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Three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations have not been able to demonstrate convincingly the spon-
taneous formation of large vertical flux tubes. Two-dimensional (2D) magnetoconvection in axisymmetric cylinders forms a central
magnetic flux tube surrounded by annular convection rings. To study the robustness of this type of solution in three dimensions, the
nonlinear resistive MHD equations are solved numerically in a 3D cylindrical wedge from an initially uniform vertical magnetic field. It
is shown that the 2D result is retrieved for small domain radii. However, for larger radii the central axis loses its importance and in this
case many convection cells form in the numerical domain. Magnetic flux is captured between cells where flow converges and the reduced
amount of flux that congregates at the central axis is eroded by the surrounding convection.
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1 Introduction

The formation of flux bundles in magnetoconvection is an important aspect in the evolution of magnetic
flux in the solar convection zone and photosphere (Bushby 2008, Nordlund et al. 2009). Until now, nu-
merical simulations have had mixed results in demonstrating the formation of large magnetic flux bundles
from dispersed magnetic flux elements through the action of magnetoconvection only. The most success-
ful in producing long-lasting pores are Kitiashvili et al. (2010), who produced magnetic flux bundles in
intergranular lanes on a mesogranular scale. Magnetic flux was swept into vortices and then concentrated
by downflows to reach maximum values of 4kG at depths 1-4 Mm, and values of 1.5kG at the surface.
The structures lasted for the duration of the simulation (several hours). The precise mechanism for their
formation was not established.

Simulations in three-dimensional (3D) Cartesian numerical domains have followed two approaches to this
problem. On the one hand are simulations that include partial ionization and radiative transfer (Stein and
Nordlund 2006, Bello Gonzdlez et al. 2009, Danilovic et al. 2010a,b), while the other approach simplifies
the physics to idealised conditions (Isobe et al. 2008, Bushby et al. 2008, Cattaneo et al. 2003, Weiss 2002,
Weiss et al. 2002, Rucklidge et al. 2000, Weiss et al. 1996). Whether the weak seed magnetic field is of
mixed polarity (Danilovic et al. 2010a) or uniform (Isobe et al. 2008), convective motion produces highly
intermittent magnetic field concentrations at the boundaries between convection cells.

In 2D cylindrical simulations of Boussinesq convection, all the initial magnetic flux in the simulation
domain migrates to the central axis where it forms a central flux bundle. Galloway et al. (1978) showed
that this will always be true for the Rayleigh-Bénard problem with an impenetrable outer wall, provided
that the Rayleigh number is large. Compressible magnetoconvection in axisymmetric cylinders shows the
same result, namely that magnetic flux in the simulation migrate to the central axis to form a flux bundle
with annular convection cells surrounding it (Hurlburt and Rucklidge 2000, Botha et al. 2006, 2008). When
the 2D axisymmetric solution is used to initialise a 3D wedge shaped simulation, a remnant of the central
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magnetic flux bundle persists in spite of turbulent erosion due to its surrounding convection (Botha et al.
2007, 2011).

In this paper we consider the robustness of a magnetic flux tube forming at the central axis in a 3D
cylindrical wedge domain for compressible magnetoconvection. The simulation is initialised with a uniform
vertical magnetic field and allowed to evolve using the magnetohydrodynamic (MHD) equations. It will
be shown that the central axis loses its privileged position once the radial dimensions of the cylindrical
wedge becomes large enough for many convection cells to form. Consequently, magnetoconvection in large
3D cylindrical wedges behaves similar as in 3D Cartesian domains. In cylindrical wedges with smaller radii
the 3D calculations reproduce the axisymmetric results, that is, a central flux bundle forms on axis.

2 Model

2.1 Egquations

The nonlinear equations for fully compressible, 3D MHD convection are solved in a 3D wedge (Botha
et al. 2011). To these is added a hyperbolic equation in order to enforce divergence cleaning (Dedner et al.
2002). All physical quantities are dimensionless, with length scaled to the depth of the numerical domain,
velocities scaled to the sound speed at the top of the domain, and temperature, magnetic field, density
and pressure all scaled to their initial values at the top of the numerical domain.

The initial magnetic field is chosen to be vertical, so that there are no Lorentz forces and an equilibrium
solution exists with a vertically stratified temperature profile given by T' = 1 4 6z. Here 6 is the initial
temperature gradient and the vertical direction is given by z. The initial plasma forms a polytrope.

The dimensionless physical parameters that quantify the magnetoconvection are the Rayleigh number
R, the Prandtl number o, the Chandrasekhar number @, the magnetic diffusivity ratio at the top of the
numerical domain (p, the ratio of specific heats =, and the polytropic index m. The numerical results in
this paper were obtained with the following parameter values: R = 10°, 0 = 1, (o = 0.2, § = 10, v = 5/3,
and m = 1.495. The values of () and the aspect ratio of the domain were varied and will be reported
throughout the paper.

2.2 Numerical model

The numerical implementation of the model was developed specifically for these type of calculations (Hurl-
burt and Rucklidge 2000, Botha et al. 2007). The numerial grid is in the shape of a 3D cylindridal wedge
(r, ¢, z) with depth of one unit and radius I'. The azimuthal number My = 27 /¢4, quantifies its width.
All the results presented in this paper were obtained with My = 8. Sixth-order compact finite differencing
is used in the vertical plane with a spectral treatment in the azimuthal direction. The level of dealiasing
is increased towards the central axis to maintain grid uniformity. The time evolution uses a fourth-order
modified (explicit) Bulirsch-Stoer integration technique. The number of grid points in the radial direction
is typically 64 x I', in the vertical direction 64, and in the azimuthal direction between 64 and 512.

Both top and bottom boundaries are impenetrable, set the magnetic field to be vertical and treat the
temperature as fixed. The boundary condition in the azimuthal direction is periodic. At the central axis
regularity conditions are imposed with no plasma flowing across r = 0. The numerical domain has a
slippery, perfectly conducting, thermally insulating outside wall. The boundaries are described in detail in
Botha et al. (2006).
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2.3 Diagnostic

A quantitative measure of the breakup of the central magnetic flux tube is provided by defining the radial
profile of the magnetic field as

nz no

BOY = == 3> /B By B2 (1)

where nz and n¢ are the number of data points in the vertical and azimuthal directions respectively. In
order to compare the magnetisation of the plasma with different values of the Chandrasekhar number Q,
we monitor /@ | B|. This gives an indication of the effective magnetic field strength as a function of the
radial direction. Figures 1 and 2 present the time evolution of /@ |B| respectively for radii I' = 3 and
I' = 6 and for different values of Q). An indication of the final state of each simulation run is given by its
horizontal midplane in figure 3.

3 Discussion of results

After initialising with a uniform vertical magnetic field, magnetoconvection forms that drives flux sepa-
ration in the whole of the numerical domain. The degree to which magnetic flux is separated depends on
the strength of the magnetic field, given by the value of @, and the radius of the box (I'). The influence
of the wedge width (My) is discussed in Botha et al. (2011).

In all cases with I' = 3, the convection eventually forces the majority of the magnetic flux to the central
axis, similar to the axisymmetric (2D) results of Hurlburt and Rucklidge (2000). Figure 1 shows this for
@ = 32 until the time when all the magnetic flux has gathered at the central axis. The convection with
@ = 250 is presented till long after the flux has gathered at the central axis, showing the stability of
the configuration once the central flux bundle has formed. The weaker the magnetic field the more the
convection dominates the solution, which leads to shorter time spans before all the magnetic flux is forced
to the central axis (figure 1) and smaller final radius for the central flux bundle, as shown in figures 1 and
3(a) and (b). This corresponds to the 2D result: the higher the magnetic flux in the solution, the wider
the central flux bundle. The convection is such that one convection cell forms with an inflow towards the
central axis and that dominates the top half of the numerical domain. This can be seen in figure 3(a) and
(b), where the inflow is clearly visible in the midplane of the numerical box. Again this corresponds to the
axisymmetric result.

The 2D results of Hurlburt and Rucklidge (2000) show a magnetic field strength on axis of approximately
double the values obtained in this 3D study. The radius of the magnetic flux bundle that forms in 3D when
I' = 3, is twice that of the axisymmetric bundle radius. This is clear when figures 1(b) and (d) are compared
to figures 3(a) and (b) in Hurlburt and Rucklidge (2000). The flow configuration in the simulations can
explain these results. Under axisymmetry a collar flow forms around the central flux tube with an inflow
at the top of the numerical domain, while there is no flow inside the magnetic flux bundle. In the 3D
solutions weak flows form inside the flux bundle. These weak flows push the radius of the central flux
bundle to be wider, so that the same magnetic flux (v/QT?) in the solution leads to lower /@ | B| values.
The weak flows inside the flux bundle push magnetic field radially outwards, so that a peak value in the
magnetic field strength forms at the edge of the flux bundle, as can be seen in figures 1(b) and (d) . It
follows that this peak is much more prominent in 3D than in the 2D case.

For radii of I' = 6, the same @) values and convection strength form multiple convection cells in the radial
direction, as can be seen in figure 3(c) and (d). Some of the magnetic flux is trapped between these cells
where converging flows occur. Figure 2(a) and (c) show that the trapped magnetic flux does not move to
the central axis in the cases with @@ = 32 and 250. In fact, throughout the duration of the numerical run
convection cells form near the central axis that force magnetic flux away from the axis.

In the case of I' = 3, a higher value of Q) leads to a larger radius of the flux bundle that forms at the
central axis, as is shown in figures 1 and 3(a) and (b). In contrast, increasing @) in the numerical domain
with I' = 6 did not produce a smaller convective area around a larger central magnetic flux bundle. Instead,
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the stronger magnetic flux in the numerical domain forced smaller convection cells to form, which created
slowly moving patterns in the numerical domain. Figures 2(e) and 3(e) show the result when @ = 700 is
used. No central flux bundle forms, but convection cells closer to the central axis are more stable than
those towards the outer radial boundary where cells change shape and morph into each other as the local
magnetic flux is pushed around by the convection. This result is similar to that obtained by Hurlburt and
Alexander (2002).

The value of the magnetic flux at the central axis is approximately the same in all the numerical
simulations presented in this paper, whether a central magnetic flux bundle formed or not. Figures 1(b)
and (d) as well as 2(b), (d) and (f) show the effective magnetic field strength, given by /Q |B|, for radii
I' = 3 and 6. The similar central magnetic flux values suggest that to increase the magnetic field strength
at the central axis, one has to increase the strength of convection in the numerical simulations. This can
be done by increasing the Rayleigh number R, or decreasing the Prandtl number o. The latter resulted in
stronger convection that forced smaller time steps and denser numerical grids, as in Botha et al. (2011),
and as such was not pursued. By increasing the strength of the convection in this way, one should be able
to create a central flux bundle for I' = 6 similar to I' = 3.

The 3D results presented here are consistent with the 2D results of previous papers: within the context
of magnetoconvection simulations, a substantial magnetic flux tube at the centre requires a pronounced
inflow to maintain it. In axisymmetric simulations (Mg = o00), the magnetic field at the central axis is
confined by the surrounding inflowing annular (or toroidal) convection cells (Hurlburt and Rucklidge 2000,
Botha et al. 2006). Relaxing the axisymmetric constraint by allowing variation in the azimuthal direction
in an eighth of a cylinder (Mg = 8, as presented in this paper) allows the annular cells to break up into
many granular cells. Magnetic flux escapes in the lanes between the granules where there is no inflow, so
that less flux remains at » = 0. Botha et al. (2011) relaxed the symmetry further to My = 4 with I' = 3,
and observed that the granular cells grew to fill the expanded azimuthal width. In the same way higher M
values produce smaller granular convection cells. For very narrow wedges (high My values) the solution
will tend to the axisymmetric result, especially towards the axis. This effect is also seen in figures 2(e) and
3(e) with @ = 700.

In the I' = 3 wedge the entire 3D solution presented here is aware of the cylindrical wedge geometry:
the outer wall and the central axis. A larger radius allows granular cells to form that are shielded from the
boundaries by cells next to the outer wall and near the axis, so that this part of the solution resembles
Cartesian results. If a full cylindrical domain were used, with a large enough radius, we would expect that
the central axis would play no distinguished role.

4 Conclusion

No 3D numerical examples exist that produce significant vertical magnetic flux bundles. In 2D axisym-
metric geometry a flux bundle forms at the central axis with a collar flow surrounding it (Hurlburt and
Rucklidge 2000). 3D radiative models of sunspots in Cartesian coordinates (Rempel et al. 2009a,b, Rempel
2011) initialise the simulations with the required magnetic field configuration. Cylindrical wedge domains
with large radii come close to being Cartesian because the central axis, while still present, loses its domi-
nance.

To study 3D nonlinear magnetoconvection in cylindrical wedge geometry, a numerical domain in the form
of a cylindrical wedge of width My = 8 is used. A uniform vertical magnetic field initialises the system,
after which convection drives flux separation. For numerical domains with small radii, the 2D result is
retrieved, namely that a central magnetic flux bundle forms surrounded by convection cells. However,
if the radius of the cylindrical wedge is increased, the convection forms many cells with magnetic flux
captured where converging flows occur. Not only does this reduce the size of the central flux bundle, but
the magnetic flux at the central axis is continuously eroded by the convection surrounding it. As a result,
the central axis loses its special position in the numerical solution and all magnetic flux tubes that form are
transient. The maintenance of such structures in the turbulent convection must require either additional
physical processes, such as flux emergence (Cheung et al. 2010), not included in our study or reflect some
external forcing.
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Table 1. Physical parameters sampled in the vertical plane at ¢ = 0 in figure 3.
Numerical run B Jé T maximum
Q I'  min max min max min max Mach number
32 3 358 3.4x101 -40.7 103.7 0.98 1.01 0.08
250 3 28.0 7.8 x 106 -15.6 27.5 0.89 1.01 0.06
32 6 156 2.3x10 -100.5 79.8 0.98 1.01 0.04
250 6 208 29x10*° -21.8 199 0.98 1.01 0.04
700 6 258 5.4 x 106 -13.6 19.2 099 1.01 0.03
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Figure 1. Time evolution of /@ |B| with I' = 3. |B| is defined in (1). (a) and (c) are the time evolution with max(y/@ |B|) black and
white zero. The central axis is along the top edge of each panel. (b) and (d) are three instances from the figures on the left.
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(a) @ =32, T =3, and max(y/Q|B|) = 101.25 at time (b) @ = 250, T = 3, and max(y/Q|B|) = 101.25 at
1761.53 time 5519.43

() @ =32, T =6, and max(/Q|B|) = 101.25 at time (d) @ =250, T’ = 6, and max(y/Q |B|) = 87.15 at time
1509.8 2679.2

Colour: T || Colour: j,
Arrows: v || Contours: B,

Colour: T || Grey scale: B
Contours: p

(e) Q =700, T' = 6, and max(\/Q | B|) = 67.07 at time (f) Diagnostics
1443.92

Figure 3. The horizontal midplane with |B| defined in (1). The diagnostics are shown in (f). In the first quadrant colour represents the
axial current density j, and contours the axial magnetic field B;. In the second quadrant colour is the temperature fluctuation relative to
the unperturbed state (dark is cold) and arrows are the velocity field. In the third quadrant colour is the temperature fluctuation relative
to the unperturbed state and contours are the mass density. In the fourth quadrant grey is magnetic field strength, with maximum black
and zero white. The physical parameters in each plane at ¢ = 0 are presented in table 1.



