A non-parametric framework for no-reference image quality assessment

Manap, Redzuan Abdul, Frangi, Alejandro F. and Shao, Ling (2015) A non-parametric framework for no-reference image quality assessment. In: Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). IEEE, Piscataway, NJ, pp. 562-566. ISBN 9781479975914

Full text not available from this repository. (Request a copy)
Official URL: http://dx.doi.org/10.1109/GlobalSIP.2015.7418258

Abstract

In most state-of-the-art non-distortion-specific no-reference image quality assessment (NDS NR-IQA) methods, the image quality is predicted by training a regression model based on examples of distorted images and their corresponding human subjective scores. However, one drawback of these approaches is the fact that they require a training phase of the regression parameters. In this paper, a non-parametric framework for NDS NR-IQA task is presented where no training is necessary. A nearest-neighbour (NN) classifier is first employed to determine the distortion class of the test image. Once the distortion class is identified, the quality assessment prediction is then performed through &-NN regression that utilizes the differential mean opinion score (DMOS) value associated with the labelled patches within the identified class. The proposed algorithm is simple but effective. Experimental results on the LIVE IQA database show that our algorithm achieves high correlation to human perceptual measures of image quality as well as provides competitive performance to previous NDS NR-IQA algorithms.

Item Type: Book Section
Subjects: G400 Computer Science
G900 Others in Mathematical and Computing Sciences
Department: Faculties > Engineering and Environment > Computer and Information Sciences
Depositing User: Becky Skoyles
Date Deposited: 16 May 2016 10:30
Last Modified: 12 Oct 2019 22:30
URI: http://nrl.northumbria.ac.uk/id/eprint/26805

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics