Genome sequence of the fleming strain of micrococcus luteus, a simple free-living actinobacterium

Young, Michael, Artsatbanov, Vladislav, Beller, Harry, Chandra, Govind, Chater, Keith, Dover, Lynn, Goh, Ee-Been, Kahan, Tamar, Kaprelyants, Arseny, Kyrpides, Nikos, Lapidus, Alla, Lowry, Stephen, Lykidis, Athanasios, Mahillon, Jacques, Markowitz, Victor, Mavromatis, Konstantinos, Mukamolova, Galina, Oren, Aharon, Rokem, Stefan, Smith, Margaret, Young, Danielle and Greenblatt, Charles (2010) Genome sequence of the fleming strain of micrococcus luteus, a simple free-living actinobacterium. Journal of Bacteriology, 192 (3). p. 841. ISSN 0021-9193

Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1128/JB.01254-09

Abstract

Micrococcus luteus (NCTC2665, "Fleming strain") has one of the smallest genomes of free-living actinobacteria sequenced to date, comprising a single circular chromosome of 2,501,097 bp (G+C content, 73%) predicted to encode 2,403 proteins. The genome shows extensive synteny with that of the closely related organism, Kocuria rhizophila, from which it was taxonomically separated relatively recently. Despite its small size, the genome harbors 73 insertion sequence (IS) elements, almost all of which are closely related to elements found in other actinobacteria. An IS element is inserted into the rrs gene of one of only two rrn operons found in M. luteus. The genome encodes only four sigma factors and 14 response regulators, a finding indicative of adaptation to a rather strict ecological niche (mammalian skin). The high sensitivity of M. luteus to β-lactam antibiotics may result from the presence of a reduced set of penicillin-binding proteins and the absence of a wblC gene, which plays an important role in the antibiotic resistance in other actinobacteria. Consistent with the restricted range of compounds it can use as a sole source of carbon for energy and growth, M. luteus has a minimal complement of genes concerned with carbohydrate transport and metabolism and its inability to utilize glucose as a sole carbon source may be due to the apparent absence of a gene encoding glucokinase. Uniquely among characterized bacteria, M. luteus appears to be able to metabolize glycogen only via trehalose and to make trehalose only via glycogen. It has very few genes associated with secondary metabolism. In contrast to most other actinobacteria, M. luteus encodes only one resuscitation-promoting factor (Rpf) required for emergence from dormancy, and its complement of other dormancy-related proteins is also much reduced. M. luteus is capable of long-chain alkene biosynthesis, which is of interest for advanced biofuel production; a three-gene cluster essential for this metabolism has been identified in the genome.

Item Type: Article
Subjects: C500 Microbiology
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: EPrint Services
Date Deposited: 14 Mar 2011 09:25
Last Modified: 12 Oct 2019 18:26
URI: http://nrl.northumbria.ac.uk/id/eprint/2247

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics