High-frequency torsional Alfvén waves as an energy source for coronal heating

Srivastava, Abhishek, Shetye, Juie, Murawski, Krzysztof, Doyle, John, Stangalini, Marco, Scullion, Eamon, Ray, Tom, Wójcik, Dariusz and Dwivedi, Bhola (2017) High-frequency torsional Alfvén waves as an energy source for coronal heating. Scientific Reports, 7. p. 43147. ISSN 2045-2322

[img]
Preview
Text
srep43147.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (814kB) | Preview
Official URL: https://doi.org/10.1038/srep43147

Abstract

The existence of the Sun’s hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.8 Å observations reveal, for the first time, the ubiquitous presence of high frequency (~12–42 mHz) torsional motions in thin spicular-type structures in the chromosphere. We detect numerous oscillating flux tubes on 10 June 2014 between 07:17 UT to 08:08 UT in a quiet-Sun field-of-view of 60” × 60” (1” = 725 km). Stringent numerical model shows that these observations resemble torsional Alfvén waves associated with high frequency drivers which contain a huge amount of energy (~105 W m−2) in the chromosphere. Even after partial reflection from the transition region, a significant amount of energy (~103 W m−2) is transferred onto the overlying corona. We find that oscillating tubes serve as substantial sources of Alfvén wave generation that provide sufficient Poynting flux not only to heat the corona but also to originate the supersonic solar wind.

Item Type: Article
Subjects: F300 Physics
F500 Astronomy
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Becky Skoyles
Date Deposited: 31 Mar 2017 08:53
Last Modified: 01 Aug 2021 03:01
URI: http://nrl.northumbria.ac.uk/id/eprint/30289

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics