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ABSTRACT  

In recent years, Botnets have been adopted as a popular method used to carry and spread 

many malicious codes on the Internet. These codes pave the way to conducting many 

fraudulent activities, including spam mail, distributed denial of service attacks (DDoS) 

and click fraud. While many Botnets are set up using a centralized communication 

architecture such as Internet Relay Chat (IRC) and Hypertext Transfer Protocol (HTTP), 

peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay 

network for exchanging command and control (C&C) messages, which is a more resilient 

and robust communication channel infrastructure. Without a centralized point for C&C 

servers, P2P Botnets are more flexible to defeat countermeasures and detection 

procedures than traditional centralized Botnets. 

Several Botnet detection techniques have been proposed, but Botnet detection is still a 

very challenging task for the Internet security community because Botnets execute attacks 

stealthily in the dramatically growing volumes of network traffic. However, current 

Botnet detection schemes face with significant problem of efficiency and adaptability.  

The present study combined a traffic reduction approach with reinforcement learning 

(RL) method in order to create an online Bot detection system. The proposed framework 

adopts the idea of RL to improve the system dynamically over time. In addition, the traffic 

reduction method is used to set up a lightweight and fast online detection method. 

Moreover, a host feature based on traffic at the connection-level was designed, which can 

identify Bot host behaviour. Therefore, the proposed technique can potentially be applied 

to any encrypted network traffic since it depends only on the information obtained from 

packets header. Therefore, it does not require Deep Packet Inspection (DPI) and cannot 

be confused with payload encryption techniques. 

The network traffic reduction technique reduces packets input to the detection system, 

but the proposed solution achieves good a detection rate of 98.3% as well as a low false 

positive rate (FPR)  of 0.012% in the online evaluation. Comparison with other techniques 

on the same dataset shows that our strategy outperforms existing methods. The proposed 

solution was evaluated and tested using real network traffic datasets to increase the 

validity of the solution. 
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1 INTRODUCTION 

1.1  Introduction 

Internet services are increasing in popularity and many new online services appear every 

day. The use of online services leads to a massive volume of online financial transactions, 

where sensitive information is exchanged via the Internet. The attacker's interest may thus 

be converted from curiosity to economic benefit. Attackers utilise different types of 

malware to accomplish their goals. Among the diverse types of malware, the Botnet is 

considered to be the most dangerous means of performing online crimes  (Rgio S. C. 

Silva, Rodrigo M. P. Silva, Raquel C. G. Pinto, & Ronaldo M. Salles, 2013). 

A Botnet network contains Bots, which are computers infected by malware such as Trojan 

horses, backdoors or worms without the user’s permission. The Botmaster remotely 

manages a Botnet through a C&C channel (Gu, Perdisci, Zhang, & Lee, 2008). Recently, 

Botnets have been sold and rented in an underground market by Botmasters for 

commercial profit. They can begin many cyber-crimes: creating phishing web pages, 

carrying out massive amounts of spam emails, stealing sensitive users information and 

generating DDoS attacks (Ullah, Khan, & Aboalsamh, 2013).  

According to a recent Symantec Internet Security Threat Report in April 2014 (Symantec 

Corporation, 2014), Botnets accounted for 76% of all spam sent out in 2013, which was 

about 10 billion per day on average. Botnet infections are a global pandemic. Recently 

Microsoft alone estimated that, as of April 2015, more than one million machines are 

currently infected by the Ramnit worldwide Botnet (Batchelder et al., 2014). 
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The scale of Botnet contaminations worldwide makes the detection of Botnet activity an 

important task. Botnet detection has been a significant subject in the cyber security 

domain for the last decade. Despite concerted efforts reported in the literature degrade the 

malicious activities of Botnets, the diversity of Botnet structures and protocols creates 

from the Botnet detection a demanding task for the cyber-security society (Demarest, 

2014; IBM, 2013; Plohmann, Gerhards-Padilla, & Leder, 2011) 

1.2 Research Motivation 

Analysing network traffic and identifying host malicious activity inside a network is a 

significant requirement for network admin in order to manage their networks and detect 

infected computers. Therefore, network administrators require an efficient strategy to 

keep the network free from any suspicious activity. Additionally, Botnets grow rapidly in 

terms of both volume and variety, and they have begun to infect infrastructures such as 

industrial control systems (Falliere, Murchu, & Chien, 2011) and smartphones (Mullaney, 

2012). 

As a result, Botnets have been realized to be one of the most dangerous threats to Internet 

safety. It is therefore crucial to detect, prevent and mitigate Botnet activities. Developing 

Botnet detection systems is a primary concern since it serves as an essential step in further 

prevention and mitigation strategies. In this regard, network-based Botnet detection 

systems are particularly desired due to the visibility of the network behaviour of all hosts 

in monitored networks. 

The number of networked computers and devices is enormous and keeps grow, and 

volumes of network traffic are high and rapidly increasing. This means that detection 

systems require the efficiently processing of a massive volume of network traffic. 

However, most existing Botnet detection systems (Chen & Lin, 2015; Goebel & Holz, 

2007; Gu, Perdisci, et al., 2008; Gu, Zhang, & Lee, 2008; Lu, Rammidi, & Ghorbani, 

2011; Rafique & Caballero, 2013; Seewald & Gansterer, 2010; R. Tyagi, Paul, Manoj, & 

Thanudas, 2015; Yen & Reiter, 2008) rely on DPI to analyse packet content, which is 

computationally expensive and inefficient in recognizing unknown payload signatures. 

Consequently, when these detection systems are deployed in high-speed or high-volume 

networks, they may not be able to perform a comprehensive analysis of all network traffic 

and thus lead to the failure to immediately detect Bot hosts. 
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However, identifying infected computers before the Bot exploits a host machine in a 

serious way is a challenging task in cyber-security. In the few last years, several methods 

have been proposed to identify Botnets threats that represent a risk for cyber-security 

systems. The majority of these studies have focused on ways of improving offline Botnet 

detection systems. Generally, the exact detection results obtained using these approaches 

reflect only the past situation of the network traffic. 

Therefore, the results of these approaches may become worthless later the when status of 

the network environment changes. In this case, all of these offline methods may become 

invalid since they do not use online detection approaches. Therefore, a Bot detection 

system needs to be developed that is able to monitor Bot host activities in an online 

manner and to repeat Bot host activities to network admin as soon as possible. 

1.3 Research Aims and Objectives 

The aim of this research is to develop an online P2P Bot host detection system based on 

RL. The approach proposed in this research has the following characteristics. It detects 

Bots during the propagation phase before any malicious action has been taken. 

Furthermore, it does not require DPI analysis for signature matching, and does not need 

to analyse the entire network traffic. It detects Bots independent of port numbers, IP 

addresses and host characteristics. Therefore, the main objectives of this research are: 

1. To investigate the characteristics of network traffic that can be used to 

discriminate the behaviour of P2P Bots from normal traffic. 

2. To develop a RL system has the ability to recognize zero-day attacks caused by a 

P2P Botnet. 

3. To generate a host traffic representation based on traffic reduction, that is used to 

detect the hosts of Bots. 

1.4 Thesis Contributions 

The objective of this thesis is to develop an efficient network-based Bot host detection 

system. The thesis introduces a network-based solution, which achieves the following 

requirements. Firstly, efficiency is enhanced by using a traffic reduction method to build 

a lightweight detection system able to deal with massive network volumes of traffic. 

Secondly, Bot detection is accomplished earlier by detecting the Bot in the propagation 
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phase before it starts malicious activities. Finally, it is adaptable due to the use of a RL 

approach to a detection system able to learn online new Bot behaviour from the network 

environment. This thesis makes three specific contributions which as following: 

1. A network traffic reduction approach has been designed which will be able to 

increase the performance of the proposed framework.  

2. The ‘connection-based’ detection mechanism is payload-independent, and 

depends on only information obtained from the headers of TCP control packets.  

3. A new model-based RL algorithm computes the reward from the dynamic 

environment. 

Firstly, in Chapter 3, a new traffic reduction technique is introduced to facilitate the 

deployment of Bot host detection systems on a high-speed network. As discussed above, 

the majority of Botnet detection schemes rely on DPI and examine the entire network 

traffic. The use of DPI assumes access to the payload of each packet. This method can be 

accurate in classifying network traffic if the packet payloads are not encrypted. However, 

the majority of new malware applies evasion methods such as the encryption of payloads 

or protocol encapsulation and obfuscation which mean that the payload is covered (P. 

Wang, Wu, Aslam, & Zou, 2015). Furthermore, examining all packets on a high-speed 

network is an expensive task because of the speed of the networks and the amounts of 

packets transferred via a network is increasing daily. However, a detection system which 

applies DPI may suffer from efficiency limits when processing a large volume of traffic 

from high-volume or high-speed networks (Jun et al., 2008). The goal of the present study 

is to increase the effectiveness of detection systems by decreasing the volume of traffic 

which needs to be analysed without affecting the accuracy of the detection process in an 

ideal solution. To achieve this goal, a novel traffic reduction method is proposed for a Bot 

host detection framework which selects only TCP control packets. This framework can 

efficiently and effectively reduce the amount of traffic that will be entered into the 

detection system.  

Reducing network traffic can be accomplished by generating a representation of all of the 

entire network packets. Moreover, the behaviour of the representative traffic should 

reflect the behaviour of all network traffic. Using a representative traffic approach will 

reduce the volume of the traffic needed to be analysed. Therefore, it means faster analysis 
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and lower computation time. To the best of our knowledge, this is the first P2P Bot host 

detection approach applying such a reduction technique to achieve efficiency in Bot 

detection host. 

Secondly, in Chapter 4, host traffic features have been designed based on the connection-

level that can differentiate between a Bot and a legitimate network host. More 

specifically, the proposed features contribute to the identification of the Bot host by using 

a minimum set of packets that need to be utilized in developing an efficient Bot detection 

system. The goal of the proposed feature set is designed to boost the effectiveness of P2P 

Bot detection in three challenging scenarios: i) the Bot performs malicious activities in a 

stealthy way by using an evasion approach such as encryption techniques; ii) the earlier 

detection of P2P Bot at the primary stage of its life cycle, the propagation stage; iii) the 

feature set helps the detection method to detect an infected machine if it is the only one 

in the network. The framework solves the above challenges by working on the headers of 

TCP control packets to bypass encrypted network traffic. Moreover, focusing on the 

connection behaviour will help the detection system to recognize Bot behaviour at an 

earlier stage when the Bot propagates and tries to contact other peers to find new updates. 

Furthermore, the proposed feature sets are estimated for every host in the network in order 

to detect any single infected machine. To the best of our knowledge, this is the first time 

that connection-based features have been used in P2P Bot host detection. As the features 

are extracted from the headers of the network packets, they do not rely on packet 

payloads. With this characteristic, our detection approach will not be affected by traffic 

encryption. Moreover, the proposed approach can also be used to detect unknown P2P 

Bots. Furthermore, the feature set helps the detection system to identify P2P Bot infects 

even if it just one. 

Finally, in Chapter 5, a new model-based reinforcement learning method is built to solve 

a Bot host detection problem. More specifically, an online RL system is designed to detect 

a P2P Bot in the connection (propagation) stage. The goals of the RL model are to satisfy 

the requirements of adaptability, novelty and early detection. To accomplish these goals, 

a new algorithm for RL is designed to boost the adaptability of the detection system, 

evaluate any new Bot host pattern and adapt the detection system according to the new 

Bot pattern. 
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The neural network has been adopted with a resilient back-propagation learning algorithm 

as a classification technique. This has robust capabilities for dealing with a nonlinear 

problem due to its ability of approximation. In addition, utilizing a feature set based a 

traffic reduction technique with the RL algorithm improves the capability of the detection 

system to detect timely Bot host behaviour and enhances of the online system so as to 

learn new kinds of attack patterns (zero-day). To the best of our knowledge, this work is 

the first to provide an online Bot detection method that is based on a new RL algorithm. 

Also, RL techniques require some set of action-selection procedures, which guarantee 

that there is an balance between exploration and exploitation. The difficulty is to obtain 

good action-selection tactics which apply a good balance of exploration and exploitation. 

The proposed approach introduces an adaptive threshold factor to manage the adaption 

of a new Bot pattern and to make a balance between exploration and exploitation. The 

proposed online Bot host detection is timely because detection is achieved for each host, 

and when the required features accumulated from the host are adequate then the judgment 

can be made instantly. Hence, an infected host can be identified within a short time. Also, 

to ensure the generalization of the proposed detection approach, we use a testing dataset 

from a different network traffic source in order to ensure the generalization of the 

classifier. 

However, Bots and the users of computers exploit the Internet network in the same way, 

but with different objectives. The proposed framework should be able to differentiate 

between malicious traffic generated by Bot activity and legitimate user or application 

activities. Therefore, the main expected contribution of this research is to design an online 

detection of a P2P Bot host which focuses on both traffic reduction and RL in order to 

achieve efficient Bot detection able to complete detection in a short time.  

1.5 Research Methodology  

The general research methodology used in the research is the positivist approach. 

According to (Iivari, Hirschheim, & Klein, 1998) this method contains hypothesis and 

testing experiments, therefore, it’s suitable for the research. Besides, the general 

experimental procedures used in statistics approaches such as neural network, machine 

learning and fuzzy to obtain conclusions from the data comprise the following steps 

(Wechsler & Harry, 2000):  
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 1. State the problem 

 2. Formulate the hypothesis 

 3. Design the experiment/generate the data 

 4. Collect the data and perform pre-processing 

 5. Estimate the model 

 6. Interpret the model/draw the conclusions  

The main stages of the adopted research methodology in this research as show on in 

Figure 1.1 include the literature review, the literature analysis, design and modelling and 

performance evaluation.  

1.6 Thesis Scope 

The scope of this thesis is limited to developing a P2P Bot detection approach based only 

on TCP network traffic. The TCP network traffic is captured from a local area network. 

Moreover, the information of the control packets header is used. 

The UDP packets are excluded in this research because UDP is a connectionless protocol, 

the information in a UDP packets is inadequate to decide if it as control or payload packets 

unless we have information about packet’s application. Thus, it is impossible to classify 

UDP packets into control and payload packets immediately as in the state of TCP. 
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Figure 1.1 Research Methodology 
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1.7 Thesis Outline 

This thesis is organized into six chapters. This chapter presents the objectives of this 

thesis. It starts by presenting a background discussion of the Bot problem along with the 

research goals and contributions. 

Chapter 2 gives an overview of Botnets concepts. The Botnet life cycle is described, and 

the risks of Botnets are listed. Previous Botnet detection approaches and relevant research 

using machine learning are reviewed as well. Taxonomy of Botnet detection techniques 

is provided, and the advantages and disadvantages of each type are discussed. 

Chapter 3 discusses the design of the proposed traffic reduction algorithm which aim to 

increase the efficiency of the Bot detection system.  Besides, a briefly detailed for each 

component of the Botnet detection system is presented.  Also, a detailed description of 

the network datasets used in this study are introduced in this chapter. 

Chapter 4 explains the connection-based feature extraction process. In addition, the 

chapter presents the offline Bot detection system based on connection-level feature set.  

Also, the procedures followed in the experiments are discussed. 

Chapter 5 provides an introduction to RL, Markov decision processes and the partially 

observable Markov decision process.  In this chapter, a formulation is given of Botnet 

problems based on RL. Besides, a new model-based RL algorithm for Bot host detection 

is introduced in a dynamic partially observable environment. Finally, assessment based 

on a real-world dataset is presented in the chapter. 

Finally, Chapter 6 draws the conclusion of the thesis and discusses potential future 

research directions to improve or extend the present work. 
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2 BACKGROUND 

INFORMATION AND 

LITERATURE REVIEW 

2.1 Introduction 

In recent years, there has been increasing interest in Botnet problems compared to others 

threats to computing. Malware has infected every area of the Internet, and this shows no 

signs of stopping. Despite the relative novelty of Botnets, a significant number of studies 

have attempted to find a solution to the problems they create. 

Botnet hazards have increased in the internet environment subsequent to the first known 

Botnets found at the beginning of the 1990s based on the Internet Relay Chat (IRC). The 

IRC was set up in the late 1980s to allow the computer user to connect to the Internet 

anywhere and to join live chats. Botnets exploited the benefits of this channel so as to set 

up communication between the Botmaster and the Bot in the victim’s computer.  

The reason for investigating the Botnet threat in depth is that electronic crime has 

increased, and in the past few years, Botnet targets have changed so that secret 

information found on the victim’s machines is taken. The difficulty of detection has given 

the Botnet the leading position in cyber-crime. Furthermore, Botnets are improving 

methods of evasion along with the development of spreading techniques, and this also 

increases the difficulty of Botnet detection. Although, a considerable number of studies 

have been published on Botnet detection, new types of Botnet continually come up with 

new techniques to avoid detection by existing methods.  

This thesis focuses on establishing a P2P Bot detection strategy that utilizes neural 

networks combined with a RL approach to detect hosts on the network that generate 

malicious traffic behaviours. Furthermore, this approach should work online, and at the 

same time achieve good accuracy and high detection rates. 
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This chapter began by introducing the history of Botnets. The following section gives 

definitions of terms related to Botnets and explains the life cycle. Section 2.3 introduces 

the threats from Botnets and Section 2.3 illustrates Botnet evolution. Sections 2.4 and 2.5 

classify Botnets and Botnet detection approaches respectively. A summary of this chapter 

and its relevance to the present study are given in Section 2.6. 

2.2 Background of Botnets 

This section describes Bots, Botnets, C&C and victim hosts, and then elaborates on the 

role of Botnet in cyber-crime. 

2.2.1 Definitions related to the Botnet  

 Bot: the word Bot derives from the word robot, which means "worker.” In the 

world of computers, a Bot is a general term adopted to describe an automated 

operation (Schiller & Binkley, 2011). In other words, a Bot refers to a malicious 

code on victim computer that allows the attacker to control the computer remotely 

and perform specific operations (Rgio S. C. Silva et al., 2013). 

 A Botnet: is a collection of compromised computers (zombies) connected through 

the network, and it is under the control of a Botmaster via a C&C channel  (Huy, 

Xuetao, Faloutsos, & Eliassi-Rad, 2013; Lashkari, Ghalebandi, & Reza 

Moradhaseli, 2011). The Bot is commonly installed on the victim’s computer in 

several ways, such as when an untrusted website is surfed or a malicious email 

attachment is open. Generally the Bot is configured to be launched when it infects 

the victim’s machine, and then the Bot will be ready to receive a command from 

the Botmaster through the C&C server (Rgio S. C. Silva et al., 2013). 

 Command and Control (C&C): is a communication channel used to transfer orders 

between the Botmaster and Bots to achieve various distributed attacks remotely 

(Feily, Shahrestani, & Ramadass, 2009; Nagaraja et al., 2011). Furthermore, the 

interaction between the Botmaster and Bots through the C&C communication 

channel can be classified into three groups: message types, message directions 

and communication protocols (Rodríguez-Gómez, Maciá-Fernández, & García-

Teodoro, 2013). C&C message types can be classified as command or control 

messages. A command message is used by the Botmaster to send an order to the 
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Bots to execute an action on the victim's computer. The other type of C&C 

message is a control message that gives the Botmaster information about the status 

of Botnets, such as the number of active Bots. What is more, C&C message 

directions may be divided into two categories: pulls and pushes (Gu, Zhang, et al., 

2008). In a pull style, the C&C server sends a command to Bots and waits for 

them to respond before sending the second order. On the other hand, if the C&C 

server sends a command and it does not wait for a response, from this is a push 

case message. These approaches are used by centralized Botnet structures such as 

IRC and HTTP Botnet-based. The communication protocols perform a significant 

part of the communication between the C&C server and the Bots. IRC, HTTP and 

P2P protocols are the most common types of  the protocol used in C&C server 

communications (Rodríguez-Gómez et al., 2013). 

 The Botmaster (attacker): is the person who creates the Bots and coordinates all 

the operations going on between the Bots and the C&C server. In addition, the 

Botmaster builds and develops the ability of the Bots to infect a victim’s machine 

as well as coordinating the communication between Botnet system components 

(Boshmaf, Muslukhov, Beznosov, & Ripeanu, 2013). However, on the internet 

there are many toolkits that can be used to build and manage Botnet systems 

(Boshmaf et al., 2013). 

 The victim, the main aim of the Botmaster is to spread the Bot code to infect any 

connected computer and then control these computers via the C&C server. For 

instance, system, person or network could be a Botnet targets. The victims vary 

depending on the objective of the attacks or the Botnet type, for example, 

receiving spam email or stealing confidential information from the victim’s 

machine. In another example, DDoS attacks have played a key role in companies 

losing millions of dollars (Rodríguez-Gómez et al., 2013). 

2.2.2 Generic Botnet Life Cycle  

This section reviews the main stages of the Botnet life cycle. Botnet behaviour is 

addressed in terms of the set of operations used by a Botnet during its life cycle phase. 

The majority of Botnet detection approaches focus on the specific stage of a Botnet life 

cycle via studying its behaviour during these phases. As a result, the analysis of the Botnet 
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life cycle is also important in understanding previous work on Botnet detection and Botnet 

behaviour. (Zhaosheng et al., 2008), (Feily et al., 2009) and (Rgio S. C. Silva et al., 2013) 

addressed Botnet life cycles in similar ways with slight differences, dividing it into three 

stages: infection, communication and attack. However, the Botnet life cycle can be 

described in details in five phases: initial infection, secondary injection, connection, 

command and control, and updating  and maintenance (Feily et al., 2009) as illustrated in 

Figure 2.1. 

Botnetmaster

(1) (2)

(3)

(4)

(4)

and

 (5)

(1) Initial infection

(2) Secondary injection 

(3) Connection

 (4) Command and Control

 (5) Update and maintenance 

Botnet

Victim machine

 

Figure 2.1 Generic Botnet life cycle (Feily et al., 2009).  

The first phase of creating a Botnet is a critical phase; the Botmaster tries to exploit a 

known computer operating system’s vulnerability to infect the user’s machine. Moreover, 

scanning techniques are used by an attacker to insert the Bot inside the target’s machine 

(Feily et al., 2009). There are several methods for installing Bots in end-user computers, 

such as opening malicious spam email attachments or browsing malicious webpages (Lu 

et al., 2011).  

When the initial infection is accomplished, then the secondary injection phase starts by 

executing the dropper script code in the infected machine. The execution of the dropper 

script code downloads the Bot binary from specific internet server using a File Transfer 

Protocol (FTP), HTTP or Peer-to-Peer (P2P), and then setup a newer Bot code on the 

victim machine. At the end of this phase, the infected machine turns into a zombie (Bot).  
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After that, the third phase begins by launching the C&C server to issue the communication 

channel with an army of recruited Bots which gives the Botmaster control ever the Botnet 

network (Feily et al., 2009). The fourth phase starts when the Botmaster has the ability to 

use the C&C server to send commands to the Bot in order to execute it on the target's 

machine. The final phase of the Botnet’s life cycle is updating and maintenance, where 

the Botmaster updates the Bot software for several reasons. For instance, the Botmaster 

may need to add a new function to enhance the Botnets future attacks or to improve the 

evasion methods. In addition, update the IP address of a new C&C server can be updated 

to keep it working and thus then prevent it from being blocked due to the evolution of 

Botnet detection techniques. 

2.2.3 P2P Botnet Life Cycle  

The lifecycle of the P2P Botnet consists of four primary phases, namely: initial infection, 

peer propagation, secondary injection and attack. These phases are shown in Figure 2.2 

(Felix, Joseph, & Ghorbani, 2012). Firstly, the Bot code is created for insertion into an 

end-user computer using different techniques such as vulnerability exploitation, web 

downloads, automatic scanning and email attachments (Chao, Wei, & Xin, 2009) 

Secondly, the Bot tries to connect with other Bots on infected hosts based on its own hard-

coded peer list. Thirdly, the Bot downloads the latest update of the Bot code through the 

C&C channel, which will update it for future tasks. In this phase, a host is considered a 

Bot in the Botnet network. Finally, the Bot initiates malicious activities such as spam or 

phishing emails, DDoS, stealing information, and scanning activities. 

 

Figure 2.2 P2P Botnet life cycle. 

2.3  Botnet Threats 

A Botnet is more dangerous than previous more traditional threats such as worms and 

viruses. The Honeynet project listed many kinds of Botnet attacks, including such as 

DDoS, Spam, Stealing information and Exploiting resources (Bacher, Holz, Kotter, & 
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Wicherski, 2005). Moreover, Lanelli et al. reported that Botnets can be exploited in 

several kinds of cybercrimes (Ianelli & Hackworth, 2005). 

2.3.1 Distributed Denial of Service 

The DDoS is one of the most potent threats produced by Botnets. In the 2014 Information 

Security Breaches Survey report in the UK, 38% of big organisations were attacked by 

DDoS in the previous year (Mille, Horne, & Potter, 2014). The massive number of 

members in a Botnet network gives the DDoS considerable destructive power. The 

Botmaster uses the Botnet network to take down the victim system of control as the Bots 

members send huge numbers of requests to this system. In addition, some massive Botnets 

can even be harmful to Internet Service Providers (ISPs). 

2.3.2 Spam 

Spam is an operation where an overwhelming quantity email messages containing 

advertisements or malicious links are sent to a large number of users. A Botnet is the best 

choice for an attacker use as a tool to send spam emails. The spam attacks start by sending 

commands to the Bots from Botmaster before they begin sending spam email to the 

victim's address. In this case, the detection approaches that used a blacklist technique 

become useless and hereby hard to detect a real attacker. 

Ramachandram et al. identified Botnets as the major cause of email spam problems 

(Ramachandran & Feamster, 2006). In a study which set out to determine the source of 

email spam, John et al (2009) found that the Botnets were responsible for 79% of spam 

email received at the University of Washington (John, Moshchuk, Gribble, & 

Krishnamurthy, 2009). 

2.3.3 Stealing Information 

A Botmaster employs Bots to collect secret information from victim hosts by using 

techniques such key logging, reading log files and screen capture. For example, the 

SDBot is a type of Botnet which employs a keylogging technique to gather users’ 

sensitive information. This can then be sold to others in order to perform illegitimate 

actions (Bailey, Cooke, Jahanian, Yunjing, & Karir, 2009). In addition, the Zeus Bot’s 

main tools use keylogging methods to steal credit card information and private bank 
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accounts, which allows the Botmaster to extract passwords and usernames from a bank’s 

web page, emails, and social network accounts (Selvaraj, 2014). Moreover, this Bot 

exploits the Windows application program interface (API) to extract private user 

information before the web browser can encrypt it (Hannah & Gianvecchio, 2015). 

2.3.4 Exploiting resources 

Bot hosts are controlled to perform illegal activities. For example, the Bot uses the 

victim's computer to visit a website periodically to increase the number of website visitors 

without the user’s permissions. In addition, they can be used to cast fake votes or to grow 

the number of followers on Twitter and Facebook. 

2.4 Botnet Classification  

As can be seen from the Botnet life cycle, the C&C server mechanism is the most 

important component of a Botnet system. Based on the C&C mechanism, the Botmaster 

able to communicate with Bots, and infrastructure of the C&C communicational channel 

is the main difference between a Botnet and other malware (Zeidanloo, Bt Manaf, 

Vahdani, Tabatabaei, & Zamani, 2010). In contrast to other malware which is used to 

perform malicious behaviour individually, a Botnet works as a group of infected hosts 

based on the C&C communication channel. Therefore, the Botmaster can use this channel 

to deliver a command to thousands of Bots in order to launch an attack or receive 

information from victim computers. In 2005, Cooke and co-workers classified Botnets 

depending on their C&C mechanism into three different groups: centralized, distributed, 

and random. This paper also contained the first academic analysis of the P2P Botnet 

(Cooke, Jahanian, & McPherson, 2005). Dittrich and Dietrich grouped Botnets into four 

classes in terms of their development environments as  IRC, HTTP, P2P and hybrid 

Botnets (David Dittrich & Sven Dietrich, 2008). However, in this thesis, the Botnet 

network is described based on the structure of its C&C channels and the type of protocol 

used in Botnet communications as follows. 
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2.4.1 Botnet Classification According to Control and Command 

Structure 

The C&C server is what makes Botnets more powerful than other types of malicious 

malware. Botnet structure based on the C&C server can be classified into centralized, 

decentralized and unstructured C&C architectures (Chao et al., 2009). 

 Centralized architecture: Here, all Bots member are connected to one or many 

C&C servers as shown in Figure 2.3, such as in HTTP and IRC Botnets. The C&C 

server plays a significant role in delivering commands from the Botmaster to Bots, 

and there are no direct connections between Bots. In addition, the centralized 

architecture is considered to be the easiest type of Botnet to construct, but it does 

suffer from the fact that it has a single point of failure in the C&C server. A 

shutdown of the C&C server would result in the loss of communication between 

the Bots and Botmaster (Ludl, McAllister, Kirda, & Kruegel, 2007). In spite of 

this weakness, it is widely used in cyber-crimes, because the commands are sent 

more quickly with low latency. However, it is not so difficult to detect the C&C 

server, and thus to crush the whole Botnet network. 

 Decentralized (P2P) Botnet: In this architecture, there is no centralized point for 

the C&C, so mitigating or detecting these Botnets is very challenging. Due to the 

distributed network structure of P2P systems, all peers in the network work as a 

Bot (client) and C&C (server) at the same time. In this case, the Botmaster plays 

the main role by sending commands to any infected peers to execute any order or 

requesting information at any time as shown in Figure 2.4. However, in order to 

avoid the weakness of a single point of failure, Botnet attackers have recently 

started to build Botnets based on decentralized C&C infrastructures such as the 

P2P Botnet (Felix et al., 2012), the P2P model was adopted by many types of 

Botnet, for example Storm Bot, Conficker Bot and Waledac Bot (Davis, 

Fernandez, & Neville, 2009).  
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Figure 2.3 A typical centralized Botnet structure. 

In 2007, the Storm Botnet showed that the power of decentralizing C&C structure 

to protect the viability of a Botnet. Decentralizing the C&C introduces a serious 

challenge to defenders who cannot remove an individual set of points to destroy 

a Botnet (Grizzard, Sharma, Nunnery, Kang, & Dagon, 2007; Stover, Dittrich, 

Hernandez, & Dietrich, 2007). A decentralized Botnet architecture is hard to 

detect as a result of the anonymity involved and the dispersed nature of the P2P 

network’s design (Han & Im, 2012). 
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Figure 2.4 A typical decentralized (P2P) Botnet architecture. 

 Unstructured C&C (Hybrid) architecture, as demonstrated in Figure 2.5, this 

model is considered an extreme form of P2P Botnet; where every Bot has a 

connection with one peer and it does not own information about other peers in the 

Botnet network. Furthermore, the Bots are organized randomly in this architecture 

(Rgio S. C. Silva et al., 2013). In this type, there cannot be a direct communication 

between the Botmaster and the Bot where has to search randomly on the Internet 

to find a Bot in ordered to submit a new task. What is more, it is not affected by a 

single point of failure, as is centralized architecture. In addition, Wang et al.(2010) 

introduced a hybrid Botnet model as a new idea that combined the fundamental 

characteristics of centralized and decentralized C&C mechanisms in order to gain 

the benefits of both a low latency of communication and P2P flexibility (P. Wang, 

Sparks, & Zou, 2010).  However, this architecture does not have a warranty for 

the message delivery, and it suffers from a high rate of  C&C message latencies 

(Bailey et al., 2009). 
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Bot

 

Figure 2.5 Unstructured C&C architecture. 

The general properties of the different Botnet structures are summarized in Table 2.1 

(Bailey et al., 2009). 

Table 2.1 C&C structures and basic properties (Bailey et al., 2009).  

Topology Complexity Detectability 
Message 

Latency 
Survivability 

Centralized Low Medium Low Low 

Decentralized 

(P2P) 
Medium Low Medium Medium 

Unstructured Low High High High 

2.4.2 Botnet Classification Based on the Communication 

Protocols 

It is necessary to own a communication channel linking the Botmaster with their Bots 

inside victim machines in order to facilitate the flow of send/receive information between 
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them. Based on existing network communication protocols, Botnets can be categorized 

according to protocols as IRC-based, Web-based, P2P-based and Custom protocols (A. 

K. Tyagi & Aghila, 2011). Table 2.2 shows a comparison of Botnet communication 

protocols. 

 IRC-based: In this type of Botnet, an Internet Relay Chat (IRC) channel plays a 

key role in Botnets development. Initially, the idea of IRC Bots was developed to 

support chatting services, not taking into account the fact that this idea was 

utilized by malicious developers, and then the first IRC-based Botnet appeared. 

The Botmaster used the IRC Botnet to bring the victim machine under control and 

to exploit it to execute malicious activities. According to Trend Micro report, 

examples of IRC Botnets are Rbot, Phatbot, GTBot and Sdbot (Trend-Micro, 

2006). Nevertheless, the IRC can be efficiently identified by configuring the 

devices of network security in order to hinder IRC traffic.  

 Web-based: HTTP protocol is used by this type of Botnet as the main 

communication channel, as the basis of the widespread HTTP protocol. The 

Botmaster uses this protocol to spread malicious activities, which is difficult to 

detect and capable of bypassing network security devices. Through the World 

Wide Web, the Botmaster uses HTTP to manage his Bots. The Botmaster 

identifies a web server, and then the Bots periodically connect to the specific web 

server in order to receive commands or send information. Unlike IRC Botnets, 

HTTP Botnet communication can be hidden in legitimate HTTP traffic in order 

to evade detection systems. There are many examples of this Botnet such as the 

Rustock Bot (Chiang & Lloyd, 2007) and blackEnergy Bot (Daswani & 

Stoppelman, 2007). However, HTTP Botnets and IRC Botnets suffer from the 

disadvantage of a single point of failure in the C&C server (K. Wang, Huang, Lin, 

& Lin, 2011). 

 P2P-based: Napster was the one of the first peer-to-peer networks; P2P protocols 

then became popular. The main concept of the P2P network is that every node 

works as a server and client at the same time. Several protocols may be followed 

such as Gnutella, eDonkey, BitTorrent and Kademlia. The core of these protocols 

is totally decentralized and that attracted the attention of Botmasters 

(Mukamurenzi, 2008). P2P Botnets adopt a decentralized architecture using an 
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overlay network to exchange command and control data making their detection 

even more difficult. So, the P2P Botnet is named based on its use of P2P 

mechanisms or protocols. Many Botnets utilize the P2P network, such as the 

Conficker (R. Weaver, 2010), Storm (Holz, Steiner, Dahl, Biersack, & Freiling, 

2008), Nugache (Stover et al., 2007) and Waledac (Stock et al., 2009).  

 Custom protocols: In addition to the previously listed types, there are kinds of 

Botnets that use their own protocols based on the TCP/IP stack, and they only use 

transport-layer protocols such as UDP, TCP and ICMP. 

Table 2.2 Comparison of Botnet communication protocols. 

Communication 

protocols 
Example Topology Weakness Advantages 

IRC-base 

Rbot, 

Phatbot, 

GTBot and 

Sdbot. 

Centralized 

Single 

point of 

failure in 

the C&C 

server. 

It is widely used in 

cybercrimes, 

because the 

commands are sent 

quickly with low 

latency. 

Web-based 

(HTTP) 
Rustock Centralized 

Single 

point of 

failure in 

the C&C 

server. 

HTTP Botnet 

communication can 

be hidden in 

legitimate HTTP 

traffic to evade 

detection systems. 

P2P-based 

BlackEnerg,

Storm and 

Zeus 

 

Decentralized - 

Avoid the 

weakness of a 

single point of 

failure. 

2.5 Taxonomy of Botnet Detection 

Recent years have witnessed several Botnet detection techniques which can be classified 

as signature-based, anomaly-based, DNS-based and data mining-based (Feily et al., 

2009). Other researchers such as Han et al. have classified P2P Botnet detection systems 

into three general types: data mining, machine learning and network behaviour and traffic 

analysis (Han & Im, 2012). What is more, Zeidanloo and colleagues classify the Botnet 

detection system as Honeynets or intrusion detection systems (IDS), and they also divide 
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the IDS system into three sub-groups of anomaly-based, specification-based and 

signature-based. In addition, the Botnet detection system can be classified based on its 

installation point as host-based, network-based and hybrid systems (Zeidanloo, 

Shooshtari, Amoli, Safari, & Zamani, 2010). Lu et al (2011) have classified Botnet 

detection techniques on the basis of machine learning type as supervised or unsupervised 

Botnet detection (Lu et al., 2011). 

2.5.1 Honeynet-based Detection 

Honeynets are one of the most common detection methods used by many researchers 

recently. This technique that imitates an infected machine so as to convince the Botmaster 

that it is a Bot in his Botnet in order to record all communication and actions between 

them. This mechanism is commonly used in the initial phase of Botnet detection. A 

Honeynet method contains two components: the Honeypot and Honeywell (Bacher et al., 

2005). The Honeypot points out a vulnerable host. What is more, the Honeywell refers 

the group of tools used to capture and analyse the send and receive traffic from the 

honeypot. By utilizing the information gathered by a Honeynet, it is possible to perform 

a comprehensive analysis and to extract the main features of a Bot to understand its 

technology and therefore uses the extracted features in improving Botnet detection. 

GenIII (Balas & Viecco, 2005) and Honeyd (Provos, 2003) are two popular Honeynets 

in the field of malware detection.  

In 2006, Baecher et al. introduced a Nepenthes platform as a framework for collecting 

information from self-replicating malware based on the honeypot. The Nepenthes 

framework is one of the most practical ways to provide the developer of an antivirus 

system with information about unknown malware (Baecher, Koetter, Holz, Dornseif, & 

Freiling, 2006).  Rajab and co-workers proposed distributed multifaceted Honeynets, 

effectively capturing the activities of IRC Bots (Rajab, Zarfoss, Monrose, & Terzis, 

2006). Moreover, the honeypot mechanism was used in the Botminer method to 

understand the behaviour of two Botnets, Nugache and Storm. However, there are many 

Botnet detection techniques which utilize Honeynets such as (Barford & Yegneswaran, 

2007; Cooke et al., 2005; Freiling, Holz, & Wicherski, 2005; Kang et al., 2009; Pham & 

Dacier, 2011). 
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Despite the success of the Honeynet in reducing the effects of Internet malware, it has 

some shortcomings. It takes time to analyse information about the malware binaries. 

Moreover, if an attacker has knowledge of the existence of the Honeypot, therefore, it 

will not send anything to it, or it may send fake commands in order to give the honeypot 

the wrong information. Table 2.3 summarize Botnet detection methods that utilize the    

Honeynet. 

Table 2.3 Summary of Honeynet detection methods. 

Method Technique Shortcoming 

(Baecher et al., 

2006) 

Collecting information from 

self-replicating malware 

based on the honeypot. 

- Malware binaries 

analysing time.  

- Providing false attack 

information by the 

attacker. (Rajab et al., 2006) 
Distributed multifaceted 

Honeynets. 

2.5.2 Signature-based Detection 

Signature-based detection includes exploring the traffic in the network to find a set of 

traits such as a series of bytes or sequences of packets and a matching set of pre-specified 

signature lists. Whenever there is a match in particular network traffic, the administrators 

are alerted or there a predefined action will be taken by the system. Some IDS, applying 

the signature approach use a repository to store signatures. The repository is frequently 

explored to match predefined patterns such as the content of payload packets or system 

activities to determine whether it contains known signatures. So, the quality of signatures 

plays a significant role in the performance of signature-based detection. Despite an 

attempt to generate automatic signatures for malware (Kreibich & Crowcroft, 2004), it is 

still a restricted to human expertise and knowledge. 

Unfortunately, signature-based detection does not have the ability to detect an unknown 

Botnet. For example (Lu et al., 2011) proposed an approach for detecting the Botnet’s 

malicious traffic by using an n-gram feature selection algorithm to analyse payload 

content. Then they clustered P2P applications into groups based on payload content using 

a decision tree model to distinguish between known applications and malicious Botnet 

traffic. In the clustering stage, three clustering algorithms used in the approach are K-

means (Jain, Murty, & Flynn, 1999), merged X-means and un-merged X-means (Pelleg 
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& Moore, 2000). Moreover, the approach is based on the hypotheses that the diversity of 

Botnet packet content is less than that of legitimate traffic. Although the approach is able 

to detect Botnets independently of protocol and network structure, it is vulnerable to 

methods of encryption of payload content and authorization to read the actual content of 

the packets. Clearly, this method will no longer work because today’s Botnets are much 

more sophisticated.  

SNORT is one of the popular network intrusion detection schemes. It examines the 

network traffic and applies certain rules/patterns to identify well-known signatures of 

Bots (Alder et al., 2007). SNORT is suitable for detecting Bots that have information 

about it, with low FPR and instant detection. However, it fails to classify similar Bots 

with hardly changed signatures or new types of Bots till their signatures have been 

determined and attached to the rule set database.  

In 2007, Goebel and Holz presented another technique of using a signature-based 

approach called Rishi. The method works by comparing the IRC communication traffic 

with known IRC Bot nickname patterns, or using unusual channels for communication 

(Goebel & Holz, 2007). But the Rishi approach fails to detect non-IRC Bots or new 

(unknown) nicknames, or if the Bot applies an encryption algorithm in communication. 

In 2007, Gu and colleagues suggested a BotHunter that utilizes the correlation analysis 

of malicious behaviour. It correlates SNORT (Roesch, 1999) alarms in the bidirectional 

communication between external and internal hosts to detect the C&C communication 

and malicious activities such as scanning and exploit usage. Then this evidence is used in 

a rule-based system to detect the host infected by the Botnet (Gu, Porras, Yegneswaran, 

Fong, & Lee, 2007). The BotHunter also has its weaknesses. This method will be avoided 

if Botnets update their predefined infection procedures or if the C&C interactions 

frequency is very low (Gu, Zhang, et al., 2008). In general, the main advantage of 

signature-based approaches is to achieve a high detection rate since it uses the signature 

found in the database. However, a major drawback is its incapability to detect new Bot 

attacks, or so-called zero-day attacks (N. Weaver, Paxson, Staniford, & Cunningham, 

2003). Another drawback of signature-based detection is that it needs the involvement of 

human expertise to create the signatures.  
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Table 2.4 Summary of signature-based methods. 

Method Technique Shortcoming 

(Lu et al., 2011) 

K-means, Un-

merged X-means, 

Merged X-means 

clustering 

- Payload encryption 

content. 

-  Privacy issue. 

(Goebel & Holz, 2007)  N-gram analysis 

- Fail to detect non-IRC 

Bots. 

- Payload encryption. 

- Detect zero-day attack.  

BotHunter (Gu et al., 

2007). 

Correlation 

analysis 

- Detect zero-day attack. 

- Need human expertise 

to create the signatures. 

2.5.3 Anomaly-based Detection 

Anomaly-based detection techniques have been explored a lot in the last decade, and they 

are the most general detection technologies. They try to determine the “normal” behaviour 

of the system to be protected and then look for any considerable changes in network 

behaviours (García, Zunino, & Campo, 2014). This includes any behaviour that is 

considered an unusual activity such as traffic at uncommon ports, network traffic with 

high volumes, latency with high network traffic and abnormal system behaviour based on 

a predefined pattern of normal system behaviour. These approaches attempt to build a 

model of abnormal system behaviour in order to find any similarities with previously 

expected malicious behaviour located in the range of a given threshold. According to 

Zeidanloo and co-workers, anomaly-based methods are classified on the basis of data 

collection location into host-based and network-based. Network-based techniques can be 

broken down into active and passive (Zeidanloo, Shooshtari, et al., 2010). The main 

advantage of anomaly-based methods is their ability to detect new types of attacks, known 

as zero-day attacks. These attacks are malicious activities that are not already known by 

the detection system, and cannot be detected by signature-based approaches. However, 

the quality of the features selected for  use in the detection system and high false alarm 
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rates are the most common limitations of such detection approaches which apply 

anomaly-based techniques (N. Weaver et al., 2003). 

Host-based 

A host-based Botnet technique attempts to detect a Bot binary as a virus and so, it treats 

the infected machine as a way of anti-virus software. This approach is based on the 

hypothesis that a Bot programme executes a series of calls to system libraries which are 

dissimilar to those performed using normal processes (Trend-Micro, 2006). Host-based 

techniques monitor the machines activities and record system events such as remote 

control activities, register updates, file deletion and traffic sent to or received from a host. 

An alert is activated when it detects Botnet activities on the host.  

In 2007, Stinson and Mitchell proposed a BotSwat as a host-based detection technique 

based on the above premise. BotSwat has tools to monitor and track the interactions of 

computer program calls with system libraries that receive data from the untrusted network 

in order to discriminate between Botnet command responses from normal host activities. 

Moreover, this method was created with the aim to detect Botnets independent of C&C 

architectures or communication protocols (Stinson & Mitchell, 2007). 

EFFORT (Seungwon, Zhaoyan, & Guofei, 2012) a host-based detection approach that 

collects Bot characteristics at client and network levels, and correlates Bot-related 

information by monitoring local computer activity such as keystrokes and monitoring 

connections with other computers. This approach applies one class of supervised support 

vector machine algorithms to model legitimate user behaviour (Witten & Frank, 2005). 

Furthermore, fifteen Bot samples were used to evaluate the method and a 100% true 

positive rate was achieved with less than 1% FPR. The main advantage of this method is 

that it does not depend on the protocol and communications topology used. In addition, 

it is able to detect Bots that use encryption techniques to hide malicious behaviour. The 

major limitations of this method are critical to evasion techniques, such as fast-flux, and 

it also cannot be proven as a real-time detection approach. 

In 2008, Liu and colleagues introduced a BotTracer as a Botnet detection tool based on a 

virtual machine. This method is based on the idea that a Bot has three features. Firstly, 

the Bot has automatic start-up activities without involving any user actions. Secondly, the 

Bot must establish C&C a communication channel with its Botmaster. Finally, a Bot must 

launch an attack remotely or locally. These features represent the three basic stages of a 
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Bot attack: injection, update, and attack. Besides this, a Bot should communicate with a 

rendezvous point in order to launch a C&C channel with its Botmaster, and BotTracer 

catches these channels and analysed them to identify the Bot C&C channels. The 

BotTracer runs a virtual machine on the host that contains a copy of the host system file 

that automatically starts without human interaction. Then, it will monitor all auto start 

communication processes to find a Bot C&C channel fingerprint (Liu, Chen, Yan, & 

Zhang, 2008). Therefore, it will detect the Bot when it begins a malicious activity. This 

is a real-time technique that is capable of detecting unknown Bots without considering 

the communication protocol. Moreover, it achieves a low FPR regardless of the 

encryption of Botnet communication traffic. However, in BotTracer high levels of 

computation are required due to the virtual machine’s degradation of host performance. 

What is more, many Bots have the ability to check for the presence of a virtual machine, 

so, in this case, the BotTracer will not work. 

Al-Hammadi and Aickelin proposed a P2P Botnet detection approach by correlating 

behavioural features. The approach developed a program to monitor and extract 

suspicious API function calls in order to use these features as input to the correlation 

algorithm. Moreover, the Storm P2P Bot was used as a case study (Al-Hammadi & 

Aickelin, 2010). However, the main shortcomings of this technique are that the detection 

threshold is undefined, and it is evaluated using only one type of Bot. Another host-based 

study in Botnet detection introduced by Nummipuro presented some of the P2P Botnet’s 

behavioural characteristics such as using the System Service Table (SST) Hooking 

(Nummipuro, 2007). Although this host-based approach achieved satisfactory results in 

reducing the spread of malware, it works an individual host and so the monitoring and 

analysis operation is costly, complex and non-scalable.  

Table 2.5 summarize a host anomaly-based Botnet detection methods. 

Network-based 

Nowadays, network-based approaches are widely used for Botnet detection by analysing 

the entire network traffic (Barsamian, 2009). Furthermore, this technique is installed at 

the end of the network such as in the firewall or router unlikely host-based methods that 

analyse individual host activities. Network-based approaches have been further divided 

into active and passive monitoring.  

 



CHAPTER 2: BACKGROUND INFORMATION AND LITERATURE REVIEW 

29 

Table 2.5 Summary of host anomaly-based methods. 

Method Technique Shortcoming 

EFFORT (Seungwon 

et al., 2012) 

SVM and one 

Class SVM. 

- Critical to evasion 

techniques, such as fast-flux. 

- Not proven as a real-time 

detection approach. 

BotTracer (Liu et al., 

2008). 
Virtual machine. 

- Virtual machine’s 

degradation of host 

performance.  

- Providing false attack 

information by the attacker. 

(Al-Hammadi & 

Aickelin, 2010) 

Correlation 

algorithm. 

- The detection threshold is 

undefined.  

- Evaluated using only one 

type of Bot. 

(Nummipuro, 2007) 

Using the System 

Service Table 

(SST) Hooking. 

- The leak of scalability. 

 

In passive monitoring techniques, information about traffic on the network is gathered to 

find suspicious communications in order to detect Botnets. A key idea behind passive 

monitoring is that Bots create communication behaviour different from that of a normal 

host and Bots belongs to a Botnet network that presents  similar communication patterns 

(Trend-Micro, 2006). The Botmaster has to make connections with its Bots to issue an 

attack or update command. Moreover, because the Bot is pre-programmed, they react 

with the Botmaster using a similar pattern. Furthermore, the Botnet uses the same protocol 

in each phase of the Botnet life cycle (Trend-Micro, 2006). Many researchers have 

investigated such similarities in network traffic to identify Bot behaviour. 

For example, Gu colleagues (2008) use the fact that Bot is pre-programmed software and 

has a similar pattern to the C&C server to develop a BotSniffer detection method based 

on the spatial-temporal correlation. It depends on the hypothesis that Botnets favour to 

contact in an extremely synchronized way, unlike human activities. BotSniffer can 
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identify C&C servers and a compromised host based on the similarity of spatial-temporal 

data. Additionally, it can recognize C&C channels for IRC-based and HTTP-based 

Botnets. What is more, this technique is network-based, so it can identify a host with 

comparable suspicious network behaviour such as spamming and scanning (Gu, Zhang, 

et al., 2008). However, Botsniffer was developed to detect Botnets with a centralized 

architecture. Consequently, it cannot identify Bots that use a different architecture for the 

C&C server and it is not able to recognize an individual infected host. Moreover, it was 

developed to identify a Botnet in a local area network, so it is not applicable at the Internet 

level. Also despite having a low FPR, the Botsniffer can be avoided by utilizing encoded 

channels or using a decentralized architecture for the C&C server as in P2P Botnets. 

In 2007, Karasaridis et al. presented an anomaly-based algorithm for detecting IRC 

Botnet controllers using the transport layer data in the backbone of the network, such as 

Tier-1 ISP networks. The statistical characteristics of the C&C server traffic are used to 

find considerable quantities of the data of the network traffic. This data is gathered by 

utilising the sceptical host activity findings (ports scan, email spam and generating 

distributed denial of service attack traffic) collected from chosen network connections by 

matching a well-known IRC traffic signature, such as the low amount of network traffic, 

chat-like or a network traffic which has a PING-PONG pattern. After collecting network 

data methods are applied to detect the connections of candidate controllers that use 

unusual IRC ports. Firstly, it finds the suspected Bot flow with a remote machine that acts 

as a server. Secondly, it identifies flows whose behaviour is within the range of normal 

IRC traffic. Finally, they analyse the conversation of a candidate control to recognize 

suspicious controllers and their ports (Karasaridis, Rexroad, & Hoeflin, 2007). However, 

although the Karasaridis technique is able to work passively with large-scale networks 

and achieve less than 2% FPR, and so it is suitable to detect IRC Bots, but it may not be 

able to detect modern kinds of Botnet such P2P and HTTP.  

As opposite to passive monitoring that interacts with Botnet behaviour, active monitoring 

techniques interact with a Botnet directly by probing the network host with active 

communication and analysing its responses. Moreover, it actively confuses Botnet 

activity by meddling with the Bots’ communication with the C&C server. The majority 

of detection techniques are passive, while only a few, such as BotProbe (Guofei, 

Yegneswaran, Porras, Stoll, & Wenke, 2009), are active. 
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BotProbe was introduced by Gu and colleagues as an active detection mechanism. The 

main target of BotProbe is to determine whether or not a Bot or user is using the host at 

that side by injecting packets dynamically in a communication session. The authors noted 

that a Bot is a pre-programmed reply to any contact based on a set of predefined rules. 

So, they discriminated the human client from a Botnet with regards to the frequency and 

pattern of responses. This technique was tested on a number of IRC Bots and around 100 

real users (Guofei et al., 2009).  

However, active techniques have the serious shortcoming of greatly increasing network 

traffic by sending extra packets to suspicious clients. Furthermore, and most essentially, 

injecting packets to facilitate detection may be lead to legal issues. In addition, the passive 

detection approach has the advantage of detecting a Botnet without any direct interaction 

with the Bot, but only using the Bots behaviour within a network. Table 2.6 summarize 

network anomaly-based Botnet detection methods. 

Table 2.6 Summary of network anomaly-based methods. 

Method Technique Shortcoming 

BotSniffer (Gu, 

Zhang, et al., 2008) 

Spatial-temporal 

correlation 

- Payload encryption content. 

- Privacy issue. 

- Detect single Bot infection. 

(Karasaridis et al., 

2007) 
Correlation algorithm 

- Fails to detect non-IRC Bots. 

- Detect Zero-day attack. 

BotProbe (Guofei et 

al., 2009) 

Injecting packets in a 

communication 

session. 

- Increasing network traffic 

- Injecting packets to facilitate 

detection may be lead to legal 

issues. 

2.5.4 Machine learning based Detection 

Machine learning plays a significant role in the domain of artificial intelligence because 

it has excellent performance, and so it is widely used in many fields such as date mining, 

pattern recognition, and medical diagnosis. Machine learning algorithms extract hidden 

relationships and rules within data, which can be used to create models for prediction and 

classification, and thus its goal is to construct systems which have the ability to learn from 
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data (Mitchell, 1997; Witten & Frank, 2005). Learning in this context indicates the ability 

to identify complicated patterns and utilize labelled data to make qualified decisions. One 

of the main challenges in machine learning is how to make a generalization of knowledge 

extracted from a previous dataset or derived from a limited set of previous experiences, 

in order to construct a prediction system for new and unseen datasets. To deal with this 

problem, algorithms are developed based on statistical, artificial intelligence, information 

theory, biology, philosophy, cognitive science, control theory and computational 

principles (Mitchell, 1997). Machine learning algorithms are classified in terms of the 

type of learning involved, which are: supervised learning, unsupervised learning and RL.  

Supervised learning algorithms are trained using a labelled dataset to generate a model 

that is able to classify an unlabeled dataset in the future. It is as if a supervisor is helping 

you out, to be able to classify in the future, which is why it is called supervised. The 

principle of supervised learning is used by popular machine learning algorithms, for 

example, in Classification and Regression Trees (CART) (Breiman, Friedman, Olshen, 

& Stone, 1984), neural networks (Gurney, 1997) and Support Vector Machines (SVM) 

(Cristianini & Shawe-Taylor, 2000). The field of supervised learning may be divided into 

classification and regression problems. In Botnet detection problems, supervised machine 

learning mechanisms are employed to train with both Botnet traffic datasets and normal 

traffic datasets in order to construct classifiers.  

Compared to supervised learning, unsupervised learning algorithms do not require a 

labelled dataset for training. The goal of unsupervised learning methods is to divide an 

unlabeled dataset into different sub-groups depending on specific metrics. Furthermore, 

the dataset is learned from in order to understand its structure and to find patterns, instead 

of creating a generalization model from an available labelled dataset as in supervised 

learning approaches. Nilsson  defined unsupervised learning as the use of  “procedures 

that attempt to find natural partitions” (Nilsson, 1996). The most common unsupervised 

learning algorithms used to detect Botnets are hierarchical clustering, X-means and K-

means algorithms. 

In RL approaches, an agent learns what to do via some experiences including trial and 

error (Barto & Andrew, 1998). RL agents modify themselves according to the states of 

the environment to increase the number of rewards gained in the long run. To maximize 

the gains, RL agents estimate action-value function, which are specified as the 
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relationships between state-action pairs and the measures of returns that the agents will 

obtain in the future. More details of RL are given in Chapter 5. 

A recent study in the field of P2P Botnet detection by Babak et al.(2014) proposed a 

PeerRush, which uses a one-class classification approach to classifying various types of 

normal and abnormal P2P traffic. One-class classifies including the k-Nearest 

Neighbors algorithm (KNN), Parzen, and Gaussian data description classifiers (TAX, 

2001) are used. An application profile is initially created by learning traffic samples of 

known P2P applications. Moreover, features such as interval delays between packets and 

flow duration are used to classify P2P applications (Babak, Roberto, Andrea, & Kang, 

2014). This approach achieves high accuracy rates in classifying P2P applications 

depending on the features selected. On the other hand, this method does not show clearly 

how to detect P2P Botnets, and also detection can be easily avoided by changing the delay 

between packets. 

Garg et al. (2013) presented several machine learning algorithms, such as KNearest 

Neighbour, Naive Bayes, and J48. These were analysed for the detection of P2P Botnets 

using various network traffic features. The results show that the accuracy of the classifiers 

trained using the Nearest Neighbour and J48 is good (Garg, Singh, Sarje, & Peddoju, 

2013). However, the detection of legitimate traffic is very weak. 

Jiang and Shao (2012) presented a method that focuses on the C&C traffic of P2P Bots 

regardless of how they perform their malicious activity. This method developed a 

detection mechanism based on Bots that exhibit connection flow dependency with other 

Bots in the same Botnet network. According to the flow dependency behaviour, this 

approach uses a single-linkage hierarchical clustering mechanism to differentiate between 

P2P Bots and normal hosts  (Jiang & Shao, 2012). This method was built based on the 

similarity of Botnet traffic, and so it will fail to detect Botnets that use the irregularity of 

traffic flow, such as Storm Bot (Li, Hu, & Yang, 2012). Also, it has a limitation in 

identifying individual Bot behaviour. 

One study by Junjie et al.(2011) introduced a P2P Botnet detection system that can 

identify stealthy P2P Botnets. The proposed approach focuses on identifying Bots based 

on the monitoring of C&C traffic. They extracted four features for each traffic flow, 

including the numbers of bytes received and sent and numbers of packets received and 

sent. The hierarchical clustering (Jain et al., 1999) and BIRCH algorithms (T. Zhang, 
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Ramakrishnan, & Livny, 1997) were used to cluster network flow (Junjie, Perdisci, 

Wenke, Sarfraz, & Xiapu, 2011). Furthermore, the approach is independent of payload 

signatures and has also achieved high detection rates of both malicious and legitimate 

hosts, with an FPR of 0.2% and TPR of 100%. Although this system can detect Botnets 

regardless of how they perform their malicious activities, it focuses only on P2P Botnets 

and cannot detect other types such as IRC or HTTP Bots. However, the proposed 

technique is vulnerable to some evasion methods such as flow disturbance packets and 

using the DGA and Fast-flux algorithms as a communication facility to provide a high 

level of C&C privacy. 

Wen-Hwa and Chia-Ching (2010) used a methodology based on packet size to distinguish 

between P2P Botnet traffic and legitimate P2P traffic. They presented the following 

observations. Firstly, P2P Bots try to update information for other Bots rather than staying 

idle. Secondly, the Bot mainly transmits data with a minimum rate of connections. 

Bayesian networks, Naïve Bayes and J48 are used to classify network traffic (Wen-Hwa 

& Chia-Ching, 2010). Furthermore, the accuracy rates for these three algorithms are 87%, 

89% and 98% respectively. However, it was found that the size of P2P Botnet packets is 

smaller than that of any other P2P applications. 

Zhao and co-workers (2010) introduced a P2P Botnet detection system using machine 

learning techniques based on the flow intervals of network traffic. In addition, they 

applied a Bayesian network and decision tree (REPTree) as a classification method to 

investigate online P2P Bot detection (Zhao et al., 2013). The main drawback of this 

technique was its sensitivity to evasion methods such as the random connection interval. 

For example, the connection interval of the Srizbi Bot is random in the interval from 60 

to 1200 seconds (Dae-il, Kang-yu, Minsoo, Hyun-chul, & Bong-Nam, 2010). 

Nogueira et al.(2010) introduced a Botnet detection approach based on the identification 

of traffic using artificial neural networks to classify legal and illegal patterns (Nogueira, 

Salvador, & Blessa, 2010). This technique has several advantages, such as being 

independent of protocol and network structure and having the ability to detect encrypted 

Bot traffic. Nevertheless, the trained neural network was able to classify only 87% of 

network traffic. The main drawback is the need for external judgment in order to provide 

adaptive operation. 
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In 2012, F. Tegeler et al. introduced a network Botnet detection approach called 

BotFinder, which detects separate hosts infected by Bots focusing on the statistical 

features of network flow based on frequent Bot C&C communications constructed in a 

controlled environment. Additionally, they used clustering based on a local Shrinking 

algorithm (X. Wang, Qiu, & Zamar, 2007) as the machine learning method used to 

separate the captured network flow into legitimate and malicious classes where the final 

model will decide whether the flow generated by hosts is malicious or not  (Tegeler, Fu, 

Vigna, & Kruegel, 2012). On the other hand, BotFinder has detection rates varying from 

49% for the Bifrose Bot to 100% for the Banbra Bot. This technique has several 

advantages such as IP address blacklisting or DPI of contents being unnecessity.  

The detection system introduced by Fedynshyn et al (2011). uses a host-based approach 

to detect Bots using the property of temporal persistence. They utilized a J48 classifier 

and a Random Forest algorithm to sort various kinds of Botnet infection categorized 

according to C&C model (HTTP, IRC and P2P). Moreover, they found similarities in 

C&C structures for different categories of Bots that are different from those of legitimate 

network traffic (Fedynyshyn, Chuah, & Tan, 2011). 

A recent study in the Botnet detection field by Saad et al.(2011) addresses the P2P Botnets 

detection problem by using several machine learning techniques, including an artificial 

neural network (ANN), linear SVM, a Gaussian based classifier, Nearest Neighbour 

classifier, and a Naive Bayes classifier (Witten & Frank, 2005). The study evaluated the 

ability of these machine learning techniques in terms of on-line Botnet detection 

requirements such as adaptability, novelty detection and early detection (Saad, 2011). 

They showed that all of the machine learning algorithms had great potential for detecting 

patterns of Botnet traffic, achieving detection rates greater than 89%. However, SVM and 

ANN took the most time in the training phase. Furthermore, the performance of these 

techniques is highly dependent on the features selected for classification or cluster 

analysis and they often have high computational requirements. 

Strayer et al.(2006) introduced one of the first techniques that utilize machine learning 

for the purpose of Botnet detection in network traffic. This approach is an extension of 

Strayer’s previous work (Strayer, Walsh, Livadas, & Lapsley, 2006) and works conducted 

by Livadas et al. (Livadas, Walsh, Lapsley, & Strayer, 2006). Bayesian Network, C4.5 

Tree and Naive-Bayes classifiers as machine learning approaches were evaluated in 
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classifying IRC traffic as legitimate or malicious flows (Timothy, David, Robert, & Carl, 

2008). Although these methods were effective in detecting Botnets, the techniques are 

still restricted to particular types of Botnets such as IRC Botnets or specific architectures 

such as centralized hierarchies. Furthermore, they need human experts to make the final 

decision. 

Masud et al. (2008) introduced an approach to Botnet detection based on the observation 

that a Bot has many reaction patterns that are different from those of humans. This 

approach can detect Bots by correlating incoming packets with outgoing packets, new 

outgoing connections, and application startup in hosts. Several machine learning 

algorithms such as the C4.5 decision tree, support vector machine, Naive Bayes, Bayes 

network classifier and Boosted decision tree (Witten & Frank, 2005) were compared and 

evaluated in the detection of IRC Botnets. The result of the evaluation showed that all 

machine learning algorithms achieved over 95% detection rates, less than 3% FPR and 

under 5% false negative rates (FNR). The greatest overall performance was reached by a 

Boosted decision tree (Masud, Al-khateeb, Khan, Thuraisingham, & Hamlen, 2008). 

However, one major drawback of this approach is that it cannot detect Botnets that use 

encrypted communication due to the need to access the contents of payload packets. On 

the other hand, the method has been tested on IRC Bots, so it is unable to deal with modern 

types of malware such as P2P Botnets. 

Gu et al. (2008) introduced Botminer as a network-based detection method which detects 

Botnet by correlating machines with comparable malicious activities and comparable 

C&C communications. Botminer utilizes X-means and hierarchical clustering methods to 

identify a Botnet using the observation that a Botnet is a collection of malware instances 

that are administered through the C&C channel and it has a similarity of the temporal 

behaviour. The detection process operates by detecting hosts with activities of similar 

communications  in the C-plane where hosts are communicating with different hosts, in 

other words, hosts which its traffic flows are related in respect of flows per hour (fph), 

bytes per second (bps), bytes per packet (bpp) and packets per flow (ppf). Besides this, 

hosts are defined with traffic of similar attack in the A-plane showing who hosts is doing 

what, such as hosts performing ports scan, downloading the same files and spamming. 

The detection results are obtained by creating a cross-correlation between the A-Planes 

and C-Planes in order to classify machines that share similar malicious activity patterns 
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and similar communications (Gu, Perdisci, et al., 2008). The main advantages of 

Botminer it can identify several Botnet kinds such as IRC-based, P2P-based and HTTP-

based Botnets with 99% true positive rate and low FPR around 1%. Nevertheless, 

correlating activities that generated by various hosts needs at least two machines on the 

network be infected by the similarly Bot type. Consequently, Botminer fails in the 

situation of an individual machine is infected by Bot or when several machines inside the 

network are infected with diverse Bots types. Furthermore, Botminer fails to detect Bots 

that exchange C&C messages without any suspicious activity. 

In Wei et al. (2009) study, they suggested BotCop as an online Botnet traffic detection 

system. In this method, network traffic is categorized into various applications using a 

decision tree technique. The network’s payload characteristics are utilized and then, based 

on each application community obtained, the temporal frequency properties of their flows 

are examined to classify a communication as malicious or legitimate traffic (Wei, 

Tavallaee, Rammidi, & Ghorbani, 2009). Table 2.7 summarize machine learning based 

Botnet detection methods. 

2.5.5 DNS-based Detection 

At the same time as efforts to detect Botnet passively based on network traffic, other 

researchers started to look for suspicious Botnet behaviour in DNS traffic. The Domain 

Name System (DNS) is a distributed naming system for devices that are connected to the 

Internet; the DNS is responsible for converting domain names to IP addresses (Goerzen, 

2004). Bots exploit the DNS to find the Botmaster IP address, and the DNS responds by 

giving IP addresses that connect the compromised computers with the C&C server. 

Accordingly, Kristoff (2005) introduced a technique that can identify a Botnet by 

monitoring the DNS traffic, and the technique blacklists any connected servers that spread 

malicious malware (Kristoff, 2005). In 2005, Dagon detected the activity of Botnets using 

a comparison of the rate of malicious DNS to legitimate DNS traffic (Dagon, 2005). 

However, both approach can easily be avoided, whenever the Botmaster generates a fake 

DNS query or applies DDNS queries. 
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Table 2.7 Summary of machine learning based detection methods. 

Method Technique Shortcoming 

PeerRush (Babak 

et al., 2014) 

One-class classifies including 

the k-Nearest 

Neighbors algorithm (KNN), 

Parzen, and Gaussian data 

description classifiers 

- Evaded by changing the 

delay between packets. 

(Garg et al., 2013) 
KNearest Neighbour, Naive 

Bayes, and J48 

- Detection of legitimate 

traffic is very weak. 

(Jiang & Shao, 

2012). 

single-linkage hierarchical 

clustering mechanism  

- Detection single Bot 

infection. 

(Junjie et al., 

2011). 

The hierarchical clustering  

and BIRCH algorithms  

- Fail to detect non-P2P Bots. 

- Evaded by DGA and Fast-

flux algorithms. 

(Wen-Hwa & 

Chia-Ching, 2010) 

Bayesian networks, Naïve 

Bayes and J48  

 

-  NAT technology makes it 

difficult to detect P2P 

flows. 

(Zhao et al., 2013). 
Bayesian network and 

REPTree decision tree  

-  Sensitivity to evasion 

methods such as the random 

connection interval. 

(Nogueira et al., 

2010) 
Artificial neural networks 

- Need an external judgment 

to provide adaptive 

operation. 

(Timothy et al., 

2008) 

Bayesian Network, C4.5 Tree 

and Naive-Bayes classifiers 

- Fail to detect non-IRC Bots. 

- Need human experts to 

make the final decision. 

(Masud et al., 

2008) 

C4.5 decision tree, SVM, 

Naive Bayes, Bayes network  

and Boosted decision tree 

- Payload encryption content. 

- Privacy issue. 

Botminer (Gu, 

Perdisci, et al., 

2008). 

Spatial-temporal correlation 

- Detection single Bot 

infection. 

- detect Bots that exchange 

C&C messages without any 

suspicious activity. 

 

Choi et al.(2009) introduced BotGAD as an anomaly detection approach based on group 

activities on Botnet DNS traffic (Choi, Lee, & Kim, 2009). The authors indicated that the 

group activities of DNS were key features of traffic used to differentiate a Botnet DNS 

from a normal DNS request. BotGAD is capable of detecting novel Botnet attacks on 

networks of huge scale in real time. The main weakness of the method is that it requires 
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a long time for processing to monitor large volumes of network traffic (Han & Im, 2012). 

What is more, it is able to detect Botnets that execute group DNS traffic activities. Thus, 

it cannot detect Bots, which use the DNS once and never return to it.  

Some of the common DNS-based techniques try to detect Botnets by detecting anomalies 

in DNS traffic (Villamarin-Salomon & Brustoloni, 2008), or detecting Bots based on 

DNS group behaviour (Choi & Lee, 2012), using DNSBL (DNS Black List) 

(Ramachandran, Feamster, & Dagon, 2006), or constructing a reputation system for DNS 

queries (Antonakakis, Perdisci, Dagon, Lee, & Feamster, 2010). But many new models 

of Botnets as P2P and hybrid P2P do not involve DNS services in their operation, and so 

these approaches are significantly limited in detecting such Bots (Stevanovic, Revsbech, 

Pedersen, Sharp, & Jensen, 2012). Summarize of DNS-based Botnet detection methods. 

Summarize of DNS-based Botnet detection methods. 

Table 2.8 Summary of DNS-based detection methods. 

Method Technique Shortcoming 

(Kristoff, 2005) 
White and black 

lists 

- Avoided by generating a fake DNS 

query 

- Avoided by using DDNS queries. 

(Dagon, 2005). 
Correlation 

algorithm 

- Avoided by generating a fake DNS 

query 

- Avoided by using DDNS queries. 

BotGAD (Choi et 

al., 2009) 

Monitoring 

group behavior 

through DNS 

traffic. 

- Detection single Bot infection  

- Processing time. 

2.5.6 Hybrid Botnet Detection Approaches 

In parallel with standard network-based and client-based detection techniques a new class 

of hybrid detection methods has appeared. This type of method detects Botnets by 

collecting the features of Bots at both client and network levels. The main reason behind 

hybrid strategies is that it is likely to afford increases in performance in Botnet detection 

by connecting findings from client-based and network-based detection systems.  
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For example, Yuanyuan et al. (2010) proposed a hybrid detection approach that detects 

Botnets by combining the host and network level behaviour. The approach is based on 

the hypothesis that two sources of Bot observations will complement each other in making 

detection decisions. The structure of the approach consists of three parts: network analysis 

host analysis and a correlation engine (Yuanyuan, Xin, & Shin, 2010). Another study by 

Wang et al. combined three detection approaches (Szymczyk, 2009). In Honeypot-based 

Botnet detection, were host-based Botnet detection and network-based Botnet detection 

methods are all utilized. 

2.6 Summary 

The existing Bot and Botnet detection systems described above have advantages and 

shortcomings compared to others. Different Botnet detection methods can be categorized 

based on various measures, such as being host-based or network-based, detecting 

individual Bots or Botnet networks, machine learning based, anomaly-based or signature-

based Bot detection. They may be limited to one class of C&C topology or can detect 

Bots that apply multiple C&C structures. 
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3 TRAFFIC REDUCTION 

APPROACH FOR BOT 

DETECTION 

3.1 Introduction 

Previous chapters have presented the Botnet phenomena and demonstrated why former 

work has not been adequate to counter the Botnet menace. Furthermore, various existing 

detection methods are still confined to detecting Botnet in an off-line way because it was 

unable to analysis the whole network traffic immediately. 

One challenge of a network-based Botnet detection system is the inability to monitor and 

analyse the network traffic in high-speed networks in the real time. Packets that are not 

checked on time can be ignored and these packets may comprise the attack signature 

(Yang, Fang, Liu, & Zhang, 2004). 

On the one hand, the benefit of the network-based detection is that it has a more extensive 

scope than the host-based detection schemes (Egele, Scholte, Kirda, & Kruegel, 2008; 

Marpaung, Sain, & Hoon-Jae, 2012).  On the other hand, the difficulty of network-based 

systems is that the volume of traffic will grow, which indicates that extra traffic will be 

added to the network traffic (Rgio S. C. Silva et al., 2013).  Therefore, traffic reduction 

technique becomes essential to help the detection system to work online. Consequently, 

the main goal of this chapter is to introduce traffic reduction method gives the detection 

approach the ability to work online at the network level despite the size of network traffic. 

Furthermore, it not influenced by packets encryption algorithm. 

The next section provides an overview of the proposed detection system. A briefly 

detailed for each component of the Botnet detection framework is presented. Section 3.3 

presents the network traffic capture approach. Section 3.4 presents the traffic reduction 

technique. Section 3.5 introduces the traffic reduction algorithm and traffic reduction 



CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION 

42 

evaluation. Discussion and the chapter summary are given in Section 3.6. and 3.7 

respectively. 

3.2 Overview of Bot Detection Approach 

The architecture of the proposed P2P Bot detection system consists of four main 

components: network traffic capturing, network traffic reduction, network traffic feature 

extraction and malicious activity detection using a RL agent as shown in Figure 3.1. 

The traffic capture module is an interface between packets of the network and the 

proposed system; packets detected in the monitored network will be forwarded in their 

raw form to the subsequent phase in the framework. The phase of the reduction network 

traffic is responsible for filtering that traffic and is achieved by selecting TCP control 

packets as a representative of the connection conversations of the captured network 

traffic. 

In the feature extraction phase there are two processing phases: parsing connection 

conversations and host feature extraction. The parsing connection conversations phase is 

responsible for constructing connection features between nodes inside the monitored 

network, according to packets captured and the size of the selected slide window. The 

connection is defined as a 5-tuple: source IP, destination IP, source port, and destination 

port and protocol type. In the node feature extraction phase, the vectors of node features 

are constructed that represent the status of the node based on connection features during 

the current sliding time-window. More details of connection-level features are given in 

Chapter 4. 
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Figure 3.1 Bot detection framework  

The malicious activity detector takes a node feature vector as input and classifies nodes 

according to their features into two categories: malicious nodes infected with a Bot or 



CHAPTER 3: TRAFFIC REDUCTION APPROACH FOR BOT DETECTION 

44 

normal legitimate nodes. So, a multi-layer feedforward neural network with resilient 

learning is selected as a classification algorithm due to its high adaptive and the accuracy 

rates. The RL agent is responsible for evaluating neural network decisions in order to 

extract new features which help to improve the detection system in recognizing a zero-

day attack. More details of RL are given in Chapter 5. 

3.3 Network Traffic Capture 

The network traffic capture tool is utilized as an interface between the monitored network 

and the second stage of the proposed detection system. The primary objective of this 

phase is to sniff network traffic according to the specific size of the sliding time-window 

mechanism in order to forward it to the traffic reduction phase 

The result of this stage consists of raw captured packets. In our experiments, network 

packets are passively captured using a Java library used for capturing network traffic, 

namely Jpcap (Shen & Wang, 2009). One of the primary reasons for adopting a passive 

strategy is that it does not raise the amount of the traffic inside the network. In addition, 

the passive detection approach has the advantage of detecting Botnets without any direct 

interaction with them, but only the Bot behaviour within the network is used. This means 

that the detection technique operates stealthily and cannot be detected by the Botmaster. 

However, in this research several time-window sizes are evaluated in order to determine 

a suitable size of time-window that can improve the accuracy.  

The packets traffic flows appear continuously at the network edge, which is difficult to 

analyse all packets streams immediately. In the proposed method, it only deals with the 

new packets in the traffic flow in order to detect malicious behaviour instantly. 

Consequently, we adopt the sliding time window mechanism to capture the recent 

packets. As shown in Figure 3.2, the time window slides are going to hold the newest 

packets continuously as time passing, and then send these packets to the next step of the 

proposed approach.  
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Figure 3.2 The sliding time-window mechanism. 

3.4 Network Traffic Reduction 

Nowadays, the number of packets passing through a high-speed network is massive and 

is affected by the capacity of the links and the number of Internet users. Thus, the 

reduction of network traffic for the detection of malicious activities is essential in order 

to manage enormous amounts of network traffic when resources such as memory and 

hard disk space are restricted. The most difficult part of the reduction of network traffic 

is to identify it is behaviour by inspecting a small number of packets per flow.  

Therefore, this study introduces a new traffic reduction technique to facilitate the 

deployment of Bot host detection systems on high-speed networks. As discussed above, 

the majority of Botnet detection systems rely on DPI and examine the entire network 

traffic. DPI assumes that the payload of every packet will be examined. This technique 

can be accurate when the payload is not encrypted. However, the majority of new types 

of malware generation apply evasion methods such as the encryption of payloads or 

protocol encapsulation and obfuscation, which mean that the payload is concealed (P. 

Wang et al., 2015). Furthermore, examining all packets in a high-speed network is an 

expensive task because of the speed of networks and the amounts of packets transferred, 

which is continually increasing. However, a detection system which applies DPI may 

suffer from efficiency limits due to on processing a large volume of traffic from high-

volume or high-speed networks (Jun et al., 2008). The goal of the present work is to 

increase the effectiveness of detection systems by decreasing the volume of traffic to be 

analysed, without affecting the accuracy of the detection process. To achieve this goal, a 
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novel traffic reduction method is proposed in a Bot host detection framework which 

selects only TCP control packets. 

In this work, the filtration of TCP control traffic packets is used in order to reduce the 

volume of network traffic as well as to increase the performance of the proposed 

approach. The filtering phase splits the operation into two steps: filtering all traffic related 

to the TCP protocol; then extracting the TCP control packet SYN, ACK, FIN and RST. 

Algorithm 3.1 shows the process of redacting network traffic. In Line 2 an array of 

TCP_Control_Packets_list is initialized. By iterating over the packets, new packets are 

added to the array of the (TCP_Control_Packets_List) from Line 3 to 15 until the last 

packet in the file is reached. Line 4 examines the TCP packet headers and Line 5 selects 

packets with no payload data. Line 6 then gets the packet header. From Lines 7 to 10, the 

code reads the packet, which is TCP, and extracts the packets which have SYN, ACK, 

FIN and RST flags. 

The framework can efficiently decrease the volume of traffic that will enter the detection 

system. Network traffic reduction is achieved by generating a representative traffic of the 

entire network. The characteristic of this representative traffic has to reflect the behaviour 

of network traffic as a whole. Using the proposed traffic reduction approach decreases 

the quantity of network traffic to be examined. In summary, the network traffic reduction 

Algorithm 3.1 includes six rules to pick the desired packets: 

  Rule 1 (R1): Packet contents Syn flag. 

  Rule 2 (R2): Packet contents Syn-Ack flag. 

  Rule 3 (R3): Packet contents Ack flag.  

  Rule 4 (R4): Packet contents Fin-Ack flag. 

  Rule 5 (R5): Packet contents Rest-Ack flag. 

  Rule 6 (R6): Packet contents Rest flag. 
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Algorithm 3.1 Network Traffic Reduction. 

1: Procedure Traffic Reduction (packets) 

2: ArrayList <Packet> TCP_Control_Packets_List ; 

3: For i=1 to size(Packets) 

4:  IF Packets(i) has (TCP header)  then 

5:   IF Packets (i) has (TCP. payloadSize==0) then 

6:       pktheader= packet.getHeader(Packets(i)); 

7:    IF ((pktheader.flags.syn=1OR pktheader.flags.ack=1 OR    

     pktheader.flags.rest=1 OR pktheader.flags.fin=1)  

    AND NOT (pktheader.flags.cwr=1 OR  

    pktheader.flags.ecn=1 OR pktheader.flags.push=1  

    OR pktheader.flags.urg=1)) 

8:      TCP_Control_Packets_List.Add(packets(i)); 

9:        ELSE  

10:             Discard the Packet; 

11:         End IF 

12:   End IF  

 13: End IF 

 14: End For  

 15: Return TCP_Control_Packets_list; 

 16: End Procedure 

 

3.5 Traffic Reduction Evaluation 

3.5.1 Description of Experimental Datasets 

In this research, three main datasets, which contain malicious and non-malicious traffic, 

were used in evaluating the proposed system. The first is the Information Security And 

Object Technology (ISOT) dataset (Saad, 2011) that contains malicious traffic from the 

French Chapter of the Honeynet Project involving the Waledac and Storm Bots. It also 

contains non-malicious traffic collected from the Traffic Lab at Ericsson Research in 

Hungary and the Lawrence Berkeley National Laboratory (LBNL). Whereas the second 

dataset is the Information Security Centre of Excellence (ISCX) dataset (Shiravi, Shiravi, 
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Tavallaee, & Ghorbani, 2012) which includes legitimate activity traffic. The third dataset 

contains four legitimate volumes of traffic from P2P applications, namely Vuze, 

Frostwire, eMule and uTorrent, and the traffic of three P2P Botnets, namely Zeus, Storm 

and Waledac. These volumes were acquired from the University of Georgia, UAS (Babak 

et al., 2014), whose authors generated the P2P application traffic using AutoIt scripts in 

order to simulate human- activity on P2P hosts, as shown in Table 3.1 

Table 3.1 Dataset distribution. 

Traffic Source Purpose Duration 

Storm Bot traffic -   ISOT dataset 

(D1) 
Train 3115 seconds 

Waledac Bot traffic - ISOT dataset 

(D2) 
Train 605 seconds 

Normal traffic -  ISOT dataset (D3) Train 126273 seconds 

eMule - University of Georgia 

dataset (D4) 
Train/Test 24 hours 

uTorrent - University of Georgia  

dataset (D5) 
Train/Test 24 hours 

Vuze - University of Georgia  

dataset (D6) 
Train/Test 24 hours 

FrostWire -  University of Georgia 

dataset (D7) 
Train/Test 24 hours 

Normal traffic – ISCX  dataset (D8) Testing 24 hours 

Storm Bot traffic -   University of 

Georgia (D9) 

Testing (Zero-day 

attack) 
24 hours 

Waledac Bot traffic - University of 

Georgia (D10) 

Testing (Zero-day 

attack) 
24 hours 

Zeus Bot traffic -  University of 

Georgia (D11) 

Testing (Zero-day 

attack) 
24 hours 

 

The total size of the dataset used in our experiment about 216 GB, which is distributed in 

10.09 GB from ISOT dataset, 16.1 GB from ISCX dataset and 189 GB from Georgia 

university dataset. 

3.5.2 Traffic Reduction Approach Evaluation 

The goal of the traffic reduction technique is to reduce the size of the captured traffic by 

using TCP control packets to represent the whole of network traffic. To evaluate this goal, 
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a set of an experiment on dataset was performed, and show that the reduction traffic 

algorithm reduces the traffic within average 50% of network traffic as shown in Table 

3.2. 

Table 3.2 Traffic reduction rates. 

Traffic Source 
Number of 

packets 

Number of 

control 

packets 

Rate of traffic 

reduction 

D1 128241 64551 50.3% 

D2 118379 69936 59.1% 

D3 564999 226308 40.1% 

D4 6736353 2780725 41.3% 

D5 6278385 4237135 67.5% 

D6 11732688 741677 6.3% 

D7 4429535 2406066 54.3% 

D8 3776931 1686962 44.7% 

D9 4251875 1169900 27.5% 

D10 12915757 9395310 72.7% 

D11 114548 59255 51.7% 

 

Table 3.3 shows the rate of control packets that obtained by each traffic reduction rule. 

Meanwhile, Figure 3.3 compares the efficacy of the proposed traffic reduction rules 

between legitimate traffic and Botnet traffic. As shown in Figure 3.3 the rule (R1) 

obtained the highest reduction rates for both Bot and legitimate traffics rates around 

30.7% and 24.1% respectively. Furthermore, the rule (R6) has the highest percentage of 

traffic about 19.6% on Botnet dataset evaluation comparing with the legitimate dataset 

traffic about 7.9% rate. 
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Table 3.3 Network traffic reduction rules rates 

Traffic Source Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

D1 34.7% 7.0% 13.0% 8.7% 16.7% 20.0% 

D2 30.0% 11.2% 8.8% 6.7% 21.3% 22.0% 

D3 22.5% 25.8% 20.5% 17.8% 8.3% 5.0% 

D4 20.0% 26.7% 15.8% 17.5% 13.3% 6.7% 

D5 26.7% 22.2% 22.8% 10.7% 7.7% 10.0% 

D6 25.0% 21.3% 18.3% 18.2% 5.2% 12.0% 

D7 26.7% 19.3% 24.0% 15.0% 8.5% 6.5% 

D8 23.8% 20.0% 19.0% 22.7% 6.7% 7.8% 

D9 29.8% 8.2% 8.5% 8.8% 22.8% 21.8% 

D10 29.0% 15.0% 6.0% 8.0% 17.0% 25.0% 

D11 30.2% 7.7% 4.0% 9.8% 20.5% 27.8% 

 

 

Figure 3.3 Average rates of network traffic reduction rule :(a) Legitimate traffic and (b) 

Botnet traffic. 
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3.6 Discussion 

Recent years have witnessed of many Botnet detection techniques due to the severity of 

Botnet threats. Botnet detection has attracted intense research effort. For example, in 

flow-based detection schemes such as (Babak et al., 2014; Gu, Perdisci, et al., 2008; 

Timothy et al., 2008; Zhao et al., 2013), every packet is analysed one by one. Thus, that 

situation is not suitable for the online detection in a high-speed network.  

In addition, several detection systems have been suggested (Goebel & Holz, 2007; Gu, 

Perdisci, et al., 2008; Gu et al., 2007; Gu, Zhang, et al., 2008; Yen & Reiter, 2008), but 

despite excellent detection results, these methods may suffer from restrictions of the 

scalability when they analyse huge volumes of network traffic. Their shortcomings in 

scalability mainly derive from their reliance on DPI techniques. For example, BotHunter 

(Gu et al., 2007) utilizes a payload-based anomaly detector and a signature-based 

detection engine, BotSniffer (Gu, Zhang, et al., 2008) and Rishi (Goebel & Holz, 2007) 

require the parsing of the IRC communications contents and TAMD (Yen & Reiter, 2008) 

inspects the payloads of packets in order to estimate similarities in contents. Therefore, 

the proposed a network traffic reduction mechanism gives the detection approach the 

ability to work online at the network level despite the size network traffic, because we 

only focus on a small part of the TCP packets, which are used to initialize the connections. 

 The bottleneck of the machine learning approaches for Bot detection relates to the 

dimensionality and size of the dataset considered, because the amount of the packets, 

needing to be scanned is enormous. Therefore, this study proposed a network traffic 

reduction approach to reduce the amount of network traffic to be analysed. The approach 

reduces the packets to around 50%, which will lead to enhancing the features extraction 

stage (Chapter 4), and online RL stage (Chapter 5). 

 Table 3.4 compares the performance of several detection approaches based on the use of 

traffic reduction. It is noticed that the proposed approach has a high detection rate with a 

relatively low FPR as shown in Section 4.5.5 in Chapter 4. Moreover, this approach 

proves the possibility of finding the Botnet activities without analysing all the network 

flow. Based on the above discussion, the proposed reduction method presented in this 

study showed the rate of traffic reduction is high comparing to the other methods.  

The bottleneck of the machine learning approaches for Bot detection relates to the 

dimensionality and size of the dataset considered, because the amount of the packets, 
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needing to be scanned is enormous. Therefore, this study proposed a network traffic 

reduction approach to reduce the amount of network traffic to be analysed. The approach 

reduces the packets to around 50%, which will lead to enhancing the features extraction 

stage (Chapter 4), and online RL stage (Chapter 5). 

Table 3.4 Comparison of traffic reduction with other Bot detection techniques. 

Approach 
Rate of traffic 

reduction 

True positive 

rate 

False positive 

rate 

Babak et al. (2014) 0% 99.09% 0.1% 

Zhao et al. (2013)  0% 98.1% 2.1% 

Timothy et al. (2008)  N/A 92% 11-15% 

Gu et al. (2008)  N/A 100% 0-6% 

K. Wang et al. (2011) > 70% 95% 0-3% 

The proposed approach 40% -70% 99.1% 0.01% 

3.7 Summary 

In this chapter, we have introduced a solution to this problem, which includes a network 

packet reduction algorithm. The evaluation results of the proposed reduction approach 

show that our solution achieves suitable reduction rate using real-world network traces. 

The next chapter will present the proposed connection-level features and the offline Bot 

detection method. 
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4 CONNECTION-LEVEL 

FEATURES FOR BOT 

HOST DETECTION 

4.1 Introduction  

It is a concern of a network administrator to recognize hosts in the network that are 

infected by a Botnet. Infected computers can be used by adversaries to extract valuable 

information or they may wait for an order from a Botmaster to reroute spam. However, 

the detection of Botnets is currently a special challenge for the following reasons. Botnets 

employ hidden tactics such as using a random port rather than the usual port or utilizing 

an encryption technique to hide malicious behaviour on network traffic (D. Dittrich & S. 

Dietrich, 2008; Holz et al., 2008). Besides that, Botnets utilize regular protocols such as 

IRC, HTTP, and P2P. Therefore, it is very difficult to differentiate Botnet behaviour from 

legitimate network traffic (Grizzard et al., 2007; Jiang & Shao, 2012). Therefore, to 

discriminate the Botnet behaviour from legitimate network traffic, the feature extraction 

and selection set is a critical point for the efficiency of any Botnet detection system. 

The quality of the feature set is one of the most important factors that affect the 

performance of the machine learning algorithms. Therefore, the main goal of this chapter 

is to introduce the host traffic feature based on the connection-level that can differentiate 

between a Bot and a legitimate network host. More specifically, the feature able to 

identify Bot host by using a minimum set of packets after network traffic reduction stage 

(Chapter 3). In addition, to achieve earlier Bot detection and bypass the encrypted 

network traffic, the feature set utilizes the information in the header of TCP control 

packets that helps the detection system to efficiently analysis massive volume of network 

traffic without suffering from encrypted traffic. 

The previous chapter introduced the traffic reduction approach that helps to reduce the 

amount of the network traffic to be analysed. In this chapter, we will utilise the traffic 
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reduction to present our contribution on feature extraction at a connection-level. 

Furthermore, the chapter presents the evaluation of the offline Bot detection system. 

4.2 Overview of Offline Bot Detection Approach 

The architecture of the proposed offline Bot detection system consists of four main 

components: network traffic reduction, network traffic feature extraction and malicious 

activity detection as illustrated in Figure 4.1. The phase of the reduction network traffic 

is responsible for filtering that traffic to increase the scalability and avoiding DPI problem 

as we addressed in the previous chapter.  

In the feature extraction phase, there are two processing stages: extracting connection 

conversations and host feature extraction. The extracting connection conversations phase 

is subject to constructing connection features between nodes. In the node feature 

extraction phase, the vectors of node features are assembled that represent the status of 

the node based on connection features. 

Finally, the malicious activity detector takes a node feature vector as input and classifies 

nodes according to their features into two categories: malicious nodes infected with a Bot 

or normal legitimate nodes. Therefore, a multi-layer feedforward neural network with 

resilient learning is selected as a malicious activity detector due to its high adaptive and 

the accuracy rates. 
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Figure 4.1 Overview of Offline Bot detection phases. 

4.3 Features Extraction  

The proposed connection features relies on two fundamental concepts. Firstly, it passively 

monitors network traffic (Zeidanloo, Shooshtari, et al., 2010). Secondly, it utilizes the 

fact that Bots during the propagation phase will frequently communicate with their C&C 

servers/peers in order to discover other peers and receive the latest updates of tasks due 

to their pre-programmed nature (Han, Lim, & Im, 2009; Sang-Kyun, Joo-Hyung, Jae-

Seo, Bong-Nam, & Hyun-Cheol, 2009). Bots are different from other types of malware; 

they work as a group and primarily need a communication channel in order to coordinate 

malicious activities. These connections are described as the way by which the Botmaster 

communicates with his Bots (Chao et al., 2009). 

Features are composed of a small set of attributes that are needed to characterize a dataset. 

In particular, a vector of an attribute that represents each instance of data is used as input 

to a machine learning algorithm. The quality of features is significant in order for the 

machine learning algorithm to detect the behaviour of the network traffic class. The 

network traffic features could be extracted at three levels as follows: packet-level, flow-

level, and connection-level (Roughan, Sen, Spatscheck, & Duffield, 2004). Moreover, 

classification can be based on the level of packet inspection, as in shallow or DPI. 
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The features in data packets are extracted from the packet payload or header. For example, 

features such as packet length, average packet length, the variance of packet length, TCP 

flag and the packet direction are simple to calculate and can be gathered directly from the 

packet. It is very beneficial for the detection approach to using packet-level data to 

represent the states of the network. 

Flow-level features introduce a statistic summary of the network flows. Flow is described 

as packets with the same 5–tuple (source IP, destination IP, source port, destination port 

and protocol type). For instance, flow-level features are the cumulative number of packets 

in a flow, the duration of the flow and the average packet size. This statistic can be 

collected at the edge of the network using tools such as  Cisco NetFlow (Cisco, 2012).  

At the flow-level, the difference between the outbound and inbound traffic can be 

recognized. The main advantage of flow-features is that they do not require the extra 

resources and exhaustive processes of packet-level features. However, a shortcoming is 

that the flow may sometimes accumulate packets that relate to several applications in a 

single flow, which would distort the features of the flow. On the other hand, connection-

level features are required when it is necessary to track some behaviour which correlates 

with a connection-oriented protocol such as TCP. The contrast between connection and 

flow is that the start and termination of a TCP connection are well-defined handshakes 

between a client and a server. The connection-level data affords more high-quality 

information than flow-level features (Roughan et al., 2004) but requires further overhead 

to follow the state of the connection. 

Packet inspection approaches that have been used in practice in networking environments 

can be divided into two categories. These are shallow and DPI. Techniques that use DPI 

approaches are designed to permit network administrators to recognize specifically the 

header and the payload content of each packet of data that crosses over the network. 

According to AbuHmed et al. when applying DPI approaches on the network traffic there 

exists various challenges, such as the complexity of the search algorithm, a growing 

number of intruder signatures, signatures overlapping, unknown signature locations and 

encrypted packet payload contents (AbuHmed, Mohaisen, & Nyang, 2007). On the other 

hand, techniques that apply shallow packet inspection to read information from the 

network and transport layers of the OSI model. Thus, they cannot examine the session, 

presentation and application layers of a packet (Petersen, 2014). 
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In the proposed framework, a combination of connection and packet levels are used. The 

features are captured at both packet-level and connection-level. For example, the feature 

of inter-arrival time between packets in each connection requires data to be gathered at 

packet-level and then aggregated into connections to collect statistical information about 

connection states. Thus, the proposed Bot detection system can capture the local 

characteristics at packet-level and collect connection-level characteristics as the global 

features. Based on this approach, the features will have the benefits of both packet and 

connection levels. Thereby, in contrast to other relevant work, the proposed system can 

potentially be applied to any encrypted application since it applies a shallow packet 

inspection approach in order to extract connection features without using IP addresses, 

port numbers and payload content.  

The features used in the proposed framework are extracted in two phases. Firstly, the 

connection feature are extracted. Secondly, the connection features as host features are 

aggregated to represent the state of the host during the sliding time-window. Therefore, 

the final detection decision is based on the host features extracted according to the headers 

of control packets (packet-level) and connection statistical features (connection-level). 

Connection and host levels features are discussed in more detail in the next sections. 

4.3.1 Connection-level Features  

In this phase, features that are important in detecting the P2P Botnet’s malicious 

behaviour are extracted. Forty-three features are collected based on the size of the sliding 

window. These features are extracted based on the definition of a connection as a group 

of control packets exchanged between two different hosts, which are identified by the 5-

tuple (source IP address, destination IP address, source port and destination port, 

protocol). In proposed method, all features are extracted directly from the control packet 

header, which is different from previous approaches that use a deep inspection of the 

payload (Dan, Yichao, Yue, & Zongwen, 2010; Lu et al., 2011; Perdisci, Guofei, & 

Wenke, 2006; Xiaomei, Fei, Xiaohua, & Xiaocong, 2010). Consequently, performance is 

increased while the use of system resources such as memory and computation in the 

processor is reduced. Table 4.1 shows 43 features extracted in the proposed connections-

based P2P Botnet detection approach. These features are generated from a sliding time-

window and are composed of a feature vector to represent the connection status through 

the duration of the sliding window. 
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Table 4.1 Extracted features of network traffic connections. 

Features Description 

𝐹̂1 Number of control packets per connection in a given time interval. 

𝐹̂2 
Number of control packets transmitted per connection in a given time 

interval. 

𝐹̂3 
Number of control packets received per connection in a given time 

interval. 

𝐹̂4 Number of transmitted bytes per connection in a given time interval. 

𝐹̂5 Number of received bytes per connection in a given time interval. 

𝐹̂6 
Number of transmitted SYN packets per connection in a given time 

interval. 

𝐹̂7 
Number of received SYN packets per connection in a given time 

interval. 

𝐹̂8 
Number of transmitted ACK packets in a sequence of one per 

connection in a given time interval. 

𝐹̂9 
Number of received ACK packets in a sequence of one per connection 

in a given time interval. 

𝐹̂10 
Number of transmitted duplicate ACK packets per connection in a 

given time interval. 

𝐹̂11 
Number of received duplicate ACK packets per connection in a given 

time interval. 

𝐹̂12 
Average length of transmitted control packets per connection in a given 

time interval. 

𝐹̂13 
Average length of received control packets per connection in a given 

time interval. 

𝐹̂14 
Average length of control packets per connection in a given time 

interval. 

𝐹̂15 
Number of transmitted failed connection per connections in a given 

time interval. 

𝐹̂16 
Number of received failed connection per connections in a given time 

interval. 

𝐹̂17 
Number of transmitted SYN-ACK packets per connection in a given 

time interval. 

𝐹̂18 
Number of received SYN-ACK packets per connection in a given time 

interval. 

𝐹̂19 
Number of transmitted SYN-ACK packets in a sequence of one per 

connection in a given time interval. 

𝐹̂20 
Number of received SYN-ACK packets in a sequence of one per 

connection in a given time interval.  
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𝐹̂21 Total number of bytes per connection in a given time interval. 

𝐹̂22 
Ratio of incoming control packets per connection in a given time 

interval. 

𝐹̂23 
Ratio of average length of outgoing control packets over the average 

length of control packets per connection in a given time interval. 

𝐹̂24 

Ratio of the difference between the number of transmitted SYN packets 

and the number of received ACK packets in a sequence of one over the 

number of transmitted SYN packets. 

𝐹̂25 

Difference between the number of transmitted SYN packets and the 

number of received SYN-ACK packets per connection in a given time 

interval. 

𝐹̂26 
Number of transmitted FIN-ACK packets per connection in a given 

time interval. 

F27 
Number of received FIN-ACK packets per connection in a given time 

interval. 

𝐹̂28 
Number of transmitted RST-ACK packets per connection in a given 

time interval. 

𝐹̂29 
Number of received RST-ACK packets per connection in a given time 

interval. 

𝐹̂30 
Average time between attempts to create connections in a given time 

interval. 

𝐹̂31 
Number of received RST packets per connection in a given time 

interval. 

𝐹̂32 
Number of transmitted RST-ACK packets in a sequence one of per 

connection in a given time interval. 

𝐹̂33 
Number of transmitted RST packets in a sequence of one per 

connection in a given time interval. 

𝐹̂34 
Number of received RST-ACK packets in a sequence of one per 

connection in a given time interval. 

𝐹̂35 
Inter-arrival time of packets between SYN and ACK packets that 

generated by the host per connection in a given time interval. 

𝐹̂36 
Inter-arrival time of packets between SYN and RST packets that 

generated by the host per connection in a given time interval. 

𝐹̂37 
Inter-arrival time of packets between SYN and RST-ACK packets that 

generated by the host per connection in a given time interval. 

𝐹̂38 
Inter-arrival time of packets between SYN packet from host side and 

RST packet from another side per connection in a given time interval. 

𝐹̂39 

Inter-arrival time of packets between SYN packet from host side and 

RST-ACK packet from another side per connection in a given time 

interval. 
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𝐹̂40 

Inter-arrival time of packets between FIN-ACK packet from host side 

and RST packet from another side per connection in a given time 

interval. 

𝐹̂41 
Inter-arrival time of packets between ACK packet from host side and 

RST packet from another side per connection in a given time interval. 

𝐹̂42 

Inter-arrival time of packets between SYN packet from host side and 

SYN-ACK packet from another side per connection in a given time 

interval. 

𝐹̂43 Connection duration. 

4.3.2 Connection Features Reduction  

Feature reduction is a technique of reducing the number of attributes, with the purpose of 

eliminating those features from the learning algorithm that have only a small influence 

on the classification problem (Nguyen, Petrović, & Franke, 2010). Feature reduction is 

used to decrease the ‘over-fitting’ problem (Livadas et al., 2006) and is important in 

overcoming the imbalanced dataset problem (Van der Putten & Van Someren, 2004). 

Therefore, the quality of the feature reduction mechanism is one of the most important 

factors that affect the accuracy of the classification algorithm. 

In this study, the aim of feature reduction is to choose a suitable subset of features which 

will improve neural network performance and decrease the complexity of a classification 

model without significantly decreasing accuracy rates. A classification and regression 

tree (CART) (Breiman et al., 1984) is employed as the feature reduction approach used 

to eliminate worthless features, with the aim of reducing the quantity of data needed to 

obtain better rates of neural network learning and classification accuracy. 

The decision tree produced by the CART algorithm consists of two types of nodes: 

internal nodes with two children, and leaf nodes without children. Any internal node is 

associated with a decision function to indicate which node to visit next. To begin the 

construction of the tree, the training samples that contain a set of features and their class 

labels are required. Recursively the training dataset is partitioned into smaller subgroup 

during the construction of the tree. Depending on the confusion matrix of the classes 

distribution in the training set, all resulting node is assigned a predicted class. 

The test at internal nodes is determined based on a measure of impurity to select which 

feature and threshold values are selected. The best-known measure of impurity for CART 

is entropy impurity, which is given by: 
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𝐸(𝑡) =  −∑ 𝑝 (
𝑗

𝑡
) 𝑙𝑜𝑔2 𝑝 (

𝑗

𝑡
)

𝐶

𝑗
 (4.1) 

where 𝐸(𝑡) is the entropy impurity at node 𝑡, 𝑝 (
𝑗

𝑡
) is the relative frequency of class 𝑗 at 

node 𝑡, and 𝐶 is the number of classes.  

The best value of the split node  (𝑡) is chosen from a set of all values splitting(𝑥), so that 

the maximum drop in impurity is a difference between the impurity at the root node and 

the impurity at the children nodes: 

∆𝐸(𝑥, 𝑡) = 𝐸(𝑡) – (𝑃𝑙𝐸(𝑡𝑙)  + 𝑃𝑟𝐸(𝑡𝑟)) (4.2) 

where ∆𝐸(𝑥, 𝑡) is the drop of impurity, 𝐸(𝑡𝑙) and 𝐸(𝑡𝑟) are the impurities of the left and 

right branch nodes, 𝑃𝑙  and  𝑃𝑟  are the percentage of objects go to the left  (𝑡𝑙) or right (𝑡𝑟) 

child nodes.  

Table 4.2 provides a ranking of the importance of features selected by the entropy 

algorithm using training dataset. The features 𝐹̂1, 𝐹̂3, 𝐹̂6, 𝐹̂7, 𝐹̂8, 𝐹̂9, 𝐹̂15, 𝐹̂19, 𝐹̂20, 

𝐹̂ 25, 𝐹̂ 26, 𝐹̂ 27, 𝐹̂ 31, 𝐹̂ 32, 𝐹̂ 33, 𝐹̂ 34, 𝐹̂ 35, 𝐹̂ 36, 𝐹̂ 37 and 𝐹̂ 43 show the best 

discrimination of connection behaviour, whereas the features 𝐹̂4, 𝐹̂5, 𝐹̂10, 𝐹̂11, 𝐹̂12, 

𝐹̂13, 𝐹̂14, 𝐹̂16, 𝐹̂17, 𝐹̂18, 𝐹̂21, 𝐹̂22, 𝐹̂23, 𝐹̂24, 𝐹̂28, 𝐹̂29, 𝐹̂30, 𝐹̂38, 𝐹̂39, 𝐹̂40, 𝐹̂41 

and 𝐹̂42 do no discrimination between legitimate and malicious connections.  

Feature selection is performed depending on the contribution of the input samples that 

made the creation of the decision tree. Feature importance is decided by the role of each 

input sample either as a main splitter or as a surrogate. Surrogate splitters are represented 

as backup rules that approximately simulate the action of the primary splitting rules. The 

features that give the best discrimination of connection behaviour it will be used to 

generate host features in the next step of features extraction. 
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Table 4.2 Features importance ranking by entropy algorithm. 

Feature Importance Feature Importance Feature Importance 

𝐹̂1 0.8130 𝐹̂33 0.5319 𝐹̂18 0 

𝐹̂2 0.8100 𝐹̂34 0.5092 𝐹̂21 0 

𝐹̂3 0.7876 𝐹̂35 0.4493 𝐹̂22 0 

𝐹̂6 0.7741 𝐹̂36 0.3712 𝐹̂23 0 

𝐹̂7 0.7634 𝐹̂37 0.2870 𝐹̂24 0 

𝐹̂8 0.7548 𝐹̂43 0.1944 𝐹̂28 0 

𝐹̂9 0.7438 𝐹̂4 0.082941 𝐹̂29 0 

𝐹̂15 0.7181 𝐹̂5 0.069167 𝐹̂30 0 

𝐹̂19 0.7031 𝐹̂10 0.012049 𝐹̂38 0 

𝐹̂20 0.6604 𝐹̂11 0.01191 𝐹̂39 0 

𝐹̂25 0.6198 𝐹̂12 0.01153 𝐹̂40 0 

𝐹̂26 0.6010 𝐹̂13 0.000515 𝐹̂41 0 

𝐹̂27 0.5734 𝐹̂14 3.81E-06 𝐹̂42 0 

𝐹̂31 0.5670 𝐹̂16 6.12E-09   

𝐹̂32 0.5512 𝐹̂17 0   

4.3.3 Host Feature Extraction  

Table 4.3 shows the 16 host features created in the proposed approach. However, our P2P 

Bot detection framework is based on the following three observations. Firstly, the Bot 

hosts share certain malicious characteristics in their network behaviours that are distinct 

from those of normal hosts (Yen, 2011). Secondly, the behaviour of Bot in the 

propagation phase repeats itself frequently whenever it infects the hosts during the 

propagation stage (Felix et al., 2012; Han et al., 2009; Sang-Kyun et al., 2009). Thirdly, 

the Bot connections are generated by a software program (Scanlon & Kechadi, 2012).  

The feature extraction phase can start immediately if packets are transferred between 

hosts. In order to extract the properties of a node more accurately, the collection of 

adequate network traffic is required before the feature extraction operation starts. 

Therefore, in the proposed approach the behaviour of hosts is observed by analysing their 
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traffic packets within the time of the sliding window in order to gain adequate packets. 

As a result of the feature extraction stage, each host is represented by its individual feature 

vector. This host feature vector set is then utilized to differentiate between malicious 

Botnet traffic and legitimate network traffic by employing online machine learning 

methods with reinforcement techniques.  

Table 4.3 Host features of network traffic. 

Feature Description 

F1 
Total number of transmitting connection per host in a given 

time interval 

F2 Total number of transmitting unique connections per host in a 

given time interval. 

F3 Total number of connection tries per host in a given time 

interval. 

F4 Rate of high severity destination port numbers in a given time 

interval. 

F5 Rate of using unique destination ports per host in a given time 

interval.  

F6 Rate of using unique source ports per host in a given time 

interval.  

F7 Rate of transmitting unique connections per host in a given 

time interval. 

F8 Rate of high severity source port numbers in a given time 

interval. 

F9 Rate of failures in connection per host in a given time interval. 

F10 Entropy rate of total control packets in a connection per host in 

a given time interval. 

F11 Entropy rate of transmitting control packets in a connection per 

host in a given time interval. 

F12 Entropy rate of receiving control packets in a connection per 

host in a given time interval. 

F13 Average time between connections per host. 

F14 Average client Inter-arrival time between control packets.  

F15 Average connection duration. 

F16 Index of dispersion.  
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Port scanning is one of the most famous malicious activities. Port scanning is used by 

Bots in many aspects of the Botnet life cycle, such as propagation and attack behaviours. 

For example, in the propagation phase, a Bot tries to discover and contact other Bots in 

the same network in order to receive copies of the latest updates. Therefore, monitoring 

and analysing the rate of newly established connections is important in measuring and 

detecting malicious Bots behaviour. Port scanning may be divided into three classes: 

vertical scanning, horizontal scanning, and block scanning (Staniford, Hoagland, & 

McAlerney, 2002). A horizontal distribution scan is achieved by specific port access for 

many numbers of destination IP addresses. On the other hand, a vertical scan is performed 

on a specific destination IP address over a range of ports. Finally, a block scan is a mixture 

of horizontal and vertical scanning for different ports and destination IPs. The diversity 

of port number and destination IPs often indicates the capability of a Bot to exploit the 

victim host. In addition, computer ports are divided into two categories: high-severity and 

low-severity ports. According to the Dshield organization (Dshield.org, 2013) high-

severity ports contain those most likely to be scanned; all other ports are marked as low-

severity ports. Thereby, this research utilizes the port scanning for malicious activities, 

and so, features F1-F8 represent scanning behaviour. 

Based on our understanding and observation of Botnet traffic behaviour, it is natural for 

Bots to produce network connection failures. When a Bot joins a Botnet, it needs to find 

an entrance point, which could be either a C&C server or a peer host, to notify its current 

situation and receive new instructions. Consequently, any peers attempting to establish a 

connection with these hosts could lead to failures in connection. A failed connection 

feature F9 based on the TCP is represented as failed if the 3-step handshake is incomplete 

(Limmer & Dressler, 2009). 

The control packet count of legitimate Internet traffic shows more diversity than that of 

Bot connection traffic. Computer-human users can use many applications, which each 

one has a different behaviour for the number of control packets in concoctions. Therefore, 

we do not expect to notice any trend in the control packet frequency. On the other hand, 

in the propagation phase Bots try to contact other peers on the Botnet network to inquire 

for an update. Thus, they repeat the same connection behaviour, and this shows a trend in 

the style of connection. Therefore, an entropy algorithm (Cover & Thomas, 2012) is used 

in this study to measure the amount of entropy or randomness in control packet variation 
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per host, and an entropy algorithm is utilized by modelling the number of control packets 

in connections per host as a discrete symbol. A legitimate connection is expected to have 

high entropy while a Botnet connection is expected to have low entropy. The entropy of 

control packet frequency per host is calculated from a set 𝐶ℎ  =  [𝑐1, 𝑐2, . . . . 𝑐𝑛], where 

each 𝑐𝑖 denotes the number of control packets per host connections. This is estimated as 

𝐸(𝑡) =  −∑ 𝑐𝑖  𝑙𝑜𝑔2 𝑐𝑖 
𝑛

𝑖
 (4.3) 

However, Jian et al. (2009) introduced approaches to detecting Storm Bot by utilizing 

entropy theory (Jian & Jun-Yao, 2009). A significant difference between their method 

and the present strategy is that Jian et al. applied the entropy theory over the packet 

payload content with DPI, which is not suitable for the detection of Botnets that use 

encryption techniques. 

Features F13-F15 are related to the client’s inter-arrival control packets. The inter-arrival 

packet time is the required time for the application to create and transfer data to the 

transport layer (Jaber, Cascella, & Barakat, 2011), and is estimated by extracting the time 

between any two consecutive packets in the same connection. We assume that additional 

time added because of the changes in network conditions is negligible. The proposed 

framework focuses on host features based on the network level and the target is to detect 

an infected machine, so it focuses on the time between of packets outgoing from the host. 

Finally, for feature F16, the index of dispersion for counts (IDC) is adopted to 

discriminate arrival processes consisting of packets sent by the host on the network. R. 

Gusella highlighted the importance of using the indices of dispersion in identifying packet 

variability (Gusella, 1991), where the index of dispersion is a measure used to quantify 

whether a set of observed events is clustered or scattered in correlation with a standard 

statistical model. The IDC is represented as the ratio of the variance to the mean. The 

following equation gives the definition of the IDC:  

𝐼𝐷𝐶 =
𝜎2

𝜇
 (4.4) 

where μ, σ2  denote the mean and variance respectively. 



CHAPTER 4: CONNECTION-LEVEL FEATURES FOR BOT HOST DETECTION 

66 

4.4 The Malicious Activity Detector 

The operation of the malicious activity detector consists of three stages: an off-line stage 

(training), the online detection stage, and a reinforcement learning stage. In the training 

phase, the classifier is provided with a set of labelled Bot feature vectors and legitimate 

feature vectors for the training mission. Once the training stage is finished, the detection 

phase starts by entering the extracted features to the classifier in order to classify the 

activities of the hosts inside the network as malicious or legitimate. 

A neural network is used as a malicious activity detector because it has robust capabilities 

for nonlinear system identification and control due to an inherent ability to approximate 

an arbitrary nonlinear problem (Nigrin, 1994; Razi & Athappilly, 2005; Tsai, Hsu, Lin, 

& Lin, 2009). The neural network is trained with a resilient back-propagation learning 

algorithm, where the use of this algorithm is to minimize the damaging effects of the 

volumes of fractional derivatives. The sign of the derivative is only used to locate the 

trend of the weight update, whereas the volume of the derivative has no negative role 

overweight update. The size of the weight change is solely determined by the following 

formula (M. Riedmiller & Braun, 1993): 

∆𝑤𝑖𝑗
(𝑡)
=

{
 
 

 
 −∆𝑖𝑗

(𝑡) 
,            𝑖𝑓 

𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
 > 0  

+∆𝑖𝑗
(𝑡) 
,            𝑖𝑓 

𝜕𝐸(𝑡)
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 < 0
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 (4.5) 

where ∆𝑤𝑖𝑗
(𝑡)

 is the change in weight between the input layer and hidden layers in the 

current iteration (𝑡), and  
∂E(t)

∂wij
 denotes the partial derivative with respect to each weight. 

Once the weights are calculated, the new updated weight value is determined. This is 

accomplished with the following formula: 

∆𝑖𝑗
(𝑡)
=

{
 
 

 
 𝜂+. ∆𝑖𝑗

 (𝑡) ,            𝑖𝑓 
𝜕𝐸(𝑡 − 1)

𝜕𝑤𝑖𝑗
.
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑗
 > 0  
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 (4.6) 

where ∆𝑖𝑗
(𝑡)

  denotes the updated value for the current iteration t, and 𝜂+ is the positive 

step value which is typically 1.2 and 𝜂− is the negative step value which is typically 0.5 
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(M. Riedmiller & Braun, 1993). The neural network classifier proposed in this study 

contains 16 input and two output parameters. To avoid over fitting by using too many 

hidden layers, the method proposed in a previous study (Boger & Guterman, 1997) is 

used to determine the number of neurons in the hidden layers. 

4.5 Experimental Results and Evaluation 

4.5.1 Experimental Tools 

To estimate the performance of the proposed solution a series of experiments on the 

dataset were carried out. These experiments are carried on an Intel Xeon processor with 

a six-core monster clocked at 2.1GHz (with a 2.6GHz Turbo) and 64 GB RAM. Besides, 

the proposed approach implemented using Matlab 2014b. Table 4.4 shows the software 

tools and libraries used in the experiments. 

Table 4.4 Experimental Tools. 

Name Description Version 

Wireshark 

(Wireshark, 2015). 
Network protocol analyser. 1.12.4 

Jpcap  

(Shen & Wang, 2009). 

Java library for capturing and 

sending network packets. 
0.7 

Tcpreplay 

(TcpReplay, 2014). 
Replays Pcap files onto the network 3.4.4 

4.5.2 Experimental Procedure  

To evaluate the proposed offline Bot detection approach, an experimental dataset  

Table 3.1 was obtained to evaluate its capability on Bot detection. Additionally, for the 

purpose of simulating a real network traffic situation, a testbed was configured in order 

to replay malicious Botnet traffic, normal daily activity traffic and P2P application traffic 

using the TcpReplay tool (TcpReplay, 2014). The reply network traffics runs on the same 

network interface card for the purpose of homogenizing the network traffic behaviour 

presented by all datasets. TcpReplay is utilized to replay the traffic from the traffic files. 

The replayed network traffic is then captured by the JPCAP tool (Shen & Wang, 2009).  
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The experimental procedure was scheduled into five steps, listed as following: 

1. Replay entire malicious trace and legitimate trace file, and capture packets using                                                                                               

various time-window sizes. 

2. Reduce network traffic using the proposed network traffic reduction technique.  

3. Extract feature vectors to generate host feature set. 

4. Get the classification results by using the prepared training and testing sets using 

the offline proposed Bot detection approach. 

5. Identify the time window size that achieves a better detection performance and 

better stability in the offline and online stages. 

The reason behind dividing the network traffic in time-windows is to analyse the massive 

traffic volume of packets. Moreover, time-window is required to submit a result to the 

network administrator in a timely fashion. The idea behind of not using time-window 

smaller than 10s is that the number of captured packets is too small to show the traffic 

behaviour characteristics. In the other hand, the reason for not using time-window larger 

than the 60s is that it cannot satisfy earlier of detection when using a large time-window 

size. In addition, Bots tend to generate a temporal behaviour following the infection phase 

(Hegna, 2010), and so this behaviour helps to capture the necessary Bot behaviours in the 

time-window. Therefore, in this research, we start with 10-seconds time-window and 

gradually increase the size of time-window in order to reach the acceptable performance 

rate. On the other hand, 10% of the time-window size is utilized as sliding interval 

between time windows to achieve rapid detection of any malicious activities instead of 

idling for the next entire time window to ending and then the network traffic to be 

collected. 

4.5.3 Evaluation Metrics 

The present assessment used P2P Bot host instances as positive instances and legitimate 

host instances as negative instances. Moreover, various metrics were used to evaluate the 

result of the experiments, namely detection rate (DR), FPR, precision, F-measure, 

accuracy (ACC), Root Mean Square Error (RMSE), Non-Dimensional Error Index 

(NDEI), Matthews Correlation Coefficient (MCC) and area under the ROC (AUC). 

 Despite accuracy metrics have been adopted to measure performance in some studies 

(Saad, 2011; Wen-Hwa & Chia-Ching, 2010; Zhao et al., 2013), its use could be doubtful. 
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With the use of imbalanced datasets, where the numbers of instances relating to each class 

are significantly diverse, using accuracy as a measure of classification performance can 

be inaccurate. For instance, if a classifier is applied to a dataset that contains 95% 

legitimate activity and 5% malicious activity and the classification model predicts that all 

activity is legitimate then an accuracy rate of 95% is obtained. Nevertheless, this result 

does not mean a successful classification, since no malicious activity was detected. 

Consequently, imbalance measurements such as MCC and area under the ROC were 

applied in the evaluation in order to comprehensively assess of the proposed approach in 

situations of imbalanced datasets. The evaluation metrics were calculated using Equations 

4.7 to 4.14. 

 True positive (TP): represents the number of Bot instances accurately 

identified as malicious activities. 

 True negative (TN): indicates the number of normal instances accurately 

identified as legitimate activities. 

 False positive (FP): shows the number of normal instances identified as 

malicious activities. 

 False negative (FN): represents the number of Bot instances identified as 

legitimate activities. 

The FPR shows the percentage of legitimate instances misclassified as Botnet instances: 

𝐹𝑃𝑅 =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)
 (4.7) 

DR, also called recall, indicates the percentage of Botnet instances that were detected as 

Botnet instances. 

𝐷𝑅 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (4.8) 

ACC indicates the percentage of correct predictions of all instances. 

𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (4.9) 

Precision indicates the percentage of instances correctly classified as positive instances. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (4.10) 
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The F-measure is a measure of a test’s accuracy. It considers both the precision and the 

recall of the test to compute the score. 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(2 ×   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×   𝑅𝑒𝑐𝑎𝑙𝑙)

( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (4.11) 

RMSE indicates the differences between the target value and the actual value estimated 

by the detection method. 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑡𝑖)2

𝑁

𝑁

𝑖=1

 (4.12) 

where 𝑁 is the number of input samples, 𝑦𝑖 represents the actual output of the model, and 

𝑡𝑖 is the targets of the samples. 𝑅𝑀𝑆𝐸 =  0 indicates that the output of the model exactly 

matches the targets. Root mean square Error (𝑅𝑀𝑆𝐸 ) is an important measure of 

variations between the values expected from a model or an estimator and the values 

actually observed. 

NDEI is defined as the RMSE divided by the standard deviation of the target series, which 

is used to estimate the prediction quality (Espinosa & Vandewalle, 2000). 

𝑁𝐷𝐸𝐼 =
𝑅𝑀𝑆𝐸 

𝑠𝑡𝑑(𝑡𝑖)
 (4.13) 

The MCC is used to evaluate the efficiency of the classifier in imbalanced classes 

(Matthews, 1975). 

𝑀𝐶𝐶 =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√((𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (4.14) 

The receiver operating characteristic (ROC) is a graphical plot that depicts a binary 

classifier’s performance. ROC curves plot the TPR on the vertical axis against the FPR 

on the horizontal axis. The AUC denotes the classifier’s performance (Swets, 2014). 

Moreover, the AUC is known to be a much more robust estimator of classifier 

performance (Fawcett, 2006). 

To ensure the quality of the learned neural network agent, a cross-validation method is 

used to estimate the error rate of classifiers. In cross-validation, the dataset is partitioned 

randomly into 𝑁 samples and evaluations are run for 𝑁 iterations. At each iteration, 𝑁 −
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1 samples are selected for training and the final sample is used to evaluate the accuracy 

of the classifier. 

4.5.4 Host Feature Set Evaluations 

To assess the quality of the proposed detection approach and the selected of the hosts 

features (Table 4.3) towards a successful detection, the normalized average for each 

feature is estimated by using Min-Max Normalization (Al Shalabi & Shaaban, 2006). 

𝑋′ =
𝑋𝑖 − 𝑋 𝑚𝑖𝑛

𝑋 𝑚𝑎𝑥 − 𝑋 𝑚𝑖𝑛
 (4.15) 

Where 𝑋′ is the normalized value of 𝑋𝑖. The 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  are the minimum and 

maximum values of features vector.  

Figure 4.2 shows the average distribution of the normalization value for each feature. We 

found different distributions between Bot host traffic and normal host traffic. As shown 

in Figure 4.2 the features F5, F10, F12, F15 and F16 are a decrement features to help in 

Botnet detection. Whereby the features F14, F1 and F3 have a low differentiate between 

network traffic. 

 

Figure 4.2 Normalized host features comparison. 
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Figure 4.3 shows the difference in entropy values for the total number of control packets 

between flows for normal and Bot traffic. The plots show the entropy values for normal 

host traffic is between 0 to 5 while it is under 0.5 for a Bot host traffic.  

 

Figure 4.3 Entropy rates of total control packets per host. 

Interestingly, there were also differences in the ratios of the entropy of transmitting and 

receiving numbers of control packets between Bot host traffic and normal host traffic as 

shown in Figure 4.4 and Figure 4.5. The contrast in entropy values between normal and 

Bot hosts due to the Bot is an automated computer programme and has regularity in 

control packets count. Whereby, the normal host traffic has a diversity and random value 

for the count of control packets. Consequently, normal hosts have a high entropy value, 

whereas the Bot has a low entropy value.  

 

Figure 4.4 Entropy rate of transmitting control packets per host. 
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Figure 4.5 Entropy rates of receiving control packets per host. 

4.5.5 Offline Bot Detection Approach Evaluation 

The assessment results of the offline phase based on training dataset (Table 3.1) are 

demonstrated in Figures 4.6 - 4.9 the x-axis represents the size of the time window used 

for the feature extraction phase. It can be clearly seen that different performance 

measurements result from different time-window sizes. Based on these, the average 

values of cross-validation results for the time-windows are calculated. Therefore, the 

proposed approach with offline dataset gives the highest ACC, DR and F-measure rates 

of around 98.3%, 99% and 98.9 respectively based on a 60-seconds time-window; 

meanwhile, the worst performance achieved with a 10-seconds time window as shown in 

Figure 4.6 

Figure 4.7 gives the AUC and MCC results of the Botnet detection system using the 

various time window sizes. The results show that the highest average AUC and MCC 

rates were 99.1% and 95.6% respectively with the training dataset and a 60-second time 

window; while the lowest AUC and MCC rates were 97.5% and 88.1% with the system 

with 10-second time-window. AUC and MCC are considered the most reliable 

performance measures for imbalanced datasets. 
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Figure 4.6 (a) ACC rates, (b) DR rates, (c) F-measure rates. 

Subsequently, the performances of the proposed approach according to time window size 

was compared based on the average RMSE and NDEI, and the 60-second time-window 

achieved the best RMSE and NDEI rates at around 0.068 and 0.136 respectively as shown 
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in Figure 4.8. In addition, the lowest FPR and FNR were given with 60-second time 

window size as shown in Figure 4.9 

 

Figure 4.7 (a) AUC rates, (b) MCC rates. 
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Figure 4.8 (a) RMSE rates, (b) NDEI rates. 

 

Figure 4.9 (a) FPR rates, (b) FNR rates. 
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From the results, the proposed approach in the offline phase is able to detect Bots with 

high identification accuracy along with low rates of false positives. Note that these 

outcomes are with the training dataset and not the testing dataset. The primary target of 

the offline phase is to prepare the classifier agent to start work in the online phase. More 

details for the experiment parameters are provided in Appendix C.   

4.6 Discussions 

The results of the offline phase were estimated using the average of cross-validation. It 

can clearly observe that the classifier showed various performances levels with different 

sizes of time-window. The time-window of 60-seconds achieved the best performance 

based on the ACC, DR, F-measure, FPR, AUC, MCC, NDEI and RMSE measures as 

shown in Figure 4.6 to Figure 4.9.  

In addition, to measure the stability of the results in the offline phase, the standard 

deviation between cross-validation folds results was estimated. As shown in Table 4.5 the 

time-window size of 60-seconds achieved the lowest standard deviation for FPR, F-

measure, NDEI, RMSE and AUC at 0.08%, 0.05%, 0.220%, 0.0123% and 0.002% 

respectively. Meanwhile, a time-window size of 10-seconds achieved the lowest standard 

deviation for DR, ACC, and MCC at 0.03%, 0.0045% and 0.03% respectively. 

In summary, 10-seconds and 60-seconds time-windows showed the better stability of the 

results than the other time-window sizes as shown in Table 4.5. But the 60-second 

window based on imbalanced dataset measurements such as AUC and MCC achieved the 

best performance. Therefore, from the time-window size evaluation, 60-seconds were 

determined to be an appropriate window size in the proposed detection framework in the 

offline stage. 

The 60-seconds time-window achieves high-performance along with acceptable stability 

results in our experiment. Meanwhile, a small time-window size, such as 10-seconds does 

not contain sufficient amount of network traffic which required classifying the network 

traffic as malicious or legitimate behaviours. Moreover, the Bots tend to generate a 

temporal behaviour following the infection phase (Hegna, 2010). Therefore, the 60-

seconds time window size is suitable to capture adequately of the network traffic that 

helps in correct classification as discussed in the experimental procedure Section 4.5.2.   
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Table 4.5 Standard deviation of evaluation matrices. 

Time 

window Size 

FPR 

S.D% 

DR 

S.D% 

ACC 

S.D% 

F-Measure 

S.D% 

RMSE 

S.D% 

NDEI 

S.D% 

MCC 

S.D% 

AUC 

S.D% 

10-seconds 0.0974 0.03 0.0045 0.06 0.0124 0.238 0.03 0.0024 

30-seconds 0.11 0.178 0.024 0.16 0.0339 0.246 0.035 0.0035 

60-seconds 0.08 0.04 0.031 0.05 0.0123 0.220 0.041 0.002 

However, due to its design, our solution is able to detect single Bot infections and it is 

not necessary to associate activity among multiple hosts during the detection phase, as in 

the case with TAMD (Yen & Reiter, 2008), BotMiner (Gu, Perdisci, et al., 2008) and 

BotSniffer (Gu, Zhang, et al., 2008). On the other hand, several existing schemes (Goebel 

& Holz, 2007; Gu et al., 2007) support the detection of individual Bot infections, but they 

use DPI. In contrast, our solution needs only information about network connections; it 

does not examine payload content. Therefore, it is immune to Botnets that use encryption 

methods. 

4.7 Summary 

In this chapter, we have introduced the connection-level feature set and the main 

component of the proposed offline Botnet detection mechanism. Besides, we have 

evaluated the introduced feature set using real network traffic. The output model of the 

offline stage it will be utilized in the next stage of the online Bot detection system. 

Therefore, the next chapter will present the proposed RL approach for online Bot 

detection scheme. 
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5 REINFORCEMENT 

LEARNING APPROACH 

FOR ONLINE BOT 

DETECTION 

5.1 Introduction  

Identifying infected computers before the Bot exploits the host machine is a challenging 

task in cyber-security. In the past few years, several methods have been proposed to 

identify Botnet threats, which represent a risk to cyber-security systems. The majority of 

these studies have focused on improving offline Botnet detection. However, the results 

obtained using these approaches reflect only the state of network traffic at the time. 

Therefore, these approaches may become useless once the network environment changes. 

In this situation, all offline techniques may become invalid since they do not include 

online strategies. Thus, the main goal of this chapter is to introduce an efficient online 

Bot detection approach using RL. 

The previous chapters focused on the network traffic reduction, feature extraction and 

introduced the offline Bot detection approach. This chapter gives a brief introduction to 

RL including the components of an RL system, the Markov property, the partially 

observable Markov decision process and a classification of RL models. Furthermore, this 

chapter formulations the Botnet problem based on RL, followed by a model-based 

algorithm to achieve an online efficient Bot detection in a dynamic environment. 

5.2 Reinforcement Learning  

RL is a domain of machine learning inspired by behavioural psychology, based on how 

software agents take action in an environment in order to increase rewards. RL is learning 

by trial and error, where information about the state of an environment is received by the 
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agent, who performs an action. Once the action is completed, the agent estimates the 

numerical reward resulting from the action. Increasing the rewards received is the goal of 

the agent at all times. 

A wide range of algorithms has been suggested that use selective action in order to explore 

the environment, and to develop a strategy that leads to achieving the best reward (Barto 

& Andrew, 1998; Kaelbling, Littman, & Moore, 1996). These algorithms have been 

successfully utilized to solve complicated problems, for instance, elevator dispatch 

(Crites & Barto, 1998), board games (Tesauro, 1995), motor control tasks (Schaal & 

Atkeson, 1994) and job-shop scheduling (W. Zhang & Dietterich, 1996)  

Along with the disciplines of supervised learning (Harmon & Harmon, 1996) and 

dynamic programming, reinforcement learning is used to generate robust machine 

learning algorithms (Bertsekas & Tsitsiklis, 1996). Beyond a technique for solving 

control problem, RL can be considered as “one of the only designs of value in 

understanding the human mind” (Werbos, 1992). It is a way of learning optimal policy in 

an undiscovered or partially observed environment. Thereby, RL is based on the idea of 

trial and error in interplay with a dynamic environment (Barto & Andrew, 1998). 

5.2.1 Components of Reinforcement Learning System  

The main components of the RL or control problem are briefly reviewed in this section. 

The relationships between these components are also depicted in Figure 5.1 (Barto & 

Andrew, 1998). 

 Environment: The environment is matched to any system such as elevator 

dispatch, motor control tasks, board games or an intrusion detection system. The 

development of the environment depends on the history and actions executed by 

the agent. For each interaction, a reward 𝑅𝑡 is transmitted to the agent, and this 

operates as an evaluation measure for the agent’s subsequent action in the new 

environment state. The environment states can be continuous or discrete. 

 Agent: The agent refers to the controller of the system. It has completed an 

observation or at least partial observation of the environment while interacting 

with it to receive an observation about state 𝑋𝑡. Therefore, the agent receives the 

reward𝑅𝑡+1 from performing action 𝐴𝑡 based on receiving the environment status 

𝑋𝑡. Furthermore, the reward 𝑅𝑡+1 can apply to enhance the agent policy. 
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 Actions (𝐴): Actions result from the evolution of the environment. They refer to 

changes in the agent’s environment. Moreover, some actions cannot instantly 

change the system, but often need a specificied delay. However, actions of agent 

can be restricted depend on the problem solution setting. Corresponding to the 

setting of the problem, actions can be discrete or continuous. 

 Policy (𝜋): is the mapping between the environment’s state and the action which 

can be considered in this state, and is a sequence of actions which reflects the 

agent’s learning rate at a given time. In some situations, the policy can use a 

lookup table of rules or simple functions. According to Sutton and Barto ”the 

policy is the core of a RL agent in the sense that it alone is sufficient to determine 

a behaviour” (Barto & Andrew, 1998). 

 Reward (𝑅): The term reward refers to the goal of RL. It represents the direct 

reward the agent receives for executing a particular action in a given system state. 

Therefore, it determines the utility of an action taken by an agent. Strictly 

speaking, in the long term, the primary target of a RL agent is to maximize the 

total rewards received. Thus, a reward function indicates which action is correct 

immediately, while the value function specifies what is good in the long run. 

As shown in Figure 5.1, the RL model includes an environment and an agent. At a 

given time  , the environment gives a state 𝑆𝑡  to the agent and then the agent executes 

an action 𝐴𝑡 according state 𝑆𝑡 and policy 𝜋. After that, the environment changes to a 

new state 𝑆𝑡+1 Additionally, at the same time, the environment also gives a numeric 

reward 𝑅𝑡+1, which is an immediate reward or penalty for choosing action 𝐴𝑡 in state 

𝑆𝑡  (Barto & Andrew, 1998). However, the goal of any RL approach is to improve the 

policy in order to maximize the long-term reward. 
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Figure 5.1 General RL system architecture (Barto & Andrew, 1998). 
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5.2.2 The Markov Property  

5.2.2.1 Markov Decision Process 

The mathematical foundation of general theoretical RL problems is a Markov decision 

process (MDP), which explains the evolution of a fully observable system. Therefore, if 

the state and action space are deterministic, the dynamics of the MDP can be described 

by the probability that the next state will be 𝑆𝑡+1 based on the fact that the current state is 

St and the chosen action is 𝐴𝑡 . An MDP is primarily represented by a tuple 

(𝑆, 𝐴, 𝑇, 𝑅) with the following objects (Feinberg, Shwartz, & Altman, 2002; Kaelbling, 

Littman, & Cassandra, 1998; Puterman, 2014). 

 𝑡 ∈  𝑁 specifies the time step. 

 𝑆 refers to a state space of the environment. 

 𝐴 indicates an action, 𝐴(𝑆𝑡) represents the authorized actions in the state 

St∈ S. 

 𝑇(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡)  is a deterministic state transition function: 𝑆 × 𝐴 × 𝑆 →

 [0, 1], which denotes the probability of achieving state St+1 starting from 

state 𝑆𝑡 and using action 𝐴𝑡 with 𝑆𝑡, 𝑆𝑡+1 ∈ S and 𝐴𝑡 ∈ 𝐴(𝑆𝑡). 

 a reward function 𝑅𝑡 =  𝑅(𝑆𝑡): 𝑆 →  𝑅  indicated the one-step direct 

reward starting from state 𝑆𝑡. 

The relationship between the various objects is explained by a one-step transition given 

an open (controllable) dynamic system for a state space 𝑆. Being in an arbitrary state 𝑆𝑡  ∈

 𝑆 at time step t, the agent takes an action 𝐴𝑡 ∈ 𝐴(𝑆𝑡). As a result, the system develops to 

the next state 𝑆𝑡+1  ∈  𝑆 based on the transition function 𝑇(𝑆𝑡+1|𝑆𝑡, 𝐴𝑡). At the same time, 

the agent obtains the reward 𝑅(𝑆𝑡+1)  from state 𝑆𝑡+1  (Feinberg et al., 2002). The 

sequence of actions and states produced are termed a trajectory.  

Due to the definition of the Markov property (def. 5.1) the next state 𝑆𝑡+1 is based on the 

action 𝐴𝑡 and the current state 𝑆𝑡. In other words, the Markov property states that the 

evolution of the system is based on the last action taken and the system state (Feinberg et 

al., 2002; Gass & Fu, 2013). Therefore, it is independent of its history of previous states 

and actions. The Markov property in discrete time is thus stated as  𝑆0 to refer to an 

arbitrary beginning state (Gass & Fu, 2013). 
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Definition 5.1. Markov property: a discrete stochastic process 𝑆𝑡  ∈  𝑆 with action 𝐴𝑡 ∈

 𝐴 and a transition function 𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡) is called Markovian if for every 𝑡 ∈  𝑁 it is:  

𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡, 𝐴𝑡−1, 𝑆𝑡−1, . . . , 𝐴0, 𝑆0)  =  𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡)         (5.1) 

Additionally, the Markov property can be used in a formalized RL problem. When an 

agent is at time step 𝑡, the agent receives information about the environment state 𝑆𝑡, and 

it must utilize the state 𝑆𝑡 information to predict action 𝐴𝑡. If the agent takes an action 

depending on the current state 𝑆𝑡  and not based on any of the previous states 

𝑆𝑡−1 , 𝑆𝑡−2, … . , 𝑆0  , or any of the previous actions 𝐴𝑡−1 , 𝐴𝑡−2, … . , 𝐴0  or any of the 

previous rewards 𝑅𝑡−1 , 𝑅𝑡−2, … . , 𝑅0, then the state possesses the Markov property and is 

a Markov state. If all of the states in the environment have this characteristic, we can say 

it is a Markov environment and has the Markov property. 

The Markov property plays a vital role in any RL system because the agent makes an 

action based only on information about the current state. The majority of real system 

environments are not completely Markovian, but they approximate a Markov 

environment. 

Figure 5.2 represents the basic RL problem using a Markov decision process (MDP). The 

system environment is fully observable. Therefore, the observation of the agent's 𝑋𝑡 is 

equivalent to the deterministic environment state 𝑆𝑡 . Therefore, based on the Markov 

property, the agent has all the information needed to select its next action 𝐴𝒕 according to 

the sequential policy used for mapping between an observation state 𝑋𝑡(= 𝑆𝑡)and the 

next action. The environment then develops due to the transition function 𝑇(𝑆𝑡+1|𝐴𝑡, 𝑆𝑡) . 
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Figure 5.2 Markov decision process (Schäfer, 2008). 
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5.2.2.2 Partially Observable Markov Decision Process 

The partially observable Markov decision process (POMDP) was first explicitly studied 

by Drake in 1962 (Drake, 1962). Smallwood and Sondik  later introduced the first 

algorithmic work based on POMDP by combining the basic idea of the model of the 

Markov decision process with the concept of an agent which might be unable fully to 

know the environment state (Smallwood & Sondik, 1973).  

The POMDP differs from the MDP in the way that the state space S is not completely 

detectable. This is regularly applied to a real system’s operation in a dynamic 

environment, such as the Botnet detection problem. The agent only obtains an observation 

𝑋𝑡 ∈ 𝑋 as a sign of the immediate state of the system, 𝑆𝑡 ∈ 𝑆. Formally, a POMDP can 

be represented by a tuple (𝑆, 𝑋, 𝐴, 𝑇, 𝑅), where 𝑋 represents the observation space, which 

is a space that is contained within the state space S and may also include extra irrelevant 

information.  

Figure 5.3 provides a general graphical illustration of a partially observable Markov 

decision process. As opposed to the MDP (Figure 5.2), the state of an environment 𝑆𝑡 is 

only partially observable by the agent, which is represented by the expression 𝑋 𝑡 ⊂ 𝑆𝑡. 

This indicates that the agent has the additional job of having to approximate to decide 

actions 𝐴𝑡. In particular, the agent has to construct a model of the environment, which it 

applies as the foundation for its decision-making. Moreover, it utilizes the system’s past 

time state to improve future actions. 
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Figure 5.3 Partial Markov decision process (Schäfer, 2008). 

5.2.3 Reinforcement Learning Models  

There are several various ways to classify RL techniques. A primary difference can be 

created between table-based and function approximation methods. In the table-based 
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method, the agent stores the environment state and action within a look-up table. This 

approach suffers from the limitation of the computational requirements due to table size. 

Thus, such techniques are essentially used in RL with low-dimensional discrete state 

space problems, for instance Q-learning (Watkins, 1989) and adaptive heuristic critic (A. 

G. Barto, Sutton, & Anderson, 1983). On the other hand, in function approximation 

techniques the state and action are represented by an approximation function in order to 

increase the performance of the system and can be used for high dimensions problems. 

Examples of these are temporal difference approaches with neural networks (Tesauro, 

1994; Tsitsiklis & Van Roy, 1997) local basis functions (Barto & Andrew, 1998), as well 

as neural fitted Q-iteration (Martin Riedmiller, 2005).  

Another significant contrast can be made between model-free and model-based 

algorithms. In brief, model-free methods teach a controller without learning model, and 

without using a labelled dataset to build transition function policy. So, they immediately 

learn from data without making any effort to create a model. This leads to an efficient and 

simple implementation. In a model-based indirect adaptive method, the system first learns 

a model and then utilizes it to find an optimum policy. Therefore, it needs further 

computation, but gives the model extensions to deal with real-world problems like Botnet 

detection, which cannot be easily controlled without an available dataset to learn the 

model in the initial phase. 

In addition, function approximation machine learning approaches, such as artificial neural 

networks, determine optimal performance by looking at examples in the training dataset. 

This procedure is very beneficial when examples of optimal behaviour are readily 

available. However, in some problems a training dataset that represents the problem does 

not exist or it is incomplete, and so only limited information is available about the optimal 

solution. RL techniques discover the optimal behaviour by trial and error, which implies 

that no information is needed in advance about the optimal behaviour. This characteristic 

makes RL an important domain in artificial intelligence applications since it does not 

depend on a complete training dataset being supplied.  

5.2.4 Exploration Versus Exploitation  

RL is a technique of preparing an agent to learn. The agent learns by getting rewards 

following each action. It somehow keeps track of these rewards and then chooses actions 
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that lead to maximizing the reward, not automatically for the next action but in long-term 

execution (Barto & Andrew, 1998). The agent normally goes through the same 

environment several times to learn how to decide upon optimal actions. Balancing 

exploration and exploitation is especially necessary here; the agent may have obtained a 

sound goal on one path, but there might be an even best one on the different path. Thereby 

without exploration, the agent will regularly return to the first goal, and the most 

beneficial goal will not be attained. Alternatively, the goal may lie after many steps of 

agent action. Therefore, it is significant to balance exploration and exploitation in order 

to guarantee that the agent is learning the optimal actions. However, any RL techniques 

require a strategy to guarantee that there is such a balance. Various methods that can be 

utilized to achieve a good balance between exploration and exploitation, such as greedy 

exploration, frequency and recency-based exploration (Barto & Andrew, 1998), R-Max 

(Brafman & Tennenholtz, 2003), decaying exploration, and persistent exploration (Singh, 

Jaakkola, Littman, & Szepesvári, 2000). 

5.3 Formulation of Botnet Problem Using Reinforcement 

Learning  

Sutton and Barto studied the RL algorithms for learning to control a system effectively 

by communicating with the environment and perceiving the rewards received (Barto & 

Andrew, 1998). RL methods are a common selection for problems where it is hard to 

specify precisely an explicit software solution, but where it is possible to produce a reward 

signal, which is exactly the situation in our Botnet problem. Here the RL obstacle is 

expressed in the context of partially observable Markov decision processes (POMDP). 

POMDPs are normally used to represent dynamic systems such as Botnet detection 

systems. 

A POMDP is described by a set of states (𝑆) , depicting the probable states of the 

controller agent state (𝐴𝐺𝑆𝑡), neural network agent state (𝑁𝑁𝑆𝑡) and host state (𝐻𝑆𝑡). The 

neural network agent action at time 𝑡 is (𝑁𝑁𝐴𝑡), and the neural network agent chooses 

actions based on policy 𝜋, where 𝑁𝑁𝜋(𝐻𝑆𝑡, 𝐴) is the probability of the agent choosing 

action 𝐴  when it is the host in the state (𝐻𝑆𝑡). A reward function 𝑅  is estimated as 

𝑅(𝐴𝐺𝑆𝑡). A transition function for the system control agent is (𝑇𝑆𝑡). 
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The Markovian transition function defines the dynamics of the system and provides the 

possibility 𝑇(𝐴𝐺𝑆𝑡 , 𝑁𝑁𝐴𝑡 , 𝐴𝐺𝑆𝑡+1)  of transitioning to state Agent 𝐴𝐺𝑆𝑡+1  after taking 

action 𝑁𝑁𝐴𝑡 in state 𝐴𝐺𝑆𝑡. The reward function assigns the number of new hosts state 𝐻𝑆𝑡 

and the total number of host states in the system is processed as integer numbers to state 

agent 𝐴𝐺𝑆𝑡. 

At any time, POMDP represents the system state, and when an action is selected by the 

neural network agent 𝑁𝑁𝐴𝑡 the host state value and controller agent reward are estimated. 

Next, according to the size of the reward collected, the transition function of the controller 

agent 𝑇𝑆𝑡 changes the neural network agent to a new state 𝑁𝑁𝑆𝑡+1. In this research, P2P 

Bot detection is expressed as a RL problem. This primarily involves selecting the value 

state function, the reward function, the action space and the transition function.  

Action Space: In defining the action space, the node on the network at every time window 

will be given a probability as a legitimate or Bot node. After that, the RL agent takes this 

probability into account in order to estimate the reward from these states.  

Agent Reward Function: The reward signal is defined at any time step to be equal to the 

number of new states processed by any node in the network during the number of the time 

window. Note that this reward signal will estimate the important of the new state using 

the value state function in set time windows, and here the new state can be a legitimate 

node or a node infected by a Bot.  

Value state function: Any (𝐻) node inside the network has many states based on the 

mode of use. Moreover, the value state function represents the expected reward from each 

host state 𝐻𝑆𝑡 under the policy 𝑁𝑁𝜋. The neural network agent output for every host state 

in every time-window can be divided into two sub-state of probabilities as Bot 𝐸(𝐵) or 

legitimate𝐸(𝑁), and so the outcome of every host state is represented as (𝐸. 𝐵 (𝐻𝑆𝑡)) or 

(𝐸. 𝑁 (𝐻𝑆𝑡)), as shown in Figure 5.4 
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Figure 5.4 Host states. 

 Value state function evaluation for Bot hosts: 

EVπ(H(B)) =

∑ E(𝐵𝑆𝑡(𝑖))
n

i=0

n
 

(5.2) 

EVπ(H(B))  represents the average expected Bot status for the host in the 𝑛 time window. 

Here, E(BSt(i)) is the probability a malicious behaviour outcome from the computer under 

the current neural network agent policy. 

 Value state function evaluation for legitimate hosts: 

EVπ(H(N)) = 1 − EVπ(H(B)) (5.3) 

EVπ(H(N))  represents the average expected legitimate status for the host in the n time 

window. Here, E(𝑁𝑆𝑡(𝑖)) is the probability of a malicious behaviour outcome from the 

computer under the current neural network agent policy. 

 Value state function evaluation for controller Agent : 

𝑉(s)=V(s) + {
V(BSt)=argmax(B(Actions))     EVπ(H(B)St>EVπ(H(N)St

V(NSt)=argmax(N(Actions))   EVπ(H(B)St<EVπ(H(N)St

 (5.4) 

where 𝑉(𝑠) is the accumulated states which achieve maximum reward based on the 

current policy of the neural network agent 𝑁𝑁𝜋. 

Transition function. Next, the (controller agent) transition function must be defined. 

Any technique in the RL field requires some kind strategy which ensures that there is a 

balance between exploration and exploitation. The problem is how to find a good action-

selection policy based on the appropriate amounts of exploration and exploitation.  
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One purpose of this study is to find a beneficial technique in order to make a balance 

between exploration and exploitation for Bot detection problems. Therefore, a directed 

exploration approach is used. The goal of the exploration approach is to explore as much 

of the state and action as possible before switching strategy and starting to exploit this 

knowledge.  

The simplest directed exploration techniques are greedy methods that, in each state, select 

the state with the highest probability of experiencing value. Furthermore, the explorative 

strategy is followed by a series of steps in order to find hidden goals. If the goal is a new 

unique state for the system, then it is easy for the system to change from explorative to 

exploitive when this seems to be more beneficial. 

The transition function is then  

𝑇𝑆𝑡 =
∑𝑛𝑒𝑤 𝑉(𝑠)

∑𝑉(𝑠)
≥ 𝜃 (5.5) 

where  𝑇𝑆𝑡 indicates the rate of exploring new state 𝑛𝑒𝑤 𝑉(𝑠) over all the environment 

state 𝑉(𝑠). Thus, the value of 𝑇𝑆𝑡 is variable depending on the amount of the analysed 

network traffic. In addition, θ is an adaptive threshold value that is determined by the 

network administrator depending on the desired security level of the network, for 

example, in an army network 𝜃 is very small in contrast to another type of networks such 

as, universities networks. Moreover, when θ has a low value this means that the learning 

rate is high. 

5.3.1 Bot Detection Algorithm Using Reinforcement Learning 

In terms of Bot detection, here is an explanation of the development of the Algorithm 5.1. 

The main components of the proposed algorithm, which its function is to detect Bot, are 

discussed in the previous section. In addition, Figure 5.5 illustrates the Algorithm 5.1 

steps.  

The proposed Bot detection system, the Algorithm 5.1, continually monitors the network 

environment. Firstly, it extracts an observation from the environment and decides an 

action based on the current neural network policy. Meanwhile, a vector 𝑉  is used to 

accumulate the new state and action for each observation. Whenever the agent 

accumulates the beneficial amount of new states, it changes to the exploitation state to 
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utilize these states. Finally, the main control agent evaluates the performance of the new 

neural network agent before using it.  

 

Algorithm 5.1: Bot detection using an RL technique. 

 1: Initialize V(s) = 0; 

 2: Initialize Tst =0; 

 3: All_Dataset=RefDataset; 

 4: Temp_Dataset=0; 

 5: Read current environment observation (state (St)); 

 6: Perform action NNπ (A | St, St + 1); 

 7: Execute action and extract rewards (R); 

 8: Estimate the probability of Bot node: 

EVπ(H(B)) =

∑ E(𝐵𝑆𝑡(𝑖))
n

i=0

n
 

 

 9: Estimate the probability of legitimate node: 

EVπ(H(N)) = 𝟏 − EVπ(H(B))  

 10: Extract the state with high expected reward: 

𝑉(s)=V(s) + {
V(BSt)=argmax(B(Actions))     EVπ(H(B)St>EVπ(H(N)St

V(NSt)=argmax(N(Actions))   EVπ(H(B)St<EVπ(H(N)St

 

 11: Check the amount of extracted reward: 

𝑇𝑆𝑡 =
∑𝑛𝑒𝑤 𝑉(𝑠)

∑𝑉(𝑠)
≥ 𝜃  

 12: If Tst >= θ  

 Temp_Dataset = Temp_Dataset +V(s). 

 Reset V(s). 

 13: (NN2π): Creation and Evaluation: 

 Create a new neural network (NNπ2) using Temp_Dataset. 

 Evaluate the performance of ( NNπ2 ) using cross-validation 

techniques. 

 Evaluate the performance of (NNπ2) using RefDataset. 

 14: IF (NNπ2) pass the evaluation phases  

 NNπ = NNπ2; 

 All_dataset= All_dataset+ Temp_Dataset; 

 Reset Temp_Datase; 

 EndIF 

 Return to step:1. 

 EndIF  

 

The key benefit of the approach introduced is that it will remain to a strategy for a period 

of time, and will not perform one-step in the exploratory direction and one-step in the 
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exploitative direction. However, managing the rate of learning (exploration) new 

behaviour (states) depend on the network traffic state. In the case of huge volumes of 

network traffic the controller agent will be found a high number of new state comparison 

with low network traffic. Once the system determines the most beneficial amount of 

reward it changes to the exploitative strategy by producing a new dataset from the old 

dataset and newly extracted states to use for retraining a new neural network agent. Once 

the new neural network agent is trained, three procedures are used to grantee the quality 

of the system outcome. Firstly, a cross-valuation approach is applied to evaluate the result 

of the new neural network agent and estimate performance evaluation matrices such as 

AUC, MCC, accuracy, and RMSE. Secondly, the new neural agent is evaluated using the 

old reference dataset (state and action) and estimating the performance evaluation of 

AUC, MCC, accuracy, and RMSE. Thirdly, if the system passes the evaluation test then 

the main controller of the system will replace the neural network agent with a new one. 

However, if the new neural agent fails to achieve good performance, the system retains 

the current neural network agent and reset the new state and action buffer. 

In summary, there are three neural network agents in the system’s reference neural 

network. The first initial agent’s neural network is trained using a reference dataset (states 

and actions). The second the neural network is created using new environment 

observations (states). Finally, the neural network with the best configuration that passes 

the evaluation phase is used in the detection process. 

The complex nature of the proposed approach is derived from the complex of the neural 

network with resilient backpropagation learning. Resilient back-propagation (RPROP) is 

considered the best an algorithm which combined robustness, speed and accuracy (M. 

Riedmiller & Braun, 1993). Furthermore, according to Christian Igel et al. (2005) the 

RPROP algorithm has linear time and space complexity (Igel, Toussaint, & Weishui, 

2005) 
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Figure 5.5 Neural Network Agent state. 

A multilayer neural network with 𝑖 inputs, ℎ hidden units, and 𝑢 outputs  has 𝐻 (𝑖 + 1) 

weights on the first layer and 𝑢 (ℎ + 1) weights in the second layer. Both space and time 

complexity of an MLP is  𝑂 (ℎ ·  (𝑢 +  𝑖)) . When 𝑒  denotes the number of training 

epochs, training time complexity is 𝑂(𝑒 · ℎ ·  (𝑢 +  𝑖)). In an application, 𝑖 and 𝑢 are 

predefined and ℎ is the parameter that we play with to tune the complexity of the model 

(Alpaydin & Ethem, 2014).  

The complexity of the proposed approach is based on the complexity of the neural 

network. So, in our proposed approach, the complexity of create a new neural network 

𝑁𝑁𝜋2 is: 

𝑂 (𝑒 ·  ℎ ·  (𝑢 +  𝑖))  =  𝑂 (𝑁) (5.6) 

Where 𝑁 denote to the number of weights. 

In addition, the complexity of evaluation of new neural network based cross-validation 

approach is: 
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𝑓 ∗  𝑂 (𝑒 ·  ℎ ·  (𝑢 +  𝑖))  =  𝑂 (𝑁) (5.7) 

Where 𝑓 is the number of folds.  

Finally, the complexity of proposed approach is 𝑂(𝑁).    

5.4 Online Bot Host Detection Approach 

At online detection stage, the learned neural network agent classifies the host inside the 

network continually and sends a report about the hosts’ activities to the network 

administrator. Moreover, as shown in Figure 5.6, the RL agent at the same time works to 

extract any new features that will help to improve the performance of the detection agent 

in the future.  

RL agent
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REPORT

State, Action 
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administrator

 

Figure 5.6 Overview of On-line Bot Detection Phases. 

This research introduces a new technique in which the RL agent’s activities are divided 

into two phases: a) new behaviour is extracted as shown in Figure 5.7, and then b) 

improving the neural network agent using the newly extracted behaviour as shown in 

Figure 5.8. 

A. Extract new behaviour using a RL agent: 

1. Extract the state of the environment and the action that it performs by use of the 

current neural network agent. 

2. Check if the state is a new state according to the reference set of states (training 

dataset), go to step 4. 

3. The agent is waiting for the next state and action, go to step 1. 

4. The agent creates a vector for every host on the network to store the state and 

action that occurred. 
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5. Check if the total number of the new states for any host in the network is equal to 

a threshold number, and then estimate the average of the actions that was done by 

the host in order to find the best reward value based on the probability and 

frequency of the action. Otherwise, return to step 1. 

6. Check that the overall amount of reward is the balanced between exploration and 

exploitation based on the adaptive threshold value. So, if a rate of new states 

satisfies the value of the adaptive threshold, then go to the next phase of the 

proposed framework in order to exploit the newly extracted features to improve 

the system. Otherwise, return to step 1 to increase the exploration rate. 
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Figure 5.7 Extract new behaviour phase. 

B. Improve the neural network agent using new extracted online behaviour: 

7. Create a vector for the reward (new state) to use it to improve the system to detect 

new states of attacks. 

8. Adopting new state and action by incremental training of the new neural network 

agent to add a new policy to the system. 

9. Evaluate of the efficiency of the new neural network using 10-fold cross-

validation. In addition, check if it success of satisfies the minimum requirements 

based on the cross-validation result of the new neural network agent and go to 

step 11. 

10. If the system does no change the neural network policy, reset the reward vector of 

state and action and return to step 6 to check f it has valuable new rewards. 
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11. Test the new neural network using the reference dataset. If it succeeds in satisfying 

the minimum requirements for classifying the host inside the network, go to step 

13. 

12. If there are no changes in neural network policy, reset the reward vector of state 

and action and return to step 6 to check if it gives valuable new rewards. 

13. Replace the last good configuration neural network (main agent) with the new 

neural network with incremental training using the new state and action that are 

extracted in the online phase, and reset the reward vector of state and action and 

return to step 6 to check if it gives a valuable new reward. 
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Figure 5.8 Improving the classifier agent. 

Figure 5.7 and Figure 5.8 shows the main components of RL agents. The model for extract 

new behaviour (learning agent) and the model of adopting the new behaviour phases are 

demonstrated. In This study, a novel connection between RL and neural networks is given 

in order to resolve the control problems with dimensionality and the partially observable 

environment. 

5.5 Experimental Results and Evaluation 

5.5.1 Experiments Using Differences Sliding Time-window Size 

This section gives an overview of the results of the proposed technique in Bot detection 

using the testing dataset (Table 3.1). We have conducted the experimental procedure that 
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mentioned in Section 4.5.2 in Chapter 4. The results obtained from the analysis of the 

online experiment outcomes are summarized in Figure 5.9 to Figure 5.12. 

As shown in Figure 5.9, the proposed approach using online evaluation gives the highest 

ACC, DR and F-measure rates of around 98.8%, 98.3% and 97.9% respectively using the 

60-seconds time window; meanwhile, the lowest performance of the proposed approach 

using these measures was achieved with a 10 seconds time-window. 

 

Figure 5.9 (a) ACC rates, (b) DR rates, (c) F-measure rates. 



CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION 

97 

Figure 5.10 presents the performance measurement AUC and MCC for the imbalance 

dataset. The results show that the highest AUC and MCC rates were 99.96% and 95.6% 

respectively in the online testing dataset evaluation using a 60-seconds time-window. 

 

Figure 5.10 (a) AUC rates, (b) MCC rates. 

In addition, the quality of outcomes of the proposed method based on time window size 

was compared using the RMSE and NDEI measures, and the 60-seconds time window 

achieved the best RMSE and NDEI rate around 0.093 and 0.187 respectively as shown in 
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Figure 5.11. Furthermore, the lowest FPR and FNR were given with a 60-seconds time 

window size as shown in Figure 5.12. 

 

Figure 5.11 (a) RMSE rates, (b) NDEI rates. 

The proposed approach achieves the best performance results at the 60-seconds time-

window. Consequently, this size of time window is sufficient to collect Bots malicious 

behaviour and, therefore, achieve the best classification outcomes. In addition, to test the 

efficiency of the proposed approach in detecting P2P Bots, the ROC curve was plotted to 

show the trade-off between TPR and FPR. A perfect classifier would have an area under 



CHAPTER 5: REINFORCEMENT LEARNING APPROACH FOR ONLINE BOT DETECTION 

99 

the curve (AUC) close to 1.0, where the x-axis represents FPR and the y-axis represents 

TPR. 

 

Figure 5.12 (a) FPR rates. (b) FNR rates. 

Figure 5.13, plots the ROC for three time-windows 10, 30 and 60 as a sample in order to 

compare the performance of proposed approach in different time-window size. As shown 

in Figure 5.13 the 60-seconds time-window obtained the best performance in the AUC 

for both Bot and legitimate detection rates around 0.9916 and 0.9896 respectively. 

Therefore, it is found that the proposed approach performs well in classifying host inside 

the network traffic as a Bot or legitimate hosts. 

 

Figure 5.13 ROC comparison. 
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5.5.2 Testing on Zero-day Attack 

To further evaluate the effectiveness of the proposed method with new P2P Botnet 

network traffic, Zeus, Waledac and Storm Bots were used to test the system for detection 

of zero-day attacks. It is evident from the results presented in Figure 5.14 that the 

technique adopted by our framework was powerful in detecting new P2P Bots types, with 

good accuracy rates. As shown in Figure 5.14, the detection rates for the Storm Bot and 

Waledac Bot using 60-seconds time-window were those higher than for the Zeus Bot 

96.83%, 98.2% and 93.8% respectively. This was because for the testing and training 

dataset we used Storm and Waledac Bots, but from different dataset sources as shown in  

Table 3.1. 

 

Figure 5.14 Detection rate (zero-day attack). 

From Figure 5.15, a significant observation is that the approach gives low FPR for the 

Zeus, Storm and Waledac Bots at around 0.04, 0.07and 0.09 respectively using 60-

seconds time-window. What is interesting in this result is that the proposed system is able 

to extract new features from the environment online and to utilize these features to 

enhance the system’s on detection of novel types of Bot behaviour. The results of this 
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experiment confirm that the proposed RL agent with proposed feature set can detect Bot 

even if it is a Zero-day attack. 

 

Figure 5.15 FPR (Zero-day attack). 

5.5.3 Reinforcement Learning Model Evaluations  

5.5.3.1 Evaluation the Efficiency of the Proposed Approach Based on Reference 

Dataset 

The evaluation results for training the neural network agent in the online phase based on 

the reference dataset (train dataset) are demonstrated in Figure 5.16 to Figure 5.19. The 

x-axis represents the training index of neural network agent. It can be clearly seen that 

different performance measurements on the result from different time-window sizes. 

Based on these, results for 10s, 30s, and 60s time-windows are calculated. Therefore, the 

evaluations of the online agent with reference dataset give the highest average accuracy 

rate is 99.20% with standard deviation of 0.004 based on a 60-seconds time-window; 

meanwhile, the lowest average accuracy achieved with a 10-seconds time window was 

95.92% and standard deviation 0.0143 as shown in Figure 5.16. 
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Figure 5.16 Online evaluations the ACC of a classifier based on a reference dataset. 

Subsequently, the performances of the proposed approach according to time window size 

and reference dataset were compared based on AUC, and the 60-second time window 

achieved the best average AUC rates of 98.37% and the standard deviation around 0.0067 

as shown in Figure 5.17. In addition, the lowest performance results given with a 10-

second time-window.  
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Figure 5.17 Online evaluations the AUC of a classifier based on a reference dataset. 

In addition, Figure 5.18 compares the evaluation of MCC result, and the 60-second time-

window achieves the best average rates around 94.9% with the standard deviation around 

0.0224. AUC and MCC are considered the most reliable performance measures for 

imbalanced datasets. 
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Figure 5.18 Online evaluations the MCC of a classifier based on a reference dataset. 

In addition, the performances of the proposed approach according to time window size 

and reference dataset were compared based on the average RMSE, and the 60-second 

time window achieved the best average RMSE rates at around 0.044 with standard 

deviation around 0.0365 as shown in Figure 5.19. In addition, the lowest rate given with 

a 10-second time-window with average and standard deviation 0.14 and 0.291 

respectively. 
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Figure 5.19 Online evaluations the RMSE of a classifier based on a reference dataset. 

As shown in Figure 5.16, Figure 5.17 and Figure 5.18, the performance of the ACC, 

MCC, and AUC starts with high rates over the neural network training index, and then 

slightly decreases due to the probability of learning misclassified behaviours by the agent 

of malicious activity detector. Moreover, for the possibility of misclassified behaviours 

the RMSE increases over the neural network training index as shown in Figure 5.19.  

Furthermore, the RL agent achieves the best performance over the 60-seconds time-

window using reference dataset. By then, the 60-seconds time-window is sufficient to 

collect Bots malicious behaviours and it has low numbers of misclassified activities. In 

addition, the evaluation experiment results for time window 20, 40 and 50 seconds are 

demonstrated in Appendix A. 

5.5.3.2 Evaluation the Efficiency of the Proposed Approach based on Updated Dataset 

This section gives an overview of the evaluation results of the neural network agent in 

Bot detection using the updated dataset with new behaviours. The results obtained from 
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the analysis of the online experiment outcomes are summarized in Figure 5.20 to Figure 

5.23. As shown in Figure 5.20, the evaluation of the proposed approach using updated 

dataset online evaluation gives the best average of accuracy 98.26 with standard deviation 

around 0.0032 using the 60-seconds time window; meanwhile, the lowest evaluation of 

accuracy was achieved with a 10-seconds time-window with  average 94.48% and 

standard deviation around 0.0126.  

 

Figure 5.20 Online evaluations the ACC of a classifier based on an updated dataset. 
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Figure 5.21 and Figure 5.22 present the performance measurement AUC and MCC for 

the updated dataset. The results show that the highest average AUC and MCC rates were 

above 98.55% and above 95.22% respectively in the online testing evaluation using a 60-

seconds time-window. 

 

Figure 5.21 Online evaluations the AUC of a classifier based on an updated dataset. 
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Figure 5.22 Online evaluations the MCC of a classifier based on an updated dataset. 

The quality of outcomes of the proposed method based on time window size and the 

updated dataset is compared using the RMSE measure, and the 60-seconds time-window 

achieved the best average RMSE around 0.1255 and standard deviation of 0.0251 as 

shown in Figure 5.23. Furthermore, the lowest rate was given with a 10-seconds time-

window size with average of 0.1729 
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Figure 5.23 Online evaluations the RMSE of a classifier based on an updated dataset. 

As shown in Figure 5.20, Figure 5.21 and Figure 5.22, the performance of the ACC, 

MCC, and AUC starts with high rates over the neural network training index, and then 

slightly decreases due to the probability of learning misclassified behaviours by the agent 

of malicious activity detector. Moreover, for the possibility of misclassified behaviours 

the RMSE increases over the neural network training index as shown in Figure 5.23. 

Moreover, the RL agent achieves the best performance over the 60-seconds time-window 

using updated dataset. By then, the 60-seconds time-window is sufficient to collect Bots 

malicious behaviours and it has low numbers of misclassified activities. In addition, the 

evaluation experiment results for time window 20, 40 and 50 seconds are demonstrated 

in Appendix B. 

5.5.3.3 Evaluation Based on the Learning Rate  

This section gives an overview of the evaluation results of the RL agent in extraction new 
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experiment outcomes are summarized in Figure 5.24 to Figure 5.26. The x-axis represents 

the training index of the neural network agent and the y-axis represents the accumulative 

value of new Bot behaviour. It can be clearly seen that different numbers of the 

accumulated new Bot behaviours are extracted from different time-window sizes. Based 

on these, results for 10s, 30s, and 60s time-windows are calculated. Therefore, the 

evaluations of online agent to find new behaviour gives the highest accumulative number 

of new Bot behaviours is 4902 based on a 60-seconds time-window as shown in Figure 

5.26; meanwhile the worst case to find new Bot behaviour with a 10-seconds time window 

is 934 as shown in Figure 5.25 

 

Figure 5.24 Evaluations of the extract new behaviours based on 10s time-window. 
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Figure 5.25 Evaluations of the extract new behaviours based on 30s time-window. 

 

Figure 5.26 Evaluations of the extract new behaviours based on 60s time-window. 

From the empirical results of the evaluation to extract new behaviour (learning rate) as 

shown in Figure 5.26 the 60-seconds time-window has the best result to find new Bot 
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behaviour that improve the neural network agent online. In addition, as shown in above 

figures the RL agent has the maximum training index over the 60-seconds time-window 

due to this size of time window sufficient to collect Bots malicious behaviour and, 

therefore, discover the highest number of new Bot behaviours which improve the RL 

agent to detect a Zero-day attack as discussed in section 5.5.2. 

Figure 5.27 gives an overview of the proposed technique results in the Bot detection based 

test dataset and the reference neural network agent (reference neural network: is the first 

neural network which is trained based on the offline dataset). The overall results obtained 

from the analysis of an online experiment outcome are summarized in Figure 5.27. As 

shown in Figure 5.27(a), Figure 5.27(b) and Figure 5.27(c), the evaluation of performance 

reference neural network using test data set gives the highest accuracy, detection and F-

measure rate around 75%, 73% and 70%, respectively using 60-second time-window; 

meanwhile the lowest accuracy was achieved on 10-second time-window around 68%. 

Figure 5.27(e) and Figure 5.27(f) presents the imbalance dataset performance 

measurement AUC and MCC. The results show that the highest AUC and MCC rates 

were 90% and 85% respectively on testing dataset evaluation through 60-second time-

window. In addition, the quality of outcomes of the proposed method based on time 

window size is compared using the RMSE and NDEI, the 60-second time-window 

achieves the best RMSE and NDEI rate around 0.28 and 0.30 respectively as shown in 

Figure 5.27(g) and Figure 5.27(h). Furthermore, the lowest FPR was given on 60-second 

time-window size. 
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Figure 5.27 Test the online system based reference neural network. 

As shown in above Figure the reference neural network with testing dataset has a bad 

performance outcome. However, the primary aim of the evaluation using reference neural 

network is to prove that the proposed approach with RL agent can detect P2P bots and 

able to learn new behaviour in order to improve the detection system over time. More 

details for the experiment parameters are provided in Appendix C.   

5.6 Discussion 

There are an enormous variety of RL problems depending on the respective environments 

and objectives. In practice, any solution for a dynamic problem using RL, such as Botnet 
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detection, must be able to deal with the partial observability of the problem and the 

dimensionality of the data as well as the size of training data, as shown in Figure 5.28 

Data with high dimensionality rates normally come from huge volumes of input into a 

system, which may affect the solution of the problems in the dynamic environments. For 

that reason, RL methods which can deal with high dimensionality and that are easily 

scalable are required. All table-based methods are excluded, because these methods are 

inefficient in problems with huge dimensionality. Instead an efficient and accurate 

function approximation is required. 
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Figure 5.28 RL Characteristic. 

In dynamic real-world environments, the situation is only partially observable since it is 

either an inaccessible environment or too costly to inspect all states and actions. In such 

situations, model-based strategies are beneficial as they first build the system’s dynamics 

using current knowledge and utilize the current state to predict unobserved states. 

However, the quality of the first model is crucial. 

In the present research, a model-based learning approach utilizes information collected 

through the training (offline phase) very effectively. Since the agent tries to learn a model 

of the states of the environment, thus it can combine the knowledge from multiple 
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experiences. Besides the function approximation is applied overcome the storage problem 

with table-based approaches and to achieve data efficiency by generalizing to about 

unseen states. 

However, The Botnet detection method chosen should satisfy the requirement of novelty 

detection, adaptability and early detection. Based on these measures, a neural network 

with a resilient back-propagation learning algorithm is adopted as a classification 

technique. This has robust capabilities for nonlinear system identification and control due 

to an inherent ability to approximate arbitrary nonlinear problems. Moreover, using the 

resilient back-propagation learning algorithm minimizes the harmful effects of volumes 

of fractional derivatives, and it increases the adoption rate. In addition, utilizing the RL 

approach improves the capability of the proposed system to detect a zero-day attack. 

Table 5.1 shows the results of the comparison of our results with those of research using 

the same dataset in the offline phase that used by Zhao et al. (Zhao et al., 2013) and in 

online phase evaluation we used the same dataset as used by Babak et al. (Babak et al., 

2014). The table also shows that the Bots detection and FPR using the proposed approach 

are better than those gained by previous solutions. Moreover, the proposed system is an 

online technique. Additionally, our approach differs from previous ones because the 

analysis is not performed on all network traffic such the studies (Babak et al., 2014; Zhao 

et al., 2013), which they analysis the whole network traffic to detect Bot malicious 

behaviours. 

Table 5.1 Comparison with other published approaches. 

Approaches FPR 
Detection 

rate 

Traffic reduction 

rate 

    Babak et al. (2014) 0.1% 99.5% 0% 

    Zhao et al. (2013) 2.1% 98.1% 0% 

Proposed approach 

Online 0.012% 98.30% 

 40% -70% 

Offline 0.01% 99.1% 

5.7 Summary 

In this chapter, a novel combination of neural networks and reinforcement learning were 

introduced in the design of an efficient Bot detection method. Practicality in solving high-
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dimensional and partially observable RL problems in dynamic environments requires a 

model-based approach to identify Botnet malicious activity on the network. In addition, 

a technique was developed to achieve a balance between exploration and exploitation for 

the RL agent. In practice, a dynamic controller is constructed that obtains an optimal 

dynamic control policy under a RL framework. For the controller and its learning method, 

neural networks were used. The experiments with real Bot network traffic samples show 

that the controller succeeds in learning the optimal policy for a task of Bot detection. 
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6 CONCLUSIONS AND 

FUTURE WORK 

This chapter presents the thesis conclusions and summarizes its unique contributions 

along with suggesting directions for future work. The main conclusion of the research is 

presented in Section 6.1. A summary of contributions is given in Section 6.2. Section 6.3 

presents difficulties and solutions, and the limitations of the proposed approach are 

outlined in Section 6.4. Directions for future research are then indicated in Section 6.5. 

6.1 Thesis Summary 

Since the appearance of the Internet, network security has always been a primary interest 

of its users. Currently, Botnet detection is the most serious task in Internet security. 

Botnets can be utilized for many malicious activities such as DDoS, Spam and stealing 

sensitive information. Botnet detection, therefore, has assumed fundamental importance. 

This thesis has presented our research on the Bot host detection using network traffic 

reduction with RL approach. In this thesis, Chapter 2 had reviewed the relevant 

background on Botnet phenomena and couple of related work on Botnet detection. 

Chapter 3 had presented our proposed contribution on the network traffic reduction. 

Chapter 4 had described our proposed connection-level feature set. Besides, the design of 

our offline Bot detection system, the experimental procedures, the results evaluation 

matrix and further discussions have been described in the chapter.  

In Chapter 5, experiments are conducted to test the efficiency and effectiveness of the 

designed RL method. The RL algorithm for Bot detection is evaluated from different 

perspective using real world datasets. Furthermore, several methods of evaluation are 

used that cover balanced and imbalanced datasets. The results of the assessment show the 

efficiency of the proposed approach to deal with different types of Bot traffic and if the 

approach can detect zero-day attacks using the proposed RL algorithm. 
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6.2 Summary of Key Contributions 

The significance of the proposed system lies in the following aspects. Firstly, it can detect 

P2P Bots even when their malicious activities are hidden, and without inspecting packet 

payloads. Secondly, the approach is capable of online detection based on a powerful 

mechanism for traffic reduction and short detection time-windows. Finally, a RL 

methodology used in the proposed approach increases the ability of the system to evolve 

based on the environment evolving. 

Combining the use of network traffic reduction and RL approach gives our solution a 

valuable contribution to the field of Botnet detection. The experiments carried out 

involved testing and comparing with other research work based on the same datasets.  

The first contribution is traffic reduction approach. The result revealed that using the 

traffic reduction approach achieved better reduction rate and had a considerable effect on 

online Bot detection. Besides, the traffic reduction approach improvises the efficiency of 

the proposed solution to work as an online Bot detection system and to deal with massive 

volumes of network traffic. 

The second contribution is the connection-level feature set. To achieve earlier Bot 

detection and bypass the encrypted network traffic, connections-based detection 

mechanism was designed and implemented which utilizes the information in the header 

of TCP control packets. The evaluation result of the proposed connection-level feature 

set using offline model shows that our feature set achieved better accuracy and detection 

rate. Moreover, the performance of the proposed feature set is evaluated using offline Bot 

detection model and compared with existing detection methods, and achieves better 

results using the same dataset. 

The third contribution is the online RL model. To achieve adaptability in the proposed 

approach, a new model-based RL algorithm was designed and implemented. The 

experimental results revealed that using RL approach with traffic reduction method 

achieved high accuracy and detection rates compared with existing results using the same 

dataset. In addition, the solution has shown the ability to learn rapidly new attack patterns 

online. This important benefit supports intrusion detection systems and enhances their 

ability to detect zero-day attacks without the need for continuously external updates. 
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6.3 Difficulties and Solutions  

Despite all concerted efforts to reduce the influence of Botnets, improvements in Botnet 

evasion techniques are rapidly growing, which makes Botnet detection a very difficult 

task for the Internet security community (FBI, 2011; IBM, 2013; Plohmann et al., 2011). 

Botnets are becoming more complicated, employing a diversity of evasion methods such 

as protocol evasion techniques, rootkits, advanced executable packers and moving away 

from IRC to VOIP, HTTP, IPV6 and P2P protocols and networks. These evasion 

strategies enhance the survivability of Botnets and increase the rates of infection of new 

hosts. 

There are three principal difficulties in the classification of host behaviour: Firstly, the 

network traffic is continuous, which indicates that it is persistent and features will change 

over time. Furthermore, Botnets dynamically change via Bot updates or altering their 

operation in various life cycle stages after receiving instructions from a Botmaster. These 

phenomena are termed concept drift and this is currently a serious issue for any detection 

method (Dries & Rückert, 2009). Therefore, the proposed framework adopts the idea of 

RL to improve the system dynamically over time. Secondly, there is always the risk of a 

new Botnet emerging on a network. It's spread may be stealthy, such as in zero-day 

attacks, and the behaviour of the host might seem like legitimate behaviour, and the 

difficulty to detect malicious activities if the classifier not trained for this behaviour 

previously. These cases generate a problem of novelty detection for detection models. 

Therefore, the proposed framework continually extracts new features to improve 

detection rates over time. Thirdly, evaluating the entire network traffic in real-time is a 

computationally expensive task due to the speed of network traffic. Therefore, the 

proposed approach uses a traffic reduction method, which helps to set up a more 

lightweight, and speedy online detection method. 

6.4 Limitations  

In general, the major challenge for detection Botnet using data mining techniques is 

obtaining the training dataset. The universality and precision of the classifier depend on 

the training data sets quality. A diversity and illustrative training dataset are hard to obtain 

and to create one due to the time consuming and resource.  In addition, the majority of 

the available Botnet dataset is formed in academic experiment source due to the security 
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and privacy issue, it is very difficult for the researcher to get a Botnet traces from other 

such as corporate networks. 

6.5 Future Research Directions  

Our online Bot detection approach with its proof-of-concept design and implementation 

could be able to address the real-time objective. However, further research has to 

investigate the challenging of real-time implementation. Nevertheless, machine learning 

methods could be applied to a real-time solution. 

The following list contains summaries of several research topics that can be pursued in 

the near future as a continuation of the research work presented in this thesis: 

1. Discovery of further Botnet features. Based on P2P Bot communications, P2P 

applications and an analysis of the literature, 16 host features were created. It is 

possible to add informative connection-based features by analysing Botnets traffic 

using the UDP protocol. These features may be valuable for increasing the 

performance of any future Botnet detection system. 

2. Use different feature selection algorithms. Although the feature selection 

algorithms that used in this work helped to minimize the vectors dimensions of 

the feature set without greatly reducing the performance of the detection approach, 

other feature selection algorithms could perhaps be utilized to gain a better feature 

subset. 

3. Botnet detection in new trends, platforms and infrastructures. Many Botnets that 

work on smartphones have been classified, adding another threat to personal 

information. Consequently, exploring the experience gained from identifying 

Botnets on network to reduce their effects in developing infrastructures will be 

worthy of investigation in the future. 

4. New Types of Botnet Attacks. To reserve their Botnets, attackers always attempt 

to make Botnet C&C connections as hidden as possible. Therefore, new types of 

Botnets have begun to adopt the social networks as their new communication 

channel. Investigating how this communication protocol operates, and how 

Botnets utilize this channel, could be a new direction to continue the present work.  

5. An interesting direction might be to combine the connection-level feature with the 

host-level feature sets and using ensemble parallel classifiers. Such a combination 
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could add to the analysis of Botnet traffic which might improve the accuracy of 

the Botnet detection approach. 

6. Another area of interest might be to investigate the possibility of replacing the 

neural network in proposed strategy with other machine learning methods such as 

those employing unsupervised learning (for example, clustering algorithms).
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APPENDICES 

A  APPENDIX A 

A.1 Evaluation the efficiency of the proposed approach using 

reference dataset for 20, 40 and 50 seconds time windows. 

 

The evaluation results for training the neural network agent in the online phase based on 

the reference dataset (train dataset) are demonstrated in Figure A.1 to Figure A.4. It can 

be clearly seen that different performance measurements on the result from different time-

window sizes. Based on these, results for 20s, 40s, and 50s time-windows are calculated. 
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Figure A.1 Online evaluations the ACC of a classifier based on a reference dataset. 

 

Figure A.2 Online evaluations the AUC of a classifier based on a reference dataset. 
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Figure A.3 Online evaluations the MCC of a classifier based on a reference dataset. 

Figure A.4 Online evaluations the RMSE of a classifier based on a reference dataset. 
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B APPENDIX B 

B.1 Evaluation the efficiency of the proposed approach using 

updated dataset for 20, 40 and 50 seconds. 

 

This section gives an overview of the evaluation results of the neural network agent in 

Bot detection using the updated dataset with new behaviours. The results obtained from 

the analysis of the online experiment outcomes are summarized in Figure B.1 to Figure 

B.4 for 20s, 40s, and 50s time-windows are calculated. 

 

Figure B.1 Online evaluations the ACC of a classifier based on an updated dataset. 
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Figure B.2 Online evaluations the AUC of a classifier based on an updated dataset. 

 

Figure B.3 Online evaluations the MCC of a classifier based on an updated dataset. 
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Figure B.4 Online evaluations the RMSE of a classifier based on an updated dataset. 
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C LIST OF EXPERIMENT PARAMETERS 

1. The minimum level to accept the new neural network (after retrained) based on 

the reference dataset. 

Table C.1 Evaluation parameter of new neural network using reference dataset 

Evaluation Method Parameter value 

AUC >0.90 

MCC >0.80 

ACC >0.90 

RMSE <0.20 

2. The minimum level to accept the new neural network (after retrained) based on 

the updated dataset. 

Table C.2 Evaluation parameter of new neural network using updated dataset 

Evaluation Method Parameter value 

AUC >0.90 

MCC >0.80 

ACC >0.90 

RMSE <0.20 

3. The threshold number used of exploration step per host is five. 

4. The value of threshold factor that allow the proposed system to change state form 

exploration to exploitation.  

𝑇𝑠 ≥ 0.15 
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5. Neural network parameter.  

Neural network parameter Parameter value 

Number of layers 5 

Input layer neurons 16 

output layer neurons 2 

Neuron per hidden layer 10 

Learning function Resilient Backpropagation 

epochs 1000 

goal 1e-5 

Error function of MSE 

 

6. Cross-validation 5-fold was used.  
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D IMPLEMENTATION FRAMEWORK 

1. Traffic capture module. 

a) Pseudo code  

import java.util.ArrayList; 

import java.util.List; 

import org.jnetpcap.Pcap; 

import org.jnetpcap.PcapIf; 

import org.jnetpcap.packet.PcapPacket; 

import org.jnetpcap.packet.PcapPacketHandler; 

import org.jnetpcap.protocol.network.Ip4; 

public class PackageCapture  

{ 

public static void main(String[] args)  

{ 

List<PcapIf> alldevs = new ArrayList<PcapIf>();  

StringBuilder errbuf = new StringBuilder 

int r = Pcap.findAllDevs(alldevs, errbuf); 

if (r != Pcap.OK || alldevs.isEmpty())  

{ 

 System.err.printf("Can't read list of devices, error is %s", 

errbuf.toString()); 

return; 

 } 

System.out.println("Network devices found:"); 

int i = 0; 

for (PcapIf device : alldevs) 

{ 

String description = (device.getDescription() != null) ? 

device.getDescription():"Nodescription 

available";.out.printf("#%d: %s [%s]\n", i++, 

device.getName(),description); 

} 

PcapIf device = alldevs.get(0); // Get first device in list 

System.out.printf("\nChoosing '%s' on your behalf:\n", 

 (device.getDescription() != null) ? device.getDescription() 

: device.getName()); 

int snaplen = 64 * 1024; // Capture all packets, no trucation 

int flags = Pcap.MODE_PROMISCUOUS; // capture all packets 
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int timeout = 10 * 1000; // 10 seconds in millis 

Pcap pcap = Pcap.openLive(device.getName(), snaplen, flags, 

timeout, errbuf); 

if (pcap == null) {System.err.printf("Error while opening device 

for capture: "+ errbuf.toString()); 

return; 

} 

PcapPacketHandler<String> jpacketHandler = new 

PcapPacketHandler<String>()  

{ 

public void nextPacket(PcapPacket packet, String user) { 

byte[] data = packet.getByteArray(0, packet.size()); // the 

package data 

byte[] sIP = new byte[4]; 

byte[] dIP = new byte[4]; 

Ip4 ip = new Ip4(); 

if (packet.hasHeader(ip) == false) { 

return; packet 

} 

ip.source(sIP); 

ip.destination(dIP); 

String sourceIP = org.jnetpcap.packet.format.FormatUtils.ip(sIP); 

String destinationIP = 

org.jnetpcap.packet.format.FormatUtils.ip(dIP); 

System.out.println("srcIP=" + sourceIP + " dstIP=" + 

destinationIP + " caplen=" + packet.getCaptureHeader().caplen()); 

} 

}; 

pcap.loop(10, jpacketHandler, "jNetPcap"); 

pcap.close(); 

} 

} 
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2. Traffic reduction module. 

a) Input: network packets. 

b) Output: TCP control packets. 

c) Pseudo code: 

  function contrl_packets = Traffic_Reducton(raw) 

    temp = raw; 

    control_pak = []; 

    Res=[]; 

    for j = 1:size(temp,1)  

      SYN=~isempty(strfind(cell2mat(temp(j,8)),'[SYN]')); 

      ACK=~isempty(strfind(cell2mat(temp(j,8)),'[ACK]')); 

      FIN=~isempty(strfind(cell2mat(temp(j,8)),'[FIN]')); 

      RST=~isempty(strfind(cell2mat(temp(j,8)),'[RST]')); 

      SACK=~isempty(strfind(cell2mat(temp(j,8)),'[SYN, ACK]')); 

      FACK=~isempty(strfind(cell2mat(temp(j,8)),'[FIN, ACK]')); 

      RACK=~isempty(strfind(cell2mat(temp(j,8)),'[RST, ACK]')); 

       if (ACK | SYN | FIN | RST |SACK|FACK|RACK) 

        control_pak = cat(1, control_pak, temp(j, :)); 

        Res = cat(1, Res, temp(j, :)); 

     end 

    end 

    save('Cont_packet.mat', 'control2'); 

    contrl_packets=control_pak; 

  end 
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3. Connection-level features extraction module. 

a) Input: Time window size and TCP control packets. 

b) Output: Connection-level features list. 

c) Pseudo code: 

function extract_flow = extract(control_raw,time_w) 

temp2 = control_raw; 

temp = temp2; 

CPT = []; 

Res = []; 

while ~isempty(temp) 

x=[];    

   TIME_rACK=[]; % reactive ACK packets - time sequence per 

connection. 

    TIME_sACK=[]; % send ACK packets - time sequence per connection. 

    TIME_rSYN=[]; % receive SYN packets - time sequence per 

connection. 

    TIME_sSYN=[];% send SYN packets - time sequence per connection. 

    paket_seq=[]; % packets sequence per connection. 

    start_Conn=0; % start time of connection.  

    cp = 0;    % total number of packet. 

    NsendPacket=0; % total number of send packets. 

    NrecivePacket=0; % total number of receive packets. 

    TotalSendByte=0; %total number of send Bytes per connection. 

    TotalReciveByte=0;%total number of receive Bytes per connection. 

    NsendSyn=0;% number of send SYN packets per connection. 

    NreciveSyn=0;% number of receive SYN packets per connection. 

    NsendAck=0; %number of send ACK packets per connection. 

    NreciveAck=0;%number of receive ACK packets per connection. 

    NsendSynAck=0;%number of send SYN ACK packets per connection. 

    sACK=0; %number of send ACK=1 packets per connection. 

    NreciveSynAck=0;%number of receive SYN ACK packets per connection. 

    rACK=0;  %number of receive ACK=1 packets per connection. 

    NsendDupAck=0;%number of send double ACK packets per connection. 

    NreciveDupAck=0;%number of receive double ACK packets per 

connection. 

    NsendFinAck=0;%number of send FIN ACK packets per connection. 
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    NreciveFinack=0;%number of receive FIN ACK packets per connection. 

    SendRSTack=0;%number of send RST ACK packets per connection. 

    RecivdRSTack=0; %number of receive RST ACK packets per connection. 

    avg_time=0; % Avg. time between packets. 

    defrent_time=0; % time between connections. 

    avgLengthSendPacket=0;% Avg. length of send packets. 

    avgLengthRecivedPacket=0;%Avg. length of receive packets. 

    avgLengtPacket=0;% Avg. length of packets. 

    SendFailedConnection =0;% number of send fail per connection. 

    TotalRConnection=0;% Total number of receive connections. 

     RecivdRST=0; % number of receive RST packets per connection. 

     RecivdRSTack=0;% number of receive RST ACK packets per 

connection. 

     SendRSTack=0;% number of send RST ACK packets per connection. 

     SendRST=0;% number of send RST packets per connection. 

     scanCount=0;% number of scanning activates. 

    % % % % % % % % % % % % % % % % % % % % % % % % % % % %     

    cpt = 0; 

    temp = temp2; 

    host_A=temp(1, 2); 

    host_B=temp(1, 3); 

    port_A=temp(1, 4); 

    port_B=temp(1, 5); 

    start_Con=cell2mat(temp(1,6)); 

   s1 = strcat(temp(1, 2), temp(1, 3),temp(1, 4),temp(1, 5)); 

    for j = 1:size(temp, 1) 

        s3 = strcat(temp(j, 2), temp(j, 3),temp(j, 4),temp(j, 5)); 

        s4 = strcat(temp(j, 3), temp(j, 2),temp(j, 5),temp(j, 4)); 

        if strcmp(s3, s1) % send packet 

            timePacket=[timePacket cell2mat(temp(j,6))]; 

            Res = cat(1, Res, temp(j, :)); 

            NsendPacket=NsendPacket+1; 

            TotalSendByte=TotalSendByte+cell2mat(temp(j,7)); 

            if ((~isempty(strfind(cell2mat(temp(j,8)),  

           '[SYN]'))&(isempty(strfind(cell2mat(temp(j,8)),'[TCP  

             Retransmission]')))... 
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             & (isempty(strfind(cell2mat(temp(j,8)),'[TCP Out-Of- 

                Order]'))))) 

               NsendSyn=NsendSyn+1; 

              paket_seq=[paket_seq 's1,']; 

              TIME_sSYN=[TIME_sSYN num2str(cell2mat(temp(j,6)))';']; 

              timesyn=cell2mat(temp(j,6)); 

            end 

            if (~isempty(strfind(cell2mat(temp(j,8)), '[SYN,  

            ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=0  

             '))) 

                NsendSynAckseq0=NsendSynAckseq0+1; 

                paket_seq=[paket_seq '1s2,']; 

            end 

            if ~isempty(strfind(cell2mat(temp(j,8)), '[SYN, ACK]')) 

                NsendSynAck=NsendSynAck+1; 

                 timeSrstack=cell2mat(temp(j,6)); 

            end 

            if ~isempty(strfind(cell2mat(temp(j,8)), '[ACK]')) 

                NsendAck=NsendAck+1; 

            end 

           if (~isempty(strfind(cell2mat(temp(j,8)), '[FIN,  

            ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)),'Seq=1  

            Ack=1 '))) 

                NsendFinAck=NsendFinAck+1; 

                paket_seq=[paket_seq '1s7,']; 

                timeSfinack=cell2mat(temp(j,6)); 

           end 

            if ~isempty(strfind(cell2mat(temp(j,8)), 'Dup')) 

                NsendDupAck=NsendDupAck+1; 

            end 

            if ~isempty(strfind(cell2mat(temp(j,8)), '[RST]')) 

                SendRST=SendRST+1; 

            end 

             

            if (~isempty(strfind(cell2mat(temp(j,8)), '[RST]'))&&  

           ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1 '))) 
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                SendRSTseq1=SendRSTseq1+1; 

                paket_seq=[paket_seq '1s4,']; 

                timeSrst=cell2mat(temp(j,6)); 

            end 

            if ~isempty(strfind(cell2mat(temp(j,8)), '[RST, ACK]')) 

                SendRSTack=SendRSTack+1; 

            end 

            if (~isempty(strfind(cell2mat(temp(j,8)), '[RST,  

             ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1  

             ')))  

             SendRSTackSeq1=SendRSTackSeq1+1; 

             paket_seq=[paket_seq '1s5,']; 

             timeSrstack=cell2mat(temp(j,6)); 

            end 

 

            ACK1=~isempty(strfind(cell2mat(temp(j,8)),'[ACK]')); 

            ack_seq=~isempty(strfind(cell2mat(temp(j,8)),'Seq=1  

            Ack=1 ')); 

            dumack=isempty(strfind(cell2mat(temp(j,8)),'Dup '));  

            keepAliveAck=isempty(strfind(cell2mat(temp(j,8)),'[TCP  

            Keep-Alive] '));  

             

            if(ACK1 & ack_seq & dumack & keepAliveAck) 

             sACK=sACK+1; 

             TIME_sACK=[TIME_sACK num2str(cell2mat(temp(j,6))) ',']; 

             timeSack=cell2mat(temp(j,6)); 

             paket_seq=[paket_seq '1s3,']; 

            end 

            temp2(j-cpt, :) = []; 

            cpt = cpt + 1; 

            cp = cp + 1; 

        elseif strcmp(s4, s1) % receive packet 

            Res = cat(1, Res, temp(j, :)); 

            timePacket=[timePacket cell2mat(temp(j,6))]; 

            NrecivePacket=NrecivePacket+1; 

            TotalReciveByte=TotalReciveByte+cell2mat(temp(j, 7)); 
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            if ((~isempty(strfind(cell2mat(temp(j,8)), '[SYN]'))& 

           (isempty(strfind(cell2mat(temp(j,8)),'[TCP Out-Of-Order]'   

            ))))) 

             NreciveSyn=NreciveSyn+1; 

             paket_seq=[paket_seq 'r1,']; 

             TIME_rSYN=[TIME_rSYN num2str(cell2mat(temp(j,6))) ';']; 

            end 

            if ~isempty(strfind(cell2mat(temp(j,8)), '[ACK]')) 

                NreciveAck=NreciveAck+1; 

            end 

             if (~isempty(strfind(cell2mat(temp(j,8)),'[SYN, ACK]'  

              ))&& ~isempty(strfind(cell2mat(temp(j,8)),'Seq=0 ')))  

                 NreciveSynAckseq0=NreciveSynAckseq0+1; 

                 paket_seq=[paket_seq '1r2,']; 

                  timeRsynack=cell2mat(temp(j,6)); 

             end 

                               

            if ~isempty(strfind(cell2mat(temp(j,8)), '[SYN, ACK]')) 

                NreciveSynAck=NreciveSynAck+1; 

            end 

            if ~isempty(strfind(cell2mat(temp(j,8)), 'Dup')) 

                NreciveDupAck=NreciveDupAck+1; 

            end 

             if ~isempty(strfind(cell2mat(temp(j,8)), '[RST]')) 

                RecivdRST=RecivdRST+1; 

            end 

             if (~isempty(strfind(cell2mat(temp(j,8)), '[RST]'))&&  

                ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1 '))) 

                RecivdRSTseq1=RecivdRSTseq1+1; 

                paket_seq=[paket_seq '1r4,']; 

                timeRrst=cell2mat(temp(j,6)); 

             end 

            if ~isempty(strfind(cell2mat(temp(j,8)), '[RST, ACK]')) 

                RecivdRSTack=RecivdRSTack+1; 

            end 

          if (~isempty(strfind(cell2mat(temp(j,8)), '[RST, ACK]'))&&  
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           ~isempty(strfind(cell2mat(temp(j,8)), 'Seq=1 ')))  

               RecivdRSTackseq1=RecivdRSTackseq1+1; 

                paket_seq=[paket_seq '1r5,']; 

                timeRrstack=cell2mat(temp(j,6)); 

            end 

           if (~isempty(strfind(cell2mat(temp(j,8)), '[FIN,  

            ACK]'))&& ~isempty(strfind(cell2mat(temp(j,8)),'Seq=1  

            Ack=1 '))) 

                NreciveFinack=NreciveFinack+1; 

                paket_seq=[paket_seq '1r7,']; 

           end 

 

            ACK2=~isempty(strfind(cell2mat(temp(j,8)),'[ACK]')); 

            ack_seq=~isempty(strfind(cell2mat(temp(j,8)),'Seq=1  

            Ack=1 ')); 

            dumack=isempty(strfind(cell2mat(temp(j,8)),'Dup '));  

            keepAliveAck=isempty(strfind(cell2mat(temp(j,8)),'[TCP  

            Keep-Alive] '));  

            if(ACK2 & ack_seq & dumack & keepAliveAck) 

            rACK=rACK+1; 

            TIME_rACK=[TIME_rACK num2str(cell2mat(temp(j,6))) ',']; 

            paket_seq=[paket_seq '1r3,']; 

            end 

            temp2(j-cpt, :) = []; 

            cpt = cpt + 1; 

            cp = cp + 1; 

        end 

    end 

    temp = temp2; 

    if (NsendPacket>0) 

        avgLengthSendPacket= TotalSendByte/NsendPacket;  

    end 

    if(NrecivePacket>0) 

        avgLengthRecivedPacket=TotalReciveByte/NrecivePacket; 

    end 

  avgLengtPacket=(avgLengthSendPacket+avgLengthRecivedPacket)/2; 
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  if (NsendSynAckseq0==cp) 

    synackscan=NsendSynAckseq0; 

  end 

  % send connection info. 

  SendFailedConnection1 =(NsendSyn-sACK); 

SendFailedConnection2=SendRSTackSeq1+SendRSTseq1+RecivdRSTackseq1+Re

civdRSTseq1+synackscan; 

  if (SendFailedConnection1>=SendFailedConnection2) 

      SendFailedConnection=SendFailedConnection1; 

  else 

      SendFailedConnection=SendFailedConnection2; 

  end 

  % Received connection info. 

    RecivedFailedConnection1 =(NreciveSyn-rACK); 

    RecivedFailedConnection12=RecivdRSTackseq1+RecivdRSTseq1; 

        if (RecivedFailedConnection1>=RecivedFailedConnection12) 

      RecivedFailedConnection=RecivedFailedConnection1; 

  else 

      RecivedFailedConnection=RecivedFailedConnection12; 

    end 

  conection_Duration=timePacket(size(timePacket,2))-timePacket(1);  

 

if ~isempty(TIME_sSYN) 

     TIME_sSYN_vector=((TIME_sSYN))'; 

     num_TIME_sSYN_vector=size(TIME_sSYN_vector,2); 

 if (num_TIME_sSYN_vector>1) 

        for i = 2:num_TIME_sSYN_vector 

            defrent_time=defrent_time+(TIME_sSYN_vector(i)-

TIME_sSYN_vector(i-1)); 

         end 

       avg_time=defrent_time/(num_TIME_sSYN_vector-1); 

     end 

 end 

  x=[time_w,start_Con,host_A,host_B,port_A,port_B,... 

       paket_seq,... 

       TIME_sSYN,...  
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       TIME_rSYN,... 

       cp,... 

       NsendPacket,... 

       NrecivePacket,... 

       TotalSendByte,... 

       TotalReciveByte,... 

       NsendSyn,... 

       NreciveSyn,... 

       NsendAck,... 

       NreciveAck,... 

       NsendDupAck,... 

       NreciveDupAck,... 

       avgLengthSendPacket,... 

       avgLengthRecivedPacket,... 

       avgLengtPacket,... 

       SendFailedConnection,... 

       RecivedFailedConnection,... 

       sACK,... 

       rACK,... 

       NsendSynAck,... 

       NreciveSynAck,... 

       TotalSendByte+TotalReciveByte,... 

       NrecivePacket/cp,... 

    

avgLengthSendPacket/((avgLengthSendPacket+avgLengthRecivedPacket)/2)

,... 

      (NsendSyn-sACK)/NsendSyn,... 

       NsendSyn-NreciveSynAck,... 

       NsendFinAck,... 

       NreciveFinack,... 

       SendRSTack,... 

       RecivdRSTack,... 

       avg_time,... 

       NsendSynAckseq0,... 

       SendRSTseq1,... 

       SendRSTackSeq1,... 
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       NreciveSynAckseq0,... 

       RecivdRSTseq1,... 

       RecivdRSTackseq1,... 

       

SendRSTseq1+SendRSTackSeq1+RecivdRSTseq1+RecivdRSTackseq1+synackscan

,... 

      conection_Duration]; 

        CPT = cat(1, CPT, x); 

  cp = 0; 

end 

 extract_flow=CPT; 

end 

4. Host features extraction module. 

a) Input: connection features. 

b) Output: Host features. 

c) Pseudo code: 

function extract_IP = extract_host_features flow,time_w) 

temp2 = flow; 

temp = temp2; 

CPT = []; 

Res = []; 

Targets=[]; 

paket_seq=[]; 

xx=[]; 

while ~isempty(temp) 

    cpt=0; 

    cp=0; 

    Nsendflow=0; %number of send flows.   

    NsendCon=0;  %number of send connections.   

    NreciveCon=0;%number of receive connections. 

    NsendSyn=0;  %number of send SYN packets. 

    NSfailCon=0; %number of send failed connection. 

    fail_conn=0; %total number of failed connections. 

    timeSeq=[];  % packets time sequence. 

    timeSeq1=[]; %packets time sequence. 

    avg_flow_time=0; % average time flow between flow.  
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    sendConseq=0; %receiver IP address. 

    portASeq=[]; % sender ports sequence. 

    portBSeq=[]; % receiver ports sequence. 

    defrent_time=0; % time between connections. 

 %%%%%%%%%%%%%%%%% inter packet %%%%%%% 

    clinet_synAck=[]; % Number of send SYN ACK packets in a 

connection per host.   

    clinet_synRst=[]; % Number of send SYN ACK packets in a 

connection per host.   

    clinet_synRstack=[];% Number of send RST ACK packets in a 

connection per host. 

    server_synRst=[];  % Number of receive RST  packets in a 

connection per host. 

    Server_synRstack=[];% Number of receive RST ACK  packets in a 

connection per host. 

    srver_finackRst=[];% Number of receive FIN ACK  packets in a 

connection per host. 

    server_synSynack=[];% Number of receive SYN ACK  packets in a 

connection per host. 

 %%%%%%%%%%%% number send, receive and total control packet %%% 

   total_control=[];  

   send_control=[]; 

   recive_control=[]; 

  %%%%%%%%%%%%%%%%%%%%%%%% connection - duration %%%%%%%%%%%%%% 

  connections_Durations=[]; 

  Avg_connections_Duration=0; 

  %%%%%%%%%%%%%%%%%%%%%%% port - severity %%%%%%%%%%%%%%%%%%%%%% 

  portSH=0; 

  portSL=0; 

  portDH=0; 

  portDL=0; 

    host =temp(1,3); 

   for j = 1:size(temp, 1) 

      hostSend= temp(j,3); 

  if strcmp(host, hostSend)  

      Nsendflow=Nsendflow+1;% total of connections 

      if (cell2mat(temp(j,15))>0 || cell2mat(temp(j,46))>0 || 

       cell2mat(temp(j,47))>0 ) 

          timeSeq=[timeSeq num2str(cell2mat(temp(j,2))) ';' ];  
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          timeSeq1=[timeSeq1 cell2mat(temp(j,2))]; 

          end 

     sendConseq=[sendConseq cell2mat(temp(j,4)) ';' ];% destination 

IP address 

     portASeq=[portASeq, temp(j,5)];% sender ports. 

     portBSeq=[portBSeq, temp(j,6)];% destination ports. 

     NsendCon=NsendCon+cell2mat(temp(j,26)); % number send Packets 

Start Ack. 

    NreciveCon=NreciveCon+cell2mat(temp(j,27)); % number of Packets 

receive start ack. 

    NSfailCon=NSfailCon+cell2mat(temp(j,24)); % number of fail 

connection. 

   NsendSyn=NsendSyn+cell2mat(temp(j,15)); % number send packets 

start SYN.  

  fail_conn=fail_conn+cell2mat(temp(j,24)); 

   ailconnseq =[failconnseq num2str(cell2mat(temp(j,24))) ',']; 

    %%%%%%%%%%%%%%%%%%%%%%%%%%% inter packet %%%%%%%%%%%%%%%% 

   clinet_synAck=[clinet_synAck (cell2mat(temp(j,48))) ',']; 

   clinet_synRst=[clinet_synRst (cell2mat(temp(j,49))) ',']; 

   clinet_synRstack=[clinet_synRstack (cell2mat(temp(j,50))) ',']; 

   server_synRst=[server_synRst (cell2mat(temp(j,51))) ',']; 

   Server_synRstack=[Server_synRstack (cell2mat(temp(j,52))) ',']; 

   srver_finackRst=[srver_finackRst (cell2mat(temp(j,53))) ',']; 

   server_ack_rest=[server_ack_rest (cell2mat(temp(j,54))) ',']; 

   server_synSynack=[server_synSynack (cell2mat(temp(j,55))) ',']; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%Ports severity %%%%%%%%%%%%%%%% 

   if (find (cell2mat(temp(j,5))== portHseverity)) 

     portSH=portSH+1; 

   else 

     portSL=portSL+1; 

    end 

    if (find (cell2mat(temp(j,5))==  portHseverity)) 

     portDH=portDH+1; 

   else 

     portDL=portDL+1; 

    end 

   %%%%%%%%%%%%%%%%%%%%%%%% connection duration %%%%%%%%%%%%%% 
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  connections_Durations=[connections_Durations 

num2str(cell2mat(temp(j,56))) ',']; 

 %%%%%%%%%%%%%% number of sent received control packet %%%%%%%%%% 

total_control=[total_control num2str(cell2mat(temp(j,10))) ',']; 

send_control=[send_control num2str(cell2mat(temp(j,11))) ',']; 

recive_control=[recive_control num2str(cell2mat(temp(j,12))) ',']; 

          temp2(j-cpt, :) = []; 

          cpt = cpt + 1; 

          cp = cp + 1; 

  end 

 end 

 temp = temp2; 

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    Avg_clinet_synAck=mean(clinet_synAck); 

    Avg_clinet_synRst=mean(clinet_synRst); 

    Avg_clinet_synRstack=mean(clinet_synRstack); 

    Avg_server_synRst=mean(server_synRst); 

    Avg_Server_synRstack=mean(Server_synRstack); 

    Avg_srver_finackRst=mean(srver_finackRst); 

    Avg_server_ack_rest=mean(server_ack_rest); 

    server_synSynack=mean(server_synSynack); 

    Avg_connections_Duration=mean(connections_Durations); 

avg_clinet_interarival=(Avg_clinet_synAck+Avg_clinet_synRst+Avg_cl

inet_synRstack)/3; 

avg_server_interarival=(Avg_server_synRst+Avg_Server_synRstack+Avg

_srver_finackRst+Avg_server_ack_rest+server_synSynack)/5; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

   NportASeq=size(portASeq,2); % number of using port at sender 

   NdefPortA=size(unique(cell2mat(portASeq)),2);  

   NportBSeq=size(portBSeq,2); % number of using port at receiver. 

   NdefPortB=size(unique(cell2mat(portBSeq)),2);  

Nsend_Def_flow=size(unique(strread(sendConseq,'%s','delimiter',';'

)),1); % number of send different IP address. 

    rateDeffIP=Nsend_Def_flow/Nsendflow; 

%%%%%%%%%%%%%%%%%%% Avg time between connection per second %%%%%% 

  if ~isempty(timeSeq) 

      TIME_flow_vector=(timeSeq1); 
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      num_TIME_flow_vector=size(TIME_flow_vector,2); 

  if (num_TIME_flow_vector>1) 

         for i = 2:num_TIME_flow_vector 

            time=[time num2str(TIME_flow_vector(i)-

TIME_flow_vector(i-1)) ','] ; 

            defrent_time=defrent_time+(TIME_flow_vector(i)-

TIME_flow_vector(i-1)); 

          end 

        avg_flow_time=defrent_time/(num_TIME_flow_vector-1); 

  end 

  end 

  if Nsendflow>NsendSyn 

      conn=Nsendflow; 

  else 

     conn= NsendSyn; 

  end 

%%%%%%% different time between connection time- entropy %%%%%% 

if size(str2num(time),2)>1>1 

tim_EntropyResult= Entropy(fix(str2num(time)')); 

else 

tim_EntropyResult=0; 

end 

%%%%%%%%%%%%%%%%% entropy control packet number %%%%%%%%%%%%%% 

if size(str2num(total_control),2)>1 

total_control_EntropyResult= Entropy(fix((total_control)')); 

else 

 total_control_EntropyResult=0; 

end 

if size(str2num(send_control),2)>1 

send_control_EntropyResult= Entropy(fix((send_control)')); 

else 

 send_control_EntropyResult=0; 

end 

if size(str2num(recive_control),2)>1 

recive_control_EntropyResult= Entropy(fix((recive_control)')); 

else 
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 recive_control_EntropyResult=0; 

end 

    result=[time_w,host,Nsendflow,... 

    NsendCon,NreciveCon,...send and receive connections with 

ACk(1). 

   NportASeq,NportBSeq,... total number of send and receive ports. 

    NdefPortA,NdefPortB,...total number unique of send and receive 

ports. 

    Nsend_Def_flow,.... 

    NSfailCon,... 

    NsendSyn,...  

    NSfailCon/conn,... 

    sendConseq,... 

    avg_flow_time,... 

    rateDeffIP,... 

    NdefPortB/NportBSeq,... 

    NdefPortA/NportASeq,... 

    time,... 

    timeSeq,... 

    fail_conn,... 

    failconnseq,... 

    clinet_synAck,... 

    clinet_synRst,... 

    clinet_synRstack,... 

    server_synRst,... 

    Server_synRstack,... 

    srver_finackRst,... 

    server_ack_rest,... 

    server_synSynack,... 

    total_control,... 

    send_control,... 

    recive_control,...  

    connections_Durations,... 

    portSH,... 

    portSL,... 

    portDH,... 
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    portDL,... 

    portSL/(portSL+portSH),... %rate of low severity source port 

number 

   portDL/(portDL+portDH),...% rate of low severity destination 

port number 

   Avg_clinet_synAck,... 

   Avg_clinet_synRst,... 

   Avg_clinet_synRstack,... 

   Avg_server_synRst,... 

   Avg_Server_synRstack,... 

   Avg_srver_finackRst,... 

   Avg_server_ack_rest,... 

   server_synSynack,... 

   Avg_connections_Duration,... 

   total_control_EntropyResult,... 

   send_control_EntropyResult,... 

   recive_control_EntropyResult,... 

   avg_clinet_interarival,... 

   avg_server_interarival];... 

CPT=cat(1, CPT, result); % results 

 cp = 0; 

end 

  extract_IP=CPT; 

 end 
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5. Entropy algorithm model. 

a. Input: Number of control packets per connection. 

b. Output: Connection entropy value. 

c. Pseudo code: 

function Entropy = Entropy(X) 

[n m] = size(X); 

H = zeros(1,m); 

for Column = 1:m, 

    % Assemble observed alphabet 

    Alphabet = unique(X(:,Column)); 

    % Housekeeping 

    Frequency = zeros(size(Alphabet)); 

     % Calculate sample frequencies 

    for symbol = 1:length(Alphabet) 

        Frequency(symbol) = sum(X(:,Column) == Alphabet(symbol)); 

    end 

    % Calculate sample class probabilities 

    P = Frequency / sum(Frequency); 

    % Calculate entropy in bits 

    % Note: floating point underflow is never an issue since we are 

    %   dealing only with the observed alphabet 

    H(Column) = -sum(P .* log2(P)); 

 end 

Entropy=H; 

end 
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6. Reinforcement learning agent  

a) Input: Host state (neural network outcomes). 

b) Output: new updated neural network. 

c) Pseudo code: 

function check_NN_sataus() 

   if (newBotitem+newNormalitem)/a >=threshold 

      alldataset2= cat(1,alldataset,newdatasetitem); 

%%%%%%%%%%%%% evaluation cross-validation for new dataset %%%% 

result_cross_newDataset_online2=cross_valadition(alldataset2(:,19:20

)',alldataset2(:,1:16)'); 

      

result_cross_newDataset_online=cat(1,result_cross_newDataset_online,

result_cross_newDataset_online2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%train NEW neural network   %%%%%%%%%      

    net_test = patternnet([10 10 10]); 

    net_test.trainFcn = 'trainrp'; 

    net_test.trainParam.epochs=500; 

    net_test.trainParam.showWindow=false; 

    net_test.trainParam.goal=1e-10; 

   net_test.divideParam.trainRatio = 100/100; 

   net_test.divideParam.valRatio = 0/100; 

   net_test.divideParam.testRatio = 0/100; 

   net_test.trainParam.showWindow=false; 

   net_test.trainParam.showCommandLine = false; 

 [net_test,tr]= 

train(net_test,alldataset2(:,1:16)',alldataset2(:,19:20)'); 

     Y = net_test(alldataset2(:,1:16)'); 

    error=Y-alldataset2(:,19:20)'; 

result_cross_newDataset_online; 

all_result_newDataset_online2=result_evaluation(alldataset2(:,19:20)

',Y,0,0)'; 

all_result_newDataset_online = cat(1,all_result_newDataset_online, 

all_result_newDataset_online2); 

% %%%%%%%%%%%%%%% make decision for change neural network %%%%%  

if (result_cross_newDataset_online2(1,7)>0.95 &&   

    result_cross_newDataset_online2(1,11)>0.5) 

    net_last_good = net_test; 

    alldataset= cat(1,alldataset,newdatasetitem); 

    newdatasetitem=[]; %   

    newBotitem=0;%   

    newNormalitem=0;%   
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    totalNumber=0; 

    Y1 = net_last_good(olddataset(:,1:16)'); 

    all_result_oldDataset_online2=result_evaluation(olddataset 

     (:,17:18)',Y1,0,0)'; 

    all_result_oldDataset_online =    

cat(1,all_result_oldDataset_online,all_result_oldDataset_online2);%%    

 else 

    newdatasetitem=[];  

    newBotitem=0;  

    newNormalitem=0;  

    totalNumber=0;     

    net_fail_index=net_fail_index+1; 

end 

%%%%%%%%%%%%%%%% system reset when missing old dataset%%%%%%%% 

if (all_result_oldDataset_online2(1,7)<=0.90)  

  net_last_good=net_ref; 

  net_rest_index=net_rest_index+1; 

  alldataset=olddataset; 

  newdatasetitem=[]; %  reset new dataset 

  newBotitem=0;      %  reset botnet item counter  

  newNormalitem=0;%  reset normal item counter  

  totalNumber=0;  

end 

 end 

end              
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