Links between bacteria derived from penguin guts and deposited guano and the surrounding soil microbiota

Yew, Wen Chyin, Pearce, David, Dunn, Michael James, Adlard, Stacey, Alias, Siti Aisyah, Samah, Azizan Abu and Convey, Peter (2018) Links between bacteria derived from penguin guts and deposited guano and the surrounding soil microbiota. Polar Biology, 41 (2). pp. 269-281. ISSN 0722-4060

[img]
Preview
Text
Manuscript 2.pdf - Accepted Version

Download (904kB) | Preview
Official URL: https://doi.org/10.1007/s00300-017-2189-x

Abstract

Penguins are an important indicator of marine ecosystem health and a major contributor of nutrients to terrestrial ecosystems in Antarctica. Their stomach microbiota is influenced by both the prey consumed and their foraging environment in the sea. As penguins feed at sea and breed on land, they might be expected to transfer microbes (e.g. prey-associated and marine bacteria) as well as nutrients from their stomachs while regurgitating food or in their guano to the surrounding terrestrial environment. However, most research attention to date has focused separately on the penguin gut microbiota (via cloacal/guano samples) and the terrestrial soil microbiota, and any relationship between them has yet to be established. Here, we analysed the bacterial communities in stomach regurgitates and cloacal swabs from the same individual birds, freshly deposited guano and rookery soils of two Pygoscelis penguins that breed sympatrically on Signy Island (South Orkney Islands, maritime Antarctic) using a high-throughput DNA sequencing method. Our data do not support the hypothesis that bacteria transferred from penguin guts and/or deposited guano make a significant contribution to the communities of the surrounding terrestrial microbial ecosystem. In both penguin species, composition of bacterial communities differed between the four sample types, with Jaccard similarities ranging between 10 and 36%. Assemblages of the dominant and co-occurring bacterial communities in rookery soils were either significantly negatively correlated or not correlated with the three other sample types. Sample-specific communities were also identified in this study, contributing around 63% of the identified diversity overall.

Item Type: Article
Additional Information: Funding information: This study was funded by the Sultan Mizan Antarctic Research Foundation (YPASM) and University of Malaya Research Grant (UMRG: RP007-2012A). Laboratory resources were provided by British Antarctic Survey (BAS) and Northumbria University. We thank University of Malaya for supporting Visiting Professors David A. Pearce (under Visiting Professor Scheme) and Peter Convey (under Academic Icon Programme) to the National Antarctic Research Centre. Wen Chyin Yew is a recipient of MyBrain scholarship (MyPhD) funded by the Ministry of Higher Education Malaysia. Peter Convey and Michael J Dunn are supported by NERC core funding to the BAS “Biodiversity, Evolution and Adaptation” and “Ecosystems” teams, respectively. This paper also contributes to the Scientific Committee on Antarctic Research “State of the Antarctic Ecosystem” research programme (AntEco).
Subjects: C500 Microbiology
C900 Others in Biological Sciences
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Ay Okpokam
Date Deposited: 22 Aug 2017 12:09
Last Modified: 18 Mar 2022 13:15
URI: http://nrl.northumbria.ac.uk/id/eprint/31635

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics