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Towards Sparse Rule Base Generation
for Fuzzy Rule Interpolation

Yao Tan, Jie Li, Martin Wonders, Fei Chao, Hubert P. H. Shum, Longzhi Yang

Abstract—Fuzzy inference systems have been successfully
applied to many real-world applications. Traditional fuzzy in-
ference systems are only applicable to problems with dense rule
bases by which the entire input domain is fully covered, whilst
fuzzy rule interpolation (FRI) is also able to work with sparse
rule bases that may not cover certain observations. Thanks to
their abilities to work with fewer rules, FRI approaches have
also been utilised to reduce system complexity by removing
those rules which can be approximated by their neighbouring
ones for complex fuzzy models. A number of important fuzzy
rule base generation approaches have been proposed in the
literature, but the majority of these only target dense rule bases
for traditional fuzzy inference systems. This paper proposes a
novel sparse fuzzy rule base generation method to support FRI.
The approach first identifies important rules that cannot be
accurately approximated by their neighbouring ones to initialise
the rule base. Then the raw rule base is optimised by fine-tuning
the membership functions of the fuzzy sets. Experimentation
is conducted to demonstrate the working principles of the
proposed system, with results comparable to those of traditional
methods.

Keywords–Sparse rule base generation, fuzzy rule interpo-
lation, fuzzy rule base, fuzzy inference systems.

I. INTRODUCTION

Fuzzy sets and fuzzy logic theory offer a formal way
of handling vague information that arises due to the lack
of sharp distinctions or boundaries between pieces of in-
formation. With an inherent ability to effectively represent
and reason on human natural language, fuzzy logic theory
is considered as an advanced methodology in the field of
control systems. The most common fuzzy models are rule-
based fuzzy inference systems, each of which is composed
of mainly two parts: an inference engine and a rule base (or
knowledge base). The inference engines have been defined
by different inference approaches, such as the Mamdani
model [1] and the TSK model [2]. Although the TSK model
is able to generate crisp output, the Mamdani model is more
intuitive and suitable for dealing with human natural lan-
guage inputs using max-min operators during the inference.
Common to all these classical fuzzy inference systems is that
they are only applicable to problems with dense rule bases
by which the entire input domain is fully covered.

Fuzzy rule interpolation (FRI), initially proposed in [3],
not only addresses this issue, but also helps in complexity
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reduction for complex fuzzy models. When observations do
not overlap with any rule antecedent values, traditional fuzzy
inference systems will not be applicable, as no rule can be
fired. However, fuzzy rule interpolation can still generate a
conclusion through a sparse rule base, thus improving the
applicability of fuzzy models. FRI can also be employed to
reduce the complexity of fuzzy models by excluding rules
that can be approximated by their neighbouring ones. A
number of important fuzzy rule interpolation methods have
been proposed in the literature, such as [4], [5], [6], [7] and
[8], which have been successfully applied to deal with real-
world problems, including [9] and [10].

Although a dense fuzzy rule base is not required by
FRI, a sparse rule base is still needed. Fuzzy rule base
generation has been intensively studied in the literature and
is usually implemented in one of two ways: data-driven
(extracting rules from data) [11], [12] and knowledge-driven
(generating rules from human expert knowledge) [13]. As
expert knowledge may not always be available, knowledge-
driven methods greatly limit the system modelling process.
Data-driven rule base generation was proposed to minimise
the involvement of human expertise. The success of data-
driven approaches is built upon a large quantity of training
data, and these approaches usually only target dense rule
bases for traditional fuzzy inference approaches. In order to
reduce the complexity of such rule bases, various rule base
reduction approaches have been developed [14], [15], [16],
[17].

This paper presents an initial investigation of a novel
data-driven rule base generation approach for FRI, which
is able to directly generate a compact sparse rule base from
data. In particular, the proposed approach first partitions the
problem domain into a number of sub-regions based on
the given training data set and fuzzy partitions the problem
domain accordingly, such that each sub-region is represented
by a corresponding fuzzy rule. Then, the profile curvature of
each sub-region is calculated to represent the extent to which
the sub-region deviates from being ‘flat’ or ‘straight’. Given
a threshold, those sub-regions which have higher curvature
values are then identified, and the corresponding rules will be
selected to initialise the rule base. From this, the membership
functions of the fuzzy sets involved in the initialised rule base
are fine-tuned using a genetic algorithm (GA) optimisation
method. The experiment shows that the proposed approach
can directly generate a sparse rule base for FRI from a given
data set, generating results that are comparable with those
of [14].

The rest of the paper is structured as follows. Section II
introduces the theoretical underpinnings of fuzzy rule inter-
polation (FRI), with a focus on the stability of the KH ap-



proach upon which this work is built. Section III presents the
proposed approach. Section IV details the experimentation
for demonstration and validation. Section V concludes the
paper and suggests probable future developments.

II. BACKGROUND

FRI not only makes fuzzy inference possible when only
sparse rule bases are available, but also helps in complexity
reduction when very complex rule bases are utilised. The
current fuzzy rule interpolation approaches can be mainly
categorised into two classes (with a few exceptions, such as
type II fuzzy interpolation [18], [19]).

The first class of FRI approaches is based on the analogi-
cal reasoning mechanism [20] and is referred to as ‘analogy-
based fuzzy interpolation’. Methods of this type work by
first creating an intermediate rule such that its antecedent
is as ‘close’ (given a fuzzy distance metric) to the given
observation as possible. Then, a conclusion is derived from
the given observation by firing the generated intermediate
rule through the analogical reasoning mechanism. That is,
the shape differentiation between the resultant fuzzy set and
the consequence of the intermediate rule is analogous to
the shape differentiation between the observation and the
antecedent of the generated intermediate rule. A number
of ways to create an intermediate rule and then to infer
a conclusion from the given observation by that rule have
been developed in the literature, including [4], [5], [21], [22]
and [23].

The second type of approach directly interpolates rules
whose antecedent variables are identical to those observed.
The most typical approach in this class was the very first FRI
technique, proposed in [3], referred to as the KH approach,
which was developed based on the decomposition and res-
olution principles [24]. According to these principles, each
fuzzy set can be represented by a series of α-cuts (α P r0, 1s).
Given a certain α, the α-cut of the consequent fuzzy set
is calculated from the α-cuts of the observation and all the
fuzzy sets involved in the rules used for interpolation. Know-
ing the α-cuts of the consequent fuzzy set for all α P r0, 1s,
the consequent fuzzy set can be assembled by applying the
resolution principle. Approaches such as [8], [25] and [26]
also belong to this group. In particular, the stabilised KH
approach extends the original KH approach, which is based
on a certain interpolation of a family of distances between
fuzzy sets in the rules and in the observation [27]. Unlike the
original KH approach, it does not consider the two closest
neighbouring rules but takes all the rules and computes the
conclusion based on the consequent parts weighted by the
distances. This approach is outlined below.

Suppose that a sparse rule base is composed of n rules
Ri, i P t1, 2, ..., nu that are represented as follows:

Ri : IF x is Ai and y is Bi THEN z is Ci. (1)

In the current work, each variable value A is represented as a
triangular fuzzy set and conveniently denoted as pa1, a2, a3q,
where a2 is the core and pa1, a3q is the support. Given an

observation (A˚, B˚), the result C˚ can be calculated by
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where Aiα and Aα̊ represent the α-cut of Ai and A˚
respectively; dLpAiα, Aα̊q and dU pAiα, Aα̊q represent the
lower and upper Euclidean distance between A˚ and Ai,
respectively. The values of dLpAiα, Aα̊q and dU pAiα, Aα̊q
are illustrated in Fig. 1 and calculated as follows:

dLpAiα, Aα̊q “ dpinftAiαu, inftAα̊uq,
dU pAiα, Aα̊q “ dpsuptAiαu, suptAα̊uq. (3)

Fig. 1. Illustration of lower and upper distances

From this, the conclusion C˚ can be generated by assem-
bling all Cα, (α P p0, 1s) based on the resolution principle.

III. RULE BASE GENERATION

The proposed data-driven rule base generation approach
for FRI is presented in this section, which is developed
using the profile curvature values of different parts of the
data pattern. Given that most of the existing FRI approaches
are essentially fuzzy extensions of crisp linear interpolation,
the ‘flat’ or ‘straight’ parts of a pattern can be easily
approximated by its surroundings. Thus, the parts with higher
curvature values need to be explicitly represented by fuzzy
rules. The proposed system comprises two key parts: rule
base initialisation and rule base optimisation. Firstly, the
problem domain is partitioned into a number of sub-regions,
each represented by a fuzzy rule using the common fuzzy
partition practice. Then, the curvature of each sub-region is
calculated. Given a curvature threshold θ, if the curvature
of a sub-region is greater than θ, the corresponding rule
will be selected to initialise the raw rule base. Finally, the
general optimisation algorithm GA is employed to optimise
the generated raw rule base to achieve the best possible
performance.



A. Rule Base Initialisation

The proposed approach first generates the raw rule base
from a training data set. For simplicity, in the current work,
only modelling problems with two inputs and one output are
considered. Given a pre-processed training data set [28], the
progress of rule base initialisation is summarised below.

1) Problem Domain Determination: The first step of the
modelling is to determine the domain of each variable with
respect to the given problem. Assume that the domain of the
two inputs and single output are determined by the given
data set as follows:

Input: x, x P rx, x̄s,
y, y P ry, ȳs,

Output: z, z P rz, z̄s,
(4)

where x, y, z, x̄, ȳ, and z̄ represent the lower and upper
boundary of variables x, y, and z, respectively.

2) Problem Domain Partition and Fuzzification: To eval-
uate the ‘flatness’ or ‘straightness’ of different areas of the
model, the input domain is equally partitioned into a ˆ b
(a, b P N) grid areas, where a is the partition number
of variable x and b is the partition number of variable
y. The values of a and b are determined based on the
specific problem, which are either arbitrarily given if only
subjective training data are provided, or equal to the number
of linguistic terms covering the entire variable domain. For
instance, suppose that x “ r´2, 2s and y “ r0, 3s. Variable
x can be described by four linguistic terms, ‘very large’,
‘large’, ‘small’, and ‘very small’, and variable y can be
described by three linguistic terms, ‘tall’, ‘medium’, and
‘short’. The input domain therefore can be partitioned into
4 ˆ 3 “ 12 sub-regions, as shown in Fig. 2.

Fig. 2. An exemplar domain partition

Then, the input domain is fuzzy partitioned accordingly
such that each region is represented by one fuzzy coordinate
or a fuzzy rule. For simplicity, only triangular fuzzy sets are
employed in this work, each of which can be precisely repre-
sented as A “ pa1, a2, a3q, where a2 is the core and pa1, a3q
is the support. In order to preserve the interpretability, during
the fuzzy partition process, the central point of a sub-region
is guaranteed to be equal to the representative value [5]
of the corresponding fuzzy set. In addition, the support of
each fuzzy set is equal to twice the distance between the

central points of two neighbouring sub-regions. Suppose that
variable x is divided into n intervals. The fuzzy partition of
variable x is illustrated in Fig. 3, where A1, A2, ..., An´1 and
An (n P N) represent the partitioned fuzzy sets.

Fig. 3. Fuzzy partition of variable x

3) Curvature Value Calculation: Curvature values repre-
sent the extent to which a geometric object deviates from
being ‘flat’ or ‘straight’. By artificially viewing the pattern
(hidden in the training data set) to be modelled as a geometry
object, curvature values can be used to represent the linearity
of the surface of the hidden pattern. The profile curvature
approach [29], which represents the steepest downward gra-
dient for a given direction, is employed in the current work
to measure the ‘flatness’ or ‘straightness’ of each sub-region.
The investigation of other types of curvature calculation and
the comparison between them remain for further work. The
profile curvature is the rate at which a surface slope changes
whilst moving in the direction of gradpfq. Given a sub-
region fpx, yq and a certain direction, then the curvature
value in this direction can be calculated by the directional
derivative:

DppnqpF q “ �F ¨ pn. (5)

The directional derivative refers to the rate at which any given
scalar field, F(x,y), is changing as it moves in the direction
of some unit vector, pn, such as pn “ ´p�f{Sq where S is
the slope defined as the magnitude of the gradient vector and
is a scalar field:

Spx, yq “ |�| “
b
f2
x ` f2

y . (6)

In order to calculate the overall linearity of a sub-
region, eight directions are defined that represent the di-
rections from the centre of the sub-region to the four
corners and the central points of the four edges, as il-
lustrated in Fig. 4. Based on these directions, different
directional derivative values (Kpi

, i “ p1, 2, ..., 8q) can be
calculated and the profile curvature is along the steepest
downward gradient. That is, the final profile curvature takes
the maximum value of the eight directional curvature values:
Kp “ maxpKp1 ,Kp2 ,Kp3 ,Kp4 ,Kp5 ,Kp6 ,Kp7 ,Kp8q. Note
that the value of profile curvature can be either positive
or negative. A negative value indicates that the surface is
upwardly convex; a positive value indicates that the surface is
upwardly concave; and a zero value indicates that the surface
is linear. As the current work is only interested in the linearity
of the surface, and convex and concave surfaces make no
difference regarding this, the biggest absolute curvature value
of the eight directional curvature values for each sub-region
is utilised to represent the overall linearity of the concerned
sub-region.



Fig. 4. Directions for profile curvature value approximation

Notice that data are often unevenly distributed in the
problem domain. That is, the data in a given data set may be
very dense for some parts but very sparse for the others. For
each dense part, it is important to generate a representative
data point to represent multiple original data points. For each
sparse part, a data point may be approximated based on its
neighbouring ones. Typical curve fitting approaches, such as
linear or non-linear regression, can be used locally within
a certain window for both situations. The window size for
dense parts should be between a quarter and a full sub-region,
whilst the size for sparse parts should be determined by the
level of the sparsity. The use of such curve fitting approaches
also helps in terms of noise reduction.

4) Raw Rule Base Generation: Based on the curvature
values of sub-regions, the important rules for FRI can be
identified. Given a threshold θ, if the curvature value of a
sub-region is greater than the threshold, the corresponding
fuzzy rule will be selected to form the initial sparse rule
base. This is because, if a sub-region is ‘flat’, it can be easily
approximated by its neighbouring rules using FRI and thus
the corresponding rule is not necessary for FRI. If a sub-
region has a very high curvature value, multiple rules may
be required. In this case, the above procedures can be used
recursively in this sub-region to get more detailed rules for
the rule base, which is a consideration for future work.

B. Rule Base Optimisation

The above generated rule base can be optimised in two
ways. First, the membership functions can be fine-tuned
using a global optimisation approach. Second, the location
of the rules may also be fine-tuned by another optimisation
algorithm. In this initial investigation, only the first type of
optimisation is considered, whilst the latter is a consideration
for further work. In particular, GA has been adopted for
membership function optimisation with the key steps sum-
marised as follows.

1) Problem Representation: Suppose that the initialised
raw rule base is composed of n rules (n P N), which are

R1 :IF x is A1 and y is B1, THEN z is C1,

R2 :IF x is A2 and y is B2, THEN z is C2,

......

Rn :IF x is An and y is Bn, THEN z is Cn.

(7)

The chromosome is designed in the current work to represent
the whole rule base. As discussed above, the optimisation of

the locations of rules may be considered for future work, and
thus, in this work, the representative values of fuzzy sets are
kept fixed and not affected during the membership function
optimisation stage. For simplicity, this work also assumes
that the membership functions are isosceles triangles. Given
the fixed representative value and isosceles shape of a fuzzy
set A, A can be readily constructed from the support of A
(denoted as supppAq). Then, the length of a chromosome X
is set to 3n, as illustrated in Fig. 5, where n represents the
number of rules in the rule base.

Fig. 5. Chromosome representation in GA

2) Population Initialisation: To enable the evolution pro-
cess, the initial population P “ tI1, I2, ..., I|P|u needs to
be generated. Typically, the size of population (|P|) is de-
termined based on the given problem, and it may typically
contain from several hundreds to several thousands of indi-
viduals, each of which is a potential solution to the problem.
The first individual I1 in this case represents exactly the
raw rule base generated through the approach discussed in
Section III, and the other individuals are modified versions
of the first one. Intuitively, the evolved individuals should
have a larger chance to be similar to the one in the raw rule
base than others. Therefore, individuals tI2, I3..., I|P|u are
randomly generated such that the modified support values of
a particular rule antecedent or consequence follow a normal
distribution. In particular, suppose that the value at position
i of individual I1 is suppi, then the ith position for the
rest of the individuals can be generated using a Gaussian
distributed random number generation approach such as the
classical Box-Muller-Wiener algorithm, with suppi being the
expected value [30].

3) Fitness Evaluation: An objective function is used in
GA to measure the fitness or quality of individuals. In this
initial work, the objective function is defined as the root mean
square of the error (RMSE). Given an individual Ii, 1 ď
i ď |P|, the RMSE value regarding this individual can be
calculated as follows:

RMSEi “

gfffe
mř
j“1

pzj ´ ẑjq2

m
, (8)

where m is the size of the training data set; zj is the labeled
(defuzzifised) output value of the jth training data instance
and ẑj represents the (defuzzifised) output that is generated
by a particular FRI approach.

In this case, the fittest individuals will have the lowest
numerical value of the associated objective function. As
the ‘roulette wheel’ selection method is used in the current
work to probabilistically select individuals for reproduction,
a fitness function is used to transform the objective function



value into a measure of relative fitness [31], in an effort to
prevent premature convergence by limiting the reproductive
range so that no individuals generate an excessive number of
offspring. The fitness of an individual Ii in the current work
is calculated as follows [31]:

fpIiq “ 2 ´ max ` 2pmax ´ 1qpri ´ 1q
|P| , (9)

where ri is the ranking position of individual Ii in the
ordered population P, and max is the bias or selective
pressure, towards the fittest individuals in the population.

4) Selection and Reproduction: The population P are
ranked based on their fitness values, and then k pairs of
individuals or elites are selected using a ‘roulette wheel’
mechanism to produce the next generation of individuals by
two genetic operations: crossover and mutation. Crossover
exchanges contiguous sections of the chromosomes, which
takes two parent solutions and produces two children solu-
tions from them. Each pair of individuals in the k pairs of
selected elites acts as the parents for reproduction. A single
crossover point on each pair of selected parents, organism
string is selected, and all data after the index point of the
two parents are swapped. The resulting individuals (after
mutation) will be part of the next generation, denoted as
P

1.

Mutation is used to maintain genetic diversity from one
generation of a population to the next, which simulates
biological mutation. Mutation alters one gene value in a
chromosome from its initial state, which helps the algorithm
to avoid local minima by preventing the population of indi-
viduals from becoming too similar to each other. A certain
percentage of offspring in P

1 are selected to take the mutation
operation. In addition, a single or multiple points of a rule
can take the mutation procedure. Particularly in the current
work, the mutation procedure produces a random support
value regarding a particular fuzzy set for the mutation point
using another Gaussian random number generation approach.

Suppose that the second generation of population (P1)
has been generated. The fitness function, Equation 9, will be
employed again to determine the quality of each individual in
P

1. Finally, the best individuals in P
1, which are represented

by the smallest fitness values, will be selected and used to
replace the worst ranked individuals in P, thus completing
one iteration of the GA searching process by generating a
new population of solution P

2. The entire process of selection
and reproduction is shown in Fig. 6.

5) Termination Conditions: The reproduction procedure
is repeated until the pre-specified maximum number of
iterations is reached or the objective value of an individual
is less than a predefined threshold. When the GA terminates,
the fittest individual in the current population is the optimal
solution.

Notice that GA has been used to optimise fuzzy rule bases
to support FRI in [32]. In the current work, GA was used
for clustering, which is the process of grouping similar in-
terpolated rules to form clusters. These clusters were further
used to form new, aggregated rules to update the existing
rule base. Therefore, GA was used in the rule base updating
stage after a number of inference iterations. In contrast, in

Fig. 6. Selection and reproduction process

this proposed approach, GA is used to optimise the raw rule
base before it is used for inference. The introduction of GA
to rule base generation indeed provokes high computational
complexity, but this is acceptable, as the rule base generation
is a one-time process that is carried out offline.

IV. EXPERIMENTATION

The proposed system was evaluated in this section, by
adopting the problem considered in [14]. The problem is to
model the non-linear function given below:

fpx, yq “ sin
´x

π

¯
sin

´ y

π

¯
.

The fuzzy model takes two inputs, x (x P r´10, 10s) and y
(y P r´10, 10s), and produces one output z (z P r´1, 1s), as
illustrated in Fig. 7. This experimentation is built upon the
stabilised KH FRI approach [33], as introduced in Section II.

Fig. 7. Surface view of the model

A. Rule Base Initialisation

The problem domain is equally partitioned into 20 ˆ 20
grid areas, which results in a total of 400 sub-regions, as
shown in Fig. 8. The input domain of variable x has therefore
been divided into 20 equal intervals, with each interval being
represented as a fuzzy set, as shown in Fig. 9. This is also
the case for variable y, thus facilitating the representation of
each sub-region by a fuzzy rule.

The degree of flatness or sharpness of each such sub-
region can be represented by its curvature value, calculated



Fig. 8. Problem space partition

Fig. 9. Fuzzy partition of the domain of input x

using Equation 5, with the results listed in Table I. Note
that, in this illustrative example, the data are noise-free and
compact, thus data pre-processing is not required. However,
pre-processing is necessary for most real-world applications.
Real-world data are also often unevenly distributed, which
may restrict the direct use of Equation 5. In this case,
curve fitting approaches, such as linear regression, are then
necessary to fill in missing data points for sparse areas and
generate representative data points for dense parts, which
also provides a means of noise reduction.

A threshold value is defined to identify those ‘rugged’
areas which indicate important rules that cannot be accurately
approximated by their neighbouring ones through linear FRI.
The larger is the threshold to be specified, whilst the smaller
is the number of rules to be selected. The determination of the
threshold value is therefore related to the specific problem
to be modelled, which represents the balance between the
accuracy performance and the complexity of the fuzzy model.
For the illustrated example, if the threshold is set as θ “ 0.06,
the curvature values of 100 sub-regions are greater than θ,
thus 100 rules are then selected to initialise the rule base, as
illustrated in Fig. 10. If the threshold is defined as θ “ 0.08,
there are only 52 sub-regions whose curvature values are
higher than the threshold, as shown in Fig. 11. However,
if given a threshold of θ “ 0.09, there are only 20 sub-
regions whose curvature values are higher than the threshold,
as illustrated in Fig. 12.

B. Rule Base Optimisation

The initialised rule base includes all the most important
rules that cannot be accurately represented by their neigh-
bouring ones, but these rules are not optimal in terms of
their membership functions. After generating the raw rule
base in the previous section, the optimisation algorithm GA
is employed to fine-tune the membership functions involved
in the rules. In this experimentation, the population size
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Fig. 10. The sub-regions with curvature values greater than 0.06
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Fig. 11. The sub-regions with curvature values greater than 0.08
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Fig. 12. The sub-regions with curvature values greater than 0.09

was set as 100, with the first individual in the population
configured to represent exactly the generated raw rule base.
All other individuals were randomly generated using the
approach introduced in Section III-B. The max value pa-
rameter of the fitness function (Equation 9) was set to 2, the
maximum number of generations was set to 1000, and the
probabilities of crossover and mutation were set to 0.8 and
0.01, respectively.

The optimisation generally leads to a decrease of the
average error by 5% to 20% compared to the error resulting
from the employment of the raw rule base. When the rule
base contains a relatively large number of rules, a significant
improvement in accuracy was recorded, as shown in Fig. 14,
where the rule base with 12 rules has the smallest error;
conversely, when the rule base consists of fewer rules, only
a very small improvement was recorded, as demonstrated in
Fig. 13, where rule bases with 8 and 4 rules have smaller
errors.



TABLE I. CURVATURE VALUES OF THE SUB-REGIONS

no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.0985 0.0385 0.0100 -0.0043 -0.0109 -0.0113 -0.0055 0.0076 0.0333 0.0930 -0.0930 -0.0333 -0.0076 0.0055 0.0113 0.0109 0.0043 -0.0100 -0.0385 -0.0985

2 0.0385 0.0652 0.0240 -0.0167 -0.0393 -0.0407 -0.0208 0.0180 0.0615 0.0491 -0.0491 -0.0615 -0.0180 0.0208 0.0407 0.0393 0.0167 -0.0240 -0.0652 -0.0385

3 0.0100 0.0240 0.0063 -0.0323 -0.0639 -0.0661 -0.0375 0.0019 0.0235 0.0132 -0.0132 -0.0235 -0.0019 0.0375 0.0661 0.0639 0.0323 -0.0063 -0.0240 -0.0100

4 -0.0043 -0.0167 -0.0323 -0.0550 -0.0824 -0.0849 -0.0586 -0.0348 -0.0185 -0.0058 0.0058 0.0185 0.0348 0.0586 0.0849 0.0824 0.0550 0.0323 0.0167 0.0043

5 -0.0109 -0.0393 -0.0639 -0.0824 -0.0948 -0.0963 -0.0843 -0.0667 -0.0428 -0.0148 0.0148 0.0428 0.0667 0.0843 0.0963 0.0948 0.0824 0.0639 0.0393 0.0109

6 -0.0113 -0.0407 -0.0661 -0.0849 -0.0963 -0.0975 -0.0868 -0.0690 -0.0443 -0.0153 0.0153 0.0443 0.0690 0.0868 0.0975 0.0963 0.0849 0.0661 0.0407 0.0113

7 -0.0055 -0.0208 -0.0375 -0.0586 -0.0843 -0.0868 -0.0619 -0.0399 -0.0228 -0.0075 0.0075 0.0228 0.0399 0.0619 0.0868 0.0843 0.0586 0.0375 0.0208 0.0055

8 0.0076 0.0180 0.0019 -0.0348 -0.0667 -0.0690 -0.0399 -0.0021 0.0175 0.0100 -0.0100 -0.0175 0.0021 0.0399 0.0690 0.0667 0.0348 -0.0019 -0.0180 -0.0076

9 0.0333 0.0615 0.0235 -0.0185 -0.0428 -0.0443 -0.0228 0.0175 0.0585 0.0429 -0.0429 -0.0585 -0.0175 0.0228 0.0443 0.0428 0.0185 -0.0235 -0.0615 -0.0333

10 0.0930 0.0491 0.0132 -0.0058 -0.0148 -0.0153 -0.0075 0.0100 0.0429 0.0962 -0.0962 -0.0429 -0.0100 0.0075 0.0153 0.0148 0.0058 -0.0132 -0.0491 -0.0930

11 -0.0930 -0.0491 -0.0132 0.0058 0.0148 0.0153 0.0075 -0.0100 -0.0429 -0.0962 0.0962 0.0429 0.0100 -0.0075 -0.0153 -0.0148 -0.0058 0.0132 0.0491 0.0930

12 -0.0333 -0.0615 -0.0235 0.0185 0.0428 0.0443 0.0228 -0.0175 -0.0585 -0.0429 0.0429 0.0585 0.0175 -0.0228 -0.0443 -0.0428 -0.0185 0.0235 0.0615 0.0333

13 -0.0076 -0.0180 -0.0019 0.0348 0.0667 0.0690 0.0399 0.0021 -0.0175 -0.0100 0.0100 0.0175 -0.0021 -0.0399 -0.0690 -0.0667 -0.0348 0.0019 0.0180 0.0076

14 0.0055 0.0208 0.0375 0.0586 0.0843 0.0868 0.0619 0.0399 0.0228 0.0075 -0.0075 -0.0228 -0.0399 -0.0619 -0.0868 -0.0843 -0.0586 -0.0375 -0.0208 -0.0055

15 0.0113 0.0407 0.0661 0.0849 0.0963 0.0975 0.0868 0.0690 0.0443 0.0153 -0.0153 -0.0443 -0.0690 -0.0868 -0.0975 -0.0963 -0.0849 -0.0661 -0.0407 -0.0113

16 0.0109 0.0393 0.0639 0.0824 0.0948 0.0963 0.0843 0.0667 0.0428 0.0148 -0.0148 -0.0428 -0.0667 -0.0843 -0.0963 -0.0948 -0.0824 -0.0639 -0.0393 -0.0109

17 0.0043 0.0167 0.0323 0.0550 0.0824 0.0849 0.0586 0.0348 0.0185 0.0058 -0.0058 -0.0185 -0.0348 -0.0586 -0.0849 -0.0824 -0.0550 -0.0323 -0.0167 -0.0043

18 -0.0100 -0.0240 -0.0063 0.0323 0.0639 0.0661 0.0375 -0.0019 -0.0235 -0.0132 0.0132 0.0235 0.0019 -0.0375 -0.0661 -0.0639 -0.0323 0.0063 0.0240 0.0100

19 -0.0385 -0.0652 -0.0240 0.0167 0.0393 0.0407 0.0208 -0.0180 -0.0615 -0.0491 0.0491 0.0615 0.0180 -0.0208 -0.0407 -0.0393 -0.0167 0.0240 0.0652 0.0385

20 -0.0985 -0.0385 -0.0100 0.0043 0.0109 0.0113 0.0055 -0.0076 -0.0333 -0.0930 0.0930 0.0333 0.0076 -0.0055 -0.0113 -0.0109 -0.0043 0.0100 0.0385 0.0985
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Fig. 13. The average error values decrease over time during membership
function optimisation for rule bases with 3 to 9 rules
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Fig. 14. The average error values decrease over time during membership
function optimisation for rule bases with 10 to 23 rules

C. Results and Discussion

To facilitate the comparison between the proposed ap-
proach and the approaches presented in [14], the sum of
errors for 36 random testing points produced by different
approaches with different sizes of rule bases are summarised
in Fig. 15. The black and purple lines represent the re-
sults generated by the approach proposed in [14] with
nearest neighbour interpolation and piecewise polynomial
cubic spline interpolation approaches, respectively, whilst the
blue line represents the results generated by the proposed

approach. From this figure, it is clear that the employment
of rule bases with fewer rules generally leads to large
errors, whilst the employment of rule bases with more rules
generally results in small errors. However, it should be noted
that this is not always the case. For instance, the summed
error produced by the rule base with 12 rules is smaller than
that led by 17 rules. From preliminary investigation, this is
partly caused by the fixed locations of the rules and partly
due to the employed FRI approach. Further investigation on
this is left for future work.

Fig. 15. Errors produced by rule bases with different numbers of rules

This experimentation is based on the KH-stabilised FRI
approach, and thus the experimental results may be KH-
stabilised specific. Note that a number of important FRI ap-
proaches have been proposed, as such, it may be worthwhile
to further validate the proposed sparse rule base generation
approach using other FRI methods. In addition, the curva-
ture thresholds in this experiment are arbitrarily selected,
therefore, a more intelligent approach may be considered.
Given that the ultimate goal of the proposed approach is to
generate accurate results using a minimum number of rules,
the curvature value can also be included in the objective
function or fitness function of the GA as a parameter. This
will certainly help in balancing the number of rules and
the accuracy of the inference results, and both of these
suggestions may be considered in further research.



V. CONCLUSION

A novel rule base generation method particularly for
FRI has been proposed. The approach firstly partitions the
input domain into sub-regions, with each sub-region being
represented as a fuzzy rule. Those sub-regions with curvature
values greater than a predefined threshold are then identified
and the corresponding rules are selected to initialise the rule
base. This initialised rule base is then optimised by fine-
tuning the membership functions of the fuzzy sets involved
in the rules. The proposed work was demonstrated using an
example based on previous work, with comparable results
generated.

The proposed method shows promising and verifiable
results and can be further extended by fine-tuning the location
of fuzzy rules within the sub-regions. The experimentation
presented here is limited to rules with two inputs and
one output, and further work may be conducted to include
rules with multiple antecedents, thus enhancing the real-
world applicability of the method. Given that the proposed
method is built upon the stabilised KH approach, it may
be worthwhile, in further research, to investigate how this
method could support other FRI approaches.
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