Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes

Fornace, Kyrstin, Whitney, Bronwen, Galy, Valier, Hughen, Konrad and Mayle, Francis (2016) Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes. Earth and Planetary Science Letters, 438. pp. 75-85. ISSN 0012-821X

[img]
Preview
Text (Full text)
Fornace Whitney et al 2016 preprint.pdf - Accepted Version

Download (3MB) | Preview
Official URL: http://dx.doi.org/10.1016/j.epsl.2016.01.007

Abstract

Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3- and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4 grasses and C3 herbs from 41–20 ka. A peak in C4 abundance during the Last Glacial Maximum (LGM, ∼21 ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δDδD values over the entire record indicate that the majority of variability in leaf wax δDδD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δDδD signatures. However, positive δDδD deviations from the observed δ13C–δDδD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δDδD signatures.

Item Type: Article
Additional Information: Published online first 26-1-16. AM requested from Bronwen Whitney 3-2-16 PB.
Uncontrolled Keywords: Pantanal; leaf wax; compound-specific stable isotopes; South American Summer Monsoon; last glacial period; Holocene
Subjects: F400 Forensic and Archaeological Science
F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Paul Burns
Date Deposited: 03 Feb 2016 10:09
Last Modified: 01 Aug 2021 08:19
URI: http://nrl.northumbria.ac.uk/id/eprint/25830

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics