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Abstract

Forceful unilateral contractionsiodulatecorticomotor paths targeting the resting
contralaterahand. However, it is unknown if mirraiewing of a slowly moving but
forcefully contracting hand would additionally affect these paths. Here we examined
corticospinal excitability and shentterval intracortical inhibition (SICIpf the right

ipsilatel primary motor cortex (M1) in healthy young adulteler a nemirror and mirror
condition at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC).
During the nemirror conditions, neither hand was visible, whereas in the nomoditions,
SDUWLFLSDQWY ORRNHG DW WKH ULJKW KDQGYfVY UHIOHFWL
increased during contractions in the fgkor carpi radialigFCR) (contraction: 0.41 mV vs.
rest: 0.21 mV) anéxtensor carpi radiali€CR) (conraction: 0.56 mV vs. rest: 0.39 mV) but
there was no mirror effe¢FCR:P=0.743 (%=0.005 ECR:P=0.712 3=0.005. However,
mirror-viewing of the contracting and moving wrist attenuated $Gitive to test pulsia

the left FCR by ~9% comparedth the other condition?<0.05 d* ).

Electromyograhic activity in the resting left hangdrior to stimulatiorwas not affected by

the mirror(FCR:P=0.255 (3=0.049; ECRP=0.343 (3=0.039, but increasetivo-fold

during contractionsThus, vewing the moving handh the mirrorand not just the mirror
image of the noimoving hand esems to affect motor cortical inhibitory networks in kg
associated with the mirror image. Future studlesulddetermine if the use of a mirroould
increase intelimb transfer produced by cresslucation especially impatientsgroupswith
unilateral orthopaedic and neurological conditions

Keywords: crosseducationstrength trainingmirror training,mirror-neuron systengrimary

motor cortex, @nscranial magnetic stimulation
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1. Introduction

Action observatiorgeneratesrainternal replicaof that actionn the observe§ motor system
without causingovert motor action§4, 5) Observation of a motor act performed meself
observation o motor act performed by someone else, viewing a motor act in a mirror
(which is often the case in dance and sport prgatitactivate the same neural structures as
the actual movement exgon, producing subliminal facilitation of neurons forming the
motor neural network7, 12, 44) The subliminal engagement of neurons might have an
adaptive role in motoehrning(34) and therefore@ion observatioiseems to ba potential

tool to facilitate motor learning.

A specific form of motor practice that makes use of action observation is mirror training. In

mirrortUDLQLQJ WKH SUDFWLFLQJ OLPEYV LPDJH#O,49) VXSHULP

creating the illusion in the mirror that the resting limb is moviktirror training is known to
reduce phantom limb pa{®4, 55) enhance recovery of motor function of the paretic lower
(65) and upper extremjt(42, 71)following a stroke, and can also facilitate skill acquisition

of the nontrained hand in healthy participari&t, 37, 49) The benefits of mirror training

are widely accepted but the mechanisms responsible for these beneficial effects are unclear.
Although viewing a movement in the form of action observatem activate, for example,

the primary mior cortex (M1) butwhether or not and howsh activation servessaneural

contributionfor the beneficial effectsf mirror training has not yet verifig®7, 49)

Mirror training exertsa strong influence on the motor network, mainly through the increased
activation of areas involved in the allocation of attention and cognitive c§h8plThere is
evidence that mirreviewing of hand and firgr movements performed at a fraction of the

maximal voluntary force can facilitatpsilateral corticospinal excitabili23) and



76  corticomotor activity(61) compared with a n@ision condition. The increased activation of
77  the ipsilateral M1(48, 60)and the increased excitability of the corticospethtargeting

78 the resting han¢Rl, 27, 28, 30, 45, 52, 58)e also observerd for forceful unilateral

79  contractions without a mirror, however, it is unknoivthe visual illusiorof a slowly

80 moving forcefully contractingwrist in the mirrorcan additionally affect corticospinal

81 excitability and motor cortical activity in the hemisphere ipsilateral to the moving hand.

82  Such information is needed as a firgfpsto explain how mirreviewing could augment

83 interlimb strength transfer,\aabletreatment option for patients with unilateral orthopaedic
84 and neurlogical impairmen{49).

85

86 The purpose of the present study was to determine the effects of-ménang of the resting
87 and contracting right wrist on corticospinal excitability and simddrval intracortical

88 inhibition (SICI), assessed with transcranial magnetic stimulatior§)TinMthe resting left

89 flexor carpi radialis (FCR) and extensor carpi radialis (ECR). The ECR was measured to
90 determine if the observed responses to TMS would provide evidence for a directional

91 specificity of excitability related to the mirror illusioWe suspect that mirrariewing of the
92 ULJKW ZULVWHpwetrRMdARMHIQ Wow, and leskill) creates the illusion in the

93 ipsilateral M1 that the resting left wrist is actually moving and this illusion, a surrogate for
94 actual movement, triggers tirecrease in ipsilateral M1 excitability. If this assumption is

95 correct then we predict a mirror effect to increase neuronal excitability during a contraction
96 thatis caused by the illusion of the left hand moving but no mirror effect at rest because the
97 trigger, i.e., movement illusion, for modulating excitability, is absent.

98

99

100



101 Materials and Methods

102 Participants

103 Twenty-seven righthanded (average handedness score §50), healthy volunteers (22

104 men, 5 womenyvith a mean (x SD) age, height, mass and body mass index of 27 years (x 7),
105 1.76 m (+ 0.07), 76.0 kg (+ 13.0), and 24.4 Kg{m2.9), respectively, participated in the

106 study. Prior to testing, participants completed a comprehensive screening questimnnair

107 determine medicdkcreening standard questionnaire for T(8%)) and experimentdi.e.,

108 previous fracture in arm or hand, pain in arm or haod}raindications to the protocol. All

109 participants provided writtemformed consent to the experimental procedure, which was

110 DSSURYHG E\ WKH 8QLYHUVLW\TV 5HVHDUFK (WKLFV &RPPL\
111 Declaration of Helsinki.

112

113 Experimental setup

114  One week before the main experiment, participants visited theatabp for a 3@minute

115 familiarizationtrial to be accustomedwith the laboratory setting antMS. During the

116 experiment, which lasted approximately 1.5 participant sat comfortably in a chair with
117  both forearms resting on a custdmiilt table The lever arm of an isokinetic dynamometer
118 (Biodex Medical Systems, Shirley, NY, USA) was aligned and configured so that the

119 participant was able to perform shortening contractions of the right wrist flexors in the

120 transversal plane over the table surfaCentractions were performed at 20°/s and started

121 with the wrist at 20° extension and ended with the wrist at 20° flexion (ensuring a total range
122 of motion of 40°). The participant touched the lever arm in the sagittal plane with the thumb
123  upper most anthe fingers extended to avoid finger flexion during wrist flexi®articipants

124  performedshorteningwrist flexion contractions with the right hary pressing at the

125 metacarpophalangeal joint on a plastic covered manipulandum that projected vertically



126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

downward toward the table surfac&€he distance between the axis of rotation and the
metacarpophalangeal joint position on the manipulandum was held at a constant length
between conditions for each participant, but was adjusted between participantsutd fmco
anatomical differenced-or the resting conditions, the participant touched the lever arm in

neutral position, meaning that the right wrist was in anatomical zero (0°) position.

The experimenstarted with recording the torque produced dugasyorteningnaximal

voluntary contractiofMVC) of the right wrist flexors.Thereafterparticipantglaced the

left and rightforearmsinside two different boxesThe right box was open on the left side,

but was positioned in a way that prevented the participant from seeing the right hand directly.
Depending on the experimental condition, a cardboard walninr condition) or a mirror
(mirror condition) was mauted on the central vertical wall of the left box and aligned in the
sagittal plane in front of the participant. The cardboard and the mirror were used to either
prevent seeing, or to create a mirror image of the right hand, thereby giving the illagion th

the left hand was being observed (Fig. I maintain a constant position of the head,
participants focused on a dot placed on the cardboard wall at a position that equated to the

gaze of the participant when viewing the mirror image of their righd ha

Approximately20 minutes after the MVC3MS was delivered to measure corticospinal
excitability and shortinterval intracortical inhibition$ICI) of the rightM1 in four different
conditions namelythe mirror and nenirror condition at restnd during a forceful shortening
contraction of the dominaimight wrist flexors at 60% MVC.TMS wasdelivered when the
right wrist was in anatomical zero (0°) position{maror and mirror resting condition) or
when the right wrist passed anatomicabzgosition (nemirror and mirror contraction

condition). The left arm was placed in the same anatomical position as the right arm during



151

152

153

154

155

156

157

158
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173
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175

all conditions, and any adornments (e.g., jewellery, watches) were removed for the duration

of the experiment. The der of conditions was randomized between participants.

Participants received verbal feedback from one of the researchers to reach the target torque
WKDW DSSHDUHG RQ WKH G)\QafPcaekWasddt provieed atwhR U EXW
point. Data acquigion was initiated 30 ms before the TMS stimulus was delivered. The

TMS protocol was in adherence to curreatety and ethicajuidelineg57) and all items on

the methodology checklist that pertain to paired pulse TMS have been reported and

controlled(9). It remains unclear if corticospinal excitability and SICI are affected by

associated activity (i.etheelectromyogranifEMG] activity of the contralateral resting

muscles during a unilateral muscle contraction) and because participants were less able to

prevent associated activity at higher force leyé!, we used 60% MVC athe target

contraction intensity to minimize the influence of associated activity on corticospinal

excitability and SICI. During the experimental conditions, participants were frequently

reminded to completely relax the left arm when peming shortening right wrist flexion

movements. Trials in which the associated left FCR or left ECR activity exceeded the
EDFNJURXQG QRLVH OHYHO RI 9 Z(28)4b, B)HOexe@tdiG IURP Wk
and forall variables, outliers were identified witmodified and more stringerersionof

theinterquartile range method, markiaglues belowQ1 +1.5 * (Q2- Q1) andvalues above

Q3+ 1.5 *(Q3- Q2)as outliers All outliers were excluded from further analysis.

Maximum voluntary contraction

After a warmup consisting of one set of 10 shortening muscle contractiongiatually
estimated 50% MVC, participants performed a further three shortening right wrist flexion
MVCs followed by three shortening left wrist flexion MVCs. MVCs were recorded at the

same movement speed (20°/s) and range of motion (20° wrist extension to 2@&xos)



176  as during the task. The torque was recorded when the wrist passed anatomical zero for each
177  MVC,; the highest of the three contractions was recorded as the MVC. After completion of
178 the experiment we measured shortening right wrist flexion MV&saobsample of

179 participants ll = 5) toexaminethe potentiakxistence ofatigue.

180

181 Maagnetic stimulation of the primary motor cortex

182 To evokemotorevoked potentialMEPS, TMS was delivered from a magnetic stimulator

183  (Magstim 206; Magstim Company LtdCarmarthenshireJK) through a figureof-eight

184 remote control coil (loop diameter 9 cm; Magstim, Spring Gardens, WalesyithKa

185 monophasic current waveform. Paired pulses were produced with the addition of a second
186 Magstim 2006 stimulator equipped with BiStinf timing module, and pulses were delivered

187 through the same figuef-eight coil. The coil was placed over Mhd was moved in 0:5

188 cm steps over the M1 to identify the optimal scalp position, i.e., hotspot, for activation of the
189 left FCR overlyirg right M1. The hotspot targeting the left FCR is also able to produce stable
190 MEPs in the left ECR6, 38) The hotspot correlates well with the stimulation of

191 % URGPDQQ43) The tbbDwas held with the handle pointing backwards and 45° away
192 from the midline so the direction of the currérduced in the braiwas from posterior to

193 D QWHULRU , QLWLDOO\ WKH 3 KRWVSRW”" ZDV ORFDWHG RQ
194 the optimal position of the coil on the scalp where the lowest threshold is capable of evoking
195 the biggest potential in the targeted mag¢bB). The hotspot was marked with a marker pen
196 to ensure constant positioning throughout the experinAdial. the hotspot had been

197 identified, resting motor threshold (rMT) was determined as the lowest stiminfgiosity to

198 producean MEP of —9the target musclm 5 out of 10 trial{58).

199

200
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Corticospinal excitability and SICI right M1

To determine the effect of mirraiewing on corticospinal excitability @SICI of the right

M1 during rest and shortening right wrist flexion, single pulse (to measure corticospinal
excitability) and paired pulse (to measure SICI) TMS was presented in random order for the
mirror and nemirror conditions. During all conditionthe MEP amplitude determining
corticospinal excitability and SICI was measured in the resting left FCR and ECR. We
measured corticospinal excitability by a single TMS pulse delivered at atbugsaold

intensity of 120% rMT, as part of the SICI measuent. For measuring SICl a sub

threshold conditioning pulse at 80% rian intensity sufficiento produe intracortical

inhibition (28, 53) preceded the suptareshold test pulse of 120% rMT with an

interstimulus interval of 2 m@6). The 2 ms interstimulus interval was used to create a deep
amount of inhibition(36) and to avoid a mixture of the two distinct phases of inhibitag).

A total of 20 MEPs were evoked in each condition, 10 MEPs for measuring corticospinal
excitability and 10 MEPs for measuring SICI, with aterval of ~5 s between stimuli. For
determining SICI the conditioned MEPs were expressed relative to the MEPs from the

unconditioned test pulse.

Surface EMG

Surface EMG was recorded from the left and right FCR and ECR to quantify voluntary
muscle activity during the experimental conditions and evoked responses (MEPs) from TMS.
After the skin surface was shaved and cleaned with an alcohol wipe, electrodek (mod
1041PTS; Kendall, Tyco Healthcare Group, Mansfield, MA, USA) were placed on the
muscle belly (interelectrode distance, 2 cm) with the ground electrode fixed on the distal
styloid process of the left radius. Surface EMG was fmassed filtered at 22000 Hz,

amplified x1000 (CED 1902, Cambridge Electronic Design, Cambridge, UK Digitimer,
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Hertfordshire, UK), sampled at 5 kHz (CED Power 1401; Cambridge Electronic Design,
Cambridge, UK) and recorded on a personal computer. MEPs were analylied fuff
peakto-peak amplitude (Signal, v.5.04; Cambridge Electronic Design). The mean surface
EMG, expressed relative to the EMG activity during shortening wrist flexion MVC, was

rectified and computed over a 30 ms period prior to the stimulation artifact.

Satistical analyses

Data in the text and figures greesenteés mean = SD. The normal distribution for each
variable was tested with the Kolmogof8wmirnov test. For all variables excépt torque, a

log transformation was applied ¢orrect fora postively skewed distributiorf the data

The main analysis adelssng the hypothesighat mirrorviewing of a movingand forcefully
contractinghand increases ipsilateral M1 excitabilityas aState(rest, contraction) by
Condition (no-mirror, mirror) ANOVA with repeated measures on both factoige

performed this main analysis feach of the following variablesorticospinal excitability
SICI, surface EMG activity in the left and right FCR and ECR, respectiWWlyalsouseda
oneway repated measures ANOVA with five levels to determine if wrist flexion tojue
60% MVCwas similar during the mirror and +moirror condition in which we measured CSE
and SICI. We performedrukey HSDpost hogairwise comparisoto determine the means

that were different

To verify that fatigue did not affect the results, a pasathples-test was used tdetermine
if the maximal torque was similar at the start and end of the experirkenthe mirror and
no-mirror condition, aéPearsor] ¥brrelation analysis was used to deterniiriee change in

corticospinal excitability and SICGe&lative to rest was correlated with #h&sociated activity
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measured ithe left p U HVRCRFdfallfour conditiors, an additional PearsdfiVv

correlation analysis was performed to test if surface EMG recorded from the right and left
wrist werecorrelated For Pearsor{ pfoduct correlations/e used the netransformed data
Significance was accepted Rz 0.05. For main effects partial eta squared was calculated as

a measure of effect size with enffs « 0.01 small,» 0.06 medium, and 0.14 largg(11).

Results

Table 1 shows the descriptive data for the fmnditions. The main results were that
viewing the mirror at rest did not affect TMS metrics Weiwing the mirror while
contracting the right wrist flexors reduced Si€the left wrist flexors but not in the
antagonist wrist extensor3 hese resultarere obtained under experimentahditionsthat

were well controlled for muscle EMG activity and the level of torque subjects generated.

Torque. The torque produced during right wrist shortening contracsonsessfully

attained th&60% MVC target torge and was similar for corticospinal excitability and SICI
measured with and without the mirréiz(6= 0.8;P = 0.513). Also, the maximal torque
production at the start (12.6 £ 3.9 Nm) was not different from the maximal torque produced
at the end of thexperiment (13.1 + 4.5 Nntys) = -0.845;P = 0.446)indicating the protocol

did not induce fatigue

Corticospinal excitability. Figure A shows a representative trace of MEPsaf@ingle
participant and Fig.R shows the group data illustrating coospinal excitabilityof the right
M1 recorded from the left FC#®r the mirror and nanirror condition when both hands were
at rest and during contractioithe State (rest, contraction) gondition (no-mirror, mirror)

repeated measures ANOVA showedtcorticospinal excitability was higher in boBCR
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(F]_’ze: 77.5;P<0.001; &5: 0749) and ECR(FLze: 27.0; P<0.001; BE: 051@ during
contraction compared to rest (FCR +105%, ECR +47%), but there was no effect of mirror for
either muscle(FCR: F1,26: 0., P=0.734 f%z 0005 ECR F1,26: 0., P=0.712 &5:

0.005).

SICI. Figure3A illustrates a representative trace of MEPs illustrating SICI for a single
participant, and Fig3B and3C show theSICI group data, evoked in the right Mmd
recorded from the left FCR, for the four different conditiombere was n&tate(Fi 26= 3.6,
P =0.07Q 3= 0.12Q nor Condition(F126=2.9 P=0.103 3= 0.100Q main effect but there
wasState byConditioninteraction(F; 26= 6.9, P =0.014 3= 0.209 for SICI recorded from
the left FCR Posthoc analysis revealed thiiere was-9% lessSICI only when subjects
contracted the right wrist flexomhile viewing the wrist flexionmovemenin the mirror(P <
0.05d e« ). No StategF; 6= 0.9 P=0.347 R= 0.039, Condition(Fy 2= 0.1; P =
0.782 3= 0.003, nor State by Conditiomteraction(F; 26=0.2, P =0.676 3= 0.007 was

observed for SICI recorded from the left ECR.

EMG responses inthe resting left imb. TKH RQJRLQJ (0* DFWLYLW\ LQ WKH -
FCR and ECRrior to stimulationwas 43% higher during contraction of the contralateral
limb compared to at refFCR:F; 26=324; P <0.00L, = 0555 ECR:F;2=15.1;, P=
0.001;, 3= 0.368 Fig. 4A). Noeffect of viewing the limb in the mirrdFCR:F; 6= 1.4; P
= 0255 3=0049 ECR:F12=0.9; P=0.343 3= 0,035 nor state by condition
interaction(FCR:F126=0.4; P=0521; 3= 0016 ECR:F126=0.9 P=0.348; 3= 0.03%)

was observed
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300 EMG responses in thaight limb. The EMG activity present in the right FCR (0.119 £
301 0.055 mV) was substantially greater than the EMG activity in the right ECR (0.026 + 0.013
302 mV) during shortening right wrist flexion contractiongleansurface EMG of the right FCR
303 was higher during contractions compared to (lests = 1030.9 P < 0.001 3= 0.975 but

304 was not affected by the mirr@f; 6= 0.29Q P = 0.595 3= 0.01). For the mean surface
305 EMG of the right ECRa StatgF1 26=440.6 P < 0.001 3= 0.949, Condition(F126=13.4
306 P =0.001 3= 0.34), and State by Feedback interaction ef{€ghs=23.4 P < 0.00% 3=
307 0.473 was observedPost hoc analysis revealed tBEMG activity of the righECRwasnot
308 different for the mirror and nrmirror contraction conditionR > 0.05), but wa80% higher
309 for the mirror compared with the mirror condition at restf < 0.05 Fig. 4B).

310

311 Relationships betweermMS responses andEMG activity in the restingleft limb. Figure
312 5 shows the relationship for the mirror andmuwror viewing condition between the change
313 in corticospinal excitability relative to rest and the change in surface EMG of tiiedeft
314 contracting)FCR relative to rest. The change in corticospinal excitability was positively
315 correlated to the change in surface EMG activity for the mirror but not for thamor

316 condition (mirror:r = 0.496, P = 0.009; no-mirror: r = 0297, P = 0.132). No correlaiton was
317 found between the change in SICI relative to rest and the change in surface EMG activity
318 relative to rest for the mirror and fmirror condition (mirrorr = 0.042, P = 0.833; no-

319 mirror:r = 0.175, P = 0.33).

320

321 Relationships betweerEMG activity in the left and right limb. The amount oEMG

322 activity of therestingleft limb was unrelated to the amount of surface EMG of the higitt
323 for both FCR(no-mirror, restr =-0.075 P = 0.711, mirror, restr = 0135 P = 0501 no

324  mirror, contractionr = 0.121, P = 0548 mirror, contractionr = 0378 P = 0052 and ECR
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325 (no-mirror, restr = 0070 P = 0.728 mirror, restr = 0318 P = 0.106 no-mirror,

326 contractionr =-0.061, P = 0.762 mirror, contractionr = 0291, P = 0.140).

327

328 Discussion

329 We tested the hypothesis that mirgrlLHZLQJ RI WKH ULJKW ZULVWYV IOHJ[LF
330 the illusion in the ipsilateral M1 that the resting left wrist is actually mgwang this illusion
331 changeseuronakexcitability in healthy young adultaVe demostrate for the first time that
332 performing slow, monotonic, and effortful wrist flexion while looking at the mirror image of
333 the moving right handeduced inhibition irthe left FCR but not ECRwhencompared with
334 the nemirror contraction and restirgpnditions with and without a mirror. The data are

335 consistent with the idea that the illusion of the left hand moving and not the mirror image of
336 the resting hand triggedthe reduction in motor cortical excitability in thght-ipsilateral

337 ML1. The absnce of an effedh theECRindicatesthatthe mirror seems to affeonly the

338 homologousagonistbut not the antagonigirojections Mirror-viewing did not affect

339 corticospinal excitability during contraction aatrest.

340

341 The results of the present study are consistent with the preponderfasaiashowing that

342  mirror-viewing has little or no effect on corticospinal excitability during motor act{@ty

343 22, 56) For example,ite use of a mirror does not se& interact withcontraction intensity
344  orthe nature of the contraction (sta{{s6); dynamic (6, 22). However,there is also

345 evidence fom~25% increase in ipsilateral M1 corticospinal excitability in conjunction with
346  viewing the isometrically contractingdex finger(~20% MVC)in amirror (23). Thecause
347 of the discrepant data is unclgemnsidering that the experimental and recording conditions
348 weresimilarin two studies, one showing an increase (Garry &3) the other showing no

349 effect (Reissig et db6)). The insensitivity of corticospinal excitability to mirrgrewing in
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350 the presenstudymay be related ta saturation effectConceivably, he strong (60% MVC)
351 musclecontractionproducel perirmaximal level of excitation in the ipsilateral corticospinal
352 path so that mirreviewing of the contracting harmbuld notfurther increase excitability

353 compared with the nrairror condition.

354

355 The present data are the first to document that Si@kmightipsilateral M1 is modulated
356 when a forceful rightianded unilateral contraction is performed whilst viewing the slowly
357 movingwrist in the mirror. Previous studies have shown that SICI in theipghateral M1
358 decreased with increasing isometight wrist flexion forcg53), anddecreased during

359 shortening wrist flexion contractions compared to {28}, and decreased during forceful
360 lengthening compared to shortening wrist flexion contract{@8s SICI in the nemirror

361 condition showed that contractions at 60% MVC did not affect SICI compared with rest.
362 However uniquely we demonstrate that mirmaewing of the slowly moving and contracting
363 hand decreased SICI in the rigpsilateral M1, suggesting that it is not the contraction itself,
364  but the visual illusion of a moving left hand that modulates SICI. |Ip@twpf this,a

365 previousstudyshowed mirrowviewing of isometric index finger abductions did not change
366 ipsilateral SICI compared with the +vision and other visual feedback conditi¢B6);

367 hence, to create a mirrdlusion and modulate SICit would seenthe viewed image must be
368 moving.

369

370 The premotor cortex, an area engaged in the modulation of M1 interneuron #46yity

371 plays a significant role in the visual guidanceupper limb movement&0)and is therefore
372 involved in mirror training24). Thus, it is possible that the modulatory effects of the

373 premotor cortex on M1 interneurons causednimeor-induced effect on SICI. In addition to

374 the increased activation of the rigpsilateraldorsal premotor corteHamzei and colleagues
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375 (24)observed an increased activation of the left supplementary motdolhog@ang mirror

376 training; an area known to be important in bimanual coordingtibn62) The present study
377 focused on the M1, an area also known to be involved in the control of bimaotdihedion
378 (15). There is evidence that SICI contributes to the regulation of bimanual coordif@gjon
379 64). Therefore, this collective evidence of attenuated SICI together with the increased
380 activation of thesupplementary motor are@4) following mirror training suggests that

381 mirror-viewing of the exercising hand creatthe illusion of a synchronous bimanual

382 movement (i.e., wrist flexion with the right hand and an illusionary wrist flexion movement
383 observed in the left hand).

384

385 An additionalcortical structurghat responds to the mirror image of a moving limb, but not
386 measured in the present study, is the superior teingymas. Visual information is

387 processed differently when unilateral motor practice is performed with and without viewing a
388 mirror (40, 41, 69) During mirror training with the right arm, visual input is directed

389 towards both occipital lobes with the concomitant activation of the-ipgitateralprecuneus
390 (41, 69)andsuperior temporal gyrugl0). The superior temporal sulcus has similar

391 coordinates to the superior temporal gy@i), which is a core element of the mirmoeuron
392 systeminvolved in the processing of visual informati(81, 32) whereas th@recuneus

393 seemso beinvolved inmediating visuomotor transformatio(is4). The fact that visual

394 information is solely processed in the ipsilateral hemisphere corresponding to the mirror
395 image, implies that the mirror creates the visual illusion as if participants exercised the left
396 hand.Although not measured in the current expent,there is evidence théte anterior

397 portion of the corpus callosynmvolved ininterhemispheric inhibition (IHI), contributes to
398 the integration of perception and action within a subcoxtamical network creating a

399 unified experience of how weepceive the visual world and prepare our acti@®. It is
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400 suggested that stimuhaliven activity in one hemisphere suppresses activity in the opposite
401 hemisphere by increasing the amount of (HI8). The illusion of a moving left hand while
402  mirror-viewing the moving right hanchightcause a shift in attention to the ipsilateral

403 hemisphere to process the visual information associated with the mirror image.

404

405 During a unilateral contraction there is normally some inadverteialsd associated

406  activity in the resting contralatenaduscle(60, 68, 73, 74) Viewing the mirror did not affect
407 the magnitude of associated activity in kbt FCR and antagonist ECRAlthough we

408 repeated the instruction to tparticipantto keep their left hand retad, the magnitude of

409 EMG activity wastwofold during contractions compared with rastd was higher for the

410 ECR than FCR The associated activity, relative to the EMGhatt at rest, was slightly

411 higher tharin someprevious work examining unilateral wrist contractig@é) but the

412  absolute values were still low compared with other unilateral contraction s(R8jes3, 74)

413 The source of this associated activity is unclear but bilateral M1 acti@Bytogether with
414 the bilateral activation of the SMA arérebellum(60) are thought to give rise to associated
415 activity. Our data favor the idea that associated activity comes from the concomitant

416 activation ofboth hemispheres, both Mitsparticular We founda strong and significant

417  correlation(r = 0.496) between the associated activity and the increase in corticospinal
418 excitability of the rightipsilateral M1 compared i rest for the mirroand a moderate but
419 nonsignificart correlation = 0.297) for tle nemirror condition(Fig. 5). This correlation

420 implies that there is a link between the magnitude of corticospinal excitability and the amount
421  of associated activity and that this link is strengthenleenithe contracting right hand is

422  viewedin the mirror. Thereby, mirrotviewing of the contracting right hand resulted in a

423  borderline significant correlation between EMG activity of the left (i.e., associated activity)

424  and right agonist FCR. Altogethenjrror-viewing of the contracting rigtitand strengthens
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the connectivity between the contracting agonist eowltralaterahomologous muscle
possibly via a mirreinduced modulationf the link betweelbilateral M1 activation and

amount ofassociated activity

Mirror-viewing of a unilateal muscle contractioaffected SICI but not associated activity

the current study Thus, a lack of change in associated activity strengthens the idea that the
activity that modulates SICI in response to mhva@wing arises in the ipsilateral M1.
However,without measuring IHlwe cannospecifically ascertaiif this modulation occurs

as a process intrinsic to ipsilateral M1, through IHI, or béthiture studies will have to
disentangle the effects of mirrgrewing on associated activity and IHI to better understand

the mechanism of how mirreiewing worksand could be applied w@inical conditions.

Limitations. The anterior corticospinal tract, which does not cross the medulla and occupies
5-15% of the entireorticospinal tract, has be@noposedis a motor recovery pathway from
the unaffected M1 to the affected extremi{i@3). It is hypothesized that this ipsilateral
motor pathwaynight be facilitated by mirror trainin@.3), so forour study this would mean
that mirrorviewing not only affeadthe rightipsilateral but also the leftontralateraM1,

an areave did notexamine Another nteresting aspechatis missingis the comparison
between an active vision condition, wheeeticipans direcly viewed thecontractingright
hand and the mirror condition where parpants observed the contragiright hand in the
mirror. Previouswork showed thaipsilateral M1 corticospinal excitabilitwas not different
between thesevo conditions during a static movemé&as, 56)but during a dynamic
movementipsilateralcorticospinalexcitability (35) andipsilateralM1 activity (67) were
significantly higher fothemirror condition. This again underpins the notion that the

observed image must be dynamic to induce a mirror effect and although we have not tested
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the hypothesis, we expect thmirror-viewing of awrist flexionincreasegorticospinal

excitability compared with an active vision condition.

Implications for practice. Mirror training is used in the treatment of chronic pain conditions
(3) and to improve motor function after strofg6). Somewhat surprisingly, recent work
without a mirror showed that strength training of the unaffected limb is beneficial for the
recovery of the impaired limb after stroie0, 16, 17) wrist fractureg39), and anterior

cruciate ligament reconstructive surgésy). The performance improvement in the
contralateral homologous muscle of the #i@ined limb following a period of effortful
unilateral motor practice is referred to as credacation(18, 26, 47, 72)but there may be
additional clincal benefits from the hypothesis that unilateral strength training with a mirror
could augment the crogslucation of muscle strengi®9, 75) Reduction in SICI observed

in the present study coulie one mechanisto explainhow the use of mirror increasthe

transfer effecteported in croseducation studies.

,Q VXPPDU\ YLHZLQJ RQHYV RZQ ULJKW KDQG LQ D PLUURU
slow but forceful muscle contraction, reduces one form of-garéical inhibition (SICI) in

the rightipsilateral M1. This modulation of SICI was specific to tledt FCR, the

contralateral homolog of the task muscle on the right sidhe use of a mirror, however, did

not affect corticospinal excitability of the right M1 and the associated activity in the homolog

FCR and norhomolog ECR.Thus, viewing the movingand and not just the mirror image

of the noamoving hand semsto affect motor cortical inhibitory networks in the hemisphere
associated with the mirror imag@&heseacute mirrofinduced chngessupportthe idea that

mirror-aided unilateral strength tréng might bemoreeffectivethanunilateral strength

training without a mirror for accelerating functional recovery from unilateral impairments.
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Future studieshoulddetermine if the use of a mirroouldincrease inteimb transfer
produced by crossducation especiallyin patientgpopulationswith unilateral orthopaedic

and neurological conditions
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Condition EMG EMG EMG
left ECR right FCR  right ECR

(% of control) (% of control) (mV) (mV) (mV)

No-mirror, 0.20 (0.15) 0.40 (0.44) 39.1 (23.3) 57.0 (25.5) 0.0035 0.0017 0.0015
rest (0.0034) | (0.0023) (0.0012)
Mirror, 0.21(0.14) 0.37(0.33) 38.4 (24.4) 56.2 (21.8) 0.0031 0.0019 0.0027
rest (0.00265) | (0.0030) (0.0019*
No-mirror, 7.8(2.3) 7.8(2.3) 0.43(0.29)* 0.58 (0.44)* 37.8(16.2) 58.8 (22.0) 0.0054 0.1159 0.0270
contraction (0.0040¥ | (0.0494% (0.0137¥
Mirror, 7.9(2.4) 7.8(2.3) 0.41(0.26)* 0.55(0.32)* 46.9 (18.9) 58.9 (17.4) 0.0042 0.1227 0.0245
contraction (0.0025¥ | (0.0601¥ (0.0128¥

714 Values are mean (SD). CSE, corticospinal excitability; ECR, extensor carpi radialis; EMG, electromyogram; FCR, flexaliaieaapMVC,

715 maximal voluntary contraction; N/A, not applicable; SICI, shotérval intracortical inhibition?, torque recorded at the moment of stimulation

716  for measuring corticospinal excitabilit};;torque recorded at the moment of stimulation for measuring $I€higher value means less
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717  inhibition; *, compared with the resting conditioris< 0.001 compared with all other conditionB € 0.05 A FRPSDUHG ZLWK WKHF

718  mirror resting condition® < 0.05).
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Figure captions

Figure 1. Experimental setupt rest PanelA) and duringa forceful shorteningontractionof
the right wrist flexorgPanelB). Both forearms were reston a built table and placed inside
two different boxeshatblockedtheview of the participant. if Themirror mounted on the
central vertical wall of the left box credtthe illusion ofthe left handnovingby mirror-
viewing the right hand(ii) The nemirror conditionhad acardboard wall mounted on the

central vertical wall of the left box.

Figure2. Corticospinal excitability of the right primary motor cortex recorded from the left
flexor carpi radialisA representative trag®anelA) of motorevoked potentials (MEPS)

from a single participaniviean( s SD) MEP (PanelB) size for the four different conditions.
NMest both hands at rest withsion of both hands blocked; Mirrgs; both hands at rest
while mirror-viewing the right hand; NiMntaction l€ft hand at reswhile the right hand
performed shortening wrist flexn contractions witlvision of both hands blocked;

Mirror contraction l€ft hand at reswvhile mirror-viewing of shortening right wrist flexion
contractions * Significantly different tacorticospinal excitability in resting conditionB €

0.001;N = 27).

Figure3. Shortinterval intracortical inhibition (SICI) in the right primary motor cortex
recorded from the left flexor carpi radial& higher value means less SI®Representative
trace(PanelA) of motorevoked potentials (MEPS) of a single participant, each tracing
comprises one trial; control MEP (solid line), conditioned MEP illustrating SICI (dotted line).
Mean( s SD) percentage of SICI relative to cont(®anelB). The horizontal dashed lireg

100% represents the control value, i.e., absence of inhiloitifacilitation. Individual

percentage difference of SICI between the mirror anthimoor condition(Panel Chat rest
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744  (white bars) and during contraction (black bai&)positive value mearsmirror image

745 induced reduction of SICI, whereas a negative value means a mirror image induced increase
746  of SICI. NMsi both hands at rest withsion of both hands blocked; Mirrgg both hands

747  at restwhile mirrorviewing the right hand; NMnacion 1€ft hand at reswhile the right hand

748 performed shortening wrist flexion contractions witkion of both hands blocked;

749  Mirrorcontraciion l€ft hand at reswvhile mirror-viewing of shortening right wrist flexion

750 contractions * Significantly different taSICI in all other conditiongP < 0.05 N = 27).

751

752  Figure 4. Mearfs SD) surface electromyogram (EM@xpressed relative to the EMG

753 activity of a maximal shortening wrist flexion contracti®anelA; meansurface EMG for

754 the left FCR (white bars) and left ECR (black bars) for the four different conditibn27).

755 PanelB; surface EMG for the right FCR (white bars) and right ECR (black bars) for the four
756 different conditionsN = 27). NMesi both hands at rest withsion of both hands blocked;

757  Mirrorsi both hands at resthile mirror-viewing the right hand; NiMntaction l€ft hand at

758 restwhile the right hand performed shortening wrist flexion contractionswistbn of both

759 hands blocked; MirrQgniacion 1€t hand at restvhile mirrorviewing of shortening right wrist
760 flexion contractions* Significantly different tcsurface EMGn theresting conditionsK <

761 0.00) and with theno-mirror resting conditionK < 0.05).

762

763  Figure 5. Relationship for the mirror and-mirror condition between the change in

764  corticospinal excitability relative to rest and the change in associated activity of the left flexor
765 carpi radialis relative to resfThe change in corticospinal excitéilyiwas positively

766  correlated to the change in surface EMG activity for the mirror but not for thamar

767  condition (mirror:r = 0.496, P = 0.009; no-mirror: r = 0297, P = 0.132; N = 27).

768
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