
Northumbria Research Link

Citation: Alauthman, Mohammad (2016) An efficient approach to online bot detection
based on a reinforcement learning technique. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/29617/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

Northumbria Research Link

Citation: Alauthman, Mohammad (2016) An efficient approach to online bot detection
based on a reinforcement learning technique. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/29617/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

AN EFFICIENT APPROACH TO

ONLINE BOT DETECTION BASED ON

A REINFORCEMENT LEARNING

TECHNIQUE

M M ALAUTHMAN

PHD

2016

AN EFFICIENT APPROACH TO

ONLINE BOT DETECTION BASED ON

A REINFORCEMENT LEARNING

TECHNIQUE

MOHAMMAD MANSOUR ALAUTHMAN

A thesis submitted in partial fulfilment of the

requirements of the University of Northumbria at

Newcastle for the degree of Doctor of Philosophy

Research undertaken in the

Faculty of Engineering and Environment

June 2016

i

ABSTRACT

In recent years, Botnets have been adopted as a popular method used to carry and spread

many malicious codes on the Internet. These codes pave the way to conducting many

fraudulent activities, including spam mail, distributed denial of service attacks (DDoS)

and click fraud. While many Botnets are set up using a centralized communication

architecture such as Internet Relay Chat (IRC) and Hypertext Transfer Protocol (HTTP),

peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay

network for exchanging command and control (C&C) messages, which is a more resilient

and robust communication channel infrastructure. Without a centralized point for C&C

servers, P2P Botnets are more flexible to defeat countermeasures and detection

procedures than traditional centralized Botnets.

Several Botnet detection techniques have been proposed, but Botnet detection is still a

very challenging task for the Internet security community because Botnets execute attacks

stealthily in the dramatically growing volumes of network traffic. However, current

Botnet detection schemes face with significant problem of efficiency and adaptability.

The present study combined a traffic reduction approach with reinforcement learning

(RL) method in order to create an online Bot detection system. The proposed framework

adopts the idea of RL to improve the system dynamically over time. In addition, the traffic

reduction method is used to set up a lightweight and fast online detection method.

Moreover, a host feature based on traffic at the connection-level was designed, which can

identify Bot host behaviour. Therefore, the proposed technique can potentially be applied

to any encrypted network traffic since it depends only on the information obtained from

packets header. Therefore, it does not require Deep Packet Inspection (DPI) and cannot

be confused with payload encryption techniques.

The network traffic reduction technique reduces packets input to the detection system,

but the proposed solution achieves good a detection rate of 98.3% as well as a low false

positive rate (FPR) of 0.012% in the online evaluation. Comparison with other techniques

on the same dataset shows that our strategy outperforms existing methods. The proposed

solution was evaluated and tested using real network traffic datasets to increase the

validity of the solution.

ii

DECLARATION

I declare that the work contained in this thesis has not been submitted for any other award

and that it is all my own work. I also confirm that this work fully acknowledges opinions,

ideas and contributions from the work of others.

Name: Mohammad Mansour Alauthman.

Signature:

Date:27/05/2016

iii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor Dr. Nauman Aslam

for the continuous support of my Ph.D. study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of research

and writing of this thesis. I also want to thank my supervision committee members Dr.

Rafe Alasem and Dr. Li Zhang for reviewing my thesis and providing constructive

comments that help me improve my work. As well, I owe special thanks to Professor

Alamgir Hossain for his excellent guidance throughout the preliminary stages of my

research.

My work has benefited from and has been influenced by discussions with a number of

people over the years. For these discussions, I express my gratitude to my friends Dr

Majed Alsanea, Dr Loai Kayed Bani Melhim and Dr Sami Smadi. They offered a lot of

help and advice on my research and wonderful friendship.

Likewise, I would also like to express my special appreciation for Ahmad Alshorman and

Amer Hatamleh for spending countless hours with me in proofreading advice to help the

presentation of this research.

In addition, I thank my fellow PhD researchers of LAB F7 and LAB F6 for the stimulating

discussions, for the sleepless nights we were working together before deadlines, and for

all the fun we have had in the last four years. Also, I acknowledge all my colleges in

college of science Al-Zulfi, KSA.

On a personal note, I cannot say enough to thank my dearest parents brothers and sisters

for their prayers and continued support. Last but not the least, I am also thankful to my

wife for always being there for me in the ups and downs of my life and tremendous

support.

iv

CONTENTS

ABSTRACT ... i

DECLARATION .. ii

ACKNOWLEDGEMENTS ... iii

CONTENTS ... iv

LIST OF TABLES .. vii

List of Figures .. viii

LIST OF ABBREVIATIONS AND ACRONYMS .. x

1 INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Research Motivation.. 2

1.3 Research Aims and Objectives.. 3

1.4 Thesis Contributions ... 3

1.5 Research Methodology .. 6

1.6 Thesis Scope.. 7

1.7 Thesis Outline ... 9

2 BACKGROUND INFORMATION AND LITERATURE REVIEW 10

2.1 Introduction ... 10

2.2 Background of Botnets .. 11

2.2.1 Definitions related to the Botnet .. 11

2.2.2 Generic Botnet Life Cycle ... 12

2.2.3 P2P Botnet Life Cycle .. 14

2.3 Botnet Threats ... 14

2.3.1 Distributed Denial of Service ... 15

2.3.2 Spam ... 15

2.3.3 Stealing Information... 15

2.3.4 Exploiting resources ... 16

2.4 Botnet Classification ... 16

2.4.1 Botnet Classification According to Control and Command Structure 17

2.4.2 Botnet Classification Based on the Communication Protocols 20

2.5 Taxonomy of Botnet Detection ... 22

2.5.1 Honeynet-based Detection ... 23

2.5.2 Signature-based Detection ... 24

v

2.5.3 Anomaly-based Detection .. 26

2.5.4 Machine learning based Detection ... 31

2.5.5 DNS-based Detection ... 37

2.5.6 Hybrid Botnet Detection Approaches .. 39

2.6 Summary ... 40

3 TRAFFIC REDUCTION APPROACH FOR BOT DETECTION 41

3.1 Introduction ... 41

3.2 Overview of Bot Detection Approach... 42

3.3 Network Traffic Capture ... 44

3.4 Network Traffic Reduction ... 45

3.5 Traffic Reduction Evaluation .. 47

3.5.1 Description of Experimental Datasets .. 47

3.5.2 Traffic Reduction Approach Evaluation .. 48

3.6 Discussion ... 51

3.7 Summary ... 52

4 CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION 53

4.1 Introduction ... 53

4.2 Overview of Offline Bot Detection Approach .. 54

4.3 Features Extraction .. 55

4.3.1 Connection-level Features .. 57

4.3.2 Connection Features Reduction ... 60

4.3.3 Host Feature Extraction.. 62

4.4 The Malicious Activity Detector ... 66

4.5 Experimental Results and Evaluation ... 67

4.5.1 Experimental Tools .. 67

4.5.2 Experimental Procedure ... 67

4.5.3 Evaluation Metrics ... 68

4.5.4 Host Feature Set Evaluations ... 71

4.5.5 Offline Bot Detection Approach Evaluation .. 73

4.6 Discussions .. 77

4.7 Summary ... 78

5 REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT

DETECTION ... 79

5.1 Introduction ... 79

vi

5.2 Reinforcement Learning .. 79

5.2.1 Components of Reinforcement Learning System 80

5.2.2 The Markov Property ... 82

5.2.2.1 Markov Decision Process ... 82

5.2.2.2 Partially Observable Markov Decision Process 84

5.2.3 Reinforcement Learning Models.. 84

5.2.4 Exploration Versus Exploitation .. 85

5.3 Formulation of Botnet Problem Using Reinforcement Learning 86

5.3.1 Bot Detection Algorithm Using Reinforcement Learning 89

5.4 Online Bot Host Detection Approach ... 93

5.5 Experimental Results and Evaluation ... 95

5.5.1 Experiments Using Differences Sliding Time-window Size 95

5.5.2 Testing on Zero-day Attack ... 100

5.5.3 Reinforcement Learning Model Evaluations ... 101

5.5.3.1 Evaluation the Efficiency of the Proposed Approach Based on

Reference Dataset ... 101

5.5.3.2 Evaluation the Efficiency of the Proposed Approach based on

Updated Dataset .. 105

5.5.3.3 Evaluation Based on the Learning Rate 109

5.6 Discussion ... 113

5.7 Summary ... 115

6 CONCLUSIONS AND FUTURE WORK ... 117

6.1 Thesis Summary .. 117

6.2 Summary of Key Contributions .. 118

6.3 Difficulties and Solutions .. 119

6.4 Limitations .. 119

6.5 Future Research Directions ... 120

REFERENCES .. 122

APPENDICES .. 135

A APPENDIX A .. 135

B APPENDIX B .. 138

C LIST OF EXPERIMENT PARAMETERS ... 141

D IMPLEMENTATION FRAMEWORK .. 143

E PUBLICATIONS .. 164

vii

LIST OF TABLES

Table 2.1 C&C structures and basic properties 20

Table 2.2 Comparison of Botnet communication protocols. .. 22

Table 2.3 Summary of Honeynet detection methods. ... 24

Table 2.4 Summary of signature-based methods. ... 26

Table 2.5 Summary of host anomaly-based methods. .. 29

Table 2.6 Summary of network anomaly-based methods. .. 31

Table 2.7 Summary of machine learning based detection methods. 38

Table 2.8 Summary of DNS-based detection methods. .. 39

Table 3.1 Dataset distribution. .. 48

Table 3.2 Traffic reduction rates. .. 49

Table 3.3 Network traffic reduction rules rates .. 50

Table 3.4 Comparison of traffic reduction with other Bot detection techniques. 52

Table 4.1 Extracted features of network traffic connections. ... 58

Table 4.2 Features importance ranking by entropy algorithm. 62

Table 4.3 Host features of network traffic. ... 63

Table 4.4 Experimental Tools. .. 67

Table 4.5 Standard deviation of evaluation matrices. ... 78

Table 5.1 Comparison with other published approaches. ... 115

viii

LIST OF FIGURES

Figure 1.1 Research Methodology .. 8

Figure 2.1 Generic Botnet life cycle. .. 13

Figure 2.2 P2P Botnet life cycle. .. 14

Figure 2.3 A typical centralized Botnet structure. .. 18

Figure 2.4 A typical decentralized (P2P) Botnet architecture... 19

Figure 2.5 Unstructured C&C architecture. .. 20

Figure 3.1 Bot detection framework ... 43

Figure 3.2 The sliding time-window mechanism. ... 45

Figure 3.3 Average rates of network traffic reduction rule :(a) Legitimate traffic and

(b) Botnet traffic. ... 50

Figure 4.1 Overview of Offline Bot detection phases... 55

Figure 4.2 Normalized host features comparison. .. 71

Figure 4.3 Entropy rates of total control packets per host. ... 72

Figure 4.4 Entropy rate of transmitting control packets per host. 72

Figure 4.5 Entropy rates of receiving control packets per host....................................... 73

Figure 4.6 (a) ACC rates, (b) DR rates, (c) F-measure rates. ... 74

Figure 4.7 (a) AUC rates, (b) MCC rates. ... 75

Figure 4.8 (a) RMSE rates, (b) NDEI rates. .. 76

Figure 4.9 (a) FPR rates, (b) FNR rates. ... 76

Figure 5.1 General reinforcement learning system architecture 81

Figure 5.2 Markov decision process 83

Figure 5.3 Partial Markov decision process. ... 84

Figure 5.4 Host states. ... 88

Figure 5.5 Neural Network Agent state. ... 92

Figure 5.6 Overview of On-line Bot Detection Phases. .. 93

ix

Figure 5.7 Extract new behaviour phase. .. 94

Figure 5.8 Improving the classifier agent. .. 95

Figure 5.9 (a) ACC rates, (b) DR rates, (c) F-measure rates. ... 96

Figure 5.10 (a) AUC rates, (b) MCC rates. ... 97

Figure 5.11 (a) RMSE rates, (b) NDEI rates. .. 98

Figure 5.12 (a) FPR rates. (b) FNR rates. ... 99

Figure 5.13 ROC comparison. .. 99

Figure 5.14 Detection rate (Zero-day attack). ... 100

Figure 5.15 False Positive Rate (Zero-day attack). ... 101

Figure 5.16 Online evaluations the ACC of a classifier based on a reference dataset. . 102

Figure 5.17 Online evaluations the AUC of a classifier based on a reference dataset. 103

Figure 5.18 Online evaluations the MCC of a classifier based on a reference dataset. 104

Figure 5.19 Online evaluations the RMSE of a classifier based on a reference dataset

 ... 105

Figure 5.20 Online evaluations the ACC of a classifier based on an updated dataset. . 106

Figure 5.21 Online evaluations the AUC of a classifier based on an updated dataset. . 107

Figure 5.22 Online evaluations the MCC of a classifier based on an updated dataset. 108

Figure 5.23 Online evaluations the RMSE of a classifier based on an updated dataset.

 ... 109

Figure 5.24 Evaluations of the extract new behaviours based on 10s time-window. ... 110

Figure 5.25 Evaluations of the extract new behaviours based on 30s time-window. ... 111

Figure 5.26 Evaluations of the extract new behaviours based on 60s time-window. ... 111

Figure 5.27 Test the online system based reference neural network. 113

Figure 5.28 RL Characteristic. .. 114

x

LIST OF ABBREVIATIONS AND ACRONYMS

ACC Accuracy

ACK TCP flag indicates the value in acknowledgement is valid

AUC Area Under the ROC curve

C&C Command And Control

CART Classification And Regression Tree

DDoS Distributed Denial Of Service

DNS Domain Name System

DPI Deep Packet Inspection

DR Detection Rate

FIN TCP flag indicates that No more data from sender

FNR False Negative Rate

FPR False Positive Rate

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IRC Internet Relay Chat

ISCX Information security centre of excellence

ISOT Information Security And Object Technology

JPCAP A Network Packet Capture Library

LBNL Lawrence Berkeley National Lab

MCC Matthews Correlation Coefficient

MDP Markov Decision Process

NDEI Non-Dimensional Error Index

OSI Open Systems Interconnection

P2P Peer-To-Peer

POMDP Partially Observable Markov Decision Process

RL Reinforcement Learning

xi

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic Curves

RST TCP flag indicates that Reset The Connection

SYN TCP flag initiate a TCP connection

TCP Transmission Control Protocol

TNR True Negative Rate

TPR True Positive Rate

CHAPTER 1: INTRODUCTION

1

1 INTRODUCTION

1.1 Introduction

Internet services are increasing in popularity and many new online services appear every

day. The use of online services leads to a massive volume of online financial transactions,

where sensitive information is exchanged via the Internet. The attacker's interest may thus

be converted from curiosity to economic benefit. Attackers utilise different types of

malware to accomplish their goals. Among the diverse types of malware, the Botnet is

considered to be the most dangerous means of performing online crimes (Rgio S. C.

Silva, Rodrigo M. P. Silva, Raquel C. G. Pinto, & Ronaldo M. Salles, 2013).

A Botnet network contains Bots, which are computers infected by malware such as Trojan

horses, backdoors or worms without the user’s permission. The Botmaster remotely

manages a Botnet through a C&C channel (Gu, Perdisci, Zhang, & Lee, 2008). Recently,

Botnets have been sold and rented in an underground market by Botmasters for

commercial profit. They can begin many cyber-crimes: creating phishing web pages,

carrying out massive amounts of spam emails, stealing sensitive users information and

generating DDoS attacks (Ullah, Khan, & Aboalsamh, 2013).

According to a recent Symantec Internet Security Threat Report in April 2014 (Symantec

Corporation, 2014), Botnets accounted for 76% of all spam sent out in 2013, which was

about 10 billion per day on average. Botnet infections are a global pandemic. Recently

Microsoft alone estimated that, as of April 2015, more than one million machines are

currently infected by the Ramnit worldwide Botnet (Batchelder et al., 2014).

CHAPTER 1: INTRODUCTION

2

The scale of Botnet contaminations worldwide makes the detection of Botnet activity an

important task. Botnet detection has been a significant subject in the cyber security

domain for the last decade. Despite concerted efforts reported in the literature degrade the

malicious activities of Botnets, the diversity of Botnet structures and protocols creates

from the Botnet detection a demanding task for the cyber-security society (Demarest,

2014; IBM, 2013; Plohmann, Gerhards-Padilla, & Leder, 2011)

1.2 Research Motivation

Analysing network traffic and identifying host malicious activity inside a network is a

significant requirement for network admin in order to manage their networks and detect

infected computers. Therefore, network administrators require an efficient strategy to

keep the network free from any suspicious activity. Additionally, Botnets grow rapidly in

terms of both volume and variety, and they have begun to infect infrastructures such as

industrial control systems (Falliere, Murchu, & Chien, 2011) and smartphones (Mullaney,

2012).

As a result, Botnets have been realized to be one of the most dangerous threats to Internet

safety. It is therefore crucial to detect, prevent and mitigate Botnet activities. Developing

Botnet detection systems is a primary concern since it serves as an essential step in further

prevention and mitigation strategies. In this regard, network-based Botnet detection

systems are particularly desired due to the visibility of the network behaviour of all hosts

in monitored networks.

The number of networked computers and devices is enormous and keeps grow, and

volumes of network traffic are high and rapidly increasing. This means that detection

systems require the efficiently processing of a massive volume of network traffic.

However, most existing Botnet detection systems (Chen & Lin, 2015; Goebel & Holz,

2007; Gu, Perdisci, et al., 2008; Gu, Zhang, & Lee, 2008; Lu, Rammidi, & Ghorbani,

2011; Rafique & Caballero, 2013; Seewald & Gansterer, 2010; R. Tyagi, Paul, Manoj, &

Thanudas, 2015; Yen & Reiter, 2008) rely on DPI to analyse packet content, which is

computationally expensive and inefficient in recognizing unknown payload signatures.

Consequently, when these detection systems are deployed in high-speed or high-volume

networks, they may not be able to perform a comprehensive analysis of all network traffic

and thus lead to the failure to immediately detect Bot hosts.

CHAPTER 1: INTRODUCTION

3

However, identifying infected computers before the Bot exploits a host machine in a

serious way is a challenging task in cyber-security. In the few last years, several methods

have been proposed to identify Botnets threats that represent a risk for cyber-security

systems. The majority of these studies have focused on ways of improving offline Botnet

detection systems. Generally, the exact detection results obtained using these approaches

reflect only the past situation of the network traffic.

Therefore, the results of these approaches may become worthless later the when status of

the network environment changes. In this case, all of these offline methods may become

invalid since they do not use online detection approaches. Therefore, a Bot detection

system needs to be developed that is able to monitor Bot host activities in an online

manner and to repeat Bot host activities to network admin as soon as possible.

1.3 Research Aims and Objectives

The aim of this research is to develop an online P2P Bot host detection system based on

RL. The approach proposed in this research has the following characteristics. It detects

Bots during the propagation phase before any malicious action has been taken.

Furthermore, it does not require DPI analysis for signature matching, and does not need

to analyse the entire network traffic. It detects Bots independent of port numbers, IP

addresses and host characteristics. Therefore, the main objectives of this research are:

1. To investigate the characteristics of network traffic that can be used to

discriminate the behaviour of P2P Bots from normal traffic.

2. To develop a RL system has the ability to recognize zero-day attacks caused by a

P2P Botnet.

3. To generate a host traffic representation based on traffic reduction, that is used to

detect the hosts of Bots.

1.4 Thesis Contributions

The objective of this thesis is to develop an efficient network-based Bot host detection

system. The thesis introduces a network-based solution, which achieves the following

requirements. Firstly, efficiency is enhanced by using a traffic reduction method to build

a lightweight detection system able to deal with massive network volumes of traffic.

Secondly, Bot detection is accomplished earlier by detecting the Bot in the propagation

CHAPTER 1: INTRODUCTION

4

phase before it starts malicious activities. Finally, it is adaptable due to the use of a RL

approach to a detection system able to learn online new Bot behaviour from the network

environment. This thesis makes three specific contributions which as following:

1. A network traffic reduction approach has been designed which will be able to

increase the performance of the proposed framework.

2. The ‘connection-based’ detection mechanism is payload-independent, and

depends on only information obtained from the headers of TCP control packets.

3. A new model-based RL algorithm computes the reward from the dynamic

environment.

Firstly, in Chapter 3, a new traffic reduction technique is introduced to facilitate the

deployment of Bot host detection systems on a high-speed network. As discussed above,

the majority of Botnet detection schemes rely on DPI and examine the entire network

traffic. The use of DPI assumes access to the payload of each packet. This method can be

accurate in classifying network traffic if the packet payloads are not encrypted. However,

the majority of new malware applies evasion methods such as the encryption of payloads

or protocol encapsulation and obfuscation which mean that the payload is covered (P.

Wang, Wu, Aslam, & Zou, 2015). Furthermore, examining all packets on a high-speed

network is an expensive task because of the speed of the networks and the amounts of

packets transferred via a network is increasing daily. However, a detection system which

applies DPI may suffer from efficiency limits when processing a large volume of traffic

from high-volume or high-speed networks (Jun et al., 2008). The goal of the present study

is to increase the effectiveness of detection systems by decreasing the volume of traffic

which needs to be analysed without affecting the accuracy of the detection process in an

ideal solution. To achieve this goal, a novel traffic reduction method is proposed for a Bot

host detection framework which selects only TCP control packets. This framework can

efficiently and effectively reduce the amount of traffic that will be entered into the

detection system.

Reducing network traffic can be accomplished by generating a representation of all of the

entire network packets. Moreover, the behaviour of the representative traffic should

reflect the behaviour of all network traffic. Using a representative traffic approach will

reduce the volume of the traffic needed to be analysed. Therefore, it means faster analysis

CHAPTER 1: INTRODUCTION

5

and lower computation time. To the best of our knowledge, this is the first P2P Bot host

detection approach applying such a reduction technique to achieve efficiency in Bot

detection host.

Secondly, in Chapter 4, host traffic features have been designed based on the connection-

level that can differentiate between a Bot and a legitimate network host. More

specifically, the proposed features contribute to the identification of the Bot host by using

a minimum set of packets that need to be utilized in developing an efficient Bot detection

system. The goal of the proposed feature set is designed to boost the effectiveness of P2P

Bot detection in three challenging scenarios: i) the Bot performs malicious activities in a

stealthy way by using an evasion approach such as encryption techniques; ii) the earlier

detection of P2P Bot at the primary stage of its life cycle, the propagation stage; iii) the

feature set helps the detection method to detect an infected machine if it is the only one

in the network. The framework solves the above challenges by working on the headers of

TCP control packets to bypass encrypted network traffic. Moreover, focusing on the

connection behaviour will help the detection system to recognize Bot behaviour at an

earlier stage when the Bot propagates and tries to contact other peers to find new updates.

Furthermore, the proposed feature sets are estimated for every host in the network in order

to detect any single infected machine. To the best of our knowledge, this is the first time

that connection-based features have been used in P2P Bot host detection. As the features

are extracted from the headers of the network packets, they do not rely on packet

payloads. With this characteristic, our detection approach will not be affected by traffic

encryption. Moreover, the proposed approach can also be used to detect unknown P2P

Bots. Furthermore, the feature set helps the detection system to identify P2P Bot infects

even if it just one.

Finally, in Chapter 5, a new model-based reinforcement learning method is built to solve

a Bot host detection problem. More specifically, an online RL system is designed to detect

a P2P Bot in the connection (propagation) stage. The goals of the RL model are to satisfy

the requirements of adaptability, novelty and early detection. To accomplish these goals,

a new algorithm for RL is designed to boost the adaptability of the detection system,

evaluate any new Bot host pattern and adapt the detection system according to the new

Bot pattern.

CHAPTER 1: INTRODUCTION

6

The neural network has been adopted with a resilient back-propagation learning algorithm

as a classification technique. This has robust capabilities for dealing with a nonlinear

problem due to its ability of approximation. In addition, utilizing a feature set based a

traffic reduction technique with the RL algorithm improves the capability of the detection

system to detect timely Bot host behaviour and enhances of the online system so as to

learn new kinds of attack patterns (zero-day). To the best of our knowledge, this work is

the first to provide an online Bot detection method that is based on a new RL algorithm.

Also, RL techniques require some set of action-selection procedures, which guarantee

that there is an balance between exploration and exploitation. The difficulty is to obtain

good action-selection tactics which apply a good balance of exploration and exploitation.

The proposed approach introduces an adaptive threshold factor to manage the adaption

of a new Bot pattern and to make a balance between exploration and exploitation. The

proposed online Bot host detection is timely because detection is achieved for each host,

and when the required features accumulated from the host are adequate then the judgment

can be made instantly. Hence, an infected host can be identified within a short time. Also,

to ensure the generalization of the proposed detection approach, we use a testing dataset

from a different network traffic source in order to ensure the generalization of the

classifier.

However, Bots and the users of computers exploit the Internet network in the same way,

but with different objectives. The proposed framework should be able to differentiate

between malicious traffic generated by Bot activity and legitimate user or application

activities. Therefore, the main expected contribution of this research is to design an online

detection of a P2P Bot host which focuses on both traffic reduction and RL in order to

achieve efficient Bot detection able to complete detection in a short time.

1.5 Research Methodology

The general research methodology used in the research is the positivist approach.

According to (Iivari, Hirschheim, & Klein, 1998) this method contains hypothesis and

testing experiments, therefore, it’s suitable for the research. Besides, the general

experimental procedures used in statistics approaches such as neural network, machine

learning and fuzzy to obtain conclusions from the data comprise the following steps

(Wechsler & Harry, 2000):

CHAPTER 1: INTRODUCTION

7

 1. State the problem

 2. Formulate the hypothesis

 3. Design the experiment/generate the data

 4. Collect the data and perform pre-processing

 5. Estimate the model

 6. Interpret the model/draw the conclusions

The main stages of the adopted research methodology in this research as show on in

Figure 1.1 include the literature review, the literature analysis, design and modelling and

performance evaluation.

1.6 Thesis Scope

The scope of this thesis is limited to developing a P2P Bot detection approach based only

on TCP network traffic. The TCP network traffic is captured from a local area network.

Moreover, the information of the control packets header is used.

The UDP packets are excluded in this research because UDP is a connectionless protocol,

the information in a UDP packets is inadequate to decide if it as control or payload packets

unless we have information about packet’s application. Thus, it is impossible to classify

UDP packets into control and payload packets immediately as in the state of TCP.

CHAPTER 1: INTRODUCTION

8

Phase 1: Literature Review

Phase 2: Literature Analysis

Phase 3: System Design and Modeling

Phase 4: Performance Evaluation

Study the Botnet

Lifecycle

Investigate the Botnet

Infection and spread

Mechanisms

Current Botnet Detection

Systems

State the current Bot

detection systems

weaknesses

Analysis the Bot

Common Behaviors
Problem Statement

Outline of the proposed solution

Traffic

Reduction Algorithm

Connection features

extraction

Reinforcement learning

Algorithm

An online Bot detection system

Experimental Environment Preparation

System Validation and Result Analysis

Test the proposed solution using several dataset

Figure 1.1 Research Methodology

CHAPTER 1: INTRODUCTION

9

1.7 Thesis Outline

This thesis is organized into six chapters. This chapter presents the objectives of this

thesis. It starts by presenting a background discussion of the Bot problem along with the

research goals and contributions.

Chapter 2 gives an overview of Botnets concepts. The Botnet life cycle is described, and

the risks of Botnets are listed. Previous Botnet detection approaches and relevant research

using machine learning are reviewed as well. Taxonomy of Botnet detection techniques

is provided, and the advantages and disadvantages of each type are discussed.

Chapter 3 discusses the design of the proposed traffic reduction algorithm which aim to

increase the efficiency of the Bot detection system. Besides, a briefly detailed for each

component of the Botnet detection system is presented. Also, a detailed description of

the network datasets used in this study are introduced in this chapter.

Chapter 4 explains the connection-based feature extraction process. In addition, the

chapter presents the offline Bot detection system based on connection-level feature set.

Also, the procedures followed in the experiments are discussed.

Chapter 5 provides an introduction to RL, Markov decision processes and the partially

observable Markov decision process. In this chapter, a formulation is given of Botnet

problems based on RL. Besides, a new model-based RL algorithm for Bot host detection

is introduced in a dynamic partially observable environment. Finally, assessment based

on a real-world dataset is presented in the chapter.

Finally, Chapter 6 draws the conclusion of the thesis and discusses potential future

research directions to improve or extend the present work.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

10

2 BACKGROUND

INFORMATION AND

LITERATURE REVIEW

2.1 Introduction

In recent years, there has been increasing interest in Botnet problems compared to others

threats to computing. Malware has infected every area of the Internet, and this shows no

signs of stopping. Despite the relative novelty of Botnets, a significant number of studies

have attempted to find a solution to the problems they create.

Botnet hazards have increased in the internet environment subsequent to the first known

Botnets found at the beginning of the 1990s based on the Internet Relay Chat (IRC). The

IRC was set up in the late 1980s to allow the computer user to connect to the Internet

anywhere and to join live chats. Botnets exploited the benefits of this channel so as to set

up communication between the Botmaster and the Bot in the victim’s computer.

The reason for investigating the Botnet threat in depth is that electronic crime has

increased, and in the past few years, Botnet targets have changed so that secret

information found on the victim’s machines is taken. The difficulty of detection has given

the Botnet the leading position in cyber-crime. Furthermore, Botnets are improving

methods of evasion along with the development of spreading techniques, and this also

increases the difficulty of Botnet detection. Although, a considerable number of studies

have been published on Botnet detection, new types of Botnet continually come up with

new techniques to avoid detection by existing methods.

This thesis focuses on establishing a P2P Bot detection strategy that utilizes neural

networks combined with a RL approach to detect hosts on the network that generate

malicious traffic behaviours. Furthermore, this approach should work online, and at the

same time achieve good accuracy and high detection rates.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

11

This chapter began by introducing the history of Botnets. The following section gives

definitions of terms related to Botnets and explains the life cycle. Section 2.3 introduces

the threats from Botnets and Section 2.3 illustrates Botnet evolution. Sections 2.4 and 2.5

classify Botnets and Botnet detection approaches respectively. A summary of this chapter

and its relevance to the present study are given in Section 2.6.

2.2 Background of Botnets

This section describes Bots, Botnets, C&C and victim hosts, and then elaborates on the

role of Botnet in cyber-crime.

2.2.1 Definitions related to the Botnet

 Bot: the word Bot derives from the word robot, which means "worker.” In the

world of computers, a Bot is a general term adopted to describe an automated

operation (Schiller & Binkley, 2011). In other words, a Bot refers to a malicious

code on victim computer that allows the attacker to control the computer remotely

and perform specific operations (Rgio S. C. Silva et al., 2013).

 A Botnet: is a collection of compromised computers (zombies) connected through

the network, and it is under the control of a Botmaster via a C&C channel (Huy,

Xuetao, Faloutsos, & Eliassi-Rad, 2013; Lashkari, Ghalebandi, & Reza

Moradhaseli, 2011). The Bot is commonly installed on the victim’s computer in

several ways, such as when an untrusted website is surfed or a malicious email

attachment is open. Generally the Bot is configured to be launched when it infects

the victim’s machine, and then the Bot will be ready to receive a command from

the Botmaster through the C&C server (Rgio S. C. Silva et al., 2013).

 Command and Control (C&C): is a communication channel used to transfer orders

between the Botmaster and Bots to achieve various distributed attacks remotely

(Feily, Shahrestani, & Ramadass, 2009; Nagaraja et al., 2011). Furthermore, the

interaction between the Botmaster and Bots through the C&C communication

channel can be classified into three groups: message types, message directions

and communication protocols (Rodríguez-Gómez, Maciá-Fernández, & García-

Teodoro, 2013). C&C message types can be classified as command or control

messages. A command message is used by the Botmaster to send an order to the

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

12

Bots to execute an action on the victim's computer. The other type of C&C

message is a control message that gives the Botmaster information about the status

of Botnets, such as the number of active Bots. What is more, C&C message

directions may be divided into two categories: pulls and pushes (Gu, Zhang, et al.,

2008). In a pull style, the C&C server sends a command to Bots and waits for

them to respond before sending the second order. On the other hand, if the C&C

server sends a command and it does not wait for a response, from this is a push

case message. These approaches are used by centralized Botnet structures such as

IRC and HTTP Botnet-based. The communication protocols perform a significant

part of the communication between the C&C server and the Bots. IRC, HTTP and

P2P protocols are the most common types of the protocol used in C&C server

communications (Rodríguez-Gómez et al., 2013).

 The Botmaster (attacker): is the person who creates the Bots and coordinates all

the operations going on between the Bots and the C&C server. In addition, the

Botmaster builds and develops the ability of the Bots to infect a victim’s machine

as well as coordinating the communication between Botnet system components

(Boshmaf, Muslukhov, Beznosov, & Ripeanu, 2013). However, on the internet

there are many toolkits that can be used to build and manage Botnet systems

(Boshmaf et al., 2013).

 The victim, the main aim of the Botmaster is to spread the Bot code to infect any

connected computer and then control these computers via the C&C server. For

instance, system, person or network could be a Botnet targets. The victims vary

depending on the objective of the attacks or the Botnet type, for example,

receiving spam email or stealing confidential information from the victim’s

machine. In another example, DDoS attacks have played a key role in companies

losing millions of dollars (Rodríguez-Gómez et al., 2013).

2.2.2 Generic Botnet Life Cycle

This section reviews the main stages of the Botnet life cycle. Botnet behaviour is

addressed in terms of the set of operations used by a Botnet during its life cycle phase.

The majority of Botnet detection approaches focus on the specific stage of a Botnet life

cycle via studying its behaviour during these phases. As a result, the analysis of the Botnet

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

13

life cycle is also important in understanding previous work on Botnet detection and Botnet

behaviour. (Zhaosheng et al., 2008), (Feily et al., 2009) and (Rgio S. C. Silva et al., 2013)

addressed Botnet life cycles in similar ways with slight differences, dividing it into three

stages: infection, communication and attack. However, the Botnet life cycle can be

described in details in five phases: initial infection, secondary injection, connection,

command and control, and updating and maintenance (Feily et al., 2009) as illustrated in

Figure 2.1.

Botnetmaster

(1) (2)

(3)

(4)

(4)

and

 (5)

(1) Initial infection

(2) Secondary injection

(3) Connection

 (4) Command and Control

 (5) Update and maintenance

Botnet

Victim machine

Figure 2.1 Generic Botnet life cycle (Feily et al., 2009).

The first phase of creating a Botnet is a critical phase; the Botmaster tries to exploit a

known computer operating system’s vulnerability to infect the user’s machine. Moreover,

scanning techniques are used by an attacker to insert the Bot inside the target’s machine

(Feily et al., 2009). There are several methods for installing Bots in end-user computers,

such as opening malicious spam email attachments or browsing malicious webpages (Lu

et al., 2011).

When the initial infection is accomplished, then the secondary injection phase starts by

executing the dropper script code in the infected machine. The execution of the dropper

script code downloads the Bot binary from specific internet server using a File Transfer

Protocol (FTP), HTTP or Peer-to-Peer (P2P), and then setup a newer Bot code on the

victim machine. At the end of this phase, the infected machine turns into a zombie (Bot).

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

14

After that, the third phase begins by launching the C&C server to issue the communication

channel with an army of recruited Bots which gives the Botmaster control ever the Botnet

network (Feily et al., 2009). The fourth phase starts when the Botmaster has the ability to

use the C&C server to send commands to the Bot in order to execute it on the target's

machine. The final phase of the Botnet’s life cycle is updating and maintenance, where

the Botmaster updates the Bot software for several reasons. For instance, the Botmaster

may need to add a new function to enhance the Botnets future attacks or to improve the

evasion methods. In addition, update the IP address of a new C&C server can be updated

to keep it working and thus then prevent it from being blocked due to the evolution of

Botnet detection techniques.

2.2.3 P2P Botnet Life Cycle

The lifecycle of the P2P Botnet consists of four primary phases, namely: initial infection,

peer propagation, secondary injection and attack. These phases are shown in Figure 2.2

(Felix, Joseph, & Ghorbani, 2012). Firstly, the Bot code is created for insertion into an

end-user computer using different techniques such as vulnerability exploitation, web

downloads, automatic scanning and email attachments (Chao, Wei, & Xin, 2009)

Secondly, the Bot tries to connect with other Bots on infected hosts based on its own hard-

coded peer list. Thirdly, the Bot downloads the latest update of the Bot code through the

C&C channel, which will update it for future tasks. In this phase, a host is considered a

Bot in the Botnet network. Finally, the Bot initiates malicious activities such as spam or

phishing emails, DDoS, stealing information, and scanning activities.

Figure 2.2 P2P Botnet life cycle.

2.3 Botnet Threats

A Botnet is more dangerous than previous more traditional threats such as worms and

viruses. The Honeynet project listed many kinds of Botnet attacks, including such as

DDoS, Spam, Stealing information and Exploiting resources (Bacher, Holz, Kotter, &

Initial

infection

Peer

propagation

Secondary

injection
Attacks

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

15

Wicherski, 2005). Moreover, Lanelli et al. reported that Botnets can be exploited in

several kinds of cybercrimes (Ianelli & Hackworth, 2005).

2.3.1 Distributed Denial of Service

The DDoS is one of the most potent threats produced by Botnets. In the 2014 Information

Security Breaches Survey report in the UK, 38% of big organisations were attacked by

DDoS in the previous year (Mille, Horne, & Potter, 2014). The massive number of

members in a Botnet network gives the DDoS considerable destructive power. The

Botmaster uses the Botnet network to take down the victim system of control as the Bots

members send huge numbers of requests to this system. In addition, some massive Botnets

can even be harmful to Internet Service Providers (ISPs).

2.3.2 Spam

Spam is an operation where an overwhelming quantity email messages containing

advertisements or malicious links are sent to a large number of users. A Botnet is the best

choice for an attacker use as a tool to send spam emails. The spam attacks start by sending

commands to the Bots from Botmaster before they begin sending spam email to the

victim's address. In this case, the detection approaches that used a blacklist technique

become useless and hereby hard to detect a real attacker.

Ramachandram et al. identified Botnets as the major cause of email spam problems

(Ramachandran & Feamster, 2006). In a study which set out to determine the source of

email spam, John et al (2009) found that the Botnets were responsible for 79% of spam

email received at the University of Washington (John, Moshchuk, Gribble, &

Krishnamurthy, 2009).

2.3.3 Stealing Information

A Botmaster employs Bots to collect secret information from victim hosts by using

techniques such key logging, reading log files and screen capture. For example, the

SDBot is a type of Botnet which employs a keylogging technique to gather users’

sensitive information. This can then be sold to others in order to perform illegitimate

actions (Bailey, Cooke, Jahanian, Yunjing, & Karir, 2009). In addition, the Zeus Bot’s

main tools use keylogging methods to steal credit card information and private bank

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

16

accounts, which allows the Botmaster to extract passwords and usernames from a bank’s

web page, emails, and social network accounts (Selvaraj, 2014). Moreover, this Bot

exploits the Windows application program interface (API) to extract private user

information before the web browser can encrypt it (Hannah & Gianvecchio, 2015).

2.3.4 Exploiting resources

Bot hosts are controlled to perform illegal activities. For example, the Bot uses the

victim's computer to visit a website periodically to increase the number of website visitors

without the user’s permissions. In addition, they can be used to cast fake votes or to grow

the number of followers on Twitter and Facebook.

2.4 Botnet Classification

As can be seen from the Botnet life cycle, the C&C server mechanism is the most

important component of a Botnet system. Based on the C&C mechanism, the Botmaster

able to communicate with Bots, and infrastructure of the C&C communicational channel

is the main difference between a Botnet and other malware (Zeidanloo, Bt Manaf,

Vahdani, Tabatabaei, & Zamani, 2010). In contrast to other malware which is used to

perform malicious behaviour individually, a Botnet works as a group of infected hosts

based on the C&C communication channel. Therefore, the Botmaster can use this channel

to deliver a command to thousands of Bots in order to launch an attack or receive

information from victim computers. In 2005, Cooke and co-workers classified Botnets

depending on their C&C mechanism into three different groups: centralized, distributed,

and random. This paper also contained the first academic analysis of the P2P Botnet

(Cooke, Jahanian, & McPherson, 2005). Dittrich and Dietrich grouped Botnets into four

classes in terms of their development environments as IRC, HTTP, P2P and hybrid

Botnets (David Dittrich & Sven Dietrich, 2008). However, in this thesis, the Botnet

network is described based on the structure of its C&C channels and the type of protocol

used in Botnet communications as follows.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

17

2.4.1 Botnet Classification According to Control and Command

Structure

The C&C server is what makes Botnets more powerful than other types of malicious

malware. Botnet structure based on the C&C server can be classified into centralized,

decentralized and unstructured C&C architectures (Chao et al., 2009).

 Centralized architecture: Here, all Bots member are connected to one or many

C&C servers as shown in Figure 2.3, such as in HTTP and IRC Botnets. The C&C

server plays a significant role in delivering commands from the Botmaster to Bots,

and there are no direct connections between Bots. In addition, the centralized

architecture is considered to be the easiest type of Botnet to construct, but it does

suffer from the fact that it has a single point of failure in the C&C server. A

shutdown of the C&C server would result in the loss of communication between

the Bots and Botmaster (Ludl, McAllister, Kirda, & Kruegel, 2007). In spite of

this weakness, it is widely used in cyber-crimes, because the commands are sent

more quickly with low latency. However, it is not so difficult to detect the C&C

server, and thus to crush the whole Botnet network.

 Decentralized (P2P) Botnet: In this architecture, there is no centralized point for

the C&C, so mitigating or detecting these Botnets is very challenging. Due to the

distributed network structure of P2P systems, all peers in the network work as a

Bot (client) and C&C (server) at the same time. In this case, the Botmaster plays

the main role by sending commands to any infected peers to execute any order or

requesting information at any time as shown in Figure 2.4. However, in order to

avoid the weakness of a single point of failure, Botnet attackers have recently

started to build Botnets based on decentralized C&C infrastructures such as the

P2P Botnet (Felix et al., 2012), the P2P model was adopted by many types of

Botnet, for example Storm Bot, Conficker Bot and Waledac Bot (Davis,

Fernandez, & Neville, 2009).

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

18

Bot

Bot

Bot

Bot

Figure 2.3 A typical centralized Botnet structure.

In 2007, the Storm Botnet showed that the power of decentralizing C&C structure

to protect the viability of a Botnet. Decentralizing the C&C introduces a serious

challenge to defenders who cannot remove an individual set of points to destroy

a Botnet (Grizzard, Sharma, Nunnery, Kang, & Dagon, 2007; Stover, Dittrich,

Hernandez, & Dietrich, 2007). A decentralized Botnet architecture is hard to

detect as a result of the anonymity involved and the dispersed nature of the P2P

network’s design (Han & Im, 2012).

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

19

Bot

Bot

Bot
Bot

Botmaster

Bot

Bot

Bot
Bot

Bot

Bot

Internet

Figure 2.4 A typical decentralized (P2P) Botnet architecture.

 Unstructured C&C (Hybrid) architecture, as demonstrated in Figure 2.5, this

model is considered an extreme form of P2P Botnet; where every Bot has a

connection with one peer and it does not own information about other peers in the

Botnet network. Furthermore, the Bots are organized randomly in this architecture

(Rgio S. C. Silva et al., 2013). In this type, there cannot be a direct communication

between the Botmaster and the Bot where has to search randomly on the Internet

to find a Bot in ordered to submit a new task. What is more, it is not affected by a

single point of failure, as is centralized architecture. In addition, Wang et al.(2010)

introduced a hybrid Botnet model as a new idea that combined the fundamental

characteristics of centralized and decentralized C&C mechanisms in order to gain

the benefits of both a low latency of communication and P2P flexibility (P. Wang,

Sparks, & Zou, 2010). However, this architecture does not have a warranty for

the message delivery, and it suffers from a high rate of C&C message latencies

(Bailey et al., 2009).

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

20

Bot

Figure 2.5 Unstructured C&C architecture.

The general properties of the different Botnet structures are summarized in Table 2.1

(Bailey et al., 2009).

Table 2.1 C&C structures and basic properties (Bailey et al., 2009).

Topology Complexity Detectability
Message

Latency
Survivability

Centralized Low Medium Low Low

Decentralized

(P2P)
Medium Low Medium Medium

Unstructured Low High High High

2.4.2 Botnet Classification Based on the Communication

Protocols

It is necessary to own a communication channel linking the Botmaster with their Bots

inside victim machines in order to facilitate the flow of send/receive information between

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

21

them. Based on existing network communication protocols, Botnets can be categorized

according to protocols as IRC-based, Web-based, P2P-based and Custom protocols (A.

K. Tyagi & Aghila, 2011). Table 2.2 shows a comparison of Botnet communication

protocols.

 IRC-based: In this type of Botnet, an Internet Relay Chat (IRC) channel plays a

key role in Botnets development. Initially, the idea of IRC Bots was developed to

support chatting services, not taking into account the fact that this idea was

utilized by malicious developers, and then the first IRC-based Botnet appeared.

The Botmaster used the IRC Botnet to bring the victim machine under control and

to exploit it to execute malicious activities. According to Trend Micro report,

examples of IRC Botnets are Rbot, Phatbot, GTBot and Sdbot (Trend-Micro,

2006). Nevertheless, the IRC can be efficiently identified by configuring the

devices of network security in order to hinder IRC traffic.

 Web-based: HTTP protocol is used by this type of Botnet as the main

communication channel, as the basis of the widespread HTTP protocol. The

Botmaster uses this protocol to spread malicious activities, which is difficult to

detect and capable of bypassing network security devices. Through the World

Wide Web, the Botmaster uses HTTP to manage his Bots. The Botmaster

identifies a web server, and then the Bots periodically connect to the specific web

server in order to receive commands or send information. Unlike IRC Botnets,

HTTP Botnet communication can be hidden in legitimate HTTP traffic in order

to evade detection systems. There are many examples of this Botnet such as the

Rustock Bot (Chiang & Lloyd, 2007) and blackEnergy Bot (Daswani &

Stoppelman, 2007). However, HTTP Botnets and IRC Botnets suffer from the

disadvantage of a single point of failure in the C&C server (K. Wang, Huang, Lin,

& Lin, 2011).

 P2P-based: Napster was the one of the first peer-to-peer networks; P2P protocols

then became popular. The main concept of the P2P network is that every node

works as a server and client at the same time. Several protocols may be followed

such as Gnutella, eDonkey, BitTorrent and Kademlia. The core of these protocols

is totally decentralized and that attracted the attention of Botmasters

(Mukamurenzi, 2008). P2P Botnets adopt a decentralized architecture using an

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

22

overlay network to exchange command and control data making their detection

even more difficult. So, the P2P Botnet is named based on its use of P2P

mechanisms or protocols. Many Botnets utilize the P2P network, such as the

Conficker (R. Weaver, 2010), Storm (Holz, Steiner, Dahl, Biersack, & Freiling,

2008), Nugache (Stover et al., 2007) and Waledac (Stock et al., 2009).

 Custom protocols: In addition to the previously listed types, there are kinds of

Botnets that use their own protocols based on the TCP/IP stack, and they only use

transport-layer protocols such as UDP, TCP and ICMP.

Table 2.2 Comparison of Botnet communication protocols.

Communication

protocols
Example Topology Weakness Advantages

IRC-base

Rbot,

Phatbot,

GTBot and

Sdbot.

Centralized

Single

point of

failure in

the C&C

server.

It is widely used in

cybercrimes,

because the

commands are sent

quickly with low

latency.

Web-based

(HTTP)
Rustock Centralized

Single

point of

failure in

the C&C

server.

HTTP Botnet

communication can

be hidden in

legitimate HTTP

traffic to evade

detection systems.

P2P-based

BlackEnerg,

Storm and

Zeus

Decentralized -

Avoid the

weakness of a

single point of

failure.

2.5 Taxonomy of Botnet Detection

Recent years have witnessed several Botnet detection techniques which can be classified

as signature-based, anomaly-based, DNS-based and data mining-based (Feily et al.,

2009). Other researchers such as Han et al. have classified P2P Botnet detection systems

into three general types: data mining, machine learning and network behaviour and traffic

analysis (Han & Im, 2012). What is more, Zeidanloo and colleagues classify the Botnet

detection system as Honeynets or intrusion detection systems (IDS), and they also divide

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

23

the IDS system into three sub-groups of anomaly-based, specification-based and

signature-based. In addition, the Botnet detection system can be classified based on its

installation point as host-based, network-based and hybrid systems (Zeidanloo,

Shooshtari, Amoli, Safari, & Zamani, 2010). Lu et al (2011) have classified Botnet

detection techniques on the basis of machine learning type as supervised or unsupervised

Botnet detection (Lu et al., 2011).

2.5.1 Honeynet-based Detection

Honeynets are one of the most common detection methods used by many researchers

recently. This technique that imitates an infected machine so as to convince the Botmaster

that it is a Bot in his Botnet in order to record all communication and actions between

them. This mechanism is commonly used in the initial phase of Botnet detection. A

Honeynet method contains two components: the Honeypot and Honeywell (Bacher et al.,

2005). The Honeypot points out a vulnerable host. What is more, the Honeywell refers

the group of tools used to capture and analyse the send and receive traffic from the

honeypot. By utilizing the information gathered by a Honeynet, it is possible to perform

a comprehensive analysis and to extract the main features of a Bot to understand its

technology and therefore uses the extracted features in improving Botnet detection.

GenIII (Balas & Viecco, 2005) and Honeyd (Provos, 2003) are two popular Honeynets

in the field of malware detection.

In 2006, Baecher et al. introduced a Nepenthes platform as a framework for collecting

information from self-replicating malware based on the honeypot. The Nepenthes

framework is one of the most practical ways to provide the developer of an antivirus

system with information about unknown malware (Baecher, Koetter, Holz, Dornseif, &

Freiling, 2006). Rajab and co-workers proposed distributed multifaceted Honeynets,

effectively capturing the activities of IRC Bots (Rajab, Zarfoss, Monrose, & Terzis,

2006). Moreover, the honeypot mechanism was used in the Botminer method to

understand the behaviour of two Botnets, Nugache and Storm. However, there are many

Botnet detection techniques which utilize Honeynets such as (Barford & Yegneswaran,

2007; Cooke et al., 2005; Freiling, Holz, & Wicherski, 2005; Kang et al., 2009; Pham &

Dacier, 2011).

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

24

Despite the success of the Honeynet in reducing the effects of Internet malware, it has

some shortcomings. It takes time to analyse information about the malware binaries.

Moreover, if an attacker has knowledge of the existence of the Honeypot, therefore, it

will not send anything to it, or it may send fake commands in order to give the honeypot

the wrong information. Table 2.3 summarize Botnet detection methods that utilize the

Honeynet.

Table 2.3 Summary of Honeynet detection methods.

Method Technique Shortcoming

(Baecher et al.,

2006)

Collecting information from

self-replicating malware

based on the honeypot.

- Malware binaries

analysing time.

- Providing false attack

information by the

attacker. (Rajab et al., 2006)
Distributed multifaceted

Honeynets.

2.5.2 Signature-based Detection

Signature-based detection includes exploring the traffic in the network to find a set of

traits such as a series of bytes or sequences of packets and a matching set of pre-specified

signature lists. Whenever there is a match in particular network traffic, the administrators

are alerted or there a predefined action will be taken by the system. Some IDS, applying

the signature approach use a repository to store signatures. The repository is frequently

explored to match predefined patterns such as the content of payload packets or system

activities to determine whether it contains known signatures. So, the quality of signatures

plays a significant role in the performance of signature-based detection. Despite an

attempt to generate automatic signatures for malware (Kreibich & Crowcroft, 2004), it is

still a restricted to human expertise and knowledge.

Unfortunately, signature-based detection does not have the ability to detect an unknown

Botnet. For example (Lu et al., 2011) proposed an approach for detecting the Botnet’s

malicious traffic by using an n-gram feature selection algorithm to analyse payload

content. Then they clustered P2P applications into groups based on payload content using

a decision tree model to distinguish between known applications and malicious Botnet

traffic. In the clustering stage, three clustering algorithms used in the approach are K-

means (Jain, Murty, & Flynn, 1999), merged X-means and un-merged X-means (Pelleg

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

25

& Moore, 2000). Moreover, the approach is based on the hypotheses that the diversity of

Botnet packet content is less than that of legitimate traffic. Although the approach is able

to detect Botnets independently of protocol and network structure, it is vulnerable to

methods of encryption of payload content and authorization to read the actual content of

the packets. Clearly, this method will no longer work because today’s Botnets are much

more sophisticated.

SNORT is one of the popular network intrusion detection schemes. It examines the

network traffic and applies certain rules/patterns to identify well-known signatures of

Bots (Alder et al., 2007). SNORT is suitable for detecting Bots that have information

about it, with low FPR and instant detection. However, it fails to classify similar Bots

with hardly changed signatures or new types of Bots till their signatures have been

determined and attached to the rule set database.

In 2007, Goebel and Holz presented another technique of using a signature-based

approach called Rishi. The method works by comparing the IRC communication traffic

with known IRC Bot nickname patterns, or using unusual channels for communication

(Goebel & Holz, 2007). But the Rishi approach fails to detect non-IRC Bots or new

(unknown) nicknames, or if the Bot applies an encryption algorithm in communication.

In 2007, Gu and colleagues suggested a BotHunter that utilizes the correlation analysis

of malicious behaviour. It correlates SNORT (Roesch, 1999) alarms in the bidirectional

communication between external and internal hosts to detect the C&C communication

and malicious activities such as scanning and exploit usage. Then this evidence is used in

a rule-based system to detect the host infected by the Botnet (Gu, Porras, Yegneswaran,

Fong, & Lee, 2007). The BotHunter also has its weaknesses. This method will be avoided

if Botnets update their predefined infection procedures or if the C&C interactions

frequency is very low (Gu, Zhang, et al., 2008). In general, the main advantage of

signature-based approaches is to achieve a high detection rate since it uses the signature

found in the database. However, a major drawback is its incapability to detect new Bot

attacks, or so-called zero-day attacks (N. Weaver, Paxson, Staniford, & Cunningham,

2003). Another drawback of signature-based detection is that it needs the involvement of

human expertise to create the signatures.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

26

Table 2.4 Summary of signature-based methods.

Method Technique Shortcoming

(Lu et al., 2011)

K-means, Un-

merged X-means,

Merged X-means

clustering

- Payload encryption

content.

- Privacy issue.

(Goebel & Holz, 2007) N-gram analysis

- Fail to detect non-IRC

Bots.

- Payload encryption.

- Detect zero-day attack.

BotHunter (Gu et al.,

2007).

Correlation

analysis

- Detect zero-day attack.

- Need human expertise

to create the signatures.

2.5.3 Anomaly-based Detection

Anomaly-based detection techniques have been explored a lot in the last decade, and they

are the most general detection technologies. They try to determine the “normal” behaviour

of the system to be protected and then look for any considerable changes in network

behaviours (García, Zunino, & Campo, 2014). This includes any behaviour that is

considered an unusual activity such as traffic at uncommon ports, network traffic with

high volumes, latency with high network traffic and abnormal system behaviour based on

a predefined pattern of normal system behaviour. These approaches attempt to build a

model of abnormal system behaviour in order to find any similarities with previously

expected malicious behaviour located in the range of a given threshold. According to

Zeidanloo and co-workers, anomaly-based methods are classified on the basis of data

collection location into host-based and network-based. Network-based techniques can be

broken down into active and passive (Zeidanloo, Shooshtari, et al., 2010). The main

advantage of anomaly-based methods is their ability to detect new types of attacks, known

as zero-day attacks. These attacks are malicious activities that are not already known by

the detection system, and cannot be detected by signature-based approaches. However,

the quality of the features selected for use in the detection system and high false alarm

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

27

rates are the most common limitations of such detection approaches which apply

anomaly-based techniques (N. Weaver et al., 2003).

Host-based

A host-based Botnet technique attempts to detect a Bot binary as a virus and so, it treats

the infected machine as a way of anti-virus software. This approach is based on the

hypothesis that a Bot programme executes a series of calls to system libraries which are

dissimilar to those performed using normal processes (Trend-Micro, 2006). Host-based

techniques monitor the machines activities and record system events such as remote

control activities, register updates, file deletion and traffic sent to or received from a host.

An alert is activated when it detects Botnet activities on the host.

In 2007, Stinson and Mitchell proposed a BotSwat as a host-based detection technique

based on the above premise. BotSwat has tools to monitor and track the interactions of

computer program calls with system libraries that receive data from the untrusted network

in order to discriminate between Botnet command responses from normal host activities.

Moreover, this method was created with the aim to detect Botnets independent of C&C

architectures or communication protocols (Stinson & Mitchell, 2007).

EFFORT (Seungwon, Zhaoyan, & Guofei, 2012) a host-based detection approach that

collects Bot characteristics at client and network levels, and correlates Bot-related

information by monitoring local computer activity such as keystrokes and monitoring

connections with other computers. This approach applies one class of supervised support

vector machine algorithms to model legitimate user behaviour (Witten & Frank, 2005).

Furthermore, fifteen Bot samples were used to evaluate the method and a 100% true

positive rate was achieved with less than 1% FPR. The main advantage of this method is

that it does not depend on the protocol and communications topology used. In addition,

it is able to detect Bots that use encryption techniques to hide malicious behaviour. The

major limitations of this method are critical to evasion techniques, such as fast-flux, and

it also cannot be proven as a real-time detection approach.

In 2008, Liu and colleagues introduced a BotTracer as a Botnet detection tool based on a

virtual machine. This method is based on the idea that a Bot has three features. Firstly,

the Bot has automatic start-up activities without involving any user actions. Secondly, the

Bot must establish C&C a communication channel with its Botmaster. Finally, a Bot must

launch an attack remotely or locally. These features represent the three basic stages of a

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

28

Bot attack: injection, update, and attack. Besides this, a Bot should communicate with a

rendezvous point in order to launch a C&C channel with its Botmaster, and BotTracer

catches these channels and analysed them to identify the Bot C&C channels. The

BotTracer runs a virtual machine on the host that contains a copy of the host system file

that automatically starts without human interaction. Then, it will monitor all auto start

communication processes to find a Bot C&C channel fingerprint (Liu, Chen, Yan, &

Zhang, 2008). Therefore, it will detect the Bot when it begins a malicious activity. This

is a real-time technique that is capable of detecting unknown Bots without considering

the communication protocol. Moreover, it achieves a low FPR regardless of the

encryption of Botnet communication traffic. However, in BotTracer high levels of

computation are required due to the virtual machine’s degradation of host performance.

What is more, many Bots have the ability to check for the presence of a virtual machine,

so, in this case, the BotTracer will not work.

Al-Hammadi and Aickelin proposed a P2P Botnet detection approach by correlating

behavioural features. The approach developed a program to monitor and extract

suspicious API function calls in order to use these features as input to the correlation

algorithm. Moreover, the Storm P2P Bot was used as a case study (Al-Hammadi &

Aickelin, 2010). However, the main shortcomings of this technique are that the detection

threshold is undefined, and it is evaluated using only one type of Bot. Another host-based

study in Botnet detection introduced by Nummipuro presented some of the P2P Botnet’s

behavioural characteristics such as using the System Service Table (SST) Hooking

(Nummipuro, 2007). Although this host-based approach achieved satisfactory results in

reducing the spread of malware, it works an individual host and so the monitoring and

analysis operation is costly, complex and non-scalable.

Table 2.5 summarize a host anomaly-based Botnet detection methods.

Network-based

Nowadays, network-based approaches are widely used for Botnet detection by analysing

the entire network traffic (Barsamian, 2009). Furthermore, this technique is installed at

the end of the network such as in the firewall or router unlikely host-based methods that

analyse individual host activities. Network-based approaches have been further divided

into active and passive monitoring.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

29

Table 2.5 Summary of host anomaly-based methods.

Method Technique Shortcoming

EFFORT (Seungwon

et al., 2012)

SVM and one

Class SVM.

- Critical to evasion

techniques, such as fast-flux.

- Not proven as a real-time

detection approach.

BotTracer (Liu et al.,

2008).
Virtual machine.

- Virtual machine’s

degradation of host

performance.

- Providing false attack

information by the attacker.

(Al-Hammadi &

Aickelin, 2010)

Correlation

algorithm.

- The detection threshold is

undefined.

- Evaluated using only one

type of Bot.

(Nummipuro, 2007)

Using the System

Service Table

(SST) Hooking.

- The leak of scalability.

In passive monitoring techniques, information about traffic on the network is gathered to

find suspicious communications in order to detect Botnets. A key idea behind passive

monitoring is that Bots create communication behaviour different from that of a normal

host and Bots belongs to a Botnet network that presents similar communication patterns

(Trend-Micro, 2006). The Botmaster has to make connections with its Bots to issue an

attack or update command. Moreover, because the Bot is pre-programmed, they react

with the Botmaster using a similar pattern. Furthermore, the Botnet uses the same protocol

in each phase of the Botnet life cycle (Trend-Micro, 2006). Many researchers have

investigated such similarities in network traffic to identify Bot behaviour.

For example, Gu colleagues (2008) use the fact that Bot is pre-programmed software and

has a similar pattern to the C&C server to develop a BotSniffer detection method based

on the spatial-temporal correlation. It depends on the hypothesis that Botnets favour to

contact in an extremely synchronized way, unlike human activities. BotSniffer can

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

30

identify C&C servers and a compromised host based on the similarity of spatial-temporal

data. Additionally, it can recognize C&C channels for IRC-based and HTTP-based

Botnets. What is more, this technique is network-based, so it can identify a host with

comparable suspicious network behaviour such as spamming and scanning (Gu, Zhang,

et al., 2008). However, Botsniffer was developed to detect Botnets with a centralized

architecture. Consequently, it cannot identify Bots that use a different architecture for the

C&C server and it is not able to recognize an individual infected host. Moreover, it was

developed to identify a Botnet in a local area network, so it is not applicable at the Internet

level. Also despite having a low FPR, the Botsniffer can be avoided by utilizing encoded

channels or using a decentralized architecture for the C&C server as in P2P Botnets.

In 2007, Karasaridis et al. presented an anomaly-based algorithm for detecting IRC

Botnet controllers using the transport layer data in the backbone of the network, such as

Tier-1 ISP networks. The statistical characteristics of the C&C server traffic are used to

find considerable quantities of the data of the network traffic. This data is gathered by

utilising the sceptical host activity findings (ports scan, email spam and generating

distributed denial of service attack traffic) collected from chosen network connections by

matching a well-known IRC traffic signature, such as the low amount of network traffic,

chat-like or a network traffic which has a PING-PONG pattern. After collecting network

data methods are applied to detect the connections of candidate controllers that use

unusual IRC ports. Firstly, it finds the suspected Bot flow with a remote machine that acts

as a server. Secondly, it identifies flows whose behaviour is within the range of normal

IRC traffic. Finally, they analyse the conversation of a candidate control to recognize

suspicious controllers and their ports (Karasaridis, Rexroad, & Hoeflin, 2007). However,

although the Karasaridis technique is able to work passively with large-scale networks

and achieve less than 2% FPR, and so it is suitable to detect IRC Bots, but it may not be

able to detect modern kinds of Botnet such P2P and HTTP.

As opposite to passive monitoring that interacts with Botnet behaviour, active monitoring

techniques interact with a Botnet directly by probing the network host with active

communication and analysing its responses. Moreover, it actively confuses Botnet

activity by meddling with the Bots’ communication with the C&C server. The majority

of detection techniques are passive, while only a few, such as BotProbe (Guofei,

Yegneswaran, Porras, Stoll, & Wenke, 2009), are active.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

31

BotProbe was introduced by Gu and colleagues as an active detection mechanism. The

main target of BotProbe is to determine whether or not a Bot or user is using the host at

that side by injecting packets dynamically in a communication session. The authors noted

that a Bot is a pre-programmed reply to any contact based on a set of predefined rules.

So, they discriminated the human client from a Botnet with regards to the frequency and

pattern of responses. This technique was tested on a number of IRC Bots and around 100

real users (Guofei et al., 2009).

However, active techniques have the serious shortcoming of greatly increasing network

traffic by sending extra packets to suspicious clients. Furthermore, and most essentially,

injecting packets to facilitate detection may be lead to legal issues. In addition, the passive

detection approach has the advantage of detecting a Botnet without any direct interaction

with the Bot, but only using the Bots behaviour within a network. Table 2.6 summarize

network anomaly-based Botnet detection methods.

Table 2.6 Summary of network anomaly-based methods.

Method Technique Shortcoming

BotSniffer (Gu,

Zhang, et al., 2008)

Spatial-temporal

correlation

- Payload encryption content.

- Privacy issue.

- Detect single Bot infection.

(Karasaridis et al.,

2007)
Correlation algorithm

- Fails to detect non-IRC Bots.

- Detect Zero-day attack.

BotProbe (Guofei et

al., 2009)

Injecting packets in a

communication

session.

- Increasing network traffic

- Injecting packets to facilitate

detection may be lead to legal

issues.

2.5.4 Machine learning based Detection

Machine learning plays a significant role in the domain of artificial intelligence because

it has excellent performance, and so it is widely used in many fields such as date mining,

pattern recognition, and medical diagnosis. Machine learning algorithms extract hidden

relationships and rules within data, which can be used to create models for prediction and

classification, and thus its goal is to construct systems which have the ability to learn from

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

32

data (Mitchell, 1997; Witten & Frank, 2005). Learning in this context indicates the ability

to identify complicated patterns and utilize labelled data to make qualified decisions. One

of the main challenges in machine learning is how to make a generalization of knowledge

extracted from a previous dataset or derived from a limited set of previous experiences,

in order to construct a prediction system for new and unseen datasets. To deal with this

problem, algorithms are developed based on statistical, artificial intelligence, information

theory, biology, philosophy, cognitive science, control theory and computational

principles (Mitchell, 1997). Machine learning algorithms are classified in terms of the

type of learning involved, which are: supervised learning, unsupervised learning and RL.

Supervised learning algorithms are trained using a labelled dataset to generate a model

that is able to classify an unlabeled dataset in the future. It is as if a supervisor is helping

you out, to be able to classify in the future, which is why it is called supervised. The

principle of supervised learning is used by popular machine learning algorithms, for

example, in Classification and Regression Trees (CART) (Breiman, Friedman, Olshen,

& Stone, 1984), neural networks (Gurney, 1997) and Support Vector Machines (SVM)

(Cristianini & Shawe-Taylor, 2000). The field of supervised learning may be divided into

classification and regression problems. In Botnet detection problems, supervised machine

learning mechanisms are employed to train with both Botnet traffic datasets and normal

traffic datasets in order to construct classifiers.

Compared to supervised learning, unsupervised learning algorithms do not require a

labelled dataset for training. The goal of unsupervised learning methods is to divide an

unlabeled dataset into different sub-groups depending on specific metrics. Furthermore,

the dataset is learned from in order to understand its structure and to find patterns, instead

of creating a generalization model from an available labelled dataset as in supervised

learning approaches. Nilsson defined unsupervised learning as the use of “procedures

that attempt to find natural partitions” (Nilsson, 1996). The most common unsupervised

learning algorithms used to detect Botnets are hierarchical clustering, X-means and K-

means algorithms.

In RL approaches, an agent learns what to do via some experiences including trial and

error (Barto & Andrew, 1998). RL agents modify themselves according to the states of

the environment to increase the number of rewards gained in the long run. To maximize

the gains, RL agents estimate action-value function, which are specified as the

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

33

relationships between state-action pairs and the measures of returns that the agents will

obtain in the future. More details of RL are given in Chapter 5.

A recent study in the field of P2P Botnet detection by Babak et al.(2014) proposed a

PeerRush, which uses a one-class classification approach to classifying various types of

normal and abnormal P2P traffic. One-class classifies including the k-Nearest

Neighbors algorithm (KNN), Parzen, and Gaussian data description classifiers (TAX,

2001) are used. An application profile is initially created by learning traffic samples of

known P2P applications. Moreover, features such as interval delays between packets and

flow duration are used to classify P2P applications (Babak, Roberto, Andrea, & Kang,

2014). This approach achieves high accuracy rates in classifying P2P applications

depending on the features selected. On the other hand, this method does not show clearly

how to detect P2P Botnets, and also detection can be easily avoided by changing the delay

between packets.

Garg et al. (2013) presented several machine learning algorithms, such as KNearest

Neighbour, Naive Bayes, and J48. These were analysed for the detection of P2P Botnets

using various network traffic features. The results show that the accuracy of the classifiers

trained using the Nearest Neighbour and J48 is good (Garg, Singh, Sarje, & Peddoju,

2013). However, the detection of legitimate traffic is very weak.

Jiang and Shao (2012) presented a method that focuses on the C&C traffic of P2P Bots

regardless of how they perform their malicious activity. This method developed a

detection mechanism based on Bots that exhibit connection flow dependency with other

Bots in the same Botnet network. According to the flow dependency behaviour, this

approach uses a single-linkage hierarchical clustering mechanism to differentiate between

P2P Bots and normal hosts (Jiang & Shao, 2012). This method was built based on the

similarity of Botnet traffic, and so it will fail to detect Botnets that use the irregularity of

traffic flow, such as Storm Bot (Li, Hu, & Yang, 2012). Also, it has a limitation in

identifying individual Bot behaviour.

One study by Junjie et al.(2011) introduced a P2P Botnet detection system that can

identify stealthy P2P Botnets. The proposed approach focuses on identifying Bots based

on the monitoring of C&C traffic. They extracted four features for each traffic flow,

including the numbers of bytes received and sent and numbers of packets received and

sent. The hierarchical clustering (Jain et al., 1999) and BIRCH algorithms (T. Zhang,

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

34

Ramakrishnan, & Livny, 1997) were used to cluster network flow (Junjie, Perdisci,

Wenke, Sarfraz, & Xiapu, 2011). Furthermore, the approach is independent of payload

signatures and has also achieved high detection rates of both malicious and legitimate

hosts, with an FPR of 0.2% and TPR of 100%. Although this system can detect Botnets

regardless of how they perform their malicious activities, it focuses only on P2P Botnets

and cannot detect other types such as IRC or HTTP Bots. However, the proposed

technique is vulnerable to some evasion methods such as flow disturbance packets and

using the DGA and Fast-flux algorithms as a communication facility to provide a high

level of C&C privacy.

Wen-Hwa and Chia-Ching (2010) used a methodology based on packet size to distinguish

between P2P Botnet traffic and legitimate P2P traffic. They presented the following

observations. Firstly, P2P Bots try to update information for other Bots rather than staying

idle. Secondly, the Bot mainly transmits data with a minimum rate of connections.

Bayesian networks, Naïve Bayes and J48 are used to classify network traffic (Wen-Hwa

& Chia-Ching, 2010). Furthermore, the accuracy rates for these three algorithms are 87%,

89% and 98% respectively. However, it was found that the size of P2P Botnet packets is

smaller than that of any other P2P applications.

Zhao and co-workers (2010) introduced a P2P Botnet detection system using machine

learning techniques based on the flow intervals of network traffic. In addition, they

applied a Bayesian network and decision tree (REPTree) as a classification method to

investigate online P2P Bot detection (Zhao et al., 2013). The main drawback of this

technique was its sensitivity to evasion methods such as the random connection interval.

For example, the connection interval of the Srizbi Bot is random in the interval from 60

to 1200 seconds (Dae-il, Kang-yu, Minsoo, Hyun-chul, & Bong-Nam, 2010).

Nogueira et al.(2010) introduced a Botnet detection approach based on the identification

of traffic using artificial neural networks to classify legal and illegal patterns (Nogueira,

Salvador, & Blessa, 2010). This technique has several advantages, such as being

independent of protocol and network structure and having the ability to detect encrypted

Bot traffic. Nevertheless, the trained neural network was able to classify only 87% of

network traffic. The main drawback is the need for external judgment in order to provide

adaptive operation.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

35

In 2012, F. Tegeler et al. introduced a network Botnet detection approach called

BotFinder, which detects separate hosts infected by Bots focusing on the statistical

features of network flow based on frequent Bot C&C communications constructed in a

controlled environment. Additionally, they used clustering based on a local Shrinking

algorithm (X. Wang, Qiu, & Zamar, 2007) as the machine learning method used to

separate the captured network flow into legitimate and malicious classes where the final

model will decide whether the flow generated by hosts is malicious or not (Tegeler, Fu,

Vigna, & Kruegel, 2012). On the other hand, BotFinder has detection rates varying from

49% for the Bifrose Bot to 100% for the Banbra Bot. This technique has several

advantages such as IP address blacklisting or DPI of contents being unnecessity.

The detection system introduced by Fedynshyn et al (2011). uses a host-based approach

to detect Bots using the property of temporal persistence. They utilized a J48 classifier

and a Random Forest algorithm to sort various kinds of Botnet infection categorized

according to C&C model (HTTP, IRC and P2P). Moreover, they found similarities in

C&C structures for different categories of Bots that are different from those of legitimate

network traffic (Fedynyshyn, Chuah, & Tan, 2011).

A recent study in the Botnet detection field by Saad et al.(2011) addresses the P2P Botnets

detection problem by using several machine learning techniques, including an artificial

neural network (ANN), linear SVM, a Gaussian based classifier, Nearest Neighbour

classifier, and a Naive Bayes classifier (Witten & Frank, 2005). The study evaluated the

ability of these machine learning techniques in terms of on-line Botnet detection

requirements such as adaptability, novelty detection and early detection (Saad, 2011).

They showed that all of the machine learning algorithms had great potential for detecting

patterns of Botnet traffic, achieving detection rates greater than 89%. However, SVM and

ANN took the most time in the training phase. Furthermore, the performance of these

techniques is highly dependent on the features selected for classification or cluster

analysis and they often have high computational requirements.

Strayer et al.(2006) introduced one of the first techniques that utilize machine learning

for the purpose of Botnet detection in network traffic. This approach is an extension of

Strayer’s previous work (Strayer, Walsh, Livadas, & Lapsley, 2006) and works conducted

by Livadas et al. (Livadas, Walsh, Lapsley, & Strayer, 2006). Bayesian Network, C4.5

Tree and Naive-Bayes classifiers as machine learning approaches were evaluated in

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

36

classifying IRC traffic as legitimate or malicious flows (Timothy, David, Robert, & Carl,

2008). Although these methods were effective in detecting Botnets, the techniques are

still restricted to particular types of Botnets such as IRC Botnets or specific architectures

such as centralized hierarchies. Furthermore, they need human experts to make the final

decision.

Masud et al. (2008) introduced an approach to Botnet detection based on the observation

that a Bot has many reaction patterns that are different from those of humans. This

approach can detect Bots by correlating incoming packets with outgoing packets, new

outgoing connections, and application startup in hosts. Several machine learning

algorithms such as the C4.5 decision tree, support vector machine, Naive Bayes, Bayes

network classifier and Boosted decision tree (Witten & Frank, 2005) were compared and

evaluated in the detection of IRC Botnets. The result of the evaluation showed that all

machine learning algorithms achieved over 95% detection rates, less than 3% FPR and

under 5% false negative rates (FNR). The greatest overall performance was reached by a

Boosted decision tree (Masud, Al-khateeb, Khan, Thuraisingham, & Hamlen, 2008).

However, one major drawback of this approach is that it cannot detect Botnets that use

encrypted communication due to the need to access the contents of payload packets. On

the other hand, the method has been tested on IRC Bots, so it is unable to deal with modern

types of malware such as P2P Botnets.

Gu et al. (2008) introduced Botminer as a network-based detection method which detects

Botnet by correlating machines with comparable malicious activities and comparable

C&C communications. Botminer utilizes X-means and hierarchical clustering methods to

identify a Botnet using the observation that a Botnet is a collection of malware instances

that are administered through the C&C channel and it has a similarity of the temporal

behaviour. The detection process operates by detecting hosts with activities of similar

communications in the C-plane where hosts are communicating with different hosts, in

other words, hosts which its traffic flows are related in respect of flows per hour (fph),

bytes per second (bps), bytes per packet (bpp) and packets per flow (ppf). Besides this,

hosts are defined with traffic of similar attack in the A-plane showing who hosts is doing

what, such as hosts performing ports scan, downloading the same files and spamming.

The detection results are obtained by creating a cross-correlation between the A-Planes

and C-Planes in order to classify machines that share similar malicious activity patterns

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

37

and similar communications (Gu, Perdisci, et al., 2008). The main advantages of

Botminer it can identify several Botnet kinds such as IRC-based, P2P-based and HTTP-

based Botnets with 99% true positive rate and low FPR around 1%. Nevertheless,

correlating activities that generated by various hosts needs at least two machines on the

network be infected by the similarly Bot type. Consequently, Botminer fails in the

situation of an individual machine is infected by Bot or when several machines inside the

network are infected with diverse Bots types. Furthermore, Botminer fails to detect Bots

that exchange C&C messages without any suspicious activity.

In Wei et al. (2009) study, they suggested BotCop as an online Botnet traffic detection

system. In this method, network traffic is categorized into various applications using a

decision tree technique. The network’s payload characteristics are utilized and then, based

on each application community obtained, the temporal frequency properties of their flows

are examined to classify a communication as malicious or legitimate traffic (Wei,

Tavallaee, Rammidi, & Ghorbani, 2009). Table 2.7 summarize machine learning based

Botnet detection methods.

2.5.5 DNS-based Detection

At the same time as efforts to detect Botnet passively based on network traffic, other

researchers started to look for suspicious Botnet behaviour in DNS traffic. The Domain

Name System (DNS) is a distributed naming system for devices that are connected to the

Internet; the DNS is responsible for converting domain names to IP addresses (Goerzen,

2004). Bots exploit the DNS to find the Botmaster IP address, and the DNS responds by

giving IP addresses that connect the compromised computers with the C&C server.

Accordingly, Kristoff (2005) introduced a technique that can identify a Botnet by

monitoring the DNS traffic, and the technique blacklists any connected servers that spread

malicious malware (Kristoff, 2005). In 2005, Dagon detected the activity of Botnets using

a comparison of the rate of malicious DNS to legitimate DNS traffic (Dagon, 2005).

However, both approach can easily be avoided, whenever the Botmaster generates a fake

DNS query or applies DDNS queries.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

38

Table 2.7 Summary of machine learning based detection methods.

Method Technique Shortcoming

PeerRush (Babak

et al., 2014)

One-class classifies including

the k-Nearest

Neighbors algorithm (KNN),

Parzen, and Gaussian data

description classifiers

- Evaded by changing the

delay between packets.

(Garg et al., 2013)
KNearest Neighbour, Naive

Bayes, and J48

- Detection of legitimate

traffic is very weak.

(Jiang & Shao,

2012).

single-linkage hierarchical

clustering mechanism

- Detection single Bot

infection.

(Junjie et al.,

2011).

The hierarchical clustering

and BIRCH algorithms

- Fail to detect non-P2P Bots.

- Evaded by DGA and Fast-

flux algorithms.

(Wen-Hwa &

Chia-Ching, 2010)

Bayesian networks, Naïve

Bayes and J48

- NAT technology makes it

difficult to detect P2P

flows.

(Zhao et al., 2013).
Bayesian network and

REPTree decision tree

- Sensitivity to evasion

methods such as the random

connection interval.

(Nogueira et al.,

2010)
Artificial neural networks

- Need an external judgment

to provide adaptive

operation.

(Timothy et al.,

2008)

Bayesian Network, C4.5 Tree

and Naive-Bayes classifiers

- Fail to detect non-IRC Bots.

- Need human experts to

make the final decision.

(Masud et al.,

2008)

C4.5 decision tree, SVM,

Naive Bayes, Bayes network

and Boosted decision tree

- Payload encryption content.

- Privacy issue.

Botminer (Gu,

Perdisci, et al.,

2008).

Spatial-temporal correlation

- Detection single Bot

infection.

- detect Bots that exchange

C&C messages without any

suspicious activity.

Choi et al.(2009) introduced BotGAD as an anomaly detection approach based on group

activities on Botnet DNS traffic (Choi, Lee, & Kim, 2009). The authors indicated that the

group activities of DNS were key features of traffic used to differentiate a Botnet DNS

from a normal DNS request. BotGAD is capable of detecting novel Botnet attacks on

networks of huge scale in real time. The main weakness of the method is that it requires

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

39

a long time for processing to monitor large volumes of network traffic (Han & Im, 2012).

What is more, it is able to detect Botnets that execute group DNS traffic activities. Thus,

it cannot detect Bots, which use the DNS once and never return to it.

Some of the common DNS-based techniques try to detect Botnets by detecting anomalies

in DNS traffic (Villamarin-Salomon & Brustoloni, 2008), or detecting Bots based on

DNS group behaviour (Choi & Lee, 2012), using DNSBL (DNS Black List)

(Ramachandran, Feamster, & Dagon, 2006), or constructing a reputation system for DNS

queries (Antonakakis, Perdisci, Dagon, Lee, & Feamster, 2010). But many new models

of Botnets as P2P and hybrid P2P do not involve DNS services in their operation, and so

these approaches are significantly limited in detecting such Bots (Stevanovic, Revsbech,

Pedersen, Sharp, & Jensen, 2012). Summarize of DNS-based Botnet detection methods.

Summarize of DNS-based Botnet detection methods.

Table 2.8 Summary of DNS-based detection methods.

Method Technique Shortcoming

(Kristoff, 2005)
White and black

lists

- Avoided by generating a fake DNS

query

- Avoided by using DDNS queries.

(Dagon, 2005).
Correlation

algorithm

- Avoided by generating a fake DNS

query

- Avoided by using DDNS queries.

BotGAD (Choi et

al., 2009)

Monitoring

group behavior

through DNS

traffic.

- Detection single Bot infection

- Processing time.

2.5.6 Hybrid Botnet Detection Approaches

In parallel with standard network-based and client-based detection techniques a new class

of hybrid detection methods has appeared. This type of method detects Botnets by

collecting the features of Bots at both client and network levels. The main reason behind

hybrid strategies is that it is likely to afford increases in performance in Botnet detection

by connecting findings from client-based and network-based detection systems.

CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW

40

For example, Yuanyuan et al. (2010) proposed a hybrid detection approach that detects

Botnets by combining the host and network level behaviour. The approach is based on

the hypothesis that two sources of Bot observations will complement each other in making

detection decisions. The structure of the approach consists of three parts: network analysis

host analysis and a correlation engine (Yuanyuan, Xin, & Shin, 2010). Another study by

Wang et al. combined three detection approaches (Szymczyk, 2009). In Honeypot-based

Botnet detection, were host-based Botnet detection and network-based Botnet detection

methods are all utilized.

2.6 Summary

The existing Bot and Botnet detection systems described above have advantages and

shortcomings compared to others. Different Botnet detection methods can be categorized

based on various measures, such as being host-based or network-based, detecting

individual Bots or Botnet networks, machine learning based, anomaly-based or signature-

based Bot detection. They may be limited to one class of C&C topology or can detect

Bots that apply multiple C&C structures.

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

41

3 TRAFFIC REDUCTION

APPROACH FOR BOT

DETECTION

3.1 Introduction

Previous chapters have presented the Botnet phenomena and demonstrated why former

work has not been adequate to counter the Botnet menace. Furthermore, various existing

detection methods are still confined to detecting Botnet in an off-line way because it was

unable to analysis the whole network traffic immediately.

One challenge of a network-based Botnet detection system is the inability to monitor and

analyse the network traffic in high-speed networks in the real time. Packets that are not

checked on time can be ignored and these packets may comprise the attack signature

(Yang, Fang, Liu, & Zhang, 2004).

On the one hand, the benefit of the network-based detection is that it has a more extensive

scope than the host-based detection schemes (Egele, Scholte, Kirda, & Kruegel, 2008;

Marpaung, Sain, & Hoon-Jae, 2012). On the other hand, the difficulty of network-based

systems is that the volume of traffic will grow, which indicates that extra traffic will be

added to the network traffic (Rgio S. C. Silva et al., 2013). Therefore, traffic reduction

technique becomes essential to help the detection system to work online. Consequently,

the main goal of this chapter is to introduce traffic reduction method gives the detection

approach the ability to work online at the network level despite the size of network traffic.

Furthermore, it not influenced by packets encryption algorithm.

The next section provides an overview of the proposed detection system. A briefly

detailed for each component of the Botnet detection framework is presented. Section 3.3

presents the network traffic capture approach. Section 3.4 presents the traffic reduction

technique. Section 3.5 introduces the traffic reduction algorithm and traffic reduction

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

42

evaluation. Discussion and the chapter summary are given in Section 3.6. and 3.7

respectively.

3.2 Overview of Bot Detection Approach

The architecture of the proposed P2P Bot detection system consists of four main

components: network traffic capturing, network traffic reduction, network traffic feature

extraction and malicious activity detection using a RL agent as shown in Figure 3.1.

The traffic capture module is an interface between packets of the network and the

proposed system; packets detected in the monitored network will be forwarded in their

raw form to the subsequent phase in the framework. The phase of the reduction network

traffic is responsible for filtering that traffic and is achieved by selecting TCP control

packets as a representative of the connection conversations of the captured network

traffic.

In the feature extraction phase there are two processing phases: parsing connection

conversations and host feature extraction. The parsing connection conversations phase is

responsible for constructing connection features between nodes inside the monitored

network, according to packets captured and the size of the selected slide window. The

connection is defined as a 5-tuple: source IP, destination IP, source port, and destination

port and protocol type. In the node feature extraction phase, the vectors of node features

are constructed that represent the status of the node based on connection features during

the current sliding time-window. More details of connection-level features are given in

Chapter 4.

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

43

eduction xtraction

Connections

feature

extraction

Hosts

features

extraction

 Filtering TCP

control packets

Malicious activity

detector

Network

Administrator

REPORT

behaviour

Figure 3.1 Bot detection framework

The malicious activity detector takes a node feature vector as input and classifies nodes

according to their features into two categories: malicious nodes infected with a Bot or

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

44

normal legitimate nodes. So, a multi-layer feedforward neural network with resilient

learning is selected as a classification algorithm due to its high adaptive and the accuracy

rates. The RL agent is responsible for evaluating neural network decisions in order to

extract new features which help to improve the detection system in recognizing a zero-

day attack. More details of RL are given in Chapter 5.

3.3 Network Traffic Capture

The network traffic capture tool is utilized as an interface between the monitored network

and the second stage of the proposed detection system. The primary objective of this

phase is to sniff network traffic according to the specific size of the sliding time-window

mechanism in order to forward it to the traffic reduction phase

The result of this stage consists of raw captured packets. In our experiments, network

packets are passively captured using a Java library used for capturing network traffic,

namely Jpcap (Shen & Wang, 2009). One of the primary reasons for adopting a passive

strategy is that it does not raise the amount of the traffic inside the network. In addition,

the passive detection approach has the advantage of detecting Botnets without any direct

interaction with them, but only the Bot behaviour within the network is used. This means

that the detection technique operates stealthily and cannot be detected by the Botmaster.

However, in this research several time-window sizes are evaluated in order to determine

a suitable size of time-window that can improve the accuracy.

The packets traffic flows appear continuously at the network edge, which is difficult to

analyse all packets streams immediately. In the proposed method, it only deals with the

new packets in the traffic flow in order to detect malicious behaviour instantly.

Consequently, we adopt the sliding time window mechanism to capture the recent

packets. As shown in Figure 3.2, the time window slides are going to hold the newest

packets continuously as time passing, and then send these packets to the next step of the

proposed approach.

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

45

W1

Time window size

W3

Wn

W2

Sliding interval

Time line

Figure 3.2 The sliding time-window mechanism.

3.4 Network Traffic Reduction

Nowadays, the number of packets passing through a high-speed network is massive and

is affected by the capacity of the links and the number of Internet users. Thus, the

reduction of network traffic for the detection of malicious activities is essential in order

to manage enormous amounts of network traffic when resources such as memory and

hard disk space are restricted. The most difficult part of the reduction of network traffic

is to identify it is behaviour by inspecting a small number of packets per flow.

Therefore, this study introduces a new traffic reduction technique to facilitate the

deployment of Bot host detection systems on high-speed networks. As discussed above,

the majority of Botnet detection systems rely on DPI and examine the entire network

traffic. DPI assumes that the payload of every packet will be examined. This technique

can be accurate when the payload is not encrypted. However, the majority of new types

of malware generation apply evasion methods such as the encryption of payloads or

protocol encapsulation and obfuscation, which mean that the payload is concealed (P.

Wang et al., 2015). Furthermore, examining all packets in a high-speed network is an

expensive task because of the speed of networks and the amounts of packets transferred,

which is continually increasing. However, a detection system which applies DPI may

suffer from efficiency limits due to on processing a large volume of traffic from high-

volume or high-speed networks (Jun et al., 2008). The goal of the present work is to

increase the effectiveness of detection systems by decreasing the volume of traffic to be

analysed, without affecting the accuracy of the detection process. To achieve this goal, a

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

46

novel traffic reduction method is proposed in a Bot host detection framework which

selects only TCP control packets.

In this work, the filtration of TCP control traffic packets is used in order to reduce the

volume of network traffic as well as to increase the performance of the proposed

approach. The filtering phase splits the operation into two steps: filtering all traffic related

to the TCP protocol; then extracting the TCP control packet SYN, ACK, FIN and RST.

Algorithm 3.1 shows the process of redacting network traffic. In Line 2 an array of

TCP_Control_Packets_list is initialized. By iterating over the packets, new packets are

added to the array of the (TCP_Control_Packets_List) from Line 3 to 15 until the last

packet in the file is reached. Line 4 examines the TCP packet headers and Line 5 selects

packets with no payload data. Line 6 then gets the packet header. From Lines 7 to 10, the

code reads the packet, which is TCP, and extracts the packets which have SYN, ACK,

FIN and RST flags.

The framework can efficiently decrease the volume of traffic that will enter the detection

system. Network traffic reduction is achieved by generating a representative traffic of the

entire network. The characteristic of this representative traffic has to reflect the behaviour

of network traffic as a whole. Using the proposed traffic reduction approach decreases

the quantity of network traffic to be examined. In summary, the network traffic reduction

Algorithm 3.1 includes six rules to pick the desired packets:

 Rule 1 (R1): Packet contents Syn flag.

 Rule 2 (R2): Packet contents Syn-Ack flag.

 Rule 3 (R3): Packet contents Ack flag.

 Rule 4 (R4): Packet contents Fin-Ack flag.

 Rule 5 (R5): Packet contents Rest-Ack flag.

 Rule 6 (R6): Packet contents Rest flag.

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

47

Algorithm 3.1 Network Traffic Reduction.

1: Procedure Traffic Reduction (packets)

2: ArrayList <Packet> TCP_Control_Packets_List ;

3: For i=1 to size(Packets)

4: IF Packets(i) has (TCP header) then

5: IF Packets (i) has (TCP. payloadSize==0) then

6: pktheader= packet.getHeader(Packets(i));

7: IF ((pktheader.flags.syn=1OR pktheader.flags.ack=1 OR

 pktheader.flags.rest=1 OR pktheader.flags.fin=1)

 AND NOT (pktheader.flags.cwr=1 OR

 pktheader.flags.ecn=1 OR pktheader.flags.push=1

 OR pktheader.flags.urg=1))

8: TCP_Control_Packets_List.Add(packets(i));

9: ELSE

10: Discard the Packet;

11: End IF

12: End IF

 13: End IF

 14: End For

 15: Return TCP_Control_Packets_list;

 16: End Procedure

3.5 Traffic Reduction Evaluation

3.5.1 Description of Experimental Datasets

In this research, three main datasets, which contain malicious and non-malicious traffic,

were used in evaluating the proposed system. The first is the Information Security And

Object Technology (ISOT) dataset (Saad, 2011) that contains malicious traffic from the

French Chapter of the Honeynet Project involving the Waledac and Storm Bots. It also

contains non-malicious traffic collected from the Traffic Lab at Ericsson Research in

Hungary and the Lawrence Berkeley National Laboratory (LBNL). Whereas the second

dataset is the Information Security Centre of Excellence (ISCX) dataset (Shiravi, Shiravi,

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

48

Tavallaee, & Ghorbani, 2012) which includes legitimate activity traffic. The third dataset

contains four legitimate volumes of traffic from P2P applications, namely Vuze,

Frostwire, eMule and uTorrent, and the traffic of three P2P Botnets, namely Zeus, Storm

and Waledac. These volumes were acquired from the University of Georgia, UAS (Babak

et al., 2014), whose authors generated the P2P application traffic using AutoIt scripts in

order to simulate human- activity on P2P hosts, as shown in Table 3.1

Table 3.1 Dataset distribution.

Traffic Source Purpose Duration

Storm Bot traffic - ISOT dataset

(D1)
Train 3115 seconds

Waledac Bot traffic - ISOT dataset

(D2)
Train 605 seconds

Normal traffic - ISOT dataset (D3) Train 126273 seconds

eMule - University of Georgia

dataset (D4)
Train/Test 24 hours

uTorrent - University of Georgia

dataset (D5)
Train/Test 24 hours

Vuze - University of Georgia

dataset (D6)
Train/Test 24 hours

FrostWire - University of Georgia

dataset (D7)
Train/Test 24 hours

Normal traffic – ISCX dataset (D8) Testing 24 hours

Storm Bot traffic - University of

Georgia (D9)

Testing (Zero-day

attack)
24 hours

Waledac Bot traffic - University of

Georgia (D10)

Testing (Zero-day

attack)
24 hours

Zeus Bot traffic - University of

Georgia (D11)

Testing (Zero-day

attack)
24 hours

The total size of the dataset used in our experiment about 216 GB, which is distributed in

10.09 GB from ISOT dataset, 16.1 GB from ISCX dataset and 189 GB from Georgia

university dataset.

3.5.2 Traffic Reduction Approach Evaluation

The goal of the traffic reduction technique is to reduce the size of the captured traffic by

using TCP control packets to represent the whole of network traffic. To evaluate this goal,

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

49

a set of an experiment on dataset was performed, and show that the reduction traffic

algorithm reduces the traffic within average 50% of network traffic as shown in Table

3.2.

Table 3.2 Traffic reduction rates.

Traffic Source
Number of

packets

Number of

control

packets

Rate of traffic

reduction

D1 128241 64551 50.3%

D2 118379 69936 59.1%

D3 564999 226308 40.1%

D4 6736353 2780725 41.3%

D5 6278385 4237135 67.5%

D6 11732688 741677 6.3%

D7 4429535 2406066 54.3%

D8 3776931 1686962 44.7%

D9 4251875 1169900 27.5%

D10 12915757 9395310 72.7%

D11 114548 59255 51.7%

Table 3.3 shows the rate of control packets that obtained by each traffic reduction rule.

Meanwhile, Figure 3.3 compares the efficacy of the proposed traffic reduction rules

between legitimate traffic and Botnet traffic. As shown in Figure 3.3 the rule (R1)

obtained the highest reduction rates for both Bot and legitimate traffics rates around

30.7% and 24.1% respectively. Furthermore, the rule (R6) has the highest percentage of

traffic about 19.6% on Botnet dataset evaluation comparing with the legitimate dataset

traffic about 7.9% rate.

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

50

Table 3.3 Network traffic reduction rules rates

Traffic Source Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6

D1 34.7% 7.0% 13.0% 8.7% 16.7% 20.0%

D2 30.0% 11.2% 8.8% 6.7% 21.3% 22.0%

D3 22.5% 25.8% 20.5% 17.8% 8.3% 5.0%

D4 20.0% 26.7% 15.8% 17.5% 13.3% 6.7%

D5 26.7% 22.2% 22.8% 10.7% 7.7% 10.0%

D6 25.0% 21.3% 18.3% 18.2% 5.2% 12.0%

D7 26.7% 19.3% 24.0% 15.0% 8.5% 6.5%

D8 23.8% 20.0% 19.0% 22.7% 6.7% 7.8%

D9 29.8% 8.2% 8.5% 8.8% 22.8% 21.8%

D10 29.0% 15.0% 6.0% 8.0% 17.0% 25.0%

D11 30.2% 7.7% 4.0% 9.8% 20.5% 27.8%

Figure 3.3 Average rates of network traffic reduction rule :(a) Legitimate traffic and (b)

Botnet traffic.

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

51

3.6 Discussion

Recent years have witnessed of many Botnet detection techniques due to the severity of

Botnet threats. Botnet detection has attracted intense research effort. For example, in

flow-based detection schemes such as (Babak et al., 2014; Gu, Perdisci, et al., 2008;

Timothy et al., 2008; Zhao et al., 2013), every packet is analysed one by one. Thus, that

situation is not suitable for the online detection in a high-speed network.

In addition, several detection systems have been suggested (Goebel & Holz, 2007; Gu,

Perdisci, et al., 2008; Gu et al., 2007; Gu, Zhang, et al., 2008; Yen & Reiter, 2008), but

despite excellent detection results, these methods may suffer from restrictions of the

scalability when they analyse huge volumes of network traffic. Their shortcomings in

scalability mainly derive from their reliance on DPI techniques. For example, BotHunter

(Gu et al., 2007) utilizes a payload-based anomaly detector and a signature-based

detection engine, BotSniffer (Gu, Zhang, et al., 2008) and Rishi (Goebel & Holz, 2007)

require the parsing of the IRC communications contents and TAMD (Yen & Reiter, 2008)

inspects the payloads of packets in order to estimate similarities in contents. Therefore,

the proposed a network traffic reduction mechanism gives the detection approach the

ability to work online at the network level despite the size network traffic, because we

only focus on a small part of the TCP packets, which are used to initialize the connections.

 The bottleneck of the machine learning approaches for Bot detection relates to the

dimensionality and size of the dataset considered, because the amount of the packets,

needing to be scanned is enormous. Therefore, this study proposed a network traffic

reduction approach to reduce the amount of network traffic to be analysed. The approach

reduces the packets to around 50%, which will lead to enhancing the features extraction

stage (Chapter 4), and online RL stage (Chapter 5).

 Table 3.4 compares the performance of several detection approaches based on the use of

traffic reduction. It is noticed that the proposed approach has a high detection rate with a

relatively low FPR as shown in Section 4.5.5 in Chapter 4. Moreover, this approach

proves the possibility of finding the Botnet activities without analysing all the network

flow. Based on the above discussion, the proposed reduction method presented in this

study showed the rate of traffic reduction is high comparing to the other methods.

The bottleneck of the machine learning approaches for Bot detection relates to the

dimensionality and size of the dataset considered, because the amount of the packets,

CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION

52

needing to be scanned is enormous. Therefore, this study proposed a network traffic

reduction approach to reduce the amount of network traffic to be analysed. The approach

reduces the packets to around 50%, which will lead to enhancing the features extraction

stage (Chapter 4), and online RL stage (Chapter 5).

Table 3.4 Comparison of traffic reduction with other Bot detection techniques.

Approach
Rate of traffic

reduction

True positive

rate

False positive

rate

Babak et al. (2014) 0% 99.09% 0.1%

Zhao et al. (2013) 0% 98.1% 2.1%

Timothy et al. (2008) N/A 92% 11-15%

Gu et al. (2008) N/A 100% 0-6%

K. Wang et al. (2011) > 70% 95% 0-3%

The proposed approach 40% -70% 99.1% 0.01%

3.7 Summary

In this chapter, we have introduced a solution to this problem, which includes a network

packet reduction algorithm. The evaluation results of the proposed reduction approach

show that our solution achieves suitable reduction rate using real-world network traces.

The next chapter will present the proposed connection-level features and the offline Bot

detection method.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

53

4 CONNECTION-LEVEL

FEATURES FOR BOT

HOST DETECTION

4.1 Introduction

It is a concern of a network administrator to recognize hosts in the network that are

infected by a Botnet. Infected computers can be used by adversaries to extract valuable

information or they may wait for an order from a Botmaster to reroute spam. However,

the detection of Botnets is currently a special challenge for the following reasons. Botnets

employ hidden tactics such as using a random port rather than the usual port or utilizing

an encryption technique to hide malicious behaviour on network traffic (D. Dittrich & S.

Dietrich, 2008; Holz et al., 2008). Besides that, Botnets utilize regular protocols such as

IRC, HTTP, and P2P. Therefore, it is very difficult to differentiate Botnet behaviour from

legitimate network traffic (Grizzard et al., 2007; Jiang & Shao, 2012). Therefore, to

discriminate the Botnet behaviour from legitimate network traffic, the feature extraction

and selection set is a critical point for the efficiency of any Botnet detection system.

The quality of the feature set is one of the most important factors that affect the

performance of the machine learning algorithms. Therefore, the main goal of this chapter

is to introduce the host traffic feature based on the connection-level that can differentiate

between a Bot and a legitimate network host. More specifically, the feature able to

identify Bot host by using a minimum set of packets after network traffic reduction stage

(Chapter 3). In addition, to achieve earlier Bot detection and bypass the encrypted

network traffic, the feature set utilizes the information in the header of TCP control

packets that helps the detection system to efficiently analysis massive volume of network

traffic without suffering from encrypted traffic.

The previous chapter introduced the traffic reduction approach that helps to reduce the

amount of the network traffic to be analysed. In this chapter, we will utilise the traffic

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

54

reduction to present our contribution on feature extraction at a connection-level.

Furthermore, the chapter presents the evaluation of the offline Bot detection system.

4.2 Overview of Offline Bot Detection Approach

The architecture of the proposed offline Bot detection system consists of four main

components: network traffic reduction, network traffic feature extraction and malicious

activity detection as illustrated in Figure 4.1. The phase of the reduction network traffic

is responsible for filtering that traffic to increase the scalability and avoiding DPI problem

as we addressed in the previous chapter.

In the feature extraction phase, there are two processing stages: extracting connection

conversations and host feature extraction. The extracting connection conversations phase

is subject to constructing connection features between nodes. In the node feature

extraction phase, the vectors of node features are assembled that represent the status of

the node based on connection features.

Finally, the malicious activity detector takes a node feature vector as input and classifies

nodes according to their features into two categories: malicious nodes infected with a Bot

or normal legitimate nodes. Therefore, a multi-layer feedforward neural network with

resilient learning is selected as a malicious activity detector due to its high adaptive and

the accuracy rates.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

55

eduction xtraction

Malicious activity detector

Connections feature

extraction

Hosts features

extraction

 Filtering TCP control

packets

Training set

Testing set

NN training

Learned NN Detection

Bot host activities

Legitimate host activities

Figure 4.1 Overview of Offline Bot detection phases.

4.3 Features Extraction

The proposed connection features relies on two fundamental concepts. Firstly, it passively

monitors network traffic (Zeidanloo, Shooshtari, et al., 2010). Secondly, it utilizes the

fact that Bots during the propagation phase will frequently communicate with their C&C

servers/peers in order to discover other peers and receive the latest updates of tasks due

to their pre-programmed nature (Han, Lim, & Im, 2009; Sang-Kyun, Joo-Hyung, Jae-

Seo, Bong-Nam, & Hyun-Cheol, 2009). Bots are different from other types of malware;

they work as a group and primarily need a communication channel in order to coordinate

malicious activities. These connections are described as the way by which the Botmaster

communicates with his Bots (Chao et al., 2009).

Features are composed of a small set of attributes that are needed to characterize a dataset.

In particular, a vector of an attribute that represents each instance of data is used as input

to a machine learning algorithm. The quality of features is significant in order for the

machine learning algorithm to detect the behaviour of the network traffic class. The

network traffic features could be extracted at three levels as follows: packet-level, flow-

level, and connection-level (Roughan, Sen, Spatscheck, & Duffield, 2004). Moreover,

classification can be based on the level of packet inspection, as in shallow or DPI.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

56

The features in data packets are extracted from the packet payload or header. For example,

features such as packet length, average packet length, the variance of packet length, TCP

flag and the packet direction are simple to calculate and can be gathered directly from the

packet. It is very beneficial for the detection approach to using packet-level data to

represent the states of the network.

Flow-level features introduce a statistic summary of the network flows. Flow is described

as packets with the same 5–tuple (source IP, destination IP, source port, destination port

and protocol type). For instance, flow-level features are the cumulative number of packets

in a flow, the duration of the flow and the average packet size. This statistic can be

collected at the edge of the network using tools such as Cisco NetFlow (Cisco, 2012).

At the flow-level, the difference between the outbound and inbound traffic can be

recognized. The main advantage of flow-features is that they do not require the extra

resources and exhaustive processes of packet-level features. However, a shortcoming is

that the flow may sometimes accumulate packets that relate to several applications in a

single flow, which would distort the features of the flow. On the other hand, connection-

level features are required when it is necessary to track some behaviour which correlates

with a connection-oriented protocol such as TCP. The contrast between connection and

flow is that the start and termination of a TCP connection are well-defined handshakes

between a client and a server. The connection-level data affords more high-quality

information than flow-level features (Roughan et al., 2004) but requires further overhead

to follow the state of the connection.

Packet inspection approaches that have been used in practice in networking environments

can be divided into two categories. These are shallow and DPI. Techniques that use DPI

approaches are designed to permit network administrators to recognize specifically the

header and the payload content of each packet of data that crosses over the network.

According to AbuHmed et al. when applying DPI approaches on the network traffic there

exists various challenges, such as the complexity of the search algorithm, a growing

number of intruder signatures, signatures overlapping, unknown signature locations and

encrypted packet payload contents (AbuHmed, Mohaisen, & Nyang, 2007). On the other

hand, techniques that apply shallow packet inspection to read information from the

network and transport layers of the OSI model. Thus, they cannot examine the session,

presentation and application layers of a packet (Petersen, 2014).

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

57

In the proposed framework, a combination of connection and packet levels are used. The

features are captured at both packet-level and connection-level. For example, the feature

of inter-arrival time between packets in each connection requires data to be gathered at

packet-level and then aggregated into connections to collect statistical information about

connection states. Thus, the proposed Bot detection system can capture the local

characteristics at packet-level and collect connection-level characteristics as the global

features. Based on this approach, the features will have the benefits of both packet and

connection levels. Thereby, in contrast to other relevant work, the proposed system can

potentially be applied to any encrypted application since it applies a shallow packet

inspection approach in order to extract connection features without using IP addresses,

port numbers and payload content.

The features used in the proposed framework are extracted in two phases. Firstly, the

connection feature are extracted. Secondly, the connection features as host features are

aggregated to represent the state of the host during the sliding time-window. Therefore,

the final detection decision is based on the host features extracted according to the headers

of control packets (packet-level) and connection statistical features (connection-level).

Connection and host levels features are discussed in more detail in the next sections.

4.3.1 Connection-level Features

In this phase, features that are important in detecting the P2P Botnet’s malicious

behaviour are extracted. Forty-three features are collected based on the size of the sliding

window. These features are extracted based on the definition of a connection as a group

of control packets exchanged between two different hosts, which are identified by the 5-

tuple (source IP address, destination IP address, source port and destination port,

protocol). In proposed method, all features are extracted directly from the control packet

header, which is different from previous approaches that use a deep inspection of the

payload (Dan, Yichao, Yue, & Zongwen, 2010; Lu et al., 2011; Perdisci, Guofei, &

Wenke, 2006; Xiaomei, Fei, Xiaohua, & Xiaocong, 2010). Consequently, performance is

increased while the use of system resources such as memory and computation in the

processor is reduced. Table 4.1 shows 43 features extracted in the proposed connections-

based P2P Botnet detection approach. These features are generated from a sliding time-

window and are composed of a feature vector to represent the connection status through

the duration of the sliding window.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

58

Table 4.1 Extracted features of network traffic connections.

Features Description

𝐹̂1 Number of control packets per connection in a given time interval.

𝐹̂2
Number of control packets transmitted per connection in a given time

interval.

𝐹̂3
Number of control packets received per connection in a given time

interval.

𝐹̂4 Number of transmitted bytes per connection in a given time interval.

𝐹̂5 Number of received bytes per connection in a given time interval.

𝐹̂6
Number of transmitted SYN packets per connection in a given time

interval.

𝐹̂7
Number of received SYN packets per connection in a given time

interval.

𝐹̂8
Number of transmitted ACK packets in a sequence of one per

connection in a given time interval.

𝐹̂9
Number of received ACK packets in a sequence of one per connection

in a given time interval.

𝐹̂10
Number of transmitted duplicate ACK packets per connection in a

given time interval.

𝐹̂11
Number of received duplicate ACK packets per connection in a given

time interval.

𝐹̂12
Average length of transmitted control packets per connection in a given

time interval.

𝐹̂13
Average length of received control packets per connection in a given

time interval.

𝐹̂14
Average length of control packets per connection in a given time

interval.

𝐹̂15
Number of transmitted failed connection per connections in a given

time interval.

𝐹̂16
Number of received failed connection per connections in a given time

interval.

𝐹̂17
Number of transmitted SYN-ACK packets per connection in a given

time interval.

𝐹̂18
Number of received SYN-ACK packets per connection in a given time

interval.

𝐹̂19
Number of transmitted SYN-ACK packets in a sequence of one per

connection in a given time interval.

𝐹̂20
Number of received SYN-ACK packets in a sequence of one per

connection in a given time interval.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

59

𝐹̂21 Total number of bytes per connection in a given time interval.

𝐹̂22
Ratio of incoming control packets per connection in a given time

interval.

𝐹̂23
Ratio of average length of outgoing control packets over the average

length of control packets per connection in a given time interval.

𝐹̂24

Ratio of the difference between the number of transmitted SYN packets

and the number of received ACK packets in a sequence of one over the

number of transmitted SYN packets.

𝐹̂25

Difference between the number of transmitted SYN packets and the

number of received SYN-ACK packets per connection in a given time

interval.

𝐹̂26
Number of transmitted FIN-ACK packets per connection in a given

time interval.

F27
Number of received FIN-ACK packets per connection in a given time

interval.

𝐹̂28
Number of transmitted RST-ACK packets per connection in a given

time interval.

𝐹̂29
Number of received RST-ACK packets per connection in a given time

interval.

𝐹̂30
Average time between attempts to create connections in a given time

interval.

𝐹̂31
Number of received RST packets per connection in a given time

interval.

𝐹̂32
Number of transmitted RST-ACK packets in a sequence one of per

connection in a given time interval.

𝐹̂33
Number of transmitted RST packets in a sequence of one per

connection in a given time interval.

𝐹̂34
Number of received RST-ACK packets in a sequence of one per

connection in a given time interval.

𝐹̂35
Inter-arrival time of packets between SYN and ACK packets that

generated by the host per connection in a given time interval.

𝐹̂36
Inter-arrival time of packets between SYN and RST packets that

generated by the host per connection in a given time interval.

𝐹̂37
Inter-arrival time of packets between SYN and RST-ACK packets that

generated by the host per connection in a given time interval.

𝐹̂38
Inter-arrival time of packets between SYN packet from host side and

RST packet from another side per connection in a given time interval.

𝐹̂39

Inter-arrival time of packets between SYN packet from host side and

RST-ACK packet from another side per connection in a given time

interval.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

60

𝐹̂40

Inter-arrival time of packets between FIN-ACK packet from host side

and RST packet from another side per connection in a given time

interval.

𝐹̂41
Inter-arrival time of packets between ACK packet from host side and

RST packet from another side per connection in a given time interval.

𝐹̂42

Inter-arrival time of packets between SYN packet from host side and

SYN-ACK packet from another side per connection in a given time

interval.

𝐹̂43 Connection duration.

4.3.2 Connection Features Reduction

Feature reduction is a technique of reducing the number of attributes, with the purpose of

eliminating those features from the learning algorithm that have only a small influence

on the classification problem (Nguyen, Petrović, & Franke, 2010). Feature reduction is

used to decrease the ‘over-fitting’ problem (Livadas et al., 2006) and is important in

overcoming the imbalanced dataset problem (Van der Putten & Van Someren, 2004).

Therefore, the quality of the feature reduction mechanism is one of the most important

factors that affect the accuracy of the classification algorithm.

In this study, the aim of feature reduction is to choose a suitable subset of features which

will improve neural network performance and decrease the complexity of a classification

model without significantly decreasing accuracy rates. A classification and regression

tree (CART) (Breiman et al., 1984) is employed as the feature reduction approach used

to eliminate worthless features, with the aim of reducing the quantity of data needed to

obtain better rates of neural network learning and classification accuracy.

The decision tree produced by the CART algorithm consists of two types of nodes:

internal nodes with two children, and leaf nodes without children. Any internal node is

associated with a decision function to indicate which node to visit next. To begin the

construction of the tree, the training samples that contain a set of features and their class

labels are required. Recursively the training dataset is partitioned into smaller subgroup

during the construction of the tree. Depending on the confusion matrix of the classes

distribution in the training set, all resulting node is assigned a predicted class.

The test at internal nodes is determined based on a measure of impurity to select which

feature and threshold values are selected. The best-known measure of impurity for CART

is entropy impurity, which is given by:

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

61

𝐸(𝑡) = −∑ 𝑝 (
𝑗

𝑡
) 𝑙𝑜𝑔2 𝑝 (

𝑗

𝑡
)

𝐶

𝑗
 (4.1)

where 𝐸(𝑡) is the entropy impurity at node 𝑡, 𝑝 (
𝑗

𝑡
) is the relative frequency of class 𝑗 at

node 𝑡, and 𝐶 is the number of classes.

The best value of the split node (𝑡) is chosen from a set of all values splitting(𝑥), so that

the maximum drop in impurity is a difference between the impurity at the root node and

the impurity at the children nodes:

∆𝐸(𝑥, 𝑡) = 𝐸(𝑡) – (𝑃𝑙𝐸(𝑡𝑙) + 𝑃𝑟𝐸(𝑡𝑟)) (4.2)

where ∆𝐸(𝑥, 𝑡) is the drop of impurity, 𝐸(𝑡𝑙) and 𝐸(𝑡𝑟) are the impurities of the left and

right branch nodes, 𝑃𝑙 and 𝑃𝑟 are the percentage of objects go to the left (𝑡𝑙) or right (𝑡𝑟)

child nodes.

Table 4.2 provides a ranking of the importance of features selected by the entropy

algorithm using training dataset. The features 𝐹̂1, 𝐹̂3, 𝐹̂6, 𝐹̂7, 𝐹̂8, 𝐹̂9, 𝐹̂15, 𝐹̂19, 𝐹̂20,

𝐹̂ 25, 𝐹̂ 26, 𝐹̂ 27, 𝐹̂ 31, 𝐹̂ 32, 𝐹̂ 33, 𝐹̂ 34, 𝐹̂ 35, 𝐹̂ 36, 𝐹̂ 37 and 𝐹̂ 43 show the best

discrimination of connection behaviour, whereas the features 𝐹̂4, 𝐹̂5, 𝐹̂10, 𝐹̂11, 𝐹̂12,

𝐹̂13, 𝐹̂14, 𝐹̂16, 𝐹̂17, 𝐹̂18, 𝐹̂21, 𝐹̂22, 𝐹̂23, 𝐹̂24, 𝐹̂28, 𝐹̂29, 𝐹̂30, 𝐹̂38, 𝐹̂39, 𝐹̂40, 𝐹̂41

and 𝐹̂42 do no discrimination between legitimate and malicious connections.

Feature selection is performed depending on the contribution of the input samples that

made the creation of the decision tree. Feature importance is decided by the role of each

input sample either as a main splitter or as a surrogate. Surrogate splitters are represented

as backup rules that approximately simulate the action of the primary splitting rules. The

features that give the best discrimination of connection behaviour it will be used to

generate host features in the next step of features extraction.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

62

Table 4.2 Features importance ranking by entropy algorithm.

Feature Importance Feature Importance Feature Importance

𝐹̂1 0.8130 𝐹̂33 0.5319 𝐹̂18 0

𝐹̂2 0.8100 𝐹̂34 0.5092 𝐹̂21 0

𝐹̂3 0.7876 𝐹̂35 0.4493 𝐹̂22 0

𝐹̂6 0.7741 𝐹̂36 0.3712 𝐹̂23 0

𝐹̂7 0.7634 𝐹̂37 0.2870 𝐹̂24 0

𝐹̂8 0.7548 𝐹̂43 0.1944 𝐹̂28 0

𝐹̂9 0.7438 𝐹̂4 0.082941 𝐹̂29 0

𝐹̂15 0.7181 𝐹̂5 0.069167 𝐹̂30 0

𝐹̂19 0.7031 𝐹̂10 0.012049 𝐹̂38 0

𝐹̂20 0.6604 𝐹̂11 0.01191 𝐹̂39 0

𝐹̂25 0.6198 𝐹̂12 0.01153 𝐹̂40 0

𝐹̂26 0.6010 𝐹̂13 0.000515 𝐹̂41 0

𝐹̂27 0.5734 𝐹̂14 3.81E-06 𝐹̂42 0

𝐹̂31 0.5670 𝐹̂16 6.12E-09

𝐹̂32 0.5512 𝐹̂17 0

4.3.3 Host Feature Extraction

Table 4.3 shows the 16 host features created in the proposed approach. However, our P2P

Bot detection framework is based on the following three observations. Firstly, the Bot

hosts share certain malicious characteristics in their network behaviours that are distinct

from those of normal hosts (Yen, 2011). Secondly, the behaviour of Bot in the

propagation phase repeats itself frequently whenever it infects the hosts during the

propagation stage (Felix et al., 2012; Han et al., 2009; Sang-Kyun et al., 2009). Thirdly,

the Bot connections are generated by a software program (Scanlon & Kechadi, 2012).

The feature extraction phase can start immediately if packets are transferred between

hosts. In order to extract the properties of a node more accurately, the collection of

adequate network traffic is required before the feature extraction operation starts.

Therefore, in the proposed approach the behaviour of hosts is observed by analysing their

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

63

traffic packets within the time of the sliding window in order to gain adequate packets.

As a result of the feature extraction stage, each host is represented by its individual feature

vector. This host feature vector set is then utilized to differentiate between malicious

Botnet traffic and legitimate network traffic by employing online machine learning

methods with reinforcement techniques.

Table 4.3 Host features of network traffic.

Feature Description

F1
Total number of transmitting connection per host in a given

time interval

F2 Total number of transmitting unique connections per host in a

given time interval.

F3 Total number of connection tries per host in a given time

interval.

F4 Rate of high severity destination port numbers in a given time

interval.

F5 Rate of using unique destination ports per host in a given time

interval.

F6 Rate of using unique source ports per host in a given time

interval.

F7 Rate of transmitting unique connections per host in a given

time interval.

F8 Rate of high severity source port numbers in a given time

interval.

F9 Rate of failures in connection per host in a given time interval.

F10 Entropy rate of total control packets in a connection per host in

a given time interval.

F11 Entropy rate of transmitting control packets in a connection per

host in a given time interval.

F12 Entropy rate of receiving control packets in a connection per

host in a given time interval.

F13 Average time between connections per host.

F14 Average client Inter-arrival time between control packets.

F15 Average connection duration.

F16 Index of dispersion.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

64

Port scanning is one of the most famous malicious activities. Port scanning is used by

Bots in many aspects of the Botnet life cycle, such as propagation and attack behaviours.

For example, in the propagation phase, a Bot tries to discover and contact other Bots in

the same network in order to receive copies of the latest updates. Therefore, monitoring

and analysing the rate of newly established connections is important in measuring and

detecting malicious Bots behaviour. Port scanning may be divided into three classes:

vertical scanning, horizontal scanning, and block scanning (Staniford, Hoagland, &

McAlerney, 2002). A horizontal distribution scan is achieved by specific port access for

many numbers of destination IP addresses. On the other hand, a vertical scan is performed

on a specific destination IP address over a range of ports. Finally, a block scan is a mixture

of horizontal and vertical scanning for different ports and destination IPs. The diversity

of port number and destination IPs often indicates the capability of a Bot to exploit the

victim host. In addition, computer ports are divided into two categories: high-severity and

low-severity ports. According to the Dshield organization (Dshield.org, 2013) high-

severity ports contain those most likely to be scanned; all other ports are marked as low-

severity ports. Thereby, this research utilizes the port scanning for malicious activities,

and so, features F1-F8 represent scanning behaviour.

Based on our understanding and observation of Botnet traffic behaviour, it is natural for

Bots to produce network connection failures. When a Bot joins a Botnet, it needs to find

an entrance point, which could be either a C&C server or a peer host, to notify its current

situation and receive new instructions. Consequently, any peers attempting to establish a

connection with these hosts could lead to failures in connection. A failed connection

feature F9 based on the TCP is represented as failed if the 3-step handshake is incomplete

(Limmer & Dressler, 2009).

The control packet count of legitimate Internet traffic shows more diversity than that of

Bot connection traffic. Computer-human users can use many applications, which each

one has a different behaviour for the number of control packets in concoctions. Therefore,

we do not expect to notice any trend in the control packet frequency. On the other hand,

in the propagation phase Bots try to contact other peers on the Botnet network to inquire

for an update. Thus, they repeat the same connection behaviour, and this shows a trend in

the style of connection. Therefore, an entropy algorithm (Cover & Thomas, 2012) is used

in this study to measure the amount of entropy or randomness in control packet variation

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

65

per host, and an entropy algorithm is utilized by modelling the number of control packets

in connections per host as a discrete symbol. A legitimate connection is expected to have

high entropy while a Botnet connection is expected to have low entropy. The entropy of

control packet frequency per host is calculated from a set 𝐶ℎ = [𝑐1, 𝑐2, 𝑐𝑛], where

each 𝑐𝑖 denotes the number of control packets per host connections. This is estimated as

𝐸(𝑡) = −∑ 𝑐𝑖 𝑙𝑜𝑔2 𝑐𝑖
𝑛

𝑖
 (4.3)

However, Jian et al. (2009) introduced approaches to detecting Storm Bot by utilizing

entropy theory (Jian & Jun-Yao, 2009). A significant difference between their method

and the present strategy is that Jian et al. applied the entropy theory over the packet

payload content with DPI, which is not suitable for the detection of Botnets that use

encryption techniques.

Features F13-F15 are related to the client’s inter-arrival control packets. The inter-arrival

packet time is the required time for the application to create and transfer data to the

transport layer (Jaber, Cascella, & Barakat, 2011), and is estimated by extracting the time

between any two consecutive packets in the same connection. We assume that additional

time added because of the changes in network conditions is negligible. The proposed

framework focuses on host features based on the network level and the target is to detect

an infected machine, so it focuses on the time between of packets outgoing from the host.

Finally, for feature F16, the index of dispersion for counts (IDC) is adopted to

discriminate arrival processes consisting of packets sent by the host on the network. R.

Gusella highlighted the importance of using the indices of dispersion in identifying packet

variability (Gusella, 1991), where the index of dispersion is a measure used to quantify

whether a set of observed events is clustered or scattered in correlation with a standard

statistical model. The IDC is represented as the ratio of the variance to the mean. The

following equation gives the definition of the IDC:

𝐼𝐷𝐶 =
𝜎2

𝜇
 (4.4)

where μ, σ2 denote the mean and variance respectively.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

66

4.4 The Malicious Activity Detector

The operation of the malicious activity detector consists of three stages: an off-line stage

(training), the online detection stage, and a reinforcement learning stage. In the training

phase, the classifier is provided with a set of labelled Bot feature vectors and legitimate

feature vectors for the training mission. Once the training stage is finished, the detection

phase starts by entering the extracted features to the classifier in order to classify the

activities of the hosts inside the network as malicious or legitimate.

A neural network is used as a malicious activity detector because it has robust capabilities

for nonlinear system identification and control due to an inherent ability to approximate

an arbitrary nonlinear problem (Nigrin, 1994; Razi & Athappilly, 2005; Tsai, Hsu, Lin,

& Lin, 2009). The neural network is trained with a resilient back-propagation learning

algorithm, where the use of this algorithm is to minimize the damaging effects of the

volumes of fractional derivatives. The sign of the derivative is only used to locate the

trend of the weight update, whereas the volume of the derivative has no negative role

overweight update. The size of the weight change is solely determined by the following

formula (M. Riedmiller & Braun, 1993):

∆𝑤𝑖𝑗
(𝑡)
=

{

 −∆𝑖𝑗

(𝑡)
, 𝑖𝑓

𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
 > 0

+∆𝑖𝑗
(𝑡)
, 𝑖𝑓

𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
 < 0

0, 𝑒𝑙𝑠𝑒

 (4.5)

where ∆𝑤𝑖𝑗
(𝑡)

 is the change in weight between the input layer and hidden layers in the

current iteration (𝑡), and
∂E(t)

∂wij
 denotes the partial derivative with respect to each weight.

Once the weights are calculated, the new updated weight value is determined. This is

accomplished with the following formula:

∆𝑖𝑗
(𝑡)
=

{

 𝜂+. ∆𝑖𝑗

 (𝑡) , 𝑖𝑓
𝜕𝐸(𝑡 − 1)

𝜕𝑤𝑖𝑗
.
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
 > 0

𝜂−. ∆𝑖𝑗
 (𝑡) , 𝑖𝑓

𝜕𝐸(𝑡 − 1)

𝜕𝑤𝑖𝑗
.
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
 < 0

∆𝑖𝑗
 (𝑡 − 1) , 𝑒𝑙𝑠𝑒

 (4.6)

where ∆𝑖𝑗
(𝑡)

 denotes the updated value for the current iteration t, and 𝜂+ is the positive

step value which is typically 1.2 and 𝜂− is the negative step value which is typically 0.5

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

67

(M. Riedmiller & Braun, 1993). The neural network classifier proposed in this study

contains 16 input and two output parameters. To avoid over fitting by using too many

hidden layers, the method proposed in a previous study (Boger & Guterman, 1997) is

used to determine the number of neurons in the hidden layers.

4.5 Experimental Results and Evaluation

4.5.1 Experimental Tools

To estimate the performance of the proposed solution a series of experiments on the

dataset were carried out. These experiments are carried on an Intel Xeon processor with

a six-core monster clocked at 2.1GHz (with a 2.6GHz Turbo) and 64 GB RAM. Besides,

the proposed approach implemented using Matlab 2014b. Table 4.4 shows the software

tools and libraries used in the experiments.

Table 4.4 Experimental Tools.

Name Description Version

Wireshark

(Wireshark, 2015).
Network protocol analyser. 1.12.4

Jpcap

(Shen & Wang, 2009).

Java library for capturing and

sending network packets.
0.7

Tcpreplay

(TcpReplay, 2014).
Replays Pcap files onto the network 3.4.4

4.5.2 Experimental Procedure

To evaluate the proposed offline Bot detection approach, an experimental dataset

Table 3.1 was obtained to evaluate its capability on Bot detection. Additionally, for the

purpose of simulating a real network traffic situation, a testbed was configured in order

to replay malicious Botnet traffic, normal daily activity traffic and P2P application traffic

using the TcpReplay tool (TcpReplay, 2014). The reply network traffics runs on the same

network interface card for the purpose of homogenizing the network traffic behaviour

presented by all datasets. TcpReplay is utilized to replay the traffic from the traffic files.

The replayed network traffic is then captured by the JPCAP tool (Shen & Wang, 2009).

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

68

The experimental procedure was scheduled into five steps, listed as following:

1. Replay entire malicious trace and legitimate trace file, and capture packets using

various time-window sizes.

2. Reduce network traffic using the proposed network traffic reduction technique.

3. Extract feature vectors to generate host feature set.

4. Get the classification results by using the prepared training and testing sets using

the offline proposed Bot detection approach.

5. Identify the time window size that achieves a better detection performance and

better stability in the offline and online stages.

The reason behind dividing the network traffic in time-windows is to analyse the massive

traffic volume of packets. Moreover, time-window is required to submit a result to the

network administrator in a timely fashion. The idea behind of not using time-window

smaller than 10s is that the number of captured packets is too small to show the traffic

behaviour characteristics. In the other hand, the reason for not using time-window larger

than the 60s is that it cannot satisfy earlier of detection when using a large time-window

size. In addition, Bots tend to generate a temporal behaviour following the infection phase

(Hegna, 2010), and so this behaviour helps to capture the necessary Bot behaviours in the

time-window. Therefore, in this research, we start with 10-seconds time-window and

gradually increase the size of time-window in order to reach the acceptable performance

rate. On the other hand, 10% of the time-window size is utilized as sliding interval

between time windows to achieve rapid detection of any malicious activities instead of

idling for the next entire time window to ending and then the network traffic to be

collected.

4.5.3 Evaluation Metrics

The present assessment used P2P Bot host instances as positive instances and legitimate

host instances as negative instances. Moreover, various metrics were used to evaluate the

result of the experiments, namely detection rate (DR), FPR, precision, F-measure,

accuracy (ACC), Root Mean Square Error (RMSE), Non-Dimensional Error Index

(NDEI), Matthews Correlation Coefficient (MCC) and area under the ROC (AUC).

 Despite accuracy metrics have been adopted to measure performance in some studies

(Saad, 2011; Wen-Hwa & Chia-Ching, 2010; Zhao et al., 2013), its use could be doubtful.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

69

With the use of imbalanced datasets, where the numbers of instances relating to each class

are significantly diverse, using accuracy as a measure of classification performance can

be inaccurate. For instance, if a classifier is applied to a dataset that contains 95%

legitimate activity and 5% malicious activity and the classification model predicts that all

activity is legitimate then an accuracy rate of 95% is obtained. Nevertheless, this result

does not mean a successful classification, since no malicious activity was detected.

Consequently, imbalance measurements such as MCC and area under the ROC were

applied in the evaluation in order to comprehensively assess of the proposed approach in

situations of imbalanced datasets. The evaluation metrics were calculated using Equations

4.7 to 4.14.

 True positive (TP): represents the number of Bot instances accurately

identified as malicious activities.

 True negative (TN): indicates the number of normal instances accurately

identified as legitimate activities.

 False positive (FP): shows the number of normal instances identified as

malicious activities.

 False negative (FN): represents the number of Bot instances identified as

legitimate activities.

The FPR shows the percentage of legitimate instances misclassified as Botnet instances:

𝐹𝑃𝑅 =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)
 (4.7)

DR, also called recall, indicates the percentage of Botnet instances that were detected as

Botnet instances.

𝐷𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (4.8)

ACC indicates the percentage of correct predictions of all instances.

𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (4.9)

Precision indicates the percentage of instances correctly classified as positive instances.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (4.10)

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

70

The F-measure is a measure of a test’s accuracy. It considers both the precision and the

recall of the test to compute the score.

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4.11)

RMSE indicates the differences between the target value and the actual value estimated

by the detection method.

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑡𝑖)2

𝑁

𝑁

𝑖=1

 (4.12)

where 𝑁 is the number of input samples, 𝑦𝑖 represents the actual output of the model, and

𝑡𝑖 is the targets of the samples. 𝑅𝑀𝑆𝐸 = 0 indicates that the output of the model exactly

matches the targets. Root mean square Error (𝑅𝑀𝑆𝐸) is an important measure of

variations between the values expected from a model or an estimator and the values

actually observed.

NDEI is defined as the RMSE divided by the standard deviation of the target series, which

is used to estimate the prediction quality (Espinosa & Vandewalle, 2000).

𝑁𝐷𝐸𝐼 =
𝑅𝑀𝑆𝐸

𝑠𝑡𝑑(𝑡𝑖)
 (4.13)

The MCC is used to evaluate the efficiency of the classifier in imbalanced classes

(Matthews, 1975).

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√((𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (4.14)

The receiver operating characteristic (ROC) is a graphical plot that depicts a binary

classifier’s performance. ROC curves plot the TPR on the vertical axis against the FPR

on the horizontal axis. The AUC denotes the classifier’s performance (Swets, 2014).

Moreover, the AUC is known to be a much more robust estimator of classifier

performance (Fawcett, 2006).

To ensure the quality of the learned neural network agent, a cross-validation method is

used to estimate the error rate of classifiers. In cross-validation, the dataset is partitioned

randomly into 𝑁 samples and evaluations are run for 𝑁 iterations. At each iteration, 𝑁 −

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

71

1 samples are selected for training and the final sample is used to evaluate the accuracy

of the classifier.

4.5.4 Host Feature Set Evaluations

To assess the quality of the proposed detection approach and the selected of the hosts

features (Table 4.3) towards a successful detection, the normalized average for each

feature is estimated by using Min-Max Normalization (Al Shalabi & Shaaban, 2006).

𝑋′ =
𝑋𝑖 − 𝑋 𝑚𝑖𝑛

𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛
 (4.15)

Where 𝑋′ is the normalized value of 𝑋𝑖. The 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and

maximum values of features vector.

Figure 4.2 shows the average distribution of the normalization value for each feature. We

found different distributions between Bot host traffic and normal host traffic. As shown

in Figure 4.2 the features F5, F10, F12, F15 and F16 are a decrement features to help in

Botnet detection. Whereby the features F14, F1 and F3 have a low differentiate between

network traffic.

Figure 4.2 Normalized host features comparison.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

72

Figure 4.3 shows the difference in entropy values for the total number of control packets

between flows for normal and Bot traffic. The plots show the entropy values for normal

host traffic is between 0 to 5 while it is under 0.5 for a Bot host traffic.

Figure 4.3 Entropy rates of total control packets per host.

Interestingly, there were also differences in the ratios of the entropy of transmitting and

receiving numbers of control packets between Bot host traffic and normal host traffic as

shown in Figure 4.4 and Figure 4.5. The contrast in entropy values between normal and

Bot hosts due to the Bot is an automated computer programme and has regularity in

control packets count. Whereby, the normal host traffic has a diversity and random value

for the count of control packets. Consequently, normal hosts have a high entropy value,

whereas the Bot has a low entropy value.

Figure 4.4 Entropy rate of transmitting control packets per host.

0 200 400 600 800 1000
0

1

2

3

4

5

6

sample

E
n

tr
o

p
y

 o
f

to
ta

l
c
o

n
tr

o
l

p
a

c
k

e
ts

 c
o

u
n

t

Normal host connection

0 200 400 600 800 1000
0

1

2

3

4

5

6

sample
E

n
tr

o
p

y
 o

f
to

ta
l

c
o

n
tr

o
l

p
a

c
k

e
ts

 c
o

u
n

t

Bot host connection

0 200 400 600 800 1000
0

1

2

3

4

5

6

Sample

E
n

tr
o

p
y

 o
f

tr
a

n
sm

it
ti

n
g

 c
o

n
tr

o
l

p
a

ck
et

s
co

u
n

t

Normal host connection

0 200 400 600 800 1000
0

1

2

3

4

5

6

Sample

E
n

tr
o

p
y

 o
f

tr
a

n
sm

it
ti

n
g

 c
o

n
tr

o
l

p
a

ck
et

s
co

u
n

t

Bot host connection

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

73

Figure 4.5 Entropy rates of receiving control packets per host.

4.5.5 Offline Bot Detection Approach Evaluation

The assessment results of the offline phase based on training dataset (Table 3.1) are

demonstrated in Figures 4.6 - 4.9 the x-axis represents the size of the time window used

for the feature extraction phase. It can be clearly seen that different performance

measurements result from different time-window sizes. Based on these, the average

values of cross-validation results for the time-windows are calculated. Therefore, the

proposed approach with offline dataset gives the highest ACC, DR and F-measure rates

of around 98.3%, 99% and 98.9 respectively based on a 60-seconds time-window;

meanwhile, the worst performance achieved with a 10-seconds time window as shown in

Figure 4.6

Figure 4.7 gives the AUC and MCC results of the Botnet detection system using the

various time window sizes. The results show that the highest average AUC and MCC

rates were 99.1% and 95.6% respectively with the training dataset and a 60-second time

window; while the lowest AUC and MCC rates were 97.5% and 88.1% with the system

with 10-second time-window. AUC and MCC are considered the most reliable

performance measures for imbalanced datasets.

0 200 400 600 800 1000
0

1

2

3

4

5

6

Sample

E
n

tr
o

p
y

 o
f

tr
a

n
sm

it
ti

n
g

 c
o

n
tr

o
l

p
a

c
k

e
ts

 c
o

u
n

t

Normal host connection

0 200 400 600 800 1000
0

1

2

3

4

5

6

Sample

E
n

tr
o

p
y

 o
f

tr
a

n
sm

it
ti

n
g

 c
o

n
tr

o
l

p
a

c
k

e
ts

 c
o

u
n

t

Bot host connection

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

74

Figure 4.6 (a) ACC rates, (b) DR rates, (c) F-measure rates.

Subsequently, the performances of the proposed approach according to time window size

was compared based on the average RMSE and NDEI, and the 60-second time-window

achieved the best RMSE and NDEI rates at around 0.068 and 0.136 respectively as shown

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

75

in Figure 4.8. In addition, the lowest FPR and FNR were given with 60-second time

window size as shown in Figure 4.9

Figure 4.7 (a) AUC rates, (b) MCC rates.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

76

Figure 4.8 (a) RMSE rates, (b) NDEI rates.

Figure 4.9 (a) FPR rates, (b) FNR rates.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

77

From the results, the proposed approach in the offline phase is able to detect Bots with

high identification accuracy along with low rates of false positives. Note that these

outcomes are with the training dataset and not the testing dataset. The primary target of

the offline phase is to prepare the classifier agent to start work in the online phase. More

details for the experiment parameters are provided in Appendix C.

4.6 Discussions

The results of the offline phase were estimated using the average of cross-validation. It

can clearly observe that the classifier showed various performances levels with different

sizes of time-window. The time-window of 60-seconds achieved the best performance

based on the ACC, DR, F-measure, FPR, AUC, MCC, NDEI and RMSE measures as

shown in Figure 4.6 to Figure 4.9.

In addition, to measure the stability of the results in the offline phase, the standard

deviation between cross-validation folds results was estimated. As shown in Table 4.5 the

time-window size of 60-seconds achieved the lowest standard deviation for FPR, F-

measure, NDEI, RMSE and AUC at 0.08%, 0.05%, 0.220%, 0.0123% and 0.002%

respectively. Meanwhile, a time-window size of 10-seconds achieved the lowest standard

deviation for DR, ACC, and MCC at 0.03%, 0.0045% and 0.03% respectively.

In summary, 10-seconds and 60-seconds time-windows showed the better stability of the

results than the other time-window sizes as shown in Table 4.5. But the 60-second

window based on imbalanced dataset measurements such as AUC and MCC achieved the

best performance. Therefore, from the time-window size evaluation, 60-seconds were

determined to be an appropriate window size in the proposed detection framework in the

offline stage.

The 60-seconds time-window achieves high-performance along with acceptable stability

results in our experiment. Meanwhile, a small time-window size, such as 10-seconds does

not contain sufficient amount of network traffic which required classifying the network

traffic as malicious or legitimate behaviours. Moreover, the Bots tend to generate a

temporal behaviour following the infection phase (Hegna, 2010). Therefore, the 60-

seconds time window size is suitable to capture adequately of the network traffic that

helps in correct classification as discussed in the experimental procedure Section 4.5.2.

CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION

78

Table 4.5 Standard deviation of evaluation matrices.

Time

window Size

FPR

S.D%

DR

S.D%

ACC

S.D%

F-Measure

S.D%

RMSE

S.D%

NDEI

S.D%

MCC

S.D%

AUC

S.D%

10-seconds 0.0974 0.03 0.0045 0.06 0.0124 0.238 0.03 0.0024

30-seconds 0.11 0.178 0.024 0.16 0.0339 0.246 0.035 0.0035

60-seconds 0.08 0.04 0.031 0.05 0.0123 0.220 0.041 0.002

However, due to its design, our solution is able to detect single Bot infections and it is

not necessary to associate activity among multiple hosts during the detection phase, as in

the case with TAMD (Yen & Reiter, 2008), BotMiner (Gu, Perdisci, et al., 2008) and

BotSniffer (Gu, Zhang, et al., 2008). On the other hand, several existing schemes (Goebel

& Holz, 2007; Gu et al., 2007) support the detection of individual Bot infections, but they

use DPI. In contrast, our solution needs only information about network connections; it

does not examine payload content. Therefore, it is immune to Botnets that use encryption

methods.

4.7 Summary

In this chapter, we have introduced the connection-level feature set and the main

component of the proposed offline Botnet detection mechanism. Besides, we have

evaluated the introduced feature set using real network traffic. The output model of the

offline stage it will be utilized in the next stage of the online Bot detection system.

Therefore, the next chapter will present the proposed RL approach for online Bot

detection scheme.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

79

5 REINFORCEMENT

LEARNING APPROACH

FOR ONLINE BOT

DETECTION

5.1 Introduction

Identifying infected computers before the Bot exploits the host machine is a challenging

task in cyber-security. In the past few years, several methods have been proposed to

identify Botnet threats, which represent a risk to cyber-security systems. The majority of

these studies have focused on improving offline Botnet detection. However, the results

obtained using these approaches reflect only the state of network traffic at the time.

Therefore, these approaches may become useless once the network environment changes.

In this situation, all offline techniques may become invalid since they do not include

online strategies. Thus, the main goal of this chapter is to introduce an efficient online

Bot detection approach using RL.

The previous chapters focused on the network traffic reduction, feature extraction and

introduced the offline Bot detection approach. This chapter gives a brief introduction to

RL including the components of an RL system, the Markov property, the partially

observable Markov decision process and a classification of RL models. Furthermore, this

chapter formulations the Botnet problem based on RL, followed by a model-based

algorithm to achieve an online efficient Bot detection in a dynamic environment.

5.2 Reinforcement Learning

RL is a domain of machine learning inspired by behavioural psychology, based on how

software agents take action in an environment in order to increase rewards. RL is learning

by trial and error, where information about the state of an environment is received by the

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

80

agent, who performs an action. Once the action is completed, the agent estimates the

numerical reward resulting from the action. Increasing the rewards received is the goal of

the agent at all times.

A wide range of algorithms has been suggested that use selective action in order to explore

the environment, and to develop a strategy that leads to achieving the best reward (Barto

& Andrew, 1998; Kaelbling, Littman, & Moore, 1996). These algorithms have been

successfully utilized to solve complicated problems, for instance, elevator dispatch

(Crites & Barto, 1998), board games (Tesauro, 1995), motor control tasks (Schaal &

Atkeson, 1994) and job-shop scheduling (W. Zhang & Dietterich, 1996)

Along with the disciplines of supervised learning (Harmon & Harmon, 1996) and

dynamic programming, reinforcement learning is used to generate robust machine

learning algorithms (Bertsekas & Tsitsiklis, 1996). Beyond a technique for solving

control problem, RL can be considered as “one of the only designs of value in

understanding the human mind” (Werbos, 1992). It is a way of learning optimal policy in

an undiscovered or partially observed environment. Thereby, RL is based on the idea of

trial and error in interplay with a dynamic environment (Barto & Andrew, 1998).

5.2.1 Components of Reinforcement Learning System

The main components of the RL or control problem are briefly reviewed in this section.

The relationships between these components are also depicted in Figure 5.1 (Barto &

Andrew, 1998).

 Environment: The environment is matched to any system such as elevator

dispatch, motor control tasks, board games or an intrusion detection system. The

development of the environment depends on the history and actions executed by

the agent. For each interaction, a reward 𝑅𝑡 is transmitted to the agent, and this

operates as an evaluation measure for the agent’s subsequent action in the new

environment state. The environment states can be continuous or discrete.

 Agent: The agent refers to the controller of the system. It has completed an

observation or at least partial observation of the environment while interacting

with it to receive an observation about state 𝑋𝑡. Therefore, the agent receives the

reward𝑅𝑡+1 from performing action 𝐴𝑡 based on receiving the environment status

𝑋𝑡. Furthermore, the reward 𝑅𝑡+1 can apply to enhance the agent policy.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

81

 Actions (𝐴): Actions result from the evolution of the environment. They refer to

changes in the agent’s environment. Moreover, some actions cannot instantly

change the system, but often need a specificied delay. However, actions of agent

can be restricted depend on the problem solution setting. Corresponding to the

setting of the problem, actions can be discrete or continuous.

 Policy (𝜋): is the mapping between the environment’s state and the action which

can be considered in this state, and is a sequence of actions which reflects the

agent’s learning rate at a given time. In some situations, the policy can use a

lookup table of rules or simple functions. According to Sutton and Barto ”the

policy is the core of a RL agent in the sense that it alone is sufficient to determine

a behaviour” (Barto & Andrew, 1998).

 Reward (𝑅): The term reward refers to the goal of RL. It represents the direct

reward the agent receives for executing a particular action in a given system state.

Therefore, it determines the utility of an action taken by an agent. Strictly

speaking, in the long term, the primary target of a RL agent is to maximize the

total rewards received. Thus, a reward function indicates which action is correct

immediately, while the value function specifies what is good in the long run.

As shown in Figure 5.1, the RL model includes an environment and an agent. At a

given time , the environment gives a state 𝑆𝑡 to the agent and then the agent executes

an action 𝐴𝑡 according state 𝑆𝑡 and policy 𝜋. After that, the environment changes to a

new state 𝑆𝑡+1 Additionally, at the same time, the environment also gives a numeric

reward 𝑅𝑡+1, which is an immediate reward or penalty for choosing action 𝐴𝑡 in state

𝑆𝑡 (Barto & Andrew, 1998). However, the goal of any RL approach is to improve the

policy in order to maximize the long-term reward.

Environment

Agent

Action

At

St+1

Rt+1

Reward

Rt

S
ta

te

S
t

 O

b
se

rv
a

ti
o

n

 X
t

Figure 5.1 General RL system architecture (Barto & Andrew, 1998).

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

82

5.2.2 The Markov Property

5.2.2.1 Markov Decision Process

The mathematical foundation of general theoretical RL problems is a Markov decision

process (MDP), which explains the evolution of a fully observable system. Therefore, if

the state and action space are deterministic, the dynamics of the MDP can be described

by the probability that the next state will be 𝑆𝑡+1 based on the fact that the current state is

St and the chosen action is 𝐴𝑡 . An MDP is primarily represented by a tuple

(𝑆, 𝐴, 𝑇, 𝑅) with the following objects (Feinberg, Shwartz, & Altman, 2002; Kaelbling,

Littman, & Cassandra, 1998; Puterman, 2014).

 𝑡 ∈ 𝑁 specifies the time step.

 𝑆 refers to a state space of the environment.

 𝐴 indicates an action, 𝐴(𝑆𝑡) represents the authorized actions in the state

St∈ S.

 𝑇(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡) is a deterministic state transition function: 𝑆 × 𝐴 × 𝑆 →

 [0, 1], which denotes the probability of achieving state St+1 starting from

state 𝑆𝑡 and using action 𝐴𝑡 with 𝑆𝑡, 𝑆𝑡+1 ∈ S and 𝐴𝑡 ∈ 𝐴(𝑆𝑡).

 a reward function 𝑅𝑡 = 𝑅(𝑆𝑡): 𝑆 → 𝑅 indicated the one-step direct

reward starting from state 𝑆𝑡.

The relationship between the various objects is explained by a one-step transition given

an open (controllable) dynamic system for a state space 𝑆. Being in an arbitrary state 𝑆𝑡 ∈

 𝑆 at time step t, the agent takes an action 𝐴𝑡 ∈ 𝐴(𝑆𝑡). As a result, the system develops to

the next state 𝑆𝑡+1 ∈ 𝑆 based on the transition function 𝑇(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡). At the same time,

the agent obtains the reward 𝑅(𝑆𝑡+1) from state 𝑆𝑡+1 (Feinberg et al., 2002). The

sequence of actions and states produced are termed a trajectory.

Due to the definition of the Markov property (def. 5.1) the next state 𝑆𝑡+1 is based on the

action 𝐴𝑡 and the current state 𝑆𝑡. In other words, the Markov property states that the

evolution of the system is based on the last action taken and the system state (Feinberg et

al., 2002; Gass & Fu, 2013). Therefore, it is independent of its history of previous states

and actions. The Markov property in discrete time is thus stated as 𝑆0 to refer to an

arbitrary beginning state (Gass & Fu, 2013).

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

83

Definition 5.1. Markov property: a discrete stochastic process 𝑆𝑡 ∈ 𝑆 with action 𝐴𝑡 ∈

 𝐴 and a transition function 𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡) is called Markovian if for every 𝑡 ∈ 𝑁 it is:

𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡, 𝐴𝑡−1, 𝑆𝑡−1, . . . , 𝐴0, 𝑆0) = 𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡) (5.1)

Additionally, the Markov property can be used in a formalized RL problem. When an

agent is at time step 𝑡, the agent receives information about the environment state 𝑆𝑡, and

it must utilize the state 𝑆𝑡 information to predict action 𝐴𝑡. If the agent takes an action

depending on the current state 𝑆𝑡 and not based on any of the previous states

𝑆𝑡−1 , 𝑆𝑡−2, … . , 𝑆0 , or any of the previous actions 𝐴𝑡−1 , 𝐴𝑡−2, … . , 𝐴0 or any of the

previous rewards 𝑅𝑡−1 , 𝑅𝑡−2, … . , 𝑅0, then the state possesses the Markov property and is

a Markov state. If all of the states in the environment have this characteristic, we can say

it is a Markov environment and has the Markov property.

The Markov property plays a vital role in any RL system because the agent makes an

action based only on information about the current state. The majority of real system

environments are not completely Markovian, but they approximate a Markov

environment.

Figure 5.2 represents the basic RL problem using a Markov decision process (MDP). The

system environment is fully observable. Therefore, the observation of the agent's 𝑋𝑡 is

equivalent to the deterministic environment state 𝑆𝑡 . Therefore, based on the Markov

property, the agent has all the information needed to select its next action 𝐴𝒕 according to

the sequential policy used for mapping between an observation state 𝑋𝑡(= 𝑆𝑡)and the

next action. The environment then develops due to the transition function 𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡) .

Environment state

Action

At

St+1

Rt+1

S
ta

te

S
t

 =
 O

b
se

rv
a

ti
o

n

 X
t

Agent

St Mapping At

Figure 5.2 Markov decision process (Schäfer, 2008).

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

84

5.2.2.2 Partially Observable Markov Decision Process

The partially observable Markov decision process (POMDP) was first explicitly studied

by Drake in 1962 (Drake, 1962). Smallwood and Sondik later introduced the first

algorithmic work based on POMDP by combining the basic idea of the model of the

Markov decision process with the concept of an agent which might be unable fully to

know the environment state (Smallwood & Sondik, 1973).

The POMDP differs from the MDP in the way that the state space S is not completely

detectable. This is regularly applied to a real system’s operation in a dynamic

environment, such as the Botnet detection problem. The agent only obtains an observation

𝑋𝑡 ∈ 𝑋 as a sign of the immediate state of the system, 𝑆𝑡 ∈ 𝑆. Formally, a POMDP can

be represented by a tuple (𝑆, 𝑋, 𝐴, 𝑇, 𝑅), where 𝑋 represents the observation space, which

is a space that is contained within the state space S and may also include extra irrelevant

information.

Figure 5.3 provides a general graphical illustration of a partially observable Markov

decision process. As opposed to the MDP (Figure 5.2), the state of an environment 𝑆𝑡 is

only partially observable by the agent, which is represented by the expression 𝑋 𝑡 ⊂ 𝑆𝑡.

This indicates that the agent has the additional job of having to approximate to decide

actions 𝐴𝑡. In particular, the agent has to construct a model of the environment, which it

applies as the foundation for its decision-making. Moreover, it utilizes the system’s past

time state to improve future actions.

Environment state

Action

At

St+1

Rt+1

S
ta

te

S
t

 O

b
se

rv
a

ti
o

n

 X
t

Agent

Internal state

Figure 5.3 Partial Markov decision process (Schäfer, 2008).

5.2.3 Reinforcement Learning Models

There are several various ways to classify RL techniques. A primary difference can be

created between table-based and function approximation methods. In the table-based

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

85

method, the agent stores the environment state and action within a look-up table. This

approach suffers from the limitation of the computational requirements due to table size.

Thus, such techniques are essentially used in RL with low-dimensional discrete state

space problems, for instance Q-learning (Watkins, 1989) and adaptive heuristic critic (A.

G. Barto, Sutton, & Anderson, 1983). On the other hand, in function approximation

techniques the state and action are represented by an approximation function in order to

increase the performance of the system and can be used for high dimensions problems.

Examples of these are temporal difference approaches with neural networks (Tesauro,

1994; Tsitsiklis & Van Roy, 1997) local basis functions (Barto & Andrew, 1998), as well

as neural fitted Q-iteration (Martin Riedmiller, 2005).

Another significant contrast can be made between model-free and model-based

algorithms. In brief, model-free methods teach a controller without learning model, and

without using a labelled dataset to build transition function policy. So, they immediately

learn from data without making any effort to create a model. This leads to an efficient and

simple implementation. In a model-based indirect adaptive method, the system first learns

a model and then utilizes it to find an optimum policy. Therefore, it needs further

computation, but gives the model extensions to deal with real-world problems like Botnet

detection, which cannot be easily controlled without an available dataset to learn the

model in the initial phase.

In addition, function approximation machine learning approaches, such as artificial neural

networks, determine optimal performance by looking at examples in the training dataset.

This procedure is very beneficial when examples of optimal behaviour are readily

available. However, in some problems a training dataset that represents the problem does

not exist or it is incomplete, and so only limited information is available about the optimal

solution. RL techniques discover the optimal behaviour by trial and error, which implies

that no information is needed in advance about the optimal behaviour. This characteristic

makes RL an important domain in artificial intelligence applications since it does not

depend on a complete training dataset being supplied.

5.2.4 Exploration Versus Exploitation

RL is a technique of preparing an agent to learn. The agent learns by getting rewards

following each action. It somehow keeps track of these rewards and then chooses actions

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

86

that lead to maximizing the reward, not automatically for the next action but in long-term

execution (Barto & Andrew, 1998). The agent normally goes through the same

environment several times to learn how to decide upon optimal actions. Balancing

exploration and exploitation is especially necessary here; the agent may have obtained a

sound goal on one path, but there might be an even best one on the different path. Thereby

without exploration, the agent will regularly return to the first goal, and the most

beneficial goal will not be attained. Alternatively, the goal may lie after many steps of

agent action. Therefore, it is significant to balance exploration and exploitation in order

to guarantee that the agent is learning the optimal actions. However, any RL techniques

require a strategy to guarantee that there is such a balance. Various methods that can be

utilized to achieve a good balance between exploration and exploitation, such as greedy

exploration, frequency and recency-based exploration (Barto & Andrew, 1998), R-Max

(Brafman & Tennenholtz, 2003), decaying exploration, and persistent exploration (Singh,

Jaakkola, Littman, & Szepesvári, 2000).

5.3 Formulation of Botnet Problem Using Reinforcement

Learning

Sutton and Barto studied the RL algorithms for learning to control a system effectively

by communicating with the environment and perceiving the rewards received (Barto &

Andrew, 1998). RL methods are a common selection for problems where it is hard to

specify precisely an explicit software solution, but where it is possible to produce a reward

signal, which is exactly the situation in our Botnet problem. Here the RL obstacle is

expressed in the context of partially observable Markov decision processes (POMDP).

POMDPs are normally used to represent dynamic systems such as Botnet detection

systems.

A POMDP is described by a set of states (𝑆) , depicting the probable states of the

controller agent state (𝐴𝐺𝑆𝑡), neural network agent state (𝑁𝑁𝑆𝑡) and host state (𝐻𝑆𝑡). The

neural network agent action at time 𝑡 is (𝑁𝑁𝐴𝑡), and the neural network agent chooses

actions based on policy 𝜋, where 𝑁𝑁𝜋(𝐻𝑆𝑡, 𝐴) is the probability of the agent choosing

action 𝐴 when it is the host in the state (𝐻𝑆𝑡). A reward function 𝑅 is estimated as

𝑅(𝐴𝐺𝑆𝑡). A transition function for the system control agent is (𝑇𝑆𝑡).

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

87

The Markovian transition function defines the dynamics of the system and provides the

possibility 𝑇(𝐴𝐺𝑆𝑡 , 𝑁𝑁𝐴𝑡 , 𝐴𝐺𝑆𝑡+1) of transitioning to state Agent 𝐴𝐺𝑆𝑡+1 after taking

action 𝑁𝑁𝐴𝑡 in state 𝐴𝐺𝑆𝑡. The reward function assigns the number of new hosts state 𝐻𝑆𝑡

and the total number of host states in the system is processed as integer numbers to state

agent 𝐴𝐺𝑆𝑡.

At any time, POMDP represents the system state, and when an action is selected by the

neural network agent 𝑁𝑁𝐴𝑡 the host state value and controller agent reward are estimated.

Next, according to the size of the reward collected, the transition function of the controller

agent 𝑇𝑆𝑡 changes the neural network agent to a new state 𝑁𝑁𝑆𝑡+1. In this research, P2P

Bot detection is expressed as a RL problem. This primarily involves selecting the value

state function, the reward function, the action space and the transition function.

Action Space: In defining the action space, the node on the network at every time window

will be given a probability as a legitimate or Bot node. After that, the RL agent takes this

probability into account in order to estimate the reward from these states.

Agent Reward Function: The reward signal is defined at any time step to be equal to the

number of new states processed by any node in the network during the number of the time

window. Note that this reward signal will estimate the important of the new state using

the value state function in set time windows, and here the new state can be a legitimate

node or a node infected by a Bot.

Value state function: Any (𝐻) node inside the network has many states based on the

mode of use. Moreover, the value state function represents the expected reward from each

host state 𝐻𝑆𝑡 under the policy 𝑁𝑁𝜋. The neural network agent output for every host state

in every time-window can be divided into two sub-state of probabilities as Bot 𝐸(𝐵) or

legitimate𝐸(𝑁), and so the outcome of every host state is represented as (𝐸. 𝐵 (𝐻𝑆𝑡)) or

(𝐸. 𝑁 (𝐻𝑆𝑡)), as shown in Figure 5.4

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

88

H(St, At) H(St+1, At+1) H(St+n, At+n)

H(St, A(E(B)& E(N))t) H(St+1, A(E(B)&E(N))t+1) H(St+n, A(E(b)&E(N))t+n)

Figure 5.4 Host states.

 Value state function evaluation for Bot hosts:

EVπ(H(B)) =

∑ E(𝐵𝑆𝑡(𝑖))
n

i=0

n

(5.2)

EVπ(H(B)) represents the average expected Bot status for the host in the 𝑛 time window.

Here, E(BSt(i)) is the probability a malicious behaviour outcome from the computer under

the current neural network agent policy.

 Value state function evaluation for legitimate hosts:

EVπ(H(N)) = 1 − EVπ(H(B)) (5.3)

EVπ(H(N)) represents the average expected legitimate status for the host in the n time

window. Here, E(𝑁𝑆𝑡(𝑖)) is the probability of a malicious behaviour outcome from the

computer under the current neural network agent policy.

 Value state function evaluation for controller Agent :

𝑉(s)=V(s) + {
V(BSt)=argmax(B(Actions)) EVπ(H(B)St>EVπ(H(N)St

V(NSt)=argmax(N(Actions)) EVπ(H(B)St<EVπ(H(N)St

 (5.4)

where 𝑉(𝑠) is the accumulated states which achieve maximum reward based on the

current policy of the neural network agent 𝑁𝑁𝜋.

Transition function. Next, the (controller agent) transition function must be defined.

Any technique in the RL field requires some kind strategy which ensures that there is a

balance between exploration and exploitation. The problem is how to find a good action-

selection policy based on the appropriate amounts of exploration and exploitation.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

89

One purpose of this study is to find a beneficial technique in order to make a balance

between exploration and exploitation for Bot detection problems. Therefore, a directed

exploration approach is used. The goal of the exploration approach is to explore as much

of the state and action as possible before switching strategy and starting to exploit this

knowledge.

The simplest directed exploration techniques are greedy methods that, in each state, select

the state with the highest probability of experiencing value. Furthermore, the explorative

strategy is followed by a series of steps in order to find hidden goals. If the goal is a new

unique state for the system, then it is easy for the system to change from explorative to

exploitive when this seems to be more beneficial.

The transition function is then

𝑇𝑆𝑡 =
∑𝑛𝑒𝑤 𝑉(𝑠)

∑𝑉(𝑠)
≥ 𝜃 (5.5)

where 𝑇𝑆𝑡 indicates the rate of exploring new state 𝑛𝑒𝑤 𝑉(𝑠) over all the environment

state 𝑉(𝑠). Thus, the value of 𝑇𝑆𝑡 is variable depending on the amount of the analysed

network traffic. In addition, θ is an adaptive threshold value that is determined by the

network administrator depending on the desired security level of the network, for

example, in an army network 𝜃 is very small in contrast to another type of networks such

as, universities networks. Moreover, when θ has a low value this means that the learning

rate is high.

5.3.1 Bot Detection Algorithm Using Reinforcement Learning

In terms of Bot detection, here is an explanation of the development of the Algorithm 5.1.

The main components of the proposed algorithm, which its function is to detect Bot, are

discussed in the previous section. In addition, Figure 5.5 illustrates the Algorithm 5.1

steps.

The proposed Bot detection system, the Algorithm 5.1, continually monitors the network

environment. Firstly, it extracts an observation from the environment and decides an

action based on the current neural network policy. Meanwhile, a vector 𝑉 is used to

accumulate the new state and action for each observation. Whenever the agent

accumulates the beneficial amount of new states, it changes to the exploitation state to

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

90

utilize these states. Finally, the main control agent evaluates the performance of the new

neural network agent before using it.

Algorithm 5.1: Bot detection using an RL technique.

 1: Initialize V(s) = 0;

 2: Initialize Tst =0;

 3: All_Dataset=RefDataset;

 4: Temp_Dataset=0;

 5: Read current environment observation (state (St));

 6: Perform action NNπ (A | St, St + 1);

 7: Execute action and extract rewards (R);

 8: Estimate the probability of Bot node:

EVπ(H(B)) =

∑ E(𝐵𝑆𝑡(𝑖))
n

i=0

n

 9: Estimate the probability of legitimate node:

EVπ(H(N)) = 𝟏 − EVπ(H(B))

 10: Extract the state with high expected reward:

𝑉(s)=V(s) + {
V(BSt)=argmax(B(Actions)) EVπ(H(B)St>EVπ(H(N)St

V(NSt)=argmax(N(Actions)) EVπ(H(B)St<EVπ(H(N)St

 11: Check the amount of extracted reward:

𝑇𝑆𝑡 =
∑𝑛𝑒𝑤 𝑉(𝑠)

∑𝑉(𝑠)
≥ 𝜃

 12: If Tst >= θ

 Temp_Dataset = Temp_Dataset +V(s).

 Reset V(s).

 13: (NN2π): Creation and Evaluation:

 Create a new neural network (NNπ2) using Temp_Dataset.

 Evaluate the performance of (NNπ2) using cross-validation

techniques.

 Evaluate the performance of (NNπ2) using RefDataset.

 14: IF (NNπ2) pass the evaluation phases

 NNπ = NNπ2;

 All_dataset= All_dataset+ Temp_Dataset;

 Reset Temp_Datase;

 EndIF

 Return to step:1.

 EndIF

The key benefit of the approach introduced is that it will remain to a strategy for a period

of time, and will not perform one-step in the exploratory direction and one-step in the

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

91

exploitative direction. However, managing the rate of learning (exploration) new

behaviour (states) depend on the network traffic state. In the case of huge volumes of

network traffic the controller agent will be found a high number of new state comparison

with low network traffic. Once the system determines the most beneficial amount of

reward it changes to the exploitative strategy by producing a new dataset from the old

dataset and newly extracted states to use for retraining a new neural network agent. Once

the new neural network agent is trained, three procedures are used to grantee the quality

of the system outcome. Firstly, a cross-valuation approach is applied to evaluate the result

of the new neural network agent and estimate performance evaluation matrices such as

AUC, MCC, accuracy, and RMSE. Secondly, the new neural agent is evaluated using the

old reference dataset (state and action) and estimating the performance evaluation of

AUC, MCC, accuracy, and RMSE. Thirdly, if the system passes the evaluation test then

the main controller of the system will replace the neural network agent with a new one.

However, if the new neural agent fails to achieve good performance, the system retains

the current neural network agent and reset the new state and action buffer.

In summary, there are three neural network agents in the system’s reference neural

network. The first initial agent’s neural network is trained using a reference dataset (states

and actions). The second the neural network is created using new environment

observations (states). Finally, the neural network with the best configuration that passes

the evaluation phase is used in the detection process.

The complex nature of the proposed approach is derived from the complex of the neural

network with resilient backpropagation learning. Resilient back-propagation (RPROP) is

considered the best an algorithm which combined robustness, speed and accuracy (M.

Riedmiller & Braun, 1993). Furthermore, according to Christian Igel et al. (2005) the

RPROP algorithm has linear time and space complexity (Igel, Toussaint, & Weishui,

2005)

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

92

Yes

Yes

NN
π
(St, At)

t NN

π
(St+1, At+1)t+1 NN

π
(St+n, At+n)t+n

Host(1)(St, At)

Host(1)(St+1, At+1)

Host(1)(St+n, At+n)

Host(m)(St, At)

Host(m)(St+1, At+1)

Host(m)(St+n, At+n)

Reward Estemation Tst>ѳ

Improve and evaluate

NN
π
 agent using new

reward

pass
No change

the policy

No

No

Figure 5.5 Neural Network Agent state.

A multilayer neural network with 𝑖 inputs, ℎ hidden units, and 𝑢 outputs has 𝐻 (𝑖 + 1)

weights on the first layer and 𝑢 (ℎ + 1) weights in the second layer. Both space and time

complexity of an MLP is 𝑂 (ℎ · (𝑢 + 𝑖)) . When 𝑒 denotes the number of training

epochs, training time complexity is 𝑂(𝑒 · ℎ · (𝑢 + 𝑖)). In an application, 𝑖 and 𝑢 are

predefined and ℎ is the parameter that we play with to tune the complexity of the model

(Alpaydin & Ethem, 2014).

The complexity of the proposed approach is based on the complexity of the neural

network. So, in our proposed approach, the complexity of create a new neural network

𝑁𝑁𝜋2 is:

𝑂 (𝑒 · ℎ · (𝑢 + 𝑖)) = 𝑂 (𝑁) (5.6)

Where 𝑁 denote to the number of weights.

In addition, the complexity of evaluation of new neural network based cross-validation

approach is:

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

93

𝑓 ∗ 𝑂 (𝑒 · ℎ · (𝑢 + 𝑖)) = 𝑂 (𝑁) (5.7)

Where 𝑓 is the number of folds.

Finally, the complexity of proposed approach is 𝑂(𝑁).

5.4 Online Bot Host Detection Approach

At online detection stage, the learned neural network agent classifies the host inside the

network continually and sends a report about the hosts’ activities to the network

administrator. Moreover, as shown in Figure 5.6, the RL agent at the same time works to

extract any new features that will help to improve the performance of the detection agent

in the future.

RL agent

Host features

vectors

Malicious

activity detector

agent (NN)

Extract new

behaviour

REPORT

State, Action

Improve the NN

agent using new

behaviour Network

administrator

Figure 5.6 Overview of On-line Bot Detection Phases.

This research introduces a new technique in which the RL agent’s activities are divided

into two phases: a) new behaviour is extracted as shown in Figure 5.7, and then b)

improving the neural network agent using the newly extracted behaviour as shown in

Figure 5.8.

A. Extract new behaviour using a RL agent:

1. Extract the state of the environment and the action that it performs by use of the

current neural network agent.

2. Check if the state is a new state according to the reference set of states (training

dataset), go to step 4.

3. The agent is waiting for the next state and action, go to step 1.

4. The agent creates a vector for every host on the network to store the state and

action that occurred.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

94

5. Check if the total number of the new states for any host in the network is equal to

a threshold number, and then estimate the average of the actions that was done by

the host in order to find the best reward value based on the probability and

frequency of the action. Otherwise, return to step 1.

6. Check that the overall amount of reward is the balanced between exploration and

exploitation based on the adaptive threshold value. So, if a rate of new states

satisfies the value of the adaptive threshold, then go to the next phase of the

proposed framework in order to exploit the newly extracted features to improve

the system. Otherwise, return to step 1 to increase the exploration rate.

NO

1:[State , Action]

4: Accumulate the host s

 new state

5: Estimate the reward

 for every host

6:Overall

reward is

valuable?

(exploration

state)

N
O

2: New

state

Yes

Yes

3: Wait for next time

 window result

B: Improver the

NN agent phase

(exploitation

state)

Results of Neural

network agent

Figure 5.7 Extract new behaviour phase.

B. Improve the neural network agent using new extracted online behaviour:

7. Create a vector for the reward (new state) to use it to improve the system to detect

new states of attacks.

8. Adopting new state and action by incremental training of the new neural network

agent to add a new policy to the system.

9. Evaluate of the efficiency of the new neural network using 10-fold cross-

validation. In addition, check if it success of satisfies the minimum requirements

based on the cross-validation result of the new neural network agent and go to

step 11.

10. If the system does no change the neural network policy, reset the reward vector of

state and action and return to step 6 to check f it has valuable new rewards.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

95

11. Test the new neural network using the reference dataset. If it succeeds in satisfying

the minimum requirements for classifying the host inside the network, go to step

13.

12. If there are no changes in neural network policy, reset the reward vector of state

and action and return to step 6 to check if it gives valuable new rewards.

13. Replace the last good configuration neural network (main agent) with the new

neural network with incremental training using the new state and action that are

extracted in the online phase, and reset the reward vector of state and action and

return to step 6 to check if it gives a valuable new reward.

8: Adapting new

state-via

incremental

training of neural

network

Pass

9: Evaluate new

neural network

agent policy

using cross-

validation

approach

11: Evaluate

new agent policy

using reference

Dataset

Pass

10: Reset new

features vectors
12: No changes to

the policy of the

Neural network

agent and reset

new features

vectors

13: Replace

neural network

agent with new

agent policy

Yes

7: Vector of

New State

Return to step (6)

Yes

NO

NO

Figure 5.8 Improving the classifier agent.

Figure 5.7 and Figure 5.8 shows the main components of RL agents. The model for extract

new behaviour (learning agent) and the model of adopting the new behaviour phases are

demonstrated. In This study, a novel connection between RL and neural networks is given

in order to resolve the control problems with dimensionality and the partially observable

environment.

5.5 Experimental Results and Evaluation

5.5.1 Experiments Using Differences Sliding Time-window Size

This section gives an overview of the results of the proposed technique in Bot detection

using the testing dataset (Table 3.1). We have conducted the experimental procedure that

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

96

mentioned in Section 4.5.2 in Chapter 4. The results obtained from the analysis of the

online experiment outcomes are summarized in Figure 5.9 to Figure 5.12.

As shown in Figure 5.9, the proposed approach using online evaluation gives the highest

ACC, DR and F-measure rates of around 98.8%, 98.3% and 97.9% respectively using the

60-seconds time window; meanwhile, the lowest performance of the proposed approach

using these measures was achieved with a 10 seconds time-window.

Figure 5.9 (a) ACC rates, (b) DR rates, (c) F-measure rates.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

97

Figure 5.10 presents the performance measurement AUC and MCC for the imbalance

dataset. The results show that the highest AUC and MCC rates were 99.96% and 95.6%

respectively in the online testing dataset evaluation using a 60-seconds time-window.

Figure 5.10 (a) AUC rates, (b) MCC rates.

In addition, the quality of outcomes of the proposed method based on time window size

was compared using the RMSE and NDEI measures, and the 60-seconds time window

achieved the best RMSE and NDEI rate around 0.093 and 0.187 respectively as shown in

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

98

Figure 5.11. Furthermore, the lowest FPR and FNR were given with a 60-seconds time

window size as shown in Figure 5.12.

Figure 5.11 (a) RMSE rates, (b) NDEI rates.

The proposed approach achieves the best performance results at the 60-seconds time-

window. Consequently, this size of time window is sufficient to collect Bots malicious

behaviour and, therefore, achieve the best classification outcomes. In addition, to test the

efficiency of the proposed approach in detecting P2P Bots, the ROC curve was plotted to

show the trade-off between TPR and FPR. A perfect classifier would have an area under

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

99

the curve (AUC) close to 1.0, where the x-axis represents FPR and the y-axis represents

TPR.

Figure 5.12 (a) FPR rates. (b) FNR rates.

Figure 5.13, plots the ROC for three time-windows 10, 30 and 60 as a sample in order to

compare the performance of proposed approach in different time-window size. As shown

in Figure 5.13 the 60-seconds time-window obtained the best performance in the AUC

for both Bot and legitimate detection rates around 0.9916 and 0.9896 respectively.

Therefore, it is found that the proposed approach performs well in classifying host inside

the network traffic as a Bot or legitimate hosts.

Figure 5.13 ROC comparison.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

100

5.5.2 Testing on Zero-day Attack

To further evaluate the effectiveness of the proposed method with new P2P Botnet

network traffic, Zeus, Waledac and Storm Bots were used to test the system for detection

of zero-day attacks. It is evident from the results presented in Figure 5.14 that the

technique adopted by our framework was powerful in detecting new P2P Bots types, with

good accuracy rates. As shown in Figure 5.14, the detection rates for the Storm Bot and

Waledac Bot using 60-seconds time-window were those higher than for the Zeus Bot

96.83%, 98.2% and 93.8% respectively. This was because for the testing and training

dataset we used Storm and Waledac Bots, but from different dataset sources as shown in

Table 3.1.

Figure 5.14 Detection rate (zero-day attack).

From Figure 5.15, a significant observation is that the approach gives low FPR for the

Zeus, Storm and Waledac Bots at around 0.04, 0.07and 0.09 respectively using 60-

seconds time-window. What is interesting in this result is that the proposed system is able

to extract new features from the environment online and to utilize these features to

enhance the system’s on detection of novel types of Bot behaviour. The results of this

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

101

experiment confirm that the proposed RL agent with proposed feature set can detect Bot

even if it is a Zero-day attack.

Figure 5.15 FPR (Zero-day attack).

5.5.3 Reinforcement Learning Model Evaluations

5.5.3.1 Evaluation the Efficiency of the Proposed Approach Based on Reference

Dataset

The evaluation results for training the neural network agent in the online phase based on

the reference dataset (train dataset) are demonstrated in Figure 5.16 to Figure 5.19. The

x-axis represents the training index of neural network agent. It can be clearly seen that

different performance measurements on the result from different time-window sizes.

Based on these, results for 10s, 30s, and 60s time-windows are calculated. Therefore, the

evaluations of the online agent with reference dataset give the highest average accuracy

rate is 99.20% with standard deviation of 0.004 based on a 60-seconds time-window;

meanwhile, the lowest average accuracy achieved with a 10-seconds time window was

95.92% and standard deviation 0.0143 as shown in Figure 5.16.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

102

Figure 5.16 Online evaluations the ACC of a classifier based on a reference dataset.

Subsequently, the performances of the proposed approach according to time window size

and reference dataset were compared based on AUC, and the 60-second time window

achieved the best average AUC rates of 98.37% and the standard deviation around 0.0067

as shown in Figure 5.17. In addition, the lowest performance results given with a 10-

second time-window.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.92

0.94

0.96

0.98

Neural Network Training Index

A
C

C

(a) 10-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.9

0.92

0.94

0.96

0.98

Neural Network Training Index

A
C

C

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0.98

0.985

0.99

0.995

1

Neural Network Training Index

A
C

C

(c) 60-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

103

Figure 5.17 Online evaluations the AUC of a classifier based on a reference dataset.

In addition, Figure 5.18 compares the evaluation of MCC result, and the 60-second time-

window achieves the best average rates around 94.9% with the standard deviation around

0.0224. AUC and MCC are considered the most reliable performance measures for

imbalanced datasets.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.94

0.96

0.98

1

Neural Network Training Index

A
U

C

(a) 10-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.94

0.96

0.98

1

Neural Network Training Index

A
U

C

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0.96

0.97

0.98

0.99

1

Neural Network Training Index

A
U

C

(c) 60-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

104

Figure 5.18 Online evaluations the MCC of a classifier based on a reference dataset.

In addition, the performances of the proposed approach according to time window size

and reference dataset were compared based on the average RMSE, and the 60-second

time window achieved the best average RMSE rates at around 0.044 with standard

deviation around 0.0365 as shown in Figure 5.19. In addition, the lowest rate given with

a 10-second time-window with average and standard deviation 0.14 and 0.291

respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.75

0.8

0.85

0.9

0.95

Neural Network Training Index

M
C

C

(a) 10-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.75

0.8

0.85

0.9

0.95

1

Neural Network Training Index

M
C

C

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0.9

0.92

0.94

0.96

0.98

Neural Network Training Index

M
C

C

(c) 60-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

105

Figure 5.19 Online evaluations the RMSE of a classifier based on a reference dataset.

As shown in Figure 5.16, Figure 5.17 and Figure 5.18, the performance of the ACC,

MCC, and AUC starts with high rates over the neural network training index, and then

slightly decreases due to the probability of learning misclassified behaviours by the agent

of malicious activity detector. Moreover, for the possibility of misclassified behaviours

the RMSE increases over the neural network training index as shown in Figure 5.19.

Furthermore, the RL agent achieves the best performance over the 60-seconds time-

window using reference dataset. By then, the 60-seconds time-window is sufficient to

collect Bots malicious behaviours and it has low numbers of misclassified activities. In

addition, the evaluation experiment results for time window 20, 40 and 50 seconds are

demonstrated in Appendix A.

5.5.3.2 Evaluation the Efficiency of the Proposed Approach based on Updated Dataset

This section gives an overview of the evaluation results of the neural network agent in

Bot detection using the updated dataset with new behaviours. The results obtained from

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.05

0.1

0.15

0.2

0.25

Neural Network Training Index

R
M

S
E

(a) 10-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.05

0.1

0.15

0.2

0.25

Neural Network Training Index

R
M

S
E

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0

0.05

0.1

0.15

0.2

Neural Network Training Index

R
M

S
E

(c) 60-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

106

the analysis of the online experiment outcomes are summarized in Figure 5.20 to Figure

5.23. As shown in Figure 5.20, the evaluation of the proposed approach using updated

dataset online evaluation gives the best average of accuracy 98.26 with standard deviation

around 0.0032 using the 60-seconds time window; meanwhile, the lowest evaluation of

accuracy was achieved with a 10-seconds time-window with average 94.48% and

standard deviation around 0.0126.

Figure 5.20 Online evaluations the ACC of a classifier based on an updated dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.92

0.94

0.96

0.98

Neural Network Training Index

A
C

C

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 54
0.97

0.975

0.98

0.985

0.99

0.995

Neural Network Training Index

A
C

C

(c) 60-Seconds time-window

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.9

0.92

0.94

0.96

0.98

1

Neural Network Training Index

A
C

C

(a) 10-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

107

Figure 5.21 and Figure 5.22 present the performance measurement AUC and MCC for

the updated dataset. The results show that the highest average AUC and MCC rates were

above 98.55% and above 95.22% respectively in the online testing evaluation using a 60-

seconds time-window.

Figure 5.21 Online evaluations the AUC of a classifier based on an updated dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.92

0.94

0.96

0.98

Neural Network Training Index

A
U

C

(a) 10-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.95

0.96

0.97

0.98

0.99

Neural Network Training Index

A
U

C

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0.96

0.97

0.98

0.99

1

Neural Network Training Index

A
U

C

(c) 60-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

108

Figure 5.22 Online evaluations the MCC of a classifier based on an updated dataset.

The quality of outcomes of the proposed method based on time window size and the

updated dataset is compared using the RMSE measure, and the 60-seconds time-window

achieved the best average RMSE around 0.1255 and standard deviation of 0.0251 as

shown in Figure 5.23. Furthermore, the lowest rate was given with a 10-seconds time-

window size with average of 0.1729

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.8

0.85

0.9

0.95

1

Neural Network Training Index

M
C

C

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0.9

0.92

0.94

0.96

0.98

Neural Network Training Index

M
C

C

(c) 60-Seconds time-window

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.75

0.8

0.85

0.9

0.95

Neural Network Training Index

M
C

C

(a) 10-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

109

Figure 5.23 Online evaluations the RMSE of a classifier based on an updated dataset.

As shown in Figure 5.20, Figure 5.21 and Figure 5.22, the performance of the ACC,

MCC, and AUC starts with high rates over the neural network training index, and then

slightly decreases due to the probability of learning misclassified behaviours by the agent

of malicious activity detector. Moreover, for the possibility of misclassified behaviours

the RMSE increases over the neural network training index as shown in Figure 5.23.

Moreover, the RL agent achieves the best performance over the 60-seconds time-window

using updated dataset. By then, the 60-seconds time-window is sufficient to collect Bots

malicious behaviours and it has low numbers of misclassified activities. In addition, the

evaluation experiment results for time window 20, 40 and 50 seconds are demonstrated

in Appendix B.

5.5.3.3 Evaluation Based on the Learning Rate

This section gives an overview of the evaluation results of the RL agent in extraction new

behaviour using the test dataset. The results gathered from the analysis of the online

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.1

0.15

0.2

0.25

Neural Network Training Index

R
M

S
E

(a) 10-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 38
0.05

0.1

0.15

0.2

0.25

Neural Network Training Index

R
M

S
E

(b) 30-Seconds time-window

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 5354
0

0.05

0.1

0.15

0.2

Neural Network Training Index

R
M

S
E

(c) 60-Seconds time-window

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

110

experiment outcomes are summarized in Figure 5.24 to Figure 5.26. The x-axis represents

the training index of the neural network agent and the y-axis represents the accumulative

value of new Bot behaviour. It can be clearly seen that different numbers of the

accumulated new Bot behaviours are extracted from different time-window sizes. Based

on these, results for 10s, 30s, and 60s time-windows are calculated. Therefore, the

evaluations of online agent to find new behaviour gives the highest accumulative number

of new Bot behaviours is 4902 based on a 60-seconds time-window as shown in Figure

5.26; meanwhile the worst case to find new Bot behaviour with a 10-seconds time window

is 934 as shown in Figure 5.25

Figure 5.24 Evaluations of the extract new behaviours based on 10s time-window.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

111

Figure 5.25 Evaluations of the extract new behaviours based on 30s time-window.

Figure 5.26 Evaluations of the extract new behaviours based on 60s time-window.

From the empirical results of the evaluation to extract new behaviour (learning rate) as

shown in Figure 5.26 the 60-seconds time-window has the best result to find new Bot

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

112

behaviour that improve the neural network agent online. In addition, as shown in above

figures the RL agent has the maximum training index over the 60-seconds time-window

due to this size of time window sufficient to collect Bots malicious behaviour and,

therefore, discover the highest number of new Bot behaviours which improve the RL

agent to detect a Zero-day attack as discussed in section 5.5.2.

Figure 5.27 gives an overview of the proposed technique results in the Bot detection based

test dataset and the reference neural network agent (reference neural network: is the first

neural network which is trained based on the offline dataset). The overall results obtained

from the analysis of an online experiment outcome are summarized in Figure 5.27. As

shown in Figure 5.27(a), Figure 5.27(b) and Figure 5.27(c), the evaluation of performance

reference neural network using test data set gives the highest accuracy, detection and F-

measure rate around 75%, 73% and 70%, respectively using 60-second time-window;

meanwhile the lowest accuracy was achieved on 10-second time-window around 68%.

Figure 5.27(e) and Figure 5.27(f) presents the imbalance dataset performance

measurement AUC and MCC. The results show that the highest AUC and MCC rates

were 90% and 85% respectively on testing dataset evaluation through 60-second time-

window. In addition, the quality of outcomes of the proposed method based on time

window size is compared using the RMSE and NDEI, the 60-second time-window

achieves the best RMSE and NDEI rate around 0.28 and 0.30 respectively as shown in

Figure 5.27(g) and Figure 5.27(h). Furthermore, the lowest FPR was given on 60-second

time-window size.

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

113

Figure 5.27 Test the online system based reference neural network.

As shown in above Figure the reference neural network with testing dataset has a bad

performance outcome. However, the primary aim of the evaluation using reference neural

network is to prove that the proposed approach with RL agent can detect P2P bots and

able to learn new behaviour in order to improve the detection system over time. More

details for the experiment parameters are provided in Appendix C.

5.6 Discussion

There are an enormous variety of RL problems depending on the respective environments

and objectives. In practice, any solution for a dynamic problem using RL, such as Botnet

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

114

detection, must be able to deal with the partial observability of the problem and the

dimensionality of the data as well as the size of training data, as shown in Figure 5.28

Data with high dimensionality rates normally come from huge volumes of input into a

system, which may affect the solution of the problems in the dynamic environments. For

that reason, RL methods which can deal with high dimensionality and that are easily

scalable are required. All table-based methods are excluded, because these methods are

inefficient in problems with huge dimensionality. Instead an efficient and accurate

function approximation is required.

Problem Dimensionality

P
ro

b
le

m
 O

b
se

rv
a

b
il

it
y

− Model-free

− Table-based

− Model-free

− Function approximation

− Model-based

− Table-based

− Model-based

− Function approximation

Figure 5.28 RL Characteristic.

In dynamic real-world environments, the situation is only partially observable since it is

either an inaccessible environment or too costly to inspect all states and actions. In such

situations, model-based strategies are beneficial as they first build the system’s dynamics

using current knowledge and utilize the current state to predict unobserved states.

However, the quality of the first model is crucial.

In the present research, a model-based learning approach utilizes information collected

through the training (offline phase) very effectively. Since the agent tries to learn a model

of the states of the environment, thus it can combine the knowledge from multiple

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

115

experiences. Besides the function approximation is applied overcome the storage problem

with table-based approaches and to achieve data efficiency by generalizing to about

unseen states.

However, The Botnet detection method chosen should satisfy the requirement of novelty

detection, adaptability and early detection. Based on these measures, a neural network

with a resilient back-propagation learning algorithm is adopted as a classification

technique. This has robust capabilities for nonlinear system identification and control due

to an inherent ability to approximate arbitrary nonlinear problems. Moreover, using the

resilient back-propagation learning algorithm minimizes the harmful effects of volumes

of fractional derivatives, and it increases the adoption rate. In addition, utilizing the RL

approach improves the capability of the proposed system to detect a zero-day attack.

Table 5.1 shows the results of the comparison of our results with those of research using

the same dataset in the offline phase that used by Zhao et al. (Zhao et al., 2013) and in

online phase evaluation we used the same dataset as used by Babak et al. (Babak et al.,

2014). The table also shows that the Bots detection and FPR using the proposed approach

are better than those gained by previous solutions. Moreover, the proposed system is an

online technique. Additionally, our approach differs from previous ones because the

analysis is not performed on all network traffic such the studies (Babak et al., 2014; Zhao

et al., 2013), which they analysis the whole network traffic to detect Bot malicious

behaviours.

Table 5.1 Comparison with other published approaches.

Approaches FPR
Detection

rate

Traffic reduction

rate

 Babak et al. (2014) 0.1% 99.5% 0%

 Zhao et al. (2013) 2.1% 98.1% 0%

Proposed approach

Online 0.012% 98.30%

 40% -70%

Offline 0.01% 99.1%

5.7 Summary

In this chapter, a novel combination of neural networks and reinforcement learning were

introduced in the design of an efficient Bot detection method. Practicality in solving high-

CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION

116

dimensional and partially observable RL problems in dynamic environments requires a

model-based approach to identify Botnet malicious activity on the network. In addition,

a technique was developed to achieve a balance between exploration and exploitation for

the RL agent. In practice, a dynamic controller is constructed that obtains an optimal

dynamic control policy under a RL framework. For the controller and its learning method,

neural networks were used. The experiments with real Bot network traffic samples show

that the controller succeeds in learning the optimal policy for a task of Bot detection.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

117

6 CONCLUSIONS AND

FUTURE WORK

This chapter presents the thesis conclusions and summarizes its unique contributions

along with suggesting directions for future work. The main conclusion of the research is

presented in Section 6.1. A summary of contributions is given in Section 6.2. Section 6.3

presents difficulties and solutions, and the limitations of the proposed approach are

outlined in Section 6.4. Directions for future research are then indicated in Section 6.5.

6.1 Thesis Summary

Since the appearance of the Internet, network security has always been a primary interest

of its users. Currently, Botnet detection is the most serious task in Internet security.

Botnets can be utilized for many malicious activities such as DDoS, Spam and stealing

sensitive information. Botnet detection, therefore, has assumed fundamental importance.

This thesis has presented our research on the Bot host detection using network traffic

reduction with RL approach. In this thesis, Chapter 2 had reviewed the relevant

background on Botnet phenomena and couple of related work on Botnet detection.

Chapter 3 had presented our proposed contribution on the network traffic reduction.

Chapter 4 had described our proposed connection-level feature set. Besides, the design of

our offline Bot detection system, the experimental procedures, the results evaluation

matrix and further discussions have been described in the chapter.

In Chapter 5, experiments are conducted to test the efficiency and effectiveness of the

designed RL method. The RL algorithm for Bot detection is evaluated from different

perspective using real world datasets. Furthermore, several methods of evaluation are

used that cover balanced and imbalanced datasets. The results of the assessment show the

efficiency of the proposed approach to deal with different types of Bot traffic and if the

approach can detect zero-day attacks using the proposed RL algorithm.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

118

6.2 Summary of Key Contributions

The significance of the proposed system lies in the following aspects. Firstly, it can detect

P2P Bots even when their malicious activities are hidden, and without inspecting packet

payloads. Secondly, the approach is capable of online detection based on a powerful

mechanism for traffic reduction and short detection time-windows. Finally, a RL

methodology used in the proposed approach increases the ability of the system to evolve

based on the environment evolving.

Combining the use of network traffic reduction and RL approach gives our solution a

valuable contribution to the field of Botnet detection. The experiments carried out

involved testing and comparing with other research work based on the same datasets.

The first contribution is traffic reduction approach. The result revealed that using the

traffic reduction approach achieved better reduction rate and had a considerable effect on

online Bot detection. Besides, the traffic reduction approach improvises the efficiency of

the proposed solution to work as an online Bot detection system and to deal with massive

volumes of network traffic.

The second contribution is the connection-level feature set. To achieve earlier Bot

detection and bypass the encrypted network traffic, connections-based detection

mechanism was designed and implemented which utilizes the information in the header

of TCP control packets. The evaluation result of the proposed connection-level feature

set using offline model shows that our feature set achieved better accuracy and detection

rate. Moreover, the performance of the proposed feature set is evaluated using offline Bot

detection model and compared with existing detection methods, and achieves better

results using the same dataset.

The third contribution is the online RL model. To achieve adaptability in the proposed

approach, a new model-based RL algorithm was designed and implemented. The

experimental results revealed that using RL approach with traffic reduction method

achieved high accuracy and detection rates compared with existing results using the same

dataset. In addition, the solution has shown the ability to learn rapidly new attack patterns

online. This important benefit supports intrusion detection systems and enhances their

ability to detect zero-day attacks without the need for continuously external updates.

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

119

6.3 Difficulties and Solutions

Despite all concerted efforts to reduce the influence of Botnets, improvements in Botnet

evasion techniques are rapidly growing, which makes Botnet detection a very difficult

task for the Internet security community (FBI, 2011; IBM, 2013; Plohmann et al., 2011).

Botnets are becoming more complicated, employing a diversity of evasion methods such

as protocol evasion techniques, rootkits, advanced executable packers and moving away

from IRC to VOIP, HTTP, IPV6 and P2P protocols and networks. These evasion

strategies enhance the survivability of Botnets and increase the rates of infection of new

hosts.

There are three principal difficulties in the classification of host behaviour: Firstly, the

network traffic is continuous, which indicates that it is persistent and features will change

over time. Furthermore, Botnets dynamically change via Bot updates or altering their

operation in various life cycle stages after receiving instructions from a Botmaster. These

phenomena are termed concept drift and this is currently a serious issue for any detection

method (Dries & Rückert, 2009). Therefore, the proposed framework adopts the idea of

RL to improve the system dynamically over time. Secondly, there is always the risk of a

new Botnet emerging on a network. It's spread may be stealthy, such as in zero-day

attacks, and the behaviour of the host might seem like legitimate behaviour, and the

difficulty to detect malicious activities if the classifier not trained for this behaviour

previously. These cases generate a problem of novelty detection for detection models.

Therefore, the proposed framework continually extracts new features to improve

detection rates over time. Thirdly, evaluating the entire network traffic in real-time is a

computationally expensive task due to the speed of network traffic. Therefore, the

proposed approach uses a traffic reduction method, which helps to set up a more

lightweight, and speedy online detection method.

6.4 Limitations

In general, the major challenge for detection Botnet using data mining techniques is

obtaining the training dataset. The universality and precision of the classifier depend on

the training data sets quality. A diversity and illustrative training dataset are hard to obtain

and to create one due to the time consuming and resource. In addition, the majority of

the available Botnet dataset is formed in academic experiment source due to the security

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

120

and privacy issue, it is very difficult for the researcher to get a Botnet traces from other

such as corporate networks.

6.5 Future Research Directions

Our online Bot detection approach with its proof-of-concept design and implementation

could be able to address the real-time objective. However, further research has to

investigate the challenging of real-time implementation. Nevertheless, machine learning

methods could be applied to a real-time solution.

The following list contains summaries of several research topics that can be pursued in

the near future as a continuation of the research work presented in this thesis:

1. Discovery of further Botnet features. Based on P2P Bot communications, P2P

applications and an analysis of the literature, 16 host features were created. It is

possible to add informative connection-based features by analysing Botnets traffic

using the UDP protocol. These features may be valuable for increasing the

performance of any future Botnet detection system.

2. Use different feature selection algorithms. Although the feature selection

algorithms that used in this work helped to minimize the vectors dimensions of

the feature set without greatly reducing the performance of the detection approach,

other feature selection algorithms could perhaps be utilized to gain a better feature

subset.

3. Botnet detection in new trends, platforms and infrastructures. Many Botnets that

work on smartphones have been classified, adding another threat to personal

information. Consequently, exploring the experience gained from identifying

Botnets on network to reduce their effects in developing infrastructures will be

worthy of investigation in the future.

4. New Types of Botnet Attacks. To reserve their Botnets, attackers always attempt

to make Botnet C&C connections as hidden as possible. Therefore, new types of

Botnets have begun to adopt the social networks as their new communication

channel. Investigating how this communication protocol operates, and how

Botnets utilize this channel, could be a new direction to continue the present work.

5. An interesting direction might be to combine the connection-level feature with the

host-level feature sets and using ensemble parallel classifiers. Such a combination

CHAPTER 6: CONCLUSIONS AND FUTURE WORK

121

could add to the analysis of Botnet traffic which might improve the accuracy of

the Botnet detection approach.

6. Another area of interest might be to investigate the possibility of replacing the

neural network in proposed strategy with other machine learning methods such as

those employing unsupervised learning (for example, clustering algorithms).

 References

122

REFERENCES

AbuHmed, T., Mohaisen, A., & Nyang, D. (2007). Deep packet inspection for intrusion

detection systems: A survey. Magazine of Korea Telecommunication Society,

24, 25-36.

Al-Hammadi, Y., & Aickelin, U. (2010). Behavioural Correlation for Detecting P2P

Bots. Paper presented at the Second International Conference on Future

Networks (ICFN), Sanya, Hainan.

Al Shalabi, L., & Shaaban, Z. (2006). Normalization as a Preprocessing Engine for

Data Mining and the Approach of Preference Matrix. Paper presented at the

International Conference on Dependability of Computer Systems, Washington,

DC, USA.

Alder, R., Burke, J., Keefer, C., Orebaugh, A., Pesce, L., & Seagren, E. S. (2007).

Chapter 4 - Introducing Snort. In R. Alder, J. Burke, C. Keefer, A. Orebaugh, L.

Pesce & E. S. Seagren (Eds.), How to Cheat at Configuring Open Source

Security Tools (pp. 181-212). Burlington: Syngress.

Alpaydin, & Ethem. (2014). Introduction to machine learning: MIT press.

Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., & Feamster, N. (2010). Building a

Dynamic Reputation System for DNS. Paper presented at the USENIX security

symposium.

Babak, R., Roberto, P., Andrea, L., & Kang, L. (2014). PeerRush: Mining for unwanted

P2P traffic. Journal of Information Security and Applications, 19(3), 194-208.

doi: http://dx.doi.org/10.1016/j.jisa.2014.03.002

Bacher, P., Holz, T., Kotter, M., & Wicherski, G. (2005). Know your enemy: Tracking

botnets. Published on the Web: The Honeynet Project and Research Alliance.

Baecher, P., Koetter, M., Holz, T., Dornseif, M., & Freiling, F. (2006). The Nepenthes

Platform: An Efficient Approach to Collect Malware. In D. Zamboni & C.

Kruegel (Eds.), Recent Advances in Intrusion Detection (Vol. 4219, pp. 165-

184): Springer Berlin Heidelberg.

http://dx.doi.org/10.1016/j.jisa.2014.03.002

 References

123

Bailey, M., Cooke, E., Jahanian, F., Yunjing, X., & Karir, M. (2009). A Survey of

Botnet Technology and Defenses. Paper presented at the Cybersecurity

Applications & Technology Conference for Homeland Security, Washington,

DC.

Balas, E., & Viecco, C. (2005). Towards a third generation data capture architecture

for honeynets. Paper presented at the In Proceedings of the 2005 IEEE

Workshop on Information Assurance and Security, NY, USA.

Barford, P., & Yegneswaran, V. (2007). An Inside Look at Botnets. In M.

Christodorescu, S. Jha, D. Maughan, D. Song & C. Wang (Eds.), Malware

Detection (Vol. 27, pp. 171-191): Springer US.

Barsamian, A. V. (2009). Network characterization for botnet detection using

statistical-behavioral methods. (Ph.D. thesis), Thayer School of Engineering

Dartmouth College, Hanover, New Hampshire.

Barto, & Andrew. (1998). Reinforcement learning: An introduction: MIT press.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements

that can solve difficult learning control problems. Systems, Man and

Cybernetics, IEEE Transactions on, SMC-13(5), 834-846. doi:

10.1109/TSMC.1983.6313077

Batchelder, D., Blackbird, J., Felstead, D., Henry, P., Jones, J., & Kulkarni, A. (2014).

Microsoft Security Intelligence Report: Microsoft.

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-Dynamic Programming (1st ed.): Athena

Scientific.

Boger, Z., & Guterman, H. (1997). Knowledge extraction from artificial neural network

models. Paper presented at the EEE International Conference on Systems, Man

and Cybernetics, Orlando, FL, USA.

Boshmaf, Y., Muslukhov, I., Beznosov, K., & Ripeanu, M. (2013). Design and analysis

of a socialBotnet. Computer Networks, 57(2), 556-578.

Brafman, R. I., & Tennenholtz, M. (2003). R-max - a general polynomial time

algorithm for near-optimal reinforcement learning. J. Mach. Learn. Res., 3, 213-

231. doi: 10.1162/153244303765208377

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and

regression trees. Belmont, California: Wadsworth, Inc.

Chao, L., Wei, J., & Xin, Z. (2009). Botnet: Survey and Case Study. Paper presented at

the Fourth International Conference on Innovative Computing, Information and

Control (ICICIC), Kaohsiung.

Chen, C.-M., & Lin, H.-C. (2015). Detecting botnet by anomalous traffic. Journal of

Information Security and Applications, 21, 42-51. doi:

http://dx.doi.org/10.1016/j.jisa.2014.05.002

Chiang, K., & Lloyd, L. (2007). A case study of the rustock rootkit and spam bot. Paper

presented at the The First Workshop in Understanding Botnets, Cambridge, MA.

Choi, H., & Lee, H. (2012). Identifying botnets by capturing group activities in DNS

traffic. Computer Networks, 56(1), 20-33. doi: 10.1016/j.comnet.2011.07.018

http://dx.doi.org/10.1016/j.jisa.2014.05.002

 References

124

Choi, H., Lee, H., & Kim, H. (2009). BotGAD: detecting botnets by capturing group

activities in network traffic. Paper presented at the Proceedings of the Fourth

International ICST Conference on COMmunication System softWAre and

middlewaRE, Dublin, Ireland.

Cisco. (2012). Introduction to Cisco IOS NetFlow: CISCO White Paper.

Cooke, E., Jahanian, F., & McPherson, D. (2005). The zombie roundup: Understanding,

detecting, and disrupting botnets. Paper presented at the Proceedings of the

USENIX SRUTI Workshop.

Cover, T. M., & Thomas, J. A. (2012). Elements of information theory: John Wiley &

Sons.

Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines

and other kernel-based learning methods: Cambridge university press.

Crites, R., & Barto, A. (1998). Elevator Group Control Using Multiple Reinforcement

Learning Agents. Machine Learning, 33(2-3), 235-262. doi:

10.1023/a:1007518724497

Dae-il, J., Kang-yu, C., Minsoo, K., Hyun-chul, J., & Bong-Nam, N. (2010). Evasion

technique and detection of malicious botnet. Paper presented at the International

Conference for Internet Technology and Secured Transactions (ICITST),

London, UK.

Dagon, D. (2005). Botnet detection and response, the network is the infection. Paper

presented at the OARC Workshop. http://www.caida.org/workshops/dns-

oarc/200507/slides/oarc0507-Dagon.pdf

Dan, L., Yichao, L., Yue, H., & Zongwen, L. (2010). A P2P-Botnet detection model and

algorithms based on network streams analysis. Paper presented at the

International Conference on Future Information Technology and Management

Engineering (FITME), Changzhou, China.

Daswani, N., & Stoppelman, M. (2007). The anatomy of Clickbot. A. Paper presented at

the Proceedings of the first conference on First Workshop on Hot Topics in

Understanding Botnets.

Davis, C. R., Fernandez, J. M., & Neville, S. (2009). Optimising sybil attacks against

P2P-based botnets. Paper presented at the the 4th International Conference on

Malicious and Unwanted Software, Montreal, QC.

Demarest, J. (2014). Statement before the Senate Judiciary Committee, Subcommittee

on Crime and Terrorism. Washington, D.C.: FBI Retrieved from

https://www.fbi.gov/news/testimony/taking-down-botnets.

Dittrich, D., & Dietrich, S. (2008). Discovery techniques for P2P botnets Stevens

Institute of Technology CS Technical Report 2008 (Vol. 4).

Dittrich, D., & Dietrich, S. (2008). P2P as botnet command and control: A deeper

insight. Paper presented at the 3rd International Conference on Malicious and

Unwanted Software (MALWARE), Univ. of Washington, Washington, DC,

USA.

Drake, A. W. (1962). Observation of a Markov process through a noisy channel.

Massachusetts Institute of Technology.

http://www.caida.org/workshops/dns-oarc/200507/slides/oarc0507-Dagon.pdf
http://www.caida.org/workshops/dns-oarc/200507/slides/oarc0507-Dagon.pdf
http://www.fbi.gov/news/testimony/taking-down-botnets

 References

125

Dries, A., & Rückert, U. (2009). Adaptive concept drift detection. Statistical Analysis

and Data Mining, 2(5-6), 311-327. doi: 10.1002/sam.10054

Dshield.org. (2013). Most attacked Port reports. Retrieved Aug, 2013, from

http://www.dshield.org/portreport.html.

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2008). A survey on automated

dynamic malware-analysis techniques and tools. ACM Comput. Surv., 44(2), 1-

42. doi: 10.1145/2089125.2089126

Espinosa, J., & Vandewalle, J. (2000). Constructing fuzzy models with linguistic

integrity from numerical data-AFRELI algorithm. IEEE Transactions on Fuzzy

Systems, 8(5). doi: 10.1109/91.873582

Falliere, N., Murchu, L., & Chien, E. (2011). W32. Stuxnet Dossier.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters,

27(8), 861-874. doi: 10.1016/j.patrec.2005.10.010

FBI. (2011). Another pleads guilty in botnet hacking conspiracy. FBI National Press

Office.

Fedynyshyn, G., Chuah, M., & Tan, G. (2011). Detection and Classification of Different

Botnet C&C Channels. In J. A. Calero, L. Yang, F. Mármol, L. García Villalba,

A. Li & Y. Wang (Eds.), Autonomic and Trusted Computing (Vol. 6906, pp.

228-242): Springer Berlin Heidelberg.

Feily, M., Shahrestani, A., & Ramadass, S. (2009, 18-23 June 2009). A Survey of Botnet

and Botnet Detection. Paper presented at the Third International Conference on

Emerging Security Information, Systems and Technologies. SECURWARE '09.

Feinberg, E. A., Shwartz, A., & Altman, E. (2002). Handbook of Markov decision

processes: methods and applications: Kluwer Academic Publishers Boston,

MA.

Felix, J., Joseph, C., & Ghorbani, A. (2012). Group Behavior Metrics for P2P Botnet

Detection. In T. Chim & T. Yuen (Eds.), Information and Communications

Security (Vol. 7618, pp. 93-104): Springer Berlin Heidelberg.

Freiling, F., Holz, T., & Wicherski, G. (2005). Botnet Tracking: Exploring a Root-

Cause Methodology to Prevent Distributed Denial-of-Service Attacks. In S. di

Vimercati, P. Syverson & D. Gollmann (Eds.), Computer Security – ESORICS

2005 (Vol. 3679, pp. 319-335): Springer Berlin Heidelberg.

García, S., Zunino, A., & Campo, M. (2014). Survey on network-based botnet detection

methods. Security and Communication Networks, 7(5), 878-903. doi:

10.1002/sec.800

Garg, S., Singh, A. K., Sarje, A. K., & Peddoju, S. K. (2013). Behaviour analysis of

machine learning algorithms for detecting P2P botnets. Paper presented at the

15th International Conference on Advanced Computing Technologies (ICACT).

Gass, S., & Fu, M. (2013). Markov Property Encyclopedia of Operations Research and

Management Science (pp. 941-942). USA: Springer

Goebel, J., & Holz, T. (2007). Rishi: identify bot contaminated hosts by IRC nickname

evaluation. Paper presented at the Proceedings of USENIX HotBots Cambridge,

MA.

http://www.dshield.org/portreport.html

 References

126

Goerzen, J. (2004). Domain Name System Foundations of Python Network

Programming (pp. 65-85): Apress.

Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D. (2007). Peer-to-

peer botnets: overview and case study. Paper presented at the Proceedings of the

first conference on First Workshop on Hot Topics in Understanding Botnets,

Cambridge, MA.

Gu, G., Perdisci, R., Zhang, J., & Lee, W. (2008). BotMiner: Clustering Analysis of

Network Traffic for Protocol-and Structure-Independent Botnet Detection. Paper

presented at the USENIX Security Symposium.

Gu, G., Porras, P., Yegneswaran, V., Fong, M., & Lee, W. (2007). BotHunter: detecting

malware infection through IDS-driven dialog correlation. Paper presented at the

Proceedings of 16th USENIX Security Symposium on USENIX Security

Symposium, Boston, MA. http://portal.acm.org/citation.cfm?id=1362915#

Gu, G., Zhang, J., & Lee, W. (2008). BotSniffer: Detecting botnet command and control

channels in network traffic. Paper presented at the 15th Annual Network &

Distributed System Security Symposium, San Diego.

Guofei, G., Yegneswaran, V., Porras, P., Stoll, J., & Wenke, L. (2009). Active Botnet

Probing to Identify Obscure Command and Control Channels. Paper presented

at the Annual Computer Security Applications Conference (ACSAC), Honolulu,

HI.

Gurney, K. (1997). An introduction to neural networks. Bristol,USA: Taylor & Francis.

Gusella, R. (1991). Characterizing the variability of arrival processes with indexes of

dispersion. IEEE Journal on Selected Areas in Communications, 9(2), 203-211.

doi: 10.1109/49.68448

Han, K.-S., & Im, E. (2012). A Survey on P2P Botnet Detection. In K. J. Kim & S. J.

Ahn (Eds.), Proceedings of the International Conference on IT Convergence

and Security 2011 (Vol. 120, pp. 589-593): Springer Netherlands.

Han, K.-S., Lim, K.-H., & Im, E.-G. (2009). The Traffic Analysis of P2P-based Storm

Botnet using Honeynet. Journal of the Korea Institute of Information Security

and Cryptology, 19(4), 51-61.

Hannah, K., & Gianvecchio, S. (2015). Zeuslite: a tool for botnet analysis in the

classroom. J. Comput. Sci. Coll., 30(3), 109-116.

Harmon, M. E., & Harmon, S. S. (1996). Reinforcement learning: a tutorial. WL/AAFC,

WPAFB Ohio, 45433.

Hegna, A. (2010). Visualizing Spatial and Temporal Dynamics of a Class of IRC-Based

Botnets. (PhD thesis), Norwegian University of Science and Technology.

Retrieved from http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050

Holz, T., Steiner, M., Dahl, F., Biersack, E., & Freiling, F. C. (2008). Measurements

and Mitigation of Peer-to-Peer-based Botnets: A Case Study on Storm Worm.

LEET, 8(1), 1-9.

Huy, H., Xuetao, W., Faloutsos, M., & Eliassi-Rad, T. (2013). Entelecheia: Detecting

P2P botnets in their waiting stage. Paper presented at the IFIP Networking

Conference, Brooklyn, NY.

http://portal.acm.org/citation.cfm?id=1362915
http://ntnu.diva-portal.org/smash/record.jsf?pid=diva2:353050

 References

127

Ianelli, N., & Hackworth, A. (2005). Botnets as a vehicle for online crime. CERT

Coordination Center, 1(1), 28.

IBM. (2013). IBM X-Force 2012 Trend and Risk Report: IBM Security Systems.

Igel, C., Toussaint, M., & Weishui, W. (2005). Rprop Using the Natural Gradient. In D.

H. Mache, J. Szabados & M. G. de Bruin (Eds.), Trends and Applications in

Constructive Approximation (pp. 259-272). Basel: Birkhäuser Basel.

Iivari, J., Hirschheim, R., & Klein, H. K. (1998). A Paradigmatic Analysis Contrasting

Information Systems Development Approaches and Methodologies. Information

Systems Research, 9(2), 164-193. doi: doi:10.1287/isre.9.2.164

Jaber, M., Cascella, R. G., & Barakat, C. (2011). Can We Trust the Inter-Packet Time

for Traffic Classification? Paper presented at the IEEE International Conference

on Communications (ICC) Kyoto, Japan.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM

Comput. Surv., 31(3), 264-323. doi: 10.1145/331499.331504

Jian, K., & Jun-Yao, Z. (2009). Application Entropy Theory to Detect New Peer-to-Peer

Botnet with Multi-chart CUSUM. Paper presented at the Second International

Symposium on Electronic Commerce and Security (ISECS), Nanchang, China.

Jiang, H., & Shao, X. (2012). Detecting P2P botnets by discovering flow dependency in

C&C traffic. Peer-to-Peer Networking and Applications, 1-12. doi:

10.1007/s12083-012-0150-x

John, J. P., Moshchuk, A., Gribble, S. D., & Krishnamurthy, A. (2009). Studying

Spamming Botnets Using Botlab. Paper presented at the 6th USENIX

symposium on Networked systems design and implementation (NSDI), Boston,

Massachusetts.

Jun, L., Shunyi, Z., Yanqing, L., & Junrong, Y. (2008). Real-Time P2P Traffic

Identification. Paper presented at the IEEE Global Telecommunications

Conference, New Orleans, USA.

Junjie, Z., Perdisci, R., Wenke, L., Sarfraz, U., & Xiapu, L. (2011). Detecting stealthy

P2P botnets using statistical traffic fingerprints. Paper presented at the

IEEE/IFIP 41st International Conference on Dependable Systems & Networks

(DSN), Hong Kong.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in

partially observable stochastic domains. Artificial Intelligence, 101(1–2), 99-

134. doi: http://dx.doi.org/10.1016/S0004-3702(98)00023-X

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of artificial intelligence research, 237-285.

Kang, B. B., Chan-Tin, E., Lee, C. P., Tyra, J., Kang, H. J., Nunnery, C., . . . Yongdae

Kim. (2009). Towards complete node enumeration in a peer-to-peer botnet.

Paper presented at the Proceedings of the 4th International Symposium on

Information, Computer, and Communications Security, Sydney, Australia.

Karasaridis, A., Rexroad, B., & Hoeflin, D. (2007). Wide-scale botnet detection and

characterization. Paper presented at the Proceedings of the first conference on

First Workshop on Hot Topics in Understanding Botnets.

http://dx.doi.org/10.1016/S0004-3702(98)00023-X

 References

128

Kreibich, C., & Crowcroft, J. (2004). Honeycomb: creating intrusion detection

signatures using honeypots. SIGCOMM Comput. Commun. Rev., 34(1), 51-56.

doi: 10.1145/972374.972384

Kristoff, J. (2005). Botnets, detection and mitigation: DNS-based techniques. NU

Security Day, 23.

Lashkari, A., Ghalebandi, S., & Reza Moradhaseli, M. (2011). A Wide Survey on

Botnet. In H. Cherifi, J. Zain & E. El-Qawasmeh (Eds.), Digital Information and

Communication Technology and Its Applications (Vol. 166, pp. 445-454):

Springer Berlin Heidelberg.

Li, H., Hu, G., & Yang, Y. (2012). Research on P2P Botnet Network Behaviors and

Modeling. In C. Liu, L. Wang & A. Yang (Eds.), Information Computing and

Applications (Vol. 307, pp. 82-89): Springer Berlin Heidelberg.

Limmer, T., & Dressler, F. (2009). Flow-based TCP connection analysis. Paper

presented at the IEEE 28th International Performance Computing and

Communications Conference (IPCCC), Scottsdale, AZ.

Liu, L., Chen, S., Yan, G., & Zhang, Z. (2008). BotTracer: Execution-Based Bot-Like

Malware Detection. In T.-C. Wu, C.-L. Lei, V. Rijmen & D.-T. Lee (Eds.),

Information Security (Vol. 5222, pp. 97-113): Springer Berlin Heidelberg.

Livadas, C., Walsh, R., Lapsley, D., & Strayer, W. T. (2006). Usilng Machine Learning

Technliques to Identify Botnet Traffic. Paper presented at the Proceedings 2006

31st IEEE Conference on Local Computer Networks, Tampa, FL.

Lu, W., Rammidi, G., & Ghorbani, A. A. (2011). Clustering botnet communication

traffic based on n-gram feature selection. Computer Communications, 34(3),

502-514. doi:10.1016/j.comcom.2010.04.007

Ludl, C., McAllister, S., Kirda, E., & Kruegel, C. (2007). On the Effectiveness of

Techniques to Detect Phishing Sites. In B. Hämmerli & R. Sommer (Eds.),

Detection of Intrusions and Malware, and Vulnerability Assessment (Vol. 4579,

pp. 20-39): Springer Berlin Heidelberg.

Marpaung, J. A. P., Sain, M., & Hoon-Jae, L. (2012). Survey on malware evasion

techniques: State of the art and challenges. Paper presented at the 14th

International Conference on Advanced Communication Technology (ICACT),

PyeongChang.

Masud, M. M., Al-khateeb, T., Khan, L., Thuraisingham, B., & Hamlen, K. W. (2008).

Flow-based identification of botnet traffic by mining multiple log files. Paper

presented at the First International Conference on Distributed Framework and

Applications, Penang, Malaysia

Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure

of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein

Structure, 405(2), 442-451. doi: http://dx.doi.org/10.1016/0005-2795(75)90109-

9

Mille, A., Horne, R., & Potter, C. (2014). information security breaches survey

(technical report). PriceWaterhouseCoopers.

Mitchell, T. M. (1997). Machine Learning: McGraw-Hill, Inc.

http://dx.doi.org/10.1016/0005-2795(75)90109-9
http://dx.doi.org/10.1016/0005-2795(75)90109-9

 References

129

Mukamurenzi, N. M. (2008). Storm worm: A p2p botnet. (Master of Science in

Communication Technology), Norwegian University of Science and

Technology, Norway.

Mullaney, C. (2012). Android.Bmaster: A Million-Dollar Mobile Botnet. from

http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-mobile-

botnet

Nagaraja, S., Houmansadr, A., Piyawongwisal, P., Singh, V., Agarwal, P., & Borisov,

N. (2011). Stegobot: A Covert Social Network Botnet. In T. Filler, T. Pevný, S.

Craver & A. Ker (Eds.), Information Hiding (Vol. 6958, pp. 299-313): Springer

Berlin Heidelberg.

Nguyen, H., Petrović, S., & Franke, K. (2010). A Comparison of Feature-Selection

Methods for Intrusion Detection. In I. Kotenko & V. Skormin (Eds.), Computer

Network Security (Vol. 6258, pp. 242-255): Springer Berlin Heidelberg.

Nigrin, A. (1994). Book review: Neural Networks for Pattern Recognition (Vol. 5): MIT

Press.

Nilsson, N. J. (1996). Introduction to machine learning. An early draft of a proposed

textbook.

Nogueira, A., Salvador, P., & Blessa, F. (2010). A Botnet Detection System Based on

Neural Networks. Paper presented at the Fifth International Conference on

digital Telecommunications (ICDT), Athens, TBD, Greece.

Nummipuro, A. (2007). Detecting P2P-controlled bots on the host. Paper presented at

the Seminar on Network Security, Espoo, Helsinki.

Pelleg, D., & Moore, A. W. (2000). X-means: Extending K-means with Efficient

Estimation of the Number of Clusters. Paper presented at the Seventeenth

International Conference on Machine Learning (ICML).

Perdisci, R., Guofei, G., & Wenke, L. (2006). Using an Ensemble of One-Class SVM

Classifiers to Harden Payload-based Anomaly Detection Systems. Paper

presented at the Sixth International Conference on Data Mining (ICDM), Hong

Kong.

Petersen, M. N. (2014). Detecting network intrusions. (M.Sc.), Technical University of

Denmark.

Pham, V.-H., & Dacier, M. (2011). Honeypot trace forensics: The observation

viewpoint matters. Future Generation Computer Systems, 27(5), 539-546.

Plohmann, D., Gerhards-Padilla, E., & Leder, F. (2011). Botnets: Detection,

measurement, disinfection & defence. The European Network and Information

Security Agency (ENISA).

Provos, N. (2003). Honeyd-a virtual honeypot daemon. Paper presented at the 10th

DFN-CERT Workshop, Hamburg, Germany.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic

programming: John Wiley & Sons.

Rafique, M. Z., & Caballero, J. (2013). FIRMA: Malware Clustering and Network

Signature Generation with Mixed Network Behaviors. In S. J. Stolfo, A. Stavrou

& C. V. Wright (Eds.), Research in Attacks, Intrusions, and Defenses: 16th

International Symposium, RAID 2013, Rodney Bay, St. Lucia, October 23-25,

http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-mobile-botnet
http://www.symantec.com/connect/blogs/androidbmaster-million-dollar-mobile-botnet

 References

130

2013. Proceedings (pp. 144-163). Berlin, Heidelberg: Springer Berlin

Heidelberg.

Rajab, M. A., Zarfoss, J., Monrose, F., & Terzis, A. (2006). A multifaceted approach to

understanding the botnet phenomenon. Paper presented at the Proceedings of the

6th ACM SIGCOMM conference on Internet measurement, Rio de Janeriro,

Brazil.

Ramachandran, A., & Feamster, N. (2006). Understanding the network-level behavior

of spammers. SIGCOMM Comput. Commun. Rev., 36, 291-302. doi:

10.1145/1151659.1159947

Ramachandran, A., Feamster, N., & Dagon, D. (2006). Revealing botnet membership

using DNSBL counter-intelligence. Paper presented at the Proceedings of the

2nd conference on Steps to Reducing Unwanted Traffic on the Internet -

Volume 2, San Jose, CA.

Razi, M. A., & Athappilly, K. (2005). A comparative predictive analysis of neural

networks (NNs), nonlinear regression and classification and regression tree

(CART) models. Expert Systems with Applications, 29(1), 65-74. doi:

http://dx.doi.org/10.1016/j.eswa.2005.01.006

Rgio S. C. Silva, Rodrigo M. P. Silva, Raquel C. G. Pinto, & Ronaldo M. Salles.

(2013). Botnets: A survey. Comput. Netw., 57(2), 378-403. doi:

10.1016/j.comnet.2012.07.021

Riedmiller, M. (2005). Neural Fitted Q Iteration – First Experiences with a Data

Efficient Neural Reinforcement Learning Method. In J. Gama, R. Camacho, P.

Brazdil, A. Jorge & L. Torgo (Eds.), Machine Learning: ECML 2005 (Vol.

3720, pp. 317-328): Springer Berlin Heidelberg.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster

backpropagation learning: the RPROP algorithm. Paper presented at the the

IEEE International Conference on Neural Networks, San Francisco, USA.

Rodríguez-Gómez, R. A., Maciá-Fernández, G., & García-Teodoro, P. (2013). Survey

and taxonomy of botnet research through life-cycle. ACM Computing Surveys

(CSUR), 45(4), 45. doi: 10.1145/2501654.2501659

Roesch, M. (1999). Snort: Lightweight Intrusion Detection for Networks. Paper

presented at the 13th USENIX conference on System administration, Seattle,

Washington.

Roughan, M., Sen, S., Spatscheck, O., & Duffield, N. (2004). Class-of-service mapping

for QoS: a statistical signature-based approach to IP traffic classification. Paper

presented at the Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement, Taormina, Sicily, Italy.

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., Hakimian, P.

(2011). Detecting P2P botnets through network behavior analysis and machine

learning. Paper presented at the Ninth Annual International Conference on

Privacy, Security and Trust (PST), Montreal, QC.

Sang-Kyun, N., Joo-Hyung, O., Jae-Seo, L., Bong-Nam, N., & Hyun-Cheol, J. (2009).

Detecting P2P Botnets Using a Multi-phased Flow Model. Paper presented at

the Third International Conference on Digital Society, Cancun, Mexico

http://dx.doi.org/10.1016/j.eswa.2005.01.006

 References

131

Scanlon, M., & Kechadi, T. (2012). Peer-to-Peer Botnet Investigation: A Review. In J.

J. Park, V. C. M. Leung, C.-L. Wang & T. Shon (Eds.), Future Information

Technology, Application, and Service (Vol. 179, pp. 231-238): Springer

Netherlands.

Schaal, S., & Atkeson, C. G. (1994). Robot juggling: implementation of memory-based

learning. Control Systems, IEEE, 14(1), 57-71. doi: 10.1109/37.257895

Schäfer, A. M. (2008). Reinforcement Learning with Recurrent Neural Networks. (PhD

thesis), University of Osnabrück.

Schiller, C., & Binkley, J. R. (2011). Botnets: The killer web applications: Syngress.

Seewald, A. K., & Gansterer, W. N. (2010). On the detection and identification of

botnets. Computers & Security, 29(1), 45-58. doi:

10.1016/j.cose.2009.07.007

Selvaraj, K. (2014). A Brief Look at Zeus/Zbot 2.0. Symantec Security Response.

Retrieved 18-Jan-2016, from http://www.symantec.com/connect/blogs/brief-

look-zeuszbot-20

Seungwon, S., Zhaoyan, X., & Guofei, G. (2012). EFFORT: Efficient and effective bot

malware detection. Paper presented at the INFOCOM, 2012 Proceedings IEEE,

Orlando, FL.

Shen, Z., & Wang, H. (2009). Network Data Packet Capture and Protocol Analysis on

Jpcap-Based. Paper presented at the International Conference on Information

Management, Innovation Management and Industrial Engineering, Xi'an, China.

Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a

systematic approach to generate benchmark datasets for intrusion detection.

Computers & Security, 31(3), 357-374. doi:

http://dx.doi.org/10.1016/j.cose.2011.12.012

Singh, S., Jaakkola, T., Littman, M., & Szepesvári, C. (2000). Convergence Results for

Single-Step On-Policy Reinforcement-Learning Algorithms. Machine Learning,

38(3), 287-308. doi: 10.1023/A:1007678930559

Smallwood, R. D., & Sondik, E. J. (1973). The optimal control of partially observable

Markov processes over a finite horizon. Operations Research, 21(5), 1071-1088.

Staniford, S., Hoagland, J. A., & McAlerney, J. M. (2002). Practical automated

detection of stealthy portscans. Journal of Computer Security, 10(1), 105-136.

Stevanovic, M., Revsbech, K., Pedersen, J., Sharp, R., & Jensen, C. (2012). A

Collaborative Approach to Botnet Protection multidisciplinary Research and

Practice for Information Systems. In G. Quirchmayr, J. Basl, I. You, L. Xu & E.

Weippl (Eds.), (Vol. 7465, pp. 624-638): Springer Berlin / Heidelberg.

Stinson, E., & Mitchell, J. C. (2007). Characterizing Bots' Remote Control Behavior.

Paper presented at the Proceedings of the 4th international conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, Lucerne,

Switzerland.

Stock, B., Go, x, bel, J., Engelberth, M., Freiling, F. C., & Holz, T. (2009). Walowdac -

Analysis of a Peer-to-Peer Botnet. Paper presented at the European Conference

on Computer Network Defense (EC2ND), Milan, Italy.

http://www.symantec.com/connect/blogs/brief-look-zeuszbot-20
http://www.symantec.com/connect/blogs/brief-look-zeuszbot-20
http://dx.doi.org/10.1016/j.cose.2011.12.012

 References

132

Stover, S., Dittrich, D., Hernandez, J., & Dietrich, S. (2007). Analysis of the Storm and

Nugache Trojans: P2P is here. USENIX; login, 32(6), 18-27.

Strayer, W. T., Walsh, R., Livadas, C., & Lapsley, D. (2006). Detecting Botnets with

Tight Command and Control. Paper presented at the 31st IEEE Conference on

Local Computer Networks, Tampa, USA.

Swets, J. A. (2014). Signal detection theory and ROC analysis in psychology and

diagnostics: Collected papers: Psychology Press.

Symantec Corporation. (2014). Symantec Internet security threat report (Vol. 19).

Szymczyk, M. (2009). Detecting Botnets in Computer Networks Using Multi-agent

Technology. Paper presented at the Fourth International Conference on

Dependability of Computer Systems, Brunow, Germany.

TAX, D. (2001). One-class classification. (PhD thesis), TU Delft University.

TcpReplay. (2014). TCPReplay (Version 4.0.1). Retrieved from

http://tcpreplay.synfin.net

Tegeler, F., Fu, X., Vigna, G., & Kruegel, C. (2012). BotFinder: finding bots in network

traffic without deep packet inspection. Paper presented at the Proceedings of the

8th international conference on Emerging networking experiments and

technologies, Nice, France.

Tesauro, G. (1994). TD-Gammon, a self-teaching backgammon program, achieves

master-level play. Neural Computation, 6(2), 215-219.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Commun. ACM,

38(3), 58-68. doi: 10.1145/203330.203343

Timothy, S. W., David, L., Robert, W., & Carl, L. (2008). Botnet Detection Based on

Network Behavior. In W. Lee, C. Wang & D. Dagon (Eds.), Botnet Detection

(Vol. 36, pp. 1-24): Springer US.

Trend-Micro. (2006). Taxonomy of botnet threats, A Trend Micro White Paper.

Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., & Lin, W.-Y. (2009). Intrusion detection by machine

learning: A review. Expert Systems with Applications, 36(10), 11994-12000. doi:

http://dx.doi.org/10.1016/j.eswa.2009.05.029

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of temporal-difference learning

with function approximation. Automatic Control, IEEE Transactions on, 42(5),

674-690. doi: 10.1109/9.580874

Tyagi, A. K., & Aghila, G. (2011). A wide scale survey on botnet. International Journal

of Computer Applications, 34(9), 9-22.

Tyagi, R., Paul, T., Manoj, B. S., & Thanudas, B. (2015, 17-20 Dec. 2015). A novel

HTTP botnet traffic detection method. Paper presented at the 2015 Annual IEEE

India Conference (INDICON).

Ullah, I., Khan, N., & Aboalsamh, H. A. (2013). Survey on botnet: Its architecture,

detection, prevention and mitigation. Paper presented at the 10th IEEE

International Conference on Networking, Sensing and Control (ICNSC), Oslo,

Norwegia.

http://tcpreplay.synfin.net/
http://dx.doi.org/10.1016/j.eswa.2009.05.029

 References

133

Van der Putten, P., & Van Someren, M. (2004). A Bias-Variance Analysis of a Real

World Learning Problem: The CoIL Challenge 2000. Machine Learning, 57(1-

2), 177-195. doi: 10.1023/B:MACH.0000035476.95130.99

Villamarin-Salomon, R., & Brustoloni, J. C. (2008). Identifying Botnets Using Anomaly

Detection Techniques Applied to DNS Traffic. Paper presented at the 5th IEEE

Consumer Communications and Networking Conference (CCNC). Las Vegas,

USA.

Wang, K., Huang, C.-Y., Lin, S.-J., & Lin, Y.-D. (2011). A fuzzy pattern-based filtering

algorithm for botnet detection. Computer Networks, 55(15), 3275-3286. doi:

10.1016/j.comnet.2011.05.026

Wang, P., Sparks, S., & Zou, C. C. (2010). An advanced hybrid peer-to-peer botnet.

Dependable and Secure Computing, IEEE Transactions on, 7(2), 113-127.

Wang, P., Wu, L., Aslam, B., & Zou, C. (2015). Analysis of Peer-to-Peer Botnet

Attacks and Defenses. In D. Król, D. Fay & B. Gabryś (Eds.), Propagation

Phenomena in Real World Networks (Vol. 85, pp. 183-214): Springer

International Publishing.

Wang, X., Qiu, W., & Zamar, R. H. (2007). CLUES: A non-parametric clustering

method based on local shrinking. Computational Statistics & Data Analysis,

52(1), 286-298. doi: http://dx.doi.org/10.1016/j.csda.2006.12.016

Watkins, C. J. C. H. (1989). Learning from delayed rewards. (Ph.D. thesis), University

of Cambridge England.

Weaver, N., Paxson, V., Staniford, S., & Cunningham, R. (2003). A taxonomy of

computer worms. Paper presented at the Proceedings of the 2003 ACM

workshop on Rapid malcode, Washington, DC, USA.

Weaver, R. (2010). A probabilistic population study of the Conficker-C botnet. Paper

presented at the Proceedings of the 11th international conference on Passive and

active measurement, Zurich, Switzerland.

Wechsler, & Harry. (2000). Learning from Data: Concepts, Theory and Methods,

Vladimir Cherkassky and Filip Mulier, John Wiley, New York, 1998.

International Journal of Robust and Nonlinear Control, 10(9), 747-748. doi:

10.1002/1099-1239(20000730)10:9<747::AID-RNC507>3.0.CO;2-5

Wei, L., Tavallaee, M., Rammidi, G., & Ghorbani, A. A. (2009). BotCop: An Online

Botnet Traffic Classifier. Paper presented at the Seventh Annual Communication

Networks and Services Research Conference(CNSR), Moncton, NB.

Wen-Hwa, L., & Chia-Ching, C. (2010). Peer to Peer Botnet Detection Using Data

Mining Scheme. Paper presented at the the international Conference on Internet

Technology and Applications, Wuhan, China.

Werbos, P. J. (1992). Neural networks and the human mind: new mathematics fits

humanistic insight. Paper presented at the the IEEE International Conference on

Systems, Man and Cybernetics, 1992, Chicago, USA.

Wireshark. (2015). Wireshark (Version 1.12.8). Retrieved from

http://www.wireshark.org

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques (Second ed.): Morgan Kaufmann.

http://dx.doi.org/10.1016/j.csda.2006.12.016
http://www.wireshark.org/

 References

134

Xiaomei, D., Fei, L., Xiaohua, L., & Xiaocong, Y. (2010). A novel Bot detection

algorithm based on API call correlation. Paper presented at the Seventh

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),

Yantai, Shandong.

Yang, W., Fang, B.-X., Liu, B., & Zhang, H.-L. (2004). Intrusion detection system for

high-speed network. Computer Communications, 27(13), 1288-1294. doi:

http://dx.doi.org/10.1016/j.comcom.2004.03.001

Yen, T.-F. (2011). Detecting stealthy malware using behavioral features in network

traffic. (Ph.D), Carnegie Mellon University.

Yen, T.-F., & Reiter, M. (2008). Traffic Aggregation for Malware Detection. Paper

presented at the 5th international conference on Detection of Intrusions and

Malware, and Vulnerability Assessmen, Paris, France.

Yuanyuan, Z., Xin, H., & Shin, K. G. (2010). Detection of botnets using combined host-

and network-level information. Paper presented at the IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), Chicago, USA.

Zeidanloo, H. R., Bt Manaf, A., Vahdani, P., Tabatabaei, F., & Zamani, M. (2010).

Botnet detection based on traffic monitoring. Paper presented at the International

Conference on Networking and Information Technology (ICNIT),

Manila,Philippines.

Zeidanloo, H. R., Shooshtari, M. J. Z., Amoli, P. V., Safari, M., & Zamani, M. (2010).

A taxonomy of Botnet detection techniques. Paper presented at the 3rd IEEE

International Conference onComputer Science and Information Technology

(ICCSIT), Chengdu, China.

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A New Data Clustering

Algorithm and Its Applications. Data Mining and Knowledge Discovery, 1(2),

141-182. doi: 10.1023/a:1009783824328

Zhang, W., & Dietterich, T. G. (1996). High-performance job-shop scheduling with a

time delay TD(λ) network. Paper presented at the Advances in neural

information processing systems, Cambridge.

Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., & Garant, D. (2013).

Botnet detection based on traffic behavior analysis and flow intervals.

Computers & Security, 39, Part A(0), 2-16. doi:

http://dx.doi.org/10.1016/j.cose.2013.04.007

Zhaosheng, Z., Guohan, L., Yan, C., Zhi, F., Roberts, P., & Keesook, H. (2008). Botnet

Research Survey. Paper presented at the 32nd Annual IEEE International

computer Software and Applications, Turku.

http://dx.doi.org/10.1016/j.comcom.2004.03.001
http://dx.doi.org/10.1016/j.cose.2013.04.007

 APPENDICES

135

APPENDICES

A APPENDIX A

A.1 Evaluation the efficiency of the proposed approach using

reference dataset for 20, 40 and 50 seconds time windows.

The evaluation results for training the neural network agent in the online phase based on

the reference dataset (train dataset) are demonstrated in Figure A.1 to Figure A.4. It can

be clearly seen that different performance measurements on the result from different time-

window sizes. Based on these, results for 20s, 40s, and 50s time-windows are calculated.

 APPENDICES

136

Figure A.1 Online evaluations the ACC of a classifier based on a reference dataset.

Figure A.2 Online evaluations the AUC of a classifier based on a reference dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0.96

0.97

0.98

0.99

1
(C) 50-Seconds time-window

Neural Network Training Index

A
C

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.94

0.96

0.98

1
(B) 40-Seconds time-window

Neural Network Training Index

A
C

C

1 2 4 6 8 10 12 14 16 18 20 22
0.92

0.94

0.96

0.98
(A) 20-Seconds time-window

Neural Network Training Index

A
C

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0.96

0.97

0.98

0.99

1
(C) 50-Seconds time-window

Neural Network Training Index

A
U

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.94

0.96

0.98

1
(B) 40-Seconds time-window

Neural Network Training Index

A
U

C

1 2 4 6 8 10 12 14 16 18 20 22
0.92

0.93

0.94

0.95

0.96
(A) 20-Seconds time-window

Neural Network Training Index

A
U

C

 APPENDICES

137

Figure A.3 Online evaluations the MCC of a classifier based on a reference dataset.

Figure A.4 Online evaluations the RMSE of a classifier based on a reference dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0.88

0.9

0.92

0.94

0.96
(C) 50-Seconds time-window

Neural Network Training Index

M
C

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.8

0.85

0.9

0.95

1
(B) 40-Seconds time-window

Neural Network Training Index

M
C

C

1 2 4 6 8 10 12 14 16 18 20 22
0.8

0.85

0.9

0.95

1
(A) 20-Seconds time-window

Neural Network Training Index

M
C

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0

0.05

0.1

0.15

0.2
(C) 50-Seconds time-window

Neural Network Training Index

R
M

S
E

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.05

0.1

0.15

0.2

0.25
(B) 40-Seconds time-window

Neural Network Training Index

R
M

S
E

1 2 4 6 8 10 12 14 16 18 20 22
0.05

0.1

0.15

0.2

0.25

(A) 20-Seconds time-window

Neural Network Training Index

R
M

S
E

 APPENDICES

138

B APPENDIX B

B.1 Evaluation the efficiency of the proposed approach using

updated dataset for 20, 40 and 50 seconds.

This section gives an overview of the evaluation results of the neural network agent in

Bot detection using the updated dataset with new behaviours. The results obtained from

the analysis of the online experiment outcomes are summarized in Figure B.1 to Figure

B.4 for 20s, 40s, and 50s time-windows are calculated.

Figure B.1 Online evaluations the ACC of a classifier based on an updated dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0.96

0.97

0.98

0.99
(C) 50-Seconds time-window

Neural Network Training Index

A
C

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.94

0.96

0.98

1
(B) 40-Seconds time-window

Neural Network Training Index

A
C

C

1 2 4 6 8 10 12 14 16 18 20 22
0.92

0.93

0.94

0.95

0.96
(A) 20-Seconds time-window

Neural Network Training Index

A
C

C

 APPENDICES

139

Figure B.2 Online evaluations the AUC of a classifier based on an updated dataset.

Figure B.3 Online evaluations the MCC of a classifier based on an updated dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0.95

0.96

0.97

0.98

0.99

(C) 50-Seconds time-window

Neural Network Training Index

A
U

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.94

0.96

0.98

1
(B) 40-Seconds time-window

Neural Network Training Index

A
U

C

1 2 4 6 8 10 12 14 16 18 20 22
0.94

0.95

0.96

0.97

0.98
(A) 20-Seconds time-window

Neural Network Training Index

A
U

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46

0.9

0.95

1
(C)50-Seconds time-window

Neural Network Training Index

M
C

C

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.8

0.85

0.9

0.95

1
(B) 40-Seconds time-window

Neural Network Training Index

M
C

C

1 2 4 6 8 10 12 14 16 18 20 22
0.75

0.8

0.85

0.9

0.95
(A) 20-Seconds time-window

Neural Network Training Index

M
C

C

 APPENDICES

140

Figure B.4 Online evaluations the RMSE of a classifier based on an updated dataset.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 46
0.05

0.1

0.15

0.2

0.25
(C) 50-Seconds time-window

Neural Network Training Index

R
M

S
E

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43
0.05

0.1

0.15

0.2

0.25
(B) 40-Seconds time-window

Neural Network Training Index

R
M

S
E

1 2 4 6 8 10 12 14 16 18 20 22
0.1

0.15

0.2

0.25
(A) 20-Seconds time-window

Neural Network Training Index

R
M

S
E

 APPENDICES

141

C LIST OF EXPERIMENT PARAMETERS

1. The minimum level to accept the new neural network (after retrained) based on

the reference dataset.

Table C.1 Evaluation parameter of new neural network using reference dataset

Evaluation Method Parameter value

AUC >0.90

MCC >0.80

ACC >0.90

RMSE <0.20

2. The minimum level to accept the new neural network (after retrained) based on

the updated dataset.

Table C.2 Evaluation parameter of new neural network using updated dataset

Evaluation Method Parameter value

AUC >0.90

MCC >0.80

ACC >0.90

RMSE <0.20

3. The threshold number used of exploration step per host is five.

4. The value of threshold factor that allow the proposed system to change state form

exploration to exploitation.

𝑇𝑠 ≥ 0.15

 APPENDICES

142

5. Neural network parameter.

Neural network parameter Parameter value

Number of layers 5

Input layer neurons 16

output layer neurons 2

Neuron per hidden layer 10

Learning function Resilient Backpropagation

epochs 1000

goal 1e-5

Error function of MSE

6. Cross-validation 5-fold was used.

 APPENDICES

143

D IMPLEMENTATION FRAMEWORK

1. Traffic capture module.

a) Pseudo code

import java.util.ArrayList;

import java.util.List;

import org.jnetpcap.Pcap;

import org.jnetpcap.PcapIf;

import org.jnetpcap.packet.PcapPacket;

import org.jnetpcap.packet.PcapPacketHandler;

import org.jnetpcap.protocol.network.Ip4;

public class PackageCapture

{

public static void main(String[] args)

{

List<PcapIf> alldevs = new ArrayList<PcapIf>();

StringBuilder errbuf = new StringBuilder

int r = Pcap.findAllDevs(alldevs, errbuf);

if (r != Pcap.OK || alldevs.isEmpty())

{

 System.err.printf("Can't read list of devices, error is %s",

errbuf.toString());

return;

 }

System.out.println("Network devices found:");

int i = 0;

for (PcapIf device : alldevs)

{

String description = (device.getDescription() != null) ?

device.getDescription():"Nodescription

available";.out.printf("#%d: %s [%s]\n", i++,

device.getName(),description);

}

PcapIf device = alldevs.get(0); // Get first device in list

System.out.printf("\nChoosing '%s' on your behalf:\n",

 (device.getDescription() != null) ? device.getDescription()

: device.getName());

int snaplen = 64 * 1024; // Capture all packets, no trucation

int flags = Pcap.MODE_PROMISCUOUS; // capture all packets

 APPENDICES

144

int timeout = 10 * 1000; // 10 seconds in millis

Pcap pcap = Pcap.openLive(device.getName(), snaplen, flags,

timeout, errbuf);

if (pcap == null) {System.err.printf("Error while opening device

for capture: "+ errbuf.toString());

return;

}

PcapPacketHandler<String> jpacketHandler = new

PcapPacketHandler<String>()

{

public void nextPacket(PcapPacket packet, String user) {

byte[] data = packet.getByteArray(0, packet.size()); // the

package data

byte[] sIP = new byte[4];

byte[] dIP = new byte[4];

Ip4 ip = new Ip4();

if (packet.hasHeader(ip) == false) {

return; packet

}

ip.source(sIP);

ip.destination(dIP);

String sourceIP = org.jnetpcap.packet.format.FormatUtils.ip(sIP);

String destinationIP =

org.jnetpcap.packet.format.FormatUtils.ip(dIP);

System.out.println("srcIP=" + sourceIP + " dstIP=" +

destinationIP + " caplen=" + packet.getCaptureHeader().caplen());

}

};

pcap.loop(10, jpacketHandler, "jNetPcap");

pcap.close();

}

}

 APPENDICES

145

2. Traffic reduction module.

a) Input: network packets.

b) Output: TCP control packets.

c) Pseudo code:

 function contrl_packets = Traffic_Reducton(raw)

 temp = raw;

 control_pak = [];

 Res=[];

 for j = 1:size(temp,1)

 SYN=~isempty(strfind(cell2mat(temp(j,8)),'[SYN]'));

 ACK=~isempty(strfind(cell2mat(temp(j,8)),'[ACK]'));

 FIN=~isempty(strfind(cell2mat(temp(j,8)),'[FIN]'));

 RST=~isempty(strfind(cell2mat(temp(j,8)),'[RST]'));

 SACK=~isempty(strfind(cell2mat(temp(j,8)),'[SYN, ACK]'));

 FACK=~isempty(strfind(cell2mat(temp(j,8)),'[FIN, ACK]'));

 RACK=~isempty(strfind(cell2mat(temp(j,8)),'[RST, ACK]'));

 if (ACK | SYN | FIN | RST |SACK|FACK|RACK)

 control_pak = cat(1, control_pak, temp(j, :));

 Res = cat(1, Res, temp(j, :));

 end

 end

 save('Cont_packet.mat', 'control2');

 contrl_packets=control_pak;

 end

 APPENDICES

146

3. Connection-level features extraction module.

a) Input: Time window size and TCP control packets.

b) Output: Connection-level features list.

c) Pseudo code:

function extract_flow = extract(control_raw,time_w)

temp2 = control_raw;

temp = temp2;

CPT = [];

Res = [];

while ~isempty(temp)

x=[];

 TIME_rACK=[]; % reactive ACK packets - time sequence per

connection.

 TIME_sACK=[]; % send ACK packets - time sequence per connection.

 TIME_rSYN=[]; % receive SYN packets - time sequence per

connection.

 TIME_sSYN=[];% send SYN packets - time sequence per connection.

 paket_seq=[]; % packets sequence per connection.

 start_Conn=0; % start time of connection.

 cp = 0; % total number of packet.

 NsendPacket=0; % total number of send packets.

 NrecivePacket=0; % total number of receive packets.

 TotalSendByte=0; %total number of send Bytes per connection.

 TotalReciveByte=0;%total number of receive Bytes per connection.

 NsendSyn=0;% number of send SYN packets per connection.

 NreciveSyn=0;% number of receive SYN packets per connection.

 NsendAck=0; %number of send ACK packets per connection.

 NreciveAck=0;%number of receive ACK packets per connection.

 NsendSynAck=0;%number of send SYN ACK packets per connection.

 sACK=0; %number of send ACK=1 packets per connection.

 NreciveSynAck=0;%number of receive SYN ACK packets per connection.

 rACK=0; %number of receive ACK=1 packets per connection.

 NsendDupAck=0;%number of send double ACK packets per connection.

 NreciveDupAck=0;%number of receive double ACK packets per

connection.

 NsendFinAck=0;%number of send FIN ACK packets per connection.

 APPENDICES

147

 NreciveFinack=0;%number of receive FIN ACK packets per connection.

 SendRSTack=0;%number of send RST ACK packets per connection.

 RecivdRSTack=0; %number of receive RST ACK packets per connection.

 avg_time=0; % Avg. time between packets.

 defrent_time=0; % time between connections.

 avgLengthSendPacket=0;% Avg. length of send packets.

 avgLengthRecivedPacket=0;%Avg. length of receive packets.

 avgLengtPacket=0;% Avg. length of packets.

 SendFailedConnection =0;% number of send fail per connection.

 TotalRConnection=0;% Total number of receive connections.

 RecivdRST=0; % number of receive RST packets per connection.

 RecivdRSTack=0;% number of receive RST ACK packets per

connection.

 SendRSTack=0;% number of send RST ACK packets per connection.

 SendRST=0;% number of send RST packets per connection.

 scanCount=0;% number of scanning activates.

 %

 cpt = 0;

 temp = temp2;

 host_A=temp(1, 2);

 host_B=temp(1, 3);

 port_A=temp(1, 4);

 port_B=temp(1, 5);

 start_Con=cell2mat(temp(1,6));

 s1 = strcat(temp(1, 2), temp(1, 3),temp(1, 4),temp(1, 5));

 for j = 1:size(temp, 1)

 s3 = strcat(temp(j, 2), temp(j, 3),temp(j, 4),temp(j, 5));

 s4 = strcat(temp(j, 3), temp(j, 2),temp(j, 5),temp(j, 4));

 if strcmp(s3, s1) % send packet

 timePacket=[timePacket cell2mat(temp(j,6))];

 Res = cat(1, Res, temp(j, :));

 NsendPacket=NsendPacket+1;

 TotalSendByte=TotalSendByte+cell2mat(temp(j,7));

 if ((~isempty(strfind(cell2mat(temp(j,8)),

 '[SYN]'))&(isempty(strfind(cell2mat(temp(j,8)),'[TCP

 Retransmission]')))...

 APPENDICES

148

 & (isempty(strfind(cell2mat(temp(j,8)),'[TCP Out-Of-

 Order]')))))

 NsendSyn=NsendSyn+1;

 paket_seq=[paket_seq 's1,'];

 TIME_sSYN=[TIME_sSYN num2str(cell2mat(temp(j,6)))';'];

 timesyn=cell2mat(temp(j,6));

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[SYN,

 ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=0

 ')))

 NsendSynAckseq0=NsendSynAckseq0+1;

 paket_seq=[paket_seq '1s2,'];

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[SYN, ACK]'))

 NsendSynAck=NsendSynAck+1;

 timeSrstack=cell2mat(temp(j,6));

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[ACK]'))

 NsendAck=NsendAck+1;

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[FIN,

 ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)),'Seq=1

 Ack=1 ')))

 NsendFinAck=NsendFinAck+1;

 paket_seq=[paket_seq '1s7,'];

 timeSfinack=cell2mat(temp(j,6));

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), 'Dup'))

 NsendDupAck=NsendDupAck+1;

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[RST]'))

 SendRST=SendRST+1;

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[RST]'))&&

 ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1 ')))

 APPENDICES

149

 SendRSTseq1=SendRSTseq1+1;

 paket_seq=[paket_seq '1s4,'];

 timeSrst=cell2mat(temp(j,6));

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[RST, ACK]'))

 SendRSTack=SendRSTack+1;

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[RST,

 ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1

 ')))

 SendRSTackSeq1=SendRSTackSeq1+1;

 paket_seq=[paket_seq '1s5,'];

 timeSrstack=cell2mat(temp(j,6));

 end

 ACK1=~isempty(strfind(cell2mat(temp(j,8)),'[ACK]'));

 ack_seq=~isempty(strfind(cell2mat(temp(j,8)),'Seq=1

 Ack=1 '));

 dumack=isempty(strfind(cell2mat(temp(j,8)),'Dup '));

 keepAliveAck=isempty(strfind(cell2mat(temp(j,8)),'[TCP

 Keep-Alive] '));

 if(ACK1 & ack_seq & dumack & keepAliveAck)

 sACK=sACK+1;

 TIME_sACK=[TIME_sACK num2str(cell2mat(temp(j,6))) ','];

 timeSack=cell2mat(temp(j,6));

 paket_seq=[paket_seq '1s3,'];

 end

 temp2(j-cpt, :) = [];

 cpt = cpt + 1;

 cp = cp + 1;

 elseif strcmp(s4, s1) % receive packet

 Res = cat(1, Res, temp(j, :));

 timePacket=[timePacket cell2mat(temp(j,6))];

 NrecivePacket=NrecivePacket+1;

 TotalReciveByte=TotalReciveByte+cell2mat(temp(j, 7));

 APPENDICES

150

 if ((~isempty(strfind(cell2mat(temp(j,8)), '[SYN]'))&

 (isempty(strfind(cell2mat(temp(j,8)),'[TCP Out-Of-Order]'

)))))

 NreciveSyn=NreciveSyn+1;

 paket_seq=[paket_seq 'r1,'];

 TIME_rSYN=[TIME_rSYN num2str(cell2mat(temp(j,6))) ';'];

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[ACK]'))

 NreciveAck=NreciveAck+1;

 end

 if (~isempty(strfind(cell2mat(temp(j,8)),'[SYN, ACK]'

))&& ~isempty(strfind(cell2mat(temp(j,8)),'Seq=0 ')))

 NreciveSynAckseq0=NreciveSynAckseq0+1;

 paket_seq=[paket_seq '1r2,'];

 timeRsynack=cell2mat(temp(j,6));

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[SYN, ACK]'))

 NreciveSynAck=NreciveSynAck+1;

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), 'Dup'))

 NreciveDupAck=NreciveDupAck+1;

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[RST]'))

 RecivdRST=RecivdRST+1;

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[RST]'))&&

 ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1 ')))

 RecivdRSTseq1=RecivdRSTseq1+1;

 paket_seq=[paket_seq '1r4,'];

 timeRrst=cell2mat(temp(j,6));

 end

 if ~isempty(strfind(cell2mat(temp(j,8)), '[RST, ACK]'))

 RecivdRSTack=RecivdRSTack+1;

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[RST, ACK]'))&&

 APPENDICES

151

 ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1 ')))

 RecivdRSTackseq1=RecivdRSTackseq1+1;

 paket_seq=[paket_seq '1r5,'];

 timeRrstack=cell2mat(temp(j,6));

 end

 if (~isempty(strfind(cell2mat(temp(j,8)), '[FIN,

 ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)),'Seq=1

 Ack=1 ')))

 NreciveFinack=NreciveFinack+1;

 paket_seq=[paket_seq '1r7,'];

 end

 ACK2=~isempty(strfind(cell2mat(temp(j,8)),'[ACK]'));

 ack_seq=~isempty(strfind(cell2mat(temp(j,8)),'Seq=1

 Ack=1 '));

 dumack=isempty(strfind(cell2mat(temp(j,8)),'Dup '));

 keepAliveAck=isempty(strfind(cell2mat(temp(j,8)),'[TCP

 Keep-Alive] '));

 if(ACK2 & ack_seq & dumack & keepAliveAck)

 rACK=rACK+1;

 TIME_rACK=[TIME_rACK num2str(cell2mat(temp(j,6))) ','];

 paket_seq=[paket_seq '1r3,'];

 end

 temp2(j-cpt, :) = [];

 cpt = cpt + 1;

 cp = cp + 1;

 end

 end

 temp = temp2;

 if (NsendPacket>0)

 avgLengthSendPacket= TotalSendByte/NsendPacket;

 end

 if(NrecivePacket>0)

 avgLengthRecivedPacket=TotalReciveByte/NrecivePacket;

 end

 avgLengtPacket=(avgLengthSendPacket+avgLengthRecivedPacket)/2;

 APPENDICES

152

 if (NsendSynAckseq0==cp)

 synackscan=NsendSynAckseq0;

 end

 % send connection info.

 SendFailedConnection1 =(NsendSyn-sACK);

SendFailedConnection2=SendRSTackSeq1+SendRSTseq1+RecivdRSTackseq1+Re

civdRSTseq1+synackscan;

 if (SendFailedConnection1>=SendFailedConnection2)

 SendFailedConnection=SendFailedConnection1;

 else

 SendFailedConnection=SendFailedConnection2;

 end

 % Received connection info.

 RecivedFailedConnection1 =(NreciveSyn-rACK);

 RecivedFailedConnection12=RecivdRSTackseq1+RecivdRSTseq1;

 if (RecivedFailedConnection1>=RecivedFailedConnection12)

 RecivedFailedConnection=RecivedFailedConnection1;

 else

 RecivedFailedConnection=RecivedFailedConnection12;

 end

 conection_Duration=timePacket(size(timePacket,2))-timePacket(1);

if ~isempty(TIME_sSYN)

 TIME_sSYN_vector=((TIME_sSYN))';

 num_TIME_sSYN_vector=size(TIME_sSYN_vector,2);

 if (num_TIME_sSYN_vector>1)

 for i = 2:num_TIME_sSYN_vector

 defrent_time=defrent_time+(TIME_sSYN_vector(i)-

TIME_sSYN_vector(i-1));

 end

 avg_time=defrent_time/(num_TIME_sSYN_vector-1);

 end

 end

 x=[time_w,start_Con,host_A,host_B,port_A,port_B,...

 paket_seq,...

 TIME_sSYN,...

 APPENDICES

153

 TIME_rSYN,...

 cp,...

 NsendPacket,...

 NrecivePacket,...

 TotalSendByte,...

 TotalReciveByte,...

 NsendSyn,...

 NreciveSyn,...

 NsendAck,...

 NreciveAck,...

 NsendDupAck,...

 NreciveDupAck,...

 avgLengthSendPacket,...

 avgLengthRecivedPacket,...

 avgLengtPacket,...

 SendFailedConnection,...

 RecivedFailedConnection,...

 sACK,...

 rACK,...

 NsendSynAck,...

 NreciveSynAck,...

 TotalSendByte+TotalReciveByte,...

 NrecivePacket/cp,...

avgLengthSendPacket/((avgLengthSendPacket+avgLengthRecivedPacket)/2)

,...

 (NsendSyn-sACK)/NsendSyn,...

 NsendSyn-NreciveSynAck,...

 NsendFinAck,...

 NreciveFinack,...

 SendRSTack,...

 RecivdRSTack,...

 avg_time,...

 NsendSynAckseq0,...

 SendRSTseq1,...

 SendRSTackSeq1,...

 APPENDICES

154

 NreciveSynAckseq0,...

 RecivdRSTseq1,...

 RecivdRSTackseq1,...

SendRSTseq1+SendRSTackSeq1+RecivdRSTseq1+RecivdRSTackseq1+synackscan

,...

 conection_Duration];

 CPT = cat(1, CPT, x);

 cp = 0;

end

 extract_flow=CPT;

end

4. Host features extraction module.

a) Input: connection features.

b) Output: Host features.

c) Pseudo code:

function extract_IP = extract_host_features flow,time_w)

temp2 = flow;

temp = temp2;

CPT = [];

Res = [];

Targets=[];

paket_seq=[];

xx=[];

while ~isempty(temp)

 cpt=0;

 cp=0;

 Nsendflow=0; %number of send flows.

 NsendCon=0; %number of send connections.

 NreciveCon=0;%number of receive connections.

 NsendSyn=0; %number of send SYN packets.

 NSfailCon=0; %number of send failed connection.

 fail_conn=0; %total number of failed connections.

 timeSeq=[]; % packets time sequence.

 timeSeq1=[]; %packets time sequence.

 avg_flow_time=0; % average time flow between flow.

 APPENDICES

155

 sendConseq=0; %receiver IP address.

 portASeq=[]; % sender ports sequence.

 portBSeq=[]; % receiver ports sequence.

 defrent_time=0; % time between connections.

 %%%%%%%%%%%%%%%%% inter packet %%%%%%%

 clinet_synAck=[]; % Number of send SYN ACK packets in a

connection per host.

 clinet_synRst=[]; % Number of send SYN ACK packets in a

connection per host.

 clinet_synRstack=[];% Number of send RST ACK packets in a

connection per host.

 server_synRst=[]; % Number of receive RST packets in a

connection per host.

 Server_synRstack=[];% Number of receive RST ACK packets in a

connection per host.

 srver_finackRst=[];% Number of receive FIN ACK packets in a

connection per host.

 server_synSynack=[];% Number of receive SYN ACK packets in a

connection per host.

 %%%%%%%%%%%% number send, receive and total control packet %%%

 total_control=[];

 send_control=[];

 recive_control=[];

 %%%%%%%%%%%%%%%%%%%%%%%% connection - duration %%%%%%%%%%%%%%

 connections_Durations=[];

 Avg_connections_Duration=0;

 %%%%%%%%%%%%%%%%%%%%%%% port - severity %%%%%%%%%%%%%%%%%%%%%%

 portSH=0;

 portSL=0;

 portDH=0;

 portDL=0;

 host =temp(1,3);

 for j = 1:size(temp, 1)

 hostSend= temp(j,3);

 if strcmp(host, hostSend)

 Nsendflow=Nsendflow+1;% total of connections

 if (cell2mat(temp(j,15))>0 || cell2mat(temp(j,46))>0 ||

 cell2mat(temp(j,47))>0)

 timeSeq=[timeSeq num2str(cell2mat(temp(j,2))) ';'];

 APPENDICES

156

 timeSeq1=[timeSeq1 cell2mat(temp(j,2))];

 end

 sendConseq=[sendConseq cell2mat(temp(j,4)) ';'];% destination

IP address

 portASeq=[portASeq, temp(j,5)];% sender ports.

 portBSeq=[portBSeq, temp(j,6)];% destination ports.

 NsendCon=NsendCon+cell2mat(temp(j,26)); % number send Packets

Start Ack.

 NreciveCon=NreciveCon+cell2mat(temp(j,27)); % number of Packets

receive start ack.

 NSfailCon=NSfailCon+cell2mat(temp(j,24)); % number of fail

connection.

 NsendSyn=NsendSyn+cell2mat(temp(j,15)); % number send packets

start SYN.

 fail_conn=fail_conn+cell2mat(temp(j,24));

 ailconnseq =[failconnseq num2str(cell2mat(temp(j,24))) ','];

 %%%%%%%%%%%%%%%%%%%%%%%%%%% inter packet %%%%%%%%%%%%%%%%

 clinet_synAck=[clinet_synAck (cell2mat(temp(j,48))) ','];

 clinet_synRst=[clinet_synRst (cell2mat(temp(j,49))) ','];

 clinet_synRstack=[clinet_synRstack (cell2mat(temp(j,50))) ','];

 server_synRst=[server_synRst (cell2mat(temp(j,51))) ','];

 Server_synRstack=[Server_synRstack (cell2mat(temp(j,52))) ','];

 srver_finackRst=[srver_finackRst (cell2mat(temp(j,53))) ','];

 server_ack_rest=[server_ack_rest (cell2mat(temp(j,54))) ','];

 server_synSynack=[server_synSynack (cell2mat(temp(j,55))) ','];

%%%%%%%%%%%%%%%%%%%%%%%%%%%Ports severity %%%%%%%%%%%%%%%%

 if (find (cell2mat(temp(j,5))== portHseverity))

 portSH=portSH+1;

 else

 portSL=portSL+1;

 end

 if (find (cell2mat(temp(j,5))== portHseverity))

 portDH=portDH+1;

 else

 portDL=portDL+1;

 end

 %%%%%%%%%%%%%%%%%%%%%%%% connection duration %%%%%%%%%%%%%%

 APPENDICES

157

 connections_Durations=[connections_Durations

num2str(cell2mat(temp(j,56))) ','];

 %%%%%%%%%%%%%% number of sent received control packet %%%%%%%%%%

total_control=[total_control num2str(cell2mat(temp(j,10))) ','];

send_control=[send_control num2str(cell2mat(temp(j,11))) ','];

recive_control=[recive_control num2str(cell2mat(temp(j,12))) ','];

 temp2(j-cpt, :) = [];

 cpt = cpt + 1;

 cp = cp + 1;

 end

 end

 temp = temp2;

 %%

 Avg_clinet_synAck=mean(clinet_synAck);

 Avg_clinet_synRst=mean(clinet_synRst);

 Avg_clinet_synRstack=mean(clinet_synRstack);

 Avg_server_synRst=mean(server_synRst);

 Avg_Server_synRstack=mean(Server_synRstack);

 Avg_srver_finackRst=mean(srver_finackRst);

 Avg_server_ack_rest=mean(server_ack_rest);

 server_synSynack=mean(server_synSynack);

 Avg_connections_Duration=mean(connections_Durations);

avg_clinet_interarival=(Avg_clinet_synAck+Avg_clinet_synRst+Avg_cl

inet_synRstack)/3;

avg_server_interarival=(Avg_server_synRst+Avg_Server_synRstack+Avg

_srver_finackRst+Avg_server_ack_rest+server_synSynack)/5;

%%

 NportASeq=size(portASeq,2); % number of using port at sender

 NdefPortA=size(unique(cell2mat(portASeq)),2);

 NportBSeq=size(portBSeq,2); % number of using port at receiver.

 NdefPortB=size(unique(cell2mat(portBSeq)),2);

Nsend_Def_flow=size(unique(strread(sendConseq,'%s','delimiter',';'

)),1); % number of send different IP address.

 rateDeffIP=Nsend_Def_flow/Nsendflow;

%%%%%%%%%%%%%%%%%%% Avg time between connection per second %%%%%%

 if ~isempty(timeSeq)

 TIME_flow_vector=(timeSeq1);

 APPENDICES

158

 num_TIME_flow_vector=size(TIME_flow_vector,2);

 if (num_TIME_flow_vector>1)

 for i = 2:num_TIME_flow_vector

 time=[time num2str(TIME_flow_vector(i)-

TIME_flow_vector(i-1)) ','] ;

 defrent_time=defrent_time+(TIME_flow_vector(i)-

TIME_flow_vector(i-1));

 end

 avg_flow_time=defrent_time/(num_TIME_flow_vector-1);

 end

 end

 if Nsendflow>NsendSyn

 conn=Nsendflow;

 else

 conn= NsendSyn;

 end

%%%%%%% different time between connection time- entropy %%%%%%

if size(str2num(time),2)>1>1

tim_EntropyResult= Entropy(fix(str2num(time)'));

else

tim_EntropyResult=0;

end

%%%%%%%%%%%%%%%%% entropy control packet number %%%%%%%%%%%%%%

if size(str2num(total_control),2)>1

total_control_EntropyResult= Entropy(fix((total_control)'));

else

 total_control_EntropyResult=0;

end

if size(str2num(send_control),2)>1

send_control_EntropyResult= Entropy(fix((send_control)'));

else

 send_control_EntropyResult=0;

end

if size(str2num(recive_control),2)>1

recive_control_EntropyResult= Entropy(fix((recive_control)'));

else

 APPENDICES

159

 recive_control_EntropyResult=0;

end

 result=[time_w,host,Nsendflow,...

 NsendCon,NreciveCon,...send and receive connections with

ACk(1).

 NportASeq,NportBSeq,... total number of send and receive ports.

 NdefPortA,NdefPortB,...total number unique of send and receive

ports.

 Nsend_Def_flow,....

 NSfailCon,...

 NsendSyn,...

 NSfailCon/conn,...

 sendConseq,...

 avg_flow_time,...

 rateDeffIP,...

 NdefPortB/NportBSeq,...

 NdefPortA/NportASeq,...

 time,...

 timeSeq,...

 fail_conn,...

 failconnseq,...

 clinet_synAck,...

 clinet_synRst,...

 clinet_synRstack,...

 server_synRst,...

 Server_synRstack,...

 srver_finackRst,...

 server_ack_rest,...

 server_synSynack,...

 total_control,...

 send_control,...

 recive_control,...

 connections_Durations,...

 portSH,...

 portSL,...

 portDH,...

 APPENDICES

160

 portDL,...

 portSL/(portSL+portSH),... %rate of low severity source port

number

 portDL/(portDL+portDH),...% rate of low severity destination

port number

 Avg_clinet_synAck,...

 Avg_clinet_synRst,...

 Avg_clinet_synRstack,...

 Avg_server_synRst,...

 Avg_Server_synRstack,...

 Avg_srver_finackRst,...

 Avg_server_ack_rest,...

 server_synSynack,...

 Avg_connections_Duration,...

 total_control_EntropyResult,...

 send_control_EntropyResult,...

 recive_control_EntropyResult,...

 avg_clinet_interarival,...

 avg_server_interarival];...

CPT=cat(1, CPT, result); % results

 cp = 0;

end

 extract_IP=CPT;

 end

 APPENDICES

161

5. Entropy algorithm model.

a. Input: Number of control packets per connection.

b. Output: Connection entropy value.

c. Pseudo code:

function Entropy = Entropy(X)

[n m] = size(X);

H = zeros(1,m);

for Column = 1:m,

 % Assemble observed alphabet

 Alphabet = unique(X(:,Column));

 % Housekeeping

 Frequency = zeros(size(Alphabet));

 % Calculate sample frequencies

 for symbol = 1:length(Alphabet)

 Frequency(symbol) = sum(X(:,Column) == Alphabet(symbol));

 end

 % Calculate sample class probabilities

 P = Frequency / sum(Frequency);

 % Calculate entropy in bits

 % Note: floating point underflow is never an issue since we are

 % dealing only with the observed alphabet

 H(Column) = -sum(P .* log2(P));

 end

Entropy=H;

end

 APPENDICES

162

6. Reinforcement learning agent

a) Input: Host state (neural network outcomes).

b) Output: new updated neural network.

c) Pseudo code:

function check_NN_sataus()

 if (newBotitem+newNormalitem)/a >=threshold

 alldataset2= cat(1,alldataset,newdatasetitem);

%%%%%%%%%%%%% evaluation cross-validation for new dataset %%%%

result_cross_newDataset_online2=cross_valadition(alldataset2(:,19:20

)',alldataset2(:,1:16)');

result_cross_newDataset_online=cat(1,result_cross_newDataset_online,

result_cross_newDataset_online2);

%%%%%%%%%%%%%%%%%%%%%%%%%%train NEW neural network %%%%%%%%%

 net_test = patternnet([10 10 10]);

 net_test.trainFcn = 'trainrp';

 net_test.trainParam.epochs=500;

 net_test.trainParam.showWindow=false;

 net_test.trainParam.goal=1e-10;

 net_test.divideParam.trainRatio = 100/100;

 net_test.divideParam.valRatio = 0/100;

 net_test.divideParam.testRatio = 0/100;

 net_test.trainParam.showWindow=false;

 net_test.trainParam.showCommandLine = false;

 [net_test,tr]=

train(net_test,alldataset2(:,1:16)',alldataset2(:,19:20)');

 Y = net_test(alldataset2(:,1:16)');

 error=Y-alldataset2(:,19:20)';

result_cross_newDataset_online;

all_result_newDataset_online2=result_evaluation(alldataset2(:,19:20)

',Y,0,0)';

all_result_newDataset_online = cat(1,all_result_newDataset_online,

all_result_newDataset_online2);

% %%%%%%%%%%%%%%% make decision for change neural network %%%%%

if (result_cross_newDataset_online2(1,7)>0.95 &&

 result_cross_newDataset_online2(1,11)>0.5)

 net_last_good = net_test;

 alldataset= cat(1,alldataset,newdatasetitem);

 newdatasetitem=[]; %

 newBotitem=0;%

 newNormalitem=0;%

 APPENDICES

163

 totalNumber=0;

 Y1 = net_last_good(olddataset(:,1:16)');

 all_result_oldDataset_online2=result_evaluation(olddataset

 (:,17:18)',Y1,0,0)';

 all_result_oldDataset_online =

cat(1,all_result_oldDataset_online,all_result_oldDataset_online2);%%

 else

 newdatasetitem=[];

 newBotitem=0;

 newNormalitem=0;

 totalNumber=0;

 net_fail_index=net_fail_index+1;

end

%%%%%%%%%%%%%%%% system reset when missing old dataset%%%%%%%%

if (all_result_oldDataset_online2(1,7)<=0.90)

 net_last_good=net_ref;

 net_rest_index=net_rest_index+1;

 alldataset=olddataset;

 newdatasetitem=[]; % reset new dataset

 newBotitem=0; % reset botnet item counter

 newNormalitem=0;% reset normal item counter

 totalNumber=0;

end

 end

end

 APPENDICES

164

E PUBLICATIONS

1. Alauthaman, M., Aslam, N., Hossain, M.A.and Alasem, R, “Investigation on

Peer-to-Peer Botnet using TCP Control Packets and Data Mining Techniques”.

Seventh International Conference on Software, Knowledge, Information

Management and Applications (SKIMA 2013).

2. Alauthaman, M., Aslam, N., Hossain, M.A., Alasem, R. and Zhang, L. “A P2P

Botnet Detection Scheme based on Decision Tree and Adaptive Multi-layer

Neural Networks”. Neural Computing and Applications. (Accepted)

	thesis cover page
	Final_Alauthman_Thesis

