Righetti, Luca, Corradi, Marco and Borri, Antonio (2016) Shear resistance of screwed timber connections with parallel to grain FRP reinforcements. In: World Conference on Timber Engineering, August 22-25, 2016, Vienna, Austria.
|
Text
Final Upload.pdf - Accepted Version Download (1MB) | Preview |
Abstract
Several applications involving the use of Fibre Reinforced Polymers (FRP) glued on the tension side of timber beams are available in literature. However, some drawbacks (durability, product cost and health and safety restrictions, difficulties in removal) have limited an intensive use of organic adhesives (i.e. epoxy resins, etc). A possible solution could be the use of metal screws, changing the nature of the connection from chemical to mechanical. This paper describes an experimental investigation on the mechanical behaviour of externally bonded FRP composites using steel screws. Two different composite materials have been considered: Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) and three different metal screw types have been used. FRP strengthening was then applied to timber blocks and shear tested conducted to study the performance of the screwed connection. The response of the screwed connection was recorded: catastrophic collapse did not occur, as the connection failed gradually for slippage phenomena produced by screw yielding and wood displacement. The slippage between timber and FRP plate has been recorded and tests described in this paper demonstrated that the effectiveness of screwed FRP strengthening could be compromised by these phenomena.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Subjects: | H200 Civil Engineering |
Department: | Faculties > Engineering and Environment > Mechanical and Construction Engineering |
Related URLs: | |
Depositing User: | Luca Righetti |
Date Deposited: | 30 Aug 2016 12:41 |
Last Modified: | 01 Aug 2021 07:06 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/27618 |
Downloads
Downloads per month over past year