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Abstract: As part of a microclimate study at Ascunsa Cave, Romania, we used Gemini Tinytag Plus
2 data loggers to record cave air temperature variability. At one of the monitoring points we
recognized the presence of semidiurnal cycles on the order of a few thousands of a degree
Celsius that could be produced under the influence of the semidiurnal tidal components of
the Sun (S,) or the Moon (M,). Using a Gemini Tinytag Plus 2 data logger with an external
probe we measured core rock temperature and showed that it does not influence the
cave air temperature on such short time scales. We thus rejected the possibility that Earth
tides, mostly produced by the lunar tidal influence on the Earth’s crust, would have had a
semidiurnal influence on cave air temperature. Moreover, time series analysis revealed a
12.00-hour periodicity in temperature data, specific for the S,, allowing us to assign these
variations to the influence of the thermo-tidal action of the Sun. Using the Ideal Gas Law and
assuming a constant volume and amount of air, we calculated that a theoretical change in
atmospheric pressure of around 40 Pa was needed to produce the temperature changes we
observed. This agrees with published values of atmospheric pressure changes induced by
the semidiurnal solar component of the thermal tides (S,,). We thus can assign the observed
temperature changes to semidiurnal atmospheric pressure changes (S,;,) induced by the
thermal excitation of the Sun. Our study signals the possibility that readily available data from
cave monitoring studies around the world could be used in the study of atmospheric tides.
Moreover, it appears that Ascunsa Cave acts as a natural meteorological filter on a short time
scale, removing the direct thermal influences of the Sun (especially night and day differences)
and preserving only the barometric information from the surface.
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As part of a complex monitoring study aimed at
understanding how climate signals are transferred
through the karst system at Ascunsa Cave, Romania,
we recorded cave air temperature at 10 minutes
intervals at different points along the main passage
of this cave (Dragusin et al., 2017). For this, we used
Gemini Tinytag Plus 2 loggers which, according to
the product data sheet, have a reading resolution of
0.01°C or better and an accuracy of about 0.5°C at
7°C (Gemini Data Loggers, 2014). The cave is located
at about 1,000 m elevation at 45°00'N / 22°36'E.

At one of the monitoring sites, POM A, we observed
semidiurnal cycles in the temperature data, with

*virgil.dragusin@iser.ro

minima both in the late morning and in the evening,
while maxima were observed during the afternoon and
in the early morning. The amplitudes are small, around
0.005°C or less, and are superimposed on larger scale
variations. When consulted, the manufacturer of the
logger, Gemini Data Loggers Ltd., suggested that such
variability could be produced by processes pertaining
to the electronic components, but did not rule out
environmental influences (Blewett, pers. comm.).
These small temperature differences are not
explainable by diurnal thermal changes of the surface
and/or cave ventilation processes that could be based
solely on the radiative forcing of the Sun. Such forcings

The author’s rights are protected under a Creative Commons Attribution-
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are documented in well ventilated caves, usually at
shallow depths. At Ascunsa Cave, we recorded large
diurnal variability only at the POM Entrance site,
where the proximity to the cave entrance permits
exchanges between cave air and outside atmosphere
(Dragusin et al., 2017).

Knowing that there are semi-diurnal periodicities
in Earth and atmospheric tides, we expected one
of the tidal components to be behind the observed
small temperature variations. Earth tides are natural
phenomena caused by the combined gravitational
action of the Moon and the Sun (Melchior, 1983).
Except at the poles, the daily rotation of the Earth on
its axis and the relative positions of the Moon and the
Sun give two high tides (tidal bulges) per day at any
given point on the planet (Baker, 1984).

The most important semidiurnal tidal components
are the lunar one (M,) with a periodicity of 12 h 25 min
14 sec, and the solar one (S,) with a periodicity of 12 h
0 min O sec. Each constituent has a variable amplitude
of the vertical and horizontal tidal displacement as a
function of latitude.

The effects of Earth or atmospheric tides on cave
environments is less studied. A significant influence
regarding fluid flow in karst systems was reported by
Maucha & Sarvary (1970), Williams (1977), and Bayari
& Ozyurt (2014), while Van Ruymbeke
et al. (2004) demonstrated that in an
underground environment variations in
rock temperature are closely influenced
by the M, tidal component.

While the Sun’s influence on the
atmosphere has both a tidal and a
thermotidal dimension (Chapman &
Lindzen, 1969), the thermal component  ~

is dominant. These oscillations are ‘i;mm

excited in different ways, including the % o

absorption of solar radiation (mostly &

by water vapor and ozone), while the 2 7.000 <

restoring force acting on the tides is £ 6.995
6.990

Earth’s gravity (Oberheide et al., 2015).

Between early March and late April 2017, core rock
temperature rose from 7.035 to 7.052°C (Fig. 1).
Cave air temperature followed this variability and
rose by 0.035°C, from 6.990 to 7.025°C. Higher
rock temperature suggests that cave air values are
controlled to some extent by those of the surrounding
rock. Further study could clarify the relationship
between cave air, rock and outside temperature, but
most important for our present study is that we did
not distinguish in the rock temperature data the same
semi-diurnal variability as seen in cave air. Thus, we
can state at the moment that the surrounding rock
might control air temperature on monthly timescales,
but not semi-diurnal ones. Hence, the influence of
lunar tides on cave air temperature is insignificant
and neglected for the moment.

If cave air temperature is not influenced by the
surrounding rock or by air advection from the outside,
we could consider a possible control by surface air
pressure changes, under the Sun’s influence. By
regarding the cave as a closed volume, we can use
the ideal gas law to calculate what pressure change
is needed for the observed temperature shifts. The
equation describing this law is written as

PV=nRT ()
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The thermal excitation mechanism
leads to changes in temperature,
density, and pressure.

A question rises about the possible
influence of lunar tides on cave air,
via rock temperature. To assess this
relationship, we installed in March
2017 another Gemini Tinytag Plus 2
data-logger with an external PB-5001
temperature probe that was buried
inside the limestone cave wall. The PB-
5001 probe has a diameter of 6 mm
and a length of 150 mm. For the
installation, we drilled a 6 mm diameter
hole to accommodate the probe and
we enlarged it towards the exterior in
order to house the handle too. The free
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space left around the handle was filled
with cement. In this way, the probe
is in direct contact with the rock over
its entire surface and is isolated from
interacting with the cave atmosphere.
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Fig. 1. Comparison between cave air (blue) and core rock temperature (gray). The running
average, calculated using a three hour window, is shown for each dataset. A) Variability over
the studied period; B) Detailed view of a 9 day period.
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Atmospheric thermal tides observed in caves

where P is the air pressure expressed in kilopascals
(kPa) , V is the volume in liters (L), n is the amount
of substance of gas in moles (mol), R is the ideal gas
constant (8.314 kPa L mol! K'!) and T is the absolute
temperature of the gas in Kelvin (K).

We take as example a change in temperature
observed on 227 April 2016, from 7.035°C at 15:00
to 7.040°C at 21:00. If we consider the volume (L)
and amount of air (mol) to be constant, the initial air
pressure at 15:00 can be calculated as

PV=nT,R (2)

where P, and T, represent the air pressure and the
temperature at 15:00. Further, the air pressure at
21:00, Py, is calculated as:

PV=nT,R (3)

where T, is the temperature at 21:00.

Solving equations (2) and (3) shows that the
0.005°C temperature rise can be explained by a rise
in atmospheric pressure of 40 Pa. Similar values for
the amplitude of the S, are given for our latitude by
Chapman & Westfold (1956), Dai and Wang (1999) or
Schindelegger and Ray (2014).

Surface pressure data from the Drobeta Turnu
Severin meteorological station, situated 40 km to the
south at 77 m asl, can be used for a direct comparison
between cave air temperature and surface air pressure
variability on semidiurnal scales. For our analysis, we
used hourly surface pressure data available at NOAA-
NCDC (2017).

For a comparison between the cave and the meteo
station, we reconstructed air pressure variability
for two random periods during June and July 2015.
First, we translated the Drobeta pressure data to
local time, from UTC to UTC+2. Then we calculated
the temperature change from 03:00 to 09:00, 09:00
to 15:00, 15:00 to 21:00, and finally 21:00 to 03:00 of
the next day. Using the ideal gas law, we transformed
the temperature variation into theoretical pressure
values (Fig. 2). Further, we calculated the surface
pressure differences at Drobeta for the same 3-hour
intervals. From the graphical representation in Figure
2 we can already see a similar variability of the two
datasets, with the best fit at 15:00, the time of day
with the greatest thermal excitation. We also note that
the six hour variability is better expressed at Ascunsa
Cave, which appears to act as
a natural meteorological filter
on a short time scale, removing
the direct thermal influences of
the Sun (especially night and 5
day differences) and preserving
only the barometric information
from the surface. Further study
should detail why the amplitude
of S, is much smaller inside the
cave whereas S; is completely
filtered-out.

A semi-diurnal component of
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Fig. 2. Comparison between three hour surface air pressure variability
at Drobeta meteorological station (blue) and theoretical air pressure
variability inside Ascunsa Cave (orange).

two independent methods for the period June-July
2015. The period was chosen thanks to its lack of
major temperature fluctuations (Dragusin et al.,
2017), thus making the detrend step easier and more
reliable.

Using Fourier analysis, between 01 June 2015 and
31 July 2015 we identified a 12 hour periodicity in
cave air pressure variability (Fig. 3, left panel), while
surface pressure clearly shows two periodicities of 12
and 24 hours (Fig. 3, right panel).

Further, we used the Morlet wavelet, which provides
insight into the non-stationary nature of a time
series and can identify localized and intermittent
periodicities (Torrence & Compo, 1998). This shows
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better identified using spectral
analysis and we chose to employ
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Fig. 3. Periodicities identified in the theoretical air pressure variability.
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clear periodicities at 12 and 24 hours in surface air
pressure at Drobeta, and a faint 12 hour signal at
Ascunsa Cave (Fig. 4).

A possible phase lag between the two datasets was
also investigated, analyzing each dataset separately,
in reference to their starting time. We obtained a phase

lag of 12 minutes for Drobeta and ~24 minutes for
Ascunsa Cave. We note that we did not calculate the
uncertainty related to these figures. The roughly 12
minute difference between the two sites is small and
could be induced by data sampling or by differences
in site conditions.
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1000 1200
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Fig. 4. Wavelet analysis of the theoretical air pressure variability at Ascunsa Cave (left panel) and air pressure variability at Drobeta meteorological
station (right panel). Red quadrangles indicate the 12 and 24 hour periods.

Our present study shows how detailed temperature
monitoring can help in the cost effective identification
of stable underground sites for the placement of
geophysical equipment that is sensitive to temperature
or pressure. Moreover, as Schindelegger & Ray
(2014) show that global numerical models do not
reproduce very well the local variations in pressure
due to atmosphere tides, an approach such as the
one presented here can help in the monitoring of
atmospheric tides at local/regional levels, especially
thanks to the fact that caves can occur in regions
and altitudes that lack direct observations from
meteorological stations.
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