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Abstract 25 

Unaccustomed eccentric exercise using large muscle groups elicits soreness, decrements in 26 

physical function and impairs markers of whole-body insulin sensitivity; although these 27 

effects are attenuated with a repeated exposure. Eccentric exercise of a small muscle group 28 

(elbow flexors) displays similar soreness and damage profiles in response to repeated 29 

exposure. However, it is unknown whether damage to small muscle groups impacts upon 30 

whole-body insulin sensitivity. This pilot investigation aimed to characterize whole-body 31 

insulin sensitivity in response to repeated bouts of eccentric exercise of the elbow flexors. 32 

Nine healthy males completed two bouts of eccentric exercise separated by 2 weeks. Insulin 33 

resistance (updated homeostasis model of insulin resistance, HOMA2-IR) and muscle 34 

damage profiles (soreness and physical function) were assessed before, and 48 h after 35 

exercise. Matsuda insulin sensitivity indices (ISIMatsuda) were also determined in 6 participants 36 

at the same time points as HOMA2-IR. Soreness was elevated, and physical function 37 

impaired, by both bouts of exercise (both P < 0.05) but to a lesser extent following bout 2 38 

(time x bout interaction, P < 0.05). Eccentric exercise decreased ISIMatsuda after the first but 39 

not the second bout of eccentric exercise (time x bout interaction P < 0.05). Eccentric 40 

exercise performed with an isolated upper limb impairs whole-body insulin sensitivity after 41 

the first, but not the second, bout. 42 

 43 

Keywords: glucose; glycemia; insulin resistance; metabolic control; muscle damage 44 

repeated bout. 45 

 46 

Abbreviations 47 

GLUT-4: glucose transporter isoform 4 48 

HOMA2-IR: updated homeostasis model of insulin resistance 49 
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iAUC: incremental area under the curve 50 

ISIMatsuda: Matsuda insulin sensitivity index 51 

MVC: maximal voluntary contraction 52 

OGTT: oral glucose tolerance test 53 

 54 

 55 

  56 
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Introduction 57 

Insulin sensitivity indices predict the risk of developing metabolism-related diseases 58 

i.e. type 2 diabetes and cardiovascular disease (The DECODE Study Group & The European 59 

Diabetes Epidemiology Group, 1999; Zavaroni et al., 1989), even when only the “healthy” 60 

range of indices are considered (Ning et al., 2012). Accordingly, understanding how insulin 61 

sensitivity responds to stimuli can give insight into metabolic disease risk in currently healthy 62 

populations.  Whilst regular exercise alongside lifestyle interventions can prevent metabolic 63 

disease (Knowler et al., 2002), the acute effects of exercise on whole-body glucose 64 

metabolism are equivocal. Following a single bout of exercise, glucose tolerance has been 65 

shown to improve (Bonen, Ball-Burnett, & Russel, 1998), deteriorate, or remain stable 66 

(Gonzalez, Veasey, Rumbold, & Stevenson, 2013), relative to rest. Numerous factors are 67 

postulated to explain these discrepancies (including metabolic and nutritional status’ of the 68 

population, modality, volume and intensity of exercise), one of which is muscle damage 69 

induced by exercise with an eccentric component, and associated impairment of insulin 70 

sensitivity (Gonzalez, 2014). 71 

Typically, the exercise paradigms employed to study muscle damage involve large 72 

muscle groups or whole-body exercise, i.e., downhill running (Cook, Myers, Kelly, & 73 

Willems, 2014; Green et al., 2010), or eccentric exercise of knee flexors (Paschalis et al., 74 

2011). These models produce acute metabolic alterations indicative of reduced insulin 75 

sensitivity when measured at 48 h (Green et al., 2010; Paschalis et al., 2011) post-exercise. 76 

This effect is only present when exercise is unaccustomed, and is abolished or reversed with 77 

multiple bouts (Green et al., 2010; Paschalis et al., 2011). For damaging exercise of a small 78 

muscle group, similar profiles of damage, recovery and protection on repeated-bouts have 79 

been observed (Howatson, van Someren, & Hortobagyi, 2007), but the effect of damaging 80 

exercise of a small muscle group on whole-body insulin sensitivity is unknown. If whole-81 
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body insulin sensitivity can be modified by acute exercise of small muscle groups, such as 82 

the elbow flexors of a single limb (constituting <6% of total lean mass (Araujo et al., 2010)), 83 

this could reveal an avenue to explore potentially beneficial adaptations with multiple bouts, 84 

which may have implications during forced inactivity or immobilization.   85 

Accordingly, this pilot investigation aimed to assess whole-body insulin sensitivity 86 

during an oral glucose tolerance test (OGTT), in response to two bouts of eccentric exercise 87 

of the elbow flexors, separated by 14 days. We hypothesized that damaging exercise of a 88 

single muscle group would impair whole-body insulin sensitivity after the first, but not the 89 

second bout. 90 

 91 

Materials and methods 92 

Participants 93 

Six male participants completed the full protocol, whilst a further three males provided 94 

fasting samples only. Thus, postprandial OGTT data are n = 6 whilst all other data are n = 9 95 

(participant characteristics are presented in Table 1). All participants were naïve to regular 96 

resistance exercise. 97 

 98 

Study design 99 

Participants visited the laboratory on 6 occasions; twice to complete the eccentric exercise 100 

protocol (separated by 2 weeks), and 4 times for blood sampling in line with assessment of 101 

physical function and soreness (muscle damage markers). Blood sampling (including OGTT) 102 

and damage marker assessments were performed prior to, and 48 h following damaging 103 

exercise. The eccentric exercise protocol was performed on an isokinetic dynamometer 104 

(System 4 Pro, Biodex Medical Systems Inc. NY, USA) and comprised 8 × 5 maximal 105 

eccentric contractions of the left elbow flexors at 30°d.s-1; each set separated by 90 s rest. 106 
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 107 

Subjective soreness and physical function 108 

Subjective soreness was determined using 200 mm visual analogue scales during full range of 109 

movement of the elbow flexors. Physical function was taken as the peak value attained during 110 

3 isometric maximal voluntary contractions (MVC) of the elbow flexors, each performed 111 

with 90° flexion of the elbow, separated by 120 s rest and following a standardized warm-up. 112 

 113 

OGTT and blood sampling 114 

Participants were asked to maintain a similar carbohydrate intake throughout to minimize 115 

effects of diet on insulin sensitivity. Blood sampling was always performed after a 12-h fast. 116 

Participants were instructed to eat their evening meal prior to trials at a standardized time, to 117 

eat the same meal before all trials, and to refrain from exercise for 24 h prior to blood 118 

sampling in accordance with standardization for postprandial glycemia testing guidelines 119 

(Brouns et al., 2005). For those who undertook the OGTT, 75 g of glucose (82 g dextrose 120 

monohydrate, corrected for moisture; Myprotein, Cheshire, UK) was dissolved in 300 ml of 121 

water and ingested within 5 min. Finger-prick blood samples were taken before (0 min), and 122 

15, 30, 45, 60, 90 and 120 min following ingestion, and analyzed immediately for blood 123 

glucose concentration (Biosen C_line, EKF Diagnostics, Magdeberg, Germany), whilst a 250 124 

μL EDTA-microvette was filled with whole blood, before centrifugation (10 min at 3000 125 

rpm). By revisiting glucose data obtained in duplicate from one of our previous studies 126 

(Gonzalez & Stevenson, 2012), we are able to report reliability statistics, which include the 127 

combined variability of sample collection and analysis. Across 196 pairs of samples (range 128 

3.60-8.81 mmol/L), the standardized typical error was 0.12 mmol/L (95%CI: 0.11, 0.13 129 

mmol/L) and the coefficient of variation was 1.7%. Plasma was stored at −80°C for 130 
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subsequent determination of insulin concentrations by commercially available ELISA (IBL 131 

International GmbH, Hamburg, Germany; intra-assay coefficient of variation: 6%).  132 

 133 

Calculations and statistics 134 

Insulin sensitivity was estimated in the fasted state, using the updated homeostasis model of 135 

insulin resistance (HOMA2-IR; reciprocal of insulin sensitivity (Levy, Matthews, & 136 

Hermans, 1998)) and in the postprandial state (OGTT), using the Matsuda insulin sensitivity 137 

index (ISIMatsuda (Matsuda & DeFronzo, 1999)). Postprandial glucose and insulin 138 

concentrations were converted into time-averaged incremental areas under the curve (iAUC) 139 

as has been previously used (Gill et al., 2004). All analyses were performed using Prism v6 140 

(Graphpad Software, San Diego, CA). Data were checked for normal distribution 141 

(D’Agostino & Pearson omnibus normality test) and log transformed if appropriate, prior to 142 

analysis. The difference in work done between bout 1 and bout 2 was assessed by a paired 143 

samples t-test. Two-way [time (pre vs. post) x bout (bout 1 vs. bout 2)] repeated measures 144 

ANOVA were used to examine differences in fasting blood variables, OGTT data, MVC and 145 

soreness ratings. Data are presented as means ± SEM unless stated otherwise, and statistical 146 

significance was set at P < 0.05. 147 

 148 

Results 149 

Total work done during eccentric exercise was similar between bout 1 (2501 ± 205 kJ) and 150 

bout 2 (2527 ± 215 kJ; P = 0.738). Eccentric exercise elicited increases in soreness on both 151 

bouts (P = 0.003). Soreness was lower on the second bout vs. the first (P = 0.001) and 152 

significantly attenuated (time × bout interaction P = 0.001; Figure 1A). MVC decreased after 153 

both bouts (main effect of time, P < 0.001). No significant main effect of bout was detected 154 
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(P = 0.218), but the reduction in MVC post-damaging exercise was attenuated on repeated 155 

bouts (time × bout interaction, P = 0.019; Figure 1B). 156 

Fasting indices of insulin sensitivity (glucose and insulin concentrations, and 157 

HOMA2-IR) were unaffected by the intervention and neither was the glucose nor insulin 158 

iAUC (Table 2 and Figure 2). ISIMatsuda did not display significant main effects for time or 159 

bout (both P > 0.05) but the reduction in ISIMatsuda observed after bout 1 was abolished after 160 

bout 2 (time x bout interaction, P = 0.030, Figure 1C) indicating preserved insulin sensitivity 161 

after the second bout. 162 

 163 

Discussion 164 

These data indicate that: 1) unaccustomed eccentric exercise of a single upper-body 165 

limb reduces insulin sensitivity at the whole-body level, detectable in the postprandial state; 166 

2) the impairment in insulin sensitivity is abolished following a second bout of damaging 167 

eccentric exercise. 168 

Previous work has demonstrated acute reductions in insulin sensitivity following 169 

downhill running are absent following a second bout (Green et al., 2010), and others have 170 

shown that after 8 bouts, eccentric exercise of the knee flexors increases fasting insulin 171 

sensitivity indices (Paschalis et al., 2011). Here we demonstrate that a single exposure to 172 

eccentric exercise of a single, small muscle group (left elbow flexors) induces an adaptive 173 

response, whereby full protection from acute impairment of insulin sensitivity is observed. 174 

Whether eccentric exercise of an upper limb has the capacity to positively influence insulin 175 

sensitivity over a longer time-course however, warrants further investigation. If this is the 176 

case, then one can envisage potential application during imposed inactivity or immobilization 177 

of lower limbs. 178 
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It has been suggested that due to relatively low insulin concentrations used to 179 

calculate HOMA2-IR (fasting vs. a clamp procedure or postprandial), this measure represents 180 

a different balance of sensitivity (hepatic vs. peripheral) than the ISIMatsuda (Matsuda & 181 

DeFronzo, 1999; Radziuk, 2014). Accordingly, the reduction in ISIMatsuda seen in the present 182 

study, when viewed in light of the lack of change in HOMA2-IR, suggests that eccentric 183 

exercise reduced peripheral (but not hepatic) insulin sensitivity. 184 

Numerous mechanisms have been proposed to underlie muscle damage-induced 185 

reductions in insulin sensitivity. These include, a decrease in glucose transporter isoform 4 186 

(GLUT-4) at the plasma membrane due to reduced GLUT-4 transcription and thus GLUT-4 187 

protein content (Kristiansen, Jones, Handberg, Dohm, & Richter, 1997), associated with 188 

reduced muscle glucose transport manifest under hyperinsulinaemia but, intriguingly, 189 

elevated glucose transport when not exposed to insulin (Asp & Richter, 1996). This provides 190 

another potential explanation for the detectable reductions in ISIMatsuda but not in HOMA2-IR. 191 

Secondly, systemic factors released by damaged muscle including cytokines such as tumor 192 

necrosis factor-α may also be implicated an impaired ability of insulin to stimulate insulin 193 

receptor substrate-1, phosphatidylinositol 3-kinase and Akt (protein kinase B) (Asp, 194 

Daugaard, Kristiansen, Kiens, & Richter, 1996; Del Aguila et al., 2000; Krogh-Madsen, 195 

Plomgaard, Moller, Mittendorfer, & Pedersen, 2006; Liao, Zhou, Ji, & Zhang, 2010). Whilst 196 

our data are unable to give insight into which of these mechanisms is responsible, given the 197 

relatively small muscle group used (<6% of total lean mass (Araujo et al., 2010)), the impact 198 

at the systemic level is noteworthy. This indicates that, either a very small decrease in total 199 

GLUT-4 content has implications for insulin sensitivity at the whole body level, and/or 200 

damage to small muscle groups produces adequate release of systemic factors (ie. cytokines) 201 

to impair the action of a sufficient mass of insulin sensitive tissue to influence whole-body 202 

metabolism.  203 
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   In conclusion, these data indicate that eccentric exercise of a single upper limb, 204 

inhibits whole-body insulin sensitivity 48 h after the first bout, and such a reduction is not 205 

apparent after a second bout. 206 

 207 

Novelty statement: Eccentric exercise of large muscle groups (leg flexors of both legs, or 208 

whole-body exercise) is known to impair whole-body insulin sensitivity after an initial 209 

exposure, with protection from this effect demonstrated with subsequent bouts. This is the 210 

first study to demonstrate that eccentric exercise with a single small muscle group (elbow 211 

flexors of a single arm) impairs insulin sensitivity following the first bout, but not following a 212 

second bout. 213 

 214 

Practical application statement: In developing strategies to modulate insulin sensitivity, 215 

activating large muscle groups may not necessarily be required to elicit a response at the 216 

whole-body level. Eccentric exercise using upper limbs is likely sufficient to influence 217 

whole-body insulin sensitivity and this pilot work highlights a new strategy to potentially 218 

influence metabolism. 219 
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Figure legends 316 

Figure 1. Subjective soreness (A), maximal voluntary force production (B) and insulin 317 

sensitivity indices (C) before and 48 h after 2 bouts of eccentric exercise using the elbow 318 

flexors of an upper limb in males. MVC, maximum voluntary contraction force; ISIMatsuda, 319 

Matsuda insulin sensitivity index (Matsuda & DeFronzo, 1999). Data expressed as means ± 320 

SEM. *, significant main effect of time; #, significant main effect of bout; ^, significant time 321 

x bout interaction effect (P < 0.05). 322 

 323 

 324 

Figure 2. Blood glucose (A, B) and plasma insulin (C, D) concentrations during an OGTT 325 

prior to and 48 h following, an initial (A, C) and second (B, D) bout of eccentric exercise 326 

using the elbow flexors of an upper limb in males. Data expressed as means ± SEM.327 
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List of tables 

 

Table 1. Participant characteristics. 

Variable Fasting Data1  OGTT Data2 Independent t-test (P) 

Mean ± SEM Range  Mean ± SEM Range  

Age (y) 21 ± 1 19 – 26  21 ± 1 19 – 26 0.749 

Stature (cm) 180 ± 2 173 – 188  181 ± 2 173 – 186 0.845 

Body mass (kg) 76.9 ± 2.8 65 – 89.2  77.0 ± 3.1 68.7 – 86.2 0.997 

Body mass index (kg/m2) 23.6 ± 0.6 19.9 – 26.0  23.5 ± 0.8 19.9 – 26.0 0.923 

1, n = 9; 2, n = 6.  
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Table 2. Indices of insulin sensitivity in response to acute and repeated exposure to eccentric exercise. 

Variable Bout 1  Bout 2 ANOVA  

time x bout interaction (P) Pre 48 h post  Pre 48 h post 

Fasting glucose1 (mmol/L) 4.45 ± 0.13 4.46 ± 0.20  4.46 ± 0.14 4.57 ± 0.18 0.756 

Fasting insulin1 (pmol/L) 128 ± 36 149 ± 54  147 ± 40 160 ± 46 0.910 

HOMA2-IR1 2.25 ± 0.62 2.60 ± 0.92  2.54 ± 0.65 2.75 ± 0.73 0.874 

Glucose iAUC2 (mmol/L) 1.47 ± 0.23 1.29 ± 0.19  1.91 ± 0.22 1.27 ± 0.33 0.285 

Insulin iAUC2 (pmol/L) 139 ± 36 153 ± 26  158 ± 17 144 ± 38 0.160 

Data expressed as means ± SEM. 1, n = 9; 2, n = 6; HOMA2-IR, updated homeostasis model of insulin resistance (Levy et al., 1998); iAUC, 

incremental time-averaged area under the curve. 


