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Abstract 

The 4th generation- long term evolution (4G-LTE) mobile technology is widely 

adopted that offer both higher capacity and efficient bandwidth usage at a global level. 

However, considering that in cellular networks the major data traffic mostly occurs 

indoor, providing high quality can be a daunting task. 4G-LTE provides strong support 

for both outdoor and indoor coverage by adopting enhanced NodeB (eNB) and home 

eNB (HeNB), respectively. This research work presents (i) a single-mode filtering 

technique (SMFT) as a simple design, low cost scheme to degrade the dispersion 

behaviour of the hybrid radio over the multi-mode fibre (MMF) and free space optics 

(RoMMF-FSO); (ii) the hybrid radio-over-fibre and radio-over-FSO (RoF-FSO) 

system as a solution to extend the indoor coverage of 4G-LTE; and (iii ) the use of 

perfluorinated graded-index polymer-optical fibre (PF-GI-POF) for in-building 

networks. The results show that SMFT may increase RoMMF-FSO bandwidth by         

2 GHz and enhance the error vector magnitude (EVM) performance by 4%. The 

proposed system was also made to experience weak turbulence and thick fog for 

transmission of 67.2 Mbps 16-QAM 4G-LTE. A design for the residential gateway is 

proposed as the interface between the 1550 and 850 nm wavelengths. The 100 m of 

PF-GI-POF is adopted as in-building network with 4G-LTE being transmitted over 

the proposed hybrid radio-over-POF and FSO (RoPOF-FSO) link under the thick fog 

condition. The proposed system can transmit 4G-LTE at a data rate of up to 33.6 Mbps 

and 100.8 Mbps, with the latter encountering a power penalty of ~8 dB to compensate 

for the induced fog loss. Furthermore, the successful transmission of 60 Mbps at        

2.6 GHz was reported to have achieved the EVM of 3.5% and BER 10-5 for 300 m of 

PF-GI-POF. 
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Chapter 1                            

Introduction  

1.1 Growth and Evolution in the Field of Communications 

The rapid development of the mobile communications in recent years and the 

implications it may possibly have on the mobile operators to fulfil the increasing 

demand in terms of coverage and data services have widely been discussed. In this 

regard, a massive growth and considerable deployment of optical systems may offer 

some workable solutions to cope with the wireless traffic bottleneck [1].  

Figure 1.1 illustrates a statistical data which was measured and predicted by 

Ericsson [2]. It specifically highlights the global subscription growth for both the fixed 

and mobile broadband services from the year of 2011 till 2021. It can be seen that the 

growth rate for the mobile services is relatively more significant than to those of the 

fixed services. Notably, the total mobile subscriptions until the year of 2016 were 

about 7.4 billion, from which 63 million were new subscribers in the first quarter of 

 

Figure 1.1: The growth of both mobile and fixed broadband services [2] 
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2016. More interestingly, it is projected to reach an estimated 9 billion by the end of 

2021. The increase of the mobile broadband is due to the large bundles of data services 

that offered by the mobile operators [3].  

A direct inference which can be drawn from the discussion in the foregoing is that 

the ever increasing demand for the mobile broadband usage is one of the most 

important issues that may adversely affect the mobile communication sector. In 

reference to the above-mentioned figure, the global data traffic growth is reportedly 

up by 63% between the year of 2015 and 2016 [4] and it is predicted to increase 10 

fold by the year of 2021 [2]. A recent study reported in [3] shows that the use of smart 

phones and tablets are increased from 86% to 95% in a population of 1.27 billion 

people between the year of 2015 and 2016 in the Europe and United States. It is 

noteworthy that the recently increased smart phone subscription in addition to the 

trend of adopting the concept of the internet of things (IoT) and an aggregate increment 

of the average data volume per device may account for such a rapid increase observed 

in data traffic. In order to cope with the increasing demand for larger volume of data 

 

 

Figure 1.2: The evolution of mobile communication technologies 
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more efficiently, a number of mobile network topologies have recently been 

developed by the mobile operators as indicated in Figure 1.2. It has to be noted that 

the first generation (1G) of the international mobile communication system, which 

was established in the 1980s utilizes an analogue technology. The most established 

systems associated with the 1G were the Total Access Communication System 

(TACS) in Europe, Nordic Mobile Telephone (NMT) in the Nordic or Scandinavian 

countries, Analogue Mobile Phone System (AMPS) in the USA, and the Japanese 

Total Access Communication System (J-TACS) in both Japan and Hong Kong. It is 

worth highlighting that their standards were narrowband, mostly designed for voice 

services and they support low bandwidth, for which the peak data rate was just at       

9.6 kbps [5]. In contrast, the second generation (2G) was the next stage of wireless 

system development. Notably, it was the first digital mobile system which came to be 

known as the Global System for Mobile Communications (GSM), which provided 

data services over the mobile systems by means of enabling transmission of text 

messages, emails, and other data applications. The GSM technology was further 

developed later to support relatively higher data rate of up to 114 kbps by means of 

transmitting packet data using General Packet Radio Services (GPRS) technology. 

Subsequently, the Enhanced Data Rates for GSM Evolution (EDGE) technology that 

supports relatively faster data rates and higher throughput capacity i.e., 3 to 4 times in 

comparison with the GPRS was adopted [6, 7]. It was not the end as further 

improvement continued to be made in order to provide better services such as video 

calling, streaming, and gaming. Such services were made available by means of the 

3rd generation (3G) system which was better known as the Universal Mobile 

Telecommunication System (UMTS). This system was  developed to provide the 

subscribers with services which are of  better quality such as the ones involving data 
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and multimedia [8]. It is also worth highlighting that the 3G UMTS wideband 

networks managed to fulfil the requirements of the International Mobile 

Telecommunications-2000 (IMT-2000), which were introduced by the 3rd generation 

partnership project (3GPP) organisation in the year of 2001 [5, 9]. The roles of 3GPP 

involve to help enhancing and defining the mobile system standards from almost every 

�U�H�J�L�R�Q���R�I���W�K�H���Z�R�U�O�G���D�Q�G���W�R���S�U�R�Y�L�G�H���W�K�H���X�S�G�D�W�H�G���V�W�D�Q�G�D�U�G�V���X�V�L�Q�J���V�\�V�W�H�P���R�I���³�5�H�O�H�D�V�H�V�´����

which are delivered to the mobile network operators as a work plan [10]. Accordingly, 

the 3GPP introduces High Speed Packet Access (HSPA) based on the Wideband Code 

Division Multiple Access (WCDMA) technology to help enhance the capacity of the 

mobile systems, support the voice over internet protocol (VoIP), and achieve higher 

data rate of up to 14 Mbps, which is presently further improved to 28 Mbps in HSPA+ 

systems [6, 11]. In its 8th release, 3GPP developed the 4th generation-long term 

evolution (4G-LTE) as a framework for it to further develop the existing radio 

technologies, which may help meet the rapid increase observed in the data 

requirements [12]. The work plan within 3GPP has continued to develop LTE towards 

the culmination of the LTE-Advanced in Release 10 and beyond, which can be 

considered as a giant step in the evolution of LTE over the years. The 4G-LTE is 

supporting 69% of the total mobile data traffic in 2016 [4]. As the demand by both 

new and existing users has always been one the rise, it is more likely that the 4G 

technology and its infrastructure may have to migrate to fifth-generation (5G) mobile 

systems [13], which is designed to supply multi-gigabit broadband services such as 

ultra-high definition video [14]. The growth of the mobile communication 

technologies can be seen in the targeted peak rate, range, and cell size as presented in 

Table 1.1, in which the data were obtained from [5, 14, 15]. 
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1.1.1 LTE Concepts 

As it was highlighted in the earlier section, the 4G-LTE mobile technology is 

widely adopted by almost every mobile operator in their attempts to offer higher 

capacity and efficient bandwidth usage on a global scale [16].  

It is worth highlighting that the shift from the 3G technologies into the 4G was 

primarily due to the remarkable advancement made within the communication 

technology. It is particularly about the advancement in the mobile devices, which have 

been developed with their processor performance, power consumption, and relatively 

larger memory size. Besides, the huge bandwidth backbone based on the optical fibre 

has further led to the rapid increase of using internet services unconventionally over 

the smart phones.  In this regard, the 4G-LTE introduced a network architecture that 

included enhanced NodeB (eNB) and home eNB (HeNB) for both outdoor and indoor 

wireless applications, respectively [17]. Despite such a positive development, the 

increasing demand for the mobile broadband usage and the possible implications such 

Table 1.1: The outline of the main mobile technologies 

Technology Multiplexing Protocol  
Spectrum 

[MHz]  
Peak Data 

Rate 
Cell Radius 

[km]  

AMPS/NMT FDMA 150/450 9.6 kbps 40 

GSM TDMA 900 / 1800 9.6 kbps 35 

GPRS TDMA 900 / 1800 171.6 kbps 35 

EDGE TDMA 900 / 1800 473.6 kbps 26 

UMTS CDMA 873 / 1900 2 Mbps 2 

HSPA CDMA 2100 14.4 Mbps 1.23 

LTE 
SC-FDMA 

(UL)/OFDM (DL) 
800 /1800 / 

2600 
100 Mbps 1 km 

LTE-A 
SC-FDMA 

(UL)/OFDM (DL) 
800 /1800 / 

2600 
1 Gbps 1 km 

5G-Multi -radio 
access 

MIMO OFDM 3-90 GHz >1 Gbps <100 m 
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an increase may have on the mobile communication sector have been one of the mostly 

discussed issues. The LTE which many consider as a sophisticated technology was 

introduced into the market to meet the rapid increase observed in the number of users 

and broadband applications by providing relatively higher data rates, better coverage, 

lower latency and more importantly, maintain  the quality of service (QoS) [18].   

It has to be noted that the main objectives of the LTE technology are to, inter alia, 

enhance data throughput for both downlink (DL) and uplink (UL) scenarios in 

comparison with the previous mobile technologies. In this regard, LTE uses the 

adaptive modulation and coding scheme, in which the modulation scheme is altered 

in line with the channel condition for user equipment (UE). In addition, the LTE uses 

single carrier modulation (SCM) of the quadrature phase shift keying (QPSK), 16-

quadrature amplitude modulation and 64-QAM modulation. One of these SCM 

schemes is adopted to generate number of subcarriers. The SCM subcarriers are then 

multiplexed using orthogonal frequency division multiplexing (OFDM) and single 

carrier frequency division multiple access (SC-FDMA) as a multiple access in the DL 

and UL, respectively. At first, the LTE data rate capability was to deliver 100 Mbps 

with 2x2 multiple input multiple output (MIMO) antenna configuration, which at 

present has been increased to 300 Mbps using 4×4 MIMO. An increased demand for 

a relatively higher data rate over long distance links may account for the adoption of 

MIMO OFDM communication systems. It is noteworthy that another increase in the 

peak rate was observed in the year of 2015 up to 450 Mbps by adopting of LTE-

Advanced,  which is targeted to reach 1 Gbps transmission rate [19]. Moreover, LTE 

technology is designed to support high mobility communications such as while 

travelling in trains and cars, particularly, for the transportations moving at a speed of 

up to 350 km/h [20].  



7 
 

1.2 Problem Statement 

The targets discussed in the foregoing sections can be achieved by means of 

increasing the density of the base stations (BSs), which may in turn help enhance the 

system performance. Most of the recent BSs have been used for either the macro or 

micro cells with the cell radius of 1 km by relying on the framework of eNB. More 

specifically, eNB assigns the resources to the UE for both DL and UL. Taking a closer 

look at the smart LTE architecture, shows that the radio access network uses a single 

type of node i.e., eNB, which is designed with built-in operation of the central station 

(CS) [5]. In addition, eNB is responsible for all signal processing functions such as 

the modulation to the higher order format, and up-conversion of the carrier frequency 

and amplification [21]. Note that, such integrated functions make the design of eNB 

rather complex with costly structure [22]. Furthermore, the allocated LTE spectrum 

for the urban areas is 1.8 GHz and 2.6 GHz in contrast to the LTE spectrum for the 

rural areas i.e.,  800 MHz [22, 23]. It is also worth highlighting that there is a need to 

address the significant traffic growth by means of adopting relatively higher frequency 

bands as proposed in the next generation 5G technology, which is designed to operate 

in a spectrum of between 3 - 90 GHz [14]. Notwithstanding such potentials, the 

transmitted radio frequency (RF) signals beyond the 2 GHz will possibly experience 

high propagation losses, which will result in low penetration levels to the walls and 

buildings. According to [24], the propagation path loss for the signal at 2.6 GHz 

transmitted for 1 km in urban area is ~107 dB. Note that, such losses along with high 

multipath losses in the urban environment have reportedly resulted in providing rather 

poor indoor coverage [25], which is also worsened by the degradation in the signal-

to-noise ratio (SNR). In order to overcome high penetration loss, it is sensible to adopt 

multiple scenarios such as increasing the number of eNB or emitting more power from 
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both the eNB and UE using high power amplifiers. However, both solutions may 

reportedly have a number of drawbacks such as the high cost, complexity and its 

potential impact on the UE battery lifetime as the amplifiers may consume most of the 

battery power [25]. On the other hand, the higher modulation schemes, which are 

required for relatively higher data rates can be difficult to achieve for indoor networks 

owing to the deterioration observed in the channel conditions within eNB cell edge 

locations [26]. In [27], it was demonstrated that the indoor UE may consume an 

estimated 80% of all mobile broadband traffic. In addition, a recent estimation by [28] 

and [26] indicated that 45% of households and 30% of businesses have equally 

experienced poor indoor coverage.  

Enhancing the indoor coverage can be a real challenge for the indoor radio 

planning between the operating networks and the mobile users, for which there rises 

a need for the adoption of some special techniques such as the distributed antenna 

systems (DAS) and femtocell technology.  Historical records reveal that the DAS idea 

was founded in the 1980s and was subsequently developed by the operators to split 

the transmitted power between separated low power antenna units, which cover the 

in-building areas [26]. DAS system was proposed by using passive components such 

as the splitters and coaxial cables. However, such components were used for the GSM 

only as the 3G and beyond technologies on the other hand, use relatively higher 

frequencies, for which the signal is degraded greatly owing to the high attenuation of 

the passive components in such frequencies. The estimated loss for the 0.5-inch 

coaxial cable is about 11 dB per 100 m on frequencies beyond 2 GHz [29], for which 

the use of coaxial cable for bigger buildings is not always possible. This is because of 

the installation problems and limited positions for the antennas due to the weight and 

cable rigidity.  
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It is worth highlighting that one of the most promising candidates to overcome the 

drawbacks of the passive DAS system is the integration with the optical technology 

using radio-over-fibre (RoF) [30]. In recent years, the fibre-to-the-x (FTTx) 

technology has already widely been implemented on a global scale to provide the 

broadband services to the premises and buildings. The FTTx links may serve as the 

ideal infrastructure for the in-building network by means of implementing the RoF 

networks without having to fulfil any significant hardware requirements [31].  The 

RoF technology has notably drawn a growing interest for in-building applications 

owing to a number of advantages such as enhancing the coverage by using the low 

power DAS systems and the tremendous bandwidth of the optical fibre, which can 

handle bandwidth-hungry applications [32]. In the RoF-DAS, active components are 

used such as the master unit or residential gateway (RG), remote unit (RU) and the 

optical fibre. It has to be noted that the RG is the interface between the access and in-

building networks, in which controlling the signals and adjusting the power levels can 

be performed by means of the internal converters and amplifiers. In the RU, optical-

to-electrical conversion and vice versa is performed prior to beaming the radio signal 

by means of the antenna. The optical fibre is used for transmitting the optical signal 

between the RG and RU for relatively longer distance in comparison with the 

conventional copper cables and it is also capable of supporting multi-radio services 

simultaneously. RoF-DAS technology can be considered the optimal solution to 

extend the indoor coverage owing to factors such as providing scalable architecture, 

flexibility and easier installation [33]. 

On the other hand, the 3GPP LTE is capable of addressing the indoor coverage by 

means of the HeNB in the promising small cells technology, which was suggested in 

Release 12 [5] and Release 13 [19]. The small cells refer to the femtocells (i.e., home 
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base stations) and picocells, which are both capable of covering distances of up to      

30 m and ~100 m, respectively. They are able to do so owing to the relatively lower 

power that is transmitted from their base stations along with the effects of reflections 

and deflections from the walls and other indoor obstacles [26]. It has to be noted that 

the pico/femtocells are cellular network access points, which are proposed for the 

indoor applications to connect the standard mobile UE to the mobile operators. It can 

be done by means of either the residential broadband access such as copper cable, 

which is capable of offering a transmission of 3 Mbps and 128 kbps for DL and UL, 

respectively [34], or using optical fibres along with the wireless last-mile technologies 

[26]. The pico/femtocells are usually operated under the coverage of the larger cells 

such as microcells or macrocells and they may deploy the same licence spectrum [35].  

Despite the similarities between the DAS and small cell scenarios, particularly in 

the output power and coverage area, both technologies differ in terms of the operation 

techniques. DAS operates as point-to-multipoint solution, where all the distributed 

antennas connected to main node (i.e. RG). Additionally, DAS performs the process 

of optical to electrical conversion and converting the DL radio signal to the UE, and 

simultaneously carries the UL radio signal from the UE back to the RG. On the hand, 

small cell technology uses small indoor base stations (i.e HeNB), which have the 

ability of performing all the complicated signal processing such as the modulation, 

multiplexing and coding.  In RoF-DAS, the HeNB operates as RU to extend the indoor 

coverage with less complicated design.   

The use of RoF-DAS technology offers several advantages for both mobile users 

and operators. As for the users, this technology offers better mobile coverage in the 

indoor environments, relatively higher data transfer performance, lower transmission 

of power and an extended UE battery life. In contrast, the benefits for the operators 
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are such as the enhancement of the indoor coverage, which may help increase the 

network capacity and number of users. In addition, it also helps decrease the growth 

of the macrocell backhaul costs [36]. Furthermore, in a recently reported study [35], 

it was shown  that the use of the residential DAS in the urban areas may decrease the 

total energy consumption by 60% among the high data traffic users. Linking this with 

the LTE, it has to be noted that the femtocells include the HeNB, which operates as 

RU to extend the indoor coverage. As the femtocell are considered as the secured 

extension to the mobile services within buildings, therefore they are linked over the 

IP broadband that can be provided by the FTTx technology, which can be extended to 

the in-building RoF to help reduce the small cell architecture complexity. The process 

of wireless signal generation and modulation can be carried out within the eNB, at 

which the optical fibre is used to distribute the signals to the antenna stations [37].  

Figure 1.3 illustrates an example for such an extension by means of a typical RoF 

application of the DAS for in-building network, in which the RG and RU are used to 

 

 

Figure 1.3: Indoor coverage using RoF-DAS technology 
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enhance the indoor 4G-LTE coverage. The single-mode fibre (SMF) connects the RG 

with the eNB, upon which most of the signal processing is performed. Traditionally, 

a SMF is used for the long-haul backbone networks due to factors such as its huge 

bandwidth, low attenuation and low chromatic dispersion. It is also worth highlighting 

that the SMF offers a bandwidth of at least 25 THz, for which the transmitted signal 

may experience an attenuation and chromatic dispersion of ~0.2 dB/km and                

~17 ps/nm.km at 1550 nm optical wavelength, respectively [38, 39]. However, the 

requirements for cost-effective solutions of in-building networks are seen as part of 

the main constraints for adopting the SMF fibres. For the indoor applications, the 

multi-mode-fibre (MMF) and polymer optical fibre (POF) are commonly used for both 

the local area networks and the last mile access networks. Presently, the MMF is 

identified by their optical mode (OM) as outlined in the ISO/IEC 11801 standard [40]. 

It is considered as a fibre backbone infrastructure in the existing buildings, particularly 

the OM1 and OM2 that are capable of supporting data rate up of up to 1 Gbps or OM3 

and OM4, which on the other hand are capable of supporting data rate of up to               

10 Gbps [41]. The global MMF infrastructure, which is currently installed in-

buildings, is about 17 million km [42]. Moreover, the promising solution for such 

networks uses the POF as a channel in order to transport the wireless signals due to 

the conveniences in relation to the installation, maintenance, connectorization, and 

small bending radius [43]. The POF notably offers the potential low cost solution for 

indoor networks in terms of devices along with the possibility of sharing the existing 

ducts with the electrical cables [44]. However, it has to be borne in mind that the POF 

channels may however experience relatively higher attenuation levels for around     

100 dB/km [45], which may in turn lead to a substantial signal attenuation because of 

the reduction observed in the received power and SNR. In relation to such a scenario, 
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a practical investigation was reported in [46], which showed a transmission of          

53.3 Mbps over 200 m of POF using OFDM for the ultra-wideband (UWB) 

applications in RoF networks. 

Additionally, the multi-mode propagation phenomenon, which means the 

simultaneous excitation of various modes inside the fibre core may generate the modal 

dispersion, which may typically take place at the rate of ~10 ns/km [47]. Such a modal 

dispersion is capable of limiting the MMF or the POF bandwidth significantly owing 

to the pulse broadening that may potentially lead to the intersymbol interference (ISI). 

Consequently, the fibre capacity and bandwidth may remain limited for relatively 

shorter distance applications such as the residential building with a typical distance of 

between 100 m and 300 m [48, 49]. A serial transmission of 64 Gbps and 56 Gbps was 

reported to take place over 57 m and 157 m MMF, respectively, achieving bit error 

rate (BER) less than 10-12 using on-off keying (OOK)[50, 51]. In the study of [52], the 

same BER for a rate of 48.7 Gbps was presented for 200 m MMF by means of using 

pulse modulation scheme along with the signal processing formats for dispersion 

compensating. In this regard, several techniques have already been proposed to 

mitigate the modal dispersion using signal processing or electronic equalizer schemes 

within the receiver. Such equalizers are, inter alia, the zero forcing (ZF) or the 

minimum mean square error (MMSE) equalizer, or even nonlinear equalizers like 

decision feedback equalizer (DFE). However, such techniques are not exempt from 

major drawbacks for either. They include the inefficient performance owing to the 

significant noise enhancement, particularly to the linear schemes, or relatively higher 

complexity designs which may increase exponentially with the received data rate 

along with the channel estimation requirements [47, 53]. An electronic equalizer was 

adopted in [54] to target the data rate of 1.25 Gbps over 50 m of POF achieving BER 
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of 10-9. Moreover, a transmission of 2.1 Gbps over 100 m POF by means of using DFE 

was reported in [55]. However, it is worth highlighting that these techniques included 

additional complexities to the system in terms of the pre-channel characterization. 

Besides, in some applications, there is no guarantee that the typical equalizer methods 

such as the ZF or the MMSE equalizer are capable of compensating the effect of the 

modal dispersion totally as was reported in [56]. Therefore, several physical 

techniques have been proposed to reduce the number of propagating modes at the 

receiver such as the single-mode filtering technique (SMFT) [57], and the offset 

launch technique [58]. 

Along with the wireless RF and RoF technologies, the free space optics (FSO) has 

also equally drawn attention to provide relatively higher data rate wireless 

connectivity. The transmission of RF signals over the FSO channel, which is known 

as radio-over-�)�6�2�����5�R�)�6�2�������L�V���D�Q���D�W�W�U�D�F�W�L�Y�H���R�S�W�L�R�Q���L�Q���W�K�H���H�[�L�V�W�L�Q�J���³�O�D�V�W���P�L�O�H�´���D�F�F�H�V�V��

networks [59] along with the wireless local area networks (WLANs) [60, 61]. The 

FSO technology notably offers higher bandwidth, free license, low deployment cost, 

and immunity to the electromagnetic. However, the performance of FSO links can be 

degraded severely owing partly to the atmospheric channel conditions such as smoke, 

fog, and turbulence [53]. It is noteworthy that the combination of RoF and RoFSO 

technologies can be adopted to extend the multi wireless services for access, WLAN 

and in-building networks in rural and urban environments. The RoF technology has 

already been proposed for both networks while the RoFSO link can be deployed in 

places where there is no fibre optic infrastructure in place (i.e., mostly in rural areas). 
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1.3 Aims and Objectives 

Considering the discussion in the foregoing, the aim of the present study therefore 

is to introduce the RoF and RoFSO systems to help enhance the performance of the 

indoor 4G-LTE communication networks for the inter and intra-building networks. 

The RoF is expected to be a more suitable design to help enhance the indoor coverage 

for the 4G-LTE networks, while the RoFSO technology is adopted to extend and 

connect multi-indoor RoF links for both the rural and urban environments. The 

integration between both systems may culminate in a hybrid system of RoF and 

RoFSO (RoF-FSO). 

The objectives of this research include: 

1. The simulation of the hybrid RoF-RoFSO using 4G-LTE at 800 MHz and      

2.6 GHz for the rural and urban areas, respectively.  

2. Evaluate the system performance using the quality metrics such as the error 

vector magnitude (EVM), and BER. 

3. Propose an efficient and simple design technique to compensate the modal 

behaviour of the MMF channel in the hybrid radio over MMF and FSO 

channels (RoMMF-FSO).  

4. Experimental implementation of the proposed hybrid RoMMF-FSO system to 

verify the theoretical model along with validating the system design under real 

weather conditions such as turbulence and fog. 

5. Propose and design a practical system to transmit the 4G-LTE signal over 

longer possible POF channel for the indoor environment, which can be affected 

by limiting factors of the relatively higher attenuation and modal dispersion. 
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1.4 Original Contribution  

The original contributions to the world of knowledge from this study are 

summarised in the following: 

�x A hybrid RoMMF-FSO optical system is proposed in chapter 3, which 

includes both MMF and FSO channels as a solution to extend the 

transmission of the LTE signals. The hybrid system is intended to connect 

multi building networks in the last metre (inter-room networks) and the last 

mile of the access networks in urban areas. A system performance is 

investigated to look into the potential impact of the modal dispersion in the 

transmission system. In this regard, the SMFT filtering technique is 

adopted to enhance the hybrid system performance under a weak 

turbulence effect. In the SMFT, a simple patchcord of SMF was used in 

order to attenuate the modal effects in such hybrid systems. It is noteworthy 

that the investigation was carried out in terms of the of the total system 

transfer function, laser beam profile at the receiver and the EVM results of 

the received LTE signal. The results have been published in [C1], [C2] and 

[J1].  

�x In chapter 4, the performance of the hybrid RoMMF-FSO optical system 

is investigated under the impact of atmospheric fog in the rural areas. The 

SMFT was used to enhance the performance of the 4G-LTE signal and 

verified by means of using link budget and EVM analysis. These results 

have been published in [C3]. 
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�x A design for the RG is proposed in chapter 4 as a workable solution to 

connect indoor mobile users to the backbone core network particularly, for 

the rural environments. The proposed system employed the hybrid radio 

over POF and radio over FSO (RoPOF-FSO) in sparsely populated regions 

with low cost solutions in comparison with the existent coaxial copper 

cables. These results have been published in [C4]. 

�x As the QoS of the 4G-LTE for in-building networks degraded at a 

relatively higher frequency, a practical RoF system is therefore proposed 

in chapter 5 in order to help optimise the indoor coverage by adopting the 

low cost vertical cavity surface emitting laser (VCSEL) as a direct 

modulated (DM) laser and PF-GI-POF as an optical channel. The resulting 

output has been published in [C5]. 

The overall contribution of this research is graphically illustrated with a research 

road map as depicted in Figure 1.4. 
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Figure 1.4: Block diagram of the original contributions of the study 
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1.5 Research Outcome 

The outcomes of the research programme have either been published or peer-reviewed for 

publications in journals and conferences. They are enlisted in the following:  

Journals 

 [J1] H. K. Al-Musawi, T. Cseh, J. Bohata, W. P. Ng, Z. Ghassemlooy, S. Zvanovec, E. 

Udvary and P. Pesek, " Adaptation of mode filtering technique in 4G-LTE hybrid 

RoMMF-FSO for last-mile access netrwork," Journal of Lightwave Technology, 

vol. PP, pp. 1-1,  2017.  

Conferences 

[C1] H. K. Al-Musawi, T. Cseh, J. Bohata, P. Pesek, W. P. Ng, Z. Ghassemlooy, E. 

Udvary, T. Berceli, and S. Zvanovec, "Experimental optimization of the hybrid 

RoMMF-FSO system using mode filtering techniques," in 2016 IEEE 

International Conference on Communications Workshops (ICC), 2016, pp. 405-

410.  

[C2] H. K. Al-Musawi, T. Cseh, J. Bohata, P. Pesek, W. P. Ng, Z. Ghassemlooy, E. 

Udvary, S. Zvanovec, and M. Ijaz, "Fundamental investigation of extending 4G-

LTE signal over MMF/SMF-FSO under controlled turbulence conditions," in 2016 

International Symposium on Communication Systems, Networks and Digital 

Signal Processing (CSNDSP), 2016, pp. 1-6. 

[C3] T. Cseh, H. K. Al-Musawi, M. M. Abadi, Z. Ghassemlooy, W. P. Ng, E. Udvary, 

T. Berceli, and S. Zvanovec, "Improvements in combined radio over multimode 

fibre and radio over FSO systems by applying mode filtering," in 2015 17th 
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International Conference on Transparent Optical Networks (ICTON), 2015, pp. 

1-4.  

[C4] H. K. Al-Musawi, T. Cseh, M. M. Abadi, W. P. Ng, Z. Ghassemlooy, E. Udvary, 

and T. Berceli, "Experimental demonstration of transmitting LTE over FSO for in-

building POF networks," in 2015 17th International Conference on Transparent 

Optical Networks (ICTON), 2015, pp. 1-4.  

[C5] H. K. Al-Musawi, W. P. Ng, Z. Ghassemlooy, C. Lu, and N. Lalam, "Experimental 

analysis of EVM and BER for indoor radio-over-fibre networks using polymer 

optical fibre," in 2015 20th European Conference on Networks and Optical 

Communications- (NOC), 2015, pp. 1-6. 

 [C6] N. Lalam, W. P. Ng, X. Dai, and H. K. Al-Musawi, "Characterization of Brillouin 
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1.6 Thesis Organization 

This thesis is mainly focused on the research work dedicated to the integration 

between the RoF and RoFSO networks in terms of the indoor coverage for the 4G-LTE at 

2.6 GHz and 800 MHz. The organisation of this thesis is divided into six main chapters 

focusing on the outcomes of the research including a review of literature, original 

contributions, conclusions and the implications for future works. More specifically, 

chapter one outlines the principle introduction and provides an overview of the recent 

developments in the mobile communications including the related mobile technologies, 

particularly the 4G-LTE. In addition, the problem statement, aims and objectives, original 

contributions of this research as well as the resulting publications are provided in the same 
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chapter. Moving on, chapter two presents a detailed introduction on both RoF and RoFSO 

covering the significant parts which are required to construct a hybrid RoF-RoFSO 

network including MMF, POF and FSO channels, and as well as the main challenges in 

relation to the hybrid system performance. Also, the theoretical expressions that can be 

used to model the hybrid RoMMF-FSO and RoPOF-FSO networks are discussed too. 

Next, chapter three delineates the modal behaviour of the MMF in the Hybrid RoMMF-

FSO in the last-mile access networks. Theoretical and experimental models are presented 

including the use of the SMFT as a physical solution to mitigate the modal dispersion 

under atmospheric weak turbulence effect. This is followed by the chapter four, which is 

divided into two main sections. The first section addresses a further practical investigation 

of using the SMFT on the hybrid RoMMF-FSO but under foggy weather.  In contrast, the 

second section is dedicated to the RG design in the hybrid RoPOF-FSO. Next, chapter 

five introduces the theoretical and experimental models for the RoF, which can be used to 

help enhance the 4G-LTE indoor coverage including the use of the VCSEL along with the 

PF-GI-POF as the most suitable low cost candidates. Finally, chapter six concludes this 

study and outlines some recommendations for future works in the field to help enhance 

the indoor coverage for the next generation mobile technology, namely the 5G technology.  
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Chapter 2                                          

Fundamentals of Hybrid Radio-Over-

Fibre and Free-Space Optics 

Communication Systems 

2.1 Introduction  

In the ancient history, light was mostly used by most of the civilizations on record for 

communication purposes. Their optical signalling methods varied from mirrors, smoke 

signals, and fire beacons to convey messages to their intended audience. The underlying 

ideas of such methods were taken to another level with the invention of the first optical 

telegraph in the year of 1794 based on visible coded signals. The newly invented optical 

telegraph  served two French cities which were 200 km apart by means of relay stations 

[47]. However, the use of this method was found ineffective due to its relatively higher 

cost but lower efficiency in comparison with the electrical telegraph. It has to be noted 

that the first free space optics (FSO) channel was the Photo-phone patent, which was 

demonstrated by Alexander Graham Bell in the year of 1880 [62, 63]. In this regard, the 

main idea of the experiment was using intensity-modulated sunlight beam to transmit 

voice data over the air for 200 m. Despite such an effort, the patent did not succeed due 

to the irregular nature of sunlight along with weaknesses of the devices used. With the 

earliest use of Light Amplification by Stimulated Emission of Radiation device (LASER) 

by T. H. Maiman at the Hughes research laboratory in 1960s, the era of optical technology 

has therefore transformed [64]. The invention of the LASER has been one of the most 
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significant scientific achievements in the twentieth century. The FSO demonstrations 

which were recorded within the span of 1960s and 1970s include the first TV over FSO 

in the year of 1963 [65]. 

It is also worth highlighting that the significant contribution of both Charles K. Kao 

and George Hockham who jointly found a way to reduce the losses incurred through fibres by 

an estimated 20 dB/km for inter-office communications was another major development. It 

was suggested that a dielectric fibre which uses cladding with a relatively lower refractive 

index than the core could a potentially practical solution for the guiding of light [66]. More 

related studies looking into reducing the fibre losses incurred were carried out in the 1970s. 

Such studies began with the use of light wave systems operating at 800 nm wavelength and 

subsequently shifting to the 1310 nm by means of which, the losses were reduced to ~1 dB/km, 

in addition to the chromatic dispersion at a zero level. However, the capacity of the optical 

systems was limited only to ~100 Mbps owing to the modal dispersion in the multi-mode fibre 

(MMF) [47]. Such a limitation was overcome in the 1980s by means of single-mode fibre 

(SMF), in which the modal dispersion was eliminated. The next step was about shifting the 

optical system to operate at the 1550 nm, which was capable of keeping the fibre loss at the 

lowest i.e., as low as 0.2 dB/km and enabling longer span between the repeaters. Also, the 

appearance of an erbium-doped fibre amplifier (EDFA), which operates at the 1550 nm 

window, drew the attention of scholars for long distance optical systems. However, fibres at 

this wavelength window exhibited a chromatic dispersion of ~17 ps/(nm.km), which can be 

considered as the major linear impairment in the SMF systems [39].  

Three main infrastructures are part of traditional terrestrial telecommunication 

networks, namely the access network, the metropolitan area and the core network. By 

means of the access network, the end users are able to connect to the rest of the network 

system within the range of a few kilometres. In contrast, the metropolitan network is 
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capable of covering metropolitan areas of up to a few hundred kilometres, and it notably 

consists of both the access and in-building networks. Better still, the core network is 

capable of aggregating the traffic from multiple metropolitan networks and it may route 

the data to the backbone channel of the network for a few thousands of kilometres [67, 

68].  

With the advent of relatively higher volume of internet applications, which rely on 

data streaming, an explosive growth of data communication traffic has in turn been 

observed over the years. Such a development has culminated in a substantial increase for 

the network capacity. In addition, the bandwidth requirements in this regard may equally 

have to cope with such an increasing traffic demand, failing which may lead to the radio 

frequency (RF) spectrum congestion. It is noteworthy that the shift from the RF carrier 

�L�Q�W�R���W�K�H���R�S�W�L�F�D�O���F�D�U�U�L�H�U���F�D�Q���E�H���F�R�Q�V�L�G�H�U�H�G���D�V���D���Z�R�U�N�D�E�O�H���V�R�O�X�W�L�R�Q���G�X�H���W�R���W�K�H���O�D�W�W�H�U�¶�V���K�X�J�H��

bandwidth and a relatively lower energy consumption [69, 70]. The technology of 

transmitting information signals to the end users over the optical fibre is known as the 

radio-over- fibre (RoF). In employing 4th generation- long term evolution (4G-LTE) 

technology, there is a need for the adoption of a framework to help improve the coverage 

and capacity of both the outdoor and indoor wireless applications by using the enhanced 

NodeB (eNB) and distributed antenna system (DAS), respectively [17]. In this regard, the 

SMF has been proposed as an effective channel for the long-haul networks due to its huge 

bandwidth, low attenuation and low chromatic dispersion [71]. Notwithstanding, as the 

coverage of the eNB base stations is limited to 1 km only, expanding the wireless coverage 

for relatively longer distance can be quite challenging. Alternatively, a relay node (RN) 

was proposed in [72] as a more efficient solution for further outdoor coverage extension. 

In relation to its mechanism, the RN is located in the RF cell edge in order to link the end 

users with the eNBs by means of the SMF based network, and the RoF may deal with the 
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interface between the eNB and RN. In addition, the RoF technology can be effectively 

used for the in-building networks to help strengthen the 4G-LTE indoor signal coverage, 

which is considered relatively weaker indoors owing to low penetration levels [26]. On 

the other hand, within the terrestrial communication systems, the radio-over-free-space 

optics (RoFSO) technology can be adopted for the last mile access networks in order to 

extend the broadband connectivity to the regions, in which the fibre may not be available. 

This chapter therefore discusses the terrestrial access networks using both RoFSO and 

RoF technologies and their specifications in terms of their features, applications, system 

block diagram and challenges for each technology. Figure 2.1 depicts a scenario of using 

both technologies in both densely and sparsely populated areas. The RoF technology uses 

the SMF for the long-haul networks, while the polymer optical fibre (POF) or the MMF 

is deployed for the short distance in-building networks for connecting the residential 

gateway (RG) with the remote unit (RU). The FSO links with the line-of-sight (LOS) links 

are used to inter-connect buildings �D�V���S�D�U�W���R�I���W�K�H���³�O�D�V�W���P�L�O�H�´���F�R�Q�Q�H�F�W�L�Y�L�W�\. 
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Figure 2.1: A scenario of deployment of RoF and RoFSO in both urban and rural areas 
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2.2 An Overview of Radio-Over-Fibre  

Both fixed and mobile wireless networks in recent years have intended to deliver 

high-speed broadband services. Notwithstanding, owing partly to the insufficient 

bandwidth of the low frequency ranges, the wireless systems have been operating in 

the high microwave frequency band (usually in GHz). In the cellular systems, a 

considerable amount of attention has been turned to use small cell architectures to 

simultaneously help improve the coverage and increase the traffic capacity. Therefore, 

both the 4G and 5th generation (5G) cellular systems are now widely adopting either 

the picocell or femtocell as their framework in line with the predicted future data 

traffic. It is worth highlighting that the complexity and the cost of the BSs for such 

systems can be considered as critical parameters. The RoF technology, which many 

scholars consider as a promising technique to deliver broadband services is the main 

part of the emerging optical-wireless networks [72].  

RoF refers to the technology, by means of which light is modulated by RF signal 

and it is subsequently propagated through an optical fibre channel. In general, three 

methods are mostly applied for transmitting radio signals over fibre by means of direct 

intensity modulation (IM) i.e., baseband, intermediate frequency (IF) and RF band 

transmission [73]. In relation to baseband, data are transmitted in digital format into 

the base stations (BSs), at which the signal processing is carried out including the 

modulation of the appropriate format (i.e., quadrature phase shift keying (QPSK), 

quadrature amplitude modulation (QAM), and orthogonal frequency division 

multiplexing (OFDM)), up-conversion to the microwave carrier frequency and 

amplification prior to being radiated by means of the antenna to the user equipment 

(UE) eventually. In such a scenario, the central station (CS) may have to be equipped 
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with relatively simpler optoelectronic devices. However, it has to be noted that the 

BSs require complex equipment with signal modulation circuitry, which are 

particularly specified for high frequency mobile networks. In addition, in the event of 

any system upgrade, these equipment may require replacement, too. In the IF 

transmission, the data modulation on IF band is implemented in the CS but the other 

signal processing may still take place in the BSs. In the RF transmission in contrast, 

all complex processing is shifted from the multiple BSs to the CS. At the BS, the 

received signal has to be down-converted into the electrical domain, which is followed 

by an amplification and subsequently radiated by the antenna. In the event of the 

amplifier and antenna having been designed to operate in a broad frequency range, the 

upgraded system may not require any replacement of the devices. In such a scenario, 

the adoption of the RF transmitting the data can therefore be considered as the most 

effective solution to deal with the overall network complexity.  

Upon looking into the 4G-LTE, it can be discovered that the RoF is adopted to 

facilitate the wireless access and distribute the downlink (DL) RF signals from the 

 

Figure 2.2: The RoF systems for indoor and outdoor LTE applications 
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eNB to the RUs for both the outdoor and indoor applications, respectively. The signals 

are then transmitted to the UEs by means of wireless connectivity. Simultaneously, 

the RoF carries the uplink (UL) signals from the UEs back to the eNB, as it is 

illustrated in Figure 2.2. It is noteworthy that the SMF is mostly used to extend the 

signal coverage for longer distances, whereas the POF or MMF is adopted for the dead 

zones such as the in-building and tunnels. In the traditional telecommunication 

systems, the RF signal processing such as the carrier modulation, frequency up-

conversion and the multiplexing are carried out at the BSs and are subsequently fed 

back to the antenna. Upon looking into similar mechanisms in the RoF, it can be 

discovered that such complicated processing functions can be transferred to the eNB 

instead of the multi BSs, which help simplify the design of BSs significantly and 

therefore reduce the installation and maintance costs [74].  

As illustrated in Figure 2.3, a typical RoF is used as an interface between the CS 

and the BSs. The DL electrical data are delivered by the core network and are 

subsequently collected by the CS, at which the signal processing is performed 

including the frequency up-conversion and the electrical-to-optical conversion by 

means of modulating the laser diode (LD). The modulated optical signal is then 

transmitted through an optical fibre prior to its launch at the BS. At the BS, following 

 

Figure 2.3: Overview of RoF system 
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the process of optical into electrical conversion by means of a photodetector (PD), the 

electrical signal is eventually transmitted to the UEs through an antenna. On the 

contrary, the UL signal is the reverse process of the DL signal.  

2.2.1 RoF Applications 

In relation to the scenario of small cells, the distributed antenna system (DAS) may 

appealingly serve as a suitable source to create hotspot points, which are distributed 

throughout the small cells and linked to a centralized station [26]. It has been 

empirically proven in related studies that the RoF is the most successful technique, 

which is capable of fulfilling the requirements of small cell topology, including the 

DAS topology for both outdoor and indoor applications. The outdoor access networks 

which adopts the SMF and the indoor access networks which on the other hand uses 

the POF or MMF, are equally preferred for the short communication links [75]. It is 

worth highlighting that the deployment of optical fibre links for telecommunication 

distribution purposes was first introduced in the year of 1991 using term of microwave 

photonics [74]. The RoF networks have since then been used because of the increasing 

demand required for massive bit rate communication applications. Related previous 

works in cellular systems have introduced a multi-service operation using RoF such 

as in [74], where both global system for mobile communications (GSM) and universal 

mobile telecommunication system (UMTS) performance were evaluated theoretically 

using 50 km of SMF acting as an optical link between the centralised station and 

remote unit (RU). In [76], an analysis of the RoF system that can support both 

wideband code division multiple access (WCDMA) operating at 900 MHz and 

wireless local area network (WLAN) operating at 2.4 GHz was carried out. Another 

experimental work by [32] explored the possibility of transmitting multi-wireless 

services such as the ultra-wideband (UWB), worldwide interoperability for 
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microwave access (WiMAX) and UMTS over SMF and MMF for 50 km and 400 m 

distances, respectively. Moreover, the integration of 4G-LTE with the RoF system was 

investigated both theoretically and practically by [72], the findings of which indicated 

an error-free transmission of 2.6 GHz LTE signal with 64-QAM modulation over       

60 km SMF achieving ~6 % error vector magnitude (EVM). Additionally, in the study 

of [77], radio-over-MMF (RoMMF) based on distributed feedback laser (DFB) with 

IM was demonstrated to support the transmission of RF carrier of up to 20 GHz. 

Besides, another experimental presentation of transmission OFDM multi-standard 

signals for both UWB and WLAN was reported in [78] using low cost vertical cavity 

surface emitting laser (VCSEL) and graded-index-POF (GI-POF). In the study of [79], 

it was reported about other recent works demonstrating the transmission of 8 LTE-A 

at 64-QAM and 4-pulse amplitude modulation (PAM) achieving a throughput of      

479 Mbps and 1.4 Gbps, respectively, over 20 m of GI-POF used to fed the 5G small 

cells.  

It is noteworthy that several practical applications for the RoF systems have 

already been carried out ranging from in-building distribution such as shopping malls, 

tunnels and wireline links to military radar systems and broadcasting of cable TV 

signals using fibre-to-the-home (FTTH) systems [80]. In this regard, the RoF systems 

have already been proposed by some of the commercial investors such as Commscope 

corporation [81], Zinwave corporation [82] and TE connectivity [83]. The above-

mentioned examples for applying the RoF were in Osaka station in Japan, the 2000 

Olympic Games in Sydney, and the Bluewater shopping centre, UK respectively [73]. 

Also, several European operators such as France Telecom, Telecom Italia, and 

Telefonica adopted the POF as a link for indoor communication systems a few years 

ago [84]. 
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2.3 An Overview of Radio-Over-FSO  

Presently, the FSO technology has widely drawn the attention of scholars in the 

domain of communication. It is worth highlighting that the FSO-laser based system is 

considered as a well-established technology, in which the transmission of information 

laden optical radiation happens through the atmosphere from point to point. The first 

commercial laser link was presented in Japan by Nippon Electric Company (NEC) in 

the year of 1970 using Helium-Neon (He-Ne) laser for a distance of 14 km [65]. 

However, owing to high security purposes, the use of FSO for a few decades was 

restricted to military communication purposes only in comparison with the other RF 

links [85]. In this regard, the FSO technology in the 1970s experienced rather a slow 

penetration into the civil commercial market because of the existing RF networks were 

�D�G�H�T�X�D�W�H�� �H�Q�R�X�J�K�� �W�R�� �F�R�S�H�� �Z�L�W�K�� �W�K�H�� �X�V�H�U�V�¶�� �G�H�P�D�Q�G�V�� �D�O�R�Q�J�� �Z�L�W�K�� �D�� �O�D�F�N�� �R�I�� �D�F�F�X�U�D�W�H��

tracking and pointing optical schemes, which were required to handle the atmospheric 

effects of this technology.  

The rapid growth of the optoelectronic devices along with a number of other 

factors such as the rise of optical infrastructure, cost-effective compared to the other 

technologies, and the ease of deployment are among the reasons for the rebirth the 

FSO technology [85]. The FSO technology has recently emerged as a commercially 

applicable solution, which is considered as a complementary technology to the RF 

systems due to its capacity to meet the ever-increasing data demands within the access 

networks. It is also noteworthy that the RF technology has reached its bandwidth 

limitations owing to the spectrum congestion, interference and licence issues [86]. The 

�)�6�2���V�\�V�W�H�P���L�Q���W�K�L�V���U�H�J�D�U�G���K�D�V���D�W�W�U�D�F�W�H�G���W�K�H���D�W�W�H�Q�W�L�R�Q���R�I���P�D�Q�\���W�R���V�X�S�S�R�U�W���W�K�H���µ�O�D�V�W���P�L�O�H�¶��

access networks serving as a bridge between the local networks or between the local 

and wide networks [87].  
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2.3.1 Features of FSO Communications 

The following key features associated with the FSO technology have helped make 

it more applicable in comparison with the other existing conventional RF 

technologies, such as microwave and millimetre wave (mm-wave), as outlined in the 

following: 

�x High data rate: With the drastic increase observed in wireless data traffic, 

quite a number of independent reports have therefore warned of the potential 

RF spectrum crises looming on the horizon [88]. In such a scenario, the FSO 

technology has alternatively offered a large data bandwidth of up to 400 THz 

[89], which is capable of coping with the future broadband demand. At present, 

available commercial FSO products reportedly offer transmitting relatively 

higher data rates of up to 10 Gb/s such as the TereScope 10GE produced by 

MRV [90],whereas the experimental research have achieved transmission of 

up to 1.6 Tbit/s using just a single FSO link [91]. 

�x Unlicensed spectrum: The congestion of the RF spectrum and the 

interference between the adjacent carriers are some of the major obstacles for 

the wireless RF communication systems. Therefore, some of the relevant 

authorities, such as the federal communication commission (FCC) in the US 

and office of communication (Ofcom) in the UK, have devised stringent 

regulations to allocate the RF spectrum slices in their attempts to keep such 

interferences minimal [92]. Notwithstanding, the large fee along with the 

limited spectrum has necessitated complementary solutions such as adopting 

the optical channels. It has to be noted that the commercial FSO structures 

work within the infrared (IR) spectral range to achieve minimum signal 

absorption and scattering i.e., between 850 and 1550 nm, which are mostly 
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around the frequencies of 200 THz [85]. Furthermore, the above-mentioned 

wavelengths are reportedly used in the fibre optic communication systems. 

Therefore, the devices of industrial standards can be used for both 

technologies, particularly in the transmitter and receiver. At present, the FSO 

spectrum band is not regulated as licensing is not a requirement for frequencies 

beyond 300 GHz [93].  

�x Narrow beam size: An extremely narrow beam is known for the laser beam 

with the diffraction of limited divergence ranging between 0.01-0.1 mrad [63], 

which indicates the optical power confinement happening within the narrow 

area. Therefore, the FSO links may have an adequate spatial isolation from the 

potential interference, and consequently, the FSO systems may have the 

capacity to operate independently, allowing for unlimited degrees of frequency 

reuse applications. Furthermore, the narrow beam may also make it difficult 

for the interception of the transmitted data by the unintended users. However, 

this feature implies precise and tight alignment requirements [94].  

�x Power efficient: One of the major challenges of advancing the future 

information and communication technology (ICT) systems is the energy 

efficiency particularly, about the power consumption of the devices and 

infrastructure of indoor and outdoor networks. It is projected that the total 

power consumption of the ICT networks may increase annually by 13% due 

to the rapid growth of the communication industry [95]. Moreover, the ICT 

sector is one of targeted applications to mitigate the carbon emission due to its 

contribution of 3% of the total global energy consumption. An estimation 

study which was reported in [96] showed the carbon emission increasing at a 

5% incremental rate annually, which was caused by the expected growth of the 
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extensive mobile networks and power-hungry BSs. The use of the FSO 

technology is therefore deemed as a promising solution to resolve such power 

efficiency issues, as FSO links reportedly use rather low power schemes. 

�+�H�Q�F�H�����W�K�H���)�6�2���W�H�F�K�Q�R�O�R�J�\���L�V���F�R�Q�V�L�G�H�U�H�G���D�V���D���³�J�U�H�H�Q�´���W�H�F�Knology as it helps 

minimize energy consumption, which makes it an environment-friendly 

technology compared to the conventional RF systems [96, 97]. 

�x Cost effective: The relatively lower cost of the FSO systems is another 

advantage of this technology in comparison to other communication schemes. 

Mostly, FSO links do not require the common installation operations such as 

trenching of roads and digging up tunnels, in addition to the free licence [98]. 

Owing to the smaller size of the optical transceivers, they do not require much 

space to be installed compared to the RF antenna [99]. A related market study 

carried out by [100] revealed that the monthly cost per Mbps in the RF systems 

was about double that of the FSO based networks. 

�x Ease and fast installation: The key requirement to establish FSO link is to 

ensure LOS between the transmitters and receivers. However, the expected 

time for FSO link establishment may take up to a few hours [101]. Moreover, 

a recent survey which sampled the operators in Europe and the USA indicated 

that the FSO links were installed faster than the other communication schemes 

[102].  

�x Inherent security: Considerations for security issues in relation to data 

communications are of utmost importance. It is in order to ensure that there is 

no access for unauthorised parties to the communication link. In this regard, 

the LOS FSO technology allows relatively higher transmission security, which 

can be considered as very useful for both military and banking sectors [103]. 
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The confined FSO beam provides a significant degree of covertness, with 

inherent physical layer, which is immune to eavesdropping. The malicious 

interception is almost impossible owing to the optical beam obstruction, which 

may lead to link failure for the intended recipients. Furthermore, IR FSO links 

�P�D�\�� �M�D�P�� �W�K�H�� �U�H�V�L�V�W�D�Q�W�� �R�Z�L�Q�J�� �W�R�� �O�D�V�H�U�¶�V�� �Q�D�U�U�R�Z�� �I�R�R�W�� �S�U�L�Q�W���� �Z�K�L�F�K�� �D�J�D�L�Q�� �P�D�\��

make interception and detection very difficult [94].  

2.3.2 Area of FSO Applications 

The FSO technology has a wide range of applications, which include short and 

long distances terrestrial applications, in addition to the space applications. In recent 

years, most of the FSO applications were limited to immovable terminals (i.e. 

transmitter and receiver are fixed) with a minimum level of mobility only. There are 

two main connecting topologies: i) point-to-point links such as those used to connect 

two buildings, and ii) point-to-multipoint links such as those used on campuses and 

hospitals [104]. Typically, the FSO applications include the links of ground-to-ground, 

ground-to-aircraft, satellite-to-satellite, and satellite-to-ground stations [93].The main 

FSO applications are described in the following: 

�x Last mile access links: The adoption of the FSO technology in the last mile 

networks is motivated by the unique features associated with the FSO systems 

in addition to the rapid demand for delivering high-speed data to the end users. 

The FSO links represent an efficient solution �I�R�U�� �W�K�H�� �µ�O�D�V�W�� �P�L�O�H�¶�� �E�R�W�W�O�H�Q�H�F�N����

which helps bridge the gap between the existing fibre optic infrastructure and 

the end users. The deployment of the fibre optic technologies as a backbone 

network has in recent years been increased to address the tremendous 

bandwidth broadband requirements. Such a development indicates a shift from 
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the reliance on bandwidth bottleneck towards the last mile access network. It 

has to be noted that by means  of deployment of the FTTH, an excellent 

performance can be observed but it may require massive investments to be 

made [105]. The capacity of the wireless networks to offer high data rates (i.e., 

giga per second) still has some limitations due to a relatively lower carrier 

frequency being used, in addition to the RF broadcast nature and the available 

regulated spectrum [106]. Moreover, the lack of wired/wireless infrastructure 

especially in rural areas is observed due to lower density of population and 

number of potential users [67]. It is because of such obstacles, the FSO systems 

have been proposed as a cost-effective and high performance solution [70]. In 

addition, the FSO links can be deployed in point-to-point, point-to-multipoint, 

and ring or mesh connections. At present, most of the commercial FSO 

products which are widely available offer transmitting high data rates of up to 

2.5 or 10 Gb/s such as SONAbeam 2500-E introduced by fSONA and 

TereScope 10GE produced by MRV, respectively [90]. 

�x Hybrid RF -FSO systems: The hybrid link refers to using the FSO in 

combination with non-optical wireless technology. Some practical limitations 

associated with the RF networks and potential adverse influences from the 

weather such as fog, rain, and smoke have necessitated a hybrid scheme to 

overcome the limitations of both technologies. The integration between the RF 

and FSO systems is one of the proposed solutions to cope with the RF-FSO 

challenges and to achieve 99.9 % availability in severe atmospheric conditions 

[107].Therefore, some of the recent studies have looked into the hybrid RF-

FSO system in terms of investigating the modulation techniques [108], hybrid 
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system measurements [109], diversity schemes [110], coding techniques [111, 

112], and channel modelling [113].  

�x Long range FSO links:  An outdoor LOS FSO network providing 2.5 Gbps 

over a distance of 4.4 km was reported in [114], whereas in [115], 10 Gbps 

were transmitted over 16 channels using wavelength division multiplexing 

(WDM) up to 2.16 km link distance. The first commercial outdoor FSO system 

was introduced in the year of 2008 which delivered 10 Gbps [87]. In the same 

year, a terrestrial FSO communication system was reported experimentally in 

[116] highlighting the transmission of 8-channels with 40 Gbps per channel 

data rate (i.e., 320 Gbps as total data rate). Another study by [117] 

demonstrated a practical investigation of transmitting a digital TV based RF 

signal over a 1 km FSO link at a wavelength of 1550 nm. 

�x Cellular communications:  One of the important issues in the 4G and the next 

generation 5G cellular networks is designing a backhaul featuring both high 

capacity and cost effective, which may enable it to cope with a massive 

predicted future traffic. It is also worth highlighting that the FSO link is a 

promising candidate technology that can be deployed between the BSs and the 

mobile switching centres or to connect inter-building optical networks, 

allowing for much higher throughput in comparison with the wireline 

connections and microwave links [118]. Some recent practical investigations 

which were reported in [119-121] illustrated a successful transmission of 4G�±

LTE signals over FSO link under fog or turbulence fading effects.  

�x Redundant link and disaster recovery: Temporary FSO links are required 

for disaster and emergency situations ranging from both natural and man-made 

ones, which may potentially lead to the collapse of the local communications 
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infrastructure. The FSO links can therefore be utilised within hours due to 

lightweight, low power and easy to install [53, 118]. 

�x Back up to optical fibre link:   The FSO link can be used in the event of the 

optical fibre either linking down or unavailable. Moreover, the FSO links are 

mostly used where the optical fibres are impractical due to the physical 

obstacles [53, 85].  

In addition, a growing interest in FSO technology has been observed in both the 

military and homeland security applications owing partly to its installation processes 

which can be carried out within 24 hours or even less. It is noteworthy that a very high 

bandwidth FSO link can be deployed to connect remote non-permanent sites, difficult 

territories, border control and battlefields. Besides, an equal increase in commercial 

interest to adopt the FSO in the optical sensing applications has also been observed. 

These applications are notably favoured in the security and military applications too 

[122-124]. In the case of the present work however, the focus is on the terrestrial FSO 

applications for the last mile access networks. 

2.4 Hybrid RoF -FSO System  

The combination of RoF and RoFSO may offer an appealing option for distributing 

radio signals and connecting multi-indoor RoF networks in places where the 

underground fibre may not be available, particularly in rural and sparsely populated 

areas. It is worth highlighting that this option is even more interesting, since it requires 

no digging between two buildings and thus the cost of installation is relatively lower. 

In this regard, a theoretical study by [67] highlighted the most efficient technologies, 

which can be used to enhance the wireless last-mile access links such as adopting the 

optical fibre in addition to the FSO as complementary technologies for the RF based 
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technology. The integration between the RoF and RoFSO systems was demonstrated 

theoretically in [125] and experimentally in [117] to indicate the transmission of 

OFDM signal between two RoF links using 1 km FSO under the turbulence effect. 

Either POF or MMF is adopted for the in-building RoF technology as both types are 

equally preferable for short span communication systems. According to the prediction 

made in [126], an estimated 17 million kilometres worldwide had already been 

installed as indoor links. The POF channel on the other hand has drawn more attention 

for the indoor networks as a cost competitive channel, less brittle, durable and more 

flexible compared to the silica based optical fibres [127, 128]. In [80], a hybrid 

community antenna television (CATV) and QPSK-OFDM signals were demonstrated 

practically over a link of 60 km SMF and 25 m GI-POF. It represented the long reach 

�S�D�V�V�L�Y�H�� �R�S�W�L�F�D�O�� �Q�H�W�Z�R�U�N�� ���3�2�1���� �D�Q�G�� �H�Q�G�� �X�V�H�U�V�¶�� �S�U�Hmises network, respectively. A 

transmission of 40 Gbps over a hybrid optical links including FSO and POF is 

proposed in [129] using adaptive OFDM coding format.  
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2.4.1 System Model 

The block diagram of the hybrid RoF-FSO system as shown in Figure 2.4 has used: 

(a) direct modulation (DM) that refers to intensity modulation with direct detection 

(IM/DD) modulation technique, which is widely used for the most cost-effective 

typical systems [22, 118] and (b) external modulation (EM), which is proposed for 

high data rate applications that may require relatively lower noise levels [130]. The 

FSO link requires a LOS path, which indicates that no obstacles are found between 

the transmitter and receiver. The typical deployment of the FSO network architectures 

are point-to-point in a ring, mesh and star structure. Almost every communication 

system includes the following three parts: transmitter, channel and the receiver. For 

the hybrid RoF-FSO system proposed in the present study, the optical channel consists 

of the optical fibre in addition to the FSO channel. Further details of each part are 

introduced in the following sections. 

 

(a) 

 

(b) 

Figure 2.4: Block diagram of the Hybrid RoF-FSO communication model using 
(a) Direct modulation, and (b) External modulation 
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2.4.2 Optical Transmitter  

The transmitter side consists of a driver, light source, modulator and amplifier. A 

driver circuit is deployed to regulate the biasing current of laser and to stabilise its 

performance. It is worth highlighting that a Bias-Tee can be used to change the bipolar 

analogue signal into unipolar form.  

The input electrical signal is a passband signal based on OFDM at 800 MHz or             

2.6 GHz LTE frequency band [5]. In the base band, the signal is composed of the 

QPSK, 16-QAM or 64-QAM as a single carrier modulation (SCM) at analogue radio 

bandwidth of 5 MHz, 10 MHz, 15 MHz and 20 MHz, which are the standard values 

for the LTE technology [18]. The electrical signal converts into optical signal using 

laser diode either by means of DM as shown in Figure 2.4 (a) or the EM as shown in 

Figure 2.4 (b). In this regard, the DM is considered as a cost effective technique and 

is used widely for most of the commercial optical systems [22, 118]. In addition, the 

source electrical signal is modulated into the intensity of the optical radiation only. On 

the contrary, in the EM, both intensity and phase/frequency of the light can be 

modulated. The EM can be performed by means of Mach�±Zehnder electro-optical 

modulator (MZM). In comparison with the DM, the MZM is proposed for high-

frequency digital applications to decrease the signal distortion and noise. Moreover, 

MZM-based transmitters are preferred to operate at dense wavelength division 

multiplexing (DWDM), due to their wavelength range flexibility, which are capable 

of providing relatively higher system capacity [130]. The modulated signal is 

amplified using the EDFA in order to compensate for the link loss and simultaneously, 

ensure sufficient link power budget prior to being launched into the optical channel.  
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Many factors affect the selection of the proper light source for the high data rate 

short distance networks such as the transmission modes and the signal spectral width. 

The light emitting diode (LED) and LD are the most popular transmitters as both can 

be deployed for the optical communication systems. The LED is used commonly for 

low data and short range communications [131], whereas the LD is more widely used 

for the optical communication links as it can be used for higher data rate and longer 

transmission span for the indoor and outdoor networks [97]. There are three main laser 

types, namely fabry-perot (FP) laser, the DFB, and the VCSEL. The key properties 

for these sources include the narrow linewidth, high optical power, and transmitting 

efficient coupling light to the optical fibre [132]. Table 2.1 provides a comparison of 

basic properties (i.e., typical values) for the main light sources [45, 133]. The LED 

emits light with wide spectral width [134], and improvement power of up to 0.2 m W 

at a relatively lower cost. However, the large numerical aperture (NA) and broad 

spectral width of LED may result in transmission distortion in of the event of networks 

employing multimode fibres as a backbone [135]. The signal distortion caused by the 

intersymbol interference (ISI) and accumulated modal dispersion [136]. On the other 

hand, using multilongitudinal modes (MLM) FP laser may increase the signal 

distortion by the enlargement of chromatic dispersion effect [38]. By contrast, 

VCSELs have a narrow spectral output and a low threshold current i.e., about 1 mA, 

 

Table 2.1: Typical specification of the main light sources [45, 133] 

Specification LED FP VCSEL DFB 

Linewidth (nm) 35 30  3 < 1 

Optical power (mW) 0.2 7  10  10  

Modulation (Gbps) 0.25 1.7 1 4 
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which means that VCSELs can operate at a constant current even with inconsistent 

temperatures [45]. In addition, an acceptable bandwidth, about 10 GHz, can be 

supplied by VCSELs for the short-distance networks [45, 135]. Therefore, a VCSEL 

effectively strikes a balance between the cost and quality and therefore makes itself a 

real candidate for short distance transmission systems, such as RoF polymer based 

links  [136]. The recent trend is to employ DFB for long haul systems, as this device 

emits a single longitudinal mode with a high transmission power and a narrow 

wavelength band. As the typical operating power of the DFB laser is 10 mW [134], its 

capability in recent years has improved to deliver more than 200 mW [47, 137]. 

However, high costs may possibly limit their applications within building network, 

which is why the need for employing the DFB mainly in the long span outdoor 

applications [136].  

For the FSO networks, there are several transmission wavelength bands, which are 

designed mainly to operate within the spectral window ranges of 780-900 nm and 

1520-1600 nm. The former range is usually adopted for the major FSO applications 

because of the components being available for relatively lower cost, but it cannot be 

assured for the eye safety that it may keep the emission power at lower levels. On the 

other hand, the 1550 nm band is attractive for a number of reasons: i) compatibility 

with the 3rd window wavelength band that is adopted by the wavelength-division 

multiplexing networks and EDFA technology; ii) eye safety with approximately 50-

to-100 times more than 800 nm, which means transmitting higher power [138, 139]; 

iii) low atmospheric attenuation; iv) lower levels of the solar background radiation and 

v) lower Doppler shift. Therefore, the 1550 nm transmitted signal over the FSO may 

have more power that can overcome relatively some of the atmospheric fading effects, 

particularly the fog. However, relatively higher cost of the components, stricter 
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alignment requirements and lower detector sensitivity are the main drawbacks 

associated with the 1550 nm band. Typically, the detectors that operate at 1550 nm 

are reportedly less sensitive, relatively smaller surface area compared to the silicon 

avalanche photodiode (Si-APD) at 850 nm [138]. Finally, the transmitter optics such 

as the telescope or lens are deployed to collimate the light towards the receiver to keep 

the divergence angle smaller, which may help reduce the geometrical loss [140].  

In the present work, the author has adopted the VCSEL at 850 nm and DFB at 

1550 for both the indoor and outdoor applications, respectively. Figure 2.5 illustrates 

the internal structure of the DFB and VCSEL laser diodes. The DFB laser is a type of 

edge-emitting lasers, which operates in a dominant single mode, while suppressing 

other modes of oscillation. The optical feedback can be accomplished by an internal 

grating that exists within the active region as it can be seen in Figure 2.5 (a). The 

Bragg gratings may cause spatially periodic variations in the effective refractive index 

of the laser waveguide culminating in an effective selection of one longitudinal mode. 

In this regard, the DFB is considered as a suitable candidate for the outdoor 

communication applications such as long haul optical fibre and FSO networks owing 

to its capability to radiate single mode with high output power and narrow linewidth. 

In [141], a transmission of 10 Gbps was demonstrated for a distance of more than       

80 km SMF using the DFB at 1550 nm wavelength. 
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 Figure 2.5 (b) illustrates the typical structure of the VCSEL laser diode, in which 

the lasing is achieved vertically either at the top or bottom of the diode. The inner 

cavity consists of the amplifying layers that are fabricated on top of each other on the 

substrate. The active region sandwich consists of multiple quantum wells and is 

surrounded by highly reflectivity mirrors within the range of ~99.5 to 99.9% [142]. 

These mirrors are located at the top and bottom of the structure and they contain the 

distributed Bragg reflectors, which are made from altering material of several quarter-

wavelength thick layers with different refractive indices. It has to be noted that the 

 

(a) 

 

(b) 

Figure 2.5: Schematic layer structure of (a) DFB and (b) VCSEL laser 
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VCSEL is capable of operating in a single longitudinal mode due to its extremely short 

cavity, which is about 1 µm. The emitted light is perpendicular to the surface and in 

circular form, which may help improve the coupling efficiency into the optical fibre.  

Thereby, the use of the VCSEL in the optical communication has increased rapidly 

[47]. The first commercial VCSEL emerged in the year of 1996, which was initiated 

by Honeywell for 850 nm emissions. Subsequently, many companies started to 

produce the VCSEL in other wavelength windows, i.e., 1330 and 1550 nm [142]. It is 

also noteworthy that several techniques were developed in the last decade to control 

the transverse VCSEL modes such as the oxide-confinement technique, in which a 

layer of aluminium-oxide is used as a directional aperture to confine the optical mode. 

This type of laser is capable of replacing the DFB in multiple optical applications as 

long as the output power is efficient for the system budget. The most common 

application is the indoor optical application because of its low cost compared to the 

DFB. Moreover, VCSEL is considered suitable for the WDM applications owing to 

its capability for wavelength tuning over a wide range in addition to its capacity of 

creating VCSEL arrays [143-145].  

2.4.2.1 Laser Fundamental Concepts 

To understand the mechanism of light generation within light sources, which are 

employed in the hybrid optical communication system, it is of utmost importance to 

consider both the basic atomic concepts and the device structure. It is worth 

highlighting that laser is a device that amplifies the light, where it operates in line with 

the stimulated emission producing highly coherent radiation and highly 

monochromatic. In other words, it has a narrow linewidth and highly directional beam 

[146]. 
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The laser operation is relative to the interaction observed between the light and 

materials such as Indium Gallium Arsenide Phosphide (InGaAsP) or other ternary and 

quaternary semiconductor compounds that are used to fabricate the PN junction [47, 

135]. The PN junction is considered as a barrier between the p-type and n-type 

semiconductors. The basic mechanism responsible for the light emission is the 

recombination of the electrons and holes in PN junction, where the electrical field is 

generated owing to the potential differences observed between the two materials 

leading to create a depletion region with a width depending on the doping concentrates 

of each P and N type. It is therefore, a forward current is required to overcome such a 

barrier. This current is the threshold point at which the laser conducting begins, where 

it starts to emit light when the current is increased beyond this point. The diffusion of 

electrons and holes across the depletion region may lead to present both in the same 

region simultaneously. Thus, a recombination may begin between both the carriers, 

which in turn may generate the spontaneous and stimulated emission as a result of 

optical feedback and optical gain. The lasing process is a consequence of the positive 

optical feedback that may potentially lead to the oscillation inside the laser cavity. The 

stimulated emission can be fulfilled when the optical gain equals the loss, in addition 

to the positive optical feedback, which can be achieved by providing cleaved facets in 

the active region or by the distributed grating [135, 146].   

Despite the different laser types, the basic principle under which they operate is almost 

the same. Laser operation is a result of interaction of quanta of energy, better known as 

photons, with the material atoms. Based on the quantum theory, these atoms are 

distributed in certain discrete energy states. The process of light absorption or emission 
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may lead to make an atomic transition between these states. Figure 2.6 represents a simple 

two energy levels, in which a transition between these states involves an absorption or 

emission of a photon with energy of , where h �L�V���3�O�D�Q�N�¶�V��constant,  is 

optical frequency, E1 and E2 is the ground state energy and excited state energy, 

respectively. In the thermal equilibrium condition, the system is in the ground state, which 

means N1 > N2 [147], where N1 and N2 is the number of electrons on the ground and excited 

states, respectively. The absorption may occur when a photon incident on the material 

leading to an electron transition from E1 to E2 as shown in Figure 2.6 (a). This electron 

may return to the ground state shortly after due to the instable condition, thereby a photon 

is emitted for the process of spontaneous emission (see Figure 2.6 (b)). The photons are 

emitted in a random phase and arbitrary polarization. The spontaneous emission rate is 

explained by , where A21 is the spontaneous emission coefficient. 

Figure 2.6 (c) illustrates the process of the stimulated emission. Here, the system is 

exposed by an incident photon while an electron remains in the excited state. Thereby, the 

electron is dropped immediately to the ground state with the same phase of the incident 

photon. The stimulated emission is essentially negligible in thermal equilibrium condition 

considering that the most incident photons are absorbed. It can be achieved in the event 

 

                     (a)                                        (b)                                       (c) 

Figure 2.6: Energy state diagram: (a) Absorption, (b) Spontaneous emission, and 
(c) Stimulated emission 
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of the electron population in the excited state being greater than that of the ground state, 

i.e., N2 > N1. This condition is known as the population inversion, which can be obtained 

�E�\�� �L�Q�M�H�F�W�L�Q�J�� �W�K�H�� �H�O�H�F�W�U�R�Q�V�� �L�Q�W�R�� �W�K�H�� �G�H�Y�L�F�H�� �F�R�Q�W�D�F�W�V���� �7�K�L�V�� �S�U�R�F�H�V�V�� �L�V�� �F�D�O�O�H�G�� �³�S�X�P�S�L�Q�J�´��

technique. The total rate at which the  population decreases due to the stimulated 

emission is , where �!(v) is the energy density of the external 

applied field, B21 is the stimulated emission coefficient [148]. The negative sign may 

denote the decrease of the population at the N2 level.  

The operation of the semiconductor laser can be described in terms of the carrier 

density level. Figure 2.7 shows the growth of the carrier density N and photon density S 

against the injected biasing current Idc. Nth represents the threshold carrier density, which 

is required to start the lasing process. Ntr is the transparency carrier density i.e., the 

minimum density, for which the material starts to be transparent to the photons, i.e. 

starting optical gain go. At the condition of below transparent, i.e., N <Ntr the optical gain 

is negative, which indicates a relatively higher photon decay rate in comparison with the 

spontaneous emission photons that may deteriorate due to the effect of the cavity and 

reflectors loses.  At the , as I increases, the N equally increases as well. 

Laser gain is positive but  , where gth is the threshold gain. Hence, the photon 

rate is not large enough to balance the decay rate. At N �§��Nth, when I is increased beyond 

the threshold Ith, the optical gain begins to be more than the decay rate. The S increases 

and becomes so large due to a relatively higher recombination rate resulting from the 

stimulated emission, which in turn preventing N from increasing beyond the Nth.        
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Figure 2.7 (b) displays a linear increment of S when the injected current exceeds the 

threshold point i.e., the lasing point.  

The semiconductor laser behaviour can be defined using differential rate 

equations, which may better describe the interaction observed between the N and S in 

the active region in terms of the rate of change with time evolution. Basic form of the 

rate equations is: 

  

                  

In the present study, the DFB is used as a light source for the EM scheme, for 

which the transfer function of the MZM is required to model the optical signal. In the 

indoor application, the VCSEL diode is adopted in IM-DD scheme, which required to 

be modelled using differential rate equations. The detailed rate equations for a VCSEL 

working at 850 nm can be expressed as in the following equations [149-151]: 

 

                                (a)                                                          (b)                                        

Figure 2.7: Semiconductor laser operation in terms of: (a) Carrier density and (b) 
Photon density versus the biasing current 
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 , (2.1)    

 , (2.2) 

where �� is the internal quantum efficiency, Is is the input signal current, e is the 

electronic charge, Vact represents the volume of the active region, �2c is the carrier life 

time, go is the optical gain coefficient, �� �L�V�� �W�K�H�� �J�D�L�Q�� �V�D�W�X�U�D�W�L�R�Q�� �F�R�H�I�I�L�F�L�H�Q�W���� �+�� �L�V�� �W�K�H��

lateral confinement factor, vg is the group velocity���� �� represents the fraction of 

spontaneous emission, �2p is the photon life time. 

The output optical power Popt can be obtained by [150]: 

 , (2.3)              

where w �L�V�� �W�K�H�� �U�D�G�L�X�V�� �R�I�� �W�K�H�� �P�R�G�H�� �G�L�V�W�U�L�E�X�W�L�R�Q���� �+z is the longitudinal confinement 

factor, Ro is the reflectivity of n-type reflector. The parameter values are listed in Table 

2.2, which are adopted from [149, 150, 152].The rate equations describe the behaviour 

of the semiconductor laser and help better understand the laser optical and electrical 

performance under DM in addition to the potential limitations [135]. The current Is in 

(2.1) and (2.2) can be expressed as: 

 , (2.4)              

where Irf and �&m is the amplitude and modulation frequency for the sinusoidal 

modulation current.  

The VCSEL can be modelled by solving the equations (2.1) and (2.2). The RF carrier 

that was shown in (2.4) can be used to modulate the VCSEL directly, for which the 
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output power can be observed using (2.3). The first step for the rate equation resolution 

is to consider the case of the steady state, where in this state: 

 . (2.5)    

 . (2.6) 

As illustrated in Figure 2.7, when I<Ith the S�§������which is the initial value of the 

photons number. While N= Ni, where Ni is the initial value of the carrier number below 

the threshold level, i.e, Nth. To observe the carrier density and photon density 

development numerically, the change rate for N and S can be represented in terms of 

the boundary condition  as in the following equations: 

 , (2.7)    

 , (2.8)    

where  depends on the laser cavity distance Lcavity and can be estimated as: 

 

Table 2.2: Parameter values used in the VCSEL rate equations  

     Parameter 

Definitions 

Parameter Symbols Parameter Values 
Vact 

 

Active region volume 4.8x10-18 m3 
e Electronic charge 1.6x10-19 C 
�2c Carrier life time 5 ns 
�� Coupling efficiency 0.6 
go Optical gain coefficient 5.65x10-12 m3/s 
Ntr Transparency carrier density 3.25x1024 m-3 
�� Gain saturation coefficient  1x10-17 m-3 
�= Lateral confinement factor 1 
�=z Longitudinal confinement factor 0.07 
�� Fraction of spontaneous emission 1x10-5 
�2p Photon life time 6 ps 
�& Radius of mode distribution 3 µm 
h �3�O�D�Q�F�N�¶�V���F�R�Q�V�W�D�Q�W 6.63x10-34 

m2kg/s 
Ro Reflectivity of m-type Bragg reflector 0.997 
vg Group velocity 8.1x107 m/s 
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 . (2.9) 

2.4.3 Optical Channel 

The hybrid RoF-FSO system is proposed to enhance the 4G-LTE signal 

performance for the building networks. In this regard, the optical channel consists of 

the optical fibre and FSO channel, for which the optical fibre is used as a backbone 

cable for the inter-building structure connecting the indoor facilities. In contrast, the 

FSO channel is used as an infrastructure for the intra-building, which serve to connect 

multiple RoF links. In the following sections, both channels in addition to the 

impairments associated with them will be discussed in detail. 

2.4.4 Optical Fibre 

The RoF schemes can use the SMF, MMF or (POF) links depending on the length 

of the network and application [134]. In RoF links, a simultaneous operation of 

multiple systems can be considered as a significant advantage of the RoF technology, 

which has already been used by the SMF in many deployments [153]. The SMF is 

characterised by the high performance in terms of very low dispersion and attenuation, 

and ultra-high bandwidth-length product (BW.L), which is typically about                      

17 ps/km.nm, 0.2 dB/km, and 100 GHz. km, respectively [135]. However, the cost of 

using SMF for in-building networks may result in considerable delays in terms of 

installation, maintenance, and fibre itself, due to the relatively smaller SMF core size 

i.e., 5 µm to 10 µm [154], it requires higher precision equipment and the need for well-

trained technicians [136]. Alternatively, MMF with its large core i.e., 50 µm to         

62.5 µm [154] can be easier to install due to its low sensitivity with splicing process 

and connector misalignments [155]. In several instances, MMF according to its optical 
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mode (OM) properties have been utilized for short distance networks. The majority of 

the existing in-building fibre networks have deployed the MMF links, either OM1 and 

OM2, which may support 1 Gbps data rate or OM3 and OM4, which on the other hand 

may support 10 Gbps [41], and according to the projection made in [126], an estimated      

17 million kilometres worldwide had already been installed with indoor links. On the 

other hand, the POF has the largest core size in comparison with the other fibre types 

i.e., 100 µm to 1880 µm [135], and it can be readily installed even by unskilled 

individuals, thus do-it-yourself (DIY) installation process can be implemented with 

low cost [136]. Figure 2.8 shows a comprehensive study of using different cable types 

(i.e., copper CAT-5E, POF, SMF, and MMF) for in-building networks in terms of its 

cost and power consumption for the required devices that can be connected with such 

links [127]. 

As it can be seen from Figure 2.8(a), the installation cost of POF is relatively lower 

than the CAT-5E because of the factor of sharing the ducts with the electrical power 

cables. Moreover, the differences observed in installation cost of POF with the SMF 

and MMF, particularly in terms of easy connectorizing of POF links are quite clear. 

On the other hand, the operation cost shown in Figure 2.8(b) explains the advantages 

of POF over the silica fibres. However, the power consumption of POF solutions is 

slightly more than that of CAT-5E, because of the consumption of media converters 

[127]. Another cost analysis by [156] supported using POF as building backbone 

network, for which three topologies are presented, namely single star, double, and 

ring. A study of cost evaluation for these topologies using the SMF, MMF, and POF 

was carried out. In this regard, the findings indicated that the devices that are used 

with POF links may involve relatively lower cost than those of SMF and MMF, in 

particular, the media converters, mounted connectors, WDM filters, add/drop 
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multiplexer (ADM), in addition to the fibre cost. The POF represents the potentially 

lower cost solution for such networks in terms of  devices and the possibility of sharing 

the existing ducts with the electrical cables [44].  

In the present study, the MMF and POF are adopted as in-building networks for 

their attractive properties. However, different challenges may limit the RoF capacity, 

which are discussed in the following: 

2.4.4.1  Optical Fibre Limitations  

The optical fibre limitations are classified into linear and non-linear effects, which 

can be neglected in the POF channel owing to the short distance application for such 

 

                                                          (a)           

 

                                                                (b)                                        

Figure 2.8: Comparison of different in-building channels in terms of: (a) 
Installation cost and (b) Power consumption per room [126] 
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links in addition to the low input optical power, particularly for the POF [45]. The 

linear effects may include both the fibre attenuation and dispersion. The fibre 

attenuation effect may reduce the signal power reaching the receiver. The optical 

power of the light, which travels through the fibre may decay exponentially with 

distance L  according to [134], as stated in the following: 

 , (2.10) 

where Po is the received power, Pi is the power launched into the fibre and �.��is the 

attenuation coefficient (dB/km). 

The use of silica optical fibres (i.e., SMF and MMF) is considered more traditional 

in the optical communication system owing to the lower attenuation levels. However, 

the fibre loss is a sum of three major mechanisms, namely the intrinsic loss, bending 

and splicing losses. The intrinsic loss, which mainly consists of the absorption and 

Rayleigh scattering loss, depends on the wavelength of the transmitted optical signal. 

The silica fibres may exhibit lower intrinsic losses of about 0.3 and 0.15 dB/km in the 

wavelength regions of 1300 and 1550 nm, respectively [147]. On the other hand, the 

POF channel, which uses polymers instead of the silica material, exhibits much higher 

attenuation levels. The earlier POF type is polymethylmethacrylate (PMMA), where 

the smallest attenuation is approximately 100 dB/km at around 550 nm because of the 

strong absorption of carbon-hydrogen (C-H) bonds and Rayleigh scattering. In 

addition, there have also been some recent developments, which have led to reduce 

the fibre loss by replacing the hydrogen atoms (H) with heavier atoms like fluorine 

(F), which may create C-F bonds [157]. In [158, 159], a comparison of the different 

POF types was presented. It has been highlighted in recent studies that perfluorinated 

POF (PF-POF) represents a better choice among other POF types. In PF-POF, the low-
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loss wavelength dependent characteristics are extended to more than 1350 nm, which 

may lead to use the same laser diodes and photodiodes that are already used for the 

silica fibre. The lower level attenuation reported for the PF-POF is around 60 and       

20 dB/km at the 850 and 1300 nm regions, respectively [149]. However, these values 

are still considerably higher in comparison with the silica based fibres. The main 

causes for the POF fibre are the Rayleigh scattering, absorption, principally at the C-

H bond, and losses through geometric imperfection at the core/cladding interface [45]. 

In contrast with silica fibres, the attenuation for the guided modes of the POF is not 

identical and the attenuation level for each mode may depend on the propagation 

angle. Thus, the average attenuation for all modes may  significantly vary [157]. Other 

factors which may equally contribute to POF attenuation are, inter alia, the mode 

conversion and mode mixing at the fibre bends and the fibre links respectively, in 

addition to the unguided or leaky modes which may travel over the fibre [45, 135]. 

�$�S�D�U�W�� �I�U�R�P�� �W�K�H�� �I�L�E�U�H�� �O�R�V�V�H�V���� �W�K�H�� �G�L�V�S�H�U�V�L�R�Q�� �P�D�\�� �V�H�Y�H�U�H�O�\�� �G�H�J�U�D�G�H�� �W�K�H�� �V�\�V�W�H�P�¶�V��

performance due to the signal broadening, which may lead to the ISI. Figure 2.9 

summarizes the dispersion types that appear in the optical fibres. The dispersion 

mechanism depends either on the optical signal wavelength and/or propagation paths. 

In the multimode fibres, the pulse broadening is produced by the modal dispersion and 

chromatic dispersion including the material and profile dispersion (i.e., in the graded 

index fibres). The waveguide and polarization mode dispersion are exhibited in SMF 

only [45]. Owing to the proposed work in this thesis zooms in on using multimode 

fibres i.e., either silica or polymer based, the author therefore discusses the modal 

dispersion, which is the most dominant type that may potentially limit the available 

fibre bandwidth [136].  
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The light transmitting over step-index POF (SI-POF) is suffered massive number 

of modes, while this number reduced with the GI-POF. The number of propagated 

modes can be described using Vf  parameter [45]: 

 , (2.11) 

where ����is the wavelength of the light, a is the core radius of the fibre, NA is the 

numerical aperture, n1 and n2 describe the refractive indices at the fibre core and fibre 

cladding, respectively.  

The greater NA and a, the more modes can be seen guided through the fibre i.e., 

approximately proportional to Vf 2. The condition of single mode propagation is            

Vf  < 2.405, which may require much smaller fibre core radius or reducing the relative 

refractive index difference. Both these procedures may generate more difficulties in 

terms of fibre jointing, launching light into the fibre, and fibre fabrication process 

[135]. 

 

Figure 2.9: Dispersion mechanisms in the optical fibres  
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The most important parameters that can affect the dispersion level in the 

multimode fibres are the wavelength, refractive index profile, light lunching condition, 

�I�L�E�U�H���O�D�\�L�Q�J���F�R�Q�G�L�W�L�R�Q�����D�Q�G���W�K�H���K�R�P�R�J�H�Q�H�L�W�\���R�I���W�K�H���I�L�E�U�H�¶�V���F�K�D�U�D�F�W�H�U�L�V�W�L�F�V��[45].  

The refractive index profile has a significant effect on the propagated light 

distribution, which is important to reduce the dispersion effect in multi-mode fibres. 

If we consider circular and symmetric GI-POF, the refractive index profile can be 

defined by the power law [151] as: 

 , (2.12) 

where r is the distance from the core centre, g �L�V���W�K�H���U�H�I�U�D�F�W�L�Y�H���L�Q�G�H�[���H�[�S�R�Q�H�Q�W���D�Q�G���¨��

is the refractive index contrast that is defined as: 

 . (2.13)    

Moreover, the wavelength dependence of the refractive index is fit by a three-term 

Sellmeier dispersion relation[144]: 

 , (2.14)    

where Bi (unit-less) and Ci (nm) indicate the oscillator strength and oscillator 

wavelength, respectively. Table 2.3 shows the coefficients used for (2.14) as indicated 

in [160], which is specified for the PMMA and fluorinated (PHFIP 2-FA) polymers. 

The GI-POF fibre can be characterized by its transfer function considering the 

chromatic, which is known to be strong in the POF fibres, modal dispersion and 
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differential mode attenuation (DMA), while the mode coupling can be neglected as 

indicated in [161, 162].  

 The transfer function of the GI-POF HPOF(f) can be stated as: 

   , (2.15)    

where Hch(f) and Hmod(f) refer to the chromatic dispersion and modal dispersion, 

respectively. The transfer function in (2.15) describes two independent effects that can 

be assessed separately. The chromatic dispersion is generated since the delay time of 

each mode is considered as a function of the wavelength, which mainly depends on 

the laser linewidth as given by [163]: 

 , (2.16)    

where , f is the modulation frequency, D [ps/nm.km] is the material 

dispersion coefficient, L is the fibre length [km], �1�� is the laser linewidth [nm]. The 

chromatic dispersion coefficient is obtained by [161]: 

 . (2.17)    

The double prime indicates the second derivative of the n with respect to the 

wavelength, which can be derived from (2.14). The coefficient D of the PMMA and 

PF-POF can be estimated using (2.17), as it is shown in Figure 2.10. The value of D 

is ~ -60 and ~ -160 ps/km.nm for the PF-POF and PMMA, respectively, which are in 

agreement with the values reported in the literature and data sheets [161]. On the other 

 

Table 2.3: Sellmeier coefficients for the PMMA and PF-POF [159] 

Polymer B1 B2 B3 C1 C2 C3 

PMMA 0.4963 0.696

5 

0.322

3 

7180 1174 9237 

PHFIP 2-FA 0.42 0.046

1 

0.348

1 

5874 8785 9271 
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hand, the modal dispersion is caused by different propagation velocity of the mode 

groups and can be described as:  

 , (2.18)    

where K is the total number of the mode groups, Pk represents the input power of the 

kth mode group, �2k , and �.k are the group delay and mode dependent attenuation 

coefficient of the kth mode group, respectively, which can be determined by [161]: 

 , (2.19)    

 , (2.20)    

 , (2.21)    

where neff is the effective refractive index, �ë is the profile dispersion parameter, �.0 is 

the attenuation of the fundamental mode, Ip is the pth-order modified Bessel function, 

��w and k0 are the weighting and fitting constants, respectively. neff and �ë are given by: 

 

Figure 2.10: Material dispersion for the PMMA and PF-POF  
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 . (2.22)    

 . (2.23)    

Here the prime in  and  denotes for the first derivative with respect to the 

wavelength, which can be derived from (2.14) and (2.13), respectively.  

As it can be seen from (2.18), the POF transfer function strongly depends on the 

Pk, which is an indication of the launching condition and power distribution across the 

fibre core. In general, there are two types of launching conditions, namely the 

overfilled launch (OFL) condition and restricted mode launch (RML). In OFL, all 

modes can be excited equally, while in RML only a restricted number of modes can 

be generated, which can be obtained using a laser-fibre interface such as the mode 

filtering techniques [165]. By compensating (2.16) and (2.18) in (2.15) using the 

parameters highlighted in Table 2.4, the HPOF(f)  is simulated in Figure 2.11 for         

100 m of PF-GI-POF showing the channel frequency response, where the OFL 

condition is adopted. The fluctuations observed in the HPOF(f) reveal that POF channel 

may suffer from a dramatic degradation due to the modal behaviour through the fibre, 

 

Table 2.4: Parameter values used in the PF-GI-POF model  

     Parameter 

Definitions 

Parameter Symbols Parameter values 
neff Group refractive index in the core 1.356 
n2 Cladding refractive index 1.342 

�¨ Refractive index contrast 0.01 
NA Numerical aperture 0.19 
2a Core diameter 62.5 µm 
�� Wavelength 850 nm 

�1�� Laser linewidth 0.65 nm 
g Refractive index exponent 2 

�ë Profile dispersion parameter 0.6034 
D Chromatic dispersion parameter 60 ps/nm.km 

��w, k0 Weighting and fitting constants 12.2, 9 
K Total number of mode groups 22 
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which may limit the BW.L significantly. The simulated HPOF(f) indicates similar 

behaviour to that used in the experimental part. The experimental part will be 

explained in section 5.2.  

2.4.5 Atmospheric Channel 

�7�K�H���(�D�U�W�K�¶�V���D�W�P�R�V�S�K�H�U�H���L�V���F�R�Q�V�L�G�H�U�H�G���D�V���D���G�\�Q�D�P�L�F���H�Q�Y�L�U�R�Q�P�H�Q�W���D�Q�G���W�K�H�U�H�I�R�U�H�����L�W��

may not serve as an ideal medium for optical field propagation. It can affect the optical 

signal characteristics which may result in distortion in terms of several aspects such 

as diffraction, attenuation, turbulence-induced fluctuation in both amplitude and phase 

linearly [166]. As the channel properties are random in nature, their atmospheric 

effects can be characterized by means of the statistical approaches such as Kim theory, 

log-normal, Gamma-Gamma, and negative exponential model [53]. 

2.4.5.1 Atmospheric Channel Loss 

The light intensity in the atmospheric channel may get degraded by the attenuation 

effect, which can be because of the interaction observed between the optical beam and 

aerosol particles present within the atmosphere. At dry air, it is composed of 

 

Figure 2.11: Frequency response for 100 m of PF-GI-POF 
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permanent gases with a concentration of about 21% oxygen, 78% nitrogen, and 0.9% 

argon of total tropospheric gases. In addition to about 0.04% carbon dioxide, 4×10-6% 

ozone , the water vapour (H2O) is about 4% only, in addition to the particles of dust, 

combustion, and soil which make up 1×10-6 % [89]. Such a scenario may indicate that 

the FSO communications can be severely affected by the light absorption and 

scattering, which may have been resulted by gaseous molecules and aerosol particles 

in the atmosphere.  

The absorption process is produced when a gaseous molecule, which can lead to 

�T�X�D�Q�W�X�P�� �V�W�D�W�H�� �H�[�F�L�W�D�W�L�R�Q�� �W�R�� �D�� �K�L�J�K�H�U�� �H�Q�H�U�J�\�� �O�H�Y�H�O�� �D�Q�G�� �D�E�V�R�U�E�V�� �D�� �U�D�G�L�D�W�L�R�Q�¶�V�� �S�K�R�W�Rn. 

Hence, some photon energies can be converted into heat. Moreover, the atmospheric 

absorption is a function of wavelength and therefore it may characterize a selective 

behaviour, which may in turn lead to create preferable windows that have minimal 

absorption rate. The absorption rate is relatively smaller at the visible wavelengths, 

i.e., 400 to 700 nm, near IR at the wavelengths of 830, 940, and 1550 nm [85, 167]. 

On the contrary, the absorption may lead to eliminate the radiation propagation at 

wavelengths below 200 nm, where the absorption is dominated by the H2O molecules 

[166]. On the other hand, the collisions observed between the photons and molecules 

may result in the scattering that may lead to deteriorate the performance of FSO 

drastically in the visible and IR wavelengths. It may induce noise into the receiver in 

addition to degrading the optical beam intensity [53]. In the scattering process, the 

�S�K�R�W�R�Q�V�¶�� �H�Q�H�U�J�\�� �L�V�� �U�H�G�L�V�W�U�L�E�X�W�H�G�� �Z�L�W�K�� �D�Q�G�� �Z�L�W�K�R�X�W�� �Z�D�Y�H�O�H�Q�J�W�K�� �P�R�G�L�I�L�F�D�W�L�R�Q���� �7�K�H��

scattering phenomenon is affected by the size of particles with respect to the 

transmission wavelength. The scattering is specified into several regimes such as 

Rayleigh and Mie regimes. Rayleigh scattering is notably caused by the interaction 

observed between the propagated light with the atmospheric molecules that are smaller 
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in size compared to the radiation wavelength. It is applicable for the clear atmosphere 

and its dominant only at the wavelengths which are shorter than 1500 nm , owing 

�S�D�U�W�O�\�� �W�R�� �W�K�H�� �V�F�D�W�W�H�U�L�Q�J�� �F�R�H�I�I�L�F�L�H�Q�W�� �E�H�L�Q�J�� �S�U�R�S�R�U�W�L�R�Q�D�O�� �W�R�� ������4, as indicated in the 

Rayleigh law [166]. Mie scattering may occur when the size of particles that scatter 

light is similar in scale to the wavelength. Hence, haze, aerosol, and fog molecules are 

the contributors to the Mie scattering. In particular, the latter effect is the major source 

of such type of scattering resulting in extreme loss of the light intensity [89]. 

The atmospheric loss can be considered as a time invariant parameter over multiple 

fading effects of the atmospheric channel and may have resulted from the combined 

deterministic factors of absorption and scattering. Therefore, for a terrestrial FSO 

network, transmitting an optical beam over the free space link distance di, the path loss 

component hl can be defined using the exponential Beer-�/�D�P�E�H�U�W�¶�V���O�D�Z���D�V���>�����@�� 

 , (2.24) 

where ��l denotes for the atmospheric attenuation coefficient i.e., wavelength and 

weather dependent parameter. Typical values of ��l are 0.43, 4.3 and 43 dB/km for 

clear, haze and fog weather, respectively [86]. 

2.4.5.2 Fog and Visibility  

In terrestrial FSO, fog is among the atmospheric components that can potentially 

�O�L�P�L�W���W�K�H���O�L�Q�N�¶�V���O�H�Q�J�W�K�����7�K�H���O�D�U�J�H�V�W���L�P�S�D�F�W���R�Q���W�K�H���)�6�2���S�H�U�I�R�U�P�D�Q�F�H���L�V���G�X�H���W�R���W�K�H���V�L�]�H��

of fog droplets that may vary between 0.5 µm to 2 µm, which are in the same order of 

the typical FSO wavelengths where the Mie scattering may become dominant [167]. 

The loss in the receiver signal due to the fog effect is mainly because of the scattering 

rather than the absorption, particularly in the IR range [89]. The visibility-weather 
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conditions such as fog may cause significant attenuation of the transmitted laser beam, 

which applies degradation in the channel range and availability. For example, dense 

fog may cause a severe intensity deterioration in the propagated signal owing to 

relatively higher attenuation on the order of hundreds of decibels per kilometre [168]. 

Practical measurements reported in [168] compared between two fog events: one was 

in Graz, Austria with continental (i.e., moderate) fog condition, and the second was in 

La Turbie,  France with advection (i.e., dense) fog. The results indicated that the fog 

attenuation was 130 dB/km and 480 dB/km, respectively, which may cause significant 

restriction in relation to the availability of the FSO [109]. �$�F�F�R�U�G�L�Q�J���W�R���.�L�P�¶�V���P�R�G�H�O����

the fog attenuation is characterised based on the chan�Q�H�O�¶�V�� �Y�L�V�L�E�L�O�L�W�\��V, which is 

defined as the distance where the optical beam power may drop to a fraction of 5% or 

2% of its original power [168]. As reported in [168], the attenuation for the FSO 

visibility below 100 m can reach up to 170 dB/km under the dense fog condition. Table 

2.5 shows an empirical data for the attenuation ��l based on the link visibility [104]. 

2.4.5.3 Beam Divergence  

One of the reasons to adopt the laser sources in the FSO networks is their capacity 

to transmit narrow optical beam, but due to the diffraction phenomenon, the travelling 

optical beam may experience spreading, which in turn may reduce the received optical 

 

Table 2.5: Attenuation coefficients based on link visibility [104] 

�)�R�J�¶�V���W�\�S�H Visibility V (m) Attenuation ��l (dB/km) 

Dense 40-70 143-250 

Thick 70-200 40-143 

Moderate 250-500 20-40 

Light 500-1000 9-20 
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energy. The beam spreading that is caused by pure diffraction is related to the 

wavelength, size of emitting aperture, and shape of the wavefront, which can be 

assumed as a uniform plane wave. Therefore, part of transmitted beam may not be 

captured by the receiver, a loss which is known as geometric loss. It can however be 

increased with the FSO distance unless the size of the receiver is increased or receiver 

diversity technique is used [70]. Figure 2.12 demonstrates a typical FSO channel. The 

optical beam is transmitted from a LD with �� angle, and then launched to free space 

distance with di distance using optical lenses, which are positioned at the focal length 

Lfocal to collimate and focusing the incoming optical beam into the PD. However, the 

optical beam is observed to spread constantly with the increase of di at a rate 

determined by the divergence angle ��B. Hence, the beam diameter (i.e., spot size) 2W 

at the receiver can be defined by: 

 . (2.25) 

Note that the ��B is a function of transmitted beam waist radius (WB) and it can be 

estimated by[166]: 

 

Figure 2.12: Typical atmospheric channel 
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  . (2.26) 

A theoretical model was proposed in [169] showing that the ���» and WB can be 

tuned to increase the average capacity for a given transmitted power. As the beam 

spreads through the FSO channel, geometric spreading loss (Ageo) is generated 

depending primarily on the divergence angle, receiver aperture and the free-space link 

and it can be defined by [140]: 

 , (2.27) 

where dtx and drx are the transmitter and receiver aperture diameter, respectively.  

2.4.5.4 Atmospheric Turbulence 

In the FSO channel with no fog, the atmospheric attenuation that is related to the 

visibility can be neglected [118]. However, the temperature inhomogeneity may cause 

a turbulence effect, which is associated with the variations in the refractive index of 

the FSO path. The channel fading because of the turbulence is known as scintillation, 

which refers to the random fluctuations in the amplitude and the phase of the received 

irradiance. Consequen�W�O�\���� �X�Q�V�W�D�E�O�H�� �D�L�U�� �P�D�V�V�H�V�� �F�D�O�O�H�G�� �D�V�� �³�H�G�G�L�H�V�´�� �D�U�H�� �F�U�H�D�W�H�G�� �Z�L�W�K��

different sizes leading to deviations and fluctuations observed in the optical beam in 

comparison with its original state. Hence, a significant degradation in the FSO 

performance can be observed, especially in the long distance free-space propagation 

paths [118]. Numerous theoretical and practical investigations have demonstrated the 

effects of scintillation in relation to the FSO communication systems and have 

developed a variety of models to categorize its behaviour [139, 166, 168, 170]. 

�'�H�S�H�Q�G�L�Q�J���R�Q���W�K�H���V�F�L�Q�W�L�O�O�D�W�L�R�Q�¶�V���V�W�U�H�Q�J�W�K�����W�K�H���D�W�P�R�V�S�K�H�U�L�F���W�X�U�E�X�O�H�Q�F�H���L�V���F�O�D�V�V�L�I�L�H�G���D�V��
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weak, moderate, strong and saturated [53]. In [166], a comprehensive study of 

turbulence models was presented to address the terrestrial FSO systems. In addition to 

the temperature, some other recent studies have also shown that the wind velocity, 

medium pressure and the altitude may affect the turbulence strength. The refractive 

index structure parameter �&�Q
�� [m-2/3] is commonly adopted to describe the optical 

characteristics of the medium, which may depend on the altitude weather condition. 

Several theoretical and practical models were presented in [139, 171] to predict the �&�Q
�� 

for different weather conditions. The obtained results have shown that the scintillation, 

i.e., turbulence is strongly dependent on the wind velocity, pressure, altitude, relative 

humidity and aerosols size for both daytime and night-time conditions. 

One of the most useful parameters is the scintillation index �1��
��, which can be used 

to quantify the irradiance fluctuations effect and to characterize the strength of the 

optical turbulence. It is usually adopted to define the probability distribution function 

(PDF) of the irradiance fluctuations owing to the scintillation, as given by: 

 ,  (2.28) 

where Iop denotes the received optical intensity and �Ã�®�Ä refers to the ensemble average. 

In order to fully characterize the turbulence-induced scintillation fading effect, 

several statistical models were developed both theoretically and practically in order to 

predict and deduce the stochastic nature of the irradiance fluctuations under different 

atmospheric conditions. The random behaviour of the turbulent medium can be 

expressed as probabilistic terms rather than deterministic [139]. Therefore, the optical 

beam fluctuations resulting from the scintillation can be represented in terms of the 
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PDF [170].The most common models are the log-normal and Gamma-Gamma 

distribution models, which are widely used to describe the PDF under weak and weak 

to strong turbulence regimes, respectively [172]. Several schemes have been 

introduced to mitigate the optical turbulence effect such as the aperture averaging 

[173] and spatial diversity using multiple input multiple output (MIMO) systems 

[174]. More details about the atmospheric turbulence mathematical model are 

discussed in chapter 3 of this thesis. 

2.4.6 Optical Receiver 

In RoF-RoFSO system, the optical receiver is used to recover the electrical 

transmitted signal from the incident light. It has to be noted that it is composed of 

receiver optics, p-i-n (PIN) PD, trans-impedance amplifier (TIA), and the signal 

analyser. For the FSO part, the receiver telescope or lens focuses on the received 

optical beam towards the PD, which converts the optical energy into electrical energy 

prior to being amplified by the TIA. The signal analyser captures the amplified signal 

for off-line signal processing, equalization, demodulation and link performance 

assessment. The aperture of the telescope is usually large to help enable it collect as 

much of the uncorrelated propagation fields as possible, which is called as the aperture 

averaging technique. However,  the background ambient light can be captured as well 

with a wide aperture area that may equally introduce additional noise at the receiver 

[53]. Hence, an optical band pass filter may need to be adopted to decrease the impact 

of the background noise.  

There are two main detection schemes, namely IM-DD and coherent detection. 

The IM-DD is widely adopted in the optical communication systems because of its 

simplicity and cost-effective detection scheme, whereas the light intensity is used to 
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deliver the information data without considering the phase of the optical carrier. 

However, its performance is limited by the noise generated in the receiver amplifier 

and PD, which may degrade the receiver sensitivity [134].  

On the other hand, the coherent detection pays attention to the light intensity, phase 

and the frequency. This technique adopts an optical local oscillator in the receiver, 

where its output combines with the received signal prior to being detected by the PD. 

It is worth highlighting that the use of coherent detection may enhance the spectral 

and signal-to-noise ratio (SNR) efficiency, and it has been examined as a method to 

extend the transmission span for long-haul networks before introducing EDFA as an 

effective device to increase the link span dramatically. Recently, it drew more 

attention for the higher data rate optical systems. In [175] and [176], an optimization 

for the coherent OFDM system was carried out. Additionally, an experimental 

transmission of the OFDM along 80 km SMF was reported in [177]. Nguyen et al 

[178] demonstrated theoretically a nonlinear equalizer in the coherent OFDM system 

for transmitting 40 Gbps over 400 km SMF link. However, the coherent detection 

involved relatively higher cost and architecture that is more complex. Hence, the IM-

DD scheme is adopted in most of the RoF and RoFSO systems. In this study, as the 

RoF is adopted in the 4G-LTE architecture, there are some potential advantages of 

shifting the system complexity and signal processing to the CS rather than the multiple 

BSs. The use of coherent detection may increase the design complexity for the BS 

significantly, which is found contradicting to the main purpose of using RoF topology 

for the 4G-LTE systems. Consequently, the IM-DD is deployed in this thesis. The IM-

DD scheme is introduced theoretically and practically for the RoF in the 4G-LTE in 

[22, 72] 
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2.5 Eye Safety and Standards 

Theoretically, high power optical beams may suppress some of the transmission 

limitations though compensating the high channel attenuation may lead to meeting the 

required data rate, achieve high SNR and improve the transmission path further [139]. 

However, the design of FSO system is always governed by the peak power constraints, 

which is related to the eye and skin safety standards that impose restrictions on the 

peak of the propagated optical power [118]. A number of international standards 

bodies provide guidelines on the safety of optical radiations, such as the European 

committee for electrotechnical standardization (CENELEC), American national 

standards institute (ANSI) and the international electrotechnical commission (IEC), in 

which the latter standard is widely adopted in FSO design regulations [139]. These 

standards classify the exposure limits of the laser sources. In general, the lasers are 

classified into four categories, namely Class 1 to Class 4. Class 1 represents the lower 

power while Class 4 being the most powerful laser group. Table 2.6 presents the 

accessible emission limits (AEL) for the wavelengths of 850 nm and 1550 nm, which 

are the widely adopted wavelengths in the FSO links [53].  

 

Table 2.6: Accessible emission limits for 850 nm and 1550 nm wavelengths 
[53] 

Type 

Average optical power (mw) 

�� = 850 nm �� = 1550 nm 

Class 1 �’  0.22 �’  10 

Class 2 
This category reserved for the range between 400-

700 nm, same AEL for Class 1. 

Class 3R 0.22 - 2.2 10 - 50 

Class 3B 2.2 - 500 50 - 500 

Class 4 �“ 500 �“ 500 
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As presented in Table 2.6, the Class 1 lasers that operate at 1550 nm wavelength 

are able to generate about 50 times more optical power in comparison with the           

850 nm wavelength due to the fact that the light wavelengths beyond 1400 nm tend to 

be absorbed by the eye cornea, prior to be concentrated and focused on the retina[139]. 

Accordingly, longer FSO span and higher data rate can be supported. Nevertheless, it 

is noteworthy that the laser output power defines the laser classification and there is 

no inherent or eye safe wavelength.   

2.6 Summary 

In this chapter, the principles of both the RoF and RoFSO technologies are 

discussed, following which related studies of these two constructs are reviewed. The 

fundamental features of the RoF and RoFSO systems are presented in detail in addition 

to the applications of both technologies including the short and long range networks. 

The combination of hybrid RoF and RoFSO is presented as an appealing option for 

distributing radio signals and connecting multi-indoor RoF networks in places where 

the underground fibre may not be available. The basic hybrid RoF-FSO block diagram 

is presented to show the main system concepts, including the transmitter, channel and 

the optical receiver. On the other hand, the main challenges that may potentially affect 

the system performance are introduced. The MMF and POF impairments are 

explained in detail with the analytic model that can be used to simulate the channel in 

terms of the channel transfer function. The impact of the FSO channel is highlighted 

including the contribution of the atmospheric attenuation, turbulence and fog. The fog 

effect and the visibility range are discussed for different fog types. A background of 

the atmospheric turbulence is discussed with the aim of characterizing the turbulence 

effect. These effects are presented in a basic theoretical model and will be taken up 
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for discussion at length in the following chapters. Moreover, since the RoMMF-FSO 

system is presented in this thesis, the modal dispersion of the MMF represents the 

main challenge that may limit the system performance. Therefore, a mode filtering 

technique will be presented to mitigate the modal effects in the following chapter.  
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Chapter 3                                                                                            

Modal effects Mitigation of a novel 

Hybrid RoMMF/FSO system under 

turbulence effect 

3.1 Introduction  

In chapter 2, the overview of the hybrid radio over multi-mode fibre and free space 

optics (RoMMF-FSO) was introduced for transmitting the 4th generation-long term 

evolution (4G-LTE), where the main challenges were discussed in detail.  

The integration of optical and radio frequency (RF) systems represents one of the 

most attractive solutions to deal with the growing traffic demands. The radio-over-

fibre (RoF) technology has the ability to improve the coverage by means of adopting 

enhanced NodeB (eNB) and remote unit (RU) that deployed in the distributed antenna 

system (DAS) for the access and in-building networks. Traditionally, single-mode 

fibre (SMF) is employed for long distance applications owing to its low attenuation, 

whereas, the MMF is widely used for short distance applications [126]. In [179], the 

coverage of eNB was extended up to 2.1 km by means of using the RoF technology 

based on SMF. Commercial LTE-RoF solutions were demonstrated by CommScope 

for in-building applications by employing distributed antenna system to overcome the 

high RF signal penetration losses [180]. An experimental demonstration of 

transmitting LTE over 525 m MMF was reported in [41] at wavelength of 1310 nm 

with a ~3% error vector magnitude (EVM). At present, MMFs, identified by their 
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optical mode (OM), have different modal bandwidth as outlined in the ISO/IEC 11801 

standard [181] and are considered for use as fibre backbone infrastructure in existing 

buildings. The types of MMF are defined by overfilled launch (OFL) bandwidth, 

which refers to a launching technique that employs a light source with a spot size 

larger than the fibre core diameter. The typical OFL bandwidth length products 

(BW.L) of OM1, OM2, OM3, and OM4 at 850 nm are 200, 500, 1500, and                

�����������0�+�]�Â�N�P�����U�H�V�S�H�F�W�L�Y�H�O�\��[181]. A survey in [126] highlighted that ~17 million km 

of MMF are employed in in-building networks worldwide. Nonetheless, the modal 

dispersion in such fibres may induce the pulse broadening that limits the available 

bandwidth severely [126]. Correspondingly, several techniques were proposed in 

order to mitigate the impact of the number of co-propagating modal groups at the 

receiver, including the single-mode filtering technique (SMFT) [57] and the offset 

launch technique [58]. 

Apart from RoF, there is another complementary technology of FSO, which can 

�E�H���H�P�S�O�R�\�H�G���L�Q���W�K�H���³�O�D�V�W���P�L�O�H�´���R�I���W�K�H���D�F�F�H�V�V���Q�H�W�Z�R�U�N�V���L�Q���X�U�E�D�Q���U�X�U�D�O���D�U�H�D�V���W�R���G�H�O�L�Y�H�U��

RF type signals. This particular technology is referred to as radio-over-FSO (RoFSO), 

which offers high bandwidth, immunity to the electromagnetic interference and free 

license fees in comparison to RF wireless communications. It is noteworthy that the 

link performance of FSO systems are affected by atmospheric channel conditions such 

as atmospheric absorption, scattering and scintillation, which affect the transmission 

quality, as well as the link availability [166, 172]. Scintillation is a random 

phenomenon initiated by small temperature variations along the optical path, i.e., 

optical turbulence, which in turn, resulted in the refractive index and irradiance 

fluctuations [170]. In [118], several schemes were introduced to combat turbulence 

induced fading effects. Apart from that, the impact of turbulence on the propagating 
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optical beam can be evaluated by means of employing several statistical models, 

which include log-normal and gamma-gamma distribution model adopted for weak 

and weak-strong turbulence regimes, respectively [172]. In this study, the author 

adopted log-normal model to theoretically assess the performance of the proposed 

system under weak turbulence.  

It is noteworthy that the combination of RoF and RoFSO will be employed in both 

access and in-building networks in order to extend the transmission range of the 

wireless services [67]. RoFSO will be employed as a bridge between the multi-RoF 

systems, in which, no fibre optic infrastructure exists in the place, particularly in rural 

areas. In [125], an analytic model for transmission of an orthogonal frequency division 

multiplexing (OFDM) signal over a FSO link was reported, exhibiting that RoFSO is 

highly sensitive to the atmospheric turbulence, received optical power and modulation 

index. In [117], experimental investigation of the work in [125] was reported, whereby 

a digital TV-based RF signal was transmitted over a 1 km FSO link at �O of 1550 nm. 

Although a lot of research has widely considered the atmospheric effects on the FSO 

link when using short length SMFs, the perturbing effects generated by MMF have 

been not studied. In [172], experimental demonstration of the baseband signal 

transmission at 100 Mbps over a 1 m of MMF and a 2.5 m of a FSO link with weak 

turbulence was reported  with a packet error rate (PER) of ~10-2 by means of using 

coding. Furthermore, an experimental RoF and RoFSO systems using the RF 

frequency ranges from 0.4 - 4 GHz and a 10 km of SMF were reported in [106].  

In this chapter, a RoMMF-FSO system is proposed for the last metre (inter-room 

networks) and the last mile of the access networks as presented in Figure 3.1. The line 

of sight (LOS) FSO links are employed to inter-connect buildings with transmission 
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spans of a few kilometres [182]. Indoor RoF systems with MMF are deployed for 

connecting the residential gateway (RG) with the RU. A mode filtering technique is 

proposed and theoretical and experimental verifications are carried out in order to 

mitigate the modal effects with the aim of improving the system performance, in terms 

of the channel transfer function, optical beam profile and EVM for a range of signal-

to-noise ratio (SNR). The author has published the resulting output of this chapter in [56, 

120, 121].  

3.1.1 Mode Filtering Techniques 

It should be noted that the hybrid RoMMF-FSO link may provide an advantageous 

solution. Nevertheless, MMF may experience significantly higher distortion effects 

with regards to modal dispersion [183]. Different mode groups propagate at different 

velocities within MMF and thus, result in signal distortion at the photodetector (PD). 

In a hybrid system, different modal groups of the MMF to the free space are coupled 

with a different group delay, which in turn, may result in affecting the hybrid RoMMF-

FSO link. Furthermore, different mode groups have different beam shapes as they are 

 

Figure 3.1: RoMMF-FSO scenario providing wireless services in the last-metre 
and last-mile access networks [121] 
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affected differently by the channel condition they go through such as turbulence. This, 

in turn, may lead to additional distortions and fluctuations in the frequency response 

of the system. The reduction of the modal dependence is deemed to be very important 

owing to the fact that the modal dispersion has the strongest effect on the hybrid 

channel. Several methods were proposed to improve the modal behaviour of the fibre 

channel, and some of them will be adopted for the hybrid channel. The utmost 

imperative techniques are mode filtering [57] and offset launch techniques [58]. The 

latter requires precise positioning, hence the complicated practical applications. 

Nevertheless, it is reported that this technique is unable to solve the hybrid RoMMF-

FS�2�� �V�\�V�W�H�P�¶�V�� �E�H�D�P�� �S�U�R�I�L�O�H�� �S�U�R�E�O�H�P���� �&�R�Q�V�H�T�X�H�Q�W�O�\���� �W�K�H�� �P�R�G�H�� �I�L�O�W�H�U�L�Q�J�� �W�H�F�K�Q�L�T�X�H��is 

adopted for the proposed hybrid RoMMF-FSO system. It should be noted that there 

are a number of mode filtering schemes, which are used to reduce the number of mode 

groups. One of them is the SMF filter, which has the ability to filter all higher mode 

groups, except for the fundamental mode [57]. The SMF filter is installed between the 

MMF and the FSO part of the link to ensure that only the fundamental mode is 

transmitted over the free space channel. Hence, the author intends to investigate the 

development of the mode filtering for RoMMF-FSO system with SMF. Apart from 

that, the gradient index (GRIN) lenses are employed, through which the transmitted 

signal will be coupled to the free space. The GRIN lens is employed at the receiver 

side to project the light beam to be focused onto the PD. In addition, with the 

employment of GRIN lens, the FSO channel loss is reduced due to the beam focusing, 

which in turn, leads to further improvement in the performance of the system. 
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3.2 Theoretical Model 

The proposed system presented in Figure 3.2 is modelled using MATLABTM with 

the following principal aspects: 

3.2.1 Hybrid L inear Model 

The hybrid RoMMF-FSO link can be separated into three different sections, 

namely transmitter, Tx (i.e., electrical-optical conversion), receiver, Rx (i.e., optical-

electrical conversion) and optical channel, which includes the fibre to free space 

interface (see Figure 3.2). OFDM LTE signal is generated at the Tx and the baseband 

signal is composed of 16-quadrature amplitude modulation (16-QAM) at 20 MHz as 

a single carrier modulation (SCM), X(m), where m� �������������«�«����Ns-1 is the subcarrier 

index, and Ns=2048 is the number of subcarriers. An Ns�±point inverse fast Fourier 

transform (IFFT) is applied to generate the OFDM signal S(x), which is used to 

describe the LTE signal as: 

 , (3.1) 

where x = 0�����������«�«�� Ns-1 is the time domain index. The cyclic prefix (CP) is added 

at the rate of ¼ in order to generate Scp(x) signal to avoid ISI, which is then passed 

through a parallel-to-serial converter (P/S) and a digital-to-analogue (DAC) converter. 

The continuous signal Scp(t) is then converted into a passband OFDM signal SRF(t) at 

fRF of 2.6 GHz, which is the most common LTE band deployed in Europe [184], and 

is given by [72]: 

  (3.2) 
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where .  

The LTE signal SRF(t) is employed to externally modulate the output of a 

distributed feedback laser (DFB) laser by means of using a Mach�±Zehnder electro-

optical modulator (MZM). In comparison, the MZM is recommended to be employed 

for high-frequency digital applications in order to decrease the signal distortion and 

noise than the direct modulation (DM). Moreover, MZM based transmitters are 

preferred to be operated at dense wavelength division multiplexing (DWDM), due to 

their wavelength range flexibility, which are able provide higher system capacity 

[130]. The transmitted optical field at the output of the MZM Eo(t) and the power 

transfer function are specified by [185]: 

 , (3.3) 

 , (3.4) 

 

Figure 3.2: Theoretical model of the RoMMF-FSO system [121] 
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where Ei(t) is the input optical fields of the MZM, Vbias is the MZM biasing voltage, 

V�Œ �L�V���W�K�H���G�U�L�Y�L�Q�J���Y�R�O�W�D�J�H�����Z�K�L�F�K���L�V���U�H�T�X�L�U�H�G���W�R���F�U�H�D�W�H���D���Œ���U�D�G�L�D�Q���S�K�D�V�H���V�K�L�I�W���D�W���W�K�H���0�=�0��

output, and �.MZM is the MZM insertion loss.  

The output of MZM is amplified by the erbium-doped fibre amplifier (EDFA) in 

order to compensate the link loss, as well as to ensure a sufficient link power budget, 

prior to the transmission over 1 km, 1 m and 2 m of MMF, SMF and FSO links, 

respectively. Apart from that, a patch cord SMF is employed as a mode filter between 

MMF and FSO.  

At the Rx, following the optical to electrical conversion by means of using a PD, 

the modulated signal, which is down converted into 20 MHz using a local oscillator 

running at the same frequency of 2.6 GHz as in the Tx. The remaining parts of the Rx 

are exactly the same as the Tx, except for the frequency domain of zero forcing (ZF) 

equalizer, which is used to compensate for phase and amplitude distortions incurred 

by propagating signal. 

In this work, a number of assumptions has postulated, which include: (i) a linear 

MZM (i.e., chirp free);(ii) no fibre nonlinearities since the optical power level is 

relatively low, i.e., not exceeding10 dBm [186]; and (iii) a non-selective frequency of 

FSO channel since the FSO link has a negligible delay spread [118]. It is noteworthy 

that the proposed link in clear channel is time invariant and therefore, it can be 

modelled as a linear time-invariant system. In addition, it can be defined in terms of 

the link transfer function, which depends strongly on the modal group delay and the 

modal power distribution induced by the link characteristics and launching conditions 

at the Tx/Rx ends and the intermediate MMF/SMF interface [187]. 
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3.2.2 Fibre Channel 

The modulated optical signal is launched to the free space via MMF and SMF as 

depicted in Figure 3.2. In the proposed model, SMF is employed as a mode filtering 

technique, in which dominant mode is allowed to be propagated. The total transfer 

function Htotal ( f ) is specified as: 

 , (3.5) 

where HMMF ( f ), HSMF ( f ) and HFSO ( f ) are the transfer functions for MMF, SMF and 

FSO channels, respectively. HMMF ( f ) is given as [188]: 

 (3.6)  

where f is the modulating frequency, D [ps/nm.km] is the material dispersion 

coefficient, L is the fibre length [km], �1�� is the laser linewidth [nm], K is the total 

number of the mode groups, Pk ,  , and  are the input power, group delay and 

mode dependent attenuation coefficient of the kth mode group. It should be noted that, 

the first and second terms in (3.6) represent the chromatic and modal dispersions, 

respectively. Chromatic dispersion depends on the spectral extent of the light source, 

while modal dispersion is due to the different propagation velocity of the mode groups. 

For the refractive index with a parabolic profile in the fibre core, (2.19) can be used to 

describe the total number of mode groups in the MMF as [161]: 

 
 (3.7) 
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where dMMF is the MMF core diameter, neff is the effective refractive index of the MMF 

core, g is the refractive index profile parameter and �¨ is the refractive index contrast. 

For the fibre that adopted in the theoretical model, the parameters of dMMF, neff, g and 

�¨ are 50 µm, 1.45, 2 and 0.01 (please see Table 3.1) the number of propagating mode 

groups K is 10. 

The linear HSMF ( f ) describes the effect of the chromatic dispersion in addition to 

the SMF attenuation. Nevertheless, these effects can be neglected due to the short 

length of SMF (i.e., 1 m). However, the insertion loss due to the coupling between 

MMF and SMF is considered in this work (see Table 3.1). As indicated in Figure 3.2, 

the output of MMF is applied to SMF as a modefilter in order to ensure the propagation 

of the fundamental mode in the free space channel. Accordingly, the transfer function 

of the filtered beam can be defined as: 

 , (3.8) 

which is approximated using (3.6) as: 

  (3.9) 

Where Pfund, �2fund and �.fund are the power, group delay and the attenuation of the 

transmitted fundamental mode, respectively. It has to be noted that a uniform power 

distribution in the MMF core is considered to estimate Pfund in (3.9). 

3.2.3 FSO Channel 

In modelling a clear FSO channel, the simplest plane wave model is adopted, in 

which, the electrical field distribution can be modelled as the superposition of far field 

distributions of each mode groups. The far field delay different mode groups in 
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identical way and thus, a clear FSO channel can be modelled as a summative 

attenuation. A FSO channel state hFSO, which represents the optical intensity 

fluctuations due to the atmospheric loss, and turbulence- and misalignment-induced 

fading is defined as [90]: 

 , (3.10) 

where hl and hs denote attenuations due to beam extinction arising from scattering, 

absorption and geometric spread and scintillation. Notably, the author assumed that 

there is no misalignment induced losses. hl is a deterministic parameter and hence, is 

considered as a constant scaling factor over a long time scale, compared to the bit 

intervals of ~10-9 s [189], which is given by [90]: 

 , (3.11) 

where Arx = �N(drx /2)2 is the Rx aperture area, drx is the Rx aperture diameter, ��B is the 

divergence angle, di is the FSO span, and ��l is the atmospheric attenuation coefficient, 

which is ~0.43 dB/km for clear channel condition [90]. �D�æ is time-variant factors, 

which exhibit variations in the fading channel in the order of milliseconds, in which 

their stochastic behaviour is described by their respective distributions [190]. The 

turbulence (i.e., scintillation) is caused by random variations in the refractive index of 

the medium, along the transmission path. The refractive index structure parameter     

�&�Q
�� [m-2/3] is widely employed to measure the strength of the refractive index 

fluctuations, which is defined as [166]: 
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 , (3.12) 

where P is the atmospheric pressure in millibar, T represents the absolute temperature 

in Kelvin, �&�Í
��  stands for the temperature structure constant that describes the �&�Q

��  

sensitivity to small-scale temperature variations, which can be obtained from the mean 

square temperature difference of two adjacent temperature points T1 and T2, separated 

by distance Rp as outlined by [170]: 

         (3.13) 

where l0 and L0 are the inner and outer scales of the temperature fluctuations.  

Turbulence is classified as weak, moderate and strong, depending on the strength of 

scintillation and is defined using Rytov variance �1�5
�� . The �1�5

��  is deduced based on the 

assumption that the laser beam propagates in a plane wave with homogeneous 

turbulence (i.e.,�&�Q
�� is constant along the horizontal path), which is given as [120]: 

  , (3.14) 

where  is the optical wavenumber. Note that, �1�5
�� < 1, �1�5

�� ~1, and �1�5
�� �“ 1 

corresponds to weak, moderate and strong turbulence regimes, respectively [166]. For 

weak turbulence, log-normal distribution model is widely used to describe the FSO 

channel statistically with the probability distribution function (PDF) of the irradiance 

fluctuation is given by [189]: 

 ,  (3.15) 
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where  is the PDF of the atmospheric channel and  is ~  for the case of 

plane wave propagation [189]. Figure 3.3 illustrates the variation in log-normal 

distribution against the turbulent channel state hs for different values of  in the weak 

turbulence regime. It is evident that for  = 0.01 and less, the PDF distribution is 

nearly Gaussian. However, for ��  0.1 the PDF distributions are not Gaussian and 

are skewed to the right, which indicate the significant effect of the atmospheric 

turbulence on the intensity fluctuations of the optical signal. 

The link total transfer function can be approximated by:  

 , (3.16) 

where �.total  and Ltotal is the total system attenuation and total channel distance, 

respectively. Equation 3.16 includes the effects of both fibre and FSO channels, where 

the latter is represented in terms of link attenuation in clear weather condition. 

The proposed system can be assessed by means of using. EVM that can be defined 

as [191, 192]: 

 

Figure 3.3: Log-normal PDF variations for different values of Rytov 
variance [120] 
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 ,  (3.17) 

 
where Ns is the number of the symbols for the in phase- quadrature (I-Q) constellation, 

Sr(xs) and St(xs) are the received and transmitted baseband symbols. Pmax is the 

maximum magnitude of the ideal transmitted symbol power, which is utilised for 

normalization. 

Also, the system frequency response and laser beam profile are employed to 

evaluate the system performance under modal effects and turbulence fading. 

3.3 Experimental Model 

The schematic block diagram of the experimental set up for the proposed system 

is presented in Figure 3.4. All the key relevant system parameters are shown in Table 

3.1. The LTE signal (i.e., 16-QAM with a passband frequency of 2.6 GHz and a bit 

rate of 67.2 Mbps) is generated at the Tx using a Rohde&Schwarz (R&S) vector signal 

generator (VSG), which is used to externally modulate a DFB laser at �� of 1550 nm 

 

Figure 3.4: Experimental setup of RoMMF-FSO system with three practical 
scenarios [121] 
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using MZM. Note that, a polarization controller (PC) is employed to control the 

polarization of the DFB laser. A low noise EDFA and a variable optical attenuator are 

used to optimize the transmitted optical power prior to being launched into a 1 km 

OM2 MMF. As for the channel, three setups are considered (see Figure 3.4), which 

depicts various inter-building network configurations. In all three setups, collimating 

optical lenses are used to launch light from fibre into a free space channel and capture 

light from the channel into a fibre. The output of the Tx (i.e., a downlink LTE signal) 

is transmitted via: (i) Setup A ;(ii) Setup B, which includes either a 1 km MMF or a   

1 km SMF to validate the proposed technique; and (iii) Setup C, as presented in          

Table 3.2. Setups A & B are chosen to show the DL connection between in-building 

network to the UE, while setup C represents the FSO connection between multiple in-

building networks as shown in Figure 3.1. It has to be noted that, a 100 m MMF in 

setup-C represents the fibre length used in an indoor environment. In Setups B and C, 

pigtailed GRIN lenses are used to align the optical beam propagating through the FSO 

Table 3.1: System parameters 

Parameter Values 

Modulation scheme 16-QAM 
Baseband multiplexing OFDM 
Carrier frequency 2.6 GHz 
Signal bandwidth, bit rate 20 MHz, 67.2 Mbps 
RF power -10 dBm 
DFB wavelength, power 1550 nm, 6 dBm 
Relative intensity noise (RIN) -145 dB/Hz 
MZM insertion loss 6 dB 
EDFA gain, noise figure 13.5 dB, 3 dB 
MMF dMMF, neff, �.fund 50 µm, 1.45, 0.3 dB/km 
MMF �¨, g 0.01, 2 
SMF loss 0.15 dB/km 
MMF/SMF coupling loss 1.7 dB 
FSO total loss 15 dB 
GRIN lens aperture 1.8 mm 
Plano-convex lens diameter 25.4 mm 
PIN PD responsivity 0.75 A/W 
TIA 3dB bandwidth DC to 12 GHz 
VSA noise floor at 2.6 GHz - 152 dbm 
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channel. The GRIN lens can correct the monochromatic aberrations, as well as 

enhance the alignment tolerance and the coupling efficiency (i.e., fibre to free space 

and free space to fibre) [193].   

At the Rx, a combination of p-i-n (PIN) PD and a trans-impedance amplifier (TIA) 

are employed to regenerate the electrical LTE signal, which is captured by means of 

using a real-time signal analyser for off-line signal pocessing, equalization [194], 

demodulation and link performance assessment.  

In order to �Y�D�O�L�G�D�W�H�� �W�K�H�� �S�U�R�S�R�V�H�G�� �V�\�V�W�H�P�¶�V�� �S�H�U�I�R�U�P�D�Q�F�H�� �X�Q�G�H�U�� �D�W�P�R�V�S�K�H�U�L�F��

turbulence, a dedicated indoor FSO chamber is added to mimic the outdoor 

environment. To generate turbulence, two fans were used to blow hot and cold air into 

the chamber, perpendicularly to the propagating optical beam. Twenty temperature 

sensors with a spacing of 10 cm were deployed along the chamber to monitor and 

measure the temperature profile. In order to create different scintillation effects, two 

levels of thermal gradient, i.e., 6° C and 31° C were introduced to the chamber. 

Subsequently, these values are used to determine the turbulence strength in terms of

, followed by  using (3.12) and (3.14), respectively. The weak turbulence 

calculated values of  are 5.37×10-13 m-2/3 and 4.09×10-10 m-2/3 and for di= 2 m, while 

the values of  are 1.2×10-4 and 0.1, respectively. The experimental implementation 

of the proposed system is illustrated in Figure 3.5, which demonstrates the setup of 

Table 3.2: Experimental setups with their applications 

Setup Details Application  
A 1 km MMF, 50 cm long free space channel 

and 2 m MMF 
Building-to-UE (MMF-FSO) 

connection without SMFT 
B 1 km MMF, 1 m SMF, 2 m FSO channel and 

1 m SMF 
Building-to-UE (MMF-FSO) 

connection with SMFT 
C 1 km MMF, 1 m SMF, 2 m FSO channel, 1 

m SMF and 100 m MMF 
Inter-building network (MMF-FSO-

MMF) with SMFT 
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RoMMF channel, including the beam profile measurement and the two FSO channels 

for RoFSO network. The beam profile is captured using a BP104-IR beam scanning 

profiler from Thorlabs.  

3.4 Results and Discussions 

In this section, the performance of SMFT is evaluated, in terms of the measured 

system transfer function and the laser beam profile. Also, the influence of atmospheric 

turbulence on LTE signals transmitted over RoMMF-FSO links is investigated 

theoretically and practically. The measured system performance is validated in terms 

of EVM by using MATLABTM simulations. 

3.4.1 Transfer Function 

The transfer function of the overall system is measured using the Agilent E5071C 

network analyser.  The system transfer function describes the perturbing effects on the 

propagating optical beams along with the MMF and FSO channels, due to the multi-

mode propagation within MMF as described in (3.6). Figure 3.6 illustrates the transfer 

function of the RoMMF-FSO system for setups A, B and C. At lower frequencies, the 

transfer function for setup A, with no SMFT showed degrading in the system gain due 

 

Figure 3.5: Laboratory setup showing the RoMMF-FSO system [56] 
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to the high attenuation and dispersion with a maximum drop at 1 GHz. The results 

revealed that the system performance fluctuates beyond the baseband showing highly 

sensitive performance to frequency changes. Furthermore, this shows a limited pass 

band bandwidth to ~1 GHz (by considering ~1.45 GHz and ~2.45 GHz as the lower 

and upper cut-off frequencies, respectively). This indicates that LTE based OFDM 

signal at a 2.6 GHz carrier frequency will experience frequency selective fading, 

which in turn, resulted in corrupted orthogonality that leads to channel induced ISI 

[195].  

In comparison to Setup A, the transfer functions for setups B and C depict a 

significant enhancement in the frequency dependent stability when SMFT is adopted. 

Notably, the SMFT interface can filter out higher order modes, which makes the 

system transfer function much flatter. This is established through minimizing the 

number of modal groups as evident by a significant reduction in the ripple level from 

~5 dB to < 1 dB and hence, enhancing the channel bandwidth effectively for a wider 

range up to 3 GHz. Furthermore, Figure 3.6 compares the experimental results with 

the predicted transfer function model Htotal(f) of the Setup B in clear weather FSO link 

using (3.16). The difference lies on the low frequencies (i.e., f < 1 GHz) owing to the 

 

Figure 3.6: Transfer function of the RoMMF-FSO system [121] 
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no consideration of the transfer function of the optoelectronic devices (i.e., MZM and 

PD) in the theoretical model.  

3.4.2 Optical Beam Profile  

The beam profile was captured in real-time by means of using a BP104-IR beam 

scanning profiler from Thorlabs. Figure 3.7 illustrates the measured laser beam 

profiles for setups A and B for three different turbulence strengths (i.e.,), in addition 

to the clear FSO channel. Table 3.3 depicted a summary of the obtained results. The 

beam profile showed the optical power distribution at a plane transverse to the beam 

 

(a) 

 

(b) 

Figure 3.7: Beam profile of the RoMMF-FSO shown turbulence effects 
on: (a) Amplitude, and (b) FWHM [121] 
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propagation path. Figure 3.7 (a) shows the peak power of the received beam for the 

two setups. As regards setup A with no filtering, the received signal was attenuated 

severely due to several reasons such as the lack of alignment, a large divergence angle 

and modal effects. Interestingly, the employment of SMFT (setup B) overcomes these 

effects significantly. Table 3.3 illustrates the enhancement of the peak received optical 

power, showing significant improvement in the coupling efficiency by 13.6 dB, which 

was determined with respect to setup A. Figure 3.7(b) displays the normalized power 

of the beam profile in order to illustrate beam width in terms of the full width at half 

maximum (FWHM). The optical beam is subjected to the shape deformations, which 

is mainly due to the diffraction and deflection that caused variations in the power 

levels of the received signal. As regards the received beam in setup-A, the measured 

beam profile has several peaks and the beam profile is relatively wide. In contrast, the 

received beam in setup B, the measured beam profile show an improvement in the 

FWHM by ~ 100 µm.  

Even though MMF can support propagation of a large number of modes, a finite 

number of modes clustered in groups with nearly the same propagation characteristics 

are considered [161]. For the fibre with the parabolic refractive index profile (i.e., g=2) 

the number of propagating mode groups K estimated using (3.7) is 10. On the contrary, 

the beam shape is close to the Gaussian distribution with the dominant mode 

propagation when SMFT is adopted in the setup B as observed in Figure 3.8, which 

Table 3.3: Beam profile characteristics 

Setup Peak Power 
(mW) 

Coupling 
Efficiency (dB) 

FWHM ( µm) 

A 0.1 -- 374 
B- clear FSO 2.3 13.6 258 
B- �1�5

�� =1.2×10-4 2.1 13.22 267 
B- �1�5

�� =0.1 1.6 12 281 
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indicates three-dimension (3D) illustration of the captured beam profile. It can be 

observed in Figure 3.8(a) that the modal distribution at the receiver is distorted due to 

the optical propagation with no SMFT (setup A), while Figure 3.8(b) illustrates the 

Gaussian distribution of the received optical beam following SMFT, which has 

eliminated high order modes. 

3.4.3 EVM Results 

 The EVM parameter demonstrates the impact of distortion induced in the system. 

�7�K�H���S�U�R�S�R�V�H�G���V�\�V�W�H�P���L�V���G�H�V�L�J�Q�H�G���W�R���D�F�K�L�H�Y�H���”�������������(�9�0���D�V���D���I�L�J�X�U�H���R�I���P�H�U�L�W�����Z�K�L�F�K��

is required by the 3rd generation partnership project (3GPP) LTE for 16-QAM 

modulation [196].In the simulation model, the LTE signal was used to modulate the 

DFB laser externally by means of using MZM. The MMF/SMF interface is modelled 

using (3.16), while the log-normal distribution model is used to simulate the FSO 

channel under weak turbulence regime. Predicted EVM results are determined using 

(3.17), while the measured values are captured using the signal analyser, which is 

equipped with built-in vector signal analyser (VSA) software. Firstly, the influence of 

SMFT is investigated with no turbulence induced fading effect.  

   

Figure 3.8: 3D illustration of the beam profile: (a) with no SMFT, and  

(b) with SMFT [121] 
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Figure 3.9 demonstrates the measured EVM against the SNR for the three setups 

in comparison to the back-to-back (B2B) setup. The EVM-SNR performance can be 

used to estimate the minimum SNR that should be consider to achieve the 3GPP LTE 

EVM requirement. On the other hand, the noise floor of the VSA at 2.6 GHz is                 

-152 dBm [194], which indicates a negligible noise induced by the measurement 

equipment. In setup A, EVM values are high and not stable due to the irradiance 

fluctuation, which is caused by the modal effects. The system performance is enhanced 

by using SMFT in setups B and C. At a SNR of 20 dB, EVM is reduced from ~11% 

to ~7% (i.e., 4% enhancement) when using a filter, which is identified as the setup-B-

MMF in Figure 3.9. Additionally, a 1 km SMF was used in the setup B instead of a    

1 km MMF and a 1 m SMF to validate the obtained results. The EVM value decreased 

from ~7% to ~6.6% (i.e., 0.4% difference only) for the same SNR value (i.e., 20 dB) 

compared to a 1 km MMF. The EVM values were measured via the VSA with a 

precision of  ±0.2% [194]. Note that, the EVM results are based on the average of 

three sets of measurements under identical conditions. The required additional power 

of the input signal to achieve the EVM limit is referred to as the power penalty (PP). 

 

Figure 3.9: Measured EMM performance of the RoMMF-FSO system in clear 
channel [121] 
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PPs, with respect to the B2B link are 3.9 dB, 0.5 dB, 0.3 dB, and 2.3 dB for setups A, 

B-MMF, B-SMF, and C, respectively. The PP difference between the setup-B-SMF 

and the setup-B-MMF is 0.2 dB.  

The turbulence effect is investigated theoretically and practically using setups B 

and C, in terms of EVM measurements as illustrated in Figure 3.10 and Figure 3.11. 

The inset figures show the measured constellation diagrams for the received LTE 

signal for the turbulence channel with turbulence i.e.,  of 0.1. It should be noted that 

all constellation diagrams in this study have been captured for a 20 dB of SNR. Figure 

3.10 depicts the theoretical and measured EVM values for the two levels of turbulence 

strength for the FSO channel as in setup B.  

The simulation results show a good agreement compared to the measured SNR 

values at the EVM limit with < 1 dB difference at  of 0.1. The summary of the 

measured EVM and PPs are presented in Table 3.4 for a clear FSO channel and two 

turbulence strengths. The results demonstrate that, for increased turbulence strength, 

EVM levels will deteriorate due to the optical intensity fluctuations and fading, which 

is caused by the random variation of air refractive index. Notably, the turbulence 

 

Figure 3.10: Measured and theoretical EVM performance of setup B 
under clear air condition and two weak turbulence levels [121] 
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strength (i.e., ) depends on the temperature gradient along the propagation channel 

[120]. Consequently, a further spreading of PDF of the received signal can be induced 

as a result of signal fading [170]. The PPs, with respect to a clear channel shown in 

Table 3.4 indicates that at higher turbulence levels (i.e.,  of 0.1 experienced in case 

of  of 4.09×10-10 m-2/3) the PP increased by ~2 dB.  In order to compare setups B 

and C, the turbulence levels is kept identical. Figure 3.11 depicts the predicted and 

measured EVM values for setup C, while the obtained results are outlined in Table 

3.4, which shows an increase of the required SNR values to achieve the EVM limit 

due to the additive loss and dispersion. In addition, the end-to-end simulation shows 

similar trend for measured SNR values. However, the measured SNR values show an 

increase by ~2 dB at the EVM limit for  of 0.1 compared to the simulation due to 

the intensity fluctuation of ±0.3% of the experimental EVM results. This intensity 

fluctuation is magnified by the modal effects generated by the additional MMF 

following the FSO. Furthermore, the EDFA amplified spontaneous noise (ASE) does 

 

Figure 3.11: Measured and theoretical EVM performance of setup C 
under clear air condition and two weak turbulence levels [121] 
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affect the system performance and is not taken into consideration in this work and it 

will be studied in the future.  

Finally, further analyses were carried out for the FSO path of 500 m long, which 

is the typical range for the last-mile access network in the urban areas [53, 197]. Figure 

3.12 illustrates the predicted EVM as a function of SNR with weak turbulence (i.e., 

= 1.2×10-4 and 0.1) and no turbulence. The results show that in order to achieve the 

3GPP LTE EVM target of 12.5% the SNR power penalties are ~2 dB and ~11 dB for 

 of 1.2×10-4 and 0.1, respectively compared with no turbulence.   

3.5 Summary  

In this chapter, the hybrid RoMMF-FSO scheme was demonstrated in order to 

enhance the performance of the 4G-LTE signal for radio-over indoor MMF system as 

Table 3.4: Measured SNR and PP at the EVM limit for setups B and C 

 Setup B Setup C 
Turbulence 
Strength 

SNR 
(dB) 

PP 
(dB) 

SNR 
(dB) 

PP 
(dB) 

Clear FSO 14.1 -- 15.8 -- 
�1�5

�� =1.2×10-4 18.25 4.15 20 4.2 
�1�5

�� =0.1 20.33 6.23 23.55 7.75 

 

 

Figure 3.12: Analysed EVM performance for FSO span of 500 m [121] 
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part of the last mile access networks. It is found that adopting SMFT may reduce the 

EVM level, apart from mitigating the modal effects within the MMF-FSO interface. 

This has resulted in a negligible difference compared to SMF-FSO in terms of EVM 

and PPs. Additionally, the proposed system was found to improve the available 

channel bandwidth by at least 2 GHz due to the reduced level of ripple fluctuation in 

the system transfer function by 4 dB. Moreover, the laser beam profile measurements 

indicated that the use of SMFT may significantly enhance the received power and 

FWHM. Also, the author has experimentally and theoretically validated the 

performance of the proposed system under turbulence by transmitting the LTE signal 

over the MMF and FSO channels. Furthermore, theoretical analysis for a longer FSO 

channel was carried out. The obtained results showed that for the FSO link span of 

500 m to meet the EVM target of 12.5% the SNR power penalties were ~2 dB and   

~11 dB for  of 1.2×10-4 and 0.1, respectively compared with no turbulence case. 

The results confirm that the proposed technique can be used successfully in the real 

practical environment for the last-mile access networks, achieving the 3GPP LTE 

target of 12.5% EVM. In the next chapter, further experimental investigation of the 

hybrid RoF-FSO system will be presented to examine the system performance under 

foggy weather condition.  
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Chapter 4                                                                                 

Transmitting LT E Signals over a Hybrid 

RoF-FSO system under Fog 

Atmospheric channel 

4.1 Introduction  

The previous chapter introduced a mode filtering technique to mitigate the modal 

dispersion in the hybrid radio over multi-mode and free space optics (RoMMF-FSO) 

system, which is validated under a real weak turbulence channel. In this chapter, a 

thick fog effect is exposed to the proposed hybrid RoMMF-FSO system, where the 

system performance will be characterized for transmitting different data rates of the 

4th generation-long term evolution (4G-LTE) signal. 

4G-LTE technology was introduced to meet the rapid increase in the number of 

users and broadband applications [18]. Currently, most mobile operators worldwide 

have adopted the 4G-LTE mobile technology [16]. It should be noted that the 

architectural features of 4G-LTE were developed to meet the continuing growth of 

data traffic and coverage issues. Moreover, the 4G-LTE technology adopts small cell 

scenarios in enhancing the wireless coverage and as a result, pico- and femto-cellular 

networks were adopted. A promising solution for transporting 4G-LTE signals within 

small-cellular systems is the optical network. This concept is known as the radio-over-

fibre (RoF), in which, the radio frequency (RF) broadband signals will be transported 

via optical fibre to outdoor/indoor cellular networks in order to extend the multi 
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wireless services for access and in-building networks. In this regard, the optical fibre 

access technology such as fibre-to-the-home (FTTH) has been employed as the bridge 

between broadband network distributer and building devices. Apart from that, the 

single-mode fibre (SMF) has been used for the broadband backbone network due to 

its low attenuation and huge bandwidth [71]. However, as regards the indoor networks, 

lower deployment costs must be observed in order to fulfil the low-cost requirements. 

This can be achieved by adopting the distributed antenna systems (DAS) and 

employing MMF to carry the 4G-LTE signals over the indoor connections since it is 

mainly adopted for short communication networks.  

Visani et.al.,[41] demonstrated theoretically and practically an optimised version 

of the RoMMF by means of using the fabry-perot (FP) laser and central launch 

technique for the 4G-LTE wireless service for the indoor applications achieving ~3% 

error vector magnitude (EVM) at 1950 MHz band. It should be noted that the polymer 

optical fibre (POF) is preferable to be employed in in-building networks due to the 

fact that it is less brittle and more flexible compared to the silica based fibres. 

Moreover, due to its large core diameter, this type of fibre is generally associated with 

the ease of installation as well as low maintenance cost [49]. In [136], a novel radio-

over-POF (RoPOF) system was proposed by means of using vertical cavity surface 

emitting laser (VCSEL) and light injection-locking technique for the intra-building 

networks with < 4% EVM for 50 m graded-index POF (GI-POF) channel distance. 

Since capacity and coverage have been the key concerns for the recent mobile 

communications, a relay node (RN) will be employed for further coverage extension. 

It was proposed that the RN to be positioned in the RF cell edge and linked the user 

equipment (UE) with the enhanced NodeB (eNB) base stations via SMF based 
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network [72] for outdoor applications, while home remote unit (RU) was proposed for 

indoor wireless applications [17, 36].  

Nevertheless, the cost of deploying RoF for long haul applications may arise as an 

issue particularly in the rural areas where the cost will be even higher because of some 

regulations and environmental considerations, which may affect the fibre length 

employed and access to it. The combination of buried fibre and aerial deployment 

based on the RoF and the FSO technologies, which is also known as radio-over-FSO 

(RoFSO), may effectively offer a much better solution for both rural and urban 

environments with the FSO links, which offer the line of sight (LOS) path. It is 

noteworthy that in typical office and industrial environments, the combination of 

hybrid RoF and/or RoFSO can be a better option for distributing radio signals and 

connecting multi-indoor RoF networks, in which, the underground fibre may not be 

available at all places, particularly in the rural and sparsely populated areas. The latter 

option is even more appealing, since no digging is required between two buildings and 

consequently, the cost of installation will be lower. A theoretical study in [67] 

highlighted that the most efficient technology that will be employed to better enhance 

the wireless last-mile access links is by adopting the optical fibre, in addition to the 

FSO as complementary technologies for the RF based technology.  

The integration between the RoF and RoFSO systems has been demonstrated 

theoretically in [125] and by means of experiment in [117] to demonstrate a 

transmission of orthogonal frequency division multiplexing (OFDM) signal between 

two RoF links using 1 km FSO under turbulence effect. However, these studies were 

carried out with the sole focus on the FSO channel effects without due consideration 

for the aspects of optical fibre type and distance. Further research by [198],were 

carried out on a dual transmission link, which operates at 1550 and 850 nm 
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wavelengths over an SMF link, followed by the wavelength division multiplexing 

(WDM) to guide both optical waves into one POF channel. A collimator lens was 

utilised at the end of the POF in order to propagate the beams over the FSO link. 

Furthermore, a heterogeneous optical access system was proposed in [199], which 

include POF, FSO and indoor infrared (IR) links with the ability of delivering 40 Gbps 

by means of using adaptive coded OFDM scheme. In this chapter, the hybrid RoF-

RoFSO system and its characteristics are investigated experimentally under fog 

weather fading effect by employing simple and easy setup without adopting any 

coding technique. The MMF is employed as it has been widely adopted in the in-

building networks.  

Apart from that, POF is used not only to minimise the installation cost, but also 

due to the fact that it has high attenuation levels that may lead to severly limited 

transmission distance. By comparison, the MMF has relatively higher linear distortion 

and lower bandwidth than the SMF due to their modal dispersion. Therefore, in order 

to limit the effect of modal dispersion, a filtering technique, which is simple and cost 

effective, has been used for filtering the higher order modes, which in turn has resulted 

in improving the bandwidth of the RoF system. Although there are different types of 

mode filters, employing a short SMF patchcord as a mode filter has reportedly to have 

better performance compared to other solutions such as air gap filter. Notably, it is the 

cheapest and easiest method to mitigate the effect of modal dispersion [200].The 

RoFSO and RoF are employed in the proposed system to connect mobile phone users 

to the backbone network and hence, increasing the efficiency of coverage and 
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bandwidth in sparsely populated regions with low cost solutions in comparison to the 

existing coaxial copper cables.  

The proposed solution is presented in Figure 4.1, in which, the FSO transceivers 

�D�U�H�� �S�O�D�F�H�G�� �R�Q�� �W�R�S�� �R�I�� �W�K�H�� �E�X�L�O�G�L�Q�J�V�� �W�R�� �H�Q�V�X�U�H�� �D�� �/�2�6�� �S�D�W�K�� �D�V�� �S�D�U�W�� �R�I�� �W�K�H�� �³�O�D�V�W�� �P�L�O�H�´��

connectivity [182]. The MMF or the POF is used to connect the RUs and FSO 

transceiver modules to the eNB [41, 126]. Correspondingly, the current chapter 

proposed that the mode filtering technique be investigated experimentally under the 

atmospheric channel fading due to fog effect. The system performance will be 

assessed in terms of the link power budget and EVM for a range of signal-to-noise 

ratio (SNR) values under the effect of thick fog. The author has published the findings 

of this chapter in [119, 201]. 

4.2 Fog Atmospheric Channel 

As discussed in Chapter 2, the performance of FSO networks is mainly affected 

by the large optical signal attenuation, which is due to the presence of air particles that 

produce scattering and absorption of the propagated beam. It should be noted that this 

fog effect will be dominant particularly when the water droplets dimensions are close 

to the optical signal wavelengths [89]. With regard the FSO links, the fog attenuation 

 

Figure 4.1: Hybrid RoF-FSO system structure [201] 
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is considered as the most challenging factor [139]. As reported in [109], due to 

moderate fog, the channel attenuation can reach up to 130 dB/km, while for dense fog 

weather condition, it may reach up to 480 dB/km. In addition, practical investigation 

was reported in [139] showing that the moderate fog attenuation level is stable over 

the event time. In contrast, the observation of the dense fog demonstrates major 

fluctuations of the attenuation over the same time scale with a variation rate of more 

than 45% of the average attenuation value per second. Several empirical models that 

predict the fog attenuation behaviour based on experimental data [202] or theoretical 

considerations [203] were reported in the literature. Generally, fog-induced 

attenuation is characterized by means of different parameters such as the visibility V, 

the transmittance threshold Tth and ��.  The channel visibility is defined as the distance 

to object, where the optical beam power (i.e., Tth ) drops to a fraction of 2% or 5% of 

its original power [204]. As regards the dense fog, the aerosol size is supposed to be 

larger than the propagating optical wavelength and thus, it can be concluded that there 

is no wavelength dependency of the fog attenuation as indicated in the measurements 

stated in [139]. Nonetheless, Kruse model predicts that the fog-induced attenuation 

may drop with the higher wavelength levels. Therefore, the atmospheric V can be 

expressed in terms of the attenuation coefficient ��l (dB/km), Tth and ����(nm) as [53]: 

 ,  (4.1) 

where ��o refers to the maximum sensitive wavelength for human eye, which is 

typically set at 550 nm,  q is coefficient depending on the particle size distribution and 

the visibility, which is defined by Kim theoretical model in [203] as: 
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 . (4.2) 

The visibility range indicates the weather condition. For example, the visibility 

range of 500 m < V < 1 km, V <500 m, V < 200 m and V < 50 m refers to light, 

moderate, thick and dense fog weather, respectively [97, 104, 198]. Kim et.al., 

proposed a theoretical model indicating the wavelength independency for visibilities 

less than  500 m in [203]. However, an experimental evidence in [167] revealed that 

the optimum wavelength windows of 0.83, 0.94, and 1.55 µm are most suitable for 

fog conditions to ensure the link availability. Therefore, ��l can be defined by knowing 

the transmittance T of the optical signal and propagating distance di (in km) using 

Beer-Lambert law as [205]: 

 , (4.3) 

which can be written as: 

 . (4.4) 

It is noteworthy that in the current chapter, the real-time measurements for the fog-

induced attenuation using 1550 nm laser spectrum are reported to be in line with the 

measured visibility.   
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4.3 Atmospheric Visibility Measurement 

Figure 4.2 illustrates an artificial atmospheric chamber, which is used to mimic the 

real outdoor atmospheric weather. The chamber has a dimension of 550×30×30 cm3, 

consisting of seven sections; each one has a built-in fan and thermometer, in addition 

to air outlet for air circulation. The intensity of the hot air inside the chamber is 

controlled by aluminium-based plates. Therefore, the temperature, as well as the wind 

inside the chamber can be controlled to mimic, as close as possible the outdoor 

atmospheric conditions. The fog is generated by fog machine from ProSound (model: 

NB88GB), where it is pumped inside the closed chamber and its amount is controlled 

by the ventilation process. Accordingly, the transmittance of the FSO path can be 

controlled, as long as the aerosols inside the chamber are settled down 

homogeneously. An emprical approach utilising the wavelength of 550 nm to measure 

the visibility, along with the length of the outdoor FSO link was adopted in [167, 206] 

to estimate the closest value of the fog-induced attenuation corresponding to the 

measured link visibility. Figure 4.3 illustrates the block diagram of this approach. An 

optical source, which operates at 550 nm wavelength (i.e., green laser source) is 

adopted to characterize the fog. The visibility is measured at a distance, in which, 

 

Figure 4.2: The laboratory controlled atmospheric chamber 
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parallel beams travel through the atmospheric chamber until the visual contrast drops 

to 2% (i.e., Tth = 2%) of its original contrast.  Accordingly, the attenuation coefficient 

��l can be calculated in terms of the measured V using (4.1), which can be employed to 

calculate the FSO attenuation in (dB) using (4.4).  

4.4 Hybrid RoMMF -FSO under Fog Atmospheric Effect 

As regards this work, the combination of radio over multimode fibre and radio 

over free space optical systems is experimentally investigated. In such hybrid systems, 

a mode filtering technique is adopted in dealing with the modal effects. Considering 

the mode filtering effect, a  link budget analysis is performed as an addition to the 

measurement of EVM in order to verify the eff iciency of the proposed systems in 

dealing with the modal effect. The results obtained were below 12.5% 3rd generation 

partnership project (3GPP) LTE EVM requirement, which is defined for 16-quadrature 

amplitude modulation (16-QAM). 

 

Figure 4.3: Fog attenuation and visibility experimental set up 



111 
 

4.4.1 Proposed Experimental Setup 

Figure 4.4 demonstrates the outline of the proposed hybrid RoMMF-RoFSO 

system and the system parameters are presented in Table 4.1. The LTE signal is 

generated at the transmitter using Agilent signal studio N7624B, which configure the 

vector signal generator (VSG) in OFDM at 800 MHz band. This is the typical 

downlink (DL) carrier frequency adopted in LTE for Europe, particularly in the rural 

areas [5]. The baseband signal is composed of 16-QAM at 20 MHz and a bit rate of 

67.2 Mbps. 

The most widely used modulation format in wireless communication systems is 

adopted i.e., 16-QAM modulation format. Moreover, the LTE RF signal is employed 

for intensity modulation (IM) of a distributed feedback (DFB) laser at the 

wavelength of 1550 nm. The laser source output is passed through a variable optical 

attenuator (VOA) and the erbium-doped fibre amplifier (EDFA), which are used to 

optimise the transmitted power prior to being launched into 1 km of MM F. The 

single-mode filtering technique (SMFT) is employed as a filter technique to eliminate 

the modal effect at the end of MMF. Subsequently, the output is fed into an optical 

coll imator for propagation over the free space channel of 11 m length, in which, a flat 

mirror is utilised to double the free space channel distance. Indoor atmospheric 

 

Figure 4.4: Block diagram of the experimental setup [201]  
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chamber was used in order to assess the impact of fog and turbulence on the proposed 

system. A lens is used to focus the incident light signal onto the photodetector (PD) at 

the receiver side. The output of the PD is amplified using a trans-impedance amplifier 

(TIA), which afterwards was captured by means of vector signal analyser for further 

EVM analysis.  

4.4.2 Link B udget Analysis 

The experimental li nk budget analysis is carried out in order to investigate the 

performance of the SMF mode filtering system from the power loss perspective. The 

available link margin �.�Æ can be calculated by [87]: 

 , (4.5) 

where �2�Ë is the receiver sensitivity referring to the minimum received power required 

to achieve the level of 12.5% EVM, which is the 3GPP LTE requirement for the 16-

QAM. �2�Ü is the transmitted optical power including the amplification generated by the 

EDFA. Lfibre , Lcoupling and LFSO are fibre, MMF-to-SMF coupling and FSO link losses, 

respectively.  

Table 4.1: RoMMF-FSO System parameters 

Parameter Values 

Modulation scheme 16-QAM 
Baseband multiplexing OFDM 
Carrier frequency 800 MHz 
Signal bandwidth 20 MHz 
Bit rate 67 Mbps 
RF power 0 dBm 
DFB wavelength 1550 nm 
DFB power 6 dBm 
EDFA gain, noise figure 7 dB, 3.5 dB 
MMF core size, loss, NA 62.5 µm, 0.15 dB/km, 0.275 
Newport PD responsivity 1 A/W 
Collimator divergence angle 0.022 degree 
Collimator aperture diameter 7 mm 
Receiver lens diameter 60 mm 
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For the negligible pointing errors, the major losses that are contributed in LFSO are 

the atmospheric and geometric losses. Therefore, equation (4.5) can be written as: 

 , (4.6) 

where Ageo is the geometric loss defined in (2.27). Based on the results shown in Table 

4.2, the mode filter is observed to be dominant in the total optical loss. Apart from 

that, the link margin was at 24 dB in the clear channel, which will be utilised to 

extrapolate the FSO channel distance up to ~2.5 km using (2.27) and (4.6). On the 

other hand, the FSO loss was observed to increase by 4.43 dB in the thick fog 

atmospheric channel. Nevertheless, the link margin will be added to the proposed 

system in order to increase the FSO length under thick fog effect up to ~133 m.  

Table 4.2: RoMMF-FSO link budget for the clear and fog atmospheric channel 

 Weather condition 

Parameter Clear Thick Fog 

DFB output power (dBm) 6 6 
VOA value (dB) 2 2 
EDFA gain (dB) 7 7 
Pi (dBm)  
(point A in Figure 4.4) 

11 10 

L fibre (dB)  
1 km MMF and connectors 
loss 

0.8 0.8 

MMF/SMF coupling loss  3.2 3.2 
Insertion loss of collimator 
(dB) 

0.4 0.4 

Lcoupling (dB) 3.6 3.6 
��l dB/km 0.43 43 
di (m) 11 11 
FSO loss (dB)=4.343di��l+Ageo 

(atmospheric and geometric 
attenuation) 

0.6 5.03 

Total loss (dB) 5 9.43 
PR (dBm) -18 -18 
LM (dB) 24 19.57 
Maximum FSO span ~2.5 km ~133 m 
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4.4.3 EVM Performance Analysis 

 The impact of different modes of propagation may not only cause modal 

dispersion in fibre, but may also affect the characteristics of beam propagation in the 

FSO channel. Thus, the proposed system performance is investigated in terms of the 

RF domain. In doing so, the EVM of the link is measured with the modulated RF 

signal at the carrier frequency of 800 MHz under fog channel condition as illustrated 

in Figure 4.5. The method to generate fog inside the indoor atmospheric chamber is 

described in section 4.3. The link visibility is estimated by measuring the attenuation 

of a green laser (i.e., 550 nm wavelength) in fog channel consistent with the clear 

channel as reference. In the experimental setup, the visibility was set to 100 m with 

4.43 dB attenuation. 

The EVM performance is investigated for typical LTE bandwidth of 5 MHz,        

10 MHz, 15 MHz and 20 MHz. The results comprised of the RoFSO in clear 

condition, Hybrid RoMMF-FSO for clear and fog channel effects are shown in Figure 

4.5. At low bandwidth, the EVM values are relatively small (i.e., not higher than 4%), 

but increasing the signal bandwidth resulted in higher EVM due to the reduced SNR. 

 

Figure 4.5: EVM performance for the RoMMF-FSO for clear and fog 
atmospheric channel [201] 
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Expectedly, the EVM increases after the signal was propagated through the 1 km MMF 

link. Due to the additional losses that degraded the received signal, the impacts of 

atmospheric conditions on the FSO link increased the EVM level. Notably, the EVM 

results are relatively low for all types of the hybrid RoMMF-FSO links. The worst 

case for the present proposed hybrid link is when EVM is only ~8%, which is smaller 

than the critical 12.5%, defined by the 3GPP for 4G-LTE systems, hence, showing the 

error-free capability of the proposed system [196].  

4.5 Hybrid RoPOF-FSO System  

In this section, a design of residential gateway (RG) for the perfluorinated GI-POF 

(PF-GI-POF) in-building network is presented. The proposed scheme addresses the 

integration between the outdoor and indoor 4G-LTE networks by means of employing 

the RoFSO technology for rural environments in order to enhance the wireless 

performance with low deployment cost as demonstrated in Figure 4.6. The system 

performance is characterized under thick fog atmospheric fading effect, with due 

consideration of 17.5%, 12.5% and 8% for EVM as the figure of merit for quadrature 

phase shift keying (QPSK),16-QAM and 64-QAM, respectively [196].  

 

Figure 4.6: 4G-LTE access network in rural environments [119] 
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4.5.1 Proposed Experimental Setup 

The overall experimental setup for the DL LTE-over-RoFSO channel is indicated 

in Figure 4.7 and the system parameters are presented in Table 4.4 The transmitter, 

which was described in section 4.4.1, represents the outdoor SMF system backbone 

link and the LTE base station (i.e, eNB) in optical domain. Here, the LTE signals are 

generated in the OFDM format with QPSK, 16-QAM and 64-QAM in the baseband 

by means of using Agilent ESG E4438C. It should be noted that the LTE signals at 

800 MHz have analogue radio bandwidth of 5 MHz, 10 MHz, 15 MHz and 20 MHz, 

which are the standard values for the LTE technology [18]. The standard transmitted 

data rate associated with the LTE signal bandwidth is presented in Table 4.3 [207, 

 

(a) 

 

(b) 

Figure 4.7: (a) Block diagram of the experimental hybrid system, and (b) 
Laboratory setup showing the RoPOF and FSO networks [119] 
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208]. The real-time LTE signal is applied directly to intensity modulated DFB laser 

source operating at 1550 nm wavelength. This is followed by the optimisation of 

optical launch power level by means of using VOA and fixed gain EDFA.  

At the RoFSO part, the output of EDFA is coupled by 1 m SMF patchcord to the 

collimator in order to adjust the divergence angle of the FSO beam, which is 

transmitted over a free space channel of 11 m long. At the input stage of the RG, the 

optical beam is passed through an aperture (i.e., lens) and is captured using optical 

receiver from Newport. The RG employs a wavelength conversion between the 

RoFSO link, which operates at 1550 nm, and the RoPOF link operating at the 

commonly employed wavelength of 850 nm.  

Table 4.4: System parameters 

Parameter Value 

Modulation scheme QPSK, 16-QAM, 64-QAM 
Baseband multiplexing OFDM 
Carrier frequency 800 MHz 
Signal bandwidth 5, 10, 15, 20 MHz 
RF power -8 dBm 
DFB wavelength 1550 nm 
DFB power 3 dBm 
VCSEL wavelength 850 nm 
VCSEL power - 3 dBm 
EDFA gain, noise figure 20 dB, 3.5 dB 
FSO channel distance, di 11 m 
PF-GI-POF core size, loss, NA 62.5 µm, 60 dB/km, 0.19 
Newport PD responsivity 1 A/W 
Thorlabs PD responsivity 0.525 A/W 
Collimator divergence angle 0.022 degree 
Collimator aperture diameter 7 mm 
Receiver lens diameter 60 mm 

 

Table 4.3: LTE bit rate throughputs 

Bandwidth 5 MHz 10 MHz 15 MHz 20 MHz 
QPSK bit rate (Mbps) 8.4 16.8 25.2 33.6 
16-QAM bit rate (Mbps) 16.8 33.6 50.4 67.2 
64-QAM bit rate (Mbps) 25.2 50.4 75.6 100.8 
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The output of Newport optical receiver is then converted into an electrical signal 

by means of a TIA amplifier, in which the output is further amplified using an RF 

amplifier prior to the IM of 850 nm VCSEL source. A Newport laser controller is used 

to provide 5 mA, as a bias current for the laser operating in the linear region. At the 

RoPOF network, the output of the VCSEL is coupled to 100m of PF-GI-POF, which 

is a typical distance employed for residential buildings [49]. Note that, this output is 

detected by means of an optical receiver. The RF amplifier output is captured and 

analysed using Agilent N9010 EXA Signal Analyser. The EVM measurement is 

employed for the investigation and analysis process. 

4.5.2 Link B udget Analysis 

With regard to the Hybrid RoPOF-FSO system, the main losses are primarily due 

to the high POF attenuation and the atmospheric induced attenuation in the FSO 

channel. In the clear hybrid channel, the attenuation in the link is due to electrical-

optical (E/O) and optical-electrical (O/E) conversions, fibre to FSO coupling and POF. 

Table 4.5 presents the summary of the measured power, while the measurement points 

are labelled in Figure 4.7. In subcarrier modulated intensity-modulation/direct-

detection optical systems, the power of the input electrical signal is limited owing to 

the threshold current of the DFB laser. In order to obtain the best slope efficiency of 

the DFB laser, the biasing level is set to 34 mA to ensure both maximum input RF 

power of -8 dBm and RF linear modulation. The RF attenuation after RoFSO link is 

13 dB, which is caused by the 0.07mW/mA slope efficiency of the DFB laser, in 

addition to the propagation loss of FSO channel. After the RG, the losses are due to 

the 0.15 mW/mA slope efficiency of the VCSEL and the POF loss. Hence, the optical 

losses resulted in double attenuation in the electrical domain and thus, 8 dB optical 

loss of the total channel is equivalent to 16 dB loss in the electrical domain. Electrical 
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gain for the RoFSO and RoPOF links are 9.8 dB and 7.1 dB, respectively, coming 

from the RF amplification at the RG and the indoor receiver. 

On the other hand, the attenuations due to the E/O and O/E for the RoFSO and 

RoPOF networks are 9.2 dB and 4.5 dB, respectively, which indicates the high POF 

attenuation in the RoPOF link. It should be noted that the optical link budget is 

investigated under clear and fog channel conditions in order to extrapolate the FSO 

channel distance up to ~755 m and ~80 m, respectively.
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Table 4.5: RoPOF-FSO link budget for the outdoor and indoor links 

Electrical Optical  weather condition 

Description Point Electrical 
power  

Description Point Clear Thick 
Fog 

Outoor RoFSO link  
RF input power (dBm) E1 -8 Pi (dBm)  O1 -2.7 -2.7 
Received power at the RG (dBm) E2 -21 Lcoupling (dB) 

(Insertion loss of collimator) 
-- 1 1 

RF amplifier gain -- 22.8 FSO input power (dBm) O2 -3.7 -3.7 
Amplified power at the RG (dB) E3 1.8 ��l dB/km -- 0.43 43 
RF Gain (dB) -- 9.8 FSO loss (dB)=4.343di��l+Ageo 

(clear atmospheric and 
geometric attenuation) 

-- 0.9 6.33 

Power margin (dB) [RF amplification - RF 
gain] 

-- 13 Received power at the RG 
(dBm) 

O3 -4.6 -10.03 

Attenuation due to E/O and O/E conversion 
[Required power- (2×optical loss) 

-- 9.2 Total loss (dB) of RoFSO 
link  

-- 1.9 7.33 

Indoor POF link   
RF loss of the RoPOF link (dB) -- 20.1 Pi (dBm) O4 -3 -3 
Received power at the indoor link (dBm) E4 -18.3 L fibre (dB)  

100 m POF and connectors 
loss 

-- 6 6 

RF amplifier gain (dB) -- 23.6 Received power at the indoor 
link (dBm) 

O5 -9 -9 

Amplified power at the indoor link (dB) E5 5.3 Total loss (dB) of RoPOF 
link  

-- 6 6 

RF Gain (dB) -- 7.1 PR (dBm)  -18 -18 
Power margin (dB) [RF amplification - RF 
gain] 

-- 16.5 LM (dB)  13.4 8.97 

Attenuation due to E/O and O/E conversion 
[Required power- (2×optical loss) 

-- 4.5 Maximum FSO span  ~755 m ~80 m 
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4.5.3 EVM R esults Analysis   

Figure 4.8 depicts the EVM versus the LTE signal bandwidth for QPSK, 16-QAM 

and 64-QAM modulation schemes for 100 m of PF-GI-POF to perform the RoPOF 

only, RoPOF-FSO link with and without fog, as well as the B2B link, which describes 

the direct transmitter to receiver link. The results are shown in Figure 4.8, which 

 

(a) 

 

(b) 

 

(c) 

Figure 4.8: EVM performance for the proposed hybrid system using :(a) 
QPSK, (b) 16-QAM, and (c) 64-QAM 
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represent the average of four sets of measurements under identical conditions. 

Moreover, the 3GPP EVM requirement for 4G-LTE is highlighted in Figure 4.8 as 

17.5%, 12.5% and 8% for the QPSK, 16-QAM and 64-QAM, respectively [196]. For 

the LTE QPSK, the EVM values for employing the PF-GI-POF only, without the FSO 

channel is close to the level of the B2B with the increase rate of ~1% due to short fibre 

distance and high optical power (-2.7 dBm) that are launched to the RG. On the other 

hand, the EVM is doubled when the FSO channel is added for the setup, which 

highlighted the effect of additional losses generated by the fibre/FSO coupling and the 

geometric losses. Furthermore, the EVM increased from ~3.5% to ~16% for the           

20 MHz bandwidth due to fog-induced attenuation in 100 m visibility, which can be 

classified as thick fog [97, 104, 198].  

Nevertheless, these results indicate an error-free transmission with the QPSK 

scheme up to 33.6 Mbps, which is achieved with EVM values less that the LTE EVM 

limit. Figure 4.8(b) and (c) illustrate the results of the 16-QAM and 64-QAM LTE 

transmissions, respectively. The transmitted data rate for the 16-QAM increased to  

67.2 Mbps and up to 100.8 Mbps for 64-QAM. Notably, both modulations indicate a 

successful transmission for the clear FSO channel. However, the performance of the 

proposed hybrid system is degraded with high EVM values for the FSO link with fog, 

which displays the EVM value of ~17% and > 19.5% for 16-QAM and 64-QAM at   

20 MHz bandwidth, respectively. As predicted, QPSK displays lower EVM in 

comparison to the 16-QAM and 64-QAM, because of the decreasing SNR for higher 

modulation order, which leads to the increased symbol error probability [192]. 

Accordingly, the SNR power penalty for both 16-QAM and 64-QAM can be 

determined with respect to the EVM limit.  
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Figure 4.9 demonstrates the measured PP against the signal bandwidth with respect 

to the required SNR at the EVM limit, which are 18 dB and 22 dB for the 16-QAM 

and 64-QAM, respectively. The PP increases in linear with the LTE signal bandwidth 

due to the drop in the SNR value, which reaches a maximum value of ~3 dB and          

~8 dB at 20 MHz bandwidth for 16-QAM and 64-QAM modulation schemes, 

respectively. This indicates the required additional power to compensate the thick fog-

induced attenuation. 

4.6 Summary 

To sum up, a hybrid RoF-FSO was experimentally investigated under atmospheric fog 

effect. This chapter was divided into two main sections, the first section outlines the 

adoption of SMFT to address to the modal dispersion effect created in MMF link and 

hence, improving the overall hybrid network performance. The effectiveness of the mode 

filtering technique was verified by means of using power budget and EVM analysis. An 

error-free transmission was demonstrated at up to 20 MHz signal bandwidth for 1 km 

MMF and       11 m FSO under thick fog effect with the EVM of ~8 %, which is less than 

the 3GPP LTE requirement, i.e. 12.5% for 16-QAM . On the other hand, the second section 

 

Figure 4.9: Power penalty vs LTE signal bandwidth for the 16-QAM and 64-
QAM modulation schemes [119] 
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of this chapter demonstrated the use of 100 m PF-GI-POF as indoor optical network 

proposing a practical design of the RG to extend the LTE signal coverage in rural areas. In 

thick fog effect, a successful transmission of the 4G-LTE signal with QPSK and up to     

33.6 Mbps was demonstrated while observing ~3 dB and ~8 dB of power penalty under 

the same fog condition at the LTE bandwidth of 20 MHz for 16-QAM and 64-QAM, 

respectively. To conclude, the measurement results have verified the capabilities of the 

proposed hybrid radio over FSO and radio over POF system under fog condition.  



125 
 

Chapter 5                                                                                    

Optimising the 4G-LTE indoor coverage 

using PF-GI-POF 

5.1 Introduction  

In chapters 3 and 4, a design of the hybrid system was proposed for the last mile 

access networks under the impact of the outdoor weather conditions. This chapter is 

dedicated to an efficient design for the indoor coverage of the 4th generation-long term 

evolution (4G-LTE) signals in urban environments. 

  For the last few years, the rapid development of mobile communications has 

evidently become one of the most important issues to mobile operators in meeting up 

the tremendous demand with regard to coverage and data services. A massive growth 

and considerable deployment of optical systems have offered foreseen solutions in 

coping with the wireless traffic bottleneck [69]. A recent survey in [209] showed that 

the total mobile subscriptions up to the year of 2014 were about 6.7 billion and the 

number is expected to reach around 9.3 billion by the end of 2019. Furthermore, it is 

predicted that the explosion of bandwidth demands may increase rapidly over the next 

few years. The traffic reached up to 15 gigabyte per capita in the year of 2016, which 

is more than 4 gigabyte per capita reported in the year of 2011 [28]. It should be noted 

that, [28] and [26] posited that between 80% to 90% of data services and 2/3 of mobile 

calls take place inside buildings, while a poor indoor coverage experienced by 

households and businesses are 45% and 30%, respectively. The typical approaches 
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being adopted for improving the coverage are based on the �µ�R�X�W�V�L�G�H�� �L�Q�¶1 and high 

power antennas. However, these solutions have a number of drawbacks such as high 

cost of base stations implementation, as well as low 4G-LTE penetration level and 

beyond network operating at 2 GHz [26]. Consequently, the sizes of wireless cells at 

these frequencies tend to be small. In general, the wireless cells sizes are > 1 km,   

~500 m, ~100 m, <30 m for the macrocell, microcell, picocell and femtocell, 

respectively. It is noteworthy that 4G-LTE provides a framework that has the ability 

to enhance the coverage and capacity in indoor wireless applications by means of 

using home eNB (HeNB) based on small cell scenarios [5, 17]. The integration of 

optical and wireless networks is one of the most promising wireless access technology 

in congested urban areas, especially in terms of increased capacity, coverage and 

energy consumption [69].  

The radio-over-fibre (RoF) technology has attracted significant interest for in-

building applications due to its advantages, such as enhancing the coverage by means 

of low power distributed antenna system (DAS) and utilizing the wide bandwidth of 

optical fibre�����+�H�Q�F�H�����5�R�)���L�V���G�H�H�P�H�G���W�R���K�D�Y�H���W�K�H���S�R�W�H�Q�W�L�D�O���W�R���E�H���D���µ�J�U�H�H�Q�¶���D�O�W�H�U�Q�D�W�L�Y�H���W�R��

the conventional approaches to wireless access. In [210], it has been reported that in 

the dual transmission of a baseband signal based on electrical multiplexing at             

~10 Gbps and a 60 GHz wireless, radio frequency (RF) is capable of offering the data 

rate of 155 Mbps. As regards the optical transmission part, a dispersion shifted single-

mode fibre (SMF) at a wavelength of 1550 nm together with an external modulation 

(EM) has been employed. Simultaneous baseband, non-return to zero data format at 

2.5 Gbps, and RF sub-carrier multiplexed based cable television transmission over a 

5 km of standard multimode fibre was demonstrated in [211]. In comparison to the 

                                                 
1This term is used in [24] to describe using outdoor macrocells to enhance the indoor coverage. 
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glass optical fibres, plastic optical fibre such as is polymethylmethacrylate (PMMA) 

and perfluorinated graded-index polymer-optical fibre (PF-GI-POF) are deemed to be 

more compatible to be employed in high-speed/medium-range home/office based 

networks owing to the fact that they are less brittle and more flexible. Furthermore, 

PF-GI-POF offers higher bandwidth in the infrared (IR) spectra, particularly both at 

1st and 2nd optical transmission windows of 850 and 1300 nm, respectively [212]. 

Figure 5.1 illustrates a typical PF-GI-POF based network for wireless services. The 

RF signal captured either by a directional donor antenna, which is carried via a coaxial 

cable to the residential gateway (RG), or by the outdoor optical channel. The RG is an 

interface between the outdoor and indoor optical networks. Following the electro-

optical conversion at RG, the optical signals are distributed within buildings through 

POFs to the remote unit (RU). The converted RF signal is broadcasted by means of 

low power antenna modules with a typical coverage area in the range of tens of metres 

(i.e., femtocell size).  

 

Figure 5.1: In-building PF-GI-POF network for indoor LTE coverage [191] 
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Notably, the utilisation of DAS and femtocell is the most promising scenario in 

improving the indoor coverage and the quality of service (QoS) [36]. It is worth 

highlighting that the key advantage of the proposed system is the employment of PF-

GI-POF, which offers ease of installation and low maintenance cost devices, as well 

as the possibility of sharing the existing ducts with electrical cables [44]. In [127], 

POF channel was deemed to be a cost competitive medium compared to SMF, silica 

based multi-mode fibre (MMF) and copper CAT-5E channel types for in-building 

network applications. However, higher fibre loss is the most significant factor that 

may affect the system performance and limit the coverage span. Consequently, it was 

reported that the typical distance for residential buildings are about 100 m [49] and 

less than 300 m [48]. In [212], an extension of the classical baseband existing network 

using PF-GI-POF bandwidth with the purpose of adding further services in a 

home/office network was proposed to offer indoor coverage of wireless signals using 

the RoF technology. The system uses 100 m of PF-GI-POF, which offers simultaneous 

transmission of 10 Gbs at 850 nm and 1300 nm. Additionally, a system based on      

62.5 µm diameter of PF-GI-POF utilising the ultra-wideband (UWB) signal at a data 

rate of  53.3 Mbps over 200 m is demonstrated in [46].  

This chapter demonstrates a successful transmission by means of employing       

300 m of PF-GI-POF in RoF based network using single carrier frequency of 

quadrature phase shift keying (QPSK), 16-quadrature amplitude modulation (16-

QAM) and 64-QAM modulation, which are used for the wireless transmission in 4G-

LTE standard [22]. Notably, an error vector magnitude (EVM) of ~3.5% is achieved 

for 300 m channel distance and transmitting data rate of up to 60 Mbps in 2.6 GHz 

band. The system performance is evaluated by means of capturing the eye and 

constellation diagrams in order to estimate the bit error rate (BER) and the EVM 
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values, in addition to determining the required power penalty to achieve the LTE EVM 

limit for each modulation scheme. The author has published the findings of in-building 

radio-over-POF (RoPOF) system in [191]. 

5.2 POF Transfer Function 

Polymer optical fibre has in the last decade, attracted considerable attention 

especially in short and medium optical communication network applications. POF 

channel model is typically related to the channel transfer function either in time 

domain [162] or frequency domain [161], which may describe the linear distortion in 

the POF channel as regards its attenuation and dispersion. The transfer function 

analysis provides an indication of the overall system frequency response in terms of 

transmission parameter S21 over the frequency range. An Agilent E5071C ENA 

network analyser is employed to measure the end-to-end system transfer function, 

including the vertical cavity surface emitting laser (VCSEL) and photodetector (PD) 

as depicted in Figure 5.2. The network analyser RF output is set for a range of 

frequencies up 3 GHz and -10 dBm for all measurements. RF signal is used to 

modulate the VCSEL intensively via the Bias-T at the transmitter, which is used to 

 

Figure 5.2: End-to-end system transfer function measurement setup 
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shift the analogue RF signal from bipolar to unipolar in order to drive the VCSEL. 

The VCSEL bias is set to be at 7 mA, which is in the linear characteristic region. 

Moving on, the optical signal is then applied to the PF-GI-POF channel with a distance 

of 100, 200 and 300 m to measure the transfer function for the system without the PF-

GI-POF by means of connecting the VCSEL to the PD via 1 m MMF patchcord. On 

the other hand, the received signal at the receiver side is identified using the PD and 

followed by the low noise amplifier, the output of which is captured using the network 

analyser for further analysis. 

The system transfer function of GI-POF is considered as quasi-static as illustrated 

in [161, 213, 214]. Consequently, its investigation will be employed to predict the 

fading effects of the optical signal travelling along the POF link and subsequently to 

perform the system performance analysis. Figure 5.3 depicted the different lengths of 

transfer function of the POF channel, which is up to 300 m, as well as the transfer 

function for the system without including the POF (i.e., VCSEL only). It should be 

noted that the same parameters were used for all the measurements including biasing, 

RF power and launching condition. At low frequency levels, the transfer function for 

 

Figure 5.3: Measured transfer function for the PF-GI-POF up to 300 m 
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all the setups were degraded due to high attenuation with maximum drop at               

~500 MHz.  

Notably, the system performance fluctuated beyond the baseband, showing high 

level of frequency sensitivity, which is one of the MMF characteristics observed in 

[215] owing to the variations of the mode group powers. The gain is observed to 

significantly decrease with the longer POF channel, which is caused by high 

attenuation levels. Apart from that, the POF transfer function incorporates different 

perturbing effects such as the modal delay and mode dependent attenuation. All these 

effects are the products of the multi-mode propagation inside the POF. Nevertheless, 

this investigation illustrated the linear behaviour of the POF channel. Notably, the 

system transfer function for the VCSEL has almost the same performance for all the 

setups except for the gain degradation with the additional link distance up to 300 m.  

5.3 Proposed System and Theoretical Model 

The proposed practical setup for RoF over the PF-GI-POF channel is shown in 

Figure 5.4 constructed on single carrier modulation (SCM) and the key system 

 

Figure 5.4: Experimental setup of the radio over PF-GI-POF channel 
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parameters are presented in Table 5.1.  The RF signal is generated by means of Agilent 

ESG E4438C vector signal generator (VSG) with three modulation schemes of QPSK, 

16-QAM and 64-QAM. The VSG produces RF signal in real-time passband frequency 

of 2.6 GHz with 10 MHz bandwidth, the standard LTE signal frequency used in the 

urban areas of Europe [72]. The VSG output is applied for direct modulation (DM) of 

the VCSEL diode (PD-LD Inc.) at a wavelength of 850 nm. The operation of the 

VCSEL can be defined by means of laser differential rate equations that elucidate the 

interaction between carrier density and photon density in active region, in terms of 

rate of change with time evolution using (2.1) and (2.2).   

Figure 5.5 illustrated the characteristics of the VCSEL, which can be divided into 

three regions, i.e., A, B and C. The laser is off the threshold point at ~ 1.7 mA in region 

A, while region B is the most linear part of the light current (LI) curve and VCSEL is 

biased at 7 mA in order to ensure maximum amplitude swing (i.e., higher signal-to-

noise ratio (SNR)). Region C displays the saturation characteristics of laser beyond 

the biasing current of 12 mA. The VCSEL diode is deemed as a suitable candidate for 

Table 5.1: System parameters 

Parameter Values 

SCM modulation QPSK, 16-QAM 
Bit rate QPSK=20 Mb/s, 

16-QAM= 40 Mb/s 
64-QAM= 60 Mb/s 

Carrier frequency 2.6 GHz 
Signal bandwidth 10 MHz 
VCSEL bias 7 mA 
Optical launch power -14 dBm to 3 dBm 
Wavelength 850 nm 
Linewidth 3 nm 
POF core size 62.5 µm 
POF NA 0.19 
POF loss 60 dB/km 
POF length 100 m, 200 m, 300 m 
PIN PD responsivity 0.525 A/W 
LNA-gain, NF 25 dB, 2.5 dB 
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short distance transmissions due to its fair trade off between the cost and device 

characteristics (i.e., linewidth, power, and low threshold current). For biasing VCSEL 

and controlling its temperature, a combined device from Newport is used.  

The transfer function of PF-GI-POF has been discussed in chapter 2, in which, it 

is defined by compensating (2.16) and (2.18) in (2.15). Depending on the wavelength, 

core diameter, and the numerical aperture, the propagation of light is driven by a 

number of mode groups, which can be estimated as 22 using (2.19). Each guided mode 

group has a particular propagation velocity that is able to produce a modal delay and 

mode-dependent attenuation. Apart from the mode dependent attenuation, the transfer 

function model of the PF-GI-POF also depicts the effect of intramodal (chromatic) 

and intermodal dispersion, while the mode coupling effect can be disregarded for the 

GI-POF [161]. Following the measuring of end-to-end system transfer function, the 

practical transfer function is employed in the simulation model to predict the system 

performance. Also, the system using 62.5 µm PF-GI-POF (Chromis Fiberoptics) of 

100, 200, and 300 m length, which is optimised to operate at 850 nm are tested . Figure 

5.6 depicted the linear increment of the fibre loss with the distance and the fibre 

attenuation coefficient is ~0.06 dB/m.  

 

Figure 5.5: LI curve of the VCSEL showing the operating regions [191] 
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The RF signal at the receiver is extracted using a Thorlabs PD and a low noise 

trans-impedance amplifier (TIA) prior to being processed by Agilent MXA signal 

analyser, together with the Agilent 89601B vector signal analyser (VSA). The VSA 

software is used to analyse the detected symbols, i.e., the estimate of EVM and BER. 

The EVM describes the receiver performance in the presence of channel 

impairments and noise. The detected symbol Sr(xs) is represented by: 

 , (5.1) 

where g(xs) is the multiplicative channel impairment which is due to the multipath 

fading and dispersion that may lead to ISI. St(xs) is the transmitted value of the xs
th 

symbol and ��(xs) is the additive white Gaussian noise (AWGN) with a power spectral 

density of N0/2 [53]. In an AWGN channel, with g(xs) �§�� ���� �D�Q�G�� �D�� �O�D�U�J�H�� �Q�X�P�E�H�U�� �R�I��

symbols, the ideal EVM is expressed using (3.17) as [192]: 

 . (5.2) 

 

Figure 5.6: Practical measurements of the PF-GI-POF attenuation up to 300 m 
[191] 
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However, as regards SNRs and considering the channel impairments, the 

measured EVM is expected to be less than the ideal values [192]. 

BER is the popular criterion for assessing the performance of communication 

systems, while EVM metric has the advantage upon BER due to the fact that it 

provides the desired measure of performance prior to the demodulation process [216]. 

In the course of comprehending the deviation of EVM values with respect to its ideal 

level, the BER will be evaluated and linked to the EVM performance. BER is 

estimated using the eye diagram by means of the Q-factor for each value of SNR. The 

Q-factor represents the ratio of eye opening to the total noise, which is determined by 

using the following equation [53, 146]: 

 , (5.3) 

where µ0, µ1 are the mean values of low and high levels, respectively. �10, �11 are the 

standard deviation of the low and high signals. Consequently, a higher eye opening is 

indicated by lower BER, which is estimated using [146]: 

 . (5.4) 

Additionally, the BER is the approximation of the EVM value as [217, 218]: 

 , (5.5) 

where M is the constellation size, km is the modulation format-dependent factor, which 

is specified in [218] as 1, 9/5 and 7/3 for the QPSK, 16-QAM and 64-QAM, 

respectively.  

Hence, the EVM value can be derived as: 
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 . (5.6) 

In (5.5) and (5.6), the BER-EVM performance is dependent on the modulation 

format even with the normalisation process in (3.17) with due consideration for the 

nonlinear effects and electronic noise especially at lower SNR, where the km parameter 

is a dominant effect on the error estimation process. 

It should be noted that the required value of BER for an un-coded wireless 

communications is 3.8×10-3 [199], while the required EVM for the 3rd generation 

partnership project (3GPP) in 4G-LTE systems are 17.5 % , 12.5%, and 8% for the 

QPSK, 16-QAM, and 64-QAM, respectively as outlined in [196]. Hence, in this 

analysis, the relationship between EVM and BER is deduced and the results are 

compared with the predicted data extended from the simulation model that uses the 

system transfer function to estimate the EVM values. The simulation model is 

employed to estimate the true EVM values at low SNR due to the fact that errors in 

estimation process performed by the VSA software are caused by high symbol error 

probability on this range of SNR. 

5.4 Results and Discussions 

Figure 5.7 illustrates the EVM plots captured by VSA against the optical launch 

power (OLP) for QPSK, 16-QAM, and 64-QAM. The OLP is controlled by changing 

the bias current from 2 mA up to 12 mA. For the back-to-back (B2B) system, the RF 

signal and the input electrical power used were 2.6 GHz and -30 dBm, respectively. 

Apart from that, the regions are defined in accordance with the VCSEL characteristics 

(see Figure 5.5). In region A with low OLP values and DM effect, the positive 

frequency chirp (PFC) was stimulated by signal distortions, which increased the EVM 
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values for the three modulation schemes [219]. Moreover, this particular performance 

is dependent on the dynamic range characteristics of the VCSEL as depicted in Figure 

5.5, in which, low modulation index leads to a decline in SNR, which in turn, leading 

to an increase in EVM. With regards to region B, the high dynamic range of the 

VCSEL L-I curve shown in Figure 5.5 can increase the output OLP that leads to a high 

SNR, which was shown by lower EVMs for the three modulations. At -2 dBm, EVM 

values of ~8.5%, ~6 %, and ~ 2.5% were observed for QPSK, 16-QAM, and 64-QAM, 

respectively. Finally, the difference of EVM between the three modulations was 

observed to increase with OLP owing to the nonlinear behaviour of VCSEL that were 

exhibited at high bias currents [220].  

In addition to determining the OLP, the EVM performance against the SNR values 

has been determined, which is presented in Figure 5.8 for transmitting 20 Mbps,          

40 Mbps and 60 Mbps using QPSK, 16-QAM and 64-QAM modulation formats, 

respectively, up to 300 metres of PF-GI-POF. The EVM value was estimated using 

VSA software, which analyses the constellation diagram of received signal. On the 

other hand, SNR was measured using VSA by means of calculating the ratio between 

the measured signal power to measured noise power over the signal bandwidth.  

 

Figure 5.7: The EVM against OLP performance of B2B QPSK, 16-QAM and         
64-QAM [191] 
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Figure 5.8 depicts the plots for B2B links and the predicted data obtained by 

employing the MATLAB TM simulation model, where the SCM signal is generated at 

the transmitter in baseband either in QPSK, 16-QAM or 64-QAM at 10 MHz 

bandwidth. The baseband signal is then converted into a passband signal at 2.6 GHz, 

which is used to direct modulate the VCSEL that is modelled by (2.1), (2.2) and (2.3). 

The optical signal is then transmitted over the PF-GI-POF channel, which adopts the 

measured transfer function explained in section (5.2). Hence, the effect of modulation 

order on the EVM for the same SNR can be observed. The EVM difference of its 

estimated value increased for the large modulation order due to high symbol error 

probability, as highlighted in [192]. It should be noted that at lower values of SNR, 

the measured values were less than the predicted data particularly for 16-QAM and 

64-QAM. This is due to the error in the estimation process of the constellation point. 

Accordingly, a theoretical model will be used to estimate the true EVM values at the 

low SNR values. However, higher values of SNR demonstrated that the measured 

plots are much closer to the predicted results as the ISI started to be mitigated. The 

maximum acceptable EVMs for QPSK, 16-QAM, and 64-QAM are 17.5%,  12.5%, 

and 8%  at SNR of at ~15 dB, ~16.2 dB, and ~17.5 dB, respectively, which were in 

 

Figure 5.8: Practical EVM performance of the RoPOF using QPSK, 16-QAM and 
64-QAM modulation schemes [191] 
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the error-free levels outlined in [221]. These values were achieved up to 300 metres 

transmission span for the QPSK, 16-QAM and 64-QAM. Furthermore, the EVM-BER 

performance was scrutinized for the three modulation formats, B2B and a range of PF-

GI-POF length as shown in Figure 5.9. First, the received data were captured using 

the signal analyser, which was followed by the estimation of BER estimated using 

(5.3) and (5.4). Subsequently, the EVM value will be estimated using (5.6) in 

comparison to measured values for QPSK, 16-QAM and 64-QAM. Also, the 

constellation diagrams and plots for B2B links at BERs of 10-5 for the three modulation 

formats were displayed, which is lower than the forward error correction (FEC) limit 

of 10-3 [199]. This figure complements Figure 5.8, in which the maximum acceptable 

EVM corresponded with the targeted BER, depending on the modulation type since 

the EVM standard for 64-QAM should be less than what of QPSK and 16-QAM due 

to the high noise sensitivity of the high order modulation schemes compared to the 

low modulation order.  

 

 

Figure 5.9: The EVM against BER performance of the RoPOF using QPSK, 16-
QAM and 64-QAM modulation schemes [191] 
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Furthermore, the system performance was degraded for longer POF distance 

owing to the high attenuation levels. Figure 5.10 indicates the EVM performance for 

a range of the RF input power for the three modulation formats up to 300 m of PF-GI-

POF channel using the experimental setup shown in Figure 5.4. To compensate the 

 

(a) 

 

(b) 

 

(c) 

Figure 5.10: The EVM against input RF power performance of the RoPOF using     
(a) QPSK, (b) 16-QAM and (c) 64-QAM modulation schemes 
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channel losses, either optical or electrical power should be increased. In this 

investigation, the RF power was optimised while the VCSEL biased with 7 mA for 

the all measurements. At this juncture, the effect of POF losses on the RF power is 

investigated in order to achieve the required 4G-LTE EVM for each modulation type. 

This exploration may lead to the estimation of the increased necessary in input signal 

power to offset the EVM degradation, which is referred to as the power penalty.  

Figure 5.11 illustrates the input power penalty against the PF-GI-POF length for 

the specified EVM limit of 17.5%, 12.5% and 8% for the QPSK, 16-QAM and 64-

QAM modulation schemes, respectively. Notably, the electrical power penalty values 

were related with the optical loss of PF-GI-POF (see Figure 5.6). It should be noted 

that for such transmission spans, the most dominant effect is the channel attenuation. 

Power penalty depends primarily on the channel attenuation since a low OLP is 

applied, and thus, channel nonlinear effects do not influence the system performance. 

Moreover, the increment of power penalty was not dependent on the modulation order 

and the transmitted data rate, which shows the low levels of modal dispersion up to 

300 metres of PF-GI-POF.  

 

Figure 5.11: Power penalty vs POF length for the QPSK, 16-QAM and 64-QAM 
modulation schemes [191] 
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5.5 Summary 

To sum up, the implementation of RoF by means of employing PF-GI-POF for 

QPSK, 16-QAM, and 64-QAM was validated both theoretically and experimentally 

in this chapter. The scenario of adopting DAS for short-distance communication 

systems was also demonstrated by providing the RF signals. The end-to-end system 

transfer function was practically investigated to be employed in the simulation model 

with the aim of accurately estimating the system performance at low SNR values. 

Apart from that, the advantage of using a VCSEL laser was illustrated by employing 

low biasing current and obtaining lower values of EVM at OLP of about -2 dBm for 

the three modulation types. The relationship among EVM, BER and SNR were 

investigated both practically and theoretically, in order to show that the system can 

operate within the specified EVM limits of 17.5%, 12.5% and 8% for QPSK, 16-QAM 

and 64-QAM, respectively up to 300 metres transmission span. An EVM of ~3.5% 

and BER of 10-5 was achieved in transmitting 60 Mbps over 300 metres PF-GI-POF 

length. Finally, an investigation was carried out of the input signal power penalty for 

the three modulation schemes and a range of PF-GI-POF length followed by the linear 

behaviour of the PF-GI-POF channel being outlined and showed that the fibre 

attenuation was the most significant factor of such networks in this range of POF 

distance. 
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Chapter 6                                    

Conclusions and Future Work 

6.1 Conclusions 

The drastic development along with the explosive growth observed in the 

telecommunication systems are reflected in the recent steady rise of the number of 

subscribers and high data traffic. Such a development necessitates a mobile 

technology, which can efficiently cope with the bandwidth-hungry and delay-sensitive 

applications. It is worth highlighting that the 3rd generation partnership project (3GPP) 

adopted the 4th generation- long term evolution (4G-LTE) as a framework to meet both 

the rapid recent and future growth in relation to data traffic requirements. The 4G-

LTE and the next generation mobile technologies have adopted higher frequency 

bands in order to address the significant data evolution. However, as it was discussed 

earlier in chapter 2, the radio frequency (RF) signals that are transmitted over 

frequencies relatively higher than 2 GHz may experience a severe path loss. Such a 

loss may exceed 100 dB at 2.6 GHz band along with the multipath fading in urban 

environments. Consequently, rather lower penetration levels to the walls and buildings 

may result in poor indoor coverage.   

Therefore, this thesis proposed an integration between the radio-over-fibre (RoF) 

and radio-over-free space optics (RoFSO) technologies in terms of a hybrid RoF-FSO 

system in order to extend the wireless services for the access and in-building networks 

for both rural and urban areas. The thesis began with an overview of the evolution of 

the mobile communication technologies, which was delved deeper in Chapter 1. An 
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overview of the hybrid RoF-FSO including the related optoelectronic devices was 

outlined in Chapter 2. More specifically, the significant features of the RoF and 

RoFSO technologies along with the main applications were demonstrated. In addition, 

a detailed account of the hybrid RoF-FSO system model was provided in terms of the 

transmitter, channel and the receiver. Different modulation schemes, namely intensity 

modulation (IM) and external modulation (EM) that are adopted in the hybrid RoF-

FSO system were described to capture their advantages and capabilities in supporting 

relatively higher data rate and the transmission length. Furthermore, a fair comparison 

between different light sources, which can possibly be adopted in the hybrid RoF-

FSO, was drawn. It was discovered that the IM method with the vertical cavity surface 

emitting laser (VCSEL) and EM with Distributed feedback (DFB) laser offered the 

best characteristics for the indoor and outdoor network applications, respectively. 

Therefore, both lasers were studied in terms of their structures and the mathematical 

models, which can be used to model the laser diode for the indoor networks. Three 

channels were introduced in this research, namely the multi-mode fibre (MMF), 

polymer optical fibre (POF) and FSO, for which the impairments of each channel were 

discussed in detail along with the associated mathematical expressions.  

In Chapter 3, the hybrid radio over MMF and FSO channels (RoMMF-FSO) was 

proposed to improve the 4G-LTE indoor performance for the application of 

connecting multiple in-building RoMMF networks using FSO link in the last-mile 

access network. Besides, the modal dispersion that was induced in the MMF channels 

was demonstrated. In addition, the single-mode filtering technique (SMFT) as a cost-

effective and simple design technique, which can be used to mitigate the modal 

behaviour, was also focused. The system performance was evaluated theoretically and 

practically in terms of the total system transfer function, optical beam profile and the 
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error vector magnitude (EVM) vs signal-to-noise ratio (SNR) performance. The 

obtained results revealed the modal behaviour of the MMF in terms of random 

variations of the transfer function beyond the baseband with high sensitivity to the 

frequency changes. Moreover, the pass band bandwidth was limited to ~1 GHz, which 

may potentially cause a significant degradation for the LTE signals operating at          

2.6 GHz. On the contrary, the adoption of the SMFT may filter off the propagated 

mode groups except for the fundamental mode. As a result, SMFT was found to have 

enhanced the transfer function in terms of a dramatic decrease in the fluctuations and 

increased the channel bandwidth by 2 GHz at least owing to diminishing the modal 

behaviour of the MMF channel. 

Furthermore, the experimental results of the received beam profile indicated that 

the adoption of the SMFT along with the gradient index (GRIN) lens helped improve 

the coupling efficiency and the full width at half maximum (FWHM) by 13.6 dB and  

~100 µm. Additionally, the proposed technique also enhanced the EVM performance 

by 4% for the clear atmospheric channel. As it was highlighted earlier, the system 

performance was also validated under real outdoor environment by two turbulence 

levels on the FSO channel, which were under weak turbulence regime. The 

experimental EVM results under turbulence showed the ability of transmitting         

67.2 Mbps over 1 km MMF, 2 m FSO and 100 m MMF by retaining the error free 

EVM requirements for the 3GPP LTE, which was 12.5 % for 16-quadrature amplitude 

modulation (16-QAM). On the other hand, the theoretical analysis of the EVM 

performance pointed to the ability of extending the FSO channel of up to 500 m 

achieving the EVM < 12.5%, which indicated that the proposed technique can be 

adopted successfully in the real environment for the last-mile access networks.  
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Further research on the RoMMF-FSO was outlined in chapter 4. The SMFT was 

tested in the atmospheric fog channel, which may potentially cause a sever degradation 

in the SNR value. A 1 km MMF and 11 m FSO link were used to design the hybrid 

RoMMF-FSO for transmitting the 4G-LTE signal at 16-QAM baseband modulation 

of 5, 10, 15 and 20 MHz. The pass band frequency was observed at 800 MHz, which 

is notably the typical wireless band for the rural areas. The hybrid system was 

proposed to extend the 4G-LTE indoor coverage in the sparsely populated areas where 

the infrastructure for the fibre optical networks was rather scarce and scattered. The 

system performance was investigated in terms of power link budget and EVM 

performance. The obtained results revealed a successful transmission of the 4G-LTE 

signal of up to 20 MHz signal bandwidth at 67.2 Mbps bit rate with the EVM of            

~8 %, which is less than the 3GPP LTE requirements. In addition, the link budget 

analysis confirmed that the proposed hybrid system was able to operate even with 

longer FSO channel, but only up to 3 km and ~140 m for the clear and thick fog 

atmospheric weather, respectively.  

On the other hand, the use of the POF instead of the MMF was investigated in 

chapter 4. A hybrid radio-over-POF and radio-over-FSO (RoPOF-FSO) was 

demonstrated experimentally with the use of 11 m of FSO channel and 100 m of 

perfluorinated graded-index POF (PF-GI-POF) as in-building network. In this regard, 

the FSO channel was used to transmit the downlink (DL) 4G-LTE signals from the 

enhanced NodeB (eNB) to the residential gateway (RG). It has to be noted that the 

4G-LTE signal was generated for the single carrier modulation (SCM) quadrature 

phase shift keying (QPSK), 16-QAM and 64-QAM in order to transmit bit rates of up 

to 33.6, 67.2 and 100.8 Mbps, respectively. In this study, a design for the RG was 

introduced, which can be used as the interface between the access and indoor 
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networks. The link assessment was achieved for the link budget and EVM 

performance under the effect of clear and thick fog atmospheric channel. In the clear 

channel, the obtained EVM results indicated a successful transmission of the 4G-LTE 

signals of up to 100.8 Mbps fulfilling the 3GPP LTE EVM requirements for the three 

modulation schemes. In thick fog fading effect, however, maximum successful 

transmission was observed only up to 33.6 Mbps, where the higher bit rate signals 

required a power penalty (PP) up to ~8 dB for transmitting the 100.8 Mbps signal.  

Focusing on the RoF network, chapter 5 demonstrated theoretical and 

experimental investigations of the in-building RoF using PF-GI-POF links up to       

300 m. The RoF links transmitted the three SCM modulation signals, namely QPSK, 

16-QAM and 64-QAM at 2.6 GHz band. The DAS scenario was presented by 

providing the home RU with the RF signal through the optical fibres. The features of 

the PF-GI-POF were introduced for the in-building networks and to use the VCSEL 

as a good balance solution between the cost and the quality. The VCSEL 

characteristics were investigated in relation to the light current (LI) curve and the 

EVM vs optical launch power (OLP), which revealed the low VCSEL biasing current 

and the minimum EVM value at ~ -2 dBm for the three modulation formats. The 

system performance was evaluated theoretically and practically in terms of the total 

transfer function, EVM, bit error rate (BER) and OLP. The obtained results indicated 

that the capacity of the proposed system to may help operate successfully within the 

3GPP LTE EVM limits of up to 300 m of PF-GI-POF. An average EVM of 3.5% and 

BER 10-5 was reported for transmitting 60 Mbps over the system that can operate within 

the specified EVM limits of 17.5%, 12.5% and ~8% for QPSK, 16-QAM and 64-QAM, 

respectively up to 300 metres transmission distance. A successful transmission of 60 Mbps 

was achieved with EVM of ~ 3.5% and BER of 10-5. Finally, the PP for the input signal 
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was investigated by relying on three modulation formats. The PP results showed the linear 

behaviour of the PF-GI-POF and the results outlined that the fibre attenuation was the 

most significant factor of such networks within such a range of POF distance. 

To conclude, a hybrid RoF-FSO system was introduced to improve the performance 

of 4G-LTE signal for the radio over indoor MMF system in the last mile bottleneck 

access networks. Moreover, the SMFT technique was adopted to mitigate the modal 

effects and deliver 67 Mbps under weak turbulence effect within the 12.5% LTE EVM 

requirements. The SMFT was tested under thick fog effect with 100 visibility range 

to deliver 67 Mbps with the EVM of ~8%. Furthermore, Hybrid RoPOF-FSO was 

presented with a design of the RG. The proposed system was verified by transmitting 

LTE signal with different data rate up to 100 Mbps. Finally, Indoor RoF was 

investigated using different lengths of PF-GI-POF up to 300 m. Successful 

Transmitting of 60 Mbps was achieved with ~3.5% EVM and 10-5 BER. 

6.2 Future Works 

It is noteworthy that within the given time frame, the present study has contributed to 

the design and development of the hybrid RoF-FSO and in-building RoF networks. In this 

section, the author recommends further research, which will be carried out in the future to 

extend the research reported in the present thesis. 

In this research, the proposed hybrid RoF-FSO system was investigated using 

downlink (DL) LTE signal. In order to further emphasize on the LTE technology, uplink 

(UL) LTE signal can be used in the hybrid RoMMF-FSO for further investigation on using 

the SMFT technique.  

In hybrid RoMMF-FSO system, the investigation will be verified practically by 

means of using longer FSO channel to connect multiple buildings. Additionally, it is 
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deemed that further investigations can cover multiple effects that may impact on the 

system performance, such as the amplified spontaneous noise (ASE) produced by the 

erbium-doped fibre amplifier (EDFA). 

Apart from that, the theoretical and experimental investigation for the present 

study focused on the SMFT as simple, cost-effective and powerful technique to 

mitigate the modal behaviour of the MMF links in comparison to the typical signal 

processing tools such as the digital equalizers. However, the indoor networks beyond 

300 metres of PF-GI-POF channel may lead to a strong effect of the fibre attenuation 

and modal dispersion. This, in turn may degrade the SNR and significantly increase 

the pulse broadening. It should be noted that an equaliser in the receiver is required to 

compensate the amplitude and phase distortions induced by the optical propagations. 

Therefore, further research looking into the design of less complexity equalizers that 

may be used at the receiver side to extend the transmission distance is of utmost 

importance. On comparison, the non-linear equalizers are considered as attractive 

candidates owing to their better performance than the linear types. 

On the other hand, the POF attenuation is the most dominant distortion factor 

because of its operation within the 850 nm. An amplification solution is highly 

recommended in order to compensate the high level of loss. Currently, the tapered 

semiconductor optical amplifier has drawn the attention of many as an optical 

amplifier in the 850 nm wavelength. Furthermore, the employment of such amplifiers 

may extend the POF channel for longer than 500 m. 

The present study proposes the utilization of VCSEL due to some reasons, namely 

its low cost, low threshold point and narrow circular beam, which improve the fibre 

coupling. However, its low output power has the tendency to be adopted in short-
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distance networks. Notably, the nonlinear of VCSEL is a limiting factor in the 

analogue optical communications. Hence, an intensive investigation is recommended 

in order to enhance the in-building optical networks that and the adoption of the 

VCSEL as a light source. 

In the last few years, mobile and wireless networks have made remarkable growth. 

In this regard, the 4G-LTE technology has now been used by the most mobile 

operators worldwide. Meanwhile, the dramatic development of the mobile data 

services driven by the smart devices and broadband applications has triggered the 

investigation of the fifth generation (5G) for the next generation of the mobile 

communications. Hence, further study on the hybrid RoF-FSO system using 5G 

mobile technology is highly recommended to cope with the future data traffic 

requirements.  

Finally, the present study investigates the hybrid RoMMF-FSO, hybrid RoPOF-

FSO and RoPOF mainly to enhance the indoor coverage for wireless communications. 

In this regard, the MMF and POF were proposed as an optical channel for short-

distance indoor data applications. Recently, tremendous interest is evident in the 

integration of various data transmission and optical sensing applications. The low cost 

of POF may be employed as temperature and strain sensors for in-building 

environments based on several techniques, such as multimode interference, brillouin-

based distributed sensors and intensity macrobend sensors.  
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