Li, Xinyu, Li, Zongbao, Yang, Xiaofeng, Jia, Lichao, Fu, Yong Qing, Chi, Bo, Pu, Jian and Li, Jian (2017) First-principles study of initial oxygen reduction reaction on stoichiometric and reduced CeO2 (111) surfaces as cathode catalyst for lithium-oxygen batteries. Journal of Materials Chemistry A, 2017 (7). pp. 3320-3329. ISSN 2050-7488
|
Text (Full text)
Lixy-JMCA.pdf - Accepted Version Download (2MB) | Preview |
Abstract
CeO2 has been explored as an electro-catalyst in the cathode of lithium-oxygen batteries due to its good performance, especially in the initial discharging stage. In order to fully understand its initial oxygen reduction reaction (ORR), in this work, oxygen and lithium adsorptions and initial ORR on the stoichiometric and reduced CeO2 surfaces were systematically investigated using density functional theory (DFT) calculations. Changes of free energy values and structure parameters of the intermediates and precursors of the initial ORR were also studied to identify the possible reaction paths. It was found that the oxygen atoms are preferably adsorbed on the reduced CeO2 surface, whereas the lithium atoms are preferably adsorbed on both stoichiometric and reduced CeO2 surfaces, therefore, there exists a strong adsorption at the site with high oxygen coordinations. The reduced CeO2 with the surface oxygen vacancies was identified as the most critical surface for the initial oxygen reduction reaction. The path with the lithium adsorption as the first step was identified as the most probable one. A Li3O2 precursor was identified as the most possible initial structure of the catalyst to start the discharging process.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | lithium-oxygen battery; oxygen reduction reaction; adsorption; first principles |
Subjects: | F200 Materials Science |
Department: | Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering |
Depositing User: | Becky Skoyles |
Date Deposited: | 09 Jan 2017 09:58 |
Last Modified: | 01 Aug 2021 08:17 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/29045 |
Downloads
Downloads per month over past year