CdCl2 treatment related diffusion phenomena in Cd1−xZnxS/CdTe solar cells

Kartopu, Giray, Taylor, A. A., Clayton, Andrew, Barrioz, Vincent, Lamb, Daniel and Irvine, Stuart (2014) CdCl2 treatment related diffusion phenomena in Cd1−xZnxS/CdTe solar cells. Journal of Applied Physics, 115 (10). p. 104505. ISSN 0021-8979

Full text not available from this repository. (Request a copy)
Official URL:


Utilisation of wide bandgap Cd1−x Zn xS alloys as an alternative to the CdS window layer is an attractive route to enhance the performance of CdTe thin film solar cells. For successful implementation, however, it is vital to control the composition and properties of Cd1−x Zn xS through device fabrication processes involving the relatively high-temperature CdTe deposition and CdCl2 activation steps. In this study, cross-sectional scanning transmission electron microscopy and depth profiling methods were employed to investigate chemical and structural changes in CdTe/Cd1−x Zn xS/CdS superstrate device structures deposited on an ITO/boro-aluminosilicate substrate. Comparison of three devices in different states of completion—fully processed (CdCl2 activated), annealed only (without CdCl2 activation), and a control (without CdCl2 activation or anneal)—revealed cation diffusion phenomena within the window layer, their effects closely coupled to the CdCl2 treatment. As a result, the initial Cd1−x Zn xS/CdS bilayer structure was observed to unify into a single Cd1−x Zn xS layer with an increased Cd/Zn atomic ratio; these changes defining the properties and performance of the Cd1−x Zn xS/CdTe device.

Item Type: Article
Subjects: F200 Materials Science
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Becky Skoyles
Date Deposited: 23 Nov 2015 15:09
Last Modified: 12 Oct 2019 19:08

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics