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The role of nanoparticle inks in determining the
performance of solution processed Cu 2ZnSn(S,Se) 4 thin
� lm solar cells
Yongtao Qu, Guillaume Zoppi and Neil S. Beattie *

Department of Physics and Electrical Engineering, Ellison Building, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK

ABSTRACT

Cu2ZnSnS4 (CZTS) nanoparticle inks synthesized by the injection of metal precursors into a hot surfactant offer an
attractive route to the fabrication of Earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) thin film photovoltaic absorber layers.
In this work it is shown that the chemical reaction conditions used to produce CZTS nanoparticle inks have a funda-
mental influence on the performance of thin film solar cells made by converting the nanoparticles to large CZTSSe
grains in a selenium rich atmosphere and subsequent cell completion. The reaction time, temperature and cooling rate
of the nanoparticle fabrication process are found to affectdoping level, secondary phases and crystal structure respec-
tively. Specifically, prolonging the reaction offers a newroute to increase the concentration of acceptor levels in
CZTSSe photovoltaic absorbers and results in higher device efficiency through an increase in the open circuit voltage
and a reduction in parasitic resistance. Quenching the reaction byrapid cooling introduces a wurtzite crystal structure
in the nanoparticles which significantly degrades the device performance, while elevating the reaction temperature of
the nanoparticle synthesis introduces a secondary phase Cu2SnS3 in the nanoparticles and results in the highest cell
efficiency of 6.26%. This is correlated with increaseddoping in the CZTSSe absorber and the results demonstrate a
route to controlling this parameter. © 2016 The Authors.Progress in Photovoltaics: Research and Applications
published by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cu2ZnSn(S,Se)4 (CZTSSe) is a promising photovoltaic
material and experiencing rapid improvements in recent
years because of its Earth-abundant constituents and out-
standing optoelectronic properties [1–6]. Among the vari-
ety of techniques employed for the preparation of the
absorber films, solution-based deposition and processing
have the potential to provide low-cost scalable routes to
produce photovoltaic devices with high efficiency. Such
results include the current record efficiency for CZTSSe
solar cells at 12.6% using a hydrazine-solution based
method [7]. On the other hand, nanoparticle inks offer a
non-toxic alternative. Deposited from the Cu2ZnSnS4
(CZTS) nanoparticle inks, CZTS precursor thin films

annealed in the presence of Se can provide devices with
efficiency as high as 9.0% [8].

Both CZTS and CZTSSe are known to be highly disor-
dered as a consequence of high doping levels from native
defects resulting in a band structure that can be described
by a fluctuating potential model [9]. The doping levels
are of fundamental importance as they determine the opto-
electronic behavior of devices. We have recently devel-
oped an experimental procedure to tune the properties of
CZTS nanoparticlesvia the chemical reaction conditions
[10]. Wurtzite CZTS was formed at lower temperature
whereas Cu2SnS3 (CTS) was present in the nanoparticles
at higher temperature. The reaction time was also found
to have a strong effect on the nanocrystals which became
increasingly copper poor and zinc rich as the reaction
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evolved. Additionally, the existence of wurtzite structure
depends critically on the reaction cooling rate.

CZTS nanoparticle inks are the basis of the photovoltaic
absorber layer; their impact on device performance has
not yet been reported or investigated. In most cases it is
assumed that the majority of CZTS nanoparticles have been
converted into large grains and lose their direct influence on
the device performance. However, below the top micron-
scale grains, the metal-chalcogenide nanoparticles are still
found present in the grain sub-layer creating a bi-layer
absorber [11]. To the best of our knowledge there has been
no detailed report linking the properties of the nanoparticle
inks with the completed solar cell performance. In this work,
we demonstrate that we can fabricate large grain CZTSSe
thin films and control the concentration of dopants. This
is shown to have a significant effect on the solar energy con-
version efficiency of photovoltaic devices made from the
films. Furthermore, the device performance is also found
to be sensitive to the atomic arrangement of the CZTSSe
crystal structure which is strongly influenced by the rate of
reaction cooling.

2. EXPERIMENTAL PROCEDURE

2.1. Nanoparticle synthesis and ink
preparation

CZTS nanoparticles were fabricated using a hot-injection
method described previously [10]. Four types of nanopar-
ticle inks were prepared by varying key reaction parame-
ters: temperature, time or cooling mode. The control
sample (sample A) was obtained by setting the reaction
temperature to 225 °C for 30 min followed by slow
cooling (~5 °C/min) under ambient laboratory conditions.
The remaining three nanoparticle inks were fabricated by
systematically changing one of the key reaction parame-
ters as indicated in Table I. For quenched sample B, the
reaction was quenched by rapidly cooling the reaction
vessel in ice-water.

The as-synthesized CZTS nanoparticles were dispersed
in toluene with a concentration of ~10 mg/ml. However,
the ink needed to be concentrated further to yield efficient
deposition. The CZTS precipitation was therefore dispersed
into hexanethiol (95%, Sigma Aldrich) with the aid of son-
ication and then filtered through a 1 micron syringe filter
(Whatman) to remove large agglomerates. The filtrate was

then sonicated for 10 min to yield the final concentration
of ~100 mg/ml.

2.2. Thin � lm deposition

CZTS thin films were prepared by spin-coating ~30� l of
the ink onto a square Mo-coated glass or bare glass sub-
strate (2.5 cm × 2.5 cm) at a rate of 1200 rpm for 5 s. The
samples were then dried on a hot plate in air at 150 °C
for 30 s and then at 300 °C for 30 s (hereafter“soft-
baking” ) to remove the residual solvent. The thickness
of the deposited thin films could be accurately controlled
and reproduced by repeated spin coating and soft-baking
procedures. A thickness of 1� m was set for efficient light
absorption in all thin films.

2.3. Photovoltaic device fabrication

In order to produce an efficient absorbing layer, the CZTS
nanocrystal thin films need to undergo a recrystallization
process where small nanoparticles are converted into large
grains. This is achieved via a selenization process where
the formation of the sulfoselenide compound CZTSSe
through the Se–S anion exchange induces large-scale grain
growth by dissolution of the parent CZTS and cation re-
ordering in the selenium-based lattice. The as-deposited
CZTS/Mo/glass films were placed inside of a graphite
cylinder with 300-mg selenium pellets placed directly
beneath the substrate. The furnace was evacuated and
heated to 500 °C (~20 °C/min) where the temperature was
held for 20 min in an argon atmosphere (~10 mbar).

The resulting CZTSSe thin films were converted into
solar cell devices with the configuration: Mo/CZTSSe/
CdS/i-ZnO/ITO/Ni-Al. The CdS buffer layer was depos-
ited using a chemical bath. Deionized water was first
poured into a double-walled beaker. After the temperature
inside the beaker stabilized at 70 °C, CdSO4 (2 mM) and
ammonium (1.5 M) were added successively with a mag-
netic stir bar continuously stirred to form the solution.
The CZTSSe films were then soaked in the solution for
2 min before thiourea (12 mM) was mixed into the solu-
tion. After the reaction, the samples were removed from
the bath, rinsed with deionized water and dried under a
nitrogen stream and then annealed at 200 °C for 10 min
in air. The transparent oxide layers were deposited by
sputtering ~60 nm-thick insulating ZnO (i-ZnO) and
~200 nm-thick indium tin oxide (ITO). Finally, the front
contact grid was deposited by electron beam evaporation
of Ni (~50 nm) and Al (~1� m) through a shadow mask.
Each substrate was defined by mechanical scribing into
nine 0.16 cm2 devices.

2.4. Experimental methods

The morphology of CZTS precursor thin films was inves-
tigated using tapping mode atomic force microscopy
(AFM) using a Veeco Nanoscope multimode system.
The structure of the CZTS nanocrystals was examined

Table I. Fabrication parameters for four types of nanoparticles.

Device
Temperature

(°C)
Time
(min)

Cooling rate
(°C/min)

Control (A) 225 30 5
Quenched (B) 225 30 20
Hot (C) 255 30 5
Prolonged (D) 225 60 5
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using X-ray diffraction (XRD) carried out with a Siemens
D-5000 diffractometer using a Cu K� radiation source
(� = 0.15406 nm for K� 1). The film morphology and com-
position were determined using a FEI Quanta 200 scan-
ning electron microscope (SEM) equipped with Oxford
Instruments energy dispersive X-ray spectroscopy
(EDS). K� X-ray emission lines for Cu, Zn, S and L� for
Sn were used for quantification. Raman spectroscopy
was performed with a Renishaw inVia microscope using
a 514-nm argon ion laser. The valence states of the con-
stituent elements in the CZTS thin film were assessed
using a Thermo Scientific K-Alpha X-ray Photoelectron
Spectrometer (XPS) System with a monochromatic Al
K� X-ray source (1486.6 eV). A short sputter cleaning
was applied before the scanning process to remove possi-
ble contamination on the top surface. Elemental depth
profiling was performed by secondary ion mass spectros-
copy (SIMS) using a Hiden Analytical gas ion gun and
quadrupole detector. A primary Ar beam with an impact
energy of 4 keV and beam current of 200 nA was used
to sputter over a 500� m × 500� m rastered area. A gating
area of 10% was used to remove side wall effects. Current
density–voltage (J–V) measurements were performed in a
four-point probe configuration using a Keithley 2400 se-
ries source meter. Samples were illuminated with an Abet
Technologies Sun 2000 solar simulator with an AM1.5
spectrum set (100 mW/cm2). The external quantum
efficiency (EQE) measurements were operated using a
double grating monochromator (Bentham Instruments,
M300) with illumination normalized against calibrated
silicon and germanium detector. Capacitance–voltage
(C–V) measurements of the finished device were made
in the dark using an Agilent E4980A Precision LCR
Meter operating at 100 kHz frequency and 100 mV step
with bias voltage from 0 to� 1 V.

3. RESULTS AND DISCUSSION

3.1. CZTS precursor thin � lms prepared
from nanoparticle inks

The as-deposited precursor control thin film appears
smooth and is formed of densely packed, uniform spherical
CZTS nanoparticles with diameter around 20 nm as shown
in Figure 1 (a). Figure 1 (b) shows a representative cross-
sectional SEM image of the 10-layer coating CZTS nano-
crystal film on Mo/glass substrate. It can be seen that the
film is uniform with a thickness of ~1� m.

XPS was used to confirm that the chemical synthesis
method resulted in the formation of Cu (I) valence states
in the CZTS precursor thin film synthesized using control
conditions. As shown in Figure 2 (a), the copper spectrum
shows two narrow peaks at 931.9 and 951.8 eV, with a
peak splitting of 19.9 eV. No satellite features at 943 eV
of Cu (II) indicates the presence of Cu (I). For complete-
ness, the zinc 2p peaks at 1022.1 and 1045.2 eV show a
separation of 23.1 eV, consistent with the standard splitting

of 23 eV for Zn (II). The tin 3d peaks at 486.9 and
495.3 eV with a splitting of 8.4 eV indicate Sn (IV). The
binding energies of S 2p 1/2 and S 2p 3/2 are 162.4 eV
and 161.3 eV, respectively, revealing the valance state
of S (� II).

The SIMS depth profiles of a CZTS precursor control
thin film are shown in Figure 3. Except at the very surface
of the thin film where the oxygen increases the ion yield of
positive ions, the constituent elements of CZTS exhibit
uniform distribution throughout the film thickness. The
depth profile S/metals ratio is also shown as the dark solid
line at the bottom of the graph which further demonstrates
the uniformity of S and metals. The significant increase
of Mo signal around 2100 s indicates the start of the
CZTS/Mo interface. Combining the curves of Mo and
S/metal ratio, the spectra can be divided into three compo-
sitional zones marked by the vertical lines. A MoS2 layer is
formed during the soft-baking process between the CZTS
layer and Mo substrate. The C-rich solvent molecules are
loosely bounded to the CZTS nanoparticles, and the soft-
baking process allows to partially evaporate those mole-
cules. However a diffusion process is required within the
precursor film for this to happen, and it is conceivable that
some of the C will diffuse towards the surface and evapo-
rate while C diffusing towards the back of the film will
start accumulating at the CZTS/Mo interface and result in
the increase of C signal towards the interface with the
substrate.

The crystal structure of the thin films fabricated using
the four different nanoparticle inks was studied by XRD
and Raman spectroscopy (Figure 4). As shown in Figure
4 (a), the major XRD diffraction peaks of the control

(a)

(b)

Figure 1. (a) AFM top view of the as-coated CZTS nanocrystal
thin � lm, (b) cross-sectional SEM image of the as-coated CZTS

nanocrystal � lm on Mo-coated glass substrate.

Cu2ZnSnS4 nanoparticle inks Y. Qu, G. Zoppi and N. S. Beattie

838 © 2016 The Authors. Progress in Photovoltaics: Research and Applicationspublished by John Wiley & Sons, Ltd. 2016; 24:836–845
DOI: 10.1002/pip



appear around 28°, 47° and 56°, which can be attributed to
the (112), (220) and (312) planes of kesterite CZTS (PDF
026-0575), respectively. The quenched sample exhibits
three weak diffraction peaks marked by asterisks shown
in Figure 4 (a) in addition to the primary peaks. These
belong to wurtzite CZTS co-existing in the nanoparticle
ink because metastable wurtzite CZTS has insufficient
time to complete the transformation to the more stable
kesterite phase when the reaction temperature cools rapidly
[10]. XRD patterns of the hot and prolonged samples have
a similar pattern to kesterite CZTS with no obvious sec-
ondary phases observed.

Raman spectroscopy was used to further confirm the
structure of the samples and rule out other binary or ter-
nary compounds that have a similar XRD pattern to CZTS
(Figure 4 (b)). For the control, the main peak located at
329 cm� 1 is likely to be the A1 mode of kesterite CZTS
shifted downwards from 338 cm� 1 because of the cation
sublattice disorder for non-stoichiometric CZTS material.
Because of the mixed atomic arrangement of kesterite and
wurtzite phase, the main peak of the quenched sample
broadens and shifts to 335 cm� 1. For the hot sample, a
strong peak at 329 cm� 1 corresponds to the A1 mode of
CZTS, although there is also a nearby shoulder peak at
301 cm� 1. This peak matches with either cubic CTS at
303 cm� 1 or tetragonal CTS at 297 cm� 1 [12]. For the
prolonged sample, however, only one characteristic peak
located at 329 cm� 1 is observed, and has a similar spec-
trum to the control.

3.2. Preparation of CZTSSe photovoltaic
absorber thin � lms

The selenization process was applied to the CZTS precur-
sor thin films to convert the nanoparticles into micron-
sized grains and minimize grain boundaries.

XRD was used to confirm the crystal structure of the
selenized films. As shown in Figure 5 (a), the selenization
process induces a sharpening of the diffraction peaks. All
the peaks can be assigned to CZTSe (PDF 052-0868)
slightly shifted to higher angles because of residual sulfur
present in the lattice (Table II). As shown in Table II, the
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Figure 3. SIMS depth pro� les of the CZTS precursor thin � lm
deposited on Mo-coated glass. The dashed vertical lines divide

the pro� le into three composition zones.
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Figure 2. XPS spectra of Cu 2p, Zn 2p, Sn 3d and S 2p spectra of the CZTS precursor thin� lm.
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composition of the selenized film is zinc rich and copper
poor and about 90% anion exchange between sulfur
and selenium occurs during the selenization process. A
zinc loss was observed in the selenization process as the
Cu/(Zn + Sn) ratio increased from 0.79 to 0.89 and the
Zn/Sn ratio decreased from 1.15 to 1.

Raman spectroscopy was also performed on the
selenized films and as shown in Figure 5 (b), the two sharp
peaks at 172 and 195 cm� 1, and weak peaks at 232 cm� 1

correspond to the literature values of CZTSe [13]. However,
the shoulder peaks at the high frequency side of the
232 cm� 1 are difficult to determine with accuracy. In addi-
tion, the wide peak at 327 cm� 1 can be attributed to the
A1 mode of residual CZTS [14]. The ~10 cm� 1 shift from
the reported peak position of CZTS (~338 cm� 1) is likely
because of the disorder or stress induced by the exchange
between sulfur and selenium. In order to analyze the region
close to the absorber/Mo interface, the measurement was
repeated on the substrate after mechanically removing part
of the absorber. As shown in Figure 5 (b), the spectrum from
the substrate shows clear peaks at 241 and 253 cm� 1 which
can be identified as the main mode of MoSe2 and ZnSe,
respectively [15]. In addition, weaker peaks at 171, 290
and 350 cm� 1 can all be indexed to MoSe2.

As shown in Figure 6 (a), the cross-sectional image of
the selenized thin film reveals a four-layer structure. The
bottom layer is typical of Mo with a columnar grain struc-
ture. Under the selenium-rich annealing conditions, an
approximately 0.5� m thick layer of Mo(S,Se)2 forms on
top of the Mo layer by replacing part of the sulfur in
MoS2. Above the substrate, the CZTSSe layer is composed
of a residual fine grain sublayer (~0.5� m thick) and a large
grain upper layer (~1� m). Compared to the CZTS precur-
sor thin film, the thickness of the CZTSSe thin film is
increased because of the Se–S anion replacement and
volume expansion of the CZTSSe unit cell during the
selenization process.

The elemental distribution in the selenized film was
studied using SIMS and shown in Figure 6 (b). Combined
with the cross-sectional SEM image, the SIMS spectra can
be divided into the four sections mentioned previously
with different compositions. The large-grain layer is com-
posed of high purity CZTSSe with low carbon content.
The residual fine grain layer is rich in carbon, especially
close to the substrate interface confirming our previous
hypothesis of C being driven towards the back of absorber
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Figure 4. (a) XRD pattern of as-coated CZTS thin� lms com-
pared to the reference pattern for kesterite CZTS (PDF 026-
0575). (b) Raman spectra and of CZTS nanoparticles prepared
at different reaction conditions. Diffraction patterns and Raman

spectra are off-set for better visibility.
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Figure 5. Crystal structure of CZTSSe� lm made from a control
sample. (a) XRD pattern of the thin � lm compared to the refer-
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Mo are marked by * and MoSe 2 are also included. (b) Raman
spectrum of the thin � lm front surface and the remaining sub-
strate after mechanically removing the absorber. Spectra are off-
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layer upon thermal annealing. The Raman analysis of the
substrate after absorber removal also supports the presence
of binary ZnSe in the fine grain layer [11]. A Mo(S,Se)2

layer is formed above the Mo substrate because high levels
of S and Se signals are found between the CZTSSe film
and Mo substrate. Even in selenium-rich conditions, some
residual sulfur is still present in the lattice. This agrees with
the Raman spectra shown in Figure 5 (b) where a slight Ra-
man shift is observed compared with literature position of
the pure MoSe2 [15].

3.3. Photovoltaic device performance

The CZTSSe thin films were converted into solar cell
devices following the deposition of CdS, i-ZnO, ITO and
Ni/Al contact layers. A series of four substrates was pre-
pared (nine 0.16 cm2 devices per substrate) using the four
types of nanoparticle inks: control (sample A), quenched
(sample B), hot (sample C) and prolonged (sample D).
Devices differ only in the precursor ink used, and all other

conditions were kept identical during the fabrication. Note
that the devices do not include an anti-reflective coating.

J–V curves of the best device built on each substrate are
shown in Figure 7 (a) with the device parameters extracted
from theJ–V curves summarized in Table III. Additionally,
the distributions of solar energy conversion efficiency (� ),
open circuit voltage (Voc), short circuit current density (Jsc)
and fill factor (FF) of the nine devices on each substrate
are shown in Figure 8 demonstrating the high uniformity
of device performance across the substrates.

Baseline photovoltaic parameters for the control device
can be derived from Figure 7(a):� = 5.41%,Voc= 0.36 V,
Jsc= 29.6 mA/cm2 and FF = 50.7%. The most striking
contrast to this set is found for the quenched reaction
conditions as the presence of wurtzite phase CZTS has a
profound effect on the efficiency of device B where
� = 2.30%, indicating that the reaction cooling mode which
affects the atomic arrangement has a direct negative influ-
ence upon the device performance. The wurtzite phase in

Table II. The composition of precursor and selenized thin � lms.

Cu (at %) Zn (at %) Sn (at %) S (at %) Se (at %) Cu/(Zn + Sn) Zn/Sn Se/(S + Se)

Pre-selenizaion 23.95 16.21 14.14 45.70 0 0.79 1.15 0
Post-selenization 22.35 12.62 12.65 5.75 46.63 0.89 1 0.89
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Figure 6. (a) Cross-sectional SEM image of the selenized con-
trol � lm (sample A). (b) SIMS depth pro� les of the CZTSSe con-
trol � lm. The dashed vertical lines divide the pro� le into four

composition zones.

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
-40

-20

0

20

40

400 600 800 1000 1200 1400
0

20

40

60

80

100(b)

(a)

Figure 7. (a) J–V curves, (b) EQEs of devices A–D. The step in
EQE spectra at 1030 nm is an artefact arising from a change in
detector. The inset in (b) shows band gap energies Eg deter-

mined from the EQE spectra.
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the nanoparticles is thermodynamically unstable and
tends to convert into stable kesterite phase during the
selenization process [16]. The crystal structure difference
between the wurtzite and kesterite structure may hinder
the grain growth in the selenization process and results in
small grains as observed in Figure 9. This is a new and
important insight not least because this fabrication tech-
nique for synthesis of CZTS nanocrystals is widely
reported in the literature. As shown in Table III, the
reduced efficiency of this device arises not only from
reductions inVoc and Jsc, but also a large drop inFF
caused by higher series resistance (RS) and lower shunt
resistance (RSH). From the top view SEM images shown
in Figure 9 (a), the selenized thin film made from sample
A is composed of densely packed grains that can be up
to 2� m, with no obvious voids or cracks on the surface.
However, as can be seen in Figure 9 (b), the grain size of
the CZTSSe film made from the quenched sample is sig-
nificantly smaller than that of the control. Considering
the sheet resistance of the Mo and ITO is 0.2� /� and 35
� /� , respectively, the increased parasitic resistance of the

quenched device is likely derived from increased density
of grain boundaries which act as recombination centers.
It is possible that wurtzite phase CZTS undergoes a phase
transition to kesterite during the selenization stage [16];
however, this wurtzite CZTS may hinder the grain growth
process and even present a residual component that signif-
icantly degrades device performance. Figure 7 (a) also
shows theJ–V characteristic for the devices with hot and
prolonged reaction conditions (C and D respectively).
These devices have higher solar energy conversion effi-
ciencies relative to the control, and this is manifested
through higher fill factors which in turn are determined
by RS and RSH. The former is likely to be influenced by
the unconverted nanocrystals and the Mo(S,Se2) layer at
the back of the device [8] whileRSH is influenced by the
CZTSe grain size. Analysis of Figure 9 reveals that the
prolonged reaction time results in a selenized thin film that
has slightly larger grains (Figure 9 (d)) compared with the
hot reaction condition (Figure 9 (c)). This reduces the num-
ber of grain boundaries and, in turn, the number of shunt
pathways [17] and is evidenced by the higherRSH value.

Table III. Device parameters for the solar cells with J-V curves shown in Figure 7.

Device � (%) Voc (V) Jsc (mA/cm2) FF (%) RS (� .cm2) RSH (� ·cm2) Eg-qVoc (eV)

Control (A) 5.41 0.36 29.6 50.7 3.09 77 0.70
Quenched (B) 2.30 0.26 22.5 39.2 4.37 31 0.86
Hot (C) 6.26 0.37 29.7 57.0 1.86 116 0.65
Prolonged (D) 5.98 0.37 29.7 54.3 2.42 139 0.68
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The EQE spectra of the devices (Figure 7 (b)) show
behavior that is consistent with theJ–V characteristics.
All devices show less ideal EQE toward longer wave-
lengths which is a result of recombination losses that
can attributed to the fine grain and MoSe2 layers [14],
and future work will focus on reducing the influence of
these on performance. In addition, the spectrum for the
quenched device (Eg = 1.12 eV) is exhibiting a strong
triangular shape indicative of severe current collection
losses. This could arise from short electron diffusion
length and high doping density (see analysis of capaci-
tance measurements). The variations in energy band gap
derived from the band tail of the EQE spectra are consis-
tent with the fluctuations in Se/(Se + S) ratios as measured
by EDS (Figure 9 insets). It is interesting to note that sam-
ple B yields less Se incorporation into the CZTS lattice
compared to the other three processes which have similar
Se/(Se + S) ratio at around 0.90.

The hot device (device C) exhibits the highest overall ef-
ficiency of � = 6.26%, withVoc= 0.37 V,Jsc= 29.7 mA/cm2

and FF= 57.0%. Raman spectroscopy (Figure 4 (b))
revealed that this film contained secondary phase CTS, and
this champion efficiency correlates with the current world
record efficiency for CZTSe thin films fabricated using
selenization of CZTS nanoparticles which were also found
to contain CTS [8]. The reason for this is not currently
well-understood and merits further investigation.

C–V measurements were performed to estimate the
doping density (NA), the built in potential (Vbi) and

depletion layer width (W) in the CZTSSe absorber layer
of the completed devices. Figure 10 shows a plot of
1/C2 versus reverse bias voltage for the devices and from
the slope and intercept of the linear fits,NA andVbi can be
determined respectively. Additionally, the width of the
depletion region in each regionW can be deduced from
the data. These values for all four samples are listed in
Table IV where the values are comparable to vacuum
[18] or hydrazine-based CZTS [7] fabrication methods
confirming that there is no loss of junction quality using
the nanocrystal fabrication route.

Figure 9. Top view SEM images of CZTSSe� lm made from (a) sample A, (b) sample B, (c) sample C and (d) sample D. The insets
show the Se/(Se + S) ratios of the � lms.
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CZTSSe is usually reported to bep-type arising from a
large number of Cu vacancies VCu

� , although antisite
defects such as ZnCu and CuZn are also common [19].
Comparisons between all four devices in terms of doping
are difficult because the crystal structure has been shown
to be markedly different between the samples and therefore
cannot easily be attributed to the density of VCu

� (despite all
absorbers being Cu poor). However, we have demonstrated
a high degree of similarity between the control and the
prolonged samples and devices, and the most obvious dis-
crepancy is indeedNA which is an order of magnitude
higher for the prolonged sample. It is this parameter that
results in a higher solar energy conversion efficiency and
to the best of our knowledge the first experimental demon-
stration that the doping density can be increased without
changing the crystal structure of a CZTSSe absorber syn-
thesized from nanoparticle inks. The increase in efficiency
derives from small increase in averageVoc for the
prolonged device and a reduction in fill factor.

Although the interpretation of theC–V data for the
quenched and hot devices is more difficult, we suggest
that the increased values ofNA for these devices relative
to the control are a consequence of increased disorder in
the crystal structure. The case of the hot device is particu-
larly interesting because it results in the highest efficiency
of all the devices. This is consistent with the earlier analy-
sis of the doping concentration between the control and
the prolonged device. The key difference here however,
is that we have correlated the higher reaction temperature
with the presence of secondary phase CTS. These findings
are important in the context of work by Miskinet al. who
recently demonstrated a CZTSSe nanoparticle ink solar
cell with � = 9% (with an anti-reflection coating) [8] but
do not account for an experimentally observed CTS phase
which has previously been thought to be detrimental to
solar cell performance because of a narrower energy band
gap. Our results indicate that the apparent positive effects
of CTS may be because of an effective increase in the
absorber doping which in turn enhancesVoc in the device.
The apparent increase inVoc is seen more clearly by con-
sidering that the voltage deficit (Eg-qVoc) (also shown in
Table III) is minimized for the hot device. It has been
shown that CTS may precipitate at the CZTS grain bound-
aries [20], where the minority carrier collection can also
be enhanced [21]. Additionally, the CTS precipitation
could provide some grain boundary passivation and thus
explain the increase in device performance observed.

Solving Poisson’s equation for the electric field in the
n-type and p-type regions of apn junction yields a

dependence on the density of donors and acceptors respec-
tively. Continuity of the field requires that the width of the
depletion region varies inversely with doping concentra-
tion, i.e. that the depletion region extends into the side
with the lowest doping. This is consistent with the control
device having the largest value ofW in Table IV and the
highest EQE in the 700–1150 nm range testimony of
the better charge collection in that device. The values of
Vbi are similar apart from the hot sample, and this is likely
attributable to the presence of CTS which reduces the
energy band gap of the absorber.

4. CONCLUSIONS

High quality CZTSSe photovoltaic absorber layers were
fabricated from CZTS nanoparticle inks by annealing
stacked layers of nanoparticles in a selenium rich atmo-
sphere. These were subsequently incorporated into thin film
solar cells, and the device performance has been found to
depend critically upon the chemical reaction conditions
used to synthesize the nanoparticles. Crucially, rapid ther-
mal quenching of the reaction results in wurtzite CZTS in
the nanoparticles. This results in smaller grains and an
increase in the number of grain boundaries in the CZTSSe
thin film absorber layers which are strongly detrimental to
the device performance. Prolonging the reaction offers a
new route to increasing the concentration of acceptor levels
in CZTSSe photovoltaic absorbers and results in higher de-
vice efficiency relative to a control device. The presence of
CTS correlates with increased efficiency, and the apparent
positive effects of this phase are also accompanied by an
increase in the doping levels. To fully exploit doping con-
trol in these devices, we propose that it will be essential to
minimize any negative effects of the fine grain sub-layer
below the CZTSSe grains that are commonly found in this
type of solar cell.
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