Wave damping observed in upwardly propagating sausage-mode oscillations contained within a magnetic pore

Grant, Samuel, Jess, David, Moreels, M. G., Morton, Richard, Christian, Damian, Giagkiozis, Ioannis, Verth, Gary, Fedun, Viktor, Keys, Peter, van Doorsselaere, Tom and Erdélyi, Robert (2015) Wave damping observed in upwardly propagating sausage-mode oscillations contained within a magnetic pore. The Astrophysical Journal, 806 (1). ISSN 1538-4357

apj_806_1_132.pdf - Published Version

Download (1MB) | Preview
Official URL: http://dx.doi.org/10.1088/0004-637X/806/1/132


We present observational evidence of compressible MHD wave modes propagating from the solar photosphere through to the base of the transition region in a solar magnetic pore. High cadence images were obtained simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average period similar to 290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent bandpasses were found to be out of phase with one another, displaying phase angles of 6 degrees.12, 5 degrees.82, and 15 degrees.97 between the 410 angstrom continuum-G-band, G-band-Na I D1, and Na I D-1-Ca II K heights, respectively, reiterating the presence of upwardly propagating sausage-mode waves. A phase relationship of similar to 0 degrees between same-bandpass emission and area perturbations of the pore best categorizes the waves as belonging to the "slow" regime of a dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric energies in excess of 35,000 W m(-2). The wave energetics indicate a substantial decrease in energy with atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy damping, which may release considerable energy into the local chromospheric plasma.

Item Type: Article
Uncontrolled Keywords: magnetohydrodynamics (MHD), Sun: chromosphere, Sun: oscillations, Sun: photosphere
Subjects: F300 Physics
F500 Astronomy
G100 Mathematics
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Users 6424 not found.
Date Deposited: 20 Jul 2015 11:20
Last Modified: 01 Aug 2021 02:38
URI: http://nrl.northumbria.ac.uk/id/eprint/23387

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics