.2364 53.2364 53.2364

HOT [28] ( 0z  ) 53.2364 53.2364 53.2364 53.2364 53.2364 -

SBT ( 0z  ) 53.2369 53.2369 53.2369 53.2369 53.2369 53.2369

HBT ( 0z  ) 53.2360 53.2360 53.2360 53.2360 53.2360 53.2360

EBT ( 0z  ) 53.2384 53.2384 53.2384 53.2384 53.2384 53.2384

Quasi-3D [22] (TBT, 0z  ) 53.3145 53.3145 53.3145 53.3145 53.3145 53.3145

Quasi-3D (SBT, 0z  ) 53.3920 53.3920 53.3920 53.3920 53.3920 53.3920

Quasi-3D (HBT, 0z  ) 53.3150 53.3150 53.3150 53.3150 53.3150 53.3150

Quasi-3D (EBT, 0z  ) 53.6250 53.6250 53.6250 53.6250 53.6250 53.6250

1 TBT [27] ( 0z  ) 23.4211 24.8796 25.9588 27.9540 30.2307 41.9004

HOT [28] ( 0z  ) 23.4212 24.8793 25.9588 27.9537 30.2307 -

SBT ( 0z  ) 23.4216 24.8796 25.9591 27.9539 30.2305 41.8997

HBT ( 0z  ) 23.4210 24.8790 25.9590 27.9540 30.2310 41.9010

EBT ( 0z  ) 23.4224 24.8801 25.9596 27.9543 30.2307 41.8997

Quasi-3D [22] (TBT, 0z  ) 23.4572 24.9697 25.9989 28.0412 30.2774 41.9639

Quasi-3D (SBT, 0z  ) 23.4880 25.0050 26.0320 28.0750 30.3130 42.0100

Quasi-3D (HBT, 0z  ) 23.4580 24.9690 25.9990 28.0410 30.2780 41.9640

Quasi-3D (EBT, 0z  ) 23.5760 25.0980 26.1260 28.1730 30.4160 42.1520

5 TBT [27] ( 0z  ) 12.0883 13.5523 14.2284 16.3834 18.8874 35.0856

HOT [28] ( 0z  ) 12.0885 13.5519 14.2285 16.3829 18.8874 -

SBT ( 0z  ) 12.0890 13.5522 14.2289 16.3832 18.8875 35.0846

HBT ( 0z  ) 12.0880 13.5520 14.2280 16.3830 18.8870 35.0860

EBT ( 0z  ) 12.0897 13.5527 14.2294 16.3836 18.8876 35.0841

Quasi-3D [22] (TBT, 0z  ) 12.1068 13.6717 14.2505 16.5069 18.9172 35.1400

Quasi-3D (SBT, 0z  ) 12.1280 13.7150 14.2750 16.5420 18.9420 35.1710

Quasi-3D (HBT, 0z  ) 12.1070 13.6690 14.2510 16.5050 18.9180 35.1410

Quasi-3D (EBT, 0z  ) 12.1890 13.7900 14.3410 16.6120 19.0100 35.2680

10 TBT [27] ( 0z  ) 10.9075 12.3084 12.6819 14.7525 17.0443 33.6843

HOT [28] ( 0z  ) 10.9074 12.3080 12.6819 14.7520 17.0445 -

SBT ( 0z  ) 10.9083 12.3084 12.6825 14.7523 17.0445 33.6833

HBT ( 0z  ) 10.9074 12.3078 12.6818 14.7518 17.0443 33.6845

EBT ( 0z  ) 10.9091 12.3089 12.6831 14.7528 17.0447 33.6827

Quasi-3D [22] (TBT, 0z  ) 10.9239 12.4256 12.7014 14.8807 17.0712 33.7367

Quasi-3D (SBT, 0z  ) 10.9430 12.4720 12.7250 14.9200 17.0960 33.7660

Quasi-3D (HBT, 0z  ) 10.9240 12.4230 12.7020 14.8780 17.0720 33.7370

Quasi-3D (EBT, 0z  ) 11.0004 12.5508 12.7898 14.9920 17.1635 33.8561
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Table 7: The critical buckling loads crP of FG sandwich beams (Type B, L/h=5).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0

TBT [27] ( 0z  ) - - - - - 38.6762

SBT ( 0z  ) 21.5362 19.2300 23.8978 21.5362 27.9418 38.6706

HBT ( 0z  ) 21.5160 19.2200 23.8770 21.5160 27.9280 38.6770

EBT ( 0z  ) 21.5593 19.2428 23.9206 21.5593 27.9580 38.6735

Quasi-3D [22] (TBT, 0z  ) - - - - - 39.5558

Quasi-3D (SBT, 0z  ) 22.4730 20.1690 24.8100 22.4730 28.8170 39.5700

Quasi-3D (HBT, 0z  ) 22.3890 20.0840 24.7470 22.3890 28.7890 39.5580

Quasi-3D (EBT, 0z  ) 22.5920 20.2820 24.9180 22.5920 28.9060 39.6700

1

TBT [27] ( 0z  ) - - - - - 22.9142

SBT ( 0z  ) 19.4881 18.0085 19.9376 18.5853 20.7812 22.9153

HBT ( 0z  ) 19.4790 18.0290 19.9300 18.5920 20.7750 22.9120

EBT ( 0z  ) 19.5004 17.9925 19.9490 18.5838 20.7913 22.9239

Quasi-3D [22] (TBT, 0z  ) - - - - - 23.7280

Quasi-3D (SBT, 0z  ) 20.4220 18.8730 20.8620 19.4560 21.6860 23.7630

Quasi-3D (HBT, 0z  ) 20.3420 18.8390 20.7890 19.4060 21.6260 23.7240

Quasi-3D (EBT, 0z  ) 20.5320 18.9340 20.9660 19.5350 21.7800 23.8470

5

TBT [27] ( 0z  ) - - - - - 16.8604

SBT ( 0z  ) 18.3794 17.2978 18.0311 17.1527 17.7056 16.9228

HBT ( 0z  ) 18.3860 17.3560 18.0520 17.2090 17.7420 16.9550

EBT ( 0z  ) 18.3763 17.2468 18.0145 17.1052 17.6753 16.9007

Quasi-3D [22] (TBT, 0z  ) - - - - - 17.6062

Quasi-3D (SBT, 0z  ) 19.2920 18.0770 18.9120 17.8950 18.5300 17.6010

Quasi-3D (HBT, 0z  ) 19.2310 18.1020 18.8750 17.9230 18.5220 17.6060

Quasi-3D (EBT, 0z  ) 19.3790 18.0790 18.9740 17.8970 18.5650 17.6310

10

TBT [27] ( 0z  ) - - - - - 16.2077

SBT ( 0z  ) 18.1939 17.1575 17.7665 16.8940 17.3365 16.1733

HBT ( 0z  ) 18.2060 17.2230 17.7990 16.9590 17.3920 16.2090

EBT ( 0z  ) 18.1856 17.1001 17.7383 16.8405 17.2879 16.1504

Quasi-3D [22] (TBT, 0z  ) - - - - - 16.7752

Quasi-3D (SBT, 0z  ) 19.0980 17.9110 18.6280 17.5920 18.1200 16.7560

Quasi-3D (HBT, 0z  ) 19.0450 17.9490 18.6080 17.6360 18.1410 16.7760

Quasi-3D (EBT, 0z  ) 19.1769 17.9011 18.6721 17.5789 18.1258 16.7735
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Table 8: The critical buckling loads crP of FG sandwich beams (Type B, L/h=20).

k Theory 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0

TBT [27] ( 0z  ) - - - - - 41.7477

SBT ( 0z  ) 22.6725 20.3528 25.1867 22.6725 29.6127 41.7468

HBT ( 0z  ) 22.6710 20.3520 25.1850 22.6710 29.6120 41.7470

EBT ( 0z  ) 22.6741 20.3537 25.1883 22.6741 29.6138 41.7469

Quasi-3D [22] (TBT, 0z  ) - - - - - 41.8917

Quasi-3D (SBT, 0z  ) 23.3630 21.1270 25.7760 23.3630 30.0400 41.9250

Quasi-3D (HBT, 0z  ) 23.2900 21.0370 25.7280 23.2900 30.0220 41.8940

Quasi-3D (EBT, 0z  ) 23.4830 21.2530 25.8830 23.4830 30.1400 42.0650

1

TBT [27] ( 0z  ) 24.6163

SBT ( 0z  ) 20.6491 19.4727 21.1659 19.9835 22.1389 24.6138

HBT ( 0z  ) 20.6480 19.4740 21.1650 19.9840 22.1390 24.6140

EBT ( 0z  ) 20.6499 19.4714 21.1667 19.9834 22.1396 24.6143

Quasi-3D [22] (TBT, 0z  ) - - - - - 25.1407

Quasi-3D (SBT, 0z  ) 21.4110 20.2210 21.9040 20.7110 22.8310 25.1740

Quasi-3D (HBT, 0z  ) 21.3260 20.1550 21.8280 20.6450 22.7690 25.1380

Quasi-3D (EBT, 0z  ) 21.5320 20.3190 22.0200 20.8120 22.9370 25.2690

5

TBT [27] ( 0z  ) - - - - - 18.8976

SBT ( 0z  ) 19.6406 19.1891 19.4486 19.1470 19.3616 18.8925

HBT ( 0z  ) 19.6410 19.1940 19.4500 19.1510 19.3640 18.8950

EBT ( 0z  ) 19.6404 19.1851 19.4474 19.1432 19.3593 18.8907

Quasi-3D [22] (TBT, 0z  ) - - - - - 19.4285

Quasi-3D (SBT, 0z  ) 20.4230 19.8780 20.2140 19.7950 20.0810 19.4460

Quasi-3D (HBT, 0z  ) 20.3410 19.8410 20.1440 19.7660 20.0290 19.4220

Quasi-3D (EBT, 0z  ) 20.5380 19.9460 20.3160 19.8550 20.1650 19.5060

10

TBT [27] ( 0z  ) - - - - - 18.4377

SBT ( 0z  ) 19.4974 19.1683 19.2869 19.0804 19.2022 18.4326

HBT ( 0z  ) 19.4980 19.1730 19.2890 19.0860 19.2060 18.4360

EBT ( 0z  ) 19.4968 19.1637 19.2848 19.0760 19.1984 18.4307

Quasi-3D [22] (TBT, 0z  ) - - - - - 18.8840

Quasi-3D (SBT, 0z  ) 20.2790 19.8350 20.0450 19.6850 19.8940 18.8860

Quasi-3D (HBT, 0z  ) 20.2000 19.8060 19.9810 19.6690 19.8560 18.8830

Quasi-3D (EBT, 0z  ) 20.3909 19.8948 20.1393 19.7331 19.9639 18.9269
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Table 9: The first three natural frequencies of (1-8-1) FG sandwich beams of Type A.

L/h Mode Theory 0k  1k  2k  5k  10k 

5
1 Quasi-3D (SBT, 0z  ) 5.1665 4.6909 4.5249 4.3603 4.2876

Quasi-3D (HBT, 0z  ) 5.1615 4.6882 4.5229 4.3588 4.2863

Quasi-3D (EBT, 0z  ) 5.1789 4.6989 4.5316 4.3659 4.2929

2 Quasi-3D (SBT, 0z  ) 17.9979 16.5734 16.0648 15.5559 15.3301

Quasi-3D (HBT, 0z  ) 17.9704 16.5638 16.0603 15.5554 15.3309

Quasi-3D (EBT, 0z  ) 18.0493 16.6017 16.0861 15.5715 15.3437

3 Quasi-3D (SBT, 0z  ) 34.5559 32.2016 31.3461 30.4860 30.1040

Quasi-3D (HBT, 0z  ) 34.4802 32.1808 31.3417 30.4949 30.1171

Quasi-3D (EBT, 0z  ) 34.6744 32.2585 31.3838 30.5077 30.1202

20 1 Quasi-3D (SBT, 0z  ) 5.4650 4.9268 4.7413 4.5582 4.4777

Quasi-3D (HBT, 0z  ) 5.4610 4.9240 4.7388 4.5560 4.4756

Quasi-3D (EBT, 0z  ) 5.4771 4.9353 4.7487 4.5647 4.4839

2 Quasi-3D (SBT, 0z  ) 21.6003 19.5040 18.7795 18.0636 17.7483

Quasi-3D (HBT, 0z  ) 21.5835 19.4928 18.7701 18.0555 17.7406

Quasi-3D (EBT, 0z  ) 21.6488 19.5376 18.8085 18.0889 17.7723

3 Quasi-3D (SBT, 0z  ) 47.6823 43.1601 41.5906 40.0369 39.3519

Quasi-3D (HBT, 0z  ) 47.6413 43.1356 41.5708 40.0209 39.3369

Quasi-3D (EBT, 0z  ) 47.7925 43.2342 41.6536 40.0911 39.4032
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Table 10: The first three natural frequencies of (1-8-1) FG sandwich beams of Type B.

L/h Mode Theory 0k  1k  2k  5k  10k 

5 1 Quasi-3D (SBT, 0z  ) 4.6872 3.8962 3.6676 3.5351 3.4952

Quasi-3D (HBT, 0z  ) 4.6850 3.8926 3.6639 3.5353 3.4975

Quasi-3D (EBT, 0z  ) 4.6953 3.9042 3.6751 3.5386 3.4971

2 Quasi-3D (SBT, 0z  ) 16.5703 13.7799 12.8270 12.0055 11.6626

Quasi-3D (HBT, 0z  ) 16.5597 13.7604 12.8125 12.0189 11.6832

Quasi-3D (EBT, 0z  ) 16.6007 13.8140 12.8550 12.0079 11.6608

3 Quasi-3D (SBT, 0z  ) 32.2196 26.8401 24.7562 22.6123 21.6531

Quasi-3D (HBT, 0z  ) 32.1917 26.7863 24.7201 22.6488 21.7014

Quasi-3D (EBT, 0z  ) 32.2838 26.9209 24.8193 22.6105 21.6464

20 1 Quasi-3D (SBT, 0z  ) 4.9218 4.0918 3.8738 3.7917 3.7851

Quasi-3D (HBT, 0z  ) 4.9198 4.0887 3.8698 3.7894 3.7848

Quasi-3D (EBT, 0z  ) 4.9302 4.0995 3.8817 3.7976 3.7892

2 Quasi-3D (SBT, 0z  ) 19.4851 16.1984 15.3158 14.9389 14.8801

Quasi-3D (HBT, 0z  ) 19.4772 16.1858 15.3000 14.9323 14.8816

Quasi-3D (EBT, 0z  ) 19.5185 16.2297 15.3470 14.9603 14.8941

3 Quasi-3D (SBT, 0z  ) 43.1217 35.8463 33.8263 32.8188 32.5808

Quasi-3D (HBT, 0z  ) 43.1032 35.8158 33.7916 32.8120 32.5925

Quasi-3D (EBT, 0z  ) 43.1962 35.9173 33.8952 32.8594 32.6054
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CAPTIONS OF FIGURES

Figure 1: Geometry and coordinate of a FG sandwich beam

Figure 2: Effect of power-law index k on fundamental frequency obtained from a quasi-3D (HBT, 0z  ).

Figure 3: Effect of power-law index k on critical buckling load obtained from a quasi-3D (HBT, 0z  ).

Figure 4: Effect of shear deformation on the fundamental frequency obtained from a quasi-3D (HBT, 0z 

).

Figure 5: Effect of shear deformation on the critical buckling loads obtained from a quasi-3D (HBT, 0z  ).

Figure 6: Vibration mode shapes of (1-8-1) sandwich beam (Types A and B, k=5, L/h=5) using a quasi-3D

(HBT, 0z  ).
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Figure 1: Geometry and coordinate of a FG sandwich beam.
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a) Type A

b) Type B

Figure 2: Effect of power-law index k on fundamental frequency obtained from a quasi-3D (HBT, 0z  ).
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a) Type A

b) Type B

Figure 3: Effect of power-law index k on critical buckling load obtained from a quasi-3D (HBT, 0z  ).
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a) Type A

b) Type B

Figure 4: Effect of shear deformation on the fundamental frequency obtained from a quasi-3D (HBT, 0z 

).
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a) Type A

b) Type B

Figure 5: Effect of shear deformation on the critical buckling loads obtained from a quasi-3D (HBT, 0z  ).
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a) First mode 1 = 4.3588

a) First mode 1 =3.5353

b) Second mode 2 = 15.5554 b) Second mode 2 = 12.0189
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c) Third mode 3 = 30.4949 c) Third mode 3 = 22.6488
Type A Type B

Figure 6: Vibration mode shapes of (1-8-1) sandwich beam (Types A and B, k=5, L/h=5) using a quasi-3D
(HBT, 0z  ).
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