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Abstract 

 

This paper investigates the performance of digital pulse interval modulation (DPIM) in the 

presence of multipath propagation and additive white Gaussian noise. To combat intersymbol 

interference (ISI) guard slots and a non-linear equaliser have been introduced. The average 

optical power requirements (AOPR) due to ISI for cases with/without guard slots and with 

equaliser are analysed using a ceiling-bounce model. Results obtained show that in the 

absence of equalisation, DPIM without guard slot offers a lower AOPR compared with on-off 

keying (OOK). Introducing guard slots gives a further reduction in AOPR by up to 4 dB due 

to the reduced duty cycle of the DPIM signal. The performance of DPIM without guard slot 

buy using an equaliser is found to be significantly better than DPIM with guard slots on a 

channel with severe ISI. 

 

1. Introduction 

 

Among many different IR system configuration, the diffuse optical wireless indoor topology 

is the most convenient for LAN since it does not require careful alignment of the transmitter 

or receiver, nor does it require a LOS path to be maintained. In addition to this, it is also 

extremely flexible, and can be used for both infrastructure and ad hoc networks [1],[2]. 

However, it can incur a high optical path loss, which is typically 50 - 70 dB for a horizontal 

separation distance of up to 5 m [3]. The path loss is increased further if a temporary 

obstruction, such as a person obscure the receiver such that the main signal path is blocked; a 

situation referred to as shadowing. In addition a photo-detector with a wide field-of-view 

normally collects signals that have undergone one or more reflections from ceiling, walls and 

room objects. Multipath propagation causes ISI because the transmitted pulses spread out in 

time over alternative routes of differing lengths, limiting the maximum unequalized bit rate Rb 

achievable with a room volume of 10 x 10 x 3 m to typically around 16 Mbit/s [4],[5]. ISI 

incurs a power penalty and thus bit-error rate (BER) degradation. There are a number of 

modulation schemes which offer a trade-off between power requirement and BER 

performance. OOK is the most effective in combating ISI at low data rates (< 10 Mbps), but at 

high bit rates it suffers from a large power penalty [6]. Digital modulation schemes, such as 

PPM [7], DPIM [8], and DH-PIM [9] offer reduced power but at the expense of increased 

bandwidth. However, the power penalty due to ISI increases more rapidly for highly 

dispersive channels due to the shorter slot duration [8]. The effect of multipath propagation, 
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based on a ceiling bounce model (CBM), on the link performance has been widely used to 

predict ISI power penalties for diffuse OOK, PPM and DPIM and DH-PIM schemes [9],[10]. 

However, for DPIM no detailed multipath analysis employing guard slots and no previous 

work on equalisation to combat ISI has yet been reported. In this paper, we investigate the 

effectiveness of adding guard slots to each symbol and compare the results with a sub-

optimum decision feedback equalization (DFE) method, which is a more conventional 

approach to combat the effects of ISI. Results obtained are compared with the more traditional 

modulation scheme such as OOK. 

 

The remainder of this paper is organised as follows: In section 2, the optical channel model is 

described and parameters used to quantify the severity of ISI are defined. The unequalised 

DPIM systems with and without guard slots are evaluated in section 3. In section 4 the more 

common method of combating the effects of ISI employing some form of equalisation 

technique is described. In section 5, the main findings of the paper are presented and 

discussed. Finally, conclusions are presented in section 6. 

 

2. Optical Channel Model 

 

The multipath channel, described by its impulse response h(t), is fixed for a given position of 

the transmitter, receiver and intervening reflectors, and changes significantly only when any 

of these are moved by distances of the order of centimetres [9]. Owing to the high bit rates 

and the relatively slow movement of people and objects within a room the channel will vary 

significantly only on a time scale covering many bit periods. It is therefore justifiable to 

model the channel as time invariant. The power penalties associated with the channel may be 

separated into two factors: optical path loss and multipath dispersion [8],[12]. The optical gain 

and the average received optical signal power are defined as ∫
∞

∞−

= dtthGo )( , and TXRX PGP 0= , 

respectively, where PTX is the average transmitted optical signal power. Hence, 

the 010log10(dB) losspath  optical G−= .  

 

Here, consideration is limited to the power penalty due to multipath dispersion only. 

Consequently h(t) is normalized to G0 in order to give unity area as that of the ideal channel 

δ(t). Thus, in this case PRX = PTX, and for the remainder of this paper the average optical 
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power will be denoted as Pavg. The RMS delay spread DRMS commonly used to quantify the 

time dispersive properties of multipath channels is given as: [13-14]: 

 ( )
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where µ is the mean delay, given by: 

 ∫∫
∞

∞−

∞
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=µ dtthdttth )(/)( 22 . (2)

 

Practical channel measurements have shown that for diffuse configurations DRMS is in the 

range from 1ns to 15n [14]. It has been shown that there is a systematic relationship between 

multipath power penalty and normalized delay spread DT, which is a dimensionless parameter 

defined as DRMS / bit duration Tb [14]. This relationship implies that a single parameter model 

is sufficient to calculate ISI power penalties, as given by the ceiling bounce model: [8],[12]  
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where u(t) is the unit step function and ( )),(. athDa RMS×= 03711 . Equ. (3) has been used to 

predict multipath power penalties for OOK and PPM (unequalised and equalised), and DH-

PIM (unequalised) for diffuse and non-directed LOS channels (with and without shadowing) 

with a high degree of accuracy. Here we investigate in detail the performance of DPIM using 

(3) normalized such that G0 = 1, both with and without an equaliser.  

 

3. Unequalised System    

3.1 No guard slot 

In DPIM each block of log2L data bits is mapped to one of L possible symbols, each different 

in length. Each symbol begins with a pulse, followed by a number of empty slots directly 

dependent on the decimal value of the block of data bits being encoded. The mapping of data 

bits to symbols for 4-DPIM using no guard slot (NGS) and one guard slot (1GS), and the 

equivalent DH-PIM2, and 4-PPM symbols are shown in Fig. 1a.  As symbol duration is 

variable in L-DPIM, the overall value of Rb is also variable. We therefore select the slot rate 

Rs such that the mean symbol duration is equal to the time taken to transmit the same number 

of bits using OOK or L-PPM, thus achieving the same average bit rate bR . Note, 

LRLR baveS 2log/)(= , and mean symbol length (no guard slot) )(. 150 += LLavg . Figure 1b 
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shows the DPIM system block diagram where the encoder maps each M-bit OOK input bits 

into L possible DPIM(NGS) symbols. The symbols are then passed to a transmitter filter 

which has a unit-amplitude rectangular impulse response p(t) with a duration of one slot 

avgbs LLTT 2log= [6]. Such a slot duration gives the same bR  as OOK / PPM, assuming that 

all symbols are equally likely. The output of p(t) is scaled by the peak transmitted optical 

signal power avgavg PL , and passed through h(t). The received optical signal power is converted 

into a photocurrent by multiplying it by the photodetector responsivity R. Additive white 

Gaussian noise n(t) is added to the detected signal at this point before being passed to a unit 

energy matched filter with an impulse response r(t) matched to p(t). The filter output is 

sampled at the end of each slot and a threshold detector then regenerates the data by assigning 

a "1" or "0" to each slot depending on whether the sampled signal is above or below the 

threshold level.  

 

The average BER may be calculated using the method proposed in [10],[16], which is 

described as follows. Consider the discrete-time equivalent impulse response of the cascaded 

system truncated to have j time slots given by: 

 
⎪⎩

⎪
⎨
⎧ ≤≤⊗⊗

= =

otherwise

Jjtrthtp
c sjTt

j
0

1)()()(
, (4)

 

where ⊗ denotes convolution. Unless the channel is non-dispersive, cj contains a zero tap 

(with the largest magnitude) c0, a single precursor tap and possibly multiple postcursor taps, 

see Fig. 2. On a non-dispersive channel the optimum sampling point, i.e. that which minimises 

the BER, occurs at the end of each slot. However, on dispersive channels, the optimum 

sampling point changes as the severity of ISI changes. In order to isolate the power penalty 

due to ISI, two assumptions are made:- (i) perfect timing recovery, which is achieved by 

shifting the time origin so as to maximise c0 [16], and (ii) optimal decision threshold level αop. 

Note that, since the slots are independent, identically distributed (i.i.d) different m-slots may 

have different occurrence probabilities, and when m > 2 the total number of valid sequences is 

< 2m. 

  

For a given m-slot DPIM denoted by bi, let bi be the value of the penultimate slot (PS) of that 

sequence, where { }1 0,∈ib . The reason why bi in each sequence is considered can be 
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explained with the aid of Fig. 2. Suppose that cj contains a zero tap, a precursor tap and 3 post 

cursor taps. If a transmitted sequence contains a single pulse in bit position 1, assuming that 

the peak output of cj occurs in bit position 1 at the receiver, the post cursor ISI resulting from 

this one affects bit positions 2, 3 and 4, and the precursor ISI affects bit position 0, see case 1 

of Fig. 2. Considering the Pe for bit position 4, any pulse transmitted before bit position 1 has 

no effect on bit position 4, see case 2. At the other extreme, the precursor ISI from a pulse 

transmitted in bit position 5 affects bit position 4, see case 3, but pulses transmitted in 

positions 6 onwards have no effect on bit position 4, see case 4. Therefore, only bits in 

positions 1 to 5 result in ISI which affects bit position 4. Therefore it is only necessary to 

consider every combination of bits 1 to 5 in order to calculate the average BER for bit position 

4. 

 

Let yi denote the output of r(t) corresponding to PS (i.e. bi), which, in the absence of noise, is 

given by: 

 
mjjiavgavg
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where LEE b 2log=  is the energy of PS, and Eb is the average energy per bit.  The 

probability of slot error Pse,i for the (m-1)th slot of sequence bi is given as: 
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where ηo/2 is the double-sided noise power spectral density. Using the method proposed in 

[15] the average probability of slot error is given by:  

 

 ∑=
i

iseise PpP
 all

,)(b  (7)

 

where p(bi) is the probability of occurrence for a  particular m-slot sequence.  

Unlike PPM, where an error is confined to the symbol in which it occurs and a single slot 

error (SSE) can affect a maximum of log2L bits, in DPIM and DHPIM, having no fixed 
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symbol boundary format, errors are not confined to the symbols in which they occur. Thus, a 

SSE has the potential to affect all the remaining bits in a packet, making BER a potentially 

misleading measure of performance. Instead, one must consider the probability of packet error 

rates (PER).  Using the approximation that the number of slots contained within a D-bit 

packet is ~ LDLavg 2log , seP  may be converted into a corresponding PER using: 

 ( ) LDL
se

avgPPER 211
log

−−≈  (8)

 

In such pulse modulation scheme the probability of receiving a zero is greater than the 

probability of receiving a one. Therefore, αop does not lie midway between expected "1" and 

"0" levels. Intuitively, since zeros are more likely, it is apparent that the probability of error Pe 

can be improved by using αop, which is slightly higher than the midway value. This increases 

the probability of correctly detecting a zero, at the expense of increasing the probability of an 

erasure error. However, since zeros are more likely, an overall improvement in average error 

performance is achieved.  

 

3.2 With guard slot 

When a DPIM slot sequence is passed through a multipath channel, the postcursor ISI is most 

severe in the slots immediately following a pulse, see Fig. 2. From this the unique symbol 

structure of DPIM may be exploited to provide a simple method of improving error 

performance in the presence of ISI. It involves placing one or more guard slots in each symbol 

immediately following the pulse. Upon detection of a pulse, the following slot(s) contained 

within the guard slot are automatically assigned as zeros, regardless of whether or not the 

sampled output of r(t) is above or below αop. Thus, the postcursor ISI present in this slot(s) 

has no effect in system performance, provided that the pulse initiating the symbol is correctly 

detected. The inclusion of a guard slot increases the average number of slots per symbol, and 

consequently, in order to maintains the same average bit rate, it is necessary to reduce Ts. For 

DPIM with one guard slot and two guard slots, avgbs LLTT 2log= , where ( ) 23+= LLavg  and 

( ) 25+L , respectively. On its own a reduction in Ts would result in increased AOPR, since the 

ISI would affect a greater number of slots. Therefore, in order for the guard slot to achieve a 

net reduction in AOPR the reduction in power due to the presence of the guard slot must 

outweigh the increase in power due to the reduced Ts. 
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For DPIM(1GS), Pe for any given slot is dependent not only on the sampled signal value 

corresponding to that particular slot, but also on the sampled value of the previous slot. Thus, 

when evaluating DPIM(1GS), if ci has m taps it is necessary to generate sequences of length 

(m+1) and evaluate Pse,m for the mth slot using sample values for the mth and (m-1)th time slots. 

Note that by including 1GS, for a sequence length of (m+1) slots, not all the 2m+1 possible 

DPIM(NGS) sequences are actually valid, since use of a guard slot excludes all sequences 

which contain adjacent pulses. The guard slot does, however, increase the maximum run 

length of consecutive zeros. In order to explain the function of the guard slot the following 

notation is used. Let mb  and 1−mb  represent the values of the mth and (m-1)th slots in a 

DPIM(1GS) sequence, respectively, where { }1,0, 1 ∈−mm bb . Let mb̂  and 1
ˆ

−mb  represent the 

estimate of mb  and 1−mb , respectively, after passing through h(t). Let ym and ym-1 be the 

sampled output of r(t) corresponding to the mth and (m-1)th slots. The probability of slot error 

for DPIM(GS) cannot easily be expressed in a concise form. Consequently, pseudo code is 

used. Pse,m in the mth slot of DPIM(1GS) sequence is determined as follow: 

if 11 =−mb  & 1ˆ
1 =−mb   { 0=mb  and set  mb̂  is set to 0} 

Pse,m = 0 
elseif 11 =−mb  & 0ˆ

1 =−mb  { 0=mb  but mb̂  is not set to 0} 
( )( )20η−α= mopmse yQP ,  

elseif 01 =−mb  & 0ˆ
1 =−mb  { mb  could be 1 or 0 } 

if 1=mb  
   ( )( )20ηα−= opmmse yQP ,  

else 
  ( )( )20η−α= mopmse yQP ,  

end 
elseif 01 =−mb  & 1ˆ

1 =−mb  { mb̂  is set to 0, but mb  could be 1 } 
if 1=mb  

  Pse,m = 1 
else  Pse,m = 0 
end 

end 
 

Similarly for DPIM(2GS), let  ym+1 be the sampled output of r(t) corresponding to the (m+1)th slot. For 

any given (m+2)-slot DPIM(2GS) sequence the probability of slot error in the (m+1)th slot may be 

calculated as follows: 

If 11 =−mb  & 1ˆ
1 =−mb   { 01 =+mb  and 1

ˆ
+mb  is set to 0} 
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  Pse,m+1 = 0  
 

elseif 11 =−mb  & 0ˆ
1 =−mb  { 01 =+mb  but 1

ˆ
+mb  is not set to 0} 

 
  if 1ˆ =mb  
   Pse,m+1 = 0  
  else 
   ( )( )2011 η−α= ++ mopmse yQP ,  
  end 
 

elseif 01 =−mb  & 0ˆ
1 =−mb  { 1+mb  could be 1 or 0} 

 
  if 1=mb  & 1ˆ =mb  { 01 =+mb  and 1

ˆ
+mb  is set to 0} 

 
   Pse,m+1 = 0  
 
  elseif 1=mb  & 0ˆ =mb  { 01 =+mb  but 1

ˆ
+mb  is not set to 0} 

 
   ( )( )2011 η−α= ++ mopmse yQP ,  
 
  elseif 0=mb  & 0ˆ =mb  { 1+mb  could be 1 or 0} 
 
   if 11 =+mb  

    ( )( )2011 ηα−= ++ opmmse yQP ,  
   else 
    ( )( )2011 η−α= ++ mopmse yQP ,  
   end 
 
  elseif 0=mb  & 1ˆ =mb  { 1

ˆ
+mb  is set to 0, but 1+mb  could be 1} 

 
   if 11 =+mb  
    Pse,m+1 = 1  
   else 
    Pse,m+1 = 0  
   end 
  end 
 

elseif 01 =−mb  & 1ˆ
1 =−mb  { 1

ˆ
+mb  is set to 0, but 1+mb  could be 1 } 

 
  if 11 =+mb  
   Pse,m+1 = 1  
  else 
   Pse,m+1 = 0  
  end 
 

end 
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4 Equalisation 

 

In DPIM symbol boundaries are not known prior to detection, therefore practical 

implementation of maximum likelihood sequence detection (MLSD) to combat ISI is not 

feasible because of its complexity. Hence the need for equalisation for combating the effects 

of  ISI. Here, we consider sub-optimal DFE, which is a non-linear technique offering 

performance and complexity intermediate between linear equaliser and MLSD [17]. The two 

most popular criteria that a DFE can employ to optimise its filter coefficients are zero forcing 

(ZF) and mean square error (MSE). In [18] it has been shown that whilst the performance of 

MSE-DFEs is generally superior to that of ZF-DFEs, at high signal-to-noise ratios their 

performance is virtually identical. Since the analysis of ZF-DFEs is more straightforward the 

majority of research carried out has focused on this type of DFE [19-21]. Continuing this 

approach, a ZF-DFE is considered exclusively in the analysis for DPIM(NGS). 

 

The DFE consists of a feed-forward filter, normally a whitened matched filter (WMF) 

matched to the received pulse shape, a detector and a feedback filter, see Fig. 3. In the context 

of a ZF-DFE, the WMF plays an important role of equalising the precursor ISI, which is 

defined as the interference from future data symbols. Therefore the remaining ISI is 

postcursor, meaning that it is due to past data symbols. By feeding back the detected estimate 

of these past data symbols, the ISI they introduce on future symbols may be cancelled. This 

task is performed by the feedback filter, which is sometimes referred to as the postcursor 

equaliser.  

 

The impulse response of the receiver filter is given by: 

 )()()( thtptr −⊗−= . (9)

The noise-whitening filter is calculated as follows. Since r(t) has an impulse response which is 

a time reversed version of the received pulse shape, if the optimum sampling point is selected 

by maximising the zero tap c0, then cj will have an equal number of precursor and postcursor 

taps. Assuming that ci has a total of (2m+1) taps, then following [22], let C(z) denote the two-

sided z transform of cj, i.e., 
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 ∑
−=

−=
m

mj

j
j zczC )( . (10)

 

The 2m roots of C(z) have the symmetry that if ρ is a root, then 1/ρ* is also a root (asterisk 

denoting complex conjugate). Therefore, C(z) can be factored and expressed as: 

 

 )/1()()( ∗∗= ZWzWzC , (11)

 

where W(z) has m roots ρ1, ρ2, … ρm and W*(1/z*) has m roots 1/ρ1
*, 1/ρ2

*, … 1/ρm
*. If all the 

roots of W*(1/z*) are inside the unit circle, i.e. the filter is minimum phase, )(1/1 ∗∗ zW  

represents a physically realisable, stable, recursive discrete-time noise whitening filter. This 

filter whitens the noise, which is coloured by r(t). Let wj denote the tap coefficients of 

)(1/zW1 ∗∗ . p(t), h(t), WMF, the scaling for the peak PTX, R and Pavg may be expressed as a 

discrete-time impulse response, given by: 

 jjavgavgj wcRPLg ⊗⋅= , (12)

 

The discrete-time output of WMF is passed to a threshold detector, which assigns a "1" or a 

"0" to each slot. The output of the threshold detector jb̂  is the estimate of the transmitted slot 

sequence jb  and forms the input to a feedback filter with an impulse response 

jj gg δ− 0 ,[22] which represents the strictly causal portion of gj.  

 

Assuming that all detected slots are correct, and the filters have an infinite number of taps that 

are optimally adjusted in accordance with the ZF criterion, Pse using a ZF-DFE with the 

threshold level set midway between expected one and zero levels is given by [23],[24]: 

 ( )50
00 5050 .

, )./(. η=− gQP DFEZFse . (13)

 

5 Results and Discussions 

 

All optical power requirements in this section are normalized to the average optical power 

required by OOK, operating at a given Rb, to achieve a PER of 10-6 on an ideal channel δ(t), 

limited only by AWGN. Packet lengths are assumed to be 1 kbyte. To calculate AOPR all 
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possible sequences of m-slot length of DPIM were generated. For each value of DT in the 

range of 10-3 to 0.4, first the parameter a is determined from ( )),(. athDa RMS×= 03711 and 

h(t) is calculated using (3). ci is then determined from  (4) with the optimum sampling point 

and threshold level chosen to maximise c0. From (8), we calculate seP in order to achieve the 

target PER of 10-6 for all possible valid sequences. Knowing the probability of occurrence of 

each sequence, Pse,i is calculated from (7). Finally from (5) the average optical power 

requirement is determined.  

 

For various PERs αop was determined iteratively for various orders of DPIM(NGS) and 

DPIM(1GS). The method used to achieve this involves making an initial estimate for Pavg, and 

then iteratively determining αop and hence, the minimum PER. This value is then compared 

with the target PER and, if necessary, Pavg is adjusted and the whole process repeated until the 

target PER is reached. αop versus PER for DPIM(NGB) and DPIM(GB) are plotted in Figs. 4a 

and 4b, respectively. In Fig. 4, αop normalized to the expected matched filter output when a 

one is transmitted. From Fig. 4 it is clear that as the Pe falls, i.e. as the SNR increases, αop 

tends towards the midway value for both DPIM(NGB) and DPIM(1GS). With the exception 

of moving from 2-DPIM(NGB) to 4-DPIM(NGB), it is also evident that increasing L moves 

αop further away from the midway value. 

For DPIM(GS) the normalized AOPR versus DT are shown in Fig. 5. Also shown for 

comparison are the results for OOK and DPIM(NGS). At low values of DT, adding a guard 

slot reduces the average duty cycle of the transmitted signal and hence gives a reduction in 

AOPR. This effect is more pronounced at lower orders, where the average duty cycle is 

reduced by a greater percentage. As DT increases the difference between the NGB and 1GS 

curves increases thus highlighting the effectiveness of adding a single guard slot. At 

normalized delay spreads where DPIM(NGB) experiences irreducible error rates the power 

requirements are finite for DPIM(1GS). Adding a second guard slot gives a further reduction 

in power requirements at low values of DT. Again, this is more pronounced at lower orders. 

For high values of DT, the improvement in performance over 1GS is clear, with irreducible 

error rates occurring at higher values of DT than they do for 1GS. However, for intermediate 

values of DT, adding a second guard slot results in only a marginal reduction in power 

requirement. The reason for this can be explained with the aid of Fig. 6, which shows the 

optical power penalty (defined as the difference between the optical powers required on 

dispersive and non-dispersive channels) versus DT. From Fig. 6 it may be observed that at 
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intermediate values of DT  (10-2 <DT < 10-1), 2GS gives a higher power penalty than 1GS. 

Indeed for L = 32, there is a region where 2GS has a higher power penalty than NGB. This 

means that the benefit of adding a second guard slots is outweighed by the reduction in slot 

duration required to accommodate it. Therefore, in these regions the power requirements of 

2GS converge with those of 1GS. Even with the use of a guard slot OOK still has a lower 

power requirement at high values of DT. The inclusion of a guard slot simply increases the 

value at which the crossover takes place. For example, considering L = 32, OOK offers a 

lower power requirement compared with NGB for DT > 0.13, whilst this crossover does not 

take place until DT = 0.18 for 1GS and DT = 0.31 for 2GS. 

 

Using (13) and converting into an average PER using (8) and substituting for 2)1( += LLavg , 

the AOPR for DPIM(NGB) using a slot-rate ZF-DFE was calculated for various orders and DT 

, as plotted in Fig. 7. Also shown in Fig. 7 for comparison are the AOPRs for unequalized 

DPIM(NGB). At low DT, typically below 0.01, the ZF-DFE gives no improvement in 

performance. However, as expected, the effectiveness of the equaliser in reducing the AOPR 

becomes apparent as DT increases. For example, when DT = 0.1, the ZF-DFE yields power 

penalty reductions of ~1 dB - 3 dB, for the orders considered. In order to compare the 

effectiveness of the guard slot technique, as discussed in the previous section, with the ZF-

DFE, optical power requirements for both are plotted in Fig. 8 for L = 4 and L = 32. At low DT 

the power requirements of DPIM(NGB) using a ZF-DFE are virtually identical to those 

without equalisation, and consequently DPIM with a GB outperforms the equalised scheme. 

However, for any given DT, the ISI power penalty for DPIM(NGB) using a ZF-DFE is lower 

than it is for unequalized DPIM(NGB), DPIM(1GS) and DPIM(2GS). Consequently, as DT 

increases the power requirement curves for DPIM(NGB) using a ZF-DFE intersect with those 

of DPIM(1GS) and DPIM(2GS). Beyond the final points of intersection DPIM(NGB) using a 

ZF-DFE offers the lowest AOPR of the schemes considered. However, significant 

improvements in performance are not achieved until DT is high, typically above 0.3, and on 

channels where the ISI is not too severe, the guard slot technique incurs only a small power 

penalty compared with the ZF-DFE. For example, with L = 32 and DT = 0.16 DPIM(NGB) 

has an irreducible error rate, whilst DPIM(1GS) results in an AOPR which is ~3.2 dB higher 

than that of DPIM(NGB) using a ZF-DFE. By using DPIM(2GS) this power penalty reduces 

to a mere ~0.4 dB compared with DPIM(NGB) using a ZF-DFE. The analysis carried out for 

the DPIM with ZE-DFE makes the assumptions that h(t) is known a priori, and the filters 
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used in the ZF-DFE have an infinite number of taps with the tap weights perfectly adjusted. In 

practise, neither of these is true, and an adaptive ZF-DFE with a finite number of taps will 

give a performance below that of the optimum ZF-DFE used in this section. Furthermore, if 

the threshold detector makes an incorrect decision the ISI correction is flawed for future 

decisions. This phenomenon is known as error propagation and tends to result in bursts of 

errors. This effect has not been considered in this analysis and is currently the subject of 

further study. 

 

6 Conclusions 

 

In this paper the effect of multipath dispersion on DPIM and techniques that may be used to 

combat it have been analysed. Analysis for error performances (with/without eualization) have 

been presented and results obtained are compared with the more established technique of 

OOK. We have shown that on channels with severe ISI the difference in AOPR between 16-

DPIM(NGB) and 16-DPIM(1GS) increases by approximately a factor 4, thus highlighting the 

effectiveness of a guard slot technique in this context. On majority of channels the use of a 

guard slot may be sufficient to achieve reliable performance over a low value of normalised 

delay spread. However, at high values of normalised delay spread (DT > 0.2), we have shown 

that DPIM (NGS) using equalization give significant improvement in performance over DPIM 

with/without guard slots.  
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Figure captions 

 

Fig. 1: (a) Mapping of source data to transmitted symbols for 4-DPIM,  4-PPM, 4-DHPIM, 

and (b) block diagram of the unequalised DPIM(NGB) system. 

 

Fig.1: Response of cj to a single one in various bit positions 
 

Fig. 3: Equivalent discrete-time block diagram of DPIM system with DFE  

 

Fig.4: Normalized optimum threshold level versus PER, (a) DPIM(NGS), and (b) 

DPIM(1GS). 

 

Fig. 5: Normalized average optical power requirement Vs. normalized delay spread for 

DPIM(NGS), DPIM(1GS) and DPIM(2GS) with: (a) L = 4, (b) L = 8, (c) L = 16, and (d) 

L = 32. Also shown is OOK. 

 

Fig. 6. DPIM Optical power penalty Vs. normalized delay spread. 

 

Fig. 7: Normalized average optical power requirement Vs. normalized delay spread for 

unequlaised DPIM(NGB) and with a ZF-DFE 

 

Fig. 8: Normalized average optical power requirement Vs. normalized delay spread for 

DPIM(NGS), DPIM(1GS), DPIM(2GS) and DPIM(NGS) with a ZF-DFE for L = 4 and 

L = 32 
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