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ABSTRACT

Molybdenum (Mo) thin films were deposited using radio frequency (RF) magnetron

sputtering, for application as a metal back contact material in “substrate configuration” thin

film solar cells. The variations of the electrical, morphological, and structural properties of

the deposited films with sputtering pressure, sputtering power and post-deposition annealing

were determined. The electrical conductivity of the Mo films was found to increase with

decreasing sputtering pressure and increasing sputtering power. X-ray diffraction data

showed that all the films had a (110) preferred orientation that became less pronounced at

higher sputtering power while being relatively insensitive to process pressure. The lattice

stress within the films changed from tensile to compressive with increasing sputtering power

and the tensile stress increased with increasing sputtering pressure. The surface morphology

of the films changed from pyramids to cigar-shaped grains for a sputtering power between
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100 and 200 W, remaining largely unchanged at higher power. These grains were also

observed to decrease in size with increasing sputtering pressure. Annealing the films was

found to affect the resistivity and stress of the films. The resistivity increased due to the

presence of residual oxygen and the stress changed from tensile to compressive. The

annealing step was not found to affect the crystallisation and grain growth of the Mo films.

INTRODUCTION

Molybdenum (Mo) is the most commonly used metal for back contacts in chalcopyrite

(CuInGaSe2, CIS) based thin film solar cells [1]. Other metals can be used [2, 3], however

Mo is the main choice for this application because the Mo layer offers high stability to

processing temperature (up to 600°C) and good adherence to the substrate (which is usually

glass) whilst providing a high conductivity and low resistance contact to the CIS absorber

layer. Common deposition methods include electron beam evaporation [4, 5] or sputtering,

using either a direct current (DC) [3, 6-9] or radio frequency (RF) [10-12] technique.

Sputtering, and in particular DC sputtering, has been the method of choice for studying the

properties of Mo films since the pioneering work of Scofield [3]. It is also the method which

has resulted in the highest solar efficiency [1]. There are fewer reports on RF sputtering and

only recently Khatri et al. have performed a limited study of how the Mo properties vary with

the deposition parameters; however the resistivity and stress values achieved were higher

than desirable for application in thin film solar cells [10]. As with DC sputtering, RF

sputtering parameters such as deposition rate and argon pressure affects lattice stress,

crystallographic orientation, electrical and morphological properties; however these are also

correlated to the deposition system itself. In this work, an in-depth systematic study of how

the physical properties of Mo films formed by RF sputtering has been carried out, with the
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aim of determining which growth parameters control the film properties, to determine the

conditions for producing low resistivity, low stress Mo films, for application in photovoltaic

solar cell device structures.

EXPERIMENTAL

Mo thin films were deposited by magnetron RF sputtering onto commercially available soda-

lime glass substrates. The substrates of dimensions 76x26x1 mm3 were mechanically cleaned

in diluted Decon90 solution, rinsed in high purity water and then blown dried in a flow of

nitrogen. The depositions took place in a 3x6’’ target magnetron sputter down Nordiko2000

system setup for sequential sputtering using high purity (99.95%) Mo target and argon

(99.998% pure) as the sputtering gas. The rotating substrate table was equipped with 4

substrate holders each capable of holding 5 substrates. The base pressure of the vacuum

chamber was 5x10-7 Torr. The sputtering power was varied from 100 to 900 W and the

working pressure from 2 to 22 mTorr. The deposition time was adjusted to yield a film

thickness of ~840 nm.

The samples were subsequently annealed at 530°C for 45 min in a tube furnace evacuated to

a primary vacuum level (5x10-3 mTorr). The samples were placed in a graphite box to mimic

the conditions of selenisation/sulfurisation processes used in the absorber fabrication. Prior to

annealing, the tube was backfilled with either high purity argon or forming gas (a 10%

mixture H2 in N2 gas) to a pressure of 6 and 10 mbar, respectively. The heating and cooling

rate were 25°C/min and 2.5°C/min, respectively. These conditions have previously been used

to produce the Mo used to successfully produce thin film solar devices [13, 14].
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The structural properties of the deposited layers were analysed using X-ray diffractrometry

(XRD) using a Siemens D-5000 diffractometer. Scanning electron microscopy SEM (carried

out using a Hitachi SU-70 SEM) and atomic force microscopy (AFM) (carried out using a

Veeco Multimode AFM) were used to assess the morphological properties. The resistivity

was determined using a 4-point probe setup (using a Jandel Engineering LTD 4-probe and

Keithley 2602 sourcemeter).

RESULTS AND DISCUSSION

1-Power density effect

The power applied to the target was varied between 100 and 900 W, while the chamber

pressure was maintained at a pressure of 5 mTorr. The deposition time was adjusted between

43 and 580 min to maintain the thickness at 840 nm +/- 20 nm. All films showed good

adhesion to the glass substrate, with no delamination observed during further processing or

during the tape test [8]. A summary of the electrical and crystallographic properties is shown

in Table 1. It can be seen (Table 1 and Fig 1) that, as expected, the growth rate increases

linearly with increasing power. Fig 1 also shows the evolution of the sheet resistance as a

function of the sputtering power. For equivalent thickness, the sheet resistance (Rs) of the Mo

film decreases sharply when the power is ramped up from 100 to 200 W before decreasing

with a much slower rate for higher sputtering powers. Sheet resistances of less than 0.5 /

are achieved for sputtering powers greater than 300 W; these are low enough for back contact

applications in thin film solar cells. Upon annealing the sheet resistance of the films is

increased by a factor of ~2 (Fig 1). This is due to the formation of a molybdenum oxide layer

at the surface of the Mo, due to the Mo at the surface reacting with residual oxygen present in
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the primary vacuum of the furnace. This would not occur when making solar cells devices

because of the presence of additional layers on top of the Mo film during this annealing step.

XRD was used to analyse the crystallographic properties of the deposited films. The inset of

Fig 2 shows a full scan for a typical film. The reflections corresponding to the (110), (211)

and (220) planes are detected for diffraction angles of 40.5°, 73.7° and 87.6° respectively. A

fourth reflection at 36.5° is also present but is due to spectral contamination from the beta

filter in the XRD setup. Fig 2 shows in detail the (110) reflection, and indicates that the (110)

peak intensity decreases with increasing power. More importantly, the peak position shifts as

the sputtering power is varied which reflects a change in lattice parameter of the deposit and

hence stress, in the films. The detailed position and characteristics of each peak were

determined by fitting the data using a Pseudo-Voigt function [15]. From the (110) peak

position, the lattice parameter a of the Mo cubic structure was calculated and the relative

variation of a compared to the Mo reference lattice parameter a0 = 3.1472 Å [16] yields the

extent of stress in the crystal lattice. Negative or positive values can be deduced indicating

compressive or tensile stress, respectively. The full width at half maximum (FWHM) of the

(110) peak may be used to determine the crystallite size of the structure, via the Scherrer

formula [10], as long as the size remains small (<200 nm). The variation of FWHM,

crystallite size and stress values are shown in Table 1, Fig 3 and 4. The FWHM of the (110)

peak is broadest for the film deposited at 100 W, but it remains relatively invariant for larger

powers. The crystallite size varies between 13 and 45 nm but these variations are small

between 200 and 900 W. Some fluctuations are observed, but the extent is much less than

reported elsewhere [10]. We note that the films exhibit tensile stress at low power and this is

gradually reduced to become unstressed, or just compressive, for powers greater than 500 W

(Fig. 4). It has been suggested that voids, crystallographic impurities, oxygen or argon
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impurities could be responsible for the stress in the sputtered Mo films. It is argued that these

effects are related to the frequency of gas phase collisions in the sputtering system which

alters the kinetic energy of both Ar and Mo atoms [3, 10, 17]. At high deposition powers the

energy of the sputtering gas is high resulting in higher deposition rate and the sputtered Mo

atoms have high kinetic energy yielding films with less voids and a lower inclusion of

impurities (i.e. Ar or O). This yields a higher conductivity for a higher power and a reduction

of tensile stress. However as the stress is further reduced for very high power it becomes

compressive as the compressive atom peening exceeds the intra-grain tensile forces. This

trend is broken when the power is reduced to 100 W and this is due in part to the film

becoming more amorphous; however the reason for this is not fully known. Overall the stress

levels measured are very small, at least an order of magnitude smaller than those reported by

Khatri [10].

The effects of post growth heat treatment, using an annealing temperature of 530°C and

annealing time of 45 min in 6 mbar Ar atmosphere, on the FWHM and stress values are

shown in Fig 3 and 4. No substantial change is observed in the FWHM values (fig 3)

indicating no grain evolution under those annealing conditions. The effect on the lattice

structure is more pronounced (Fig 4). Upon heating compressive stress is introduced in all

films. The recrystallization temperature of Mo is > 900°C and therefore very little change in

structural and electrical properties would be expected at temperatures below 650°C [18].

However, the soda-lime glass substrate has an annealing point and strain point of 546°C and

511°C, respectively, according to various manufacturers. These temperatures are close to the

experimental heat treatment temperature of 530°C used in this work, which when associated

with the thermal expansion of the glass, we believe this is the reason of the variations of

stress in the Mo films following annealing. At 530°C the glass starts to soften allowing the

Mo film to relax. The thermal expansion of the substrate at this temperature is as much as
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0.4% of its length therefore during the slow cool down of the heat treatment the contraction

of the glass yields compressive stress in the Mo film.

In order to study the effects of the growth conditions on texture and preferred orientation of

the Mo film samples, the texture coefficients Chkl [19] were studied where
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and n is the number of reflections, Ihkl the intensity of the hkl reflection and Ir,hkl the intensity

of the hkl reflection for a completely random sample. Hence Chkl gives a measure of the
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The preferred orientation of each film, as a whole, was analysed from the standard deviation
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 values are used to compare the degree of orientation between different samples, so that

lower  values indicate more randomly oriented samples. For a completely randomised

sample the Chkl coefficients would be 1 and the preferred orientation 0 while for a fully

aligned sample the Chkl would be 3 for that particular direction and 0 for the others and the

degree of preferred orientation 1.4. The variations of texture coefficients are shown in Table

2.

The data indicates a strong preferred orientation in the (110) direction for all samples.

However as the power is increased a slight loss of this preferred orientation is observed via a
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decrease in the values of C110 and . Meanwhile C211 and C220 values increase and decrease,

respectively, indicating a slight shift of orientation from (110) into the (211) direction. The

sample deposited at 100 W is anomalous in this respect as the (110) peak is the smallest and

broadest for any of the samples in this set, whilst the (220) peak is hardly visible, indicating

very small grained structure with a stronger orientation in the (211) direction. We believe this

indicates why the electrical and lattice properties of this 100 W film are significantly different

from the other deposition powers used. Following annealing at 530°C for 45 min no change

is observed in the crystallite orientation and the films remains strongly (110) oriented.

The surface topology was observed by both SEM and AFM. Fig 5 (a-e) shows the AFM

micrographs for films deposited between 100 and 900 W. At 100 W the films show grains

with a triangular shape. Between 200 and 600 W the grains have a cigar-shape and are well

orientated. For sputtering power greater than 600 W, the grains do not seem to be as well

ordered with variations in size starting to appear. Overall however, very little change in grain

sizes is observed between 200-900 W and this confirms the XRD data. The films’ average

roughness is between 6 and 10 nm for all films. Fig 5 (f) shows a SEM cross section view of

a film deposited at 300 W. The structure is columnar showing narrow grains extending the

full thickness of the films which is typical of a sputtered Mo thin film.

2-Effect of sputtering pressure

For this study the power and deposition time were fixed at 300 W and 120 min, respectively.

The chamber pressure was altered by keeping the gas flow constant and varying the pumping

speed. The properties for the as-deposited films are summarized in Table 3. The growth rate
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is increased nonlinearly with pressure (Fig 6), giving a variation of 60 nm in thickness

between extreme deposition conditions for a given deposition time. Under these conditions

the variations in thickness have no noticeable effect on the film properties. The variations of

sheet resistance versus chamber pressure are also shown in Fig 6, with higher sheet resistance

being measured for deposited at higher pressure. This trend is in good agreement with other

published data [3, 10].

The electrical properties of the films following post-deposition annealing (530°C, 45 min) in

argon or forming gas (H2N2) ambient are also shown in Fig 6. Following either of the heat

treatments the sheet resistance values doubled for all but the lowest pressure sample. There is

therefore no influence of the annealing gas ambient on the electrical properties of the films.

As described in the previous section this is due to the formation of Mo oxides at the surface

during the annealing process.

The XRD spectrum around the (110) peak is shown in Fig 7. The (110) peak intensity

increases when the pressure is increased from 2 to 8 mTorr, but for higher pressure values the

peak becomes smaller and broader. This reflects an increase in crystallite size when the

pressure is increased from 2 to 8 mTorr; however beyond ~10 mTorr, this effect is lost and

the structural quality degrades. The stress and FWHM values calculated from the (110) XRD

data are shown in Fig 8 and 9, respectively. Overall the stress measured is tensile in all cases,

less than 0.1% compared to an unstressed film for as-deposited films and decreases for lower

deposition pressure. Broader (110) peaks are observed for films deposited at higher pressure

(Fig 9), meaning that the crystallite size of grains orientated in the (110) direction is

decreased as the deposition pressure is increased (see also Table 3). Similarly to the previous

section, both stress and sheet resistance data can be linked together with the sputtering

pressure and the frequency of gas-phase collisions. When reducing the sputtering pressure,

the frequency of gas-phase collisions is also reduced and this in turn increases the kinetic
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energy of the sputtered Mo atoms and neutral Ar atoms from the plasma. It is suggested that

the resulting Mo film structure is denser with less intra-grain voids porous grains [3]. This

yields a more conductive film and also a less stressed film as observed in Fig 6 and 8. For

pressures greater than 10 mTorr the concentrations of defects is such that the films show an

apparent reduced crystalline quality (Fig 7 and 9) as indicated by the broader peaks. Upon

annealing the stress becomes compressive in all cases except at the highest pressure. The

trend as function of gas ambient remains similar to that of the as-grown films however, it can

be observed that the absolute change in stress after annealing is less for films deposited at

higher pressure. Following the above discussion the stress can be associated with the

sputtering pressure such that lower deposition pressures yield more densely packed columnar

grains towards compressive stress whereas higher pressure tends to form a more porous

structure under tensile stress [20, 21]. Therefore the porous nature of the films deposited at

higher pressure allows more “flexibility” in the films and more resilience to the annealing

process. No change in FWHM values are observed after annealing, indicating that the Mo

films are not subject to any grain growth or recrystallisation during this step. This confirms

the previous observation.

The variations of texture coefficients and degree of preferred orientation as a function of

sputtering pressure and annealing atmosphere are shown in Table 4. The degree of preferred

orientation is greatest for film deposited at pressures of 5.5 and 8 mTorr, however the change

in texturing is marginal for the other pressure values.

The surface topology and morphology, i.e. grains size and shape of the deposited films were

studied in detail by SEM and AFM, with micrographs being shown in Fig 10. It was found

that not only the size but the shape is affected by the deposition conditions. At 2 mTorr the
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grains are the largest and are well ordered. At 5 mTorr some grains present sharp triangular

tails, while at 8 mTorr the films become smoother and the grains seem to break down into

smaller ones. At 12 mTorr all the grains have pyramidal shapes, whereas at 22 mTorr the

structure is the most compact with small bean shape grains.

The AFM images were analysed using the Gwyddion software package to determine the

grain size distribution at each deposition pressure. These are shown in Fig 11 where each

distribution has been fitted with a Gaussian to obtain an average which is shown in Fig 12.

From Figs 11 and 12 it is apparent that the average equivalent grain radius decreases from

approximately 29 nm to 20 nm as the pressure increases from 2 mTorr to 22 mTorr. This is in

reasonable agreement with grain size data obtained from XRD (also shown in Fig 12).

Furthermore, it is also apparent from Fig. 11 that at 22 mTorr the standard deviation of the

grain size distribution is smaller than at lower pressures, indicating a greater degree of

similarity between grains. The average surface roughness Ra, was also obtained from the

AFM data and is shown in Fig. 12. A general trend of increasing surface roughness with

pressure was observed between 2 mTorr and 12 mTorr. A further increase of 10 mTorr

resulted in a decrease in surface roughness to Ra  6 nm at 22 mTorr. This is consistent with

the observed decrease in standard deviation of grain size distribution at this pressure and

suggests a different regime of grain formation. This change may be related to increased

collisions of Mo atoms with sputtering ions at higher pressure which reduces their kinetic

energy and results in more oblique impact angles of incident Mo atoms on the substrate [3].

CONCLUSIONS

The electrical, morphological and crystallographic properties of Mo thin films deposited by

RF magnetron sputtering have been investigated as a function of sputtering power and
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pressure. All the films deposited in this study had good adhesion to the substrate regardless of

the deposition parameters investigated. The electrical conductivity of the Mo films has been

measured to increase with decreasing sputtering pressure and increasing sputtering power. All

the films showed a (110) preferred orientation that became less pronounced at higher

sputtering power while being relatively insensitive to the process pressure. The lattice stress

within the films changed from tensile to compressive with increasing power. The tensile

stress increased with increasing sputtering pressure. The grain size and shape remained

unchanged for films deposited at sputtering power between 200 and 900 W, whereas grain

size decreases with increasing sputtering pressure. Post annealing of the Mo films in argon or

forming gas increased the resistivity of the films due to the formation of an oxide layer at the

surface and the lattice stress changed from tensile to compressive. From this experiment

optimum Mo films properties for thin film solar cell applications are achieved for sputtering

power between 300 and 600 W and sputtering pressure around 5 mTorr.
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Table 1: Properties of as-deposited Mo thin films as a function of sputtering power

Power

(W)

Growth Rate

(nm/min)

Sheet resistance

(/)

Resistivity

.cm)

(110) FWHM

(°)

Stress

(%)

Grain Size (XRD)

(nm)

100 1.6 3.52 310 0.494 -0.789 13

200 3.3 0.70 57.1 0.244 0.022 39

300 7.1 0.48 40.4 0.314 0.015 30

400 8.0 0.42 36.2 0.260 0.008 36

500 10.7 0.42 35.4 0.284 -0.004 33

600 13.0 0.45 36.7 0.194 -0.001 45

900 18.6 0.30 23.9 0.222 -0.051 42



Table 2 Texture coefficients and degree for preferred orientation for as-deposited and argon

annealed Mo films

As-deposited Argon Annealed

Power (W) C110 C211 C220  C110 C211 C220 

100 2.59 0.41 0.00 1.14 2.56 0.44 0.00 1.11

200 2.44 0.01 0.54 1.04 2.42 0.02 0.56 1.03

300 2.44 0.03 0.53 1.04 2.41 0.04 0.55 1.02

400 2.43 0.03 0.54 1.03 2.31 0.16 0.53 0.94

500 2.36 0.11 0.53 0.98 2.38 0.10 0.53 0.99

600 2.37 0.14 0.49 0.98 2.42 0.04 0.54 1.03

900 2.30 0.18 0.52 0.93 2.28 0.20 0.52 0.92



Table 3: Properties of as-deposited Mo thin films as a function of sputtering pressure

Pressure

(mTorr)

Growth Rate

(nm/min)

Sheet resistance

(/)

Resistivity

.cm)

(110) FWHM

(°)

Stress (%) Grain Size

(XRD) (nm)

2.3 6.83 0.260 21.3 0.248 0.046 37.9

5.5 7.00 0.480 40.3 0.314 0.015 30.0

8 7.17 0.616 53.0 0.301 0.081 31.3

12 7.25 0.920 80.0 0.605 0.055 15.5

22 7.33 2.244 197.5 0.720 0.096 13.1



Table 4 Texture coefficients and degree for preferred orientation for as-deposited and

annealed Mo films as a function of sputtering pressure

As-deposited Argon Annealed H2N2 Annealed

Pressure

(mTorr)

C110 C211 C220  C110 C211 C220  C110 C211 C220 

2.3 2.38 0.09 0.53 0.99 2.37 0.10 0.53 0.98 2.42 0.02 0.56 1.03

5.5 2.44 0.03 0.53 1.04 2.41 0.04 0.55 1.02 2.41 0.04 0.55 1.02

8 2.44 0.01 0.55 1.04 2.42 0.01 0.57 1.03 2.43 0.01 0.57 1.03

12 2.35 0.02 0.64 0.99 2.34 0.01 0.64 0.98 2.37 0.01 0.61 1.00

22 2.37 0.04 0.60 0.99 2.37 0.04 0.59 0.99 2.39 0.04 0.57 1.00


























