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 

Abstract—In this paper, we propose and design a chalcogenide 

(As2S3) based slot waveguide taper with exponentially decreasing 

dispersion profile to realize high degree pulse compression of low 

power chirped solitons. Based on the waveguide taper designed, 

self-similar pulse compression of fundamental solitons and 

chirped 2-soliton breather are both investigated numerically. 

With self-similar pulse compression scheme, a 1 ps input pulse is 

compressed to 81.5 fs in 6 cm propagation. By using 2-soliton 

breather pulses, a 1 ps chirped pulse is compressed to 80.3 fs in 

just 2.54 cm. This is the first demonstration of the feasibility of 

high degree nonlinear pulse compression in As2S3-based slot 

waveguide taper. 

Index Terms—Self-similar pulse compression, fundamental 

soliton, 2-soliton breather, As2S3-based slot waveguide taper. 

I. INTRODUCTION 

PTICAL pulse compression is a key technique to generate 

ultrashort pulses [1]-[3], which have wide applications in 

broadband communication systems, supercontinuum and 

frequency comb generation [4]-[7], ultrafast spectroscopy, and 

biology [8]. To compress an optical pulse in the normal 

dispersion regime, the pulse’s spectrum should first be 

broadened by nonlinearity, and then de-chirped by a grating 

pair [9], [10]. In the anomalous dispersion regime, the 

evolution of high order solitons can be used to compress the 

pulse and expand the spectrum without a grating pair [10]-[13], 
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but the compression factors are limited and significant pedestal 

will be generated [6], [14], [15]. In comparison, adiabatic 

[16]-[18] and self-similar [7], [19]-[23] pulse compression can 

achieve high degree of compression factor with small pedestal. 

While adiabatic pulse compression requires a long length of 

fiber, self-similar compression supports high degree pulse 

compression in a short fiber. Recently, nonlinearity increasing 

photonic crystal fiber (PCF) tapers were proposed to realize the 

self-similar pulse compression [7], but the required peak power 

of the input pulse is more than kilowatt. Moreover, the 

fabrication of such PCF tapers is still challenging because of 

the difficulties in controlling the fiber profile during the 

drawing process. 

In contrast, the technology to precisely control the 

geometrical size of silicon waveguides during fabrication is 

mature. In the last two decades, silicon photonics develops 

rapidly and becomes the most promising candidate for 

monolithic integrated optoelectronic devices [24], [25]. 

Specifically, the high nonlinear loss caused by two photon 

absorption (TPA) in silicon can be dramatically circumvented 

by using high contrast slot waveguides, which tightly confines 

the propagating light to the low index region sandwiched 

between silicon layers [26], [27] and low TPA materials such as 

chalcogenide [26]-[30]. Furthermore, because of the large 

intrinsic third-order nonlinearity of silicon and chalcogenide 

[31]-[33] and the strong field confinement, the power and 

propagation distance required to observe the same nonlinear 

phenomena as in optical fibers are significantly reduced [29], 

[32], [34], [35]. Besides the high nonlinearity and low TPA 

loss, the material dispersion of chalcogenide and silicon are 

also much higher than that of silica, and thus the total 

dispersion of the slot waveguide can be greatly tailored by 

varying the waveguide design and geometrical size [36]-[38]. 

In this paper, a chalcogenide (As2S3)-based slot waveguide 

taper with an exponentially decreasing dispersion profile is 

designed. The propagation dynamics of chirped soliton pulses 

in the taper is numerically studied by using a modified 

generalized nonlinear Schrödinger equation (GNLSE). Both 

chirped fundamental solitons and two-order solitons can be 

compressed in the designed waveguide taper. The paper is 

organized as follow. In Section II, the modified GNLSE is 

introduced to describe the propagation of the pulses in the 

As2S3-based slot waveguide taper. In Section III, a taper with 

an exponentially decreasing dispersion profile is designed. In 

Section IV, pulse compressions of chirped fundamental soliton 
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and two-order soliton are studied. We draw conclusions in 

Section V. 

II. THEORETICAL MODELS 

1. Self-similar Compression 

The propagation of an optical pulse in the As2S3-based slot 

waveguide taper can be described by a modified GNLSE [39], 

[40] 
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where A(z, t) is the slowly varying envelope of the electric field 

in a co-moving frame with group velocity 1/β1, α0 represents the 

linear loss. σf describes the free carrier effects including the free 

carrier absorption (FCA) and free carrier dispersion (FCD). In 

this paper, the duration time of the used pulses is much shorter 

than the free-carrier lifetime of silicon, which is about 3 ns. 

Such short pulse duration will only induce very small 

carrier-index change [37]. Besides, the peak power of the 

pulses used is much lower than the pump peak power needed to 

observe free carrier effects [41]. Thus, we neglect the effects of 

the FCA and FCD. βm(z) is the m-th order dispersion 

coefficient. Self-steepening and Raman scattering are also 

included. The complex nonlinear coefficient γe = γ + iα2 

includes the Kerr nonlinear coefficient γ and the TPA loss 

coefficient α2 of the waveguide, which should be calculated by 

the integrations on the whole cross-section as [2], [39], [40] 
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where F(x, y), n2(x, y), and βTPA(x, y) represent the distributions 

of the electric field, nonlinear refractive index, and TPA 

coefficient, respectively. The different cross-sections and mode 

patterns at different position z of the waveguide taper will lead 

to the variations of γe(z) and βm(z) along the taper length. 

The Raman scattering has been included in the response 

function 

R R R( ) (1 ) ( ) ( ),R t f t f h t                        (3) 

where fR is the fractional contribution of the Raman response 

and assumed to be 0.1. The delayed Raman response function 

hR(t) is expressed by the Green’s function of a damped 

harmonic oscillator [42] 
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where τ1 and τ2 correspond to the inverses of the phonon 

oscillation frequency and the bandwidth of the Raman gain 

spectrum which are 15.5 fs and 230.5 fs, respectively. 

To realize self-similar pulse compression in such a 

waveguide taper, the taper profile should be carefully designed 

to control the dispersion and the nonlinearity along the taper 

length. In an optical waveguide governed by the parameter 

varying nonlinear Schrödinger equation (NLSE) 
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self-similar solutions [20], [21] can be found when the real 

nonlinear coefficient γ(z) is a constant and the dispersion 

coefficient β2 varies as 

                          
2 2( ) (0)exp( σ ),z z                             (6) 

where σ = β2(0)ξ and ξ is the initial chirp factor of the optical 

pulse. The self-similar solution is written 
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where P0=|β2(0)|/(γ(z)T0
2) is the peak power of the fundamental 

soliton at z = 0. t0 is the position of the pulse peak and we 

assume it to be zero in the following simulations. As described 

by Eq. (7), the pulse duration will decrease and the peak power 

will increase exponentially along the propagation direction in 

such waveguides. Most importantly, the self-similar solution 

keeps as the fundamental soliton at every point in propagation. 

The pulse compression factor, which is the ratio of the full 

width at half maximum (FWHM) of the pulses before and after 

compression, only depends on the product σz. It should be 

pointed out that if γ(z) is not a constant but varies significantly 

along the taper length, self-similar pulse compression can still 

be realized by using either nonlinearity increasing [7] or a 

combination of dispersion and nonlinearity management 

schemes [20]. 

2. Chirped 2-soliton Breather Compression 

Comparing with fiber tapers, accurate control of the width 

of waveguide taper is much easier during the fabrication 

process [43]. However, the length of waveguide taper is 

normally limited in the fabrication, which will limit the 

compression. Furthermore, large loss of pulse energy is 

unavoidable in long distance propagation because of the linear 

and nonlinear losses of silicon based waveguides. Thus, high 

degree pulse compression in a short distance is more desirable. 

It has been demonstrated that chirped high order solitons in a 

dispersion varying medium is effective in enhancing the 

compression in short distance [21]. Specifically, when a 

chirped 2-soliton breather is used, the compression factor can 

be enhanced by more than 3 times in a same propagation 

distance [21]. 

A chirped 2-soliton breather is a bound state of two 

fundamental solitons without extra binding energy. At the input 

(z = 0), the pulse form is given by [21] 

 
1/2 20

0 0

0

( )
( ) 2 sech exp ( ) ,

2

t t i
A t P t t

T


   
    

  
   (8) 

where ξ = 4/(T0
2) is the chirp factor. When such a chirped 

2-soliton breather is injected into a dispersion exponentially 

decreasing medium, the pulse will be compressed because of 

the combined effects of high order soliton evolution and 

self-similar compression. The pulse compression factor 

oscillates quasi-periodically along the propagation direction 

while the upper and lower envelopes of the oscillation increase 

exponentially. The lower envelope follows the compression 
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factor of chirped fundamental soliton in such a waveguide, e.g. 

the self-similar compression. We note that in contrast to 

fundamental chirp solitons, compression of chirped 2-soliton 

breathers will introduce pedestals into the pulse during 

compression. 

III. DESIGN OF AS2S3-BASED SLOT WAVEGUIDE TAPER 

Since As2S3 has a large nonlinear refractive index n2 ~ 

4.0×1018 m2/W [13], [31], [33] and a low TPA coefficient βTPA 

~ 6.2×1015 m/W at 1550 nm [30], [44], which is three orders of 

magnitude lower than that of silicon [45], a slot waveguide with 

a thin As2S3 layer sandwiched between two silicon layers 

shows multiple advantages including the low TPA loss and 

high nonlinearity [43]. Compared with the air gap slot 

waveguide which should be vertical to the surface of substrate, 

a solid As2S3 layer can be parallel to the surface of substrate 

which is similar to traditional waveguide structure and thus 

easier to fabricate. Waveguide structures similar to that 

proposed in our paper have been reported for dispersion 

engineering [1]. These waveguides can be fabricated by the 

modified technology reported in [46] with loss as low as 

0.01-0.05 dB/cm. Besides, using the thermal flow technique, 

the sidewall roughness and optical loss of sub-micron As2S3 

waveguides can be further reduced [47]. 

Fig. 1(a) shows the cross-section of the As2S3-based slot 

waveguide. The substrate is silica and other surfaces of the 

waveguide are surrounded by air. The As2S3 layer has a height 

HAs = 20 nm and the two silicon layers have a same height HSi = 

170 nm. To control the dispersion coefficient, the width W of 

the waveguide is gradually reduced along the propagation 

direction of the light, as shown in Fig. 1(b). 

 
Fig. 1. (a) The typical cross-section, and (b) the top view of the designed 

As2S3-based slot waveguide taper, where Win and Wout represent the widths of 

the input and output ports, respectively. 

 
Fig. 2. (a) Dispersion curves of the fundamental mode in the designed 

As2S3-based slot waveguide with waveguide width W varying from 270 to 460 

nm. The red vertical line indicates the wavelength 1550 nm. (b) The dispersion 

coefficient β2 at wavelength 1550 nm versus W. The insets show the field 

distributions at the input and output port of the waveguide taper. 

To design a waveguide taper with exponentially decreasing 

dispersion that supports self-similar pulse compression, slot 

waveguides with different width W’s are firstly characterized 

with finite element method to calculate the dispersion and 

nonlinear coefficients of the fundamental mode. Fig. 2(a) 

shows the dispersion curves β2() of the fundamental mode in 

the slot waveguide with different widths. From the dispersion 

curves β2(), higher-order dispersion coefficients can be 

obtained by polynomial fitting of β2(). From Fig. 2(a), when 

the waveguide width is reduced from 460 to 270 nm, the 

dispersion curve is shifted towards short wavelength, and the 

minimum value of β2 increases. Because of the large slope of 

the dispersion curve at the long wavelength side, blue-shift of 

the dispersion curve leads to monotonic increasing of β2 at 

wavelength 1550 nm as indicated by the red vertical line in Fig. 

2(a). Fig. 2(b) shows the variation of β2 at 1550 nm versus the 

waveguide width, where the circles are measured by finite 

element method and the solid curve is the spline interpolation. 

The dispersion coefficient β2 at 1550 nm varies greatly from 

0.1087 to 5.887 ps2/m when the waveguide width increases 

from 270 to 460 nm. 

With the dispersion curve β2(W) shown in Fig. 2(b), the 

required taper profile W(z) can be numerically calculated to 

satisfy the dispersion varying condition Eq. (6) for self-similar 

pulse compression. The red solid curve in Fig. 3(a) shows the 

profile W(z) which decreases from 460 to 270.9 nm along a 6 

cm long taper. The corresponding exponentially decreasing 

dispersion β2(z) varies from 5.887 to 0.219 ps2/m as shown 

by the blue dashed curve in Fig. 3(a). The scaling factor σ is 

therefore 54.86 m1 according to Eq. (6). From Eq. (7), such a 

taper will support self-similar pulse compression with a 

theoretical compression factor of 26.9 in ideal case. 

 
Fig. 3. (a) The waveguide width W and the corresponding dispersion β2 along 

the taper length. (b) The variations of the nonlinearity coefficient γ and the TPA 

coefficient α2 along the taper length. 

Besides the dispersion coefficients, the nonlinearity and 

TPA loss coefficient of the waveguide should also be 

characterized. The nonlinear refractive indices n2 of As2S3, 

silicon and silica are 4.0×1018 m2/W, 9.0×1018 m2/W, and 

2.2×1020 m2/W, respectively. The TPA coefficient βTPA is 

non-zero only in the As2S3 and silicon regions with values 

6.2×1015 m/W and 5.0×1012 m/W, respectively. In the 

designed waveguide taper, the variation of the electrical field 

distribution in different materials and the very different n2 and 

TPA coefficient βTPA of Si, As2S3 and SiO2 lead to complex 

variations of the nonlinear coefficient γ and the TPA loss α2. Fig. 

3(b) shows the variations of γ and α2 at 1550 nm along the 

waveguide taper which are calculated by using Eq. (2). The 

variations of γ and α2 are very similar along the z direction, and 

they almost overlap. Compared with the monotonic change of 

dispersion in Fig. 3(a), the variations of γ and α2 are not 

monotonic, as shown in Fig. 3(b). When z < 0.14 cm, the values 
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of γ and α2 increase from 175.9 W1m1 and 11.89 W1m1 to 

181.8 W1m1 and 12.30 W1m1, respectively. Then both of 

them monotonically decrease when  z > 0.14 cm. At z = 6 cm, γ 

and α2 reach the minimum values 160.5 W1m1 and 10.89 

W1m1, respectively. The relative deviations of both γ and α2 

along the taper are in a range of ±6%. We note that the 

self-similar solution in Eq. (7) is obtained under the 

assumptions of constant nonlinear coefficient and lossless 

propagation in the waveguide. Although the relative variations 

of the nonlinear coefficient and TPA loss coefficient along the 

taper length z are small, their perturbations to the self-similar 

propagation will also be considered. 

IV. CHIRPED SOLITONS COMPRESSION IN AS2S3-BASED SLOT 

WAVEGUIDE TAPER 

To study the As2S3-based slot waveguide taper designed in 

Section III, we will numerically investigate the pulse 

propagation in the waveguide with Eq. (1). The nonlinearity 

variation and TPA loss will both be considered. High order 

solitons, specifically 2-soliton breathers, will also be used to 

enhance the pulse compression. 

1. Self-similar Compression in a Slot Waveguide Taper 

As described by the governing Eq. (5) and the analytical 

solution in Eq. (7), a properly chosen chirped soliton injected 

into the designed taper will be compressed exponentially if the 

nonlinearity is a constant. Since the variation of the 

nonlinearity in the designed taper shown in Fig. 3(b) is 

relatively small, the variations can be considered as a 

perturbation to the effective value 

eff
0

1
( ) ,

L

z dz
L

                                    (9) 

where γ(z) is given in Fig. 3(b). In the designed taper, the 

effective nonlinear coefficient γeff is 167.3 W1m1. If the 

FWHM of the pulse is 1 ps, which corresponds to T0 = 567.3 fs, 

the peak power will be 0.1093 W and the chirp factor ξ = 9.32 

ps2 to satisfy the fundamental soliton condition with β2(0) = 

5.887 ps2/m. According to Eq. (7), the theoretical compression 

factor in 6 cm of propagation is 26.9, and the 1 ps pulse will be 

compressed to 37.2 fs. We use the compression factor Fc and 

the compression quality factor Qc to quantify the performance 

of the compression. Fc is defined as the ratio 

FWHMin/FWHMout, which is 26.9 in the ideal case. The 

compression quality factor Qc is defined as Qc = Pout/(PinFc) 

[48], where Pout and Pin are the peak powers of the output and 

input pulses. In the ideal case of Eq. (7), the peak power of the 

compressed pulse after 6 cm taper is 2.941 W. Thus, the ideal 

quality factor Qc is 1. 

The impacts of higher-order dispersion, nonlinear effects 

including self-steepening, Raman scattering and TPA loss 

should be considered to investigate the self-similar pulse 

compression in the As2S3-based slot waveguide taper. As 

discussed in Section I, the absorption loss including linear 

absorption and multiphoton absorption are the distinct features 

of silicon and chalcogenide when compared with dielectric 

such as silica used in most optical fibers. Here, we classify the 

effects into two groups. Group I includes the up to 6-th order 

dispersion coefficients to model the dispersion, nonlinearity 

variation along the waveguide taper length, self-steepening, 

and Raman scattering but without any absorption loss terms. 

Group II is the absorption loss which includes the linear loss 

and TPA loss of the waveguide. 

 
Fig. 4. Evolutions of the (a) waveform and (b) spectrum of the pulse 

propagating in the waveguide taper when the higher-order dispersion, 

higher-order nonlinearity and varying γ(z) are considered. The time axis of (a) 

is reversed to show the pulse detail. 

Figure 4 shows the evolutions of the pulse waveform and 

spectrum in the waveguide taper modeled by Eq. (1) with α0 = 

α2 = 0, which includes the effects of Group I only. We observe 

that the pulse is compressed self-similarly for z < 5 cm. When 

the pulse is compressed, both the peak power and spectral 

bandwidth increase. Thus the distortion induced by the 

higher-order effects in group I are also increased. At z ~ 5 cm, 

the pulse evolution begins to gradually deviate from the 

self-similar compression. Although the pulse duration 

continues to decrease when z > 5 cm, the rate of compression 

greatly slows down. At the end of the taper, z = 6 cm, the 1-ps 

input pulse is compressed to 59.6 fs with Fc = 16.8. From Fig. 

4(a), a satellite pulse develops rapidly near the main pulse in the 

temporal domain. A corresponding satellite peak is also 

observed in the spectra shown in Fig. 4(b). The growth of the 

satellite pulse is caused by the interaction of the higher-order 

effects in Group I. Since the satellite pulse takes away part of 

the energy of the main pulse, the increase of the peak power of 

the main pulse slowed down and even decreases when z > 5.5 

cm. The peak power of the output pulse is 1.67 W which is only 

57% of that predicted in the ideal case. The corresponding 

compression quality Qc is 0.91. The maximum peak power of 

the pulse is 1.77 W, which appears at z = 5.5 cm with a pulse 

duration of 60.73 fs and a Qc = 0.98. 

 
Fig. 5. Comparison of (a) the temporal waveforms and (b) the spectra of the 

output pulses from the waveguide taper when the varying nonlinearity γ(z) 

(orange dashed curves), higher-order dispersion (HOD, blue dashed curves) 

and higher-order nonlinear effects (HONs, green dash-dotted curves) including 

self-steepening and Raman scattering, respectively, are included. The results 

with only NLSE (black solid curves) and all the above effects (red solid curves) 

are also shown for comparison. 

To characterize the impact of each effect in Group I on 
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self-similar compression, we investigate the pulse propagation 

with (i) only the varying nonlinearity, (ii) only the higher-order 

dispersion or (iii) only the higher-order nonlinearity including 

self-steepening and Raman scattering, respectively.  

In Fig. 5, the temporal waveforms and spectra of the output 

pulses when the varying nonlinearity γ(z) (orange dashed 

curves), higher-order dispersion (HOD, blue dashed curves) 

and higher-order nonlinear effects (HON, green dash-dotted 

curves) including self-steepening and Raman scattering are 

compared. The results with NLSE only (black solid curves) and 

all of the above effects (red solid curves) are also shown for 

comparison. 

From Fig. 5, the influence of the variation of nonlinearity is 

very slight. The self-steepening and Raman effects introduce a 

slight asymmetry on both the waveform and spectrum but 

without significantly changing the profiles. The spectrum is 

also slightly shifted towards longer wavelength by the Raman 

scattering. In contrast to the small deviation caused by the 

varying nonlinearity and the higher-order nonlinear effects, the 

distortions on the waveform and spectrum caused by the 

higher-order dispersion are significant. A small satellite pulse 

and a pedestal are formed by higher-order dispersion. From the 

dispersion curves in Fig. 2(a), the zero dispersion wavelength 

(ZDW) will be close to the central wavelength 1550 nm when 

W is close to 270 nm. Then higher-order dispersion will 

dominate the dispersion when the second order dispersion |β2| is 

small. 

 
Fig. 6. Estimation and comparison of the impacts of β2 and β3 during the 

propagation. 

To quantify the contributions of β2 and the HOD, where β3 

is dominant, we plot the variations of β2, β3/T0, and |β3/(β2T0)|, 

which is also the ratio of the dispersion length LD to the third 

order dispersion length L'D [2], as shown in Fig. 6. With the 

self-similar propagation of the pulse in the waveguide taper, the 

pulse duration T0 and |β2| both decrease exponentially. 

Oppositely, the third order dispersion |β3| increases along the 

taper. In the taper section of z > 5.1 cm, the impact of β3 is 

larger than that of β2 as indicated by the dashed straight lines, 

where the spectrum of the pulse has covered the ZDW. The 

spectral expansion over the ZDW will trigger the generation of 

dispersive wave or Cherenkov radiation [49], [50]. The 

dispersive wave takes away part of the energy from the main 

pulse and hence decreases its peak power, as shown in Fig. 5(a). 

From Figs. 5 and 6, higher-order dispersion is the dominator to 

the distortion of the compressed pulse. We note that although 

Group I does not include any absorption loss, they transfer 

energy of the main pulse to other components and decrease the 

power of the main pulse. 

 
Fig. 7. The evolutions of the (a) waveform and (b) spectrum of the pulse 

propagating in the waveguide taper when all effects including the higher-order 

dispersion, higher-order nonlinearity and varying γ(z), linear absorption loss 

and TPA loss, are all considered. The time axis of (a) is reversed to show the 

details of the pulse evolution. 

Figure 7 shows the self-similar pulse compression when 

both the linear and nonlinear absorption losses are included in 

the simulation. The TPA loss in both the As2S3 and Si regions 

has been shown in Fig. 3(b). The linear loss α0 of the waveguide 

is assumed to 1 dB/m. The evolutions of pulse waveform and 

spectrum in the waveguide taper are shown in Figs. 7(a) and 

7(b), respectively, where all of the effects in groups I and II are 

included. Compared with Fig. 4, the peak power of the output 

pulse is decreased further to 0.83 W, and the pulse duration is 

81.5 fs. The pulse compression factor Fc is 12.3, and the quality 

factor Qc is 0.62. The smaller compression factor means a 

narrower spectral bandwidth and hence weaker dispersive wave 

generation, which can be observed from the smaller satellite 

pulse in Fig. 7(a) and the lower side lobe on the long 

wavelength side in Fig. 7(b). By integration over the whole 

time window, about 37.8% of the input energy has been lost in 

the propagation which corresponds to a total loss of 2.06 dB. 

Since the linear loss is only 0.06 dB in the 6 cm waveguide 

taper, the TPA in the waveguide is the dominant loss 

mechanism. 

 
Fig. 8. The evolutions of the (a) FWHM and (b) peak power of the pulse along 

the propagation length in the waveguide taper with the NLSE only (black dash 

dotted curves), effects in Group I included (red dashed curves), or effects in 

Groups I and II both included (blue solid curves). 

Figure 8 shows the evolutions of the FWHM and peak 

power of the pulse along the waveguide taper length in the ideal 

case (with only the NLSE), with effects in Group I, and Groups 

I and II both considered. In Fig. 8(a), the FWHM is plotted in 

logarithmic scale to show the detail near the taper output. From 

Fig. 8, the compression curves with only Group I effects are 

almost the same as those of the ideal case for z < 5 cm but the 

differences increase rapidly when z > 5 cm. When the effects in 

Group II are further included, as demonstrated by the blue solid 
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curves in Fig. 8, the absorption loss gradually deviates from the 

compression curve off the ideal case. As shown in Fig. 8, the 

absorption losses in Group II have stronger effect on the 

self-similar compression than the effects in Group I. 

 
Fig. 9. The variations of the dispersion length LD (blue solid curves) and 

nonlinear length LNL (red dashed curves) along the propagation distance. In (a), 

the effects in Group I are considered. In (b), the effects in Groups I and II are 

considered. The black dotted lines are the chirp length LC and the black dash 

dotted lines are the ideal LD and LNL when NLSE is considered only. 

In ideal self-similar propagation, the fundamental soliton 

condition LD = LNL should be satisfied in the whole process to 

maintain the pulse shape, where 2

D 0 2( ) ( ) ( )L z T z z  and 

 NL 0( ) 1 ( ) ( )L z z P z  are the dispersion length and nonlinear 

length, respectively. Fig. 9 plots the LD and LNL versus z 

calculated from the pulse duration and peak power shown in 

Fig. 8. The ideal chirp length LC = 1/σ is also plotted to estimate 

the contributions of nonlinearity and dispersion in the 

self-similar compression [51]. Fig. 9(a) shows that LD and LNL 

are very close to those in ideal case for z < 5 cm if only the 

effects in group I are included. When losses are included as 

shown in Fig. 9(b), although LD and LNL deviate from the ideal 

case gradually, but both of the deviations are on the same side 

of the ideal curve and LD is close to LNL in propagation. 

In summary, an input pulse with duration 1 ps can be 

compressed to 81.5 fs with a Qc = 0.62 in the proposed 

waveguide taper. In most part of the propagation, the pulse is 

compressed self-similarly. The linear and TPA losses of the 

waveguide have decreased the pulse energy by ~ 2.06 dB which 

is the dominant perturbation to the self-similar compression. If 

the effects of loss are neglected, the pulse can be compressed to 

60.73 fs with a Qc = 0.98 in 5.5 cm of taper. Hence, the 

deviation caused by the TPA loss should be carefully 

considered in further design of such waveguide taper for 

self-similar compression. Higher-order dispersion is another 

dominant perturbation to the self-similar compression. When 

|β3/(β2T0)| becomes to larger than 1 with the simultaneous 

decreasing of |β2| and T0, the contribution of higher-order 

dispersion becomes important and finally destroys the 

self-similar propagation by generating remarkable dispersive 

wave. Thus, unless the higher-order dispersion can be reduced 

by using flat-dispersion waveguides [37], |β2| should not be 

excessively reduced in self-similar pulse compression. 

2. Chirped 2-Soliton Breather Compression in a Slot 

Waveguide Taper 

From the previous section, the TPA loss of the waveguide is 

the dominant effect that affacts the self-similar propagation. 

Short propagation distance in the taper is preferred to avoid the 

high energy loss. Furthermore, a 6 cm long waveguide taper is 

still difficult to fabricate. Even without taking loss into account, 

the dispersion |β2| should not be reduced too much to avoid the 

generation of dispersive wave, which also suggests a shorter 

propagation distance in the designed taper. Thus, a high degree 

pulse compression in a short distance of the waveguide taper is 

desirable. It has been shown that the compression factor of 

self-similar compression for the same waveguide length can be 

enhanced by more than 3 times if 2-soliton breather is used [21]. 

For 2-soliton breathers, the periodic higher-order soliton 

evolution accompanies the self-similar compression. To utilize 

2-soliton breathers to enhance pulse compression in the same 

waveguide taper, the peak power of the input 1 ps pulse is 

chosen as 0.4372 W, which is 4 times of that used in Section 4.1 

in accordance to Eq. (7). The chirp factorξ = 3.96 ps2. 

 
Fig. 10. The evolutions of Fc for a fundamental soliton (blue dash-dotted curve) 

and 2-soliton breather (red solid curve), and peak power enhancement factor of 

the 2-soliton breather (green dashed curves) versus waveguide taper length 
modeled with the ideal NLSE. 

Figure 10 shows the evolution of Fc for 1-soliton (blue 

dash-dotted curves) and 2-soliton breather (red solid curves), 

and the evolution of peak power enhancement factor of 

2-soliton breather (green dashed curves), which are modeled 

with the ideal NLSE in Eq. (5). The mismatch between the Fc 

and peak power enhancement curves implies the deviation of 

the pulse shape from the hyperbolic secant profile. The Fc curve 

of the 2-soliton breather oscillates along the propagation 

direction with minima located on the Fc curve of the 

fundamental soliton. From Fig. 10, a compression factor Fc = 

15.2 can be reached at 2.3z   cm by using chirped 2-soliton 

breather or 5z   cm by using chirped 1-soliton. The maximum 

and minimum points of Fc in Fig. 10 can be approximately 

predicted by calculating the higher-order soliton period [2] and 

assuming exponentially decreasing T(z) and |β2(z)| as 
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where k = 1, 3, 5, … represents the maximum points and k = 2, 4, 

6, … represents the minimum points. The predicted extrema for 

the first two periods are 2.21, 3.18, 3.81 and 4.27 cm, 

respectively, which agree well with the curve shown in Fig. 10. 

Fig. 11 shows the evolutions of the waveform and spectrum 

of the 2-soliton breather pulse where all other parameters and 

the effects included are the same as those used in Fig. 7. From 

Fig. 11(a), the input 1 ps pulse is compressed in the waveguide 

taper quickly. The pulse width reaches the minimum 80.3 fs at z 

= 2.54 cm. The corresponding output peak power is 2.95 W. 
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Different from the quasi-monotonic decreasing of pulse width 

with the fundamental soliton shown in Fig. 7, the pulse width of 

the 2-soliton breather oscillates along the propagation direction. 

The maximum peak power of 3.08 W is observed at z = 2.4 cm 

which is slightly before than the point of narrowest pulse width. 

The difference of the evolutions of 2-soliton breather and 

fundamental soliton is more pronounced in the spectrum as 

shown in Fig. 11(b). The spectrum splits, and then recovers 

with a small pedestal generated during the propagation, which 

is more complex than that of the fundamental soliton shown in 

Fig. 7(b). At z = 2.54 cm where the narrowest pulse duration is 

observed, the spectrum has two high side lobes and a low peak 

at the center wavelength. 

 
Fig. 11. Evolutions of the (a) waveform and (b) spectrum of the 2-soliton 
breather pulse in the waveguide taper including the effects of varying nonlinear 

coefficient, higher-order dispersions, higher-order nonlinear effects, TPA and 

linear losses of the waveguide. 

 
Fig. 12. The variations of compression factor Fc (red solid curves) and 

compression quality factor Qc (blue dashed curves) along propagations with (a) 

2-soliton breather and (b) fundamental soliton. (c) and (d) show the temporal 

waveforms and spectra of the pulses at z = 2.54 cm with a 2-soliton breather 

(red solid curves), and at z = 2.54 cm (blue dashed curves) and 6 cm (black short 

dashed curves) with a fundamental soliton, respectively. N is the soliton order. 

The intensities of the curves in (c) and (d) have been normalized for 

comparison. 

Besides, Fig. 12(a) plots the variations of the compression 

factor Fc (red solid curves) and the quality factor Qc (blue 

dashed curves) of the 2-soliton breather. Corresponding 

variations of the fundamental soliton are shown in Fig. 12(b) 

for comparison. Using the 2-soliton breather, we obtain a 

compression factor Fc = 12.45 in just 2.54 cm, which is lower 

than the ideal case given in Fig. 10 and larger than the Fc value 

12.3 obtained with the fundamental soliton in 6 cm long of 

waveguide taper. The corresponding Qc = 0.541 is slightly 

lower than the value 0.62 obtained with the fundamental soliton. 

The energy loss in the 2-soliton breather compression is 2.13 

dB which is similar to that of the fundamental soliton 

compression. 

Figs. 12(c) and 12(d) plot the waveforms and spectra, 

respectively, of the compressed pulse at z = 2.54 cm with the 

2-soliton breather and at z = 2.54 and 6 cm with the 

fundamental soliton. The intensities of the curves in Figs. 12(c) 

and 12(d) have been normalized for better comparison. The 

output waveform with 2-soliton breather has symmetric 

pedestal on both sides of the main pulse which is similar to that 

of 2-soliton breather evolution in uniform waveguides. The 

output pulse at z = 6 cm with the fundamental soliton has 

comparable pulse duration but without significant pedestal. The 

pulse at z = 2.54 cm with the fundamental soliton has a much 

larger pulse duration of ~257 fs. Thus, adoption of the 2-soliton 

breather compression has enhanced the compression factor by 

3.2 times with the same propagation length. In Fig. 12(c), the 

pulse with N = 1 and z = 6 cm is asymmetric and retarded by 

several tens of femtoseconds but the peak of the pulse with N = 

2 remains at t = 0. The pulse retardation indicates a shift of the 

central wavelength, as shown in Fig. 12(d). 

In this section, we demonstrated that with a properly 

designed waveguide taper, a chirped picosecond input pulse is 

nonlinearly compressed by a factor of ~12.45. We note that 

such high degree nonlinear compression will be affected by 

deviations of the input pulse parameters from the ideal values in 

realization. Although the initial chirp of the input pulse is 

important in the self-similar pulse compression, it was 

demonstrated that the self-similar pulse compression will not 

be significantly affected if deviation of the initial chirp is within 

~ ±20% [51]. It has also been shown that the pulse compression 

is quite tolerant to deviation of the pulse shape from hyperbolic 

secant profile. Even an input Gaussian pulse will not 

significantly change the pulse compression [52]. However, the 

pulse compression is rather sensitive to the peak power of the 

input pulse [51]. Thus in experiments, a variable optical 

attenuator should be used to adjust the pulse power to optimize 

the pulse compression. 

V. CONCLUSION 

In conclusion, we proposed and designed an As2S3-based 

slot waveguide taper with exponentially decreasing dispersion 

profile to realize high degree pulse compression of chirped 

solitons. The dispersion, nonlinearity, and TPA of the 

waveguide with different widths are characterized by using the 

finite element method. Based on the waveguide taper designed, 

self-similar pulse compression of chirped fundamental soliton 

and 2-soliton breather are modeled with GNLSE. With 

self-similar pulse compression, a 1 ps input pulse can be 

compressed by a factor of 12.3 to 81.5 fs after propagation in 

just 6 cm of waveguide taper. In the compression, the TPA loss 

of the waveguide and the generation of dispersive wave 

dominated by higher-order dispersion are the major 

perturbations to the self-similar propagation. To avoid the 

generation of dispersive wave, 
3 2 0( ) 1T    should be 

guaranteed during the propagation. By adopting 2-soliton 

breather pulse compression, a 1 ps chirped pulse can be 
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compressed by a factor of 12.45 to 80.3 fs after propagation in 

just 2.54 cm of the waveguide taper. The high degree pulse 

compression in the designed waveguide taper will enable us to 

adopt low power picosecond laser pulses as the sources of 

photonic chip to investigate the ultrafast nonlinear optical 

phenomena and all-optical signal processing. 
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