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ABSTRACT 25 

Diphtheria is a debilitating disease caused by toxigenic Corynebacterium diphtheriae 26 

strains and has been effectively controlled by the toxoid vaccine, yet several recent outbreaks 27 

have been reported across the globe. Moreover, non-toxigenic C. diphtheriae strains are 28 

emerging as a major global health concern by causing severe pharyngitis and tonsillitis, 29 

endocarditis, septic arthritis and osteomyelitis. Molecular epidemiological investigations 30 

suggest the existence of outbreak-associated clones with multiple genotypes circulating around 31 

the world. Evolution and pathogenesis appears to be driven by recombination as major 32 

virulence factors, including the tox gene and pilus gene clusters, are found within genomic 33 

islands that appear to be mobile between strains. The number of pilus gene clusters and 34 

variation introduced by gain or loss of gene function correlate with the variable adhesive and 35 

invasive properties of C. diphtheriae strains. Genomic variation does not support the separation 36 

of C. diphtheriae strains into biovars which correlates well with findings of studies based on 37 

multilocus sequence typing. Genomic analyses of a relatively small number of strains also 38 

revealed a recombination driven diversification of strains within a sequence type and indicate 39 

a wider diversity among C. diphtheriae strains than previously appreciated. This suggests that 40 

there is a need for increased effort from the scientific community to study C. diphtheriae to 41 

help understand the genomic diversity and pathogenicity within the population of this 42 

important human pathogen. 43 

 44 

1. Introduction 45 

Toxigenic Corynebacterium diphtheriae are responsible for diphtheria in humans, a 46 

toxin-mediated disease of the upper respiratory tract which is generally characterized by the 47 

presence of an inflammatory pseudomembrane on the tonsils, oropharynx and pharynx causing 48 

sore throat, high temperature and potentially death (Hadfield et al., 2000). The toxin is encoded 49 
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by the tox gene within the lysogenised β-corynephage (Sangal and Hoskisson, 2014a) and can 50 

be effectively controlled by the diphtheria toxoid vaccine (Baxter, 2007). The cases of 51 

diphtheria were significantly reduced following the global immunization initiative (Galazka, 52 

2000). Yet in the 1990s, the Newly Independent States (largely Former Soviet Union) observed 53 

the largest outbreaks of Diphtheria since the introduction of mass vaccination (Vitek & 54 

Wharton, 1998). In addition, there is still considerable morbidity and mortality around the 55 

world caused by this organism (www.WHO.int) and we need to remain vigilant. 56 

Non-toxigenic C. diphtheriae strains (those that lack the tox gene) are now emerging as 57 

the cause of significant disease, especially invasive infections such as endocarditis, septic 58 

arthritis and osteomyelitis (Barakett et al., 1993; Belko et al., 2000; Edwards et al., 2011; 59 

Farfour et al., 2012; Patey et al., 1997; Poilane et al., 1995; Romney et al., 2006; Tiley et al., 60 

1993). There is also the potential for C. diphtheriae to cause skin infections which result in 61 

cutaneous diphtheria across the globe in patients with varying vaccination status and travel 62 

histories (Gordon et al., 2011; Romney et al., 2006; Huhulescu et al., 2014; Cassir et al., 2015; 63 

Nelson et al., 2016). These infections are often associated with travel to C. diphtheriae 64 

prevalent endemic areas (FitzGerald et al., 2015; Lindhusen-Lindhe et al., 2012; May et al., 65 

2014). More recently, non-toxigenic tox gene-bearing strains (NTTB) have also been reported 66 

from Europe (Zakikhany et al., 2014). These NTTB strains possess the tox gene, however 67 

mutation (a nucleotide deletion or disruption by an insertion sequence) in the A-subunit of the 68 

gene prevents expression (Zakikhany et al., 2014). These strains pose a potential threat to 69 

public through genetic reversion resulting in toxin production. Moreover, carriage of non-70 

toxigenic strains in healthy individuals, as part of the normal upper respiratory tract flora is 71 

poorly understood, but has the potential to act as a reservoir of bacteria that can undergo phage-72 

conversion and dissemination. 73 

http://www.who.int)/
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C. diphtheriae strains have historically been subdivided into the four biovars - gravis, 74 

intermedius, mitis and belfanti (Funke et al., 1997; Goodfellow et al., 2012). However, this 75 

biochemical differentiation appears to be dependent on technical capabilities of the laboratory 76 

and is unsupported by genomic analysis (Sangal et al., 2014a). This view is also supported by 77 

the quality assurance (Elek) tests for diphtheria diagnostics by the European diphtheria 78 

surveillance network (EDSN) where several participating laboratories could not correctly 79 

identify these biovars, particularly biovars intermedius and belfanti (Both et al., 2014; Neal 80 

and Efstratiou, 2009). 81 

Related pathogenic corynebacteria including Corynebacterium ulcerans and 82 

Corynebacterium pseudotuberculosis generally cause zoonotic infection in humans (Peel et al., 83 

1997; Taylor et al., 2010; Wagner et al., 2011; Sangal et al., 2014b) whereas C. diphtheriae 84 

appears to be largely human specific. Recent reports highlight potential host jump of C. 85 

diphtheriae to and from domesticated and wild animals (Sing et al., 2015; Zakikhany et al., 86 

2014). This is particularly important as the tox gene carrying β-corynephage is able to 87 

lysogenize all three species – C. diphtheriae, C. ulcerans and C. pseudotuberculosis and the 88 

promiscuous nature of the corynephage may result in human outbreaks of diphtheria and 89 

diphtheria-like diseases caused by non-C. diphtheriae strains.  90 

Here we aim to provide an overview of global epidemiology and evolutionary dynamics 91 

of C. diphtheriae in the light of recent work in the field, with particular emphasis on the impact 92 

of whole genome sequencing in understanding the evolution and pathogenicity of different C. 93 

diphtheriae strains. 94 

 95 

2. C. diphtheriae is genetically diverse 96 

Despite an estimated 86% global coverage of the vaccine, 7,321 cases of diphtheria 97 

were reported in 2014, mainly from the developing countries (www.WHO.int). A diphtheria 98 

http://www.who.int/
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epidemic in the former Soviet Union in the 1990s resulted in >157,000 cases claiming ~5000 99 

lives (Dittmann et al., 2000). Yet, this pathogen is not under control, and the have been multiple 100 

outbreaks in different countries since 2000 including Colombia (Landazabal et al., 2001), India 101 

(Parande et al., 2014; Saikia et al., 2010), Norway (Rasmussen et al., 2011), Nigeria (Besa et 102 

al., 2014), Thailand (Wanlapakorn et al., 2014), and more recently in Brazil (Santos et al., 103 

2015), Laos (Nanthavong et al., 2015) and Indonesia (Hughes et al., 2015). 104 

The molecular epidemiology and diversity of C. diphtheriae has been investigated using 105 

a number of genotyping approaches including ribotyping, amplified fragment length 106 

polymorphism (AFLP), pulse-field gel electrophoresis (PFGE), random amplified polymorphic 107 

DNA (RAPD), clustered regularly interspaced short palindromic repeat (CRISPR) based 108 

spoligotyping and multilocus sequence typing (MLST) (Bolt et al., 2010; Damian et al., 2002; 109 

De Zoysa et al., 2008; Grimont et al., 2004; Kolodkina et al., 2006; Mokrousov et al., 2007; 110 

Mokrousov et al., 2005; Mokrousov et al., 2009; Titov et al., 2003). Most of the typing 111 

approaches exhibited some degree of correspondence (Damian et al., 2002; De Zoysa et al., 112 

2008; Kolodkina et al., 2006; Titov et al., 2003). Ribotyping was found to be more 113 

discriminatory than PFGE and AFLP (De Zoysa et al., 2008) and was the gold standard for 114 

genotyping C. diphtheriae prior to the introduction of a robust MLST approach (Bolt et al., 115 

2010; Grimont et al., 2004). The main Ribotyping scheme adhered to is that of Grimont et al., 116 

(2004) with each ribotype being allocated a geographical name based on the location of 117 

isolation; however, some previous studies followed an arbitrary nomenclature to represent 118 

different ribotypes. Ribotyping identified 34 ribotypes among 167 C. diphtheriae strains from 119 

Romania, the Russian Federation and the Republic of Moldova (Damian et al., 2002). The 120 

strains belonging to two ribotypes, C1 and C5 were predominant in Russia and Moldova 121 

whereas ribotypes C3 and C7 were isolated more frequently in Romania (Damian et al., 2002). 122 

The majority of C. diphtheriae strains were found to belong to ribotypes D1 and D4 in Belarus 123 
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(Titov et al., 2003). Remarkably, the distribution of ribotypes was found to alter between 1996 124 

and 2005 (Kolodkina et al., 2006). Interestingly, this may be the result of increased vaccination 125 

in these areas following the outbreaks, perhaps indicating some level of vaccine-driven 126 

population selection in C. diphtheriae. Overall, all these studies identified prevalent clones 127 

associated with different outbreaks, but also found that multiple genotypes were circulating 128 

within different continents, suggesting great diversity of C. diphtheriae strains within the 129 

human population (Damian et al., 2002; De Zoysa et al., 2008; Kolodkina et al., 2006; von 130 

Hunolstein et al., 2003). 131 

CRISPR based spoligotyping offered additional resolution within these ribotypes and 132 

was successfully used to characterize outbreak-associated strains from countries of former 133 

Soviet Union (Mokrousov, 2013; Mokrousov et al., 2005; Mokrousov et al., 2009). The 134 

epidemic strains from Russia that belonged to two ribotypes (Sankt-Peterburg and Rossija) 135 

were subdivided into 45 spoligotypes (Mokrousov, 2013; Mokrousov et al., 2007; Mokrousov 136 

et al., 2005). Due to the higher diversity within ribotype Sankt-Peterburg, it was proposed to 137 

have evolved prior to the emergence ribotype Rossija, indicating that new strains are emerging 138 

regularly within this species (Mokrousov, 2013). 139 

While most genotypic approaches are focused on outbreak characterization and high 140 

resolution strain discrimination, MLST is more appropriate to investigate long-term 141 

evolutionary dynamics and has been applied to a number of microorganisms prior to the 142 

emergence of cost effective genome sequencing (Maiden, 2006). A robust MLST scheme was 143 

developed for C. diphtheriae in 2010 and sequence types (STs) were shown to be consistent 144 

with the previously determined C. diphtheriae ribotypes and offered higher resolution in most 145 

cases (Bolt et al., 2010). One important feature of the MLST studies was that they revealed a 146 

lack of correlation between the STs and the widely used biovar system and also showed no 147 

correlation with the severity of the disease caused by different strains (Bolt et al., 2010; Farfour 148 
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et al., 2012). While some eBURST groups, the so called clonal complexes, were found to be 149 

associated with certain countries, others were reported from multiple continents, indicating 150 

wide dissemination of strains (Bolt et al., 2010). MLST diversity has grown since 2010 and the 151 

data for 384 reference STs is available from the MLST website 152 

(http://pubmlst.org/cdiphtheriae/; accessed in November 2015). A total of 115 of these STs 153 

formed 11 major eBURST groups where the predicted founder had three or more single locus 154 

variants (Fig. 1). However, some of these data belong to C. ulcerans strains and may also 155 

contain some erroneous submissions to the database by the public. 156 

 More recently, whole genome sequences of 20 C. diphtheriae strains have been analysed 157 

(Cerdeno-Tarraga et al., 2003; Sangal et al., 2015; Sangal et al., 2014; Sangal et al., 2012a, b; 158 

Trost et al., 2012), revealing the genetic diversity amongst and within the major STs. 159 

Approximately 60% of the genome appears to be functionally conserved within C. diphtheriae 160 

strains with 1,625 genes belonging to the core genome (Sangal et al., 2015). However, enough 161 

diversity has accumulated within the core genes to allow discrimination of most C. diphtheriae 162 

strains from each other. Strains within STs appear to show close relationships indicating the 163 

robust nature of the MLST approach (Fig. 2; Bolt et al., 2010; Sangal et al., 2015). Similar 164 

groupings were also obtained from the genome-wide single nucleotide polymorphism analysis 165 

(SNPs; Sangal et al., 2014). The accessory genome varied greatly among C. diphtheriae strains 166 

(Sangal et al., 2015) even when a relatively small number of genomes was considered (14 167 

known STs; Fig. 1). This indicates that most of the C. diphtheriae diversity remains to be 168 

discovered and will be crucial in our understanding of the molecular epidemiology, global 169 

transmission and carriage of this pathogen. 170 

 171 

3. Evolutionary dynamics 172 

http://pubmlst.org/cdiphtheriae/


8 
 

Despite the global emergence of non-toxigenic strains and multiple recent outbreaks 173 

caused by C. diphtheriae, little is known about the evolutionary dynamics of this pathogen and 174 

most of the current understanding comes from the genomic analyses. MLST analyses indicated 175 

that there is significant recombination within C. diphtheriae populations (Bolt et al., 2010). 176 

Recombination plays an important role in bacterial evolution and is often linked to the 177 

increased virulence in some strains (Joseph et al., 2011; Suarez et al., 2004; Wirth et al., 2006). 178 

Indeed, the primary niche of C. diphtheriae in humans is the upper respiratory tract which is a 179 

hot-bed of horizontal gene transfer between bacterial strains (Marks et al., 2012). 180 

A total of 57 genomic islands have been reported in C. diphtheriae and the distribution 181 

was found to vary significantly between strains (Trost et al., 2012). The genomic islands can 182 

be horizontally acquired from other bacteria, suggesting that recombination is shaping the 183 

current genetic diversity in C. diphtheriae. Some of the genomic islands carried phage 184 

associated genes while others harboured the genes that encode proteins for different cellular 185 

activities including siderophore biosynthesis and transport, degradation of polysaccharides and 186 

hydrocarbon derivatives such as 3-hydroxyphenylpropionic acid, antibiotic and heavy metal 187 

resistance (Trost et al., 2012). The major virulence factor of C. diphtheriae, the tox gene, is 188 

carried on a bacteriophage that can also move between strains, resulting in phage conversion 189 

(Barksdale and Pappenheimer, 1954; Freeman, 1951; Sangal and Hoskisson, 2014). Genomic 190 

islands carrying different spa operons introduced the variation in the ability of C. diphtheriae 191 

strains to form pili and interact with the host. These spa operons harbour genes encoding 192 

subunits of different types of pili and the gain or loss of the function of these genes correlate 193 

to the number and expression of pili on the cell surface (Ott et al., 2010; Chang et al., 2011; 194 

Trost et al., 2012).  195 

Approximately one-third of the C. diphtheriae genome encodes accessory genes that 196 

vary widely between strains (Sangal et al., 2015). The strains within individual STs differed 197 
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from each other by the presence or absence of up to 290 genes, many of which are present on 198 

the genomic islands (Sangal et al., 2015). These observations indicate likely differences in 199 

recombination frequencies between C. diphtheriae strains. The frequencies of recombination 200 

may vary widely between different strains within a species (Sangal et al., 2010), and may reflect 201 

the difference in strain propensities for acquiring foreign DNA, which may result in variation 202 

in pathogenicity of strains. Restriction-modification systems, bacteriophage defence systems 203 

and CRISPR-Cas systems are major barriers to recombination that have been reported in the 204 

genomes of C. diphtheriae strains (Hoskisson & Smith, 2007; Sangal et al., 2013). 205 

Genomic analyses of C. diphtheriae strains revealed the presence of two types of 206 

CRISPR-Cas systems in three different configurations (Sangal et al., 2013). These systems are 207 

comprised of CRISPR-associated proteins (Cas proteins encoded by cas genes) and CRISPR 208 

arrays of short spacer sequences acquired from invading bacteriophages or plasmids that are 209 

separated by repeat sequences. These arrays are transcribed into crRNA that recognizes the 210 

invasion by the same nucleic acids and activate their cleavage by Cas ribonucleoprotein 211 

complex (Marraffini, 2015). The acquisition of each spacer sequence represents a unique 212 

evolutionary event, an encounter of the bacterial cell with the bacteriophage or plasmid that 213 

may be unique to particular environment. 214 

The majority of C. diphtheriae strains carried a type II-C CRISPR-Cas system, however 215 

this was replaced by a type I-E-a in some strains or vice versa (Sangal et al., 2013). A few 216 

strains with a type II-C system possessed an additional CRISPR-Cas system, type I-E-b, at a 217 

different location in the genome. The variation in the G+C content and the phylogenetic 218 

analyses of cas1 gene, along with the direct repeat sequences in the CRISPR arrays suggest 219 

three independent horizontal acquisitions of these CRISPR-Cas systems by C. diphtheriae. 220 

Most of the spacer sequences are unique to CRISPR arrays in different strains, suggesting that 221 

these strains evolved in different environments and encountered a range of different 222 
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bacteriophages or plasmids (Sangal et al., 2013). Some strains were found to share spacer 223 

sequences at the distal end of the array, which may represent common strain ancestry or 224 

abundance of a particular foreign DNA type (bacteriophages/plasmids). The type of CRISPR-225 

Cas systems and most of the spacer sequences in the arrays were shared between individuals 226 

of the same ST, which is consistent with their evolution from a recent common ancestor. These 227 

results also support CRISPR loci as useful molecular markers for strain identification and 228 

epidemiological studies (Mokrousov, 2013; Mokrousov et al., 2007). 229 

Overall, the genomic and spacer diversities found in C. diphtheriae strains indicate 230 

unique evolutionary trajectories for different C. diphtheriae strains after they separated from 231 

their last common ancestor. However, no clear geographic or temporal association of C. 232 

diphtheriae strains has been reported. Interestingly, this may simply reflect a sampling bias, as 233 

available genomes reflect <10% of the current C. diphtheriae diversity observed from MLST 234 

analysis (Fig. 1). These data highlight the need to expand the genome sequencing effort for this 235 

species to fully understand the evolutionary dynamics of this pathogen. 236 

 237 

4. Genetic basis of biochemical differentiation 238 

The biochemical differentiation of C. diphtheriae strains into biovars is complex and 239 

unreliable, however for historical reasons it is still routinely followed by reference labortories 240 

(Both et al., 2014; Neal and Efstratiou, 2009; Sangal et al., 2014). The key characteristics 241 

include lipophilism of biovar intermedius strains - the need lipids for optimal growth and the 242 

formation of small gray or translucent colonies on agar plates (Funke et al., 1997). The strains 243 

of other biovars generally form large white or opaque colonies. The strains of biovar belfanti 244 

can not reduce nitrate and only biovar gravis strains seem to definitely utilize glycogen and 245 

starch as carbon sources (Efstratiou et al., 2000; Efstratiou and George, 1999; Goodfellow et 246 

al., 2012). 247 
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Comparative genomic analyses identified that four genes involved in carbohydrate 248 

metabolism are absent or are pseudogenes in the intermedius strain (Sangal et al., 2014), 249 

potentially suggesting that this biovar may have compromised abilities to effectively use 250 

carbohydrates as the energy source and require alternate carbon source such as lipids, for 251 

optimal growth in the host. We have previously highlighted an insertion at the 3’ end of narJ 252 

gene in the only sequenced belfanti genome, that results in an extended coding sequence in 253 

comparison to its homolog DIP0498 in NCTC 13129 (Sangal et al., 2014). However, the 254 

annotation of strain NCTC 13129 has recently been revised (GenBank accession number: 255 

NC_002935.2; new locus tag for DIP0498: DIP_RS13825) and the protein sequence of narJ is 256 

of the same length as observed in belfanti. Therefore, genetic basis of the belfanti strains not 257 

being able to reduce nitrate remains unclear. The phylogenomic analyses of core genome, 258 

accessory genome and genome-wide SNPs revealed an absence of a biovar specific grouping. 259 

Therefore, the biochemical seperation of C. diphtheriae into the traditional biovars is not 260 

supported by genomic diversityand is unsuitable for modern epidemiological studies (Sangal 261 

et al., 2015; Sangal et al., 2014; Trost et al., 2012). Genome sequencing results are consistent 262 

with the MLST phylogeny where the major C. diphtheriae lineage included strains from all 263 

four biovars (Bolt et al., 2010). However, a smaller second befanti-specific lineage can be 264 

observed from the MLST analyses which is not detected in the genomic study, potentially 265 

because the genome sequence of only one strain for each of the biovars belfanti and intermedius 266 

is available that highlights a clear need for more strains of these biovars to be sequenced. 267 

 268 

5. Variation in pathogenicity and invasive strains  269 

C. diphtheriae is considered a paradigm of mucosal pathogenicity, with much of the 270 

research focused on toxin production and pseudomembrane formation, almost to the neglect of 271 

studying other virulence mechanisms, such that the discovery of invasive strains of C. 272 
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diphtheriae was a surprise to researchers. The tox gene, encoding the diphtheria toxin, is 273 

harboured on the genome of the β-corynephage, which integrates into C. diphtheriae genome 274 

between duplicated arginine tRNA genes (Sangal and Hoskisson, 2014; Trost et al., 2012). 275 

Only one prophage is present in most toxigenic strains, with the exception of strain PW8 where 276 

two copies of corynephage ωtox+ is found (Sangal and Hoskisson, 2014; Trost et al., 2012). 277 

While the nucleotide sequence of different corynephages show high levels of diversity, the 278 

sequence of the tox gene is highly conserved and also reflects the efficacy of the toxoid vaccine. 279 

The transcription of tox gene is controlled by the DtxR regulon, which is a key determinant for 280 

iron homeostasis (De Zoysa et al., 2005; Fourel et al., 1989). Iron is involved in a number of 281 

cellular activities and the induction of toxin in low iron availability might help pathogens to 282 

compete with the host for iron (Ganz and Nemeth, 2015; Trost et al., 2012) or liberate iron 283 

through killing of host cells. The gene composition of DtxR regulons in different C. diphtheriae 284 

strains may vary due to gain or loss of the genes that may affect the iron supply to the bacterial 285 

cell and hence, the expression of the tox gene (Litwin and Calderwood, 1993; Trost et al., 286 

2012). 287 

Non-toxigenic C. diphtheriae strains by definition do not contain the tox carrying β-288 

corynephage, but do vary in their abilities to adhere to host cells, intracellular viability and 289 

their ability to stimulate cytokine production by the host immune system which may influence 290 

the severity of the disease due to infection (Bertuccini et al., 2004; Hirata et al., 2002; Peixoto 291 

et al., 2014; Puliti et al., 2006). These strains differ from each other in the presence and 292 

organisation of different pilus gene clusters, spaA, spaD and spaH (Sangal et al., 2015; Trost 293 

et al., 2012). Two pilus gene clusters, spaD and spaH, were present in four C. diphtheriae 294 

strains that exhibited different adhesive and invasive properties. Interestingly, the spaA operon 295 

was only present in the two strains with higher adhesion to pharyngeal D562 cell lines (Ott et 296 

al., 2010; Sangal et al., 2015). SpaA pili have been shown to interact with the pharyngeal 297 
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epithelial cells and SpaD and SpaH with the laryngeal and lung epithelial cell types (Mandlik 298 

et al., 2007; Reardon-Robinson and Ton-That, 2014) suggesting niche specialised roles for 299 

specific pilus types. However, some genes were found to be pseudogenes in these clusters 300 

(Sangal et al., 2015), for example, srtB gene that encodes sortase for incorporation of SpaE 301 

into the SpaD subunit of SpaD-type pili, spaG encoding a subunit of SpaH-type pili and spaB 302 

encoding pilus base subunit of SpaA-type pili were pseudogenes in strains ISS 4060, ISS 3319 303 

and ISS 4746, respectively (Reardon-Robinson and Ton-That, 2014; Sangal et al., 2015). In 304 

addition, a gene spaF that encodes surface anchored fimbrial subunit of spaD-type pili was 305 

pseudogenitised both in ISS 4746 and ISS 4749. Strain ISS 4749 with two intact gene clusters 306 

(SpaA and SpaH) exhibited highest number of pili at the cell surface and highest adhesion to 307 

the cell lines when compared to ISS 3319 (SpaD gene cluster) and ISS 4746 (SpaH gene 308 

cluster) with only one intact gene cluster (Bertuccini et al., 2004; Ott et al., 2010; Sangal et al., 309 

2015). Although SpaH gene cluster appears to be fully functional in ISS 4060 strain, no surface 310 

pili were observed, suggesting there may be variation in the levels of gene expression. 311 

However, adhesive properties of this strain were comparable to ISS 3319 (Bertuccini et al., 312 

2004; Ott et al., 2010; Sangal et al., 2015). Therefore, the macromolecular surface structure 313 

and cell adhesion properties generally correlate to the presence of pilus gene clusters in C. 314 

diphtheriae and expression of these genes may be subject to unknown gene regulation 315 

mechanisms. 316 

ISS 4746 and ISS 4749 were also shown to induce higher cytokine (IL-1 and IL-6) 317 

production and caused higher incidences and severity of arthritis in mice in comparison to ISS 318 

3319 (Puliti et al., 2006). In addition to the membrane associated proteins, comparative 319 

genomic analyses revealed a variation in predicted secreted proteins including lipoproteins and 320 

non-classical secreted proteins among these strains, which may be associated with the variation 321 

in the degree of pathogenesis (Sangal et al., 2015). Most of these proteins are hypothetical and 322 
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a molecular characterization of these proteins might further improve understanding of the 323 

mechanisms of adhesion, invasion and immune induction in C. diphtheriae. 324 

 325 

6. Conclusions 326 

C. diphtheriae is still a major human pathogen, with multiple contemporary outbreaks 327 

around the world. Moreover, non-toxigenic strains are beginning to cause significant invasive 328 

disease in patients. Genomic analyses not only identified potential genes involved in adhesive, 329 

invasive and virulence characteristics of C. diphtheriae strains but also highlighted the impact 330 

of horizontal gene transfer in acquisition of these genes. These analyses also raise concerns 331 

about the use of biochemical separation of C. diphtheriae strains into biovars in clinics as a 332 

biovar encompasses genetically distinct strains. The evolutionary dynamics and the global 333 

diversity in C. diphtheriae are poorly characterized, clearly emphasizing the need of a 334 

community-based genome sequencing program that will improve the understanding of global 335 

transmission and local adaptation and will facilitate the development of effective surveillance 336 

policies and preventive strategies, amid multiple ongoing outbreaks. It will also inform on 337 

future vaccine development, perhaps to augment existing toxoid-based vaccines with universal 338 

surface proteins from C. diphtheriae which may be more effective in reducing carriage and the 339 

invasive diseases caused by non-toxigenic strains. 340 

 341 
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Figure Legends 597 

Fig. 1. An eBURST diagram from the MLST profiles of reference STs from the MLST website 598 

(http://pubmlst.org/cdiphtheriae/). The predicted founder STs are shown in blue and co-founder 599 

STs are shown in yellow. Single locus variants (SLVs) are connected to each other and major 600 

groups where predicted founder has three or more SLVs are labelled. The known STs for C. 601 

ulcerans are shown in cyan. ST with some genome sequenced strains are encircled in red. 602 

 603 

Fig. 2. A phylogenetic tree from the core genome of C. diphtheriae (adapted from Sangal et 604 

al., 2015). ST designations are mapped on the tree in parentheses, if known.  The strains biovars 605 

gravis, mitis, belfanti and intermedius are labelled in red, green, purple and blue, respectively. 606 
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