Drăgușin, Virgil, Tîrlă, Laura, Cadicheanu, Nicoleta, Ersek, Vasile and Mirea, Ionuț (2018) Caves as observatories for atmospheric thermal tides: an example from Ascunsă Cave, Romania. International Journal of Speleology, 47 (1). ISSN 0392-6672
|
Text (Full text)
Dragusin et al - Caves as observatories for atmospheric thermal tides.pdf - Accepted Version Available under License Creative Commons Attribution Non-commercial 4.0. Download (827kB) | Preview |
Abstract
As part of a microclimate study at Ascunsă Cave, Romania, we used Gemini Tinytag Plus 2 data loggers to record cave air temperature variability. At one of the monitoring points we recognized the presence of semidiurnal cycles on the order of a few thousands of a degree Celsius that could be produced under the influence of the semidiurnal tidal components of the Sun (S2) or the Moon (M2). Using a Gemini Tinytag Plus 2 data logger with an external probe we measured core rock temperature and showed that it does not influence the cave air temperature on such short time scales. We thus rejected the possibility that Earth tides, mostly produced by the lunar tidal influence on the Earth’s crust, would have had a semidiurnal influence on cave air temperature. Moreover, time series analysis revealed a 12.00-hour periodicity in temperature data, specific for the S2, allowing us to assign these variations to the influence of the thermo-tidal action of the Sun. Using the Ideal Gas Law and assuming a constant volume and amount of air, we calculated that a theoretical change in atmospheric pressure of around 40 Pa was needed to produce the temperature changes we observed. This agrees with published values of atmospheric pressure changes induced by the semidiurnal solar component of the thermal tides (S2(t)). We thus can assign the observed temperature changes to semidiurnal atmospheric pressure changes (S2(p)) induced by the thermal excitation of the Sun. Our study signals the possibility that readily available data from cave monitoring studies around the world could be used in the study of atmospheric tides. Moreover, it appears that Ascunsă Cave acts as a natural meteorological filter on a short time scale, removing the direct thermal influences of the Sun (especially night and day differences) and preserving only the barometric information from the surface.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | cave atmosphere, thermal tide, semidiurnal, S2(t), Romania |
Subjects: | F800 Physical and Terrestrial Geographical and Environmental Sciences |
Department: | Faculties > Engineering and Environment > Geography and Environmental Sciences |
Depositing User: | Paul Burns |
Date Deposited: | 23 Feb 2018 12:55 |
Last Modified: | 01 Aug 2021 08:33 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/33479 |
Downloads
Downloads per month over past year