Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

Sun, Xiaoli, Wang, Zhiguo and Fu, Yong Qing (2015) Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide. Scientific Reports, 5. p. 18712. ISSN 2045-2322

Text (Article)
Fu R_defect mediated lithium.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Official URL:


Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25–0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

Item Type: Article
Subjects: F200 Materials Science
F900 Others in Physical Sciences
H800 Chemical, Process and Energy Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Users 6424 not found.
Date Deposited: 11 Jan 2016 15:44
Last Modified: 01 Aug 2021 02:38

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics