
Northumbria Research Link

Citation: Maatuk, Abdelsalam (2009) Migrating relational databases into object-based and
XML databases. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/3374/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

MIGRATING RELATIONAL DATABASES INTO

OBJECT-BASED AND XML DATABASES

By

Abdelsalam Amraga Maatuk

A thesis submitted in partial fulfilment

of the requirements of the

Northambria University at Newcastle

for the degree of

Doctor of Philosophy

Research undertaken in the School of Computing, Engineering and Information Sciences

Newcastle

July 2009

I would like to thank Almighty Allah, for granting me the

patience and capabilities needed to complete this

dissertation.

I would like then to thank my parents for their

encouragement and prayers for me. Without them this

work would never have come into existence. Finally I

thank my wife and my children for their support and

patience during this work, and this dissertation is

therefore dedicated to them

ii

Table of Contents

Table of Contents iii

List of Tables ix

List of Figures xi

Abstract xiv

Declaration i

Acknowledgements ii

1 Introduction 1

1.1 Database Migration . 6

1.1.1 Schema Translation . 7

1.1.2 Data Conversion . 7

1.2 Motivation of the Research . 8

1.3 Thesis Statement . 11

1.3.1 Aims and Objectives . 11

1.3.2 Main Contributions . 11

1.4 Outline of the Dissertation . 12

2 Contemporary Databases 15

2.1 Relational Data Model . 16

2.1.1 Constraints . 17

2.1.2 Standardization of SQL . 18

iii

2.1.3 Advantages and Disadvantages of RDBs 18

2.2 Object-Oriented Data Model . 19

2.2.1 The ODMG Standard . 20

2.2.2 Advantages and Disadvantages of OODBs 23

2.3 Object-Relational Data Model . 24

2.3.1 The SQL3 Standard . 24

2.3.2 Advantages and Disadvantages of ORDBs 25

2.4 XML Data Model . 26

2.4.1 XML Schema Language . 27

2.4.2 XQuery . 29

2.4.3 Advantages and Disadvantages of XML 29

2.5 A Comparison of Data Model Concepts 30

2.5.1 Class Structure . 30

2.5.2 Relationships . 32

2.6 Summary . 34

3 Relational Database Migration Approaches 35

3.1 Approaches and Techniques . 36

3.1.1 Conversion Approaches . 36

3.1.2 Translation Techniques . 40

3.2 RBD Migration Proposals . 45

3.2.1 Database Migration Properties 45

3.2.2 Tools Support . 48

3.3 Migrating RBD into OODB . 50

3.4 Migrating RDB into ORDB . 52

3.5 Migrating RDB into XML . 53

3.6 Discussion . 56

3.7 Summary . 58

4 An Overview of the Proposed Method 60

4.1 Introduction . 60

4.2 Work Assumptions . 62

4.3 Semantic Enrichment . 64

iv

4.3.1 Necessary Information . 66

4.3.2 Relational Schema Representation (RSR) 67

4.3.3 Algorithm for Extracting RSR 68

4.3.4 Canonical Data Model (CDM) Definition 70

4.3.5 Algorithm for Generation of CDM 76

4.4 Schema Translation . 76

4.4.1 Target Schemas . 77

4.4.2 Algorithms for Schema Translation 80

4.5 Data Conversion . 81

4.5.1 Algorithms for Data Conversion 82

4.6 Summary . 83

5 Semantic Enrichment of Relational Database 85

5.1 Generation of CDM from RSR . 85

5.1.1 Identifying CDM Classes . 87

5.1.2 Identifying Attributes . 89

5.1.3 Identifying Relationships and Cardinalities 90

5.1.4 Identifying Class Abstraction 94

5.2 Summary . 95

6 Translation of CDM to Target Schemas 96

6.1 Common CDM Translation Functions 96

6.2 Translating CDM into OODB Schema 97

6.2.1 Translating Classes . 99

6.3 Translating CDM into ORDB Schema 101

6.3.1 Creating User-Defined Types 102

6.3.2 Creating Typed Tables . 105

6.4 Translating CDM into XML Schema 107

6.4.1 Defining XML Namespaces . 107

6.4.2 Declaring Schema Root and its Elements 107

6.4.3 Defining Complex Types . 109

6.4.4 Translating Relationships and Constraints 110

6.5 Summary . 113

v

7 Conversion of Relational Data to Target Data 114

7.1 Common Data Conversion Functions 114

7.2 Converting Relational Data into OODB 115

7.2.1 Instantiating OODB Classes 117

7.2.2 Establishing Object-valued OODB Relationships 120

7.3 Converting Relational Data into ORDB 122

7.3.1 Instantiating Typed Tables . 123

7.3.2 Establishing ref-based ORDB Relationships 124

7.4 Converting Relational Data into XML 125

7.4.1 Defining Target Namespaces 126

7.4.2 Generation of Element Instances 126

7.5 Summary . 129

8 Implementation of the Prototype 131

8.1 Development Environment . 131

8.1.1 Programming Language . 132

8.1.2 Database Management System 132

8.1.3 Java Database Connectivity (JDBC) 133

8.2 System Architecture . 134

8.2.1 The RDB Enricher . 135

8.2.2 The Schema Translator . 136

8.2.3 The Data Convertor . 136

8.3 Components of the Prototype . 137

8.3.1 Components of the RDB Enricher 137

8.3.2 Components of the Schema Translator 142

8.3.3 Components of the Data Convertor 144

8.4 Summary . 146

9 Evaluation of the Prototype 147

9.1 Evaluation Approach . 147

9.2 Experimental Environment . 150

9.2.1 Hypotheses . 150

9.2.2 Experimental Setup . 151

vi

9.3 Experimental Results . 156

9.3.1 Experiment I: Testing Data Semantics Preservation 157

9.3.2 Experiment II: Testing Data Equivalence and the Completeness
of Migration Rules . 163

9.4 Performance Comparison . 175

9.5 Summary . 183

10 Conclusion and Future Work 185

10.1 An Overview of the Dissertation . 185

10.2 A Summary of the Contributions . 186

10.3 Conclusions . 190

10.4 Applications and Further Work . 192

10.4.1 Applications . 192

10.4.2 Further Work . 193

A Attribute Data Type Mapping 197

B Specification of RDB UniDB 198

B.1 Description of the schema . 198

B.2 Key definitions . 199

B.3 Description of CTL files . 200

B.4 Sample of data instances . 202

C Databases Generated by MIGROX 204

C.1 ODMG 3.0 OODB of UniDB . 204

C.1.1 ODMG 3.0 ODL schema . 204

C.1.2 The OODB Makefile . 206

C.1.3 The OODB OIF data file . 206

C.2 ORDB of UniDB . 210

C.2.1 ORDB Oracle 11g schema . 210

C.2.2 Functions for ORDB UniDB 214

C.2.3 ORDB UniDB data . 215

C.3 XML Schema documents of UniDB 223

C.3.1 Schema document . 223

vii

C.3.2 Instance document . 227

D School Database Schema Translation 239

D.1 ODMG 3.0 ODL of School database mapped by Urban and Dietrich
[2003] . 239

D.2 ODMG 3.0 ODL of School database generated by MIGROX 240

D.3 SQL3 DDL of School database mapped by Urban and Dietrich [2003] 240

D.4 Oracle 11g of School database generated by MIGROX 241

E Company Database Schema Translation 243

E.1 XML Schema document generated by MIGROX 243

E.2 XML Schema document mapped by Elmasri and Navathe [2006] . . . 245

F Query Plans of RDB UniDB 249

G Query Plans of ORDB UniDB 253

H Created Indexes for UniDB 257

H.1 Indexes for RDB . 257

H.2 Indexes for ORDB . 258

I Glossary 260

viii

List of Tables

3.1 Extracting an RDB conceptual schema via DBRE 42

3.2 RDB migration (prerequisites, input and output databases) 45

3.3 RDB migration (data semantics and features) 47

4.1 Results of RSR construction . 71

5.1 Results of CDM generation . 95

9.1 Logical relational schema for the UniDB 154

9.2 Measured times in seconds for queries 176

9.3 Plan table for relational SET-ELEMENT query 176

9.4 Plan table for object-relational SET-ELEMENT query 176

A.1 Data type mapping from CDM to target models 197

F.1 Plan table for relational SINGLE-EXACT query 249

F.2 Plan table for relational HIER-EXACT query 249

F.3 Plan table for relational SINGLE-METH query 249

F.4 Plan table for relational HIER-METH query 250

F.5 Plan table for relational SINGLE-JOIN query 250

F.6 Plan table for relational HIER-JOIN query 250

F.7 Plan table for relational SET-ELEMENT query 250

ix

F.8 Plan table for relational SET-AND query 251

F.9 Plan table for relational 1HOP-NONE query 251

F.10 Plan table for relational 1HOP-ONE query 251

F.11 Plan table for relational 1HOP-MANY query 251

F.12 Plan table for relational 1HOP-MANY query 252

G.1 Plan table for ORDB SINGLE-EXACT query 253

G.2 Plan table for ORDB HIER-EXACT query 253

G.3 Plan table for ORDB SINGLE-METH query 253

G.4 Plan table for ORDB SINGLE-METH query 254

G.5 Plan table for ORDB HIER-METH query 254

G.6 Plan table for ORDB SINGLE-JOIN query 254

G.7 Plan table for ORDB HIER-JOIN query 254

G.8 Plan table for ORDB SET-ELEMENT query 254

G.9 Plan table for ORDB SET-AND query 255

G.10 Plan table for ORDB 1HOP-NONE query 255

G.11 Plan table for ORDB 1HOP-ONE query 255

G.12 Plan table for ORDB 1HOP-MANY query (Variant A) 255

G.13 Plan table for ORDB 1HOP-MANY query (Variant B) 255

G.14 Plan table for ORDB 1HOP-MANY query (Variant A) 256

G.15 Plan table for ORDB 1HOP-MANY query (Variant B) 256

x

List of Figures

4.1 Schematic view of MIGROX . 62

4.2 Schematic view of the semantic enrichment process 65

4.3 The ConstructRSR Algorithm . 69

4.4 Sample input RBD . 70

4.5 Sample CDM class schema . 76

4.6 Schematic view of translating CDM into target schemas 77

4.7 Sample OODB class schema . 81

4.8 Schematic view of converting relational data into targets 82

4.9 Output OODB object definition and relationships 83

5.1 The GenerateCDM Algorithm . 86

5.2 The classifyRelation Function . 88

5.3 The classifyAttributes Function . 90

5.4 The identifyRelationships Function 91

5.5 The determinCard Function . 93

5.6 The determinInverseCard Function 94

6.1 The ProduceOODBschema Algorithm 98

6.2 Sample output OODB schema . 101

6.3 The ProduceORDBschema Algorithm 103

xi

6.4 Sample output SQL4 ORDB schema 106

6.5 The ProduceXMLschema Algorithm 108

6.6 Sample output XML Schema . 112

7.1 The GenerateOOdata Algorithm 116

7.2 The instantiateOOclass Function . 117

7.3 The convAggRel Function . 119

7.4 The estabOOclassAssocRel Function 121

7.5 Output OODB data (OIF format) . 122

7.6 Output ORDB SQL4 object definition 124

7.7 The GenerateXMLdocument Algorithm 125

7.8 The generateXMLelement Function 127

7.9 The establishXmlAggRel Function . 129

7.10 Output XML instance document . 130

8.1 The overall architectural design . 135

8.2 The structure of the RSRtable class 138

8.3 The structure of the ConstructRSR class 139

8.4 The OODB class attribute rule . 144

9.1 Conceptual schema for UniDB . 153

9.2 Relational schema of School database [Urban and Dietrich, 2003] . . . 157

9.3 Fragment of OODB School schema mapped from Urban and Dietrich

[2003] . 158

9.4 Fragment of OODB School schema generated by the MIGROX prototype158

9.5 Fragment of ORDB School schema mapped from Urban and Dietrich

[2003] . 159

9.6 Fragment of ORDB School schema generated by the MIGROX prototype159

xii

9.7 Fragment of XML Company schema mapped from Elmasri and Na-

vathe [2006] . 161

9.8 Fragment of XML Company schema generated by the MIGROX pro-

totype . 161

9.9 The salary() function for Professor t type 178

xiii

Abstract

Rapid changes in information technology, the emergence of object-based and WWW

applications, and the interest of organisations in securing benefits from new technolo-

gies have made information systems re-engineering in general and database migration

in particular an active research area. In order to improve the functionality and perfor-

mance of existing systems, the re-engineering process requires identifying and under-

standing all of the components of such systems. An underlying database is one of the

most important component of information systems. A considerable body of data is

stored in relational databases (RDBs), yet they have limitations to support complex

structures and user-defined data types provided by relatively recent databases such as

object-based and XML databases. Instead of throwing away the large amount of data

stored in RDBs, it is more appropriate to enrich and convert such data to be used by

new systems. Most researchers into the migration of RDBs into object-based/XML

databases have concentrated on schema translation, accessing and publishing RDB

data using newer technology, while few have paid attention to the conversion of data,

and the preservation of data semantics, e.g., inheritance and integrity constraints.

In addition, existing work does not appear to provide a solution for more than one

target database. Thus, research on the migration of RDBs is not fully developed. We

propose a solution that offers automatic migration of an RDB as a source into the

recent database technologies as targets based on available standards such as ODMG

3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge

the semantic gap between an RDB and the target databases. The CDM preserves and

enhances the metadata of existing RDBs to fit in with the essential characteristics of

the target databases. The adoption of standards is essential for increased portability,

xiv

xv

flexibility and constraints preservation.

This thesis contributes a solution for migrating RDBs into object-based and XML

databases. The solution takes an existing RDB as input, enriches its metadata rep-

resentation with the required explicit semantics, and constructs an enhanced rela-

tional schema representation (RSR). Based on the RSR, a CDM is generated which

is enriched with the RDB’s constraints and data semantics that may not have been

explicitly expressed in the RDB metadata. The CDM so obtained facilitates both

schema translation and data conversion. We design sets of rules for translating the

CDM into each of the three target schemas, and provide algorithms for converting

RDB data into the target formats based on the CDM.

A prototype of the solution has been implemented, which generates the three target

databases. Experimental study has been conducted to evaluate the prototype. The

experimental results show that the target schemas resulting from the prototype and

those generated by existing manual mapping techniques were comparable. We have

also shown that the source and target databases were equivalent, and demonstrated

that the solution, conceptually and practically, is feasible, efficient and correct.

Declaration

I hereby declare that the work contained in this dissertation has not been submitted

for any other degree and that, to the best of my knowledge and belief, it is all my

sole work except where indicated.

Name: Abdelsalam Maatuk

Signature:

Date: 1 July 2009

i

Acknowledgements

I would like to take this opportunity to thank all those who have contributed to the

completion of this work.

I would like to express my heartfelt gratitude to my supervisors, Dr M. Akhtar Ali

and Dr. Nick Rossiter, for their invaluable guidance and assistance. Dr. Akhtar

helped me to identify all crucial elements of my research work from the beginning

stages to the final draft. Much of the work would have been impossible without his

generosity, suggestions and support. Special thanks go to him for his contribution

to providing a challenging yet comfortable and friendly working environment. Dr.

Rossiter has also been very supportive throughout my research, and I am especially

thankful to him for the time he devoted to the critical reviewing of my work and for

his pertinent academic advice.

These acknowledgements would not be complete without thanking my family, includ-

ing my parents, wife, children, brothers and sisters, for their love and support. I

cannot thank my father and mother enough for their continuous encouragement and

prayers. I would like to thank my wife for her understanding and encouragement,

without which it would have been much harder to accomplish this work.

I would also like to sincerely acknowledge the financial support of the General Peoples

Committee for Higher Education, Libya, which gave me the opportunity to study in

the UK, and to the Cultural Affairs Department, Libyan People’s Bureau, London,

for their help and support.

Many thanks go to all staff members of the School of Computing, Engineering and

Information Sciences for their support with all study resources.

Abdelsalam Maatuk

1 July 2009

ii

Chapter 1

Introduction

Over the last three decades, information technology has attracted a significant invest-

ment due to its fast evolution, importance and extensive acceptance. Rapid changes

in information technology have created challenges for organisations to respond quickly

to the requirements of the global market in order to organise work more flexibly and

efficiently. There has been a demand to keep pace with these changes, take advantage

of the benefits of new technologies and meet the needs of customers. As a natural

result of these changes and requirements, information systems re-engineering has be-

come an important research and practical issue.

Systems re-engineering involves a wide range of tasks associated with understanding,

transforming and redesigning existing information systems, while at the same time

utilising as much of existing systems as possible. System re-engineering can be de-

fined as a process of discovering how an existing information system works [Tari and

Stokes, 1997; Alhajj, 2003]. This demands identifying the semantics of all the compo-

nents of the existing system and the relationships among them, and converting them

into design-level components such as entities, attributes and relationships [Comyn-

Wattiau and Akoka, 1996]. These design-level components can be used to create new

applications or redesign an existing system to meet new requirements. One of the

most important components of an information system is the underlying database [Al-

hajj, 2003]. However, databases cannot be easily replaced. In other words, it might

not be possible to re-write database applications every time the user wants to switch

to or respond to a new technology. Consequently, reverse engineering techniques and

tools started to emerge in order to resolve some problems in the context of databases,

such as existing database maintenance, integration and conversion. The main reason

1

CHAPTER 1. INTRODUCTION 2

behind these initiatives is to avoid throwing away a huge amount of structured and

verified data present in existing systems.

Database applications re-engineering is not a trivial task because its aim is to under-

stand and recover the domain semantics of an existing database. Forward engineering

and reverse engineering are considered to be the two directions of the re-engineering

process [Lee and Yoo, 2000]. However, reverse engineering is of increasing importance

in the context of using existing systems together with novel database systems or of

migrating from traditional to more recent systems [Fahrner and Vossen, 1995a; Müller

et al., 2000; Hohenstein, 2000; Lee and Yoo, 2000].

Database reverse engineering (DBRE) aims to recover the conceptual schema, which

expresses the domain semantics of a database. Domain semantics may be explic-

itly and implicitly expressed in the schema and application programs [Chiang et al.,

1993, 1996]. However, a database can be re-engineered independently of any applica-

tion programs [Hüsemann, 1998; Henrard et al., 2002]. Database forward engineering

(DBFE) aims to obtain the target physical schema from the conceptual schema ob-

tained from DBRE [Fahrner and Vossen, 1995a]. However, database re-engineering is

much complicated than schema translation. The most important part of databases,

the typed data, are to be converted and utilised within the new environment.

Database systems have been designed in accordance with specific requirements such as

structuring and performance. Database applications are implemented with database

management systems (DBMSs), which are chosen to fulfil these requirements. Most

traditional database applications are based on traditional DBMSs, i.e., relational

database management systems (RDBMSs) as they have been quite successful in han-

dling simple but large amounts of data. Codd [1970] formally proposed the relational

data model, which was further developed through implementation by IBM and other

companies. In the 1980s, RDBMSs revolutionised data management and business

information systems. In the decades since, relational databases (RDBs) have been

applied in a number of areas and accepted as a solution for storing and retrieving

data due to their maturity. Large bodies of data are stored in RBDs nowadays.

The increasing popularity of new object-based and World Wide Web (WWW) tech-

nologies and non-traditional applications (e.g., multimedia, geographical information

systems, computer aided design, etc.) can be considered to be among the most signif-

icant recent changes in information technology. These novel technologies have been

dominant in the area of information systems due to their productivity, flexibility

CHAPTER 1. INTRODUCTION 3

and extensibility. Object-oriented databases (OODBs) [Kim, 1991], object-relational

databases (ORDBs) [Stonebraker et al., 1999] and the extensible markup language

(XML) [XML, 2008], which all support various diverse concepts, have been proposed

in order to fulfil the demands of complex applications that require rich data types.

Consequently, new breed of DBMSs have started to emerge in the market, provid-

ing more functionality and flexibility. However, as the majority of databases are

still stored and maintained in RDBMSs, therefore, it is expected that the need to

convert such RDBs into the technologies that have emerged recently will grow sub-

stantially [Lee et al., 2001; Fong et al., 2006].

The drawbacks of RDBMSs in supporting complex data structures, user-defined data

types and new applications have led to the development of OODBs and object-

oriented DBMSs (OODBMSs). Another reason for progress in OODBs is the promise

of object-oriented (OO) technology in general such as OO analysis and design life

cycle using unified modeling language (UML) [OMG, 2009] and OO programming

languages (OOPLs). Intensive efforts have been made by the object database man-

agement group (ODMG) in proposing a standard known as ODMG 3.0 [Cattell and

Barry, 2000]. This standard is a “jump start” in the object database industry, in

which the core aspects of OODBs, e.g., the portability for persistent object storage

specification can be precisely made [Cattell and Barry, 2000].

The need for additional data modelling feature has also been recognised by RDBMS

vendors, leading to the appearance of object-based relational systems [Elmasri and

Navathe, 2006]. An ORDB has potential because it has a relational technology base

and appends object features. The main goal of its design was to incorporate both the

robust transaction and performance management features of the relational model and

the features of flexibility, scalability and support for rich data types of OO models.

Some of these features are defined in the SQL3 standard [Eisenberg and Melton, 1999],

e.g., user-defined types and inheritance, and others may be expressed in SQL4 [Pard-

ede et al., 2003; Eisenberg et al., 2004], e.g., collection-valued attributes.

The emergence of new applications such as e-commence has led to the development

of languages and tools for exchanging and publishing RDB data over the Web, and so

Web databases have become a main stream research area. XML is nowadays used as a

database at content level and as a dominant standard at hypertext level [Kappel et al.,

2001]. Because of the increasing importance of XML, the limitations and problems

associated with XML-enabled RDBs in handling XML documents, have led to the

CHAPTER 1. INTRODUCTION 4

emergence of native-XML databases to handle XML documents.

In view of this, many companies desire to adopt new technologies and re-engineer

all (or part) of their existing information systems to benefit from these technologies.

Most companies have been developing new applications in accordance with the new

technology. However, large bodies of data are still stored in conventional RDBs. On

the one hand, given the amount of money and time invested in existing RDB systems,

companies do not want to throw away their data [Alhajj and Polat, 2001]. On the

other hand, existing RDBs cannot be integrated seamlessly with the newly developed

applications due to the semantic gap between different paradigms, which is known as

the object-relational impedance mismatch [Behm et al., 1997; Ambler, 2003].

Generally speaking, there are three scenarios as to how newly developed applications

could benefit from existing RDBs: (a) migrating RDBs to the relatively newer and

richer (i.e., object-based/XML) databases, (b) developing new applications on top of

existing RDBs, and (c) creating new databases using newer technologies (i.e., object-

based/XML) and establishing connections with existing RDBs.

The first scenario, which is the focus of this dissertation, is to migrate RDBs into

the richer databases. Database migration is concerned with the process of converting

schema and data from a source RDB, as a one-time conversion, into a target database

to be managed and handled in its new environment. The source schema is enriched

semantically and translated into a target schema, and the data stored in the source

database are converted into a target database based on the new schema.

The second alternative scenario to bridge the semantic gap between RDBs and the

relatively newer technologies is that object-based/XML applications are developed

on top of RDBs, where data can be processed in object/XML form and stored in

relational form based on the concept of object for programs and RDB for persis-

tence [Takahashi and Keller, 1994; Liu et al., 2003]. Application developers have to

write large amounts of code to map objects in programs into tuples in an RDB, which

might be time-consuming to write and execute. Another solution for this scenario

is through mapping middleware that links non-relational concepts to data stored in

RDBs.

The third alternative scenario is to keep the existing RDBs for data retrieval purposes

only, and to develop a new database application according to the novel technology.

CHAPTER 1. INTRODUCTION 5

The goal is to establish a connection between RDBs and other databases thus al-

lowing the applications built on top of the new DBMS to access both relational and

object/XML DBMSs [Orenstein and Kamber, 1995]. This would give an impression

that all data are stored in one database. This is achieved using a special type of soft-

ware called gateways, which support connectivity between DBMSs. Most commercial

DBMSs provide flexibility on gateways construction among heterogeneous databases.

However, while gateways can provide interoperability between the existing system

and other systems, they also give rise to the problem of maintaining data consistency

between the two systems [Bisbal et al., 1999].

The difference between gateways and mapping middleware is that, in the former, ob-

jects are persistently stored in the new target database system, whereas in the latter,

objects are created and handled in the normal way but are stored in an RDB. How-

ever, these two scenarios focus on schema translation rather than data conversion,

and data stored in an RDB are retained. In addition, mapping using middleware

requires schema mapping time, which may lead to slow performance. The advantage

of migrating RDBs into the newer target databases is that once objects have been

converted they can be stored and retrieved directly in the target databases with-

out any need for translation layers, hence saving development time and increasing

performance.

Database migration is very important in encouraging organisations to move to a new

technology. As information is one of the most precious resources for organisations,

database migration scenario have to be presented prior to any request to move to

a new technology [Alhajj and Polat, 2001]. In addition, the features of standards

such as ODMG 3.0 [Cattell and Barry, 2000], SQL4 [Pardede et al., 2003] and XML

Schema [W3C, 2008] are supported by many DBMSs with powerful query languages,

which make it necessary to try migrating existing data into the new environment.

Therefore, several organisations are willing to go with this approach and give the

new databases a try, however, the question is which of the new databases is most

appropriate to adopt in migrating the existing database?

The above discussion highlights the reasons as to why migrating an RDB to OODB,

ORDB and XML is needed. Existing work does not appear to provide a solution for

more than one target database, and none of the previous proposals can be consid-

ered as a method for converting an RDB into an ORDB. The approach proposed in

this dissertation is a database migration solution, comprising three basic phases. In

CHAPTER 1. INTRODUCTION 6

the first phase, the method produces an intermediate canonical data model (CDM),

which is enriched with integrity constraints and data semantics of an existing RDB.

The CDM so obtained is translated into OODB/ORDB/XML schemas in the second

phase. Data conversion is the third phase, in which RDB data are converted into

their equivalents in a new database environment. The solution is more beneficial

compared to the existing approaches as it produces three different output databases

based on the user choice. A system architecture has been designed and a prototype

implemented to demonstrate the migration process and to facilitate a proof of its

concepts. An experimental study has been conducted to evaluate the prototype by

checking the results it provides regarding the correctness and completeness of the so-

lution and its concepts. In this dissertation, the proposed solution and its prototype

implementation is referred to as MIGROX (migrating RDB into object-based and

XML databases).

The rest of this chapter is organised as follows. Section 1.1 provides a brief intro-

duction to database migration. Section 1.2 summarises the motivation for the work

described in this dissertation. Section 1.3 outlines the aims of the research and the

contributions stemming from it. The organisation of the dissertation is outlined in

Section 1.4.

1.1 Database Migration

Migration of database applications is a process in which all components of a source

database application are converted into their equivalents in a target database envi-

ronment. This involves translating the source schema into the target one, converting

source data into the target database format, migrating application programs on top of

the new and non-relational DBMS, and mapping queries and update operations into

their equivalents in the target platform. However, the conversion of application pro-

grams and queries is a software engineering task and is, therefore, outside the scope

of this research. Therefore, it is assumed that database migration includes schema

translation and data conversion.

CHAPTER 1. INTRODUCTION 7

1.1.1 Schema Translation

A schema of an existing data model S1 can be translated into an equivalent target

schema S2 expressed in the target data model through applying a set of mapping

rules [Ramanathan and Hodges, 1997]. The generation of a well-designed target

schema depends on the flexibility of these rules. Each rule maps a specific construct,

e.g., attribute or relationship. Both schemas should hold equivalent semantics. The

translation of a source schema to a target schema consists of two steps. The first

step, i.e, DBRE, aims to recover the conceptual schema, e.g., an entity relationship

(ER) model [Chen, 1976], which expresses the explicit and implicit data semantics

of the source schema. Explicit semantics involve relations, attributes, keys and data

dependencies. It is necessary to extract extra semantics that are not expressed ex-

plicitly in RDBs (e.g., inheritance relationship, cardinality constraints, relationship

names). The process requires the analysis of database schemas, data instances and

the source code of programs including queries and update operations that use stored

data, in order to understand and extract their structure and meaning [Zhang and

Fong, 2000]. In order to discover such data and constraints, developers may require

specific tools and program understanding techniques in this domain to ease this pro-

cess. The second step, i.e., DBFE, aims to obtain the target physical schema from

the conceptual schema obtained in the first step. The first step is generally known

as the semantic enrichment process, which is essential for database migration and

database integration [Hohenstein and Körner, 1996; Hohenstein and Plesser, 1996].

However, the source schema can be translated directly to a target one without inter-

mediate representation [Fahrner and Vossen, 1995b]. An expert user or a tool might

be required to provide the missing semantics or to refine the results to exploit the

concepts of the target database [Premerlani and Blaha, 1994; Fahrner and Vossen,

1995b].

1.1.2 Data Conversion

Data conversion is a process for converting data instances from the source database

into the target database. Data stored as tuples in an RDB are converted into com-

plex objects/literals in object-based databases or elements in XML documents. This

involves extracting and restructuring RDB data, and then reloading the converted

data into a target database in order to populate the schema generated earlier during

CHAPTER 1. INTRODUCTION 8

the schema translation process [Fong, 1997].

1.2 Motivation of the Research

Several factors have motivated the investigation described in this dissertation. Many

organisations have stored their data in RDBs and aspire to take advantage of databases

that have emerged more recently. Instead of discarding existing RDBs or building

non-relational applications on top of them, it is generally preferable and beneficial

to convert existing relational data into a new environment. However, the question

is: which of the new databases is most appropriate to move to? So there is a need

for a method that deals with database migration from RDB to OODB/ORDB/XML

in order to provide an opportunity for exploration, experimentation and comparison

among alternative database technologies. The method should assist in evaluating

and choosing the most appropriate target database to adopt for non-relational ap-

plications to be developed according to the required functionality, performance and

suitability. This could help further increase the acceptance of such newer and richer

databases among enterprises and practitioners. However, the difficulty facing this

method is that it targets multiple database models which are conceptually different.

There is no existing canonical model that can be used as an intermediate stage for

schema and data conversion from input RDB to various output targets.

Research so far has focused on diverse areas of RDB migration. The migration of an

RDB into its equivalent has only been accomplished in the existing literature using

two databases. The first is an RDB, as a source database, and another target database

represents the result of the migration process. Most existing methods for migrating

RDBs into OODBs focus on schema translation, whereas the work for migrating into

XML focuses on generating a document type definition (DTD) [DTD, 2009] schema

and data. Moreover, all research on the generation of ORDBs is focused on design

rather than migration. The existing work does not appear to provide a solution for

more than one target database for either schema or data conversion. In addition,

none of the existing proposals can be considered as a method for migrating an RDB

into an ORDB.

Numerous methods have been proposed for transforming logical data models into

conceptual data models [Hainaut, 1991; Fonkam and Gray, 1992; Malki et al., 2002;

Alhajj, 2003]. Well-known models such as an ER, extended ER (EER) and UML are

CHAPTER 1. INTRODUCTION 9

usually used in these methods as conceptual models. However, a large body of research

has concentrated on database design, for example, the generation of ORDB/XML

schemas from ER and UML diagrams [Kleiner and Lipeck, 2001; Laforest and Boume-

diene, 2003; Vela and Marcos, 2003]. Approaches focusing on schema translation are

usually proposed when data stored in RDBMSs are required to be processed in ob-

ject/XML forms [Orenstein and Kamber, 1995; Funderburk et al., 2002]. RDBs data

can be accessed using object-to/from-relational and XML-to/from-relational mapping

techniques, which link an RDB to non-relational applications or by using gateways

that support connectivity between RDBMS and other DBMSs [Abu-Hamdeh et al.,

1994]. Hence, queries and operations are converted into SQL and the results are

translated into objects in non-relational databases [Orenstein and Kamber, 1995].

Large number of prototypes and tools exist to enable non-RDB applications to share

data with object schema (e.g., Penguin [Takahashi and Keller, 1993, 1994]), and

to publish RDB data as XML documents (e.g., SilkRoute [Fernandez et al., 2000],

XPERANTO [Carey et al., 2000a] and XTABLES [Funderburk et al., 2002]). In

addition, most commercial DBMSs provide flexibility in mapping and gateways con-

struction among heterogeneous databases. However, such tools and many other cur-

rently available in the industry are based on the structure-mapping approach, which

can only convert RDB relations into corresponding targets in a target database as

a one-to-one mapping without preservation of data semantics and constraints [Fong

et al., 2006].

Only limited work has attempted data conversion, and even these efforts have some

drawbacks. Owing to the focus on schema rather than data, many proposals either

ignore data conversion or assume working on virtual target databases (using object-

relational mapping or gateways middleware), and data remain stored in RDBs. Using

middleware may lead to slow performance, making the process expensive at run-time

because of the dynamic mapping of tuples to complex objects [Behm et al., 2000].

Data, which are the most important part of databases need to be converted and

utilised within new environments.

Numerous studies have only captured the structure of existing RDBs, whereas im-

plicit data semantics are mostly ignored. Some types of semantics (e.g., inheritance,

aggregation, integrity constraints) have often been ignored, mainly due to their lack of

support in either source or target data models [Narasimhan et al., 1993; Fahrner and

Vossen, 1995b]. For instance, the ER model and DTD lack support for inheritance.

CHAPTER 1. INTRODUCTION 10

Although inheritance relationships could be realised in an RDB, they have been either

ignored or only briefly mentioned without analysis of their different types. Translat-

ing inheritance relationships from RDBs to object-based/XML databases needs more

attention. As the latest standards (i.e., an ODMG 3.0, SQL4 and an XML Schema)

have gained a wide acceptance in recent years for more independence, it is impor-

tant that database migration methods generate target databases according to these

standards. The adoption of standards is essential for increased portability, interoper-

ability, flexibility and constraints preservation [Elmasri and Navathe, 2006].

In the majority of published work, a database is generated that is either flat like

relational or has a deep level of clustering/nesting [Fong, 1997; Lee et al., 2001].

However, object-based model features and the hierarchical form of XML model are

usually missed in such work. It would be desirable to avoid the flattened form and

to reduce the levels of clustering for object structure to the lowest possible, in order

to increase the utilisation that the target models provide and to avoid unnecessary

redundancy. This requires the preservation of the semantics of the source RDB and

their relocation into an intermediate conceptual representation, which takes into ac-

count the relatively richer data model of the target database environment.

An RDB migration process aims to migrate a source RDB into an equivalent target

database. Database equivalence verifies the effectiveness and validity of the migra-

tion method. To demonstrate the effectiveness and validity of the migration method,

a prototype has to be developed to realise the method’s algorithms and translation

rules. In addition, experimental studies should be designed to evaluate the prototype

by checking the results it generates. The concepts, models and algorithms used in the

migration method need to be checked in term of correctness. In addition, the com-

pleteness of the schema translation and data conversion rules also needs to be verified.

Database equivalence should include data semantics, data instances and integrity con-

straints. However, experimental studies to verify that the source and target databases

are equivalent are still not enough. Only a few approaches have highlighted this prob-

lem, concentrating on the validation of the generated schema [Lee et al., 2001; Fong

and Cheung, 2005], whereas the evaluation of the equivalences between the source and

target databases regarding data content and integrity constraints are often ignored.

The investigation described in this dissertation was motivated by the lack of a com-

plete, fully implemented and empirically validated solution which deals with migra-

tion from RDBs to OODB, ORDB and XML covering levels of both schema and data.

CHAPTER 1. INTRODUCTION 11

This dissertation proposes such a complete solution, which has been implemented as

a prototype. The prototype shows that the concepts used in the solution can be

implemented in terms of programming languages. The prototype is then evaluated

by checking the equivalence between the input and the output of the prototype, and

by comparing its output with the results of existing methods.

1.3 Thesis Statement

1.3.1 Aims and Objectives

This research aims to devise a method for migrating an RDB into object-based and

XML databases, thus solving the problems that were outlined in the previous section.

We claim that an integrated method can be developed based on a CDM which enriches

an RDB schema with the required implicit and explicit semantics and takes into

account the characteristics of the target databases in order to automatically migrate

an existing RDB into object-based and XML databases. The following objectives

have been set forth to achieve these aims:

1. To review existing approaches to migrating RDBs into object-based and XML

databases, considering their capabilities, weaknesses and limitations,

2. To devise a comprehensive solution to the problem of RDB migration, aiming

to provide complete migration to an OODB, ORDB and XML,

3. To implement a prototype system based on (2), and

4. To evaluate the prototype by testing its results, looking at our achievements

and reflecting on the results.

1.3.2 Main Contributions

The contributions of this research can be summarised as follows.

1. A review is provided of existing approaches and techniques related to database

conversion problem. The capabilities and limitations of database conversion

techniques, concentrating on migrating an RDB into object-based and XML

databases, are analysed and some unresolved problems are determined.

CHAPTER 1. INTRODUCTION 12

A perspective based on this review has been published [Maatuk et al., 2008b].

2. A solution is offered to the problem of migrating RDBs into OODB, ORDB and

XML in the form of MIGROX, which has the following features:

• It offers a CDM as an intermediate stage for the better preservation of in-

tegrity constraints and data semantics. Using CDM, a new target database

can be generated without referring to an existing RDB each time another

target database needs to be generated. This provides reading and enrich-

ing an RDB once for multiple subsequent usages. The CDM definition and

the algorithms developed to generate it from an RDB have been recently

published [Maatuk et al., 2008c].

• It translates the CDM into an object-based and XML schema according to

standards and data definition languages (DDLs), leading to more porta-

bility and flexibility.

• It provides a data conversion technique which automatically converts an

existing RDB data into any of the target databases based on CDM. In

other words, the CDM determines and manages the conversion of data

into targets.

• It is implemented as a prototype, which is experimentally evaluated to

demonstrate the effectiveness and correctness of the solution.

• An overview of this solution has been published [Maatuk et al., 2008a]. The

complete migration process from RDBs into ORBDs has been accepted for

publication [Maatuk et al., 2010].

1.4 Outline of the Dissertation

The remainder of the dissertation is structured as follows.

Chapter 2 provides the background information necessary to understand the work

described in the rest of this dissertation. The areas covered by this dissertation and

introduced in this chapter include relational, object-based and XML data models,

and database systems, current standards and query languages.

Chapter 3 surveys the recent literature about various research trends relevant to RDB

migration solutions. The chapter presents an analysis of approaches and techniques

CHAPTER 1. INTRODUCTION 13

used in this context, including construction of object views on top of RDBs, database

integration and database migration. A categorisation is presented of selected work

in the literature, involving translation techniques used for the problem of database

conversion, concentrating on migrating an RDB as a source into object-based and

XML databases as targets. Database migration from the source into each of the tar-

gets is discussed and critically evaluated, including the semantic enrichment, schema

translation and data conversion.

An overview of the MIGROX solution is presented in Chapter 4. The chapter intro-

duces the concepts and assumptions underlying this solution. The chapter provides

an introduction to the three phases of MIGROX, i.e., semantic enrichment, schema

translation and data conversion. This includes the formal notations, with which

CDM and target data models are defined as well as some of the preliminary results

of MIGROX. In addition, the chapter presents the algorithm used to infer the neces-

sary RDB schema information that is then used for CDM generation. Chapters 5-7

constitute a precise description of the solution outlined in this chapter.

The focus of Chapter 5 is the CDM generation algorithm as the output of the semantic

enrichment process, which is the first phase of the database migration. The chapter

describes in detail how to identify CDM constructs using information provided by

RDB metadata and how to generate the relationships and cardinalities among classes

using data instances.

Chapter 6 focuses on the schema translation phase. Three sets of translation rules

designed for translating CDM into its equivalent targets schemas are described in this

chapter. Algorithms are developed for producing target schemas according to these

rules.

Algorithms for converting RDB data into target databases are presented in Chap-

ter 7. By resolving a number of problems with existing techniques, the extraction,

transformation and loading of existing RDB data into target database formats are

described in detail.

Chapter 8 explains how the prototype was developed, by implementing the algorithms

and main concepts presented in Chapters 4-7. This chapter discusses the development

environment and the reasons for choosing the software used in the implementation.

System architecture and the main modules of the prototype are illustrated. The

prototype modules and their components and how they work and communicate with

CHAPTER 1. INTRODUCTION 14

each other are described in detail.

Chapter 9 discusses how an experimental study was conducted to evaluate the proto-

type. The correctness of the CDM and schema translation algorithms are checked by

comparing the target schemas resulting from the prototype and those generated by

existing manual-based mapping techniques. Using query-based experiments, source

and target data equivalences are checked by observing variations in results regard-

ing data content and integrity constraints. A number of questions and challenges

encountered are also outlined.

Chapter 10 concludes the dissertation by summarising the main contributions of the

research and identifying possible directions for future work.

Chapter 2

Contemporary Databases

This chapter provides an illustrative background to the main concepts of relational,

object-based and XML data models, in order to get a better understanding of this

dissertation and the process RDB migration. The chapter is restricted to the basic

concepts of the data models relevant to the database migration process. It includes

introductions to the models, recent standards and DBMSs, the advantages and disad-

vantages of each model, and finally a comparison of their concepts. This investigation

establishes the foundation of the proposed CDM, based on which the migration pro-

cess is carried out. Further insight in such data models can be found in main database

books [Kim, 1991; Rumbaugh et al., 1990; Gogolla, 1994; Stonebraker et al., 1999;

Cattell and Barry, 2000; Date, 2002; Connolly and Begg, 2002; Graves and Goldfarb,

2002; Valentine et al., 2002; Elmasri and Navathe, 2006; Garcia-Molina et al., 2008].

A database is a structured collection of data describing the characteristics of peo-

ple and things. Between the physical database and the users of the system is a layer

known as a database server or a database management system (DBMS). The database

is used by the application system and managed by a DBMS [Date, 2002]. A DBMS is

a collection of programs that enables users to create databases, manipulate their data

and translate them into information. There are many DBMSs, such as Oracle, DB2,

and MS SQL server. Compared to filing systems, which support the storage of large

amounts of data, database systems have the advantages of speed, accuracy and ac-

cessibility. A DBMS is a shell surrounding one or more databases throughout various

interactions such as data maintenance, data retrieval, and data control. A data model

is a set of conceptual tools to describe data, including data semantics, relationships

and constraints. It aims to organise the stored data logically and physically within

15

CHAPTER 2. CONTEMPORARY DATABASES 16

the database design phase for efficient management. Many data models, such as re-

lational, object oriented and XML data models, and others have played important

roles since the first appearance of DBMSs. Each of these data models describes the

data and relationships among them in its own way. Each model has advantages that

may help to overcome the shortcomings of the other models.

This chapter is organised as follows. Section 2.1 provides an introduction to relational

data model and the SQL, and Section 2.2 reviews the main concepts of object-oriented

data models and their standards. Section 2.3 provides a background to an object-

relational data model followed by an introduction to SQL3 and SQL4, while the XML

data model and XML Schema language are introduced in Section 2.4. A comparison of

the concepts underlying these data models is provided in Section 2.5, and Section 2.6

summarises the chapter and points to what follows.

2.1 Relational Data Model

The relational data model, introduced by Codd [1970], represents a database as a

collection of relations (i.e., tables of values); hence the name relational database.

Later, the ER model [Chen, 1976], which is currently used as the main conceptual

model, was proposed for graphically structuring a relational model. Extensions to

this model, i.e., EER [Gogolla, 1994] have been proposed in the ’80s and ’90s because

of its widespread use in practice. Data are structured and stored in RDBs in two-

dimensional tables. The relational model focuses on tuple-oriented information and

primitive data types. Each table consists of a number of rows, called tuples, each of

which consists of a collection of related values. Each column (or field) in a table is

called an attribute. Each attribute has a data type (e.g., integer, char, date). Each

attribute occupies one column and each tuple occupies one row. The primary unit of

data is a data item (e.g., student ID), which is said to be atomic. A set of data items

of the same type is called a domain. For example, a table might contain student data

with columns representing first name, surname, address and course id and each row

of the table represents information about a specific student. Each tuple is uniquely

identifiable and independent of other tuples in the same table. Organising data into

tables/relations is a logical view of how data are represented by a DBMS. How data is

actually stored (i.e., the physical view) is not visible to the user and is independent of

the logical view. Database designers define tables according to business requirements

CHAPTER 2. CONTEMPORARY DATABASES 17

to put related tables together to form a database [Cattell and Barry, 2000].

2.1.1 Constraints

There are some restrictions on the data stored in RDBs, which are called constraints.

The constraints avoid inconsistencies among tuples in databases. The constraints

in RDBs include implicit, explicit, semantic and data dependency constraints [Date,

2002; Connolly and Begg, 2002; Elmasri and Navathe, 2006]. Implicit constraints

are inherent in the data model for the characteristics of relations, e.g., relationships

among tuples. Explicit constraints can be expressed in the schema using the DDL,

e.g., integrity constraints. Semantic constraints cannot be directly expressed in the

schema, hence they are hidden in application programs or data content. Data depen-

dencies test whether or not the RDB is designed perfectly using the normalisation

process.

The integrity constraints are: key, entity integrity, referential integrity, domain, and

null. These constraints should be enforced by RDBMSs at each instance of insertion,

updating or deletion of data to or from the tables. Each row in a table represents

one tuple, where the order and position of rows is insignificant. A tuple must be

unique, where the uniqueness is achieved by having an identifier. An identifier can

be a single attribute or a set of attributes. The identifier is called the primary key.

Each table should have a primary key, the value of which cannot be null. It is the

database designer’s job to determine the best candidate keys from which to extract

primary keys, typically numbers (e.g., student ID). A tuple in a table may refer to

another tuple in the same or other tables. The reference can be in the form of one

or a set of attributes. The set of attributes used for referencing the primary key is

called a foreign key. A foreign key is an attribute or a set of attributes of one table

whose values match a primary key of another table. Inclusion dependency can be

identified through referential integrity between the foreign key values in one table

and the primary key values in one or more tables. Normalisation is a technique used

in database design to reduce redundancy, data anomalies and poor data integrity.

CHAPTER 2. CONTEMPORARY DATABASES 18

2.1.2 Standardization of SQL

The structured query language (SQL) represents the standard for RDBs. SQL offers

two sub-languages: a data definition language (DDL) and a data manipulation lan-

guage (DML). The DDL defines schemas and explicit constraint specifications. The

DML consists of certain statements, which are defined based on relational algebra

for querying, inserting, updating, and deleting RDB data. Furthermore, the DML

has many query types for manipulating data of the field values of tuples, from simple

one-table queries to complex multiple-table queries, which include nesting, join and

union. Today, there are many SQL products. The most important SQL standard is

that which has been adopted by the international organisation for standardizations

(ISO) and the American national standards institute (ANSI) [Connolly and Begg,

2002]. A revised SQL standard, before it is extended to support the object concepts,

is called SQL2. Some example of the RDBMSs available are Oracle 7, DB2 and

Microsoft Access.

2.1.3 Advantages and Disadvantages of RDBs

Although RDBs are sufficient for managing the storage of large capacity of primitive

data types, and their SQL is relatively easy to learn, they are not strong enough to

model real world problems and new application areas. RDBs have difficulty in rep-

resenting complex structures, operations, images, and video stream collections [Kim,

1991]. Moreover, they cannot handle applications such as computer aided design,

spatio-temporal databases, and other applications that involve complex data inter-

relationships [Devarakonda, 2001]. The relational data model does not allow for

user-defined data types that can be defined based on primitive or other pre-defined

data types. Relations may not represent entities in the real world, and the inheri-

tance relationships are not directly supported. One object may be normalised into

many relations, and consequently queries become complex and cumbersome to exe-

cute because the select and join operations need to be used frequently to reform

the object. New operations cannot be added to the system in the relational model

since it is limited to the generic SQL operations. The complex data structures han-

dled by non-relational applications are mismatched with the data types in the RDB

system, where concepts of richer data semantics such as inheritance and encapsula-

tion need to be translated into lower relational semantics, e.g., the problem known as

CHAPTER 2. CONTEMPORARY DATABASES 19

object-relational impedance mismatch. RDBMS programmers may spend much time

in coding the mapping of objects into RDBs for persistence [Leavitt, 2000]. All these

limitations have led to the development of new extensions known as object-relational

DBMSs (ORDBMS) [Stonebraker et al., 1999] such as IBM DB2 Extender and Oracle

11g.

2.2 Object-Oriented Data Model

The demand to represent complex data structures has motivated the development

of the object-oriented (OO) systems. The OO models offer concepts that enable a

better modeling of real world problems to conceptual schemas [Kim, 1991; Rumbaugh

et al., 1990]. OO modelling supports a tight integration of codes and data with flexible

data types and hierarchical relationships between them, where each entity in an object

model is called an object instance. With the growing need to represent, manipulate

and store complex data, OODBMSs have many advantages over RDBMSs. OODB

systems combine the features of OO technology with database capability. All OO

concepts are supported, including classes (or abstract data types), data encapsulation,

inheritance, polymorphism, operations and complex objects. In addition, OODBs

provide persistence for class instances.

• Classes: A class groups the common features of a set of objects. It has two

parts: an interface and implementation. The internal data structure is hidden

and external operations can be applied to objects, leading to encapsulation.

• Objects: Real world objects are represented as persistent/entity objects with

a number of levels of complexity and an inheritance hierarchy. An object has

a state (value) and behaviour (operations). The state of an object can only be

changed using its operations. Each object is an instance of one or more classes,

and has a unique identifier (OID), which is used as a reference to the object.

Related objects are connected using their OIDs. The OIDs are independent of

data contained and are system-generated. In addition, they are neither visible

to the user nor change even though their contents have changed.

• Encapsulation: Code and data are packaged together to form objects and

protecting them from access by other code defined outside. Through its defined

interface, an object can be manipulated, and thus its structure is hidden.

CHAPTER 2. CONTEMPORARY DATABASES 20

• Inheritance: A class can be derived from other classes. This is a powerful

mechanism, which lets a class inherits the attributes and operations of a previ-

ously defined parent class, so that it can be extended with additional properties.

Databases then have to manage object storage according to a class hierarchy.

• Polymorphism: Depending on the run-time use of objects, this concept per-

mits the same operation name to be associated with different kinds of imple-

mentation.

• Persistence: Unlike with OOPLs where objects are transient in nature, objects

in databases are required to be persistently stored so that they can be accessed

later.

2.2.1 The ODMG Standard

As with any new technology, the principal drawback of OODBMSs when they first

emerged was their lack of standardisation. OODBs are not based on a data model

as accepted as the relational model. A number of standards have been proposed to

encourage the development of OODBMSs, such as manifestos and ODMG. Mani-

festos have three releases, the latest of which adds some features of OO to databases

based on SQL [Darwen and Date, 1995]. However, they have been developed by dif-

ferent groups belonging to different institutions. Intensive efforts have been made

by the ODMG group who proposed a standard known as the ODMG-93; now re-

vised into ODMG 3.0 released in 1999 [Cattell and Barry, 2000]. The standard is

supported by most of the OODBMSs industry. The many products supporting this

standard include: ObjectStore [ObjectStore, 2009], Objectivity [Objectivity, 2009],

and Lambda-DB [Fegaras, 2008].

The ODMG 3.0 standard defines portability for persistent object storage specifi-

cation, aiming to allow applications written with different OOPLs to access data

stored in OODBMSs in a uniform way. Portability is the capability for accessing

different OODBMSs (that support the same OO paradigm and standards) using one

application program with insignificant modifications [Elmasri and Navathe, 2006]. In

addition, utilising an ODMG standard, interoperability is achieved. That is, a partic-

ular application program can access data stored in diverse DBMSs, even though they

are based on fundamentally different paradigms such as RDB and OO systems. An

ODMG allows transparent integration to OOPLs like Java, and thus developers have

CHAPTER 2. CONTEMPORARY DATABASES 21

the ability to work within a native OO environment. Developers can handle and store

objects directly without any mapping tools. However, ODMG 3.0 is not supported by

a stand-alone query language, but depends on OOPLs. The standard has an object

definition language (ODL) and an object query language (OQL), the syntax of which

is similar to the SQL with some additional OO features such as identity, inheritance

and polymorphism, and it supports constructed types like Bag, Set and List [Cattell

and Barry, 2000]. The ODMG 3.0 standard consists of the following:

• Object model, which is proposed to allow applications portability among OODB-

MSs. It determines the data structure concepts, such as objects, attributes, re-

lationships, and inheritance. It also defines data types, e.g., string, collections

and struct.

• Object specification language, which consists of the ODL and object interchange

format (OIF). The ODL is designed to support the semantic constructs of the

ODMG object model. It is used to define the schema of an ODMG compliant

database, independently from any programming language. An OIF is a spec-

ification language for object representation and for loading objects into/from

files.

• It has a number of bindings to OOPLs, i.e., C++, Smalltalk and Java, which

define several classes in order to access, create, retrieve and manipulate objects

from applications.

• OQL, which is for retrieving data from object base. It is non-procedural in

design, based on SQL to work with the ODMG binding programming languages

for updating and querying objects. OQL supports the ODMG system, including

the support of object identity, path expressions, inheritance and methods. OQL

provides an interface for posting ad hoc queries.

The ODMG Object Model

An ODMG object model provides a standard for OODBs via the ODL and OQL [Cat-

tell and Barry, 2000]. An ODL is used to specify an OODB schema that conform

to the ODMG model. An OQL works with ODMG OOPLs as a query language

extending SQL with object concepts.

CHAPTER 2. CONTEMPORARY DATABASES 22

Objects types and literal types: Objects and literals are the basic modelling

primitives. Each object has a unique identity, a state, behaviour, and optionally a

name. Each object must have a unique, system-generated and unchangeable OID;

this is called a mutable object. A literal is an immutable object, which is a value

that cannot change and does not have an OID (e.g., an integer value). A literal

definition specifies only the state of objects, it does not specify their behaviour. An

object encapsulates its state and behaviour, so that rich semantics and integrity are

achieved. Objects are categorised into object types. A set of the instances of an object

type is called an extent which holds all persistent objects of a class. The extent is a

database entry point for updating and querying the objects of a corresponding class.

A type specification may be either an interface or a class.

State and behaviour of objects: A user-defined type is specified in ODL as

an interface or class. The interface defines only the abstract object behaviour,

whereas the class defines both abstract state and behaviour. A class is instantiable,

whereas an interface is not and its state cannot be inherited. Moreover, unlike with

classes, objects cannot be created corresponding to interfaces. For both types, the

state of the object is represented by its properties defined by attributes and relation-

ships. A collection of operations represent the behaviour of an object. An attribute

represents a fact about an object that has a descriptive name and value. A class

definition may specify a unique key. One (or more) attributes (or relationships) can

be selected as a key. The attribute may be simple or complex. The relationship rep-

resents links among objects. It has two descriptive names: one labels a relationship

path and the other labels the inverse relationship path. A relationship is represented

as a pair of inverse references, using the relationship and inverse keywords. How-

ever, a relationship can be defined as an attribute or using methods. Operations have

parameters, return values and may raise error handling exceptions.

Built-in collection objects: An ODMG object model has three literal types: sim-

ple, structured and collection. Simple literals are basic types, e.g., an integer and

string. Structured literals are built-in types that are structured using a tuple con-

structor such as Date and Time. Collections are type constructors used to define

collections of other types, and to store multiple values in a single attribute. A col-

lection literal is a value of a set of objects, but the collection has no identifier. A

CHAPTER 2. CONTEMPORARY DATABASES 23

structured object represents a structured entity as a single object. Structured objects

are either collection types or structured types. Built-in collection types are Set, Bag,

List, Array and Directory. Set and Bag are unordered, whereas List and Array

are ordered collections. A structured type contains a fixed number of objects and is

defined using the struct type generator.

Inheritance: The ODMG model defines two types of inheritance: the IS-A and

EXTENDS relationships. An IS-A relationship defines behaviour inheritance between

object types in which interfaces and classes can inherit other interfaces using the

“:” symbol. In addition, multiple-inheritance is supported in the IS-A relationship.

However, the EXTENDS relationship is a single inheritance relationship, and it defines

the inheritance of state and behaviour among classes only.

2.2.2 Advantages and Disadvantages of OODBs

Unlike with RDB systems where complex data structures are flattened into tables,

OODBs are suitable for applications that deal with complex relationships along with

data objects. Besides, due to their ability to handle various types of multimedia and

WWW applications, and supporting OO technology, industry observers have been

widely attracted to OODBs. There will be fewer mismatch difficulties, a unifica-

tion of database applications with seamless data models and programming language

environments when an OOPL is implemented on top of OODBMSs. As a conse-

quence, applications use more natural data structures, there is less code to develop,

and development time and maintenance expense are reduced [Devarakonda, 2001].

Moreover, it has been predicted that OODBMSs will become the basic database

technology, superseding RDBMSs. OODBs are of practical use in removing the re-

dundancy of data and update anomaly problem, which might exist in RDBs. On

the other hand, OODBMSs do have drawbacks. Query optimisation is very complex,

there may be scalability problems, and they are not able to support large-scale sys-

tems [Devarakonda, 2001]. OODBMSs need skilled users to manage data, as they

are not as readily understood as relational. In addition, they lack a mathematical

foundation and a standard ad hoc query language.

CHAPTER 2. CONTEMPORARY DATABASES 24

2.3 Object-Relational Data Model

The object-relational technology is relatively recent, nevertheless, it is not a new

technology on its own right [Connolly and Begg, 2002]. ORDBs have potential because

they merge relational modelling and OO concepts. The main objective of their design

was to incorporate both the robust transaction and performance management features

of RDBs, and the OO model features of flexibility, scalability and support for rich data

types [Stonebraker et al., 1999]. Together with the ability to handle alphanumerical

data types, ORDBs can handle multimedia data types. Developers can work with

tabular relational structures and DDL with the possibility of object management.

Furthermore, the development of ORDBs was triggered by the growth of OOPLs to

avoid the mismatch between these languages and DBMSs.

The object-relational specification extends a relational model to include OO capa-

bilities. These include abstract data types (ADTs), structured and collection data

types, identifiers and references, path expressions and inheritance, and operations.

An ORDB consists of a set of tables, called typed tables as they can be created based

on pre-defined ADTs. Each tuple (row object) of a table has a system-generated OID,

through which relationships among objects are established. OIDs can be defined from

primary keys and can be user-generated. The 1NF, the basic rule of RDB design,

has been relaxed in the object-relational models, so that an attribute can contain a

collection of data types. Structured and multi-valued literal types can be defined as

attributes within ADTs; but they do not have OIDs as they are not object types.

2.3.1 The SQL3 Standard

Many vendors have created their SQL languages to be used for their own products

to capture the OO concepts. This has led to a lack of standards that can be used by

all ORDB users, and the differences amongst these products may be significant. As

a consequence, the development of a standard called SQL-1999 (or SQL3) has been

motivated, which became the foundation for most ORDBMSs [Pardede et al., 2003].

SQL3 [Eisenberg and Melton, 1999] and its successor SQL4 [Eisenberg et al., 2004;

Pardede et al., 2003] are extensions of SQL-92 to include the new features of OO con-

cepts. SQL3 supports ADTs, including OIDs, methods, inheritance, polymorphism,

and the support of a binary large objects (BLOBs), character large objects (CLOBs)

and collection types. Theses concepts are discussed in Section 2.2.

CHAPTER 2. CONTEMPORARY DATABASES 25

• Abstract data types: SQL3 allows the users to define ADTs according to

their needs, including object specification, i.e., attributes and methods. An

ADT allows values in tables to be associated with methods (encapsulation).

Attributes are encapsulated within ADTs and accessed via methods. The at-

tributes of an ADT can be defined as another ADT, representing a complex

attribute. Besides, a table can be defined based on an ADT.

• Reference type: A row in a table is an object that is uniquely identified

by a column called identity, containing an OID, according to which an object

differs from other objects. The type of this column is a ref, which is used for

relationship participation.

• Structured type: SQL3 adds a new structured type called a row that allows a

number of attributes to be represented as a single column entry. It differs from

ADTs as it has no OID and no methods associated with it.

• Collection type: SQL 3 supports collection types which represent multi-valued

attributes as a single type. Array and set are among these types. An Array can

hold multiple values to be referenced as a whole, however, its element must have

similar types, have limited size and be ordered, whereas set is an unordered

collection which does not allow duplicates. SQL4 adds list and multiset

collection types that allow duplicates. The list is ordered, whereas multiset

is unordered.

• Inheritance: Simple inheritance is supported in SQL3/SQL4 via the under

keyword for both ADTs and tables. Sub-types and super-types can participate

in an inheritance hierarchy. A sub-type inherits all attributes and functions of

its top level super-types. In addition, a sub-type can define its own attributes

and functions and override inherited functions. A sub-table inherits more from

its super-table, including columns, rows, key, triggers and methods. Every row

in a sub-table corresponds exactly to one row in the super-table and every row

in the super-table corresponds to at most one row in a sub-table.

2.3.2 Advantages and Disadvantages of ORDBs

The main advantages of ORDBs are their huge scalability, the possibility of reuse and

sharing, and their compatibility with existing RDBMSs. ORDBMSs are designed to

CHAPTER 2. CONTEMPORARY DATABASES 26

have large storage capacities to satisfy large organisations wanting to manage massive

databases. ORDBMSs are expected to outsell RDBMSs, given their supplementary

object capabilities. The four main features of an ORDBMS are: base data type

extension, the support of complex objects, inheritance, and rule systems [Stonebraker

et al., 1999]. Although ORDBMSs have many advanced features and most DBMS

vendors expect them to become the market leader and resolve many of the known

weaknesses of RDBMSs, they still have some disadvantages. ORDBMS architecture

is not regarded as appropriate for high-speed web-applications, given its complexity

and increased cost [Devarakonda, 2001]. Moreover, the simplicity of the relational

model may be lost as SQL4 is already complex.

2.4 XML Data Model

Not all data are handled in structured databases [Elmasri and Navathe, 2006]. Data

might be collected in databases where they do not have to be constrained by the

schema. These types of data are called semi-structured data, which mix a schema

with a data instance. Examples of the semi-structured data model are object ex-

change model (OEM) [OEM, 2009] and XML. XML has become the best choice for

data exchange on the Web [Layman et al., 1998; Graves and Goldfarb, 2002; Valentine

et al., 2002]. It is self-describing, according to which documents can be structured

into complex levels of nesting and can be validated against a schema definition. XML

is a powerful model because it extends simple user-defined tags to more levels with

complex structures and relationships such as aggregation and inheritance. Because

of the increasing importance of XML, native-XML databases have emerged to handle

XML documents, such as Lore [Goldman et al., 2000; McHugh et al., 1997], XML-

Spy [Altova XMLSpy, 2008] and eXist-db [eXist-db, 2009]. This section provides an

overview of XML from the point of view of databases.

XML is a text-based markup language for structured documents, which is a subset of

the standard generalised markup language (SGML) [XML, 2008]. It is designed to fa-

cilitate interoperability with SGML and HTML and is fast becoming the standard for

the World Wide Web consortium (W3C) for data interchange over the Internet [W3C,

2009]. As with HTML, data in XML is identified as a rooted tree using tags that are

known as “markup”. However, unlike HTML, XML tags describe the data, rather

than specifying how to represent it.

CHAPTER 2. CONTEMPORARY DATABASES 27

An XML document contains several constructs such as namespaces, elements, at-

tributes, tags and values. An element is a unit of XML data enclosed by tags which

can enclose other elements. A tag is a piece of text that describes elements or data.

Unlike data, tags are surrounded by angle brackets (< and >). An attribute is a

qualifier on the tag that provides further information. Values occur as instances of

elements/attributes.

XML is described as a mechanism for specifying the semantics of the data. There-

fore, an XML document consists of a schema and data that can be combined in

one document. However, schema specifications can be stored in a separate file. The

schema describes the data structure and constraints using one of the XML schema

languages. The selection of the language depends on its ability to fit the application

requirements. Dozens of XML schema languages have been proposed, such as DTD

and XML Schema by W3C, and XDR by Microsoft. A comparative analysis of some

of these languages can be found elsewhere [Lee and Chu, 2000].

2.4.1 XML Schema Language

XML Schema language is a standard that provides a sophisticated means for describ-

ing the structures and constraints of XML schema and instance documents [W3C,

2008]. XML Schema borrows concepts from RDB models such as key and integrity

constraints, and other concepts from OO models such as inheritance, references, data

collections and user-defined data types. Moreover, it provides a wider range of built-

in data types, where users can define their own simple/complex data types using

restriction and extension keywords. The essential components of XML Schema

are explained below.

Namespaces and annotations: XML Schema allows the concept of namespaces

to avoid conflicts among elements and attributes naming. Elements and attributes

are associated in the root element with namespaces, using the xmlns attribute and

a prefix, e.g., xs:. Then, all types defined in the schema must be prefixed by xs:.

Annotations provide useful comments and information in the schema document. For

example, the documentation indicates the language used in the document, with the

attribute lang (e.g., lang = ‘en’). The ‘en’ stands for the English language.

CHAPTER 2. CONTEMPORARY DATABASES 28

Elements and attributes: An element structure with name, type, default value,

possibly a set of identity-constraint definitions, occurrences and user annotations, can

be specified using an element declaration [W3C, 2008]. Elements that are declared

under the root of the schema are called global elements, which can be referenced using

the ‘ref’ attribute. Elements that are declared inside types or model groups are called

local elements. In contrast to global elements that have to be unique in the schema,

local elements can be declared with the same name and different types if they are not

declared at the same level. Consequently, global elements should be declared for re-

using, whereas local elements are preferable where elements are unlikely to be reused.

Element structure should be defined as strictly hierarchical using the sequence com-

poser if the order is significant or defined loosely using the all composer otherwise.

The name attribute is mandatory for global elements, and the type attribute defines

element types as simple or complex. Simple types are used to define attributes and

elements that contain only data using the simpleType tag, whereas complex type def-

initions are used to define elements that contain child-elements or attributes using the

complexType tag. The minOccurs and maxOccurs attributes specify the minimum

and maximum occurrences of an element. Like elements, attributes can be declared

globally or locally with name, type, occurrence, and default information. However,

attributes cannot involve other elements as children because they must be defined as

simple types, and the order in defining attributes is not significant.

Identity constraints: XML Schema provides comprehensive support to represent

integrity constraints. Using the XPath expression [Berglund et al., 2007], it is possible

to specify constraints that correspond to unique values, primary keys and foreign keys

in RDBs. The tags unique, key and keyref are used to define unique, key and key

reference, respectively. The XPath expression selector defines the scope of a con-

straint, and the field defines the elements or attributes that represent the constraint

(e.g., a unique attribute). Key reference is defined by adding the refer attribute to

specify the referenced primary key constraint name. In the case of composite keys, the

field declaration is repeated for each element (column) in the key. Unique and key

elements emphasise uniqueness concerning the content identified by selector of the

tuples determined by fields XPath expression(s). The keyref concerns matching

the tuples determined by fields in selector by those of the referenced key.

CHAPTER 2. CONTEMPORARY DATABASES 29

Attribute and model groups: A group of attributes for many elements can be

defined as a collection called an attribute group that can be referenced. An attribute

group is similar to a global attribute; however, it is a clustered set of attributes,

whereas a global attribute is an individual attribute declaration. Similar to an at-

tribute group, a model group can be defined for components reuse. However, it is

a mechanism for creating a group of elements that must include sequence, all, or

choice compositors. The advantage of model groups is to avoid type derivations;

however, they differ from complex types as they cannot define attributes as children

and they are limited to type derivations.

Inheritance: Elements and attributes are allowed in XML Schema to be extended

or restricted using derivation and substitution mechanisms. Content models can be

extended using extension and can be restricted using restriction. A simple type

cannot be extended, but can be restricted using restriction, list or union tags.

However, a complex type can be restricted, allowing only one or more new attributes

to be defined using restriction, and can be extended using extension when extra

attributes or element can be added.

2.4.2 XQuery

The XQuery query language has been developed by the W3C as a standard for

XML [Boag et al., 2009]. The language differs from SQL as it organises queries

by a so-called FLWOR expression, which stands for: for, let, where, order by and

return. The for clause is like from in SQL, whereas the let is used to assign a

result value to a variable. The clauses where and order by are similar to those in

SQL. The results of the query are constructed as outputs by the return clause.

2.4.3 Advantages and Disadvantages of XML

XML Schema has more powerful data types and constraints, and it has the ability to

model multi-valued and composite attributes, user-defined complex types, and cardi-

nality for attributes and elements. The key and keyref are stronger than the ID and

IDREF of DTD, since they are typed and can be composed. XML Schema offers flex-

ible name space support, which is a significant advantage over using DTD [Valentine

et al., 2002]. XML Schema allows the use of prefixed, default namespaces as well

CHAPTER 2. CONTEMPORARY DATABASES 30

as attributes and elements from other namespaces. Using XML Schema occurrence

facility gives more flexibility than with DTD occurrence indicators. For example,

an element can be modelled to have as least five occurrences using minOccurs=“5”.

XML Schema is more expressive and more usable, compared to RDBs and DTDs. It

provides a much more powerful means for defining document structures, and allows

a much wider range of data types.

2.5 A Comparison of Data Model Concepts

Among the concepts offered by relational, object-based and XML databases, there are

fundamental differences that result in data models’ heterogeneity. Although they rep-

resent the same universe of discourse, data models are developed independently [Kap-

pel et al., 2001]. In order to migrate a source database into another kind of database,

the heterogeneity existing amongst data models, schemas and data need to be con-

sidered and resolved. Data model heterogeneity occurs due to differences between the

concepts provided by an RDB on the one hand and those provided by object-based

and XML on the other hand. Schema heterogeneity arises from the differences in the

design goals of the database schemas [Kappel et al., 2001]. The aim of this section is

to compare object-based and XML concepts against those of an RDB, concentrating

on their standards: SQL2, ODMG 3.0, SQL3 and XML Schema, respectively. Plac-

ing homogeneous concepts together represents the foundation of the proposed CDM,

based upon which the target databases can be generated.

2.5.1 Class Structure

The basic concepts of the relational data model are relation, tuple and attribute.

Traditionally, a relation is shown as a table with columns (representing attributes),

and the rows of the table represent tuples of the relation. Class structure is specified

with a set of properties (attributes and relationships) and behaviours (methods). In

an RDB model, real world entities are modelled in relations structurally, whereas

the behaviours of these entities are indicated in application programs. However,

object-based models combine properties and behaviours in a coherent structure, i.e.,

class. Objects of a class can be constructed and manipulated using methods sup-

ported by object systems, which are entirely different from the stored procedures in

CHAPTER 2. CONTEMPORARY DATABASES 31

RDBMSs. XML document structure is specified by element types and attributes,

which are equivalent to relations and columns, respectively. Columns of a relation

can be represented as attributes or sub-elements in the XML Schema. Relation tuples

are equivalent to XML element instances. Elements are started and ended by tags,

whereas data are assigned to attributes in RDB to form tuples. XML elements can be

nested containing primitive or complex user-defined types, and relationships among

them are modeled, forming a deep nesting hierarchy and references; whereas RDB

data are flat, normalised and linked via foreign key constraints.

Attribute and user-defined data types: Each relation, class and element has a

set of attributes, each of which has a data type. Attributes in RDBs are restricted

to primitive data types such as integer and char, and tuples have a restricted data

structure. Objects can have any data type supported by OO languages, which can be

primitive or complex data types. Elements in XML documents have arbitrary orders

using the sequence tag, however, they can be unordered using the all tag. As with

object-based databases, XML Schema allows user-defined types. Unlike RDBs, a type

can be defined based on other types in SQL4, ODMG 3.0 and XML Schema. User-

defined types can be defined as named constructed types for reusing (e.g., named row

or global complexType), or as anonymous to be defined without names inside their

parent types (e.g., an anonymous row or local complexType).

Uniqueness, null and default values: Each RDB relation, object-based class and

XML element has a unique name within the whole schema. An attribute name must

be unique within its relation, class or element type. The name of an XML element

and attribute is unique using the namespaces prefix [Fallside and Walmsley, 2004],

which provides flexible naming and typing among elements without conflicts. XML

Schema uses the “symbol space” to indicate a collection of names that are unique from

each others. Thus, the same element name can be used many times in XML Schema

if it uses a different name prefix. Attributes are allowed in SQL to have null and

default values; however, XML Schema allows null and default values for attributes as

well as elements. The SQL default clause is equivalent to the DefaultValue tag.

Occurrence constraints in XML Schema are used to specify an element occurrence in

the XML document. The minOccurs can be assigned to “0” for an element to accept

nulls and to indicate that its instances occur none, one or more times, or it set to “1”

CHAPTER 2. CONTEMPORARY DATABASES 32

by default.

Identification: Tuples are identified in relations by means of primary key values,

whereas the uniqueness of objects in object-based models is achieved using their OIDs.

XML elements are accessed uniquely by the concept of ID in DTD. A primary key

can be a single attribute or a composite of attributes, whereas ID is only a single

attribute. However, XML Schema provides the key concept using the key keyword

for single and composite keys. Primary keys in an RDB and XML Schema are value-

based, whereas OIDs are object-based. The primary key concept is also supported in

ODMG 3.0 and SQL4. Keys are not essential in object-based databases, because they

are not used to implement relationships as is the case in RDBs. In object-based and

relational models, primary keys are assigned by the database developers and their

scope of identification is within a single relation/class, whereas the key scope in XML

Schema is specified by XPath expression [Fallside and Walmsley, 2004].

2.5.2 Relationships

One of the main differences between diverse data models is how to handle relation-

ships. Relationships in RDBs are represented by matching primary key and foreign

key data. Referential integrity constraints are maintained by mean of foreign keys.

For each foreign key value there exists a matched primary key value, which can be

considered as a value reference. In contrast, object-based databases store OIDs within

objects to indicate other objects to which they are related. Similar to RDBs, primary

key and foreign key concepts are provided by XML Schema for relationship defini-

tions using the key and keyref tags, respectively. However, similar to object-based

data models, relationships can be represented in XML Schema by specifying nested

complex types and inheritance hierarchies. Elements can be defined as components

or sub-classes under other complex elements. Relationship types may be associations,

aggregations and inheritances.

Association: Similar to RDBs, using key and keyref, a particular key of an XML

element can be referenced by a corresponding foreign key. Object-based databases

allow associations to be defined between objects uni-directionally and bi-directionally

using OIDs. Objects participate in associations explicitly by placing the OIDs of

CHAPTER 2. CONTEMPORARY DATABASES 33

related objects within the objects themselves, maintaining referential integrity. Asso-

ciations are implemented using OIDs equivalent to foreign keys in RDBs. However, in

RDBs the primary key is located in the M side as a foreign key; whereas the OID might

be located as a collection on the 1 side. As RDB attributes are limited to being single

values, the M:N association has to be handled in a separate relation. Object models

and the XML Schema allow multi-valued attributes, and hence M:N relationships can

be directly modeled. However, M:N relationships are difficult to represent in XML

documents [Elmasri and Navathe, 2006]. Collections are used to store multiple val-

ues in a single attribute in object-based databases, whereas the maxOccurs attribute

specifies the maximum occurrences of an element, e.g., maxOccurs= unbounded.

Aggregation: In a relational model, a relation consists of a set of tuples of atomic

values only. A weak entity, which represents a component of another entity (whole-

part relationship), can be identified using data dependency via foreign keys. However,

a complex object can be composed from other objects (that may be composite them-

selves) using certain types of constructors such as set, list and bag. In contrast,

XML allows any level of nesting in which an element can contain other elements form-

ing a component (part-of) element, which is similar to a composite type in object data

models. Elements in XML can be primitive type elements, composite elements which

contain only one another element, or composite elements with mixtures of primitive

element types and other elements. An element that does not contain primitive or

composite elements is called an empty element.

Inheritance: A relational data model does not support an inheritance concept

directly; however, a variety of alternatives can be adapted to extract and represent

this type of relationship [Akoka et al., 1999; Elmasri and Navathe, 2006]. In contrast,

inheritance is very important in object-based and XML models. It allows better and

more accurate descriptions of reality to be achieved since it organises object-based

classes/types in a hierarchy for specifications sharing and reusing. A sub-class types

inherits properties and methods of a pre-defined super-class, adding its own new

properties and methods. This can be achieved using built in inheritance constructs,

such as ‘:’ and extends in an ODMG 3.0, and under in SQL4. XML Schema allows

new element types to be extended based on pre-defined types using the extension

and restriction mechanism. However, ODMG 3.0, SQL4 and XML Schema do not

CHAPTER 2. CONTEMPORARY DATABASES 34

support multiple inheritance among concrete types.

2.6 Summary

This chapter has given a brief overview of the main concepts of relational, object-based

and XML data models. The chapter started by introducing the basic concepts of the

models, and then the standards they support as well as the advantages and disadvan-

tages of each data model. Section 2.1 introduced the essential concepts of relations,

attributes, tuples and constraints. Then, the SQL2 standard and the limitations of

RDBMS were stated. Object-based models were then discussed in Sections 2.2 and

2.3. Section 2.2 described the essential concepts used in OODBs, including ADTs,

data encapsulation, inheritance, polymorphism, and classes and complex objects. The

section then focused on the ODMG 3.0 object model. The object-relational model

and recent features of the SQL3 and SQL4 standards were introduced in Section 2.3,

whereas Section 2.4 presented an XML data model in the context of databases. XML

concepts were discussed briefly, focusing on the XML Schema language. Diverse as-

pects, including data models, structure, typing mechanism, and relationships were

explained. A comparison of the concepts of object-based and XML databases against

those of an RDB was given in Section 2.5. Similarities among the diverse data mod-

els produce natural correspondences, which are exploited to bridge the semantic gap

between their concepts, providing the basis for the CDM, which is used as an inter-

mediate representation to migrate an RDB into the target databases.

Chapter 3 provides a survey of the recent literature about various research trends

relevant to the migration of RDBs. A detailed comparison is given of selected work,

involving the approaches and techniques used to solve the problem of migrating an

RDB into an OODB, ORDB and XML.

Chapter 3

Relational Database Migration
Approaches

The solution proposed in this dissertation is a method for migrating a source RDB

into an OODB, ORDB XML as targets. Chapter 2 has provided background infor-

mation about the source and target data models, including database systems and

current standards. This chapter provides an investigation into the problems of RDB

migration. It reviews various techniques and proposals for this purpose, identifies

their differences and assesses the impact of existing literature and shows how it has

shaped current and future research in this area. We focus on the case where the

input is an RDB and the outputs are OODB, ORDB and XML. Hence, the reverse

process (e.g., migrating OODBs into RDBs) are not covered. A summarised form of

this chapter has recently been published [Maatuk et al., 2008b].

The remainder of this chapter is organised as follows. Section 3.1 reviews current ap-

proaches and techniques related to database conversion. Section 3.2 gives an overview

of proposals for RDB migration. Section 3.3 presents a review of existing proposals for

migrating RDBs into OODBs, and work on mapping RDBs into ORDBs is reviewed

in Section 3.4. Section 3.5 then provides a review of work on migrating RDBs into

XML. Section 3.6 concludes the chapter, whereas Section 3.7 provides a summary of

the chapter and points to what follows next in the dissertation.

35

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 36

3.1 Approaches and Techniques

This section introduces approaches and techniques related to database conversion.

Section 3.1.1 discusses approaches to database conversion whereas Section 3.1.2 dis-

cusses existing translation techniques.

3.1.1 Conversion Approaches

There are three approaches related to database conversion. The first approach is for

handling data stored in RDBs through OO/XML interfaces. Connecting an existing

RDB to a conceptually different database system is the basis of the second approach,

and the third approach is to migrate an RDB into a target database. The first and

second approaches deal with schema translation, whereas in the third approach both

schema and data are completely migrated into a target database. The requirements of

database systems determine which approach is most suitable to adopt [Behm, 2001;

Henrard et al., 2002]. Due to substantial investments in many traditional RDBs,

part of their data may need to be formatted and implemented in a new and different

platform. Hence, constructing a gateway interface between the two databases might

be preferred. Migrating to a new DBMS might be a good decision to make if the

existing system is too expensive to maintain.

Approach 1: Non-relational applications on top of RDBs

Data may be required to be processed in object/XML form and stored in relational

form based on the concept of object for programs and RDB for persistence. This

process requires object-to/from-relational and XML-to/from-relational mapping tech-

niques, which link RDBs to non-relational applications. This approach is also known

as wrappers [Malki et al., 2001]. Such mapping is bi-directional on demand of up-

dating an RDB using OO/XML interfaces. This is the reverse direction from where

object-based/XML schemas are translated into an RDB schema.

Viewing objects on top of RDBs: While OO objects are associated via refer-

ences, data in RDB tables are linked through the values of primary keys and foreign

keys. A single object might be represented by several tuples in several tables, and

therefore, joining these tables is required for queries. The problem lies in converting

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 37

these objects to tabular forms in order for them to be stored in and retrieved from

RDB systems when needed. This constant conversion leads to a semantic gap between

the two different paradigms, which is known as the object-relational impedance mis-

match [Hohenstein, 1996; Ambler, 2003]. To avoid this, developers have to write large

amounts of code to map objects in programs into tuples in an RDB, which can be

very time-consuming to write and execute. Another solution would be to use mapping

query systems/middleware. Query systems, e.g., Penguin [Keller and Wiederhold,

2001] support object views for RDBs, which enable non-traditional applications to

share data with their object schema [Takahashi and Keller, 1993, 1994]. Penguin

is an ODBMS that relies on RDBs for persistence [Keller and Wiederhold, 2001].

Middleware is a software that links OOPL concepts to data stored in RDBs through

ODBC/JDBC, thus creating a virtual object database. JDBC is a set of Java classes

for specific databases interacting with ODBC [Hamilton et al., 1997]. Other modern

systems include Java data object (JDO) [JDO, 2009], Rogue Wave [Roguewave, 2006]

and Oracle TopLink [TopLink, 2006]. These provide mapping tools for binding tu-

ples in RDBs, making them appear as objects for OOPLs. However, mapping using

middleware requires time for schema mapping, on each occasion that stored data are

accessed.

Publishing relational data as XML documents: RDB data can be published as

XML documents, using special declarative languages, to be exchanged over the Web.

Various proposals, which make RDB data accessible to XML have been described [Tu-

rau, 1999; Carey et al., 2000a; Fernandez et al., 2000; Funderburk et al., 2002; Shan-

mugasundaram et al., 2001; Liu et al., 2003; Duta et al., 2004; Chebotko et al., 2007].

Through converting an RDB into XML, users see views that can be queried using

XML query languages. That is, a user can pose queries on XML views, which are in

turn translated into SQL queries to derive the required results from an RDB. How-

ever, data in such applications is not fully materialised in XML form, whereas the

results are. Furthermore, adapting the object view for representing XML data in an

RDB faces restrictions, such as data collection representations and tag naming. In

DTD schema it is not possible to utilise collections within collections, and provid-

ing XML elements based on column names may result in tag name conflicts [Valikov

et al., 2001]. SilkRoute [Fernandez et al., 2000, 2001], XPERANTO [Carey et al.,

2000a], XTABLES [Funderburk et al., 2002] and VXE-R [Liu et al., 2003] are among

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 38

the systems taking this approach.

Fernandez et al. [2000, 2001] proposed a tool called SilkRoute for mapping rela-

tional data into XML virtual views using a declarative query language (i.e., RXL),

and querying these views using another language called XML-QL. However, the tool

cannot store or query XML documents. The XPERANTO system translates XML-

based queries into SQL over (object-)RDBs [Carey et al., 2000a,b; Shanmugasun-

daram et al., 2001]. The system receives and de-constructs SQL queries and returns

XML documents. However, users have to specify the queries and define more complex

views using an appropriate query language, once the system publishes a default XML

view. In addition, mismatches exist between XML and SQL query syntax, and more

advanced object features and integrity constraints are not considered precisely. Unlike

SilkRoute, XTABLES provides the user with a single query language which can be

used to query seamlessly over relational data and metadata [Funderburk et al., 2002].

In addition, XTABLES can query and store XML documents in RDBs. VXE-R is

an engine for translating relational schema into an equivalent XML schema, where

XML queries can be issued directly against XML schema [Liu et al., 2003]. Finally,

DB2XML is a tool for converting RDBs into DTD documents [Turau, 1999].

Storing XML documents in RDBs: XML documents can be stored in RDBMSs

[Yoshikawa et al., 2001; Bourret, 2005; Fong et al., 2006]. A database that allows XML

data to be stored in it is called an XML-enabled database. A whole document can

be stored in a large single column in a table. The column can be a BLOB or a

CLOB. A key column can be added to manage this table. A more complex technique

is to shred a document into elements and store each element in a separate table.

It models pure data without a document and has the flattened form of a relational

model [Bourret, 2005]. XML-enabled databases are useful for retrieving and storing

data which conform to XML form. However, they cannot effectively store a complete

document with its identity, order and comments. Therefore, it may be preferable to

handle such documents with native-XML databases, because they use XML models

that can store whole documents directly without requiring any mapping.

Approach 2: Database Integration

A connection can be established between RDBs and other databases which allows the

applications built on top of a new DBMS to access both relational and object/XML

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 39

DBMSs, giving the impression that all data are stored in one database. This repre-

sents a simple level of database integration between systems [Tari and Stokes, 1997;

Tari et al., 1997; Parent and Spaccapietra, 2000; Collins et al., 2002]. This is achieved

using a special type of software called gateways, which support connectivity between

DBMSs and do not involve the user in SQL and RDB schema. Hence, queries and

operations are converted into SQL and the results are translated into target ob-

jects [Orenstein and Kamber, 1995]. Many applications use two or more underlying

databases. On retrieving data from both systems, the unification of their two schemas

is necessary by providing two-way mapping. During integration, systems cooperate

autonomously by creating a unified and consistent data view for several databases,

hiding heterogeneities and query languages [Hohenstein and Plesser, 1996]. Most com-

mercial DBMSs such as Objectivity [Objectivity, 2009] and ObjectStore [ObjectStore,

2009] provide flexibility of mapping and gateways construction among heterogeneous

databases. The difference between gateways and object-relational mapping tools is

that, in the former, objects are persistently stored in the new developed database

system; whereas in mapping or publishing data, objects are created and handled in

the normal way but are stored in an RDB. However, in both approaches old data

stored in an RDB are retained.

Approach 3: Database Migration

Migration of an RDB into its equivalents is usually accomplished between two databas-

es according the literature. The first database is an RDB, called the source, and the

second, called the target, which represents the result of the migration process. In addi-

tion, the process is performed with or without the help of an intermediate conceptual

representation, e.g., an ER model as a stage of enrichment. The input source schema

is enriched semantically and translated into a target schema. Data stored in the source

database are converted into the target database based on the target schema. Gen-

erally, relations and attributes are translated into equivalent target objects. Foreign

keys may be replaced by another domain or relationship attributes. Weak entity re-

lations may be mapped into component classes, multi-valued or composite attributes

inside their parent class/entity. Other relationships, such as associations and inheri-

tance, can also be extracted by analysing data dependencies or database instances. In

data conversion, attributes that are not foreign keys become literal attribute values of

objects, elements or sets of elements. Foreign keys realise relationships among tuples,

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 40

which are converted into value-based or object references in a target database. The

challenge in this process is that the data of one relation may be converted into a col-

lection of literal/references rather than into one corresponding type. This is because

of the heterogeneity of concepts and structures in the source and target data models.

3.1.2 Translation Techniques

Existing techniques used for RDB schema translation can be classified into two types:

(i) source-to-target (S2T), including flat, clustering and nesting translation tech-

niques, and (ii) source-to-conceptual-to-target (SCT) translation. In some of these

techniques, data might be converted based on the resulting target schema.

Source-to-target (S2T) technique

This type of technique translates a physical schema source code directly into an

equivalent target. However, as the target schema is generated using one-step mapping

with no intermediate stage for enrichment, this technique usually results in an ill-

designed database because some of the data semantics (e.g., integrity constraints) are

not considered. This approach can take the following three forms:

Flat technique: This technique converts each relation into an object class/XML

element in the target database [Premerlani and Blaha, 1994; Fong, 1997; Wang, 2004;

Wang et al., 2005]. Foreign keys are mapped into references to connect objects.

However, due to the one-to-one mapping, the flattened form of RDBs is preserved

in the generated database, so that object-based model features and the hierarchical

form of the XML model are not exploited. This means that the target database is

semantically weaker and of a poorer quality than the source. Moreover, creating too

many references causes degraded performance during data retrieval.

Clustering technique: This technique is performed recursively by grouping entities

and relationships together starting from atomic entities to construct more complex

entities until the desired level of abstraction (e.g., aggregation) is achieved [Getta,

1993; Yan and Ling, 1993; Missaoui et al., 1995; Sousa et al., 2002]. A strong entity

is wrapped with all of its direct weak entities, forming a complex cluster labelled

with the strong entity name. This technique works well when the aim is to produce

hierarchical forms with one root. This technique may reduce search time by avoiding

join operations, and thus speeding up query processing, however, it may lead to

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 41

complex structures and is prone to errors in translation. In addition, materialising

component entities within their parent/whole entities may cause data redundancy,

the loss of semantics and the breaking of relationships among objects.

Nesting technique: This technique uses the iterated mechanism of a nest operator

to generate a nested target structure from tuples of an input relation [Lee et al.,

2002; Singh et al., 2004]. The target type is extracted from the best possible nesting

outcome. For a table T with a set of columns X, nesting on a non-empty column(s)

Y ∈ X collects all tuples that agree on the remaining columns X − Y into a set [Lee

et al., 2002]. However, the technique has various limitations, e.g., mapping each table

separately and ignoring integrity constraints. Besides, the process is quite expensive,

since it needs all tuples of a table to be scanned repeatedly in order to achieve the

best possible nesting.

Source-to-conceptual-to-target (SCT) technique

This type of technique enriches a source schema by data semantics that might not

have been clearly expressed. The schema is translated from a logical into a concep-

tual schema through recovering the domain semantics (e.g., primary keys, foreign

keys, cardinalities, etc.) and making them explicit. The results are represented as a

conceptual schema using database reverse engineering (DBRE) [Chiang et al., 1994].

The resulting conceptual schema can be translated into the target logical schema

effectively using database forward engineering (DBFE). In this way, the technique

results in a well-designed target database.

Database reverse engineering (DBRE): DBRE is a process for enriching a

source schema using semantics that might have not been clearly expressed by acquir-

ing as much information as possible about objects and the relationships that exist

among them [Castellanos et al., 1994]. This process is also known as semantic enrich-

ment. Inferring conceptual schema from a logical RDB schema via DBRE has been

extensively studied [Hainaut, 1991; Andersson, 1994; Chiang et al., 1994; Hainaut

et al., 1997; Malki et al., 2002; Alhajj, 2003]. Such conversions are usually specified

by rules, which describe how to derive RDB constructs (e.g., relations, attributes,

data dependencies, keys), classify them, and identify relationships among them. Se-

mantic information is extracted by an in-depth analysis of relations in an RDB schema

together with their data dependencies into a conceptual schema such as ER, UML,

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 42

OO and XML data models. Data and query statements have also been used in some

studies to extract data semantics. Some proposals consult expert users or use data

dictionaries to provide metadata, whereas other proposals employ database design

techniques. However, some of these proposals could be combined together to form a

more comprehensive solution. Table 3.1 shows a summary of some of these proposals,

details on which are given below.

Proposal Schema Data DDL, DML data dictionary Expert User Design
[Chiang et al., 1994]

√ √ × × √ ×
[Fonkam and Gray, 1992]

√ × × × × ×
[Alhajj, 2003] × √ × √ √ ×
[Soutou, 1996] × √ √ × × ×
[Petit et al., 1994] × √ √ × × ×
[Andersson, 1994] × × √ × × ×
[Soutou, 1998a]

√ √ × √ × ×
[Alhajj and Polat, 2001] × √ × √ √ ×
[Hainaut et al., 1994]

√ × × × × √
[Marcos et al., 2003]

√ × × × × √
[Tari et al., 1997]

√ √ × × × ×
[Malki et al., 2002]

√ √ × × √ ×√
: Yes ×: No

Table 3.1: Extracting an RDB conceptual schema via DBRE

• Schema-based proposals: Most of the existing DBRE studies fall into this

category, where the inputs are RDB schemas and the outputs are data seman-

tics from analysing relations and attributes [Navathe and Awong, 1988; Davis

and Arora, 1988; Johannesson and Kalman, 1989; Fonkam and Gray, 1992;

Chiang et al., 1994; Johannesson, 1994]. The extraction of data semantics by

converting an RDB schema into an EER model has been studied in the early

nineties [Fonkam and Gray, 1992; Chiang et al., 1994]. Three algorithms are

proposed to extract a conceptual ER from an existing RDB based of the classifi-

cation of relations and attributes [Navathe and Awong, 1988; Davis and Arora,

1988; Johannesson and Kalman, 1989]. However, all those algorithms do not

consider inheritance relationships. Fonkam and Gray [1992] presented a more

general algorithm that is based on these algorithms, where the original con-

tribution of this algorithm was to establish generalisation hierarchies. Chiang

et al. [1993, 1994] proposed a method that focuses on deriving an EER from a

3NF RDB. This type of method uses a variety of heuristics to recover domain

semantics through the classification of relations, attributes and key-based inclu-

sion dependencies using the schema. However, expert involvement is required

to distinguish between similar EER constructs, i.e., weak entities and specific

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 43

relationship types [Chiang et al., 1994]. In addition, the consistency of key

naming and a well-formed schema is assumed.

• Data content-based proposals: Several studies have proposed the extrac-

tion of semantics by analysing data instances and possibly schemas [Chiang

et al., 1994; Soutou, 1996; Tari et al., 1997; Alhajj, 1999, 2003]. Soutou [1996]

proposed a process for extracting the cardinalities of n-ary relations represent-

ing relationships by generating a set of SQL queries. Data instances are used

for relation classifications with respect to their keys [Chiang et al., 1994; Tari

et al., 1997]. Alhajj [2003] developed algorithms that utilise data to derive all

possible candidate keys for identifying the foreign keys of each given relation

in a legacy RDB. This information is then used to derive a graph called RID,

which includes all possible relationships among RDB relations. The RID graph

works as a conceptual schema [Alhajj, 1999].

• Query-based proposals: Inferring a conceptual schema based on the analysis

of DDL and SQL queries embedded in applications has been suggested by sev-

eral authors [Andersson, 1994; Petit et al., 1994; Comyn-Wattiau and Akoka,

1996; Akoka et al., 1999]. Petit et al. [1994] presented a method to extract

EER model constructs from an RDB by analysing SQL queries in application

programs. In common with Andersson [1994], Petit et al. [1996] extracted a

conceptual schema by investigating equi-join statements. The method uses a

join condition and the distinct keyword for attribute elimination during key

identification. Comyn-Wattiau and Akoka [1996] proposed a method called

MeRCI which concentrates on schema de-optimisation. The process starts with

RDB physical schema containing de-normalised relations, and then a set of ap-

propriate rules is applied to de-optimize the schema through the analysis of

application source codes (DDL, DML) and data mining techniques. Relational

operators such as join, project and restrict in a physical schema are de-

tected and used for de-normalisation of relations. Akoka et al. [1999] focused

on extracting generalisation hierarchies in an RDB using DDL, DML and data

analysis.

• Other proposals: Soutou [1998a,b] presented an algorithm for inferring n-

ary relationships from RDBs using a combination of data dictionary, and the

analysis of schema and data. Alhajj and Polat [2001] re-engineered an RDB

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 44

into an OODB using an expert user and the data dictionary as primary sources

of information. Since an RDB does not enable a natural way of representing

inheritances, several heuristic and algorithmic methods have been proposed to

elicit inheritance relationships hidden in RDBs [Fonkam and Gray, 1992; Akoka

et al., 1999; Lammari, 1999; Al-Kamha et al., 2005; Elmasri and Navathe, 2006;

Lammari et al., 2007]. Data instances, schemas, DDL and DML specifications,

along with understanding null value semantics, are used to detect inheritance.

• Design-based proposals: Some works that have design characteristics can

be used for DBRE [Hainaut et al., 1993; Getta, 1993; Hainaut et al., 1994;

Marcos et al., 2003]. A method based on a generic schema specification model

and DBRE techniques has been proposed to deal with design and re-engineering

database applications [Hainaut et al., 1994]. Marcos et al. [2003] presented rules

to translate a UML class diagram into an ORDB schema in SQL3 and Oracle

8i.

The problems of semantic enrichment arise from processing badly-designed

and poorly documented applications [Hainaut, 1991]. Many RDBs might have

been specified without definition of constraints, such as keys and integrity con-

straints [Behm et al., 2000]. These semantics specified into conceptual schema

might not be presented explicitly in data dictionaries [Pérez et al., 2003]. For

example, foreign keys are not possible in Oracle 5. Moreover, many RDBs do

not contain semantic constraints for optimisation reasons, and not all databases

are built by experienced developers, who may produce poor or inadequate struc-

tures [Hainaut, 1991].

Database forward engineering (DBFE): This process is known as schema trans-

lation. A conceptual schema generated from the DBRE process can be translated into

a high level data model through the application of a set of rules, called schema map-

ping rules. Several proposals have been made for transforming conceptual schemas,

e.g., ER, EER, UML or other specific models into object-based and XML schemas

[Narasimhan et al., 1993; Hainaut et al., 1994; Orenstein and Kamber, 1995; Carey

et al., 2000a; Du et al., 2001; Kleiner and Lipeck, 2001; Marcos et al., 2003; Vela

and Marcos, 2003]. These proposals and many others have been used as a basis for

middlewares, gateways and CASE tools. A review of database design transformations

based on the ER model may be found [Fahrner and Vossen, 1995a].

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 45

3.2 RBD Migration Proposals

This section presents a number of properties of existing proposals for RDB migrations

and tools used to facilitate the migration process. Those properties are discussed in

Section 3.2.1, whereas migrations tools are presented in Section 3.2.2.

3.2.1 Database Migration Properties

Before we embark on a detailed review on proposals used in an RDB migration,

this section describes a set of properties which can be used to compare and evaluate

existing proposals. Indeed, each proposal has its properties, e.g., prerequisites and

data model used. These properties lead to different mapping rules for the migration

process, which in turn affect the results and quality of the process. Table 3.2 provides

a comparison and classification of some of these proposals showing the input and

target generated databases, and technique used and prerequisites of each proposal. In

addition, Table 3.3 surveys such proposals, showing intermediate conceptual models

used (if any), the preservation of data semantics and some other features. These

properties surveyed in both tables are explained below. However, detailed descriptions

on these proposals as works for migrating RDBs into OODBs, ORDBs and XML

according to these properties are given in Sections 3.3, 3.4 and 3.5, respectively.

Proposal ST DC Tec Input Prerequisites Output
OODB ORDB XML

[Fong, 1997]
√ √

S2T RDB FD,ID,ED
√ × ×

[Yan and Ling, 1993]
√ × S2T RDB keys, ID

√ × ×
[Ramanathan and Hodges, 1997]

√ × S2T RDB FD, PKs, FKs, 2NF
√ × ×

[Zhang et al., 1999]
√ × S2T RDB FD, ID, 4NF, MVD

√ × ×
[Fahrner and Vossen, 1995b]

√ × S2T RDB keys, FD, ID, 3NF
√ × ×

[Behm et al., 2000]
√ √

SCT RDB keys, DD, Ins
√ × ×

[Alhajj and Polat, 2001]
√ √

SCT RDB keys, DD, Ins
√ × ×

[Narasimhan et al., 1993]
√ × S2T ER ER

√ × ×
[Premerlani and Blaha, 1994]

√ × S2T RDB keys, non-3NF
√ × ×

[Castellanos et al., 1994]
√ × S2T RDB FD, ID, ED, non-3NF

√ × ×
[Urban et al., 2001]

√ × S2T UML UML class diagram × √ ×
[Marcos et al., 2003]

√ × S2T UML UML class diagram × √ ×
[Arora et al., 2005]

√ × SCT RDB ER, UML × √ ×
[Vela and Marcos, 2003]

√ × S2T UML UML class diagram × √ ×
[Fong and Cheung, 2005]

√ √
SCT RDB PKs, FKs × × √

[Kleiner and Lipeck, 2001]
√ √

S2T EER FD, ID × × √
[Du et al., 2001]

√ × SCT RDB 3NF × × √
[Fong et al., 2003]

√ √
SCT RDB FD, MVD, JD, TD × × √

[Lee et al., 2002]
√ × S2T RDB PKs, FKs × × √

[Wang et al., 2005]
√ √

SCT RDB PKs, FKs, DD × × √
[Laforest and Boumediene, 2003]

√ × S2T RDB PKs, FKs × × √
[Fong et al., 2006]

√ √
SCT RDB keys, FD, IN, MVD × × √

ST: Schema Translation DC: Data Conversion Tec: Technique FD: Functional ID: Inclusion Dependency MVD: Multi-valued
Dependency TD: Transitive Dependency Ins: Data instances Dependency ED: Exclusion Dependency JD: Join Dependency PK:

primary key FK: foreign key DD: data dictionary

Table 3.2: RDB migration (prerequisites, input and output databases)

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 46

Migration prerequisites: Existing work on database migration enforces different

prerequisites on the source databases being migrated. These include the consistency

of naming attributes, the availability of all keys and schema, inclusion and functional

dependencies, and database instances. Most existing proposals are limited by the

assumptions that they make. For instance, a source schema is required to be available

for further normalisation to third normal form (3NF) [Chiang et al., 1994; Fahrner and

Vossen, 1995b] or even to 4NF [Zhang et al., 1999] before the migration process can

begin. However, this is not a practical choice for existing RDBs. Data dependency,

which is most often represented by key constraints, plays the most important role

in this process. Evaluation of functional, inclusion and key-based dependency is

assumed in many proposals. Other kinds of data dependency may also be required,

e.g., multi-valued dependency (MVD) [Zhang et al., 1999; Fong et al., 2003] and

exclusion dependency (ED) [Castellanos et al., 1994; Fong, 1997]. Premerlani and

Blaha [1994] assume that the problem of synonyms and homonyms has been resolved

prior to database migration. Also, the classification of relations with respect to their

keys, e.g., to know whether the primary keys and foreign keys are constructed from

each other may be required [Chiang et al., 1994; Tari et al., 1997]. Other frequent

assumptions are that the initial schema is well-designed and that all basic relevant

constraints are given in the descriptions of the schema or provided by the user [Behm

et al., 2000; Alhajj, 2003; Wang et al., 2005].

Input and output models: In existing work, the RDB migration process usually

takes one RDB as input and aims to generate one target database. A source schema is

translated into another equivalent schema and data are converted in accordance with

schema translation. However, most work to date has focused on translating RDB

schemas directly into schemas of other non-standardised data models, in the context

of database integration [Castellanos et al., 1994; Fong, 1997; Zhang et al., 1999]. Few

attempts have been made to generate target data models based on their conceptual

schemas or other representations, as an intermediate stage for enrichment. Numerous

methods have been proposed for DBRE by transforming logical data models into ER,

EER and UML models. A large body of literature exists on DBFE (or database de-

sign) aiming to transform such conceptual models to logical data models. In addition,

only few works consider current standards, i.e., ODMG 3.0, SQL4 and XML Schema

as target models [Fahrner and Vossen, 1995b; Wang et al., 2005].

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 47

Proposal ICR Data Semantics Features Target
AS AG IN RI OP SA UI model

[Fong, 1997] -
√ × √ × × × H NS

[Yan and Ling, 1993] -
√ √ √ × × × H NS

[Ramanathan and Hodges, 1997] -
√ √ √ × √ × H OMT

[Zhang et al., 1999] -
√ √ √ × × × H NS

[Fahrner and Vossen, 1995b] -
√ √ √ √ √ √

H ODMG-93
[Behm et al., 2000] SOT

√ × √ √ × √
L ODMG-93

[Alhajj and Polat, 2001] RID
√ √ √ × × × L NS

[Narasimhan et al., 1993] -
√ √ × × × × H NS

[Premerlani and Blaha, 1994] -
√ √ √ × √ × H OMT

[Castellanos et al., 1994] -
√ √ √ × × × H BLOOM

[Urban et al., 2001] -
√ √ × √ √ × H Oracle 8i

[Marcos et al., 2003] -
√ √ √ √ √ √

H SQL3
[Arora et al., 2005] UML

√ √ √ × × × H Oracle 9i
[Vela and Marcos, 2003] -

√ √ √ √ × √
H Oracle 8i

[Fong and Cheung, 2005] EER
√ √ √ √ × √

L XML Schema
[Kleiner and Lipeck, 2001] -

√ × × × × √
H DTD

[Du et al., 2001] ORA-SS
√ √ √ √ × √

H XML Schema
[Fong et al., 2003] DOMs

√ √ × × √ √
L DTD

[Lee et al., 2002] -
√ √ × × √ √

H DTD
[Wang et al., 2005] ER

√ × × √ × √
H XML Schema

[Laforest and Boumediene, 2003] -
√ √ × × × √

H DTD
[Fong et al., 2006] EER

√ √ √ × × √
H DTD

ICR: Intermediate Conceptual Representation AS: Association AG: Aggregation IN: Inheritance RI: Referential Integrity OP:
Optimisation SA: Standard Adoption UI: User Interaction L: Low intervention H: High intervention NS: Non-standard

Table 3.3: RDB migration (data semantics and features)

Conceptual models used: Earlier models such as ER, EER and object-modeling

technique (OMT) [Rumbaugh et al., 1990] are assumed in most studies as a concep-

tual model or target data models, whereas other works are restricted to a particular

product, e.g., Oracle [Arora et al., 2005]. To enrich a source RDB structurally and

semantically, graphs and models are proposed as an intermediate stage [Abelló et al.,

1999; Dobbie et al., 2000; Du et al., 2001; Alhajj, 2003; Fong and Cheung, 2005]. A

graph called an RID, developed by Alhajj [2003], has been used to translate an RDB

into an OODB [Alhajj and Polat, 2001] or into an XML [Wang et al., 2005]. This

graph, similar to an ER diagram is used for identifying relationships and cardinalities.

A model, called Barcelona object oriented model (BLOOM), has also been developed

to act like a canonical model for federated DBMSs [Abelló et al., 1999; Abelló and

Rodŕıguez, 2000]. Its main goal is to upgrade the semantic level of the local schemas

of different databases and to facilitate their integration. Behm et al. [2000] proposed

a model, called semi object type (SOT), to facilitate the restructuring of schemas

during the translation of an RDB into an OODB. Another model, called ORA-SS,

has been proposed to support the design of non-redundant storage of semi-structured

data models [Dobbie et al., 2000]. The ORA-SS is used as an intermediate model

to map an RDB into an XML Schema [Dobbie et al., 2000]. The model has its own

diagrammatic notations for expressing class attributes and relationships, similar to

those of ER and OO data models. The model represents data as directed graphs,

and focuses on modelling n-ary relationships as well as distinguishing between the

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 48

attributes of relationships and those of objects. However, it uses the technique of

nesting and referencing in representing relationships among objects.

Semantic preservation: RDBs typically contain implicit and explicit data se-

mantics, concerning integrity constraints and relationships among relations. Target

databases should hold equivalents to these semantics. Several previous proposals

have failed to explicitly maintain all of the data semantics (e.g., integrity constraints

and inheritance). Constraints are instead mapped into class methods [Fahrner and

Vossen, 1995b] or into separate constraint classes [Narasimhan et al., 1993]. Rela-

tionships are translated in most of the work, however, inheritance relationships have

not been fully addressed. Few studies address database optimisation issues, e.g., hor-

izontal and vertical partitioning [Narasimhan et al., 1993; Ramanathan and Hodges,

1997]. Object-based data models consist of static properties (attributes and relation-

ships) and dynamic properties (methods or functions), which make them richer than

relational data models. Most existing methods focus on constructing a static rather

than dynamic target schema.

User involvement: A common observation in the different proposals is that user

interaction is necessary at some point to provide additional information to achieve

the desired results. User intervention might be required for the classification and

understanding of keys in an RDB [Castellanos et al., 1994], choosing the appropriate

transformation rule [Jahnke et al., 1996; Behm et al., 1997], or identifying complex

relationship structures [Fahrner and Vossen, 1995b]. User involvement is also required

for resolving optimisation issues such as naming conflicts and vertically or horizontally

partitioned relations [Chiang et al., 1994; Premerlani and Blaha, 1994; Ramanathan

and Hodges, 1996], and for selecting XML documents’ roots and directing the con-

version process [Lee et al., 2002; Fong et al., 2003].

3.2.2 Tools Support

A number of prototypes and tools have been developed to facilitate the migration of

RDBs into target databases [Chiang, 1995; Jahnke et al., 1996; Monk et al., 1996;

Amer-Yahia, 1997; Turau, 1999; Lo et al., 2004; Wang et al., 2005].

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 49

Chiang [1995] presented a system, called the knowledge extraction system (KES), for

generating an EER model from RDBs. KES has been developed to extract domain

semantics by analysing the RDB schema and data instances. Monk et al. [1996]

proposed a tool for transforming an RDB into an OODB, where a schema and data

are created using convertors which can then be exploited by client programs using

translators. However, various semantic constraints, schema-mapping constructs and

data migration techniques were not addressed adequately in this work.

Jahnke et al. [1996]; Jahnke and Zundorf [1998] described a semi-automatic tool for

mapping an RDB into an ODMG ODL schema. The conversion process is provided

by an adapted set of schema mapping rules to produce an initial OO conceptual

schema. Once the OO schema is produced, it can be refined to exploit OO concepts,

e.g., inheritance and aggregation using the Varlet redesign tool. This tool is similar

to the RELS tool [Pérez et al., 2003]. However, Varlet focuses on migrating legacy

databases, which are enriched with semantic information inferred using other tech-

niques (i.e., [Premerlani and Blaha, 1994; Fahrner and Vossen, 1995b]), whereas any

missing semantics information is provided by an expert user.

Amer-Yahia [1997]; Jahnke and Zundorf [1998] provided a tool for RDB-OODB map-

ping with an independent language called RelOO. Data conversion is performed in

more than one transaction according to three criteria: a) a certain number of objects

are mapped in one transaction, b) each relation is fragmented into several partitions

during its mapping into an object class, and c) a period of time is assigned within

which each transaction is finished. However, the tool does not exploit all of the fea-

tures provided by the OODB paradigm, such as inverse references, inheritance and

aggregation, and the fragmentation of tables during conversion might cause unneces-

sary complexity.

A system named conversion of catalog-based and legacy RDBs to XML (COCALERE-

X) has been developed to convert RDBs into XML documents [Wang et al., 2004;

Wang, 2004; Wang et al., 2005]. Similar tools are VIREX [Lo et al., 2004] and

Conv2XML [Duta et al., 2004]. COCALERTEX can convert legacy and catalog-

based RDBs, whereas Conv2XML assumes that basic constraints, e.g., primary keys,

foreign keys, unique keys and nulls are already available, and the schema must be in

3NF.

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 50

3.3 Migrating RBD into OODB

An overview of the main concepts for migrating RDBs into object-based and XML

databases has been provided in Section 3.2. In this section, existing proposals for the

migration of RDBs into OODBs are discussed in further detail, including semantic

enrichment, schema translation and data migration.

ER-to-OODB: Narasimhan et al. [1993] proposed a procedure that deals with an

RDB abstraction through mapping its related ER model into an OO schema to exploit

the ER model features, e.g., multi-valued attributes. The work suggests creating a

separate constraint class with methods as a sub-class for each of the OODB classes.

The translation of EER models into OO models by a set of transforation rules has

been illustrated [Getta, 1993; Fong, 1995]. Whereas Fong [1995] mapped an EER

model into an OMT model, Getta [1993] used a specific OO model as a target. In

Fong’s algorithm, EER strong entities are mapped into classes with corresponding

attributes [Fong, 1995]. Weak entities and aggregations are mapped into component

and composite object-classes, respectively. Relationships among entities are mapped

into associations, generalisation/specialisation into inheritance, and categorisations

into multiple-inheritance. Other methods of transforming ER, EER and UML models

into OODBs in the context of database design have been reported [Fahrner and

Vossen, 1995a; Cattell and Barry, 2000; Date, 2002; Connolly and Begg, 2002; Elmasri

and Navathe, 2006; Garcia-Molina et al., 2008].

RDB-to-OODB: Several methods have been proposed for migrating RDBs into

OODBs directly, i.e., without using an intermediate conceptual representation [Castel-

lanos et al., 1994; Premerlani and Blaha, 1994; Fahrner and Vossen, 1995b; Fong, 1997;

Ramanathan and Hodges, 1997; Zhang et al., 1999]. However, all these proposals,

except Fong [1997], concern only schema translation.

Premerlani and Blaha [1994] proposed a procedure for mapping an RDB schema

into an OMT schema. An OMT schema is produced by representing each RDB re-

lation with its attributes as an OMT class, and primary keys and foreign keys are

determined by resolving synonyms and homonyms. Then, horizontally partitioned

classes are refined into single classes, and associations and generalisations are identi-

fied using the evaluation of keys. Finally, OO classes are refined through eliminating

redundant associations. Fahrner and Vossen [1995b] described a method in which

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 51

an RDB schema is normalised to 3NF, enriched by semantics using data dependen-

cies, and translated into an ODMG-93 ODL schema. This method makes extensive

use of inclusion and exclusion dependencies. Moreover, the resulting schema is then

restructured by the user with respect to OO paradigm options, e.g., binary relation-

ship relations are eliminated and integrity constraints are mapped into class methods.

Castellanos [1993]; Castellanos et al. [1994] presented a method that generates the

BLOOM [Abelló et al., 1999] schema from an RDB. The method consists of two

phases. An RDB schema is improved semantically based on a knowledge acquisition

process to discover implicit semantics by analysing the schema and data instances.

Then the enriched RDB schema is converted into a BLOOM schema. The knowl-

edge acquisition phase involves the determination of keys and their types, of data

dependencies such as functional, inclusion and exclusion dependencies, and of the

normalisation of the schema to 3NF. However, unlike in Premerlani and Blaha [1994]

method optimization structures, e.g., horizontal decomposition or different represen-

tations of complex attributes are not considered. Fong [1997] suggested a sound

theoretical method for converting RDBs data into OODBs. Relation tuples are con-

verted, downloaded into sequential files, and then reloaded into the OODB. However,

weak entities and multi-valued and composite attributes are not clearly tackled in

this work. Ramanathan and Hodges [1996, 1997] presented a method for mapping

an RDB schema that is at least in 2NF into an OODB schema without the explicit

use of inclusion dependencies, and without changing the existing schema. All of the

information required during the process comes from information on primary keys and

foreign keys. However, the method also addresses database optimisation issues such

as BLOBs, horizontal and vertical partitioning, which cannot be mapped into object

schema without using data dependencies. Zhang et al. [1999] described a method

based on MVD to remove data redundancy and update anomalies. A composition

process is proposed to reduce the input RDB schema. Then, the simplified relations

are mapped into equivalent OO classes.

Clustering RDB relations-to-OODB: Yan and Ling [1993] presented a method

that produces an OODB schema from an RDB using a clustering technique, in which

clusters of relations that represent object classes, aggregation, association and inher-

itance relationships are identified. A strong entity is wrapped with all of its direct

weak entities, forming a complex cluster which holds the strong entity name. In the

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 52

case of deep levels of clustering, a dominant entity may aggregate its component enti-

ties if they have no relationships with other entities. The method proposes generating

OIDs for identified objects by concatenating the key values of each tuple with the

relation name. Missaoui et al. [1995, 1998] adapted the clustering technique proposed

by Teorey et al. [1989] to produce a clustered EER diagram. In this method, re-

lated entities are identified and defined as one unit. The diagram produced is then

translated into an OO schema.

RDB-to-RID graph-to-OODB: Alhajj and Polat [2001] re-engineered an RDB

into an OODB using the RID graph. The RID graph, which is similar to EER model

is derived and optimised in order to identify relationships. Finally, RDB tuples are

converted into objects in an OODB.

RDB-SOT -OODB: Behm et al. [2000] proposed a model called SOT to facilitate

RDBs migration. An RDB schema is mapped into the SOT schema, which is then

converted into an OO schema. An SOT schema consists of a set of SOTs where each

has a set of attributes of basic type, collection and reference. The references represent

the relationship between SOTs. Every SOT and attribute is identified by a unique

identifier to avoid naming conflicts. Transformation rules consist of five parts, namely,

definitions, patterns, preconditions, schema and data operations [Behm et al., 1997].

The data migration process is accomplished automatically.

Nesting RDB relations-to-OODB: Singh et al. [2004] proposed an algorithm

for mapping an RDB schema into a corresponding OO schema based on common at-

tributes factoring. However, neither constraints nor resolving synonym and homonym

issues are considered.

3.4 Migrating RDB into ORDB

This section reviews existing proposals for transforming conceptual models into OR-

DBs. Transforming conceptual models (e.g., EER, UML class diagrams) into ORDB

have been studied extensively over the past ten years [Stonebraker et al., 1999; Marcos

et al., 2001; Mok and Paper, 2001; Soutou, 2001; Urban et al., 2001; Marcos et al.,

2003; Pardede et al., 2004; Arora et al., 2005; Eessaar, 2006; Grant et al., 2006; Mok,

2007]. A common finding from these studies is that the logical structure of an ORDB

schema is achieved by creating object-types from UML diagrams. Tables are created

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 53

based on the pre-defined object-types. An association relationship is mapped using

ref or a collection of refs depending on the multiplicity of the association. Multi-

valued attributes are defined using arrays/nested tables. Inheritance is defined using

foreign keys or ref types in Oracle 8i and the under clause in Oracle 9i/SQL3 [Marcos

et al., 2003].

A method of mapping and preserving collection semantics into an ORDB has recently

been proposed [Pardede et al., 2004]. The method transforms UML conceptual ag-

gregation and association relationships into ORDB using row and multiset provided

by SQL4 [Pardede et al., 2003]. More recent work has focused on mapping UML ag-

gregation/composition relationships into ORDBs [Marcos et al., 2003; Eessaar, 2006].

Urban et al. [2000, 2001] described essential rules for converting UML class diagrams

into ORDB schemas, using triggers to preserve inverse relationships between ob-

jects for bi-directional relationships. Marcos et al. [2001, 2003] proposed new UML

stereotype extensions for an ORDB design, focusing on aggregation and composition

relationships. Urban and Dietrich [2003] presented a method using UML diagrams as

a foundation for analysis, transforming them into RDB/OODB/ORDB schemas.

Grant et al. [2006] have compared and evaluated most of the above and others similar

proposals. Their analysis might aid in the standardisation of these techniques and the

development of a tool that could support in ORDBs design. Although most ORDB

concepts are present in these proposals, their focus has been on the design of ORDBs

rather than on migration. However, if a migration process uses a conceptual model

as an intermediate stage, then these proposals could be useful in schema translation.

3.5 Migrating RDB into XML

Due to a wide adoption of XML for Internet business, the migration of RDBs into

XML databases has become more important. This section presents a review of pro-

posals for migrating RDBs into XML. Some work uses data dictionaries and assumes

well-designed RDB [Du et al., 2001; Alhajj and Polat, 2001; Lee et al., 2002] whereas

others consider legacy RDB for migration into XML documents [Wang et al., 2004,

2005]. Besides, the resulting XML schemas might be a DTD [Lee et al., 2002], XML

Schema [Wang et al., 2005] or independent XML language [Dobbie et al., 2000].

However, several researchers have proposed ways to transform UML class diagrams

to XML [Conrad et al., 2000; Vela and Marcos, 2003].

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 54

RDB-to-ER-to-XML: Wang [2004]; Wang et al. [2005] proposed a method focusing

on legacy RDBs. Firstly, the ER model is extracted from the RDB by applying the

DBRE technique described by Alhajj [2003], which results in an RID graph. Then,

the RID graph is mapped into an XML Schema. The structure of the generated

XML document is based on user specification into a flat or nested structure. Each

entity in an ER model is transformed into an XML complex type. Each attribute is

mapped into a sub-element within a related complex type. Relationships among en-

tities are mapped using key and keyref elements. After the schema is translated, an

XML document is generated from RDB data. However, inheritance and aggregation

relationships are not considered properly in this study.

RDB-to-EER-to-XML: Fong and Cheung [2005] introduced a method in which

data semantics are extracted from an RDB schema into an EER model, which is

then mapped into an XSD graph. The XSD graph captures relationships and con-

straints and is mapped in turn into an XML Schema. However, the authors suggested

mapping foreign keys into a hierarchy of element/sub-elements, which may cause re-

dundancy when an element has a relationship with more than one element. Fong

et al. [2001] described a method for translating an RDB schema into an XML-Data

schema [Layman et al., 1998] and then converting the data into an XML document.

They capture semantic information from an RDB using an EER model, giving the

basis for generating an XML document. However, some relationship types, e.g., M:N,

n-ary are not considered. Fong et al. [2006] used the EER model to enrich an existing

RDB semantically and translating it into a corresponding DTD schema. The RDB

data are converted and loaded into an XML document according to the translated

DTD schema.

RDB-to-DTD: Laforest and Boumediene [2003] described two algorithms to extract

data-centric and paragraph-centric DTD from RDBs automatically. One table is

determined to be the main root element, and then columns of that table, which are

neither primary key nor foreign keys are mapped as its sub-elements. The primary key

is added to its root elements as an attribute. Other tables that hold the primary key

of the root table as foreign keys are translated as sub-elements with cardinality “*”.

For each foreign key included in the primary key, a new sub-element with PCDATA

type is generated, holding the same name as its reference table. Foreign keys that are

not included in the primary key are converted into sub-elements in the root. Their

composition then has to be defined, and their cardinalities defined as “1” or “?”

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 55

depending on integrity constraints.

EER-to-XML: Kleiner and Lipeck [2001] translated an EER model to DTD. How-

ever, some data semantics cannot be represented, e.g., the limitations of DTD in

specifying composite keys. Moreover, some relationships, i.e., inheritance and ag-

gregation are not considered in this work. The work has been extended considering

inheritance relationships, and generate an XML Schema from an EER model [Pigozzo

and Quintarelli, 2005]. However, the algorithm tries to create a hierarchal structure

that is deeper rather than larger. This may cause redundancy or disconnected ele-

ments in the resulting XML document. Liu and Li [2006] devised a set of mapping

rules to transform an ER diagram into an XML schema.

UML-to-XML: Conrad et al. [2000] proposed a method for transforming UML into

DTD in the context of OO software design. Vela and Marcos [2003] proposed a method

for extending UML to represent an XML Schema in graphical notation, which has

a unique equivalence with an XML Schema. However, although UML can model

data semantics such as aggregation and inheritance, it is still weak and unsuitable in

handling the hierarchal structure of the XML data model [Fong and Cheung, 2005].

There is other work in this direction for mapping UML class diagrams into an XML

Schema [Routledge et al., 2002; Krumbein and Kudrass, 2003] or a DTD [Kudrass

and Krumbein, 2003]

RDB-to-ORA-SS -to-XML Schema: Du et al. [2001] developed a method that

employs an ORA-SS model to support the translation of an RDB schema into an XML

Schema. They proposed a variety of translation rules for converting a semantically

enriched RDB schema into an ORA-SS model [Dobbie et al., 2000], which in turn

is then translated into the XML Schema. However, they adopted an exceptionally

deep clustering technique, which is prone to errors such as data redundancy, loss of

semantics and breaking of relationships among objects.

RDB-to-DOMs-to-DTD document: Fong et al. [2003] proposed a procedure

to translate RDBs into XML documents. Based on data dependency constraints,

this work de-normalises an RDB into joined tables, which are then translated to

document object models (DOMs). These DOMs are integrated into one DOM, which

is then mapped into a DTD schema. Based on the DTD schema generated and data

dependencies, each tuple of the joined tables is loaded into an object instance in DOM

and then transformed into a DTD document.

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 56

NeT and CoT algorithms: Lee et al. [2001] presented the flat translation (FT)

algorithm that maps RDB tables into DTD elements. However, the algorithm nei-

ther utilises features provided by the XML model nor considers integrity constraints.

Another algorithm known as nesting-based translation (NeT) has been proposed to

remedy the drawbacks of FT using an iterated mechanism of the nest operator to

generate nested structures of DTD schema from relational inputs [Lee et al., 2002].

However, this algorithm has some limitations, e.g., the mapping of each table sep-

arately and the nesting operations are too time consuming, as all tuples in a table

need to be scanned repeatedly to achieve the best nesting outcome. Together with

NeT, Lee et al. [2002] presented a constraints-based translation (CoT) algorithm that

considers the preservation of integrity constraints.

3.6 Discussion

The investigation into the problem of RDB migration shows that proposals made

so far have had different focuses. Each proposal has made certain assumptions to

facilitate the migration process, which might be a point of limitations or a drawback.

While existing works for migrating into OODBs focus on schema translation using

source-to-target techniques, we have noted that most works for migrating to XML

have used source-to-conceptual-to-target techniques, focusing on generating a DTD

schema and data. Moreover, all research on the generation of ORDBs has focused

on design rather than migration. It could be concluded, based on our analysis of the

literature, that research into the migration of RDBs into object-based/XML databases

is still immature, and that therefore several areas are in need of further attention.

Due to their focus on schema rather than data, the proposals reviewed above either

ignore data conversion or assume working on virtual target databases (using map-

ping and gateways middleware) and data retain stored in RDBs. Moreover, there

are still shortcomings in the implementation of RDB data conversion in a more ef-

fective manner into more than one environment. Using middleware may lead to slow

performance, making the process expensive at run-time because of the dynamic map-

ping of tuples to complex objects [Behm et al., 2000; Behm, 2001]. However, using

object-based DBMSs and native-XML, objects can be stored and retrieved directly

without any need for translation layers, hence saving development time and increasing

performance.

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 57

Some semantics (e.g., inheritance, aggregation) are not considered in some work.

This is mainly due to their lack of support for such semantics either in source or

target data models, e.g., ER model and DTD lack support for inheritance. Despite

the ability of UML to model data semantics such as aggregations and inheritances,

UML is still weak and unsuitable for handling the hierarchical structure of the XML

data model [Fong and Cheung, 2005]. Although inheritance relationships could be

indirectly realised in an RDB, they have been either ignored or only briefly consid-

ered. Different types of inheritance have not been tackled, such as unions, mutual

exclusion, partition and multiple-inheritance; and neither have their constraints, e.g.,

total/partial, disjoint and overlapping. Translating inheritance relationships from

RDBs to object-based/XML databases and capturing their data semantics, needs

more attention.

There has been less effort to use standards such as the ODMG 3.0, SQL4 and XML

Schema as target models. The adoption of standards is essential for better semantic

preservations, portability and flexibility. In the ODMG 3.0 model, referential integrity

is maintained automatically via inverse references. SQL4 has the ability to address

complex objects in ORDBs. Compared to DTD, the XML Schema offers a much more

extensive set of data types, and provides powerful referencing, nesting and inheritance

mechanisms of attributes and elements.

The majority of work so far has generated databases that are either like flat relational,

in which object-based model features and the hierarchical form of the XML model

are usually missed, or have deep levels of clustering/nesting, which may cause data

redundancy. It would be desirable to avoid the flattened form and to reduce the

levels of clustering object structures as much as possible in order to increase the

utilisations of the target models and to avoid undesirable redundancy. This requires

the preservation of the semantics of the source database into a conceptual model,

which takes into account the relatively richer data model of the target database

environment. The success of the migration process depends on the extent to which

data semantics are retained in the conceptual model and how they are translated into

a target database.

Although known conceptual models, e.g., ER, EER and UML may be used as inter-

mediate representations during RDB migration, it has been argued here that they

are not appropriate for the characteristics and constructs of more than one target

data model, and are not supporting data representation. UML should be extended

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 58

by adding new stereotypes or other constructs to specify the peculiarities of ORDB

and XML models [Marcos et al., 2003; Vela and Marcos, 2003]. In addition, several

dependent models have been developed for specific applications, but these are inappro-

priate to be applied to generate three different data models. The SOT model [Behm

et al., 2000] has been designed only for migrating RDBs into OODBs. The BLOOM

model [Abelló et al., 1999] was defined for different local schemas to be integrated in

federated systems, whereas the ORA-SS model [Du et al., 2001] has been designed to

support semi-structured data models.

The evaluation of the different techniques and proposals has shown that very few

of the existing studies provide solutions to the problems mentioned above or to the

general problem raised in Chapter 1. Viewing objects on top of existing RDBs and

establishing gateways to access existing data for only data retrieval purposes cannot

solve the problem of mismatch between different paradigms or preserve RDB data

semantics. In addition, the existing work on database migration does not provide

a complete solution for more than one target database for either schema or data

conversion. Besides, none of the existing proposals can be considered as a method for

migrating an RDB into an ORDB. An integrated method, which deals with migration

from RDB to OODB/ORDB/XML, which covers both schema and data does not yet

exist.

3.7 Summary

This chapter has provided a survey of the approaches and techniques used so far for

migrating RDBs into other databases, i.e., OODB, ORDB and XML. Three aspects

of migration have been discussed: semantics enrichment, schema translation and data

conversion. There are three approaches used to accomplish database conversion: 1)

viewing objects on top of RDBs where data is processed in object/XML form and

stored in relational form; 2) database integration where a gateway is used on top of

multiple heterogeneous databases to support a single view; and 3) database migra-

tion where an RDB is migrated into its equivalents. On the other hand, translation

techniques are divided into two categories: i) source-to-target translation, in which

a source database is translated directly into a target database, and ii) source-to-

conceptual-to-target translation, in which a source schema is enriched by semantics

or recovered to a conceptual schema before being translated into a target schema. The

CHAPTER 3. RELATIONAL DATABASE MIGRATION APPROACHES 59

source-to-target translation includes flat, clustering and nesting translation. The pro-

posals for RDB migration in the literature have been discussed in separate categories

according to the different target databases. Within each category, existing proposals

have been compared in terms of translation techniques, prerequisites, and specific

features. The aims have been to provide a comprehensive view of the problem of

RDB migration, to review various techniques and proposals, to identify their com-

monalities and differences, to assess the impact of pervious research, and to show how

it has shaped current and future research in this area.

Based on the investigation into the general problem of RDB migration and the open

problems mentioned in this chapter, we propose a complete method called MIGROX,

which preserves the structure and semantics of an existing RDB in a CDM to generate

OODB, ORDB and XML. Chapter 4 introduces the MIGROX solution, where a

detailed description of the solution is then presented in Chapters 5-7.

Chapter 4

An Overview of the Proposed
Method

Chapter 3 provided a detailed review of existing RDB migration techniques and pro-

posals. As mentioned in Section 1.3, we have proposed a method called MIGROX

for migrating RDBs into object-based and XML databases. The method has three

phases: semantic enrichment, schema translation and data conversion. The purpose

of this chapter is to provide an overview of MIGROX.

This chapter is organised as follows. Section 4.1 provides an introduction to MI-

GROX. Section 4.2 reviews the assumptions on which MIGROX is based. Section 4.3

introduces the semantic enrichment phase. Sections 4.4 and 4.5 provide an overview

of the schema translation and data conversion phases, respectively. Section 4.6 sum-

marises the chapter and points to what follows.

4.1 Introduction

The migration of RDBs into relatively newer databases, i.e., OODBs, ORDBs and

XML has been motivated by the dominance of traditional RDBs in the marketplace

and their limitations in supporting complex structures and user-defined data types

provided by these new technologies. The problem is how to effectively migrate an

existing RDB as a source into the newer databases as targets, and what is the best

way to enrich the semantics and constraints of the RDB in order to appropriately

capture the characteristics of these targets? We tackle this question by proposing

the MIGROX solution for migrating an RDB into these targets based on available

60

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 61

standards. This section outlines the main principles of the solution. The remain-

ing sections briefly describe the different phases of the solution, whereas detailed

descriptions are provided in Chapters 5-7.

MIGROX takes an existing RDB as an input, enriches its metadata representation

with required semantics, and constructs an enhanced relational schema representa-

tion (RSR). Based on the RSR, a canonical data model (CDM) is generated, which

captures the essential characteristics of the target data models, for the purpose of mi-

gration. Due to the heterogeneity of the three target data models, we believe that it is

necessary to develop a CDM to bridge the semantic gap among them and to facilitate

the migration process. The CDM is designed to preserve the integrity constraints and

data semantics of the RDB so as to fit in with the target database characteristics.

In other words, MIGROX preserves the structure and semantics of an existing RDB

to generate OODB, ORDB and XML schemas, and effectively converts existing RDB

data into target databases without redundancy or loss of data.

The method is more beneficial compared to the existing solutions as it produces

three different output databases based on the user choice, as shown in Figure 4.1.

In addition, the method exploits the range of powerful features provided by target

data models, i.e., ODMG 3.0, SQL4 and XML Schema. MIGROX has three phases:

1) semantic enrichment, 2) schema translation, and 3) data conversion. In the first

phase, the CDM is produced which is enriched with the RDB’s constraints and data

semantics that may not have been explicitly expressed in its metadata. The CDM

so obtained is mapped into target schemas in the second phase. We have designed

sets of rules which are integrated in algorithms to translate the CDM into each of

the three target schemas. The third phase converts RDB data into its equivalents in

the new database environment. We have developed algorithms for converting source

data into targets based on the CDM.

To demonstrate the effectiveness and validity of MIGROX, a prototype has been

developed, which realises the method’s concepts and algorithms, and generates target

databases successfully. Chapter 8 explains how the prototype has been developed,

and Chapter 9 shows how the experimental study was conducted to evaluate the

prototype.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 62

Figure 4.1: Schematic view of MIGROX

4.2 Work Assumptions

MIGROX relies on a number of assumptions as follows:

• To get the best results, it is preferable that the migration process is applied

to an RDB that is at least in 3rd normal form (3NF) and which contains base

relations rather than views. An RDB schema is in 3NF if every relation is in 2NF

and non-primary key attributes are only dependent on the primary key, so that

no relation has transitive dependency [Elmasri and Navathe, 2006]. A relation

that is not in 3NF may have redundant data, update anomalies or no clear

semantics of whether it represents one real world entity or relationship type.

These three related problems may affect the real world meaning materialised in

object-based/XML models. Besides, the advantages provided by such models,

which have motivated migrating RDBs into them, are not exploited. As a result,

the target database may be flatter than expected. However, MIGROX can be

applied to RDBs in both 1NF and 2NF when essential information is available,

e.g., primary keys and foreign keys. Unlike with base relations, views may

combine attributes from various entity and relationship types, although RDMSs

may materialise repeatedly used views in order to reduce the JOIN operations

of base relations for performance reasons [Elmasri and Navathe, 2006].

• Data dependencies are represented by primary keys and foreign keys. For each

foreign key value there is an existing, matched primary key value which can

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 63

be considered as a value reference. The kinds of RDB relations and relation-

ships are identified using primary/foreign keys, i.e., through keys’ composition

of each other. Other representations may lead to different target database con-

structs. For example, a relation L is a strong relation if its primary key is not

fully or partially composed of any foreign keys. Similarly, L is a sub-class if its

primary key is entirely composed of the primary key of a super-class relation.

In addition, in EER models, an inheritance relationship is represented using

generalisation/specialisation, which has different types such as total, partial,

disjoint and overlapping. However, such types of specialisation can be repre-

sented (indirectly) in relational data models in many alternative ways [Elmasri

and Navathe, 2006]. The most common alternative represents inheritance as one

relation for a super-class and one relation for every sub-class. The super-class

is represented by a relation L with its primary key K(L) = k and attributes

Attrs(L) = {k, a1,..., an}. Each sub-class relation S with its attributes is repre-

sented by relation S(k, attributes of S) and K(S) = k. This alternative works

for a total, partial, disjoint or overlapping specialisation. Another alternative

is to have one relation for each sub-class, containing the attributes and key of

the super-class. Here there is a relation S for each sub-class, where Attrs(S) =

{attributes of S} ∪ {k, a1,..., an} and K(S) = k. This alternative works only

when each entity in the super-class belongs to at least one of the sub-classes. In

addition, an inheritance can be represented using null values in tuples, by exam-

ining inclusion dependencies in DDL and queries in DML specifications [Akoka

et al., 1999]. However, MIGROX assumes the first alternative because it is

based on primary/foreign key matching, and without the user’s help it would

not be possible to automatically identify the other alternatives.

• Querying the data in databases is used to extract cardinality constraints that

cannot be extracted from metadata. Cardinality determination depends on

whether or not a foreign key is nullable or/and unique. However, metadata

provides only information that a primary key is referenced by a foreign key but

it does not provide information as to how many instances of a foreign key point

to how many instances of a primary key. In addition, it may not be possible

to obtain information about attribute nullabilty from the data dictionary, so

that the data content may be examined (analysed or queried). Therefore, we

assume that the RDB being migrated is complete. Examining or querying data

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 64

instances in order to extract cardinality constraints may not yield the semantics

of an existing RDB if the data are incomplete. Different database states give

different information about cardinality. For example, assume the Employee

and Project relations participate in an M:N relationship, as each employee

is working on several projects and each project is staffed by many employees.

However, if data instances show that every project is staffed by many employees,

but each employee is working on only one project, then cardinality from the data

would indicate a 1:M instead of an M:N relationship.

• The data dictionary is used to provide metadata information. The existence of

a modern RDBMS, and hence a database on which it operates, is assumed.

4.3 Semantic Enrichment

Semantic enrichment is a process of analysing and examining a database to capture its

structure and definitions at a higher level of meaning. This is achieved by enhancing

the representation of an existing database’s structure in order to make hidden seman-

tics explicit. The success of the process depends on the amount of information that

can be extracted from the existing schema, the method that is followed to extract

that information, and the technique by which an enriched semantic representation

is constructed. Consequently, additional domain semantics need to be investigated,

such as the classification of relations and attributes, and the determination of rela-

tionships and cardinalities. In our approach, the semantic enrichment phase involves

extraction of data semantics of an RDB by obtaining a copy of its metadata and

enriching it with required semantics, and constructing an enhanced RSR. Based on

the RSR, a CDM is generated which captures the essential characteristics of target

databases (i.e., object-based and XML). In this section, the thinking behind RSR

and CDM is presented, including why they are needed, what purpose they serve, and

their definitions. The algorithm for constructing the RSR from an input RDB is also

explained. An algorithm has been developed for generating a CDM from RSR and

an existing RDB data, which is described in detail in Chapter 5.

The main benefit of using RSR and CDM together is that an RDB is read and

enriched once whereas the result can be used many times to serve different purposes

(e.g., schema translation and data conversion). This facilitates migration into new

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 65

target databases without repeatedly referring to the existing RDB. Figure 4.2 shows a

schematic view of the semantic enrichment phase. The process starts by extracting the

basic metadata information about a given RDB (e.g., relation and attribute names,

keys, etc.), leading to the construction of an enriched structure, i.e., RSR, which

is designed in such a way so to ease key matching for the classification of RSR’s

constructs. The next step is to identify CDM constructs based on a classification

of the RSR constructs, including relationships and cardinalities, which is performed

through data access. Finally, the CDM structure is generated.

Figure 4.2: Schematic view of the semantic enrichment process

In databases, the essential semantics come with their schemas, whereas further se-

mantics might be hidden in application programs. Data semantics can be extracted

using a variety of ways such as from catalogues (i.e., data dictionaries), DBRE tools,

specified by users interactively, or from conceptual schemas and design documents.

However, conceptual schemas may not be recovered precisely in the DBRE from the

final logical or physical schemas, and a full understanding of a database is easily

lost when experienced users are unavailable or design documents are missing [Alhajj,

2003]. In RDBMSs, metadata is usually stored in data dictionaries, which can be

accessed to derive information about database structures.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 66

4.3.1 Necessary Information

The information that is needed about an RDB schema for conversion into a target

schema depends on the degree of automation of the migration process and the kind

of semantic information that is needed for the target databases. Relations in RDBs

are designed conventionally from entities and relationships in a conceptual schema.

Therefore, relations represent entities or relationships among entities. Relations in-

clude attributes, primary keys, and foreign keys. Each attribute has a type and

arbitrary domain. Binary relationships can be 1:1 or 1:M. Relationship relations

are n-ary where n ≥2. Information about RDBs can be obtained readily from data

dictionaries and data content via SQL queries.

The basic information needed to proceed with the semantic enrichment phase includes

relation names and the properties of attributes, including attribute names, data types,

length, default values, and whether or not the attribute is nullable. Relations and

their attributes need to be classified for systematic mapping into the corresponding

structure of the target data model.

The most important information needed for relationship identification concerns data

dependency. Functional and inclusion dependencies, which are basically used to en-

force data integrity, can be recovered from primary keys, foreign keys and unique

keys. Each relation’s attribute value functionally depends on a primary key value. A

primary key of a relation L may be referenced by another relation L1 (exported from

L to L1) for relationship participation, where the primary key is then called a foreign

key of L1. At the same time the foreign key is then called an exported key of L; thus

the inverse of a foreign key is an exported key. Exported keys play an important

role in OODBs/ORDBs, which support bi-directional relationships. Extracting and

matching keys is sufficient for the classification of relations, e.g., as strong or weak,

the resolution of synonyms and homonyms, and for the identification of relationships,

e.g., aggregation or association.

The analysis of schema and data is required to obtain domain semantics such as rela-

tionship types, which may involve binary, n-ary, whole/part and super-class/sub-class.

Besides, information concerning cardinality constraints and whether a relationship is

optional or mandatory is also needed in order to generate the CDM correctly.

Much of the semantics needed for the enrichment process may not be found in an

RDB schema due to poor design or limited RDB expressiveness [Chiang et al., 1994].

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 67

Some of the semantic information needed for the target schemas cannot be found in

an RDB schema, e.g., class methods. An RDB schema might not be in 3NF due to

poor database design or for performance reasons. Generally speaking, a relational

model has less structural and behavioural expressiveness compared to other data

models [Saltor et al., 1991], so that an RDB may not directly represent a user’s con-

ceptualisation. In contrast to RDBs that model a static part of entities, object-based

models capture more semantics by specifying dynamic object behaviour. Compared

to the richer data models, the relational data model provides less structural expres-

siveness, e.g., it does not support inheritance directly. Moreover, the relational data

model provides relatively less behavioural expressiveness because, for example, it does

not support the definition of new operations rather than generic operations [Saltor

et al., 1991]. Therefore, a portion of the intended semantics would be lost either due

to this limited expressiveness [Chiang et al., 1994] or for mapping a non-3NF schema.

User interaction might be necessary to provide basic missing semantics.

4.3.2 Relational Schema Representation (RSR)

This section introduces RSR as a representation of an RDB’s metadata, which is

used as a source of information for the generation of CDM. An RDB schema S

can be defined as a set of relations, S = {R1, R2,..., Rn} and a set of integrity

constraints [Elmasri and Navathe, 2006]. Each relation Ri is a finite set of attribute

names {a1, a2,..., am}. Corresponding to each attribute name ai is a set of an arbitrary

domain. The RDB instance DB of S is a set of relation instances, DB = {r1, r2,...,

rm}. Each ri is a state of Ri and must satisfy specified integrity constraints. An RDB

schema is typically defined and created using SQL DDL statements.

Definition 4.3.1. An RDB schema is denoted in our approach as a set of a 6-tuple:

RSR := {Rrsr | Rrsr := 〈rn, Arsr, PK, FK, EK, UK〉}, where:

• rn denotes the name of a relation Rrsr.

• Arsr denotes a set of attributes of Rrsr: Arsr := {a | a := 〈an, t, l, n, d〉}, where
an is the name of attribute a, t its type, l its data length, n whether nullable or
not (‘y’|‘n’) and d a default value if given.

• PK denotes the primary key of Rrsr: PK := {α | α := 〈pa, s〉}, where α
represents one key attribute, pa is an attribute name and s is a sequence number

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 68

in the case of a composite key; however, s is assigned as 1 in the case of a single
valued key.

• FK denotes a set of foreign key(s) of Rrsr: FK := {β | β := 〈er, {〈fa, s〉}〉},
where β represents one key (whether single or composite), er is the name of an
exporting (i.e., referenced) relation that contains the referenced primary key,
fa is an attribute name, and s is a sequence number.

• EK is a set of exported key(s) of Rrsr: EK := {γ | γ := 〈ir, {〈ea, s〉}〉}, where
γ represents one key, ir is the name of an importing (i.e., referencing) relation
that contains the exported attribute name ea (i.e., foreign key attribute).

• UK is a set of unique key(s) of Rrsr: UK := {δ | δ := {〈ua, s〉}}, where δ
represents one key, ua is an attribute name and s is a sequence number.

The RSR provides an image of the metadata in primary memory obtained from an

existing RDB’s secondary storage. The efficient construction of RSR overcomes the

complications that occur during matching keys in order to classify relations (e.g.,

strong or weak), attributes (e.g., non-key attribute) and relationships (e.g., M:N,

inheritance, etc.). The relation Rrsr is constructed with its semantics as one 6-tuple,

which is easily identifiable and upon which set theoretical operations can be applied

for matching keys. Each part of Rrsr describes a specific aspect of it (e.g., Arsr

describes its attributes) and all of the parts together describe the structure of Rrsr.

An important advantage of RSR is that it identifies the set EK, therefore, adding

more semantics to an RDB’s metadata. The set EK holds keys that are exported

from Rrsr to other relations as foreign keys.

4.3.3 Algorithm for Extracting RSR

This section presents the ConstructRSR algorithm, shown in Figure 4.3, which

is used to facilitate the automatic construction of RSR, which contains information

extracted from an RDB. The input to the algorithm is an existing RDB metadata

and the output is the RSR structure as described in Section 4.3.2. For a given RDB,

the algorithm finds the names, attributes and integrity constraints of all the relations,

and constructs the RSR. The main steps of the algorithm are as follows:

• For each relation name r in RDB metadata, an RSR relation R (of type Rrsr)

is defined and given the name of r (i.e., R.rn := r).

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 69

1: algorithm ConstructRSR (MD: RDB metadata) return RSR
2: rsr: RSR := ∅ // a set to store RSR relations
3: foreach relation name r ∈ MD do
4: R: Rrsr // define an RSR relation as 〈rn, Arsr, PK, FK, EK, UK〉
5: R.rn := r
6: R.Arsr := extractAttributes(r)
7: R.PK := extractPrimaryKey(r)
8: R.FK := extractForeignKeys(r)
9: R.EK := extractExportedKeys(r)

10: R.UK := extractUniqueKeys(r)
11: rsr := rsr ∪ {R} // add the relation to RSR
12: end for
13: return rsr
14: end algorithm

Figure 4.3: The ConstructRSR Algorithm

• Attributes of r are extracted by calling the extractAttributes(r) function, and

the result is placed in the set Arsr of R. Each element in the Arsr contains one

attribute and its properties.

• The primary key of r is inferred by calling the extractPrimaryKey(r) function.

Each key attribute pa is inferred and given a sequence number s and added to

the set PK in pairs 〈pa, s〉. The sequence s distinguishes between single and

composite keys.

• The extractForeignKeys(r) function returns the set FK containing the foreign

keys of r. Each key attribute fa is assigned s based on matching the key

constraint name con. Attributes that have the same con are given an ascending

order of s and together form one key, which is added to the set FK.

• Following the same technique of foreign keys, the extractExportedKeys(r) func-

tion returns the set EK and the extractUniqueKeys(r) function returns the set

UK.

• This enables one RSR relation to be constructed with its parts and added as

one tuple to the set rsr with a loop back to construct the next tuple. Finally,

the algorithm returns the constructed rsr, which is later used together with

data stored in an RDB to generate the CDM.

Example 4.3.1. Consider the RDB shown in Figure 4.4. Primary keys are in italics
and foreign keys are marked by “*”. Table 4.1 gives the RSR constructed for the RDB,

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 70

showing only the relations: Emp, Salaried emp, Dept and Works on. The information
includes all attributes and keys for each relation.

Figure 4.4: Sample input RBD

4.3.4 Canonical Data Model (CDM) Definition

This section gives a formal definition of the CDM. The CDM is a source of valuable

semantics giving an enriched and well organised data model, which can be converted

flexibly into any of the target databases. Besides taking into account the characteris-

tics of the target models, the CDM retains all data semantics that could be extracted

from an RDB and the integrity constraints imposed on it. Moreover, it acts as a

key mediator for converting existing RDB data into target databases based on the

structure and the concepts of the target models. The CDM facilitates the reallocation

of attribute values in an RDB to the appropriate values in a target database. Based

on the CDM definition, target attributes that represent relationships among classes

are materialised into references or changed into other domains.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 71

rn Arsr PK FK EK UK
an t l n d pa s er fa s ir ea s ua s

Emp eno int 25 n eno 1 Emp spreno 1 Salaried emp eno 1
ename char 40 n Dept dno 1 Hourly emp eno 1
bdate date y Works on eno 1
address char 40 y Dept mgr 1
spreno int 25 y Kids eno 1
dno int n Emp spreno 1

Salaried emp eno int 25 n eno 1 Emp eno 1
salary int y

Dept dno int n dno 1 Emp mgr 1 Emp dno 1 mgr 1
dname char 40 n Proj dnum 1
mgr int 25 n Dept locations dno 1
startd date y

Works on eno int 25 n eno 1 Emp eno 1
pno int n pno 2 Proj pnum 1

Table 4.1: Results of RSR construction

Canonical models used for database integration should have semantics at least equal

to any of the local schemas to be integrated [Saltor et al., 1991]. However, the CDM

described here has been designed to upgrade the level of semantics of RDBs, and

to play the role of an intermediate stage for migrating RDBs during the schema

translation and data conversion phases. It represents many explicit as well as im-

plicit semantics of an existing RDB. Explicit semantics include relation and attribute

names, keys, etc.; implicit semantics include the classification of classes and attributes,

and relationship names, types, cardinalities, and inverse relationships. Its constructs

are classified to facilitate migration into complex target objects, avoiding both flat

one-to-one and complicated nesting conversions. Through the CDM, well-structured

target databases can be obtained without the proliferation of references and redun-

dancy. However, the richness of CDM may not be fully exploited due to the relatively

limited expressiveness of the input RDB. Consequently, some concepts provided by

target databases receive less attention in the CDM. For instance, object-based models

encapsulate static (i.e., attributes and relationships) and dynamic (i.e., methods) as-

pects of objects. However, dynamic aspects get less attention here compared to static

aspects because an RDB does not support methods and functions attached to tables.

Static aspects involve the definition of a class, and its attributes and relationships.

The CDM has three static concepts: class, attribute and relationship. Attributes

define class structure, whereas relationships define a set of relationship types. CDM

classes are connected through relationships. The CDM can be seen as an independent

model, which embraces OO model concepts with rich semantics that can also cater

for object-relational and XML data models. In order to express as much semantics as

possible, the model takes into consideration some of the features provided by object-

based and XML databases, such as association, aggregation and inheritance. The

model provides non-OODB key concepts (i.e., foreign keys, null and unique keys)

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 72

and explicitly specifies whether attributes and cardinalities are optional or required.

Relationships are defined in the CDM in such a way as to facilitate extraction and

transformation of data in the data conversion phase, including defining and linking

objects using user-defined identifiers. However, the CDM is independent of the RDB

from which it has taken the semantics, as well as of any of the target databases

to which it could be converted. Real world entities, multi-valued and composite

attributes, and relationship relations are all represented as classes in the CDM.

Definition 4.3.2. The CDM is defined as a set of a 6-tuple, representing classes:

CDM := {Classcdm | Classcdm := 〈cn, cls, abs, Acdm, REL, UK〉}, where each class
Classcdm has a name cn, and is given a classification cls and whether or not it is
abstract abs. Classcdm has a set of attributes Acdm, a set of relationships REL, and
a set of unique keys UK. These properties are described below:

Classification (cls): Classification divides classes into three categories: main classes,

component classes and relationship classes. An instance class Ccdm of type Classcdm

is classified into one of nine different kinds of classes within these categories, which

facilitate the translation of Ccdm into target schemas:

1. Main classes (classes forming base types in the target database)

• Regular strong class (RST): a class whose primary key is not composed of

any foreign keys.

• Secondary strong class (SST): an RST class that is inherited by other

classes.

• Sub-class (SUB): a class that inherits another super-class, but is not in-

herited by other sub-classes.

• Secondary sub-class (SSC): a sub-class that is inherited by other sub-

classes.

• Secondary relationship class (SRC): a referenced RRC class, an M:N rela-

tionship class with attributes, or n-ary relationships where n>2.

• Regular component class (RCC): a weak class that participates in a rela-

tionship with other classes rather than its parent class.

2. Component classes (classes representing multi-valued/composite attributes)

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 73

• Multi-valued attribute class (MAC): a class that represents a multi-valued

attribute.

• Composite attribute class (CAC): a class that represents a composite at-

tribute.

3. Relationship class (a class describing an M:N relationship between two classes)

• Regular relationship class (RRC): an M:N relationship class without at-

tributes.

Abstraction (abs): It is important for each super-class to be checked to determine

whether it is concrete or abstract class. A super-class is abstract (i.e., abs := true)

when all of its objects are members of its sub-classes. Since an abstract class is not

instantiable, any data corresponding to an abstract class is subsumed into instances

of its sub-classes. A class is not abstract (i.e., abs := false) when all (or some) of

its objects are not members of its sub-classes.

Attributes (Acdm): Classcdm has a set of attributes Acdm of primitive data types.

Acdm := {a | a := 〈an, t, tag, l, n, d〉}, where each attribute a has a name an, data

type t and a tag, which classifies a as a non-key ‘NK’, ‘PK’, ‘FK’ or both primary

and foreign key ‘PF’ attribute. Each a can have a length l and may have a default d

value, whereas n indicates whether or not a is nullable (‘y’|‘n’).

Relationships (REL): Classes are characterised through attributes and related to

each other through relationships. Classcdm has a set of relationships REL. Each rela-

tionship Rel ∈ REL between a class Ccdm and another class C ′
cdm (of type Classcdm)

is defined in Ccdm to represent an association, aggregation or inheritance.

REL := {Rel | Rel := 〈relType, dirC, dirAs, c, invAs〉}, where:

• relType is a relationship type.

• dirC is the name of C ′
cdm.

• dirAs denotes a set containing the attribute names representing the relationship

from C ′
cdm side.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 74

• invAs denotes a set of attribute names representing the inverse relationship

from Ccdm side.

• c is the cardinality constraint of Rel in Ccdm.

A relationship is basically a link among objects. The links can have specific cardinal-

ities (occurrence), e.g., one-to-one (1:1) and one-to-many (1:M). A relationship can

be an association, aggregation or inheritance. Thus, relType can have the following

values: ‘associated with’ for association, ‘aggregates ’ for aggregation, and ‘inherits ’

or ‘inherited by ’ for inheritance. Relationships in CDM have two cases: 1:M and 1:1.

The 1:M relationship (also referred to as M:1) is a common relationship. Two classes

can participate in this relationship and the class that holds the primary key would

have a set-value of instances of the class that holds the foreign key. In other words,

the 1:M relationship is defined by a relationship that represents reference instances

of the dominant class (that hold primary key) and a set-value of the weak class (that

hold foreign key) instances. The 1:1 relationship is a special case of the 1:M relation-

ship. Therefore, it is similar, except that a single instance replaces a set of instances.

The cardinality c is defined by min..max notation to indicate the occurrence of C ′
cdm

object(s) within Ccdm objects, where min is a minimum cardinality and max is a

maximum cardinality. Based on c, object(s) of C ′
cdm can be single-valued (c := 0..1

for optional relationship or c := 1..1 for required relationship), or set-valued (c := 0..*

for optional relationship or c := 1..* for required relationship). An n-ary relation-

ship relation, n > 2, is very difficult to model in an RDB because of normalisation

problems, so that an additional intersection relation should be created to hold the

primary keys of the relations involved in the relationship. Therefore, the primary key

of such a relation is fully or partially formed by the concatenation of the primary

keys of two or more relations as disjoint foreign keys. Such relations are represented

as two classes in CDM, i.e., RRC and SRC.

• Association. An association relationship is a reference from one object to

another. In the CDM, an association can exist among non-component classes

where relType := ‘associated with’. Each class may participate in an association

with none, one or a set of classes. The relationship is defined bi-directionally

between both of the classes participating in the relationship.

• Inheritance. An inheritance is a 1:1 relationship, which allows a class (sub-

class) to inherit the properties of another class (super-class) in addition to its

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 75

own properties. The main idea in inheritance is that a super-class could be

specialised into one or more sub-classes. Conversely, a sub-class could inherit

from one or more super-classes, i.e., multiple-inheritance. However, the CDM

does not support multiple-inheritance as target standards, that is, ODMG 3.0,

SQL4 and XML Schema do not allow a concrete sub-class to have more than one

concrete super-class. Hence, a sub-class inherits only from one super-class. A

super-class could be specialised in one or more sub-classes, whereas a sub-class

could be generalised by only one super-class. An inheritance can exist among

main CDM classes, where relType := (‘inherits ’ | ‘inherited by ’). A sub-class

inherits its super-class and the latter is then inherited by its sub-class(s).

• Aggregation. An entity that depends on another entity is called a weak en-

tity, and it has to be identified based on an identifier dependency relationship.

This represents an aggregation relationship that formalises a case of complex

objects (the composition of one object from other objects), and therefore it

allows a class to aggregate one or more other components. In UML, an aggre-

gation is either composition (exclusive), which is conceptually represented by a

black-filled diamond, or simple (shared), which is represented by a white-filled

diamond [OMG, 2009]. In the composition, the component class (the part) is

physically integrated in only one main class (the whole). This means that the

life of the part depends on the life of the whole, to which it belongs. This type of

relationship is known as aggregation in CDM, which can exist between a main

class, e.g., RST class and a component class, i.e., MAC and CAC classes where

the relType := ‘aggregates ’. A main class can aggregate none, one or many

component classes, based on the cardinality c of the relationship. Unlike associ-

ation and inheritance, an aggregation relationship in the CDM is uni-directional

from the whole class into the part class. However, a shared aggregation is a spe-

cial case of association relationship in UML, and the difference between them is

conceptual, i.e., in the UML diagram notation. A part class in the shared ag-

gregation can be shared by more than one whole class. This kind of relationship

links two main classes in CDM, and is treated as a normal association.

Unique keys (UK): Classcdm may have a set of unique key(s) that are preserved

in UK: UK := {δ | δ := {〈ua, s〉}}, where δ represents one key, ua is an attribute

name, and s is a sequence number.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 76

4.3.5 Algorithm for Generation of CDM

To generate the CDM, we have developed an algorithm called GenerateCDM. Given

an RSR and RDB data as input, the algorithm generates the equivalent CDM. Using

key matching, RSR relations and their attributes are classified, relationships among

relations are identified and their cardinalities determined, followed by translation

into their equivalents in the CDM. The abstraction of each class in the CDM is then

checked. The output of the algorithm, the CDM, is translatable into any of the target

schemas and facilitates the conversion of existing RDB data into target databases.

The GenerateCDM algorithm is described in detail in Chapter 5.

Example 4.3.2. Given the RSR shown in Table 4.1, Figure 4.5 shows the resulting
CDM for the Emp class in an easy to follow format hiding the deeply nested struc-
ture. The Emp class, which is an abstract class, classified as SST, has the attributes:
ename, eno, bdate, address, spreno and dno with their tags shown. Other properties
(e.g., attributes’ types, default values) are not shown as these details do not change
from RSR to CDM. The class Emp is ‘associated with’ the classes: Dept, Works on,
and with itself. Moreover, it ‘aggregates ’ the Kids class and is ‘inherited by ’ the
Salaried emp and Hourly emp classes. Cardinalities are shown for each relationship.
Relationships defined here in the form: relType {invAs ↔ dirC(dirAs)c} (↔ in-
dicates bi-directional association and ← indicates uni-directional aggregation). Full
descriptions about these classes can be found in Table 5.1.

Emp cls:=SST ; abs:=true [

Acdm := {ename ‘NK’, eno ‘PK’, bdate ‘NK’, address ‘NK’, spreno ‘FK’, dno ‘FK’},
REL := {
associated with {dno ↔ Dept(dno)1..1, eno ↔ Dept(mgr)0..1, spreno ↔ Emp(eno)1..1,

eno ↔ Emp(spreno)0..∗, eno ↔ Works on(eno)1..∗},
aggregates {eno ← Kids(eno)0..∗},
inherited by {Salaried emp, Hourly emp}

}
]

Figure 4.5: Sample CDM class schema

4.4 Schema Translation

This section provides an overview of schema translation, the second phase of MI-

GROX. Schema translation aims to translate the CDM, produced by the semantic

enrichment phase into the target schemas as shown in Figure 4.6. The target schemas

hold equivalent semantics to that of the existing RDB, which are enhanced and pre-

served in the CDM. Section 4.4.1 defines the three target schemas, which satisfy the

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 77

standards of ODMG 3.0, SQL4 and XML Schema, before introducing the schema

translation process in Section 4.4.2.

Figure 4.6: Schematic view of translating CDM into target schemas

4.4.1 Target Schemas

This section defines the output target models for schema translation. The transla-

tion of the data models defined here into the actual schema definition languages is

straightforward.

ODMG 3.0 schema: The potential ODMG 3.0 ODL schema is defined as a set

of classes. Each class is identified by a name and may consist of a set of attributes

and a set of relationships. The data type of attributes is literal, whereas relation-

ships define associations. Literal types can be (a collection of) primitive/structured

attributes. The set is the most commonly used unordered collection that allow dupli-

cate, so that it is used to represent literal collection types, and the M side of the 1:M

and M:N relationships. Classes can be defined into hierarchies, realising inheritance

relationships.

Definition 4.4.1. A target ODMG 3.0 schema is defined as a set of classes:

OOschema := {Classoo | Classoo := 〈cn, spr, k, Aoo, RELoo〉}, where cn is the name
of a class Classoo, spr is the name of its super-class, k is its key, Aoo is a set of its
attributes, and RELoo is a set of relationship types in which Classoo participates.
The sets Aoo and RELoo are defined as follows:

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 78

• Aoo := {aoo | aoo := 〈an, t, m〉}, where an is the name of an attribute aoo, t is its
data type, and m denotes whether aoo is single-valued (‘sv’) or collection-valued
(‘cv’).

• RELoo := {Reloo | Reloo := 〈reln, dirCn, m, invReln〉}, where reln is the name
of the relationship Reloo, dirCn is the name of the referenced class, m indicates
the multiplicity of Reloo, and invReln is the name of the inverse relationship.

SQL4 ORDB schema: The SQL4 ORDB schema is defined as a set of user-defined

types (UDTs), and a set of typed tables created based on these UDTs for storing data.

Each UDT consists of a set of attributes defined as literal or reference types. Literal

types are defined as a primitive, collection of primitive, row, or collection of row types.

Moreover, an attribute can be defined as a reference (ref) or a collection of references

(refs), pointing to a specific UDT. Composite attributes are defined using row types.

An association relationship is expressed among UDTs using refs. The collection (i.e.,

set) of primitive and row types are used to define simple and composite multi-valued

attributes, respectively, whereas the M side of associations are defined as a collection

of refs. UDTs and typed tables can be defined into hierarchies, realising inheritance

relationships, in which types/tables can be defined as sub-types/sub-tables under

their super-types/super-tables.

Definition 4.4.2. The SQL4 ORDB schema is denoted as a 3-tuple:

ORschema := 〈UT , TT , UKor〉, where UT is a set of UDTs, TT is a set of typed
tables, and UKor is a set of unique keys. The sets UT and TT are defined as follows:

• UT := {udType | udType := 〈utn, sut, Aut〉}, where utn is the name of a user-
defined type udType, sut is the super-type name of udType, and Aut is a set of
udType’s attributes of literal or ref-based data type:

Aut := {aut | aut := 〈an, t, m, n, d〉}, where an is the name of an attribute aut, t
is its data type, which can be primitive (e.g., integer), user-defined constructed
(e.g., row type) or ref-based (e.g., ref(udType)); m denotes whether aut is
single-valued or collection-valued, d is a default value in the case of primitive
attributes, and n denotes whether or not aut accepts nulls.

• TT := {tTable | tTable := 〈ttn, utn, stt, pk, uoid〉}, where ttn is the name of
a typed table tTable, utn is the name of udType based upon which tTable is
defined, stt is the name of its super-table, pk is the primary key of tTable, and
uoid is the user-defined identifer of the objects of tTable.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 79

XML Schema: The structure of an XML document is usually made up of es-

sential components such as annotations, element declarations and type definitions.

Moreover, the document may contain other components such as attribute and model

groups [Valentine et al., 2002]. Besides, the XML Schema language standard provides

declaration of identity-constraints, by which association relationships and integrity

constraints can be defined among related elements. Primary key, foreign key and

unique key constraints can be defined within the schema’s root element using the

key, refkey and unique elements, respectively. The key and refkey elements define

relationships, whereas the unique element specifies that elements or attributes that

are not primary keys must be unique within a specified scope. Moreover, there are

several mechanisms in the XML Schema that handle inheritance relationships such

as derived types, substitution groups and abstract type mechanisms. Complex types

can be derived from other types using the extension, restriction and choice key-

words, through which a sub-class complex type extends its super-class type complex

base. Besides, a super-class complex type can be declared as abstract if all its in-

stances are inherited by instances of its sub-classes. The multiplicity of elements is

specified by minOccurs and maxOccurs.

From this, the potential target XML Schema can be generated as two components.

One is a global element, which represents the root of the XML tree defined as a

complex type, containing schema elements and constraints. The second component

is a set, containing all global complex types. Each complex type can be used as a

type of one element (or more) declared in the root or in other complex types. As the

concept of complex type extension is very similar to object-based single inheritance,

we suggest that inheritance is represented using the complexContent, extension and

base keywords.

Definition 4.4.3. A target XML Schema is denoted as a 2-tuple:

XMLschema := 〈Root, GT 〉, where Root is a global element declared under the schema
with its direct local elements and constraints, representing the XML document tree,
and GT is a set consisting of global complex types. The types in GT are defined as
types of the elements declared in Root, or to be referenced by other complex types in
GT . The Root and the set GT are defined as follows:

• Root := 〈rootn, LE, PKx, FKx, UKx〉, where Root has a name rootn, a set of
elements LE, and three sets of identity-constraints PKx, FKx and UKx.

– LE represents the complex type of Root that involves a set of local sub-
element declarations: LE := {e | e := 〈en, et, nim, max〉}, where each

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 80

element e has a name en, a type et, and a minimum min and maximum
max occurrences. The et is defined globally under the schema, i.e., in the
set GT .

– PKx is a set of primary keys for the elements defined in the Root, where
PKx := {pk | pk := 〈pkn, selector, PKfield〉}. Each key pk has a name
pkn, an element set selector as a scope within which the key is defined,
and a set of related sub-elements PKfield selected to be unique.

– FKx is a set of foreign keys, where FK := {fk | fk := 〈fkn, ref , selector,
FKfield〉}. Each foreign key fk has a name fkn, an element set scope
selector, a reference constraint name refer that points to a matched pri-
mary key name, and a set of related sub-elements FKfield.

– UKx is a set of unique keys, where UK := {uk | uk := 〈ukn, selector,
UKfield〉}. Each unique key uk has a name ukn, an element set scope
selector, and a set of related sub-elements UKfield selected to be unique.

• GT := {compType | compType := 〈ctn, base, abst, LE〉}, where ctn is the name
of a complex type compType, base is the name of its super-type (if it is derived
from another type), abst denotes whether or not compType is abstract type,
and LE is a set of elements that are declared locally within compType.

LE := {e | e := 〈en, et, nim, max〉} is defined as for Root; however, et can be a
built-in data type (e.g., a string) or a complex type pre-defined in the set GT .

4.4.2 Algorithms for Schema Translation

When the CDM has been obtained, the schema translation phase is started after the

user chooses which target schema is to be produced. Then, an appropriate set of rules

is used to map the CDM constructs into equivalents in the target schema. Three sets

of translation rules have been designed for mapping CDM into the target schemas.

Each rule maps a specific construct, e.g., attribute or relationship. Algorithms have

been developed for producing each of the target schemas according to these rules.

The classification of CDM constructs facilitates the identification of their equivalent

in the target schema definition languages. Based on cls, each main and concrete CDM

class Ccdm, where Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’), is translated into a target type.

Each type is defined under its super-class if Ccdm.cls := (‘SUB’ | ‘SSC’). However,

for component classes, each MAC class is mapped into a multi-valued attribute, and

each CAC class is mapped into a composite (e.g., struct) attribute. The RRC

classes are mapped into an M:N relationship, in which a pair of 1:M relationship is

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 81

defined in each of the target types that participate in the relationship. Attributes

Ccdm.Acdm are translated into equivalents with the same names as in the CDM and

their types are converted according to target data types. Primary keys are specified

when attributes are tagged with ‘PK’. The types of target relationships and their

multiplicity are determined by the classification of the CDM class C ′
cdm related to

Ccdm being translated, and the properties of each relationship rel defined in Ccdm,

i.e., rel ∈ Ccdm.REL. Each rel is translated into an equivalent target association,

aggregation or inheritance relationship. Target relationship names are generated by

concatenating rel.dirC with attribute names in rel.dirAs, and Ccdm.cn with attribute

names in rel.invAs. The relationship cardinality rel.c is mapped into a single-value

when rel.c := (0..1 | 1..1) or a collection-value otherwise. The schema translation

algorithms and the output schemas are described in detail in Chapter 6.

Example 4.4.1. The ODMG 3.0 ODL schema corresponding to the CDM in Fig-
ure 4.5 is shown in Figure 4.7.

class Emp (extent Emps key eno) {
attribute string ename; attribute number eno;

attribute date bdate; attribute string address;

attribute set<struct kids{string kname; string sex;}> hasKids;

relationship Dept manages inverse Dept::manager;

relationship set<Emp> supervises inverse Emp::supervisor;

relationship Dept dept inverse Dept::employees;

relationship Emp supervisor inverse Emp::supervises;

relationship set<Proj> projects inverse Proj::employees;};

Figure 4.7: Sample OODB class schema

4.5 Data Conversion

This section introduces data conversion, the last phase of MIGROX. Traditionally

databases are designed based on conceptual models from which the database schemas

are derived. Data are then loaded into a database based on the schema created.

Semantic relationships among data are modeled using foreign key data values in re-

lational data models. However, in object-based models, the values of attributes are

organised into objects, and relationships are mapped directly as inheritance or refer-

ences using OIDs [Zhang and Fong, 2000]. In MIGROX, in addition to enrichment,

the CDM guides the conversion of RDB data into any of the target databases, ensuring

that the conversion process is accomplished with data integrity and consistency.

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 82

4.5.1 Algorithms for Data Conversion

The data conversion phase concerns the conversion of existing RDB data into the

format defined by the target schema. Data stored as tuples in an RDB are converted

into complex objects/literals in object-based databases or as element instances in

XML documents. The process is performed in three steps as shown in Figure 4.8.

Firstly, tuples of each and every relation in the RDB are extracted. Secondly, these

data (i.e., tuples) are transformed (converted) to match the target format. Finally,

the transformed data are loaded into text files suitable for bulk loading in order to

populate the schema generated earlier during the schema translation phase.

Figure 4.8: Schematic view of converting relational data into targets

Target data are generated using a set of instance conversion rules. An algorithm has

been developed for integrating the rules for each target database. The target data

are generated in files as initial objects files and relationships files. Sets of customised

SQL queries are embedded in these algorithms to extract the desired data from an

RDB. Once a query is executed, the result is transformed from its RDB form into

the target database format. Finally, a conversion program is generated to enact the

schema file obtained from the schema translation phase and the files generated during

the data conversion phase. The algorithms for data conversion are described in detail

in Chapter 7.

Since relationships in object-based databases are represented by system-generated

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 83

identifiers, i.e., OIDs, defining such objects with their relationships in one-step con-

version can lead to cross-referencing to objects that have not been created. Therefore,

to achieve data integrity and establishing relationships consistently, the conversion

process is accomplished in two separate passes. In the first pass, the tuples of each

RDB relation comprising non-foreign key attributes are converted into the equivalent

target format, in order to define the objects. Data of non-foreign key attributes are

converted as literal attribute values of objects, or as an element or sets of elements. In

the second pass, the initial objects defined in the first pass are linked using foreign key

values extracted from each RDB relation’s tuples based on the relationships defined

in the target schema. The foreign key values, which realise relationships between

tuples, are converted into value-based or user-defined identifers, which are called sur-

rogate OIDs. Each surrogate OID is defined by concatenating its class name with the

primary key values extracted from the corresponding RDB table. A surrogate OID

is translated by the system into a physical OID during the creation of objects. Simi-

larly, the object-based relationships are established using surrogates defined from the

values of the CDM relationship attributes, i.e., dirAs and invAs. However, relation-

ships among XML elements are established by the key/keyref constraints specified

in XML schema documents.

Example 4.5.1. Consider the CDM shown in Figure 4.5 and the RDB data given
in Figure 4.4. One tuple from the Salaried emp RDB table of an employee called
‘Wallace’, identified by the primary key value 54321, is converted with its related
tuples in other tables into target equivalents. The output OODB object definition that
represents the RDB ‘Wallace’ tuple is shown in Figure 4.9(a), whereas its relationships
are defined in Figure 4.9(b).

(a) Salaried emp54321 Salaried emp (ename "Wallace", eno 54321, bdate "1931-06-20", address "91

St James Gate NE1 4BB", hasKids set(struct(kname "Scott", sex "M")), salary 43000);

(b) salaried emp54321->update()->projects.add(proj4);

salaried emp54321->update()->projects.add(proj5);

Figure 4.9: Output OODB object definition and relationships

4.6 Summary

This chapter has provided an overview of the MIGROX solution to RDB migration.

MIGROX is superior to the previous proposals as it produces three different output

CHAPTER 4. AN OVERVIEW OF THE PROPOSED METHOD 84

databases. Besides, it exploits the range of powerful features that target data models

provide such as ODMG 3.0, SQL4 and XML Schema.

The chapter started by introducing MIGROX and its three phases in Section 4.1,

and then reviewed the assumptions on which the method is based in Section 4.2.

Section 4.3 provided an introduction to the first phase of the solution, semantic en-

richment, in which necessary data semantics about a given RDB are inferred and

enhanced to produce an RSR. The RSR constructs are then classified to generate a

CDM, which provides a description of the existing RDB’s implicit and explicit se-

mantics. An overview of the schema translation phase was given in Section 4.4. The

CDM produced from the semantic enrichment phase is translated into any of the

target schemas, applying an appropriate set of schema translation rules. Section 4.5

presented the data conversion phase, in which existing RDB data are converted into

the format defined by the target schemas.

Chapter 5, the next chapter, describes in detail how to generate the CDM, as defined

in Section 4.3.4, from the RSR and data stored in an existing RDB.

Chapter 5

Semantic Enrichment of Relational
Database

In the previous chapter, an overview of the MIGROX solution was given. The first

phase of MIGROX, the semantic enrichment, starts by obtaining a copy of an RDB

metadata, to enhance its semantics and construct the RSR. The last step of this phase

is to generate a CDM, which is appropriate for migration into the target databases.

An algorithm has been developed to generate the CDM from RSR and existing RDB

data. The goal of this chapter is to describe this algorithm, which allows the RSR

constructs to be classified, enriched and translated into the CDM.

The rest of the chapter is structured as follows. Section 5.1 presents the algorithm

for generating CDM. Sections 5.2 provides a summary of the chapter and points to

what follows next.

5.1 Generation of CDM from RSR

Once the RSR has been derived from an existing RDB metadata, the interesting

issue is mapping this representation into a CDM. This section presents the Gener-

ateCDM algorithm as shown in Figure 5.1, which facilitates this mapping. Although

the information provided by RSR is sufficient to begin generating the CDM, the focus

here is on how to benefit from this information in order to identify and feed the CDM

constructs, and to generate relationships and cardinalities among classes using data

stored in the RDB.

Using key matching, RSR relations and their attributes are classified, relationships

85

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 86

1: algorithm GenerateCDM (rsr: RSR) return CDM
2: cdm: CDM := ∅ // a set to store CDM classes
3: foreach relation R ∈ rsr do
4: Ccdm: Classcdm // define a CDM class as 〈cn, cls, abs, Acdm, REL, UK〉
5: Ccdm.cn := R.rn

6: Ccdm.cls := classifyRelation(R)
7: Ccdm.Acdm := classifyAttributes(R)
8: Ccdm.REL := identifyRelationships(R, Ccdm)
9: Ccdm.abs := checkClassAbstraction(R)

10: Ccdm.UK := R.UK
11: cdm := cdm ∪ {Ccdm} // add the class to CDM
12: end for
13: return cdm
14: end algorithm

Figure 5.1: The GenerateCDM Algorithm

between relations are identified and their cardinalities determined, followed by transla-

tion into equivalents in the CDM. The semantically enriched CDM forms the starting

point for the remaining phases of the database migration process that leads to the gen-

eration of target schemas and then the conversion of relational data into target data.

Given a set of RSR relation rsr as input, the algorithm goes through a main loop to

classify each RSR relation R ∈ rsr and its constructs, to generate their equivalents in

the CDM (lines 3–12). The algorithm includes several functions for identifying and

generating the CDM constructs. The classifyRelation function is used to classify R,

with its attributes classified using the classifyAttributes function. Relationships are

identified using the identifyRelationships function, while the checkClassAbstraction

function is used to check whether the CDM class, mapped from R, is abstract or

concrete. The set of unique keys UK remains unchanged. The following sections

discuss these functions in detail.

Consider the RSR defined in Section 4.3.2, we assume the following functions and

notations:

• A(R) returns a set containing only an component (i.e., name) of attributes of

relation R of type Rrsr.

• P (R) returns a set containing only pa component (i.e., name) of the primary

key attributes of R.

• F (R) returns a set containing only fa component (i.e., attribute name) of all

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 87

foreign keys of R, while the function fk(β) returns a set containing fa compo-

nent of β, where β ∈ R.FK.

• E(R) returns a set containing only ea component (i.e., attribute name) of all

exported keys of R, while the function ek(γ) returns a set containing ea com-

ponent of γ, where γ ∈ R.EK.

• numberOfDFKs(R) calculates and returns the number of disjoint foreign keys

(DFKs) in the primary key of R. A composite primary key of a relation contains

DFKs where parts of it are referencing two or more other relations.

• numberOfDanglingKs(R) returns the number of dangling key attributes in

R. A dangling key attribute is an attribute that is part of a composite primary

key of a relation but not part of its foreign keys [Chiang et al., 1994].

• getRSRrelation (r) returns the RSR relation that corresponds to the relation

name r.

• genCSS(X) generates a Comma Separated String from a set of attribute names

X for projection in an SQL query.

• To get an element of a composite construct, we use ‘.’ notation, e.g., R.rn.

5.1.1 Identifying CDM Classes

An RSR relation is classified based on the comparison of its keys with that of other

relations. Applying the classifyRelation function, shown in Figure 5.2, each RSR

relation R (of type Rrsr) in the input set rsr (of type RSR) is classified based on

arithmetic operations on its keys, and mapped into one of the nine CDM classes,

defined in Section 4.3.4, according to the following rules:

• Main relation: The relation R is classified as RST if its primary key is not fully

or partially composed of any foreign keys (i.e., P (R) ∩ F (R) = ∅). However,

R is classified as SST if it is a super-class (i.e., inherited by other classes). The

regular strong class RST is distinguished from the super-class SST after all

relationships of the class are identified as described in Section 5.1.3.

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 88

1: function classifyRelation (R: Rrsr) return cls
2: classTag: cls // class classification
3: A′: set[attribute name] := A(R)− (P (R) ∪ F (R)) // a set of non-key attribute names
4: if P (R) ∩ F (R) = ∅ then
5: classTag := RST
6: else if numberOfDFKs(R)> 1 then
7: if numberOfDFKs(R) = 2 and A′ = ∅ and E(R) = ∅ then
8: classTag := RRC
9: else

10: classTag := SRC
11: end if
12: else if P (R) ⊆ F (R) then
13: classTag := SUB
14: else if F (R)− P (R) = ∅ and E(R) = ∅ then
15: if numberOfDanglingKs(R) = 1 and A′ = ∅ then
16: classTag := MAC
17: else
18: classTag := CAC
19: end if
20: else
21: classTag := RCC
22: end if
23: return classTag
24: end function

Figure 5.2: The classifyRelation Function

• Relationship relation: The relation R is a relationship relation if its pri-

mary key is composed fully or partially of two or more DFKs. A relationship

relation has several forms: a binary M:N relationship relation with or with-

out non-key attributes, or n-ary relationship relation where n>2. The function

numberOfDFKs is used to classify R into one of the two kinds of CDM classes

as follows:

1. R is classified as RRC if its primary key consists of two DFKs, R does not

contain any non-key attributes (A′ := ∅), and R is not referenced by other

relations (EK(R) := ∅), or

2. R is classified as SRC (i.e., its primary key consists of more than two

DFKs, or A′ 6= ∅ or EK(R) 6= ∅).

• Sub-class relation: The relation R is a sub-class relation and is classified as

SUB, if its primary key is entirely composed of a primary key of another relation

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 89

(i.e., P (R) ⊆ F (R)) and all the pervious rules are not applicable. However, R

is classified as SSC (i.e., a class in the middle of an inheritance hierarchy)

if it is inherited by other relations. This distinction is preformed during the

identification of relationships of the sub-class (see Section 5.1.3).

• Weak relation: The relation R is a weak relation if its primary key is partially

composed of a primary key of another relation, i.e., parent relation, and none

of the above rules is applicable. Thus, R is classified as follows:

1. If R has no relationships with other relations except its parent relation

(i.e., F (R)− P (R) := ∅ and E(R) := ∅), then:

– R is a multi-valued attribute and is classified as MAC, if R has only

one dangling key attribute and does not contain non-key attributes

(A′ := ∅). The function numberOfDanglingKs(R) returns the number

of dangling key attributes of R.

– Otherwise, R is a composite attribute and is classified as CAC.

2. R is a regular weak entity relation and is classified as RCC if it participates

in one or more relationships with other relations in addition to its parent

relation (i.e., F (R)− P (R) 6= ∅ or E(R) 6= ∅).

5.1.2 Identifying Attributes

Attributes of R are identified and mapped along with other properties into attributes

of CDM class Ccdm using the classifyAttributes function shown in Figure 5.3. The

function takes R as input and, from its attributes R.Arsr, returns the set classAtt

(of type Acdm) that contains all attributes of Ccdm. The properties of each attribute

att ∈ R.Arsr include its name an, its data type t, length l, default d value, and

whether or not it is nullable n (‘y’|‘n’) (as defined in Section 4.3.4). In addition, att is

classified, using aTag, into a non-key attribute ‘NK’, a primary key attribute ‘PK’, a

foreign key attribute ‘FK’ or a primary-foreign key attribute ‘PF’. These properties,

combined as one 6-tuple for each single attribute, are added to the attributes of the

CDM class.

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 90

1: function classifyAttributes (R: Rrsr) return Acdm

2: classAtt: Acdm := ∅ // a set to store attributes of CDM class
3: aTag: tag // attribute tag
4: foreach attribute att ∈ R.Arsr do
5: if att.an ∈ P (R) ∩ F (R) then
6: aTag := ‘PF’
7: else if att.an ∈ P (R) then
8: aTag := ‘PK’
9: else if att.an ∈ F (R) then

10: aTag := ‘FK’
11: else
12: aTag := ‘NK’
13: end if
14: classAtt := classAtt ∪ {〈att.an, att.t, att.l, aTag, att.n, att.d〉} // add one attribute
15: end for
16: return classAtt
17: end function

Figure 5.3: The classifyAttributes Function

5.1.3 Identifying Relationships and Cardinalities

This section presents the identifyRelationship function as shown in Figure 5.4. The

function uses the key sets of each RSR relation R ∈ rsr to generate the relationships

of the corresponding CDM class Ccdm. Using information in the PK, FK and EK

sets, the relationships among RSR relations are identified and classified, and their

cardinalities determined, and they are then mapped into CDM relationships. For

each R and the corresponding RDB data, every relationship in which R participates

is identified and mapped into an equivalent CDM relationship and added to the set

aREL (of type REL) as an association, inheritance or aggregation, as defined in

Section 4.3.4. The minimum and maximum cardinality card of each relationship

is determined as min..max notation by querying the data in a complete database.

The function determinCard determines card when R contains foreign keys, and the

determinInverseCard function returns the inverse card when R is referenced by other

relations. These two functions are also used to decide whether the relationship is

optional or mandatory.

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 91

1: function identifyRelationships (R: Rrsr, Ccdm: Classcdm) return REL
2: aREL: REL := ∅ // a set to store relationships of a CDM class
3: expR, impR: R
4: card: relationship cardinality
5: relShipTyp: relationship type
6: r, ri, re: relation name
7: FKey, EKey: set[attribute name] := ∅
8: r := R.rn

9: foreach foreign key β ∈ R.FK do
10: expR := getRSRrelation (β.er)
11: re := expR.rn

12: FKey := fk(β)
13: if FKey * P (R) or numberOfDFKs(R) > 2 then
14: relShipTyp := ‘associated with’
15: else if P (R) ⊆ FKey then
16: relShipTyp := ‘inherits’
17: else if FKey 6= F (R) then
18: relShipTyp := ‘associated with’
19: end if
20: card := determinCard(r, FKey) // determines cardinality
21: aREL := aREL ∪ {〈relShipTyp, re, P (expR), card, FKey〉} // add relationship
22: end for
23: foreach exported key γ ∈ R.EK do
24: impR := getRSRrelation (γ.ir)
25: ri := impR.rn

26: EKey := ek(γ)
27: if EKey * P (impR) or numberOfDFKs(impR) > 2 then
28: relShipTyp := ‘associated with’
29: else
30: if EKey 6= P (impR) then
31: if EKey = F (impR) then
32: relShipTyp := ‘aggregates’
33: else
34: relShipTyp := ‘associated with’
35: end if
36: else
37: relShipTyp := ‘inherited by ’
38: if Ccdm.cls = RST then
39: Ccdm.cls := SST
40: else
41: Ccdm.cls := SSC
42: end if
43: end if
44: end if
45: card := determinInverseCard(r, ri, EKey) // determines inverse cardinality
46: aREL := aREL ∪ {〈relShipTyp, ri, EKey, card, P (R)〉} // add relationship
47: end for
48: return aREL
49: end function

Figure 5.4: The identifyRelationships Function

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 92

Direct Relationships

The FK set of R shows relationships (i.e., ‘associated with’, ‘inherits ’) when R has

foreign keys (lines 9–22). Given that R participates in a relationship with an RSR

relation expR through β as a foreign key, where β ∈ R.FK. When R and expR are

mapped into corresponding classes, the relationship between them is mapped into a

CDM relationship as follows:

• If the foreign key attributes of R are not part of its primary key attributes

(i.e., FKey * P (R)) or if R contains two or more DFKs, then the relationship

between the two classes is an association (i.e., the relationship type relShipTyp

:= ‘associated with’ - line 14).

• Otherwise, if the primary key attributes of R are a subset of its foreign key

attributes (i.e., P (R) ⊆ FKey), then relShipTyp := ‘inherits ’ - line 16.

• Otherwise, if R contains other foreign keys rather than those in FKey (i.e.,

FKey 6= F (R)) then relShipTyp := ‘associated with’ - line 18.

After relShipTyp is identified, the cardinality card of the relationship is determined

using the function determinCard, shown in Figure 5.5. The genCSS function is used

to generate a comma separated string from the set FKey for projection in an SQL

query from r, where r is the name of R (line 3 in Figure 5.5). The result of the

query is assigned to T . If both T and r have the same number of tuples, then card

:= 1..1 (i.e., the cardinality of the relationship is mandatory); otherwise card := 0..1

(i.e., the cardinality is optional). Finally, a relationship in the form 〈relShipTyp, re,

P (expR), card, FKey〉 is constructed and added to aREL, where re is the name of

expR and P (expR) is a set containing the primary key attribute names of expR.

Inverse Relationships

The EK set helps to identify the inverse relationships (i.e., ‘associated with’, ‘aggre-

gates ’ and ‘inherited by ’), when R is referenced relation (lines 23–47). Given that R

participates in a relationship with an RSR relation impR through γ as an exported

key, where γ ∈ R.EK, and the function P (impR) returns a set of primary key at-

tributes of impR. When R and impR are mapped into the corresponding classes, the

relationship between them is mapped into a CDM relationship as follows:

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 93

1: function determinCard (r: relation name, FKey: set[attribute name]) return c
2: card: c // cardinality
3: T := execute(‘select ’+genCSS(FKey)+‘ from ’+r)
4: if size (r) = size (T) then
5: card := 1..1 // check number of tuples
6: else
7: card := 0..1
8: end if
9: return card

10: end function

Figure 5.5: The determinCard Function

• If the exported key attributes of R are not part of the primary key attributes of

impR (i.e., EKey * P (impR)) or the primary key of R contains two or more

DFKs, then relShipTyp := ‘associated with’.

• If the exported key of R and the primary key of impR do not have the same

attributes (i.e., EKey 6= P (impR)), then:

If impR has no other relationships (i.e., EKey := F (impR)), then relShipTyp

:= ‘aggregates ’; otherwise relShipTyp := ‘associated with’.

• Otherwise, relShipTyp := ‘inherited by ’. By this relationship identified, if the

CDM class Ccdm is classified as RST (a regular strong class), it will become a

super-class SST, otherwise it will become an inherited sub-class SSC.

Given relShipTyp identified, the cardinality card of this inverse relationship is de-

termined using the determinInverseCard function, shown in Figure 5.6. The card is

obtained by projecting ri on the attributes in EKey and removing duplicates, where

ri is the name of impR. The resulting set of tuples put in D. If the size of r is equal

to the size of D (i.e., the relationship is mandatory), then if the size of D is less than

the size of ri then card := 1..m, otherwise card := 1..1. However, if the size of D is

less than the size of ri (i.e., the relationship is optional), then card := 0..m, otherwise

card := 0..1. Finally, a relationship in the form 〈relShipTyp, ri, EKey, card, P (R)〉
is constructed and added to aREL.

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 94

1: function determinInverseCard (r, ri: relation name, EKey: set[attribute name]) return c
2: card: c // cardinality
3: D := execute(‘select distinct ’+genCSS(EKey)+‘ from ’+ri)
4: if size(r) = size(D) then
5: if size(D)< size(ri) then
6: card := 1..m
7: else
8: card := 1..1
9: end if

10: else if size(D) < size(ri) then
11: card := 0..m
12: else
13: card := 0..1
14: end if
15: return card
16: end function

Figure 5.6: The determinInverseCard Function

5.1.4 Identifying Class Abstraction

It is important for each super-class Ccdm (i.e., when Ccdm.cls := (SST | SSC)) to

be checked to determine whether it is a concrete or abstract class. The class is

concrete (i.e., abs := false) when all (or some) of its corresponding RDB table

rows are not members of its sub-tables. However, it is abstract (i.e., abs := true)

when all of its objects are members of its sub-classes. Assume C ′
cdm and C ′′

cdm are

sub-classes of Ccdm, and Ins(Ccdm), Ins(C ′
cdm) and Ins(C ′′

cdm) indicate the number of

instances of Ccdm, C ′
cdm and C ′′

cdm, respectively. Then, Ccdm is abstract if Ins(Ccdm) :=

Ins(C ′
cdm) + Ins(C ′′

cdm), and is concrete class otherwise.

Example 5.1.1. Consider the RSR shown in Table 4.1 as input to the Generate-
CDM algorithm, Table 5.1 shows (in part) the resulting CDM. Each relation in RSR
is mapped into a class in CDM. For instance, the relation Emp is mapped into the
CDM class Emp. The Emp class, which is an abstract SST class, has the attributes:
ename, eno, bdate, address, spreno and dno. Other properties of the attributes (e.g.,
types, tags, length) are also shown. The class is ‘associated with’ the classes: Dept

(twice), Works on and with itself (twice). Moreover, it ‘aggregates ’ the Kids class and
is ‘inherited by ’ the Salaried emp and Hourly emp classes. Cardinality c and unique
keys are also given for each class.

CHAPTER 5. SEMANTIC ENRICHMENT OF RELATIONAL DATABASE 95

cn cls abs Acdm REL UK
an t tag l n d relType dirC dirAs c invAs ua s

Emp SST true eno int PK 25 n asso Dept dno 1..1 dno
ename char 40 n asso Dept mgr 0..1 eno
bdate date y asso Emp eno 1..1 spreno
address char 40 y asso Emp spreno 0..* eno
spreno int FK 25 y asso Works on eno 1..* eno
dno int FK n aggr Kids eno 0..* eno

inherBy Salaried emp eno 1..1 eno
inherBy Hourly emp eno 1..1 eno

Salaried emp SUB false eno int PF 25 n inherts Emp eno 1..1 eno
salary int y

Dept RST false dno int PK n asso Emp eno 1..1 mgr mgr 1
dname char 40 n asso Emp dno 1..* dno
mgr int FK 25 n asso Proj dnum 1..* dno
startd date y aggr Dept locations dno 1..* dno

Works on RRC false eno int PF 25 n asso Emp eno 1..1 eno
pno int PF n asso Proj pnum 1..1 pno

asso: associated with aggr: aggregates inherBy: inherited by

Table 5.1: Results of CDM generation

5.2 Summary

This chapter has presented the GenerateCDM algorithm that generates the CDM

from the RSR and RDB data. This is the last step of the semantic enrichment

phase of MIGROX, where the first step was the construction of the RSR described

in Section 4.3.3. This chapter has described the functions used in the algorithm,

including classifying RSR constructs and generating their equivalents in the CDM.

The algorithm classifies the RSR relations, their attributes and relationships using

key matching and RDB data. The CDM provides a description of the existing RDB’s

implicit and explicit semantics. The CDM is then translated into any of the tar-

get schemas (in the second phase of MIGROX) and plays a key mediator rule for

converting an existing RDB data into the target databases (in the third phase of

MIGROX).

The next chapter describes how to translate the CDM into the target schemas (i.e.,

the second phase of MIGROX).

Chapter 6

Translation of CDM to Target
Schemas

Chapter 5 explained the first phase of MIGROX, the semantic enrichment, in which

an existing RDB is enhanced with explicit and implicit data semantics and mapped

into the CDM. Once the CDM has been generated, then target schemas can be

derived from it without any recourse to the source RDB. This chapter presents the

second phase of MIGROX, the schema translation process, which was introduced in

Section 4.4. This phase includes the translation of the CDM into OODB, ORDB and

XML schemas. Three sets of rules for translating the CDM into each of the target

schemas are proposed and illustrated using examples. Algorithms are developed for

producing each target schema according to the relevant rules.

The chapter is organised as follows. Section 6.1 presents the common functions used

by the algorithms. Translating CDM into an ODMG 3.0 ODL schema is provided in

Section 6.2. Section 6.3 explains the mapping of CDM into an SQL4 ORDB schema,

and mapping the CDM into an XML Schema is described in Section 6.4. Section 6.5

provides a summary of this chapter and points to what follows.

6.1 Common CDM Translation Functions

The following functions are used by the three algorithms described in this chapter:

• mapAttrType(tdb, att) translates the data type of a CDM attribute att into

equivalent data type according the target database kind tdb, where tdb :=

96

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 97

(‘OODB’ | ‘ORDB’ | ‘XML’). Appendix A shows the mapping table used for

attribute data type translation from CDM to OODB, ORDB and XML data

types.

• getCDMclass(className) returns the CDM class that corresponds to the class

name className.

• getRelationshipName (x, X, y, Y) returns a concatenation of a class name x

and a set of attribute names X with a class name y and a set of attribute names

Y to derive a unique name for a relationship.

• setMtoNrelationship(tdb, rel). Given that an RDB cannot implement M:N re-

lationships directly, this function resolves an M:N relationship into two 1:Ms.

That is, if a CDM class Ccdm has a 1:M relationship rel (i.e., rel ∈ Ccdm.REL)

with a class C ′
cdm, where C ′

cdm.cls := ‘RRC’, and C ′
cdm has a 1:M relationship

with a class C ′′
cdm, then depending on tdb, the function defines a new M:N re-

lationship between the target classes corresponding to Ccdm and C ′′
cdm. This

means that there will be no target class corresponding to C ′
cdm.

• mapNonFKtyp(tdb, Ccdm.Acdm) translates the data type of a non-foreign key

attribute att ∈ Ccdm.Acdm defined in a CDM class Ccdm into a target equivalent

type in tdb.

• mapAttAndType(tdb, Ccdm.Acdm) takes the name and data type of every non-

foreign key attribute att ∈ Ccdm.Acdm and translates them into the equivalent

target types in tdb in the form of a structured type, e.g., struct when tdb :=

‘OODB’ or row when tdb := ‘ORDB’.

6.2 Translating CDM into OODB Schema

Given the CDM as defined in Section 4.3.4 and the ODMG 3.0 ODL as defined in

Section 4.4.1, this section explains how the CDM is translated into an equivalent

target OODB schema. A set of rules have been designed for translating CDM classes

into corresponding ODL constructs. The ProduceOODBschema algorithm shown

in Figure 6.1 implements these translation rules. Each rule is aimed at a specific

construct, e.g., attribute translation, which may be supported by mapping functions,

e.g., mapAttrType.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 98

1: algorithm ProduceOODBschema (cdm: CDM) return OOschema
2: targetSchema: OOSchema := ∅ // a set to represent the OODB target schema
3: foreach class Ccdm ∈ cdm do
4: if Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’) then
5: Coo: Classoo // define an OODB class as 〈cn, spr, k, Aoo, RELoo〉
6: mlt: string := ‘sv’
7: relnm, invRelnm: string := ‘’ // relationship names
8: Coo.cn := Ccdm.cn
9: Coo.k := defineClassKey(Ccdm.Acdm, Ccdm.cls)

10: foreach attribute att ∈ Ccdm.Acdm do
11: if att.tag 6= (‘FK’ | ‘PF’) then
12: Coo.Aoo := Coo.Aoo ∪ {〈att.an, mapAttrType(‘OODB’, att),mlt〉}
13: end if
14: end for
15: foreach relationship rel ∈ Ccdm.REL do
16: C ′cdm: Classcdm := getCDMclass(rel.dirC)
17: relnm := getRelationshipName (rel.dirC, rel.dirAs, Ccdm.cn, rel.invAs)
18: if rel.c = (0..1 | 1..1) then
19: mlt := ‘sv’
20: else
21: mlt := ‘cv’
22: end if
23: if rel.relType = ‘associated with’ then
24: if C ′cdm.cls = ‘RRC’ then
25: Coo.RELoo := Coo.RELoo ∪ {setMtoNrelationship(‘OODB’, rel)}
26: else
27: invRelnm := getRelationshipName (Ccdm.cn, rel.invAs, rel.dirC, rel.dirAs)
28: Coo.RELoo := Coo.RELoo ∪ {〈relnm, rel.dirC, mlt, invRelnm〉}
29: end if
30: else if rel.relType = ‘aggregates’ then
31: if C ′cdm.cls = ‘MAC’ then
32: Coo.Aoo := Coo.Aoo ∪ {〈relnm, mapNonFKtyp(‘OODB’, C ′cdm.Acdm), mlt〉}
33: else
34: Coo.Aoo := Coo.Aoo ∪ {〈relnm, mapAttAndType (‘OODB’, C ′cdm.Acdm), mlt〉}
35: end if
36: else if rel.relType = ‘inherits’ then
37: Coo.spr := rel.dirC
38: end if
39: end for
40: targetSchema := targetSchema ∪ {Coo} // add the class to OODB schema
41: end if
42: end for
43: return targetSchema
44: end algorithm

Figure 6.1: The ProduceOODBschema Algorithm

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 99

6.2.1 Translating Classes

For each CDM class Ccdm ∈ cdm, where Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’), an

OODB class Coo (of type Classoo) is created with its own properties, and added to

the target schema targetSchema. The properties of Coo, extracted from Ccdm, include

its key k, super-class name spr, attributes Aoo, and relationships RELoo, whereas the

name of Coo is assigned to be that of Ccdm. The Coo is defined under its super-class

via spr if Ccdm.cls := (‘SUB’ | ‘SSC’) as described in translating inheritance. The k is

specified for strong classes, i.e., Ccdm.cls := (‘RST’ | ‘SST’) using the defineClassKey

function (line 9), when one or more attributes of Ccdm are tagged with ‘PK’. Sub-

classes inherit their super-class keys. However, the OODB class must have an ‘extent’

to have a key. In ODMG 3.0, an extent defines the set of all instances of a given OODB

class. The class name is appended by the letter ‘s’ to represent the class extent, e.g.,

Emps.

Translating Atomic Attributes

Attributes are mapped according to two rules: a basic rule and a complex rule.

The basic rule applies to the primitive attribute types. Each CDM attribute att ∈
Ccdm.Acdm, where att.tag 6= (‘FK’ | ‘PF’) is translated into an equivalent OO attribute

and placed in the attribute set Aoo of Coo with the same name as that of att using the

mapAttrType function (lines 10-14). The complex rule has been designed for mapping

aggregation relationships, resulting in simple/composite multi-valued attributes as

described in translating aggregations.

Translating OODB Relationships

Each relationship rel defined in a CDM class Ccdm (rel ∈ Ccdm.REL) is translated

into an equivalent relationship in the corresponding OODB class Coo (lines 15-39).

The type of the target relationship and its multiplicity are determined by the clas-

sification of the CDM class C ′
cdm (i.e., C ′

cdm.cls) related to Ccdm and the properties

of rel (e.g., rel.relType). OO association, aggregation and inheritance relationships

are derived from rel when rel.relType:= ‘associated with’, ‘aggregates ’ and ‘inherits ’,

respectively. Moreover, the cardinality c of rel is mapped into a single-valued multi-

plicity ‘sv’ when c := (0..1 | 1..1), or a collection-valued multiplicity ‘cv’ otherwise.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 100

• Association: Each relationship rel ∈ Ccdm.REL, where rel.relType:= ‘asso-

ciated with’, is translated into a corresponding bi-directional OO association

relationship (lines 23-29). The relationship is represented by a pair of inverse

references to ensure navigation in both directions and to preserve the referential

integrity constraints. The direct relationship name relnm of the new relation-

ship and also its inverse relationship name invRelnm are obtained using the

getRelationshipName function, as described above. The rel is mapped into a

single-valued ‘sv’ relationship referencing the related OO class, corresponding

to C ′
cdm if rel.c := (0..1 | 1..1), and into a collection-valued ‘cv’ relationship if

rel.c := (0..* | 1..*). However, if C ′
cdm.cls := ‘RRC’, then rel is mapped into

an M:N relationship using the setMtoNRelationship function, in which a pair of

1:M relationships is defined in each of the OODB classes corresponding to the

two CDM classes that participate in the relationship with C ′
cdm (lines 24-25).

• Aggregation: Each relationship rel ∈ Ccdm.REL where rel.relType := ‘aggreg-

ates’ is translated, in Coo, into an OO literal attribute (lines 30-35). The type

of the attribute is mapped from the component C ′
cdm that participates in the

relationship with Ccdm, whereas its multiplicity mlt is derived from rel.c. The

classification of C ′
cdm determines the type of the attribute. When C ′

cdm.cls :=

‘MAC’, then rel is mapped into a multi-valued attribute, where its type is ob-

tained by the mapNonFKtyp function. However, if C ′
cdm.cls := ‘CAC’, then rel

is mapped into a composite attribute, the type of which is returned using the

getAttAndType function, as a (set of-) struct depending on rel.c

• Inheritance: Each relationship rel ∈ Ccdm.REL where rel.relType := ‘inherits’

is mapped into a simple inheritance, by which the sub-class Coo, mapped from

Ccdm, inherits all of the properties of its super-class mapped from C ′
cdm (lines

36-37). The super-class name Coo.spr is assigned to C ′
cdm.cn to realise the inher-

itance between Coo and its super-class. Additional attributes and relationships

of Ccdm are mapped to Coo in the usual way.

Example 6.2.1. Consider the CDM generated in Chapter 5 (shown in Table 5.1)
as input to the ProduceOODBschema algorithm. Figure 6.2 shows the output
ODMG 3.0 schema in ODL notation. The Dept and Proj classes are mapped as
regular strong classes, whereas the Emp class is mapped as a super-class, from which
the Hourly emp and Salaried emp classes inherit. Attributes and relationships are
mapped from the CDM into the ODL schema. For instance, the OO class Emp has

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 101

the simple attributes: ename, eno, bdate and address. In addition, the class has
many object-valued relationships with other classes (two relationships with Dept,
one with Proj and two relationships with itself). The inverse directions of these
relationships are shown in the figure. Moreover, the class aggregates Kids as a struct

type. The multiplicity of all relationships are mapped for each class. The technique
we follow in naming relationships is automatic, where the attributes that form the
relationships are concatenated with the corresponding class names. For example,
in CDM, the Dept and Emp classes participate in a relationship through the mgr
attribute in the Dept class and eno attribute in the Emp class. The name of this
relationship is mapped by concatenating these elements as a string separated by ‘ ’,
i.e., dept mgr emp eno (manages). Conversely, the inverse relationship name will be
emp eno dept mgr (manager). The user is allowed to change these names into more
appropriate names.

class Emp (extent Emps key eno) {
attribute string ename; attribute float eno;

attribute date bdate; attribute string address;

attribute set<struct Kids{string kname; string sex;}> hasKids;

relationship Dept manages inverse Dept::manager;

relationship set<Emp> supervises inverse Emp::supervisor;

relationship Dept dept inverse Dept::employees;

relationship Emp supervisor inverse Emp::supervises;

relationship set<Proj> projects inverse Proj::employees;};

class Hourly emp extends Emp (extent Hourly emps){attribute long pay scale;};
class Salaried emp extends Emp (extent Salaried emps){attribute long salary;};

class Dept (extent Depts key dno) {
attribute string dname; attribute long dno; attribute date startd;

attribute set<string> locations;

relationship set<Emp> employees inverse Emp::dept;

relationship set<Proj> controls inverse Proj::controledBy;

relationship Emp manager inverse Emp::manages;};

class Proj (extent Projs key pnum) {
attribute string pname; attribute long pnum; attribute string plocation;

relationship set<Emp> employees inverse Emp::projects;

relationship Dept controledBy inverse Dept::controls;};

Figure 6.2: Sample output OODB schema

6.3 Translating CDM into ORDB Schema

The ORDB schema that satisfies SQL4 as defined in Section 4.4.1 can be generated

from the CDM. This section describes the ProduceORDBschema algorithm given

in Figure 6.3, which returns the target schema. The algorithm produces the target

ORDB SQL4 schema as a set of UDTs, a set of typed tables and a set of unique keys

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 102

stored in the sets aUT , aTT and aUKor, respectively. The following sections explain

the steps of the algorithm.

6.3.1 Creating User-Defined Types

To create typed tables for storing data it is necessary to define the underlying object

types as UDTs. Each main CDM class Ccdm ∈ cdm is translated into a UDT udt

(of type udType). The name utn of udt takes the same name as that of Ccdm, i.e.,

Ccdm.cn, suffixed by a string ‘ t’, e.g., Emp t. Each udt is defined by deriving its

attribute Aut and identifying its super-type name sut. The udt is defined under its

super-type via sut if Ccdm.cls := (‘SUB’ | ‘SSC’). All UDTs, expect sub-class types,

are defined with a self-referential attribute, using the ‘ref using varchar(25)’ string,

as part of their definitions. Tables defined based on those UDTs must then specify

that the identifier uoid of each object is user-generated. Once a UDT along with its

properties is defined, then it is added to the set aUT , in which all UDTs are held.

Translating Atomic Attributes

Each non-foreign key attribute att ∈ Ccdm.Acdm, i.e., att.tag 6= (‘FK’ | ‘PF’) is trans-

lated into a primitive attribute in the target schema and added to the attribute set

Aut of udt (lines 14-18). Each target attribute ∈ Aut retains the same properties from

att, i.e., att.an, att.n, att.l and att.d, whereas its multiplicity mt is single-valued. The

type of the target attribute is translated from att using the mapNonFKtyp function,

which takes att.t and att.l and returns the ORDB SQL4 equivalent type. Using this

rule, all primitive attributes are mapped; however, the row and ref-based attributes

are mapped as relationship attributes.

Translating ORDB Relationships

CDM relationships are translated into the target ORDB schema as association, ag-

gregation and inheritance. Each relationship rel ∈ Ccdm.REL is translated, based on

rel.relType and the classification of the related CDM class C ′
cdm, into a relationship

attribute and added into Aut of the corresponding type, or mapped into an inheri-

tance relationship (lines 19-43). The relationship attribute name relnm for associa-

tion/aggregation relationships is generated using the getRelationshipName function

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 103

1: algorithm ProduceORDBschema (cdm: CDM) return ORschema
2: aUT : UT := ∅
3: aTT : TT := ∅
4: aUKor: UKor := ∅
5: foreach class Ccdm ∈ cdm do
6: if Ccdm.cls 6= (‘RRC’ | ‘MAC’ | ‘CAC’) then
7: udt: udType // define a UDT as 〈utn, sut, Aut〉
8: Tor: tTable // define a typed table as 〈ttn, utn, stt, pk, uoid〉
9: mt, relnm, nl: string := ‘’

10: udt.utn, Tor.utn := Ccdm.cn+‘ t’
11: Tor.ttn := Ccdm.cn
12: Tor.pk := definePKconstraint(Ccdm.cls, Ccdm.Acdm)
13: Tor.uoid := defineUserDefinedOID(Ccdm.cls) // specify uoid
14: foreach attribute att ∈ Ccdm.Acdm do
15: if att.tag 6= (‘FK’ | ‘PF’) then
16: udt.Aut := udt.Aut ∪ {〈a.an, mapAttrType(‘ORDB’, att), mt, att.n, att.d〉}
17: end if
18: end for
19: foreach relationship rel ∈ Ccdm.REL do
20: C ′cdm: Classcdm := getCDMclass(rel.dirC) // get a related class
21: relnm := getRelationshipName (rel.dirC, rel.dirAs, Ccdm.cn, rel.invAs)
22: if rel.c = (0..1 | 1..1) then
23: mt := ‘sv’; nl := null/not null // depending on min cardinality of c
24: else
25: mt := ‘cv’; nl := ‘’
26: end if
27: if rel.relType = ‘associated with’ then
28: if C ′cdm.cls = ‘RRC’ then
29: udt.Aut := udt.Aut ∪ {setMtoNrelationship(‘ORDB’, rel)}
30: else
31: udt.Aut := udt.Aut ∪ {〈relnm, ‘ref(’+rel.dirC+‘ t)’, mt, nl, ‘’〉}
32: end if
33: else if rel.relType = ‘aggregates’ then
34: if C ′cdm.cls = ‘MAC’ then
35: udt.Aut := udt.Aut∪{〈relnm, mapNonFKtyp(‘ORDB’, C ′cdm.Acdm),mt, nl, ‘’〉}
36: else
37: udt.Aut := udt.Aut∪{〈relnm, getAttAndType(‘ORDB’, C ′cdm.Acdm),mt, nl, ‘’〉}
38: end if
39: else if rel.relType = ‘inherits’ then
40: udt.sut := C ′cdm.cn+‘ t’
41: Tor.stt := C ′cdm.cn
42: end if
43: end for
44: aUT := aUT ∪ {udt} // add the UDT to ORDB schema
45: aTT := aTT ∪ {Tor} // add the table to ORDB schema
46: aUKor := aUKor ∪ {defineUKconstraints(Ccdm.UK)}
47: end if
48: end for
49: return 〈aUT , aTT , aUKor〉
50: end algorithm

Figure 6.3: The ProduceORDBschema Algorithm

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 104

(line 21), whereas its multiplicity mt is single-valued ‘sv’ when rel.c := (0..1 | 1..1),

or collection ‘cv’ when rel.c := (0..m | 1..m) (lines 22-26).

• Association: Each relationship rel ∈ Ccdm.REL where rel.relType := ‘asso-

ciated with’ is translated, in the udt corresponding to Ccdm, into an attribute

where its type is a ref or a collection of refs (depending on rel.c), referencing

the related UDT mapped from the corresponding C ′
cdm (lines 27-32). A ref at-

tribute is constrained to be scoped (i.e., using a scope clause) to a specific table,

so that the ref values stored in that attribute points to objects of the specified

table. Each association is defined bi-directionally between its two types. How-

ever, unlike the OODB systems that support ODMG 3.0, neither SQL4 nor any

ORDB products allow the user to rely on the system to automatically enforce

inverse relationships. The inverse direction of the relationship is defined in the

related UDT. Depending on the cardinalities c of rel and the classification of

associated class C ′
cdm.cls, rel is translated into 1:1, 1:M or M:N relationships.

The rel is mapped, in udt, into a single-valued attribute of ref type, point-

ing to a pre-defined type corresponding C ′
cdm (e.g., udt′) when rel.c := (0..1 |

1..1). Besides, rel is mapped into a collection-valued attribute, containing a

collection of refs, pointing to a related type udt′ if rel.c := (0..m | 1..m). How-

ever, rel is mapped into an M:N relationship if C ′
cdm.cls := ‘RRC’ using the

setMtoNrelationship function. As C ′
cdm participates in only two M:1 association

relationships with Ccdm and another CDM class C ′′
cdm, rel is mapped, in udt,

into an attribute that contains a collection of refs, pointing to a pre-defined

udt′′, corresponding to C ′′
cdm. Similarly, a collection of refs, pointing to udt, is

defined inside udt′′ when mapping from the C ′′
cdm side.

• Aggregation: Each relationship rel ∈ Ccdm.REL where rel.relType := ‘aggre-

gates’ is translated, in udt mapped from Ccdm, into a literal type attribute,

representing C ′
cdm (lines 33-38). Depending on c of rel and C ′

cdm.cls, rel is

translated into multi-valued attributes or row types. If C ′
cdm.cls := ‘MAC’,

rel is mapped into a multi-valued attribute, where the mapNonFKtyp function

returns the data type of the attribute from C ′
cdm.Acdm. However, if C ′

cdm.cls :=

‘CAC’, rel is mapped into a row type attributes when rel.c := (0..1 | 1..1), or

as a collection of rows when rel.c := (0..m | 1..m). The attributes of the row

type are mapped from the non-foreign key attributes in C ′
cdm.Acdm using the

getAttAndType function.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 105

• Inheritance: Each relationship rel ∈ Ccdm.REL where rel.relType := ‘inherits’

is mapped as a single inheritance, where udt translated from Ccdm inherits all

of the properties of its super-type mapped from C ′
cdm. The name of C ′

cdm is

appended by the string ‘ t’ and assigned to super-type name attribute sut of

udt to realise the inheritance, i.e., udt.sut := C ′
cdm.cn+‘ t’ (line 40). Additional

properties of udt are defined in the usual way. Creating a sub-type under its

super-type is considered while creating the super-type by specifying the not

final phrase at the end of the super-type definition, which is final by default.

Specifying not final for a super-type in the create type statement means

that other types can inherit from it.

6.3.2 Creating Typed Tables

A typed table Tor (of type tTable) is defined for each declared udt and labeled with

the same name as the corresponding CDM class Ccdm, from which the udt has been

translated, i.e., Tor.ttn := Ccdm.cn. Creating Tor is based on UDT specifications, repre-

senting instances for each row in the table, i.e., Tor.utn := Ccdm.cn+‘ t’. The primary

key pk of Tor is defined using the definePKconstraint function, which produces pk

from the attributes in Ccdm.Acdm, where tag := ‘PK’ (line 12). Because Tor would

contain objects that can be referenced by other objects, an identifier attribute Tor.uoid

is specified as user-generated OID to facilitate cyclic referencing among pre-created

objects during data loading. When inserting a tuple in Tor, the uoids of objects can

be generated from primary key values of the corresponding RBD table. The func-

tion defineUserDefinedOID is used to define the uoid (line 13). However, sub-tables

inherit primary keys and uoids from their super-tables. Unique keys for each table

are extracted from the CDM equivalents and placed in aUKor using the function

defineUKconstraints (line 46). Sub-tables are created under their super-tables via

Tor.stt := C ′
cdm.cn, where C ′

cdm.cn is the name of the corresponding super-class C ′
cdm

(line 41).

Example 6.3.1. Consider the CDM shown in Table 5.1 as input to the Produce-
ORDBschema algorithm, Figure 6.4 shows the output SQL4 ORDB schema, which
contains UDTs and typed tables. For example, the type Emp t is created from the
CDM class Emp and then used to create the Emp table. Non-foreign key attributes, e.g.,
ename and eno are mapped as simple attributes from the CDM, while other attributes
define relationships such as dept (i.e., equivalent to the string dept dno emp dno gen-
erated automatically) that references the type Dept t. This attribute is translated

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 106

from the 1:1 association (i.e., 〈‘associated with’, Dept, {dno}, 1..1, {dno}〉) between
the Emp and Dept CDM classes, which is defined in the Emp class and given in Ta-
ble 5.1. In the inverse direction, a collection that contains refs of Emp t is defined
in the Dept t type to show that a set of employees work for a department. The
sets are used to store a collection of values on the M side of relationships. The
Kids class is mapped as a composite multi-valued attribute inside Emp t using set

and row, whereas the CDM Dept locations class is mapped in Dept t as a simple
multi-valued attribute using set. Typed tables are created to store the actual data.
Inheritance relationships among UDTs/tables are defined using the under phrase.
Hourly emp t and Salaried emp t sub-types are mapped from the corresponding
CDM classes and defined under the Emp t super-type. The corresponding tables then
become sub-tables of the Emp super-table, inheriting its properties.

create type Emp t as (

ename varchar(20), eno number, bdate date, address varchar(30),

manages ref(Dept t) scope Dept,

supervises set(ref(Emp t)),

hasKids set(row(kname varchar(30), sex char(1))),

projects set(ref(Proj t)),

dept ref(Dept t) scope Dept,

supervisor ref(Emp t) scope Emp) not final

ref using varchar(25);

create table Emp of Emp t

constraint Emp pk primary key(eno), ref is uoid user generated;

create type Hourly emp t under Emp t (pay scale number) final;

create table Hourly emp of Hourly emp t under Emp;

create type Salaried emp t under Emp t (salary number) final;

create table Salaried emp of Salaried emp t under Emp;

create type Dept t as (

dname varchar(20), dno number, startd date,

locations set(varchar(25)),

employees set(ref(Emp t)),

controls set(ref(Proj t)),

manager ref(Emp t) scope Emp)

ref using varchar(25);

create table Dept of Dept t

constraint Dept pk primary key(dno), ref is uoid user generated;

create type Proj t as (

pname varchar(20), pnum number, plocation varchar(20),

employees set(ref(Emp t)),

controledBy ref(Dept t) scope Dept)

ref using varchar(25);

create table Proj of Proj t

constraint Proj pk primary key(pnum), ref is uoid user generated;

Figure 6.4: Sample output SQL4 ORDB schema

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 107

6.4 Translating CDM into XML Schema

An XML Schema file (.xsd) can be created based on the additional semantics captured

in CDM. This section explains how to translate CDM constructs into an XML Schema.

The translation process involves a set of mapping rules, which translate CDM into

XML Schema annotations. An algorithm called ProduceXMLschema, given in

Figure 6.5, has been developed for this purpose and represents an integration of these

rules. The main steps of the algorithm are described in the following sections

6.4.1 Defining XML Namespaces

XML Schema documents have main components, e.g., complex type definitions, and

secondary components, e.g., namespaces, annotations and language used. The sec-

ondary components must be defined in the first step in order to create an XML Schema

document. A namespace is defined according to the standard for schema commands

and assigned to a variable, e.g., xs as an XML Schema description using the attribute

xmlns (XML namespace). All schema tags are prefixed by xs: to indicate the XML

Schema namespace. However, the namespace can be defined as a default, where the

use of such a prefix is not needed. Any necessary annotations used in the document

have to be specified for the user and machine, e.g., English language (xml:lang =

‘en’).

6.4.2 Declaring Schema Root and its Elements

An XML Schema is defined according to a tree data model, which has two main

components. The first component is the declaration of the root element as a complex

type that contains a sequence of elements and integrity constraints. The second

component includes the definitions of the complex types of the elements declared

under the root. Three common approaches are available to make the decision on

how to define the schema’s components, locally or globally. These approaches are

Salami Slice, Russian Doll and Venetian Blind designs [Valentine et al., 2002]. Each

approach can be adopted based on the application’s requirements. In this research,

the target XML Schema is produced according to the Venetian Blind design, which

defines complex types globally and elements locally. This offers flexible component

reusing and nest element declarations within type definitions.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 108

1: algorithm ProduceXMLschema (cdm: CDM) return XMLSchema
2: aRoot: Root // define the schema root
3: aGT : GT := ∅ // a set to represent the complex types
4: define the namespace, annotation and the aRoot’ s name rootn
5: nm, mx, relnm: string := ‘’
6: foreach class Ccdm ∈ cdm do
7: if Ccdm.cls 6= (‘MAC’ | ‘RRC’) then
8: ct: compType // define a complex type as 〈ctn, base, abst, LE〉
9: ct.ctn := Ccdm.cn+‘ t’

10: ct.abst := Ccdm.abs
11: foreach attribute att ∈ Ccdm.Acdm do
12: nm, mx := “1”
13: if att.n = ‘y’ then
14: mn := “0”
15: end if
16: if Ccdm.cls = (‘CAC’ | ‘SUB’ | ‘SSC’) then
17: if att.tag 6= ‘PF’ then
18: ct.LE := ct.LE ∪ {〈att.an, mapAttrType(‘XML’, att), mn, mx〉}
19: end if
20: else
21: ct.LE := ct.LE ∪ {〈att.an, mapAttrType(‘XML’, att), mn, mx〉}
22: end if
23: end for
24: if Ccdm.cls 6= ‘CAC’ and not Ccdm.abs then
25: aRoot.PKx := aRoot.PKx∪ {definePK (Ccdm)}
26: aRoot.FKx := aRoot.FKx∪ {defineFKs(Ccdm)}
27: aRoot.UKx := aRoot.UKx∪ {defineUKs(Ccdm)}
28: aRoot.LE := aRoot.LE ∪ {〈Ccdm.cn, Ccdm.cn+‘ t’, “0”, “unbounded”〉}
29: foreach relationship rel ∈ Ccdm.REL do
30: C ′cdm: Classcdm := getCDMclass(rel.dirC)
31: if rel.relType = ‘associated with’ and C ′cdm.cls = ‘RRC’ then
32: ct.LE := ct.LE ∪ {setMtoNrelationship(‘XML’, rel)}
33: else if rel.relType = ‘aggregates’ then
34: relnm := getRelationshipName (rel.dirC, rel.dirAs, Ccdm.cn, rel.invAs)
35: nm, mx := min and max cardinality rel.c
36: if C ′cdm.cls = ‘MAC’ then
37: ct.LE := ct.LE ∪ {〈relnm, mapNonFKtyp (‘XML’ , C ′cdm.Acdm), mn, mx〉}
38: else
39: ct.LE := ct.LE ∪ {〈relnm, relnm+‘ t’, mn, mx〉}
40: end if
41: else if rel.relType = ‘inherits’ then
42: ct.base := C ′cdm.cn+‘ t’
43: end if
44: end for
45: end if
46: aGT := aGT ∪ {ct} //add the complex type to the global set aGT
47: end if
48: end for
49: return 〈aRoot, aGT 〉
50: end algorithm

Figure 6.5: The ProduceXMLschema Algorithm

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 109

After defining the namespace and annotations, the root element aRoot of the schema

document is created and given a name rootn with the same name as an existing RDB

schema (or alternative provided by the user). The subsequent steps of the algorithm

define the set of elements of the root aRoot.LE and its identity-constraints PKx, FKx

and UKx, and then specify the set of global complex types aGT . The target XML

Schema document is generated from aRoot and aGT . Each CDM main and concrete

class Ccdm ∈ cdm (i.e., Ccdm.abs := false and Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’))

is translated as an empty first-level element under the root – placed in aRoot.LE.

Each element ∈ aRoot.LE is named with the same name as the corresponding CDM

class, i.e., Ccdm.cn and has a type specified by adding the ‘ t’ string to its name, i.e.,

Ccdm.cn+‘ t’. The type name is used as a reference to a global complex type that is

defined separately in the set aGT . The occurrence of each element is specified using

the occurrence attributes mn := “0” and mx := “unbounded”. The PKx, FKx and

UKx are defined for each element as described in Section 6.4.4.

6.4.3 Defining Complex Types

Each CDM class Ccdm, where Ccdm.cls 6= (‘MAC’ | ‘RRC’) is translated into a global

complex type ct (of type CompType) (lines 6-48). The name ctn of ct is specified from

the corresponding CDM class name Ccdm.cn, concatenated with the string ‘ t’. For

example, the Emp class is mapped into the Emp element that has the Emp t complex

type. If Ccdm is abstract, i.e., Ccdm.abs := true, then ct is specified as abstract,

i.e., ct.abst := Ccdm.abs. The set of elements ct.LE is constructed from Ccdm.Acdm

and Ccdm.REL. Each attribute att ∈ Ccdm.Acdm is translated into a local element

and added to ct.LE (lines 11-23). Each element is given a name as the same name

of the corresponding att, and a type translated via the mapAttrType function. The

occurrences mn and mx of the element, are set to default values where each is “1”

since they are all of the primitive type. However, mn is set to “0” if att accepts

nulls (i.e., att.n := ‘y’). Foreign key attributes (i.e., tagged as ‘FK’ or ‘PF’) are

defined in ct as normal simple attributes if they are specified in PKx and FKx sets;

otherwise, they are dropped from the definition of ct (e.g., foreign key attributes in

CAC classes). In other words, each attribute att ∈ Ccdm.Acdm are mapped into a

local element, where Ccdm.cls := (‘CAC’ | ‘SUB’ | ‘SSC’) and att.tag 6= ‘PF’; whereas

all attributes of Ccdm, where Ccdm.cls := (‘RST’ | ‘RCC’ | ‘SRC’) are mapped in ct

into local elements. Other non-primitive elements are mapped from Ccdm.REL as

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 110

described in Section 6.4.4.

6.4.4 Translating Relationships and Constraints

An XML Schema represents relationships among elements by specifying nested com-

plex types, or constraints using the key/keyref. On the one hand, the definition

of nested types follows the parent-child containment technique, which in most cases

causes data redundancy, even though it may speed up the processing of queries by

avoiding join operations. Moreover, nesting the elements under each other requires

user help during the translation. On the other hand, defining relationships using

key/keyref may result in a flat document, even though the documents generated

using this technique contain less redundancy. Therefore, we follow each of these two

techniques with the aim of producing less data redundancy in a nested document.

Thus, relationships among main CDM classes are mapped into identity constraints

using the key/keyref, whereas the MAC, CAC and RRC classes are translated as

nested elements under their parent elements.

Identity Constraints: The sets PKx, FKx and FKx are declared for candidate

elements defined in aRoot from each corresponding CDM class Ccdm using Ccdm.Acdm

and Ccdm.REL (lines 25-27). The following functions are defined to return the three

sets:

• definePK (Ccdm) returns the primary key pk for each element defined under

aRoot in the form 〈pkn, selector, PKfield〉, and adds it into the PKx set. The

pk element is translated from each attribute att ∈ Ccdm.Acdm, where Ccdm.cls

:= (‘RST’ | ‘SRC’ | ‘RCC’) and att.tag := (‘PK’ | ‘PF’). To guarantee the

uniqueness, each key name pkn is formed by concatenating Ccdm.cn with each

att.an and the string ‘PK’. A selector is assigned Ccdm.cn as a constraint element

scope, whereas PKfield is specified from each att ∈ Ccdm.Acdm when att.tag

:= (‘PK’ | ‘PF’) as related element(s) to the selected selector. The PKfield

can have more than one element in the case of a composite key. For example,

the primary key dno of Dept class is translated into the XML primary key

as 〈"deptDnoPK", Dept, {dno}〉. However, if Ccdm.cls := (‘SUB’ | ‘SSC’), the

corresponding set PKfield contains the key attributes of the top super-type of

the inheritance hierarchy.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 111

• defineFKs(Ccdm) returns foreign keys for each element defined under aRoot

in the form 〈fkn, ref , selector, FKfield〉 and adds them to the FKx set.

XML foreign keys are mapped from each CDM relationship rel ∈ Ccdm.REL,

where rel.relType := ‘associated with’, and the attribute names in rel.invAs,

which are tagged as ‘FK’ or ‘PF’. The foreign key name fkn is formed by the

concatenation of Ccdm.cn, with the name of each attribute in rel.invAs, and

the string ‘FK’. The refer is formed from concatenating the rel.dirC, with the

attribute names in rel.dirAs and the string ‘PK’, whereas the selector is named

as Ccdm.cn, and each element in FKfield is assigned an attribute in rel.invAs.

• defineUKs(Ccdm) returns the unique keys for elements defined under aRoot and

adds them to the set UKx, based on their equivalents in CDM, i.e., Ccdm.UK.

Nested Elements: The following rules are used to translate CDM relationships into

XML as sub-elements embedded within their parent elements (lines 29-44).

• Each association rel ∈ Ccdm.REL between Ccdm and another CDM class C ′
cdm,

where C ′
cdm.cls := ‘RRC’, is translated using the setMtoNrelationship function

into a multi-valued element in a complex type ct of the element translated from

Ccdm. As C ′
cdm participates in only two M:1 associations with Ccdm and another

CDM class C ′′
cdm, rel is mapped in ct into a multi-valued element, referencing a

complex type ct′′, corresponding to C ′′
cdm. A foreign key is defined for the new

sub-element through its parent element and added to the set FKx, referencing

the primary key of the element corresponding to C ′′
cdm. Similarly, a multi-valued

element with its foreign key is defined in ct′′, referencing ct.

• There are two different mapping rules that can be applied when rel ∈ Ccdm.REL

represents an aggregation relationship, i.e., where rel.relType := ‘aggregates ’,

between a parent class Ccdm and a component class C ′
cdm. A sub-element cor-

responding to C ′
cdm is defined and embedded in the parent complex type ct,

mapped from Ccdm, representing this relationship. The name of the sub-element

is generated by the getRelationshipName function, and its occurrences mn and

mx are declared according to the corresponding cardinality rel.c. If C ′
cdm.cls :=

‘MAC’, rel is mapped into a simple multi-valued sub-element, the type of which

is extracted via the mapNonFKtyp function. However, if C ′
cdm.cls := ‘CAC’,

rel is mapped into a multi-valued sub-element, the type of which is defined as

a global complex type ct′ and added into aGT , as described in Section 6.4.3.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 112

Inheritance: Each relationship rel ∈ Ccdm.REL defined in a class Ccdm that in-

herits another CDM class C ′
cdm where rel.relType := ‘inherits’, is mapped as an

inheritance. A complex type ct corresponding to Ccdm is defined as an extension of

its complex type ct′ corresponding to C ′
cdm. This realises an XML inheritance between

ct and ct′, where ct.base := C ′
cdm.cn (lines 41-42).

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name= "XMLSchema">

<xs:complexType><xs:sequence>

<xs:element name= "Dept" type= "Dept t" maxOccurs = "unbounded"/>

<xs:element name= "Hourly emp" type= "Hourly emp t" maxOccurs = "unbounded"/>

<xs:element name= "Salaried emp" type= "Salaried emp t" maxOccurs = "unbounded"/>

<xs:element name= "Proj" type= "Proj t" maxOccurs = "unbounded"/>

</xs:sequence></xs:complexType>

<xs:key name= "salaried empEnoPK">

<xs:selector xpath= ".//Salaried emp"/>

<xs:field xpath= "eno"/>

</xs:key>

...

<xs:keyref name= "projDnumFK" refer= "deptDnoPK">

<xs:selector xpath= ".//Proj"/>

<xs:field xpath= "dnum"/>

</xs:keyref>

...

</xs:element>

<xs:complexType name= "Dept t"><xs:sequence>

<xs:element name= "dname" type= "xs:string"/>

<xs:element name= "dno" type= "xs:int"/>

<xs:element name= "mgr" type= "xs:int" minOccurs= "0"/>

<xs:element name= "startd" type= "xs:date" minOccurs= "0"/>

<xs:element name= "locations" type= "xs:string" maxOccurs= "unbounded"/>

</xs:sequence></xs:complexType>

<xs:complexType name= "Emp t"> abstract= "true" <xs:sequence>

<xs:element name= "ename" type= "xs:string"/>

<xs:element name= "eno" type= "xs:int"/>

<xs:element name= "bdate" type= "xs:date" minOccurs= "0"/>

<xs:element name= "address" type= "xs:string"/>

<xs:element name= "spreno" type= "xs:int" minOccurs= "0"/>

<xs:element name= "dno" type= "xs:int"/>

<xs:element name= "hasKids" type= "Kids t" minOccurs= "0" maxOccurs= "unbounded"/>

<xs:element name= "Projects" type= "Project t" maxOccurs= "unbounded"/>

</xs:sequence></xs:complexType>

<xs:complexType name = "Salaried emp t"> <xs:complexContent>

<xs:extension base= "Emp t"> <xs:sequence>

<xs:element name = "salary" type= "xs:int" minOccurs= "0"/>

</xs:sequence> </xs:extension>

</xs:complexContent></xs:complexType>

<xs:complexType name = "Kids t"> <xs:sequence>

<xs:element name = "kname" type= "xs:string"/>

<xs:element name = "sex" type= "xs:string" minOccurs= "0"/>

</xs:sequence></xs:complexType>

...

</xs:schema>

Figure 6.6: Sample output XML Schema

Example 6.4.1. Figure 6.6 shows a portion of the XML Schema document generated
from the CDM given in Table 5.1, according to the rules presented in Section 6.4.

CHAPTER 6. TRANSLATION OF CDM TO TARGET SCHEMAS 113

The document illustrates the XML Schema constructs generated as a result of ap-
plying the ProduceXMLschema algorithm given in Figure 6.5. The CDM Dept

class is translated into a local element Dept under the root XMLSchema and typed as
Dept t. The Dept t is then defined globally in the schema document. Atomic at-
tributes are mapped with minOccurs/maxOccurs occurrences from the corresponding
ones in CDM, whereas association relationships and unique keys are mapped from
the CDM into XML using the key, keyref and unique constraints. The Kids class is
mapped into a complex type Kids t that is referenced from the abstract complex type
Emp t using the attribute hasKids as a sub-element. The Projects is the name of
a sub-element defined in Emp t with appropriate type Projects t. This sub-element
is mapped from the Works in CDM class, which represents an M:N relationship be-
tween Emp and Proj. The 1 side of these relationships is mapped into minOccurs =

"0" when the relationship is optional, or is set to default (no mention of minOccurs)
if it is mandatory. However, the M side is mapped as maxOccurs = "unbounded".
Inheritance among elements have been realised using complexContent/extension
XML keywords. The Hourly emp t and Salaried emp t complex types are mapped
from the equivalent CDM classes and defined under the Emp t complex type. The
corresponding elements then inherit properties from their super-type.

6.5 Summary

This chapter has described schema translation, the second phase of MIGROX. Three

sets of translation rules have been designed for translating CDM into the equivalent

target schemas according to the recognised standards. Algorithms have been devel-

oped for producing the target schemas according to the translation rules, which have

been illustrated by suitable examples. The chapter started by presenting the common

functions used by the algorithms in Section 6.1. Section 6.2 described the translation

of the CDM into an ODMG 3.0 ODL schema. Section 6.3 then explained how to

translate the CDM into an SQL4 ORDB schema, whereas mapping the CDM into

an XML Schema was presented in Section 6.4. The CDM provides a basis for the

mapping of an RDB into object-based and XML schemas, using a translation process

employing mapping techniques specific to each of the target databases.

Converting RDB data into the target databases is described next in Chapter 7. The

chapter explains in further detail how to extract, transform and load existing RDB

data into the formats suitable for the target database systems.

Chapter 7

Conversion of Relational Data to
Target Data

Schema translation, the second phase of MIGROX, has been presented in Chapter 6.

Data conversion, introduced in Chapter 4, is the last phase of MIGROX. The aim

of this phase is to convert existing RDB data into the target databases, in order

to populate the schemas generated during the schema translation phase. For this

purpose, three algorithms have been developed, which convert RDB data into the

target data using CDM. This chapter explains how this process works.

This chapter is organised as follows. Section 7.1 introduces the common functions used

in the algorithms. Section 7.2 presents converting relational data into OODB format.

Section 7.3 describes converting relational data into ORDB format. Section 7.4 then

explains the conversion of relational data into XML format. Section 7.5 concludes

the chapter and points to what comes next.

7.1 Common Data Conversion Functions

The following are the common functions and definitions used by the algorithms de-

scribed in this chapter.

• getPK(Ccdm), getFK(Ccdm) and getNFK(Ccdm) return respectively the pri-

mary key, foreign key and non-foreign key attribute names of a CDM class

Ccdm.

• getClassLeaves(Ccdm) returns a list classLeaves, containing all sub-class names

114

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA115

of a super-class Ccdm ordered from bottom to top.

• getCond(Ccdm, classLeaves) returns an SQL where condition cond. The cond

is added to the queries used in RDB data retrieval to exclude from a super-class

RDB table T (corresponding to Ccdm where Ccdm.cls := (‘SST’ | ‘SSC’)) all

rows that are members in its sub-class tables, where names of those are stored

in the classLeaves list. Through cond, the non-inherited RDB tuples in T are

extracted and converted into the target database.

• getClassHierarchy(Ccdm) returns a list classHierarchy, containing all super-

class names of a sub-class Ccdm ordered from top to bottom. During the gen-

eration of data of a target sub-class (e.g., Coo corresponding to Ccdm), data

from each RDB table corresponding to each of its top level super-classes stored

in classHierarchy are also retrieved. Then, such data are converted into the

target format in each of the target objects being defined or updated.

• extractObjId(x,Data) concatenates a class name x with a string of values stored

in Data. This function is used to generate a user-defined object identifier for

each object being defined.

• getAttrMatchV alues(Attrs, V alues) generates a string appended to a where

clause, indicating that each attribute name in the set Attrs is equal to the

corresponding value in the set V alues. The string is used in an SQL selec-

tion/projection statement to specify that only certain rows of a table are re-

trieved.

• extractV alues(t, Attrs) extracts values of attribute names in the set Attrs from

a tuple t retrieved from an RDB.

7.2 Converting Relational Data into OODB

This section describes the GenerateOOdata algorithm, given in Figure 7.1, for ex-

tracting, converting and loading RDB data into files, which are then used to populate

the OODB schema generated from the schema translation phase. The conversion pro-

cess is performed in two passes. Section 7.2.1 presents the first pass, in which objects

are defined to instantiate OODB classes with literal data. Section 7.2.2 describes the

second pass which defines relationships among objects created in the first pass.

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA116

1: algorithm GenerateOOdata (cdm: CDM) return OODB data
2: cond: string := ‘’
3: foreach class Ccdm ∈ cdm do
4: if not Ccdm.abs and Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’) then
5: if Ccdm.cls = (‘SST’ | ‘SSC’) then
6: cond := getCond(Ccdm, getClassLeaves(Ccdm))
7: end if
8: if Ccdm.cls 6= (‘SUB’ | ‘SSC’) then
9: instantiateOOclass(Ccdm, cond)

10: estabOOclassAssocRel (Ccdm, cond)
11: else
12: classHierarchy := getClassHierarchy(Ccdm)
13: instantiateOOsub-class(Ccdm, cond, classHierarchy)
14: estabOOsub-classAssocRel(Ccdm, cond, classHierarchy)
15: end if
16: end if
17: end for
18: end algorithm

Figure 7.1: The GenerateOOdata Algorithm

The algorithm takes each main and concrete CDM class Ccdm ∈ cdm (i.e., Ccdm.cls 6=
(‘MAC’ | ‘CAC’ | ‘RRC’) and Ccdm.abs := false) to extract data from the RDB table

T corresponding to Ccdm, and then converts such data to instantiate the corresponding

OO class Coo. However, data from T , where Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’)

are converted as part of establishing aggregation and association relationships. The

algorithm requires certain main functions to accomplish this process. Literal-valued

attributes in Coo are instantiated with their values from non-foreign key tuples in T .

The non-foreign keys of T are obtained from the getNFK(Ccdm) function. However,

foreign key attributes (i.e., obtained from the getFK(Ccdm) function), and CDM

relationship attributes (i.e., dirAs and invAs) are used to instantiate object-valued

relationships.

The instantiateOOclass and estabOOclassAssocRel functions are used for instantiat-

ing OO non-sub-classes (i.e., each main class corresponding to Ccdm where Ccdm.cls 6=
(‘SUB’ | ‘SSC’)) with literal data and object-based relationships, respectively. How-

ever, although the instantiateOOsub-class and estabOOsub-classAssocRel functions

work similarly; they are used to instantiate sub-classes differently, taking into consid-

eration the properties (i.e., attributes and relationships) of data inherited from their

top level super-class(es), where super-class names are stored in the classHierarchy

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA117

list. Several queries are embedded in these functions to obtain RDB tuples and store

the results in sets, i.e., ResultSets. The ResultSet is a table of data representing a

database result set, which is generated by executing queries on an RDB. Each tuple

in a ResultSet is converted into an OO object definition or relationship definition in

the format of object interchange format (OIF) files. The OIF files are then used to

instantiate OODB classes using a specific program, i.e., MakeFile, to execute object

files first and then relationship definition files.

The OIF is a specification language used to load and dump objects to/from an

OODBMS using a file or a set of files [Cattell and Barry, 2000]. It supports all

OODB concepts which comply with the ODMG 3.0 object model and schema defini-

tion. An OIF file contains object definitions that specify the type, attribute values,

and relationships to other objects for each defined object. Each new object is defined

by an object name, and a set of attribute values and relationship instances.

7.2.1 Instantiating OODB Classes

This section presents the instantiateOOclass function shown in Figure 7.2 for convert-

ing RDB data into OIF files. Data from each RDB table T corresponding to a main

and concrete CDM class Ccdm are extracted and converted in order to instantiate the

corresponding OO class Coo. The function extracts data of selected attributes from

each tuple in T to be converted into an OIF file named with Ccdm.cn.

1: function instantiateOOclass(Ccdm: Classcdm, cond: SQL condition)
2: queryString, uOID, objStruct: string := ‘’
3: queryString := genCSS(getPK(Ccdm))+‘, ’+genCSS(getNFK(Ccdm))
4: ResultSet := execute(‘select ’+queryString+‘ from ’+Ccdm.cn+cond)
5: foreach tuple t ∈ ResultSet do
6: setV al: set[value] := extractV alues(t, getPK(Ccdm))
7: uOID := extractObjId (Ccdm.cn, setV al) // generates object name
8: objStruct := convObjAtomicAtt(extractV alues(t, getNFK(Ccdm)))
9: foreach relationship rel ∈ Ccdm.REL and rel.relType = ‘aggregates’ do

10: objStruct+ := convAggRel(Ccdm.cn, rel, setV al)
11: end for
12: obj := defineObject (Ccdm.cn, uOID, objStruct) // generates OIF object definition
13: end for
14: end function

Figure 7.2: The instantiateOOclass Function

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA118

This is the first pass, where each target object obj of Coo is generated by defining its

user-defined object identifier uOID and its structure objStruct, consisting of literal-

based data. By definition, when an object is created, it is assigned a system generated

OID, which is invisible to the user. The ODMG 3.0 standard allows objects to be

named and supports the derivation of an OID from the name of the object, which

is called an object tag name. Therefore, we use object names as uOIDs to identify

objects in OIF files. When uOID and objStruct are constructed, the defineObject

function writes an OQL statement to an OIF file defining obj. However, object-valued

relationships of obj are instantiated in the second pass as described in Section 7.2.2.

Extracting object identifiers: An SQL query that satisfies a particular condition

cond is designed in order to retrieve primary key data (using getPK(Ccdm)) and non-

foreign keys data (using getNFK(Ccdm)) from T and store the results in SetResult

table. Then, from each tuple t ∈ SetResult, the extractObjId function generates the

uOID for each obj by concatenating Ccdm.cn with the data values of the primary

key in t (extracted using extractV alues(t, getPK(Ccdm)) function); thus the value of

uOID is guaranteed to be unique for each object, e.g., ‘salaried emp54321’.

Instantiating literal-based atomic attributes: Data of non-foreign keys in t

(extracted using extractV alues(t, getNFK(Ccdm)) function) are converted to be-

come the new OO atomic data of obj, and are assigned to objStruct using the con-

vObjAtomicAtt function.

Instantiating literal-based collections: For each CDM aggregation relationship

rel ∈ Ccdm.REL between Ccdm and a component class C ′
cdm, where rel.relType :=

‘aggregates ’ and C ′
cdm.cls := (‘MAC’ | ‘CAC’), the object obj is instantiated with

literal-based collection data. The data are extracted from the RDB table T ′ corre-

sponding to C ′
cdm using the convAggRel function, shown in Figure 7.3. The function

retrieves non-foreign key (using getNFK(C ′
cdm)) tuples from T ′ (i.e., queryStr1),

where the set of relationship attribute(s) dirAs in rel is equal to the primary key value

retrieved from the parent table T (stored in setV al). Retrieved data are then stored

in an RSet table, and restructured into the OIF format as a data collection dataColl.

The attribute values in dataColl are generated from non-foreign key tuples as normal

scalar attributes. The OO multi-valued attribute data are generated when C ′
cdm.cls

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA119

1: function convAggRel(className: string, rel: Rel, setV al: set[value]) return dataColl
2: queryStr1, queryStr2, collV , dataColl, relnm: string := ‘’
3: C ′cdm: Classcdm := getCDMclass(rel.dirC)
4: queryStr1 := genCSS(getNFK(C ′cdm))
5: queryStr2 := getAttrMatchV alues(rel.dirAs, setV al)
6: relnm := getRelationshipName (rel.dirC, rel.dirAs, className, rel.invAs)
7: RSet := execute(‘select ’+queryStr1+‘ from ’+C ′cdm.cn+‘ where ’+queryStr2)
8: foreach tuple tp ∈ RSet do
9: if C ′cdm.cls = ‘MAC’ then

10: dataColl+ := tp
11: else
12: foreach attribute att ∈ getNFK(C ′cdm) do
13: collV + := att+‘ ’+extractV alues(tp, att)
14: end for
15: dataColl+ := ‘struct(’+collV +‘)’
16: end if
17: end for
18: if rel.c = (0..m | 1..m) then
19: dataColl := ‘set(’+dataColl+‘)’
20: end if
21: dataColl := relnm+‘ ’+dataColl
22: end function

Figure 7.3: The convAggRel Function

:= ‘MAC’, whereas struct type data are generated when C ′
cdm.cls := ‘CAC’. The

dataColl is returned as a string which represents a collection, i.e., ‘set(’+dataColl+‘)’

when rel.c := (0..m | 1..m), or as a single-valued attribute/struct otherwise. The

dataColl is then assigned to a corresponding relationship attribute relnm and ap-

pended to the objStruct of obj being defined.

Realising inheritance among classes: Inheritance represents one of the main

challenges during data conversion between databases that are fundamentally different.

Unlike RDBs, object-based class structure in an inheritance hierarchy is inherited,

whereas data should be placed in the leaves, i.e., sub-classes. Each OO sub-class Coo,

mapped from a CDM sub-class Ccdm, where Ccdm.cls := ‘SUB’ (or Ccdm.cls := ‘SSC’

if Ccdm.abs := false) is instantiated with its own data from the corresponding RDB

table T as described in Section 7.2.1. Besides, Coo is instantiated by related data from

the RDB tables corresponding to its top super-classes, which have their names stored

in the classHierarchy list. Through classHierarchy all super-table(s) of Coo are

instantiated, realising the inheritance relationship. Consequently, the function(s) for

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA120

instantiating sub-classes are modified to take into account the classHierarchy list.

Besides, the SQL queries in these functions are also redesigned accordingly to return

data for each super-class table indexed by the primary key that exactly matches the

primary key value of T corresponding to the sub-class Coo being instantiated.

7.2.2 Establishing Object-valued OODB Relationships

After objects have been defined, it is necessary to establish the association relation-

ships among them using their OIDs. This section explains the second step in the

algorithm, which concerns updating pre-created OODB objects with relationships

using the estabOOclassAssocRel function, shown in Figure 7.4.

The estabOOclassAssocRel function takes each CDM relationship rel defined in a

CDM class Ccdm, where rel ∈ Ccdm.REL and rel.relType := ‘associated with’ in or-

der to instantiate the corresponding direct relationship defined in Coo, mapped from

Ccdm. The direct relationship is identified when rel.invAs ⊆ getPK(Ccdm). The in-

verse relationships defined in the schema are enforced by the system in the ODMG

3.0 standard. The uOID of each object being updated is extracted from the pri-

mary key data of each tuple t stored in ResultSet (extracted using extractV alues(t,

getPK(Ccdm)) function). Data in ResultSet are retrieved from the RDB table T

corresponding to Ccdm. The direct relationships of Coo is updated by the object iden-

tifiers t uOIDs of target objects, related to the object being updated. The t uOIDs

are extracted from data of the primary key of the table T ′ corresponding to the CDM

class C ′
cdm related to Ccdm, and stored in a set called t uOIDset. The set t uOIDset

is constructed from one of the following:

1. From the tuples extracted by a projection on the primary key (extracted us-

ing getPK(C ′
cdm)) of the RDB table T ′, when C ′

cdm.cls 6= ‘RRC’, and the set

of relationship attribute(s) rel.dirAs in Ccdm equals the primary key values

retrieved from T (extracted using extractV alues(t, getPK(Ccdm)) function).

Each t uOID is extracted, using the extractObjId function, from each tuple tp

stored in RSet, and then added to the t uOIDset.

2. From the tuples of a set of relationship attribute(s) rel′.invAs retrieved from

T ′, when C ′
cdm.cls := ‘RRC’ applying the establishMNrel(rel) function. The rel′

is a CDM relationship that C ′
cdm participates in with the other class C ′′

cdm. The

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA121

1: function estabOOclassAssocRel(Ccdm: Classcdm, cond: SQL condition)
2: queryStr1, queryStr2, queryStr3, relnm, uOID: string := ‘’
3: t uOIDset: set[uOID] := ∅ // a set of target uOIDs
4: queryStr1 := genCSS(getPK(Ccdm))
5: foreach relationship rel ∈ Ccdm.REL do
6: if rel.relType := ‘associated with’ and rel.invAs ⊆ getPK(Ccdm) then
7: C ′cdm: Classcdm := getCDMclass(rel.dirC)
8: T ′ := C ′cdm.cn
9: queryStr2 := genCSS(getPK(C ′cdm))

10: relnm := getRelationshipName (rel.dirC, rel.dirAs, Ccdm.cn, rel.invAs)
11: ResultSet := execute(‘select ’+queryStr1+‘ from ’+Ccdm.cn+cond)
12: foreach tuple t ∈ ResultSet do
13: queryStr3 := getAttrMatchV alues(rel.dirAs, t)
14: setV al: set[value] := extractV alues(t, getPK(Ccdm))
15: uOID := extractObjId (Ccdm.cn, setV al)
16: if C ′cdm.cls = (‘SST’ | ‘SSC’) then
17: T ′ := getObjectClass(rel.invAs, t)
18: end if
19: if C ′cdm.cls = ‘RRC’ then
20: t uOIDset := establishMNrel(rel)
21: else
22: RSet := execute(‘select ’+queryStr2+‘ from ’+T ′+‘ where ’+queryStr3)
23: foreach tuple tp ∈ RSet do
24: t uOIDset := t uOIDset ∪ {〈extractObjId(T ′, tp)〉}
25: end for
26: end if
27: updateRel (Ccdm.cn, relnm, uOID, t uOIDset) // update a relationship
28: end for
29: end if
30: end for
31: end function

Figure 7.4: The estabOOclassAssocRel Function

function allows the conversion of only one side of the M:N relationship, where

the inverse direction is enforced automatically by the system.

When the uOID and t uOIDset for each object are extracted, the updateRel function

generates an OQL statement in the OIF format, for updating the object relationship

name relnm defined in Coo by related t uOIDs stored in the set t uOIDset. However,

in the case that C ′
cdm is a super-class, i.e., C ′

cdm.cls := (‘SST’ | ‘SSC’), then the

getObjectClass function is invoked to trace (using the classLeaves list) the target

object that participates in the relationship being updated. This is to obtain the

name of the required RDB table that contains the data of the relationship attributes

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA122

that match the data of attribute names ∈ rel.invAs in t. The required t uOID is

then extracted by concatenating the RDB table’s name with the data that represents

the relationship.

Example 7.2.1. Consider the CDM generated in Chapter 5, shown in Table 5.1,
and the RDB data given in Figure 4.4 as input to the GenerateOOdata algorithm.
Figure 7.5 shows one OODB object converted from a tuple in the Salaried emp

RDB table of an employee called ‘Wallace’ identified by the primary key value 54321.
The output object definition equivalent to ‘Wallace’ tuple is shown in Figure 7.5(a),
whereas its relationships are defined in Figure 7.5(b). Data and relationships inherited
from the super-class Emp’s object are shown.

(a) Salaried emp54321 Salaried emp (ename "Wallace", eno 54321, bdate "1931-06-20", address "91

St James Gate NE1 4BB", hasKids set(struct(kname "Scott", sex "M")), salary 43000);

(b) salaried emp54321->update()->projects.add(proj4);

salaried emp54321->update()->projects.add(proj5);

Figure 7.5: Output OODB data (OIF format)

7.3 Converting Relational Data into ORDB

ORDB data are managed and populated by instantiating UDTs and tables obtained

from the schema translation phase. The process of converting RDB data into ORDBs

results in text files, containing object/relationship data definitions. Having all files

generated, they can be loaded into the ORDB system using a bulk-loading facility.

Converting RDB data into ORDBs is similar to the process of converting RDB data

into OODBs. The structure of the algorithm for generating ORDB data from an RDB

is similar to the GenerateOOdata algorithm, presented in Section 7.2. Moreover,

the conversion process here is also accomplished in two passes: typed tables are

instantiated and then relationships among pre-defined objects are established. The

main differences between the two algorithms lie in the resulting statements, which

are used to define the target objects and relationships according to the standard

supported by the target data model; for instance, struct type in ODMG 3.0 against

row type in SQL4. In this section, we discuss only the differences between the two

algorithms.

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA123

7.3.1 Instantiating Typed Tables

The population of a pre-created ORDB schema with initial object data is similar to

the process described in Section 7.2.1. However, the generated object definitions for

ORDB are written according to SQL4. In the first pass, each target object obj of

a typed table Tor is generated by defining its user-defined object identifier Tor.uoid

and its structure objStruct, consisting of a literal-based data type. When uoid and

objStruct are constructed, the function writes a set of SQL statements to files, defin-

ing new instances of a type in each table using the UDT constructors. Object-valued

relationships of obj are instantiated in the second pass.

Extracting object identifiers: An SQL query that satisfies a condition cond is

designed in order to retrieve primary key and non-foreign key data from T correspond-

ing to a CDM class Ccdm and store the results in SetResult table. Then, from each

tuple t ∈ SetResult, a user-defined identifier for each obj is generated by concatenat-

ing Ccdm.cn with the values of the primary key of T in t. SQL4 allows self-referential

attributes that can be user-defined as an identifier and specified as part of the type

definition of the referenced table, by adding a ref clause to the create table state-

ment (e.g., ref is uoid user generated). When the typed table is created, its uoid

is specified as an additional column which stores the value of the identifier for each

object in the table. The values of uoids are then used in establishing relationships.

Instantiating literal-based atomic attributes: Data of non-foreign keys in t are

converted to become the new ORDB atomic data of obj and are assigned to objStruct.

Instantiating literal-based collections: Each ORDB relationship attribute de-

fined in typed table Tor, mapped from Ccdm, is instantiated by data based on the

corresponding CDM aggregation relationship rel ∈ Ccdm.REL between Ccdm and a

component class C ′
cdm, where rel.relType := ‘aggregates ’. Data of non-foreign key at-

tributes of RDB table T ′ corresponding to C ′
cdm, where C ′

cdm.cls := (‘MAC’ | ‘CAC’)

are converted into ORDB data and cast to become a collection of literal/row data

types. Such data retrieved from T ′, where C ′
cdm.cls := ‘MAC’ are converted as multi-

valued attribute data, e.g., set(value1, value2, ...). The row constructor is used to

group the related instances converted from T ′, where C ′
cdm.cls := ‘CAC’. The SQL

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA124

set is used to cast the related collection of instances into a single data structure when

rel.c := (0..m | 1..m).

Realising inheritance among objects: Realising inheritance relationship among

ORDB objects starts by instantiating each leaf object, in a sub-table, with its own

data and data inherited from its root, i.e., top to bottom super-tables, names of which

are stored in the classHierarchy list. Each ORDB sub-table Tor is instantiated by

the data of its own attributes and relationships from the RDB table T corresponding

to CDM sub-class Ccdm, where Ccdm.cls := ‘SUB’ (or Ccdm.cls := ‘SSC’ if Ccdm.abs

:= false) in the normal way for defining objects. In addition, data from the super-

table(s) in the classHierarchy related to data from T are converted in order to

instantiate ORDB super-table(s) via Tor, thus realising the inheritance relationship.

7.3.2 Establishing ref-based ORDB Relationships

After literal data have been generated, the second pass in the conversion process is to

assign object identifers of pre-created objects to their relationship attributes. Unlike

ODMG 3.0 standard, the inverse relationships are not enforced by the systems that

support SQL4 standard. Therefore, the relationship attributes in ORDB schema need

to be updated with the relationship data, through both sides of relationships. Object-

valued relationships among objects are instantiated using their object identifers as

refs. The process results in a set of DML statements written in a file for updating

each object in an typed table in order to instantiate its relationship attributes by

target object identifer(s) of related objects.

Example 7.3.1. Consider the CDM shown in Table 5.1 and RDB data in Figure 4.4,
Figure 7.6 shows the target ORDB object converted from the RDB tuple of the
employee ‘Wallace’ identified by eno := 54321. Figure 7.6(a) shows a sample of
ORDB SQL4 statement generated for instantiating the object, whereas Figure 7.6(b)
shows the statements for updating the object with its relationships.

a) insert into Salaried emp values (Salaried emp t(‘salaried emp54321’, ‘Wallace’, 54321,

‘1931-06-20’, ‘91 St James Gate NE1 4BB’, null, null, set(row(‘Scott’, ‘M’)), null, null,

null, 43000);

(b) update Salaried emp set manages = ‘dept2’, projects = set(‘proj4’,‘proj5’), dept = ‘dept2’,

supervisor = ‘salaried emp86655’ where uoid = ‘salaried emp54321’;

Figure 7.6: Output ORDB SQL4 object definition

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA125

7.4 Converting Relational Data into XML

An XML instance document, i.e., xml file, can be generated from an RDB based on

the CDM, in order to populate the XML Schema document, i.e., xsd file generated by

the schema translation process. An XML schema document describes the structure

of an XML document, and an XML instance document must be valid against the

schema document. This section describes the GenerateXMLdocument algorithm,

given in Figure 7.7, which inputs the CDM to extract and convert RDB data into an

xml file that contains element instances and tags, which conform to the pre-defined

XML schema document.

1: algorithm GenerateXMLdocument (cdm: CDM) return XML instance document
2: create XML document and declare its namespace based on the XML Schema document
3: define the root element name same as the one defined in the XML Schema document
4: cond: string := ‘’
5: foreach class Ccdm ∈ cdm do
6: if not Ccdm.abs and Ccdm.cls 6= (‘MAC’ | ‘CAC’ | ‘RRC’) then
7: if Ccdm.cls = (‘SST’ | ‘SSC’) then
8: cond := getCond(Ccdm, getClassLeaves(Ccdm))
9: end if

10: if Ccdm.cls 6= (‘SUB’ | ‘SSC’) then
11: generateXMLelement(Ccdm, cond)
12: else
13: generateXMLsub-classElement(Ccdm, cond, getClassHierarchy(Ccdm))
14: end if
15: end if
16: end for
17: end algorithm

Figure 7.7: The GenerateXMLdocument Algorithm

The algorithm generates the target XML instance document applying functions, rep-

resenting XML element instance conversion rules. A set of queries are embedded in

these functions to obtain RDB tuples and store them in result set tables to be con-

verted into XML element/sub-element instances and loaded into the xml file. After

defining namespaces and the root of the document, the algorithm takes each concrete

and main CDM class Ccdm ∈ cdm (i.e., Ccdm.abs := false and Ccdm.cls 6= (‘MAC’ |
‘CAC’ | ‘RRC’) and generates, from its corresponding RDB table, the instances of the

XML element equivalent to Ccdm, using the generateXMLelement function. However,

the target element is instantiated by data using the generateXMLsub-classElement

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA126

function when Ccdm.cls := (‘SUB’ | ‘SSC’), which takes into account the properties

that the element inherits from its top level super-classes, the names of which are

stored in classHierarchy. The following sections describe the steps of this algorithm

in detail.

7.4.1 Defining Target Namespaces

XML declarations, including the definition of namespaces and the document root

is generated according to the information defined in the schema document. To use

a namespace in the instance document, it then has to be defined in the schema

document using the targetNamespace attribute. However, a document instance could

be defined without namespaces, in which case the targetNamespace is omitted from

the schema document and it has to be indicated that the document instance does

not define a namespace using noNamespaceSchemaLocation = schemaDocuemt.xsd,

where schemaDocuemt.xsd is the name of the schema document. The XML Schema

definition language (XSD) defines ceratin attributes which are used in XML instance

documents1. For instance, the noNamespaceSchemaLocation attribute is defined in

the instance document to associate a schema document that has no target namespace

with an instance document.

7.4.2 Generation of Element Instances

The generateXMLelement function, given in Figure 7.8, is used to convert data from

each RDB table T corresponding to a main and concrete CDM class Ccdm into an

instance of an element defined under the root of the XML Schema. Instances of the

element are generated from tuples in T based on the classification of Ccdm and re-

lated classes in the cdm. The converted data are loaded into an xml file after being

reconstructed to fit the XML Schema data types and structures. Instances of the

element are enclosed by two tags that are given the name of the corresponding Ccdm,

i.e., Ccdm.cn. The conversion process starts by retrieving primary key data (i.e., us-

ing getPK(Ccdm)) and all attribute names (stored the set allAtt) data from T , i.e.,

represented in the string queryString, with the results stored in SetResult. At-

tribute names in allAtt are obtained from the corresponding attributes in Ccdm.Acdm.

From SetResult, data of attributes in allAtt become atomic data of the new element

1These attributes can be found at: http://www.w3.org/2001/XMLSchema-instance namespace

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA127

1: function generateXMLelement(Ccdm: Classcdm, cond: SQL condition)
2: allAtt: set[attribute name] := getFK(Ccdm) ∪ getNFK(Ccdm) // all attributes in Ccdm

3: queryString, atomicData, collectData: string := ‘’
4: queryString := genCSS(getPK(Ccdm))+‘, ’+genCSS(allAtt)
5: ResultSet := execute(‘select ’+queryString+‘ from ’+Ccdm.cn+cond)
6: foreach tuple t ∈ ResultSet do
7: atomicData := convXmlAtomicAtt (extractV alues(t, allAtt))
8: setV al: set[value] := extractV alues(t, getPK(Ccdm))
9: foreach relationship rel ∈ Ccdm.REL do

10: C ′cdm: Classcdm := getCDMclass(rel.dirC)
11: if rel.relType = ‘aggregates’ then
12: collectData+ := establishXmlAggRel (Ccdm.cn, rel, setV al)
13: else if rel.relType = ‘associated with’ and C ′cdm.cls = ‘RRC’ then
14: collectData+ := establishXmlMNrel(Ccdm.cn, rel, setV al)
15: end if
16: end for
17: defineElementInstance (Ccdm.cn, atomicData, collectData) // defines an element
18: end for
19: end function

Figure 7.8: The generateXMLelement Function

and is appended to atomicData. Moreover, primary key data are used to generate

multi-valued/composite data for any sub-elements that are defined in the element

and appended to collectData. The data that formed collectData are converted from

the RDB table T ′ corresponding to a CDM class C ′
cdm, where C ′

cdm participates in a

relationship with Ccdm and C ′
cdm.cls := (‘MAC’ | ‘CAC’ | ‘RRC’). However, other re-

lationships between the element being migrated and other elements are established by

key and keyref constraints specified in the XML Schema document. From the data

stored in atomicData and collectData, the function defineElementInstance writes an

XML Schema code into the xml file defining instances of the element.

Generating data of atomic types: Applying the convXmlAtomicAtt function,

each tuple t of the set attribute names allAtt stored in SetResult (extracted using

extractV alues(t, allAtt) function) is converted to become an instance of a new atomic

sub-element and appended to atomicData. Each such instance is enclosed by start

and end tags that are named according to attribute name att ∈ allAtt.

Generating data of collection types: For each relationship rel that Ccdm par-

ticipates in with a class C ′
cdm, where rel ∈ Ccdm.REL and C ′

cdm.cls := (‘MAC’ |

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA128

‘CAC’ | ‘RRC’), data from the RDB table T ′ corresponding to C ′
cdm are converted

as a collection collV of sub-element instances in the parent element corresponding

to Ccdm. This is where the relationship attribute(s) in rel.dirAs is equal to the pri-

mary key value retrieved from the parent table T corresponding to Ccdm (extracted

using extractV alues(t, getPK(Ccdm)) function). Each instance of collV is enclosed

by start and end tags that are named according to att ∈ getNFK(C ′
cdm), and then

the values in collV is enclosed by start and end tags that are named as a relationship

attribute relnm, obtained from the getRelationshipName function. Retrieved data are

converted into collV for each sub-element in the parent element as multi-valued types

and appended to collectData using one of the following cases:

1. The function establishXmlAggRel, shown in Figure 7.9, retrieves non-foreign

key (extracted using getNFK(C ′
cdm)) tuples from T ′, and converts them into a

collection of sub-element instances, when rel.relType := ‘aggregates ’.

2. The function establishXmlMNrel retrieves RDB data as a collection of sub-

element instances to establish a binary M:N relationship between the parent

element and another element, e.g., E ′′. When Ccdm participates in a relationship

rel with a CDM class C ′
cdm, where rel.relType := ‘associated with’ and C ′

cdm.cls

:= ‘RRC’, then the collection is generated from tuples in T ′ of the relationship

attributes in rel′′.invAs, where rel′′ is the other relationship in which C ′
cdm

participates with the CDM class C ′′
cdm.

Realising inheritance among elements: Data from each RDB sub-table T cor-

responding to a CDM sub-class Ccdm, where Ccdm.cls := ‘SUB’ (or Ccdm.cls := ‘SSC’

when Ccdm.abs := false) are converted to instantiate an equivalent target XML sub-

class element with its own data, in addition to data of its top level super-table(s)

in the class hierarchy, where the name(s) of the super-class(es) are stored in the

classHierarchy list. Tuples from each super-class tables in classHierarchy, which

are related to the tuples in T , are converted and defined through the sub-class el-

ement, realising the inheritance relationship. However, data of the primary key of

T are not converted into the sub-class element since such data have already been

inherited from its top super-class element.

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA129

1: function establishXmlAggRel(className: string, rel: Rel, setV al: set[value]) return
collV

2: queryStr1, queryStr2, collV , relnm: string := ‘’
3: C ′cdm: Classcdm := getCDMclass(rel.dirC)
4: queryStr1 := genCSS(getNFK(C ′cdm))
5: queryStr2 := getAttrMatchV alues(rel.dirAs, setV al)
6: relnm := getRelationshipName (rel.dirC, rel.dirAs, className, rel.invAs)
7: RSet := execute(select ’+queryStr1+‘ from ’+C ′cdm.cn+‘ where ’+queryStr2)
8: foreach tuple tp ∈ RSet do
9: foreach attribute att ∈ getNFK(C ′cdm) do

10: collV + := ‘<’+att+‘>’+extractV alues(tp, att)+‘</’+att+‘>’
11: end for
12: collV := ‘<’+relnm+‘>’+collV +‘</’+relnm+‘>’
13: end for
14: return collV
15: end function

Figure 7.9: The establishXmlAggRel Function

Example 7.4.1. Consider the CDM shown in Table 5.1 and the RDB data given
in Figure 4.4, Figure 7.10 shows a fragment of the XML document output of the
employee ‘Wallace’ converted from its equivalent data in the RDB.

7.5 Summary

This chapter has described how to convert data from an RDB into the target databases.

The chapter began by describing the common functions used by the algorithms in Sec-

tion 7.1. Section 7.2 provided the instance conversion rules, describing the two passes

for converting RDB data into the target OODB as object and relationship defini-

tions. Section 7.3 presented the conversion of RDB data into ORDBs. RDB data

conversion into object-based databases is accomplished in two passes in order to aid

the consistent establishment of relationships. Apart from some differences related to

the expressions of the standards of data definitions, the two algorithms for convert-

ing RDB data into object-based databases are very similar in their structure. The

conversion of RDB data into XML documents is explained in Section 7.4.

Sets of queries are embedded in the conversion algorithms in order to obtain the

desired RDB tuples, which are then converted based on the classification of CDM at-

tributes and relationships. RDB data are extracted, converted and loaded into files,

CHAPTER 7. CONVERSION OF RELATIONAL DATA TO TARGET DATA130

<?xml version = "1.0" encoding = "UTF-8"?>
<XMLSchema xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation = "XMLSchema.xsd">

...
<Salaried emp>

<ename>Wallace</ename>
<eno>54321</eno>
<bdate>1931-06-20</bdate>
<address>91 St James Gate, NE1 4BB</address>
<spreno>86655</spreno>
<dno>2</dno>
<hasKids>

<kname>Scott</kname>
<sex>M</sex>

</hasKids>
<projects>

<pno>4</pno>
</projects>
<projects>

<pno>5</pno>
</projects>
<salary>43000</salary>

</Salaried emp>
...

</XMLSchema>

Figure 7.10: Output XML instance document

which are then used to populate the target schema generated from the schema trans-

lation phase. The conversion processes were described with appropriate examples.

The next chapter, Chapter 8, discusses how to develop the prototype of MIGROX.

The software used in its development and the architecture are depicted. In addition,

the ways in which the prototype’s components communicate with each other are

explained.

Chapter 8

Implementation of the Prototype

The MIGROX solution for migrating RDBs into object-based and XML databases

has been described in Chapters 4-7. The focus of this chapter is to describe how

the solution is implemented as a prototype, involving the three phases of MIGROX,

i.e., semantic enrichment, schema translation and data conversion. The input to the

prototype is an RDB and the output is an object-based or XML database stored in

files suitable for bulk loading into target platforms. The prototype contains encoded

models as the implementation of the input and output databases, and algorithms

and migration rules according to the concepts and assumptions described in this

dissertation. The current prototype provides a basis for a proof of concept, and

verifies that the concepts of MIGROX can be implemented in terms of programming

languages.

This chapter is organised as follows. Section 8.1 discusses the development environ-

ment and the reasons behind choosing the software used in the implementation. The

system architecture and the main modules of the prototype are illustrated in Sec-

tion 8.2. Section 8.3 presents in detail the components of the prototype and how they

work and communicate with each other. Section 8.4 then provides a summary of the

chapter and points to what follows next in the dissertation.

8.1 Development Environment

The prototype of MIGROX is developed by implementing the algorithms described

in Chapters 4-7. The algorithms were implemented using the Java 1.5.0 software

development kit installed on a computer with CPU Pentium IV 3.2 GHz and RAM

131

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 132

1024 MB, operating under Windows XP Professional. The Java database connectivity

(JDBC) API [Hamilton et al., 1997] has been utilised to establish a connection with

an RDBMS, Oracle 11g, which holds the input RDB(s) to be migrated.

8.1.1 Programming Language

Java, C#, C++ and Visual Basic are among the most popular programming languages

these days. Each has its own distinctive characteristics. Although the implementation

could be achieved using other programming languages, possibly with further efforts,

Java [Charatan and Kans, 2005] was chosen for the development of the prototype.

This is because Java is an OOPL, which is platform independent and supports soft-

ware reuse. It allows efficient encoding of algorithms and is an compatible with many

operating systems. In addition, several benchmarks have shown that Java has an

acceptable level of performance compared to C/C++ [Lewis and Neumann, 2004].

Moreover, Java’s JDBC API provides full access to the metadata of a given RDB

and, using its metadata interfaces, can quickly retrieve a description of its tables and

constraints from data dictionaries in the form of ResultSet objects [Hamilton et al.,

1997].

8.1.2 Database Management System

Database systems store data and also information about these data, i.e., metadata.

Most DBMSs have a set of system tables which define the basic structure of a database

including table names, column names, constraints, etc. The Oracle DBMS has been

chosen in the prototype as a back end. This is because Oracle provides the essential

technologies for developing a range of applications, including Java applications. The

benefits of Java applications include JDBC support. In addition, Oracle data dic-

tionaries include numerous metadata tables and views, containing a large amount of

information about table names, columns including names, data types, default values,

primary keys, foreign keys, etc. The data dictionary can be accessed by JDBC and

queried to retrieve this information.

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 133

8.1.3 Java Database Connectivity (JDBC)

JDBC is a set of Java APIs for executing SQL statements. These APIs consist of

a set of classes and interfaces to enable programmers to access the data stored in

databases. The JDBC API includes both the java.sql package (i.e., the JDBC core

API) and the javax.sql package (i.e., the JDBC optional package API) [Hamilton

et al., 1997]. The package java.sql provides the API that sends SQL statements to

RBDs and retrieves the results of executing those SQL statements using the Java

programming language. It contains many useful interfaces and methods, which have

been used in the prototype, such as:

• Making a connection with a database via the DriverManager

– DriverManager class: makes a connection with a driver.

– Driver interface: represents a specific JDBC implementation for a par-

ticular database system.

• Sending SQL statements to a database

– Statement: supports the execution of various kinds of SQL statements.

– Connection interface: represents a connection to a database for retriev-

ing and updating the results of a query, obtained with the getMetaData

method.

– ResultSet interface: this is a set of results returned by the database in

response to SQL queries.

• Metadata

– DatabaseMetaData interface: provides metadata about the database

as a whole.

– ResultSetMetaData interface: provides information about the columns

of a ResultSet object.

• Exceptions

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 134

– SQLException: thrown by most methods when there is a problem in

accessing data.

JDBC provides the interface DatabaseMetaData, which gives users and tools a

standardised way to extract metadata. Some DatabaseMetaData methods return

lists of information in the form of ResultSet [Hamilton et al., 1997]. Standard

ResultSet methods, e.g., getString are used to extract data from objects in these

ResultSet. We are concerned here with the following aspects of using the JDBC

metadata facilities:

• Obtaining a list of tables available in the database.

• Obtaining information about the columns in those tables.

• Obtaining information about keys and unique constraints.

To accomplish this, several DatabaseMetaData methods have been used, which

take arguments as string patterns. Those methods include the following:

• getTables: to get a description of tables available in a specified data dictionary.

• getColumns: to get a description of table attributes available in a data dic-

tionary.

• getPrimaryKeys: to extract a description of the primary key attributes of a

given table.

• getExportedKeys: to extract a description of the foreign key attributes that

reference the given table’s primary key (the foreign key exported by a table).

• getImportedKeys: to extract a description of the primary key attributes

that are referenced by the given table’s foreign key attributes (the primary keys

imported by a table).

8.2 System Architecture

This section introduces the prototype that has been developed to demonstrate MI-

GROX. The prototype consists of three main modules: RDB Enricher, Schema Trans-

lator and Data Convertor. Figure 8.1 illustrates the prototype architecture and main

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 135

information flows among its modules and components. The user interacts with the

system only to: 1) select the source RDB to be migrated; 2) select the kind of target

database to be generated and choose whether to produce a schema only or a complete

database; and 3) replace the relationship names generated automatically for target

databases with more concise and manageable names.

Figure 8.1: The overall architectural design

8.2.1 The RDB Enricher

The RDB Enricher has two main functions: constructing the RSR from RDB meta-

data and generating the CDM from the RSR and the data stored in an RDB. The

module involves the implementation of the algorithms of the semantic enrichment

phase, as described in Chapters 4 and 5. The RDB Enricher consists of two main

components, an RSR Constructor and a CDM Generator.

For the first function, when the source RDB name has been determined by the user,

the RDB Enricher connects to the RDBMS, using the JDBC/ODBC connection, and

obtains a copy of the necessary RDB metadata information such as table names,

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 136

attributes and key constraints, and then returns an RSR structure. The RSR Con-

structor inputs each RDB table and produces the corresponding RSR relation, in-

cluding its attributes and keys. For the second function, the RDB Enricher takes the

RSR structure as input and accesses data stored in the RDB to produce the CDM.

This process is conducted by the CDM Generator. During the identification of CDM

relationships, the RDB Enricher automatically generates strings, which represent re-

lationship names. After the CDM has been generated, the RDB Enricher interacts

with the user to change these strings into the appropriate relationship names.

8.2.2 The Schema Translator

The CDM generated from the RDB Enricher is passed to the Schema Translator

which translates it into the selected target schema after a restructuring according to

the characteristics of the target database. The Schema Translator contains encoded

schema translation rules integrated into the three schema translation algorithms de-

scribed in Chapter 6. It implements the algorithms as three components, each of

which concerns the production of one target schema. Each algorithm is implemented

as one Java class consisting of a set of methods which represent the related rules. For

each class in the CDM, the Translator translates its attributes and relationships into

the corresponding constructs in the target database. The resulting schema is stored

in a file.

8.2.3 The Data Convertor

The Data Convertor contains encoded instance conversion rules for the implementa-

tion of the data conversion algorithms, described in Chapter 7. The module converts

data from a source database into any of the target databases based on the CDM.

The Data Convertor extracts the source data from the RDBMS using dynamic SQL

queries designed for this purpose. The data resulting from the execution of these

queries are converted into the target data. The Data Convertor stores the converted

data in directories that contain several script files for object definitions, relationship

definitions and integrity constraints. The script files contain data definition state-

ments suitable for loading into the target database systems.

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 137

8.3 Components of the Prototype

This section describes the components of the prototype modules introduced in Sec-

tion 8.2. How these components work and communicate with each other is explained

in more detail.

8.3.1 Components of the RDB Enricher

The RDB Enricher is responsible for acquiring a copy of the RDB metadata and

enriching it with the required semantics in order to perform the rest of the phases of

the database migration process. The RDB Enricher performs the enrichment in three

main steps as described in Chapter 4. These steps, as shown in Figure 4.2, are: 1) the

extraction of all possible information about tables, their attributes and keys from a

given RDB; 2) the construction of an RSR; and 3) the generation of the CDM, which

includes the classification of constructs and the identification of relationships and

cardinalities. The two components of the RDB Enricher have been implemented as

two main Java classes. Each of these classes includes a set of other class constructors

and methods for the implementation of the data models and rules used during the

enrichment process.

In order to construct the RSR, the required metadata stored in data dictionaries are

obtained, using the packages and methods of JDBC metadata. Classifying RSR con-

structs and accessing data instances for the identification of relation and relationship

types is the next step to be performed in generating the CDM. The obtained CDM is

then an enhanced representation of the RDB ready to be translated into the target

schemas, and to guide data conversion. After they are constructed the RSR and CDM

can be displayed on the screen. The following subsections discuss the execution of

these components.

The RSR Constructor

The function of the RSR Constructor is to obtain metadata information about an ex-

isting RDB, resulting in an RSR structure as implementation of the ConstructRSR

algorithm described in Section 4.3.3. The algorithm is implemented as a main Java

class ConstructRSR, which returns a vector called RSR, containing a set of objects

of class called RSRtable. As defined in Section 4.3.2, the RSR is a set of relations,

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 138

where each relation Rrsr is represented as a 6-tuple 〈rn, Arsr, PK, FK, EK, UK〉,
in which rn denotes the name of Rrsr, Arsr denotes a set of attributes of Rrsr, PK

denotes the primary key of Rrsr, FK denotes a set of foreign keys of Rrsr, and so on.

Therefore, the RSR represents the RSR and each object of RSRtable represents one

Rrsr in the RSR, where RSRtable has a name rn as well as five vectors representing

the sets Arsr, PK, FK, EK and UK as shown in Figure 8.2. The structures of these

vectors are defined similarly.

public class RSRtable

{
private String tableName;

private Vector A = new Vector();

private Vector PK = new Vector();

private Vector FKs = new Vector();

private Vector EKs = new Vector();

private Vector UKs = new Vector();

// Constructors

public RSRtable() {}
public RSRtable(String tableNameIn){tableName = tableNameIn;}

// accessor methods

public String getTableName(){ return tableName;}
public Vector getAttributes(){ return A;}
public Vector getPK(){ return PK;}
public Vector getFKs(){ return FKs;}
public Vector getEKs(){ return EKs;}
public Vector getUKs(){ return UKs;}

// modifier methods

public void setTableName(String tableNameIn){tableName = tableNameIn;}
public void setPK (String tableNameIn, String columnNameIn, String keySeqIn, String pkNameIn)

{PK.addElement(new PrimaryKey(tableNameIn, columnNameIn, keySeqIn, pkNameIn));}
...

}

Figure 8.2: The structure of the RSRtable class

Objects of RSRtable class are constructed using the methods invoked from the

ConstructRSR class, which are then added to the RSR vector as the output of the

RSR Constructor. Figure 8.3 shows a fragment of Java code for the ConstructRSR

class with two of its methods, i.e., the setPrimaryKey and setForiegnKeys, which

work as the constructors of the primary key and foreign keys of each relation in RSR,

respectively.

The RSR Constructor interacts with the RDBMS and retrieves information about all

of the tables in the RDB which have been selected for migration. From this infor-

mation, the RSR vector is constructed. For each table name retrieved, its attributes

and key constraints are obtained from the RDB. Attribute information includes col-

umn name, data type, length, precision, scale, null/not-null and default values. The

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 139

public ConstructRSR(){}
Vector RSR = new Vector();

....

public ConstructRSR()

public Vector getAllTables(String url, String user, String password){
try {

Connection con = DriverManager.getConnection(url, user, password);

String [] types = {"TABLE"};
DatabaseMetaData dbmd = con.getMetaData();

String query1 = "select * from tab";

Statement stmt1 = con.createStatement();

ResultSet rss = stmt1.executeQuery(query1);

while (rss.next()) {
String tableName = rss.getString(1);

RSRtable tableclass = new RSRtable(tableName);

....

ResultSet rs1= dbmd.getPrimaryKeys(null, null, tableName);

setPrimaryKey(rs1, tableclass);

ResultSet rs2 = dbmd.getImportedKeys(null, null, tableName);

setForiegnKey(rs2, tableclass);

....

RSR.addElement(tableclass);

}
rss.close();

con.close();

}
catch(SQLException ex){System.err.print("SQLException:"); System.err.println(ex.getMessage());}
return RSR;

}
....

public void setPrimaryKey(ResultSet rsIn, RSRtable tableclassIn) throws SQLException {
while(rsIn.next()){

String name = rsIn.getString("TABLE NAME");

String columnName = rsIn.getString("COLUMN NAME");

String keySeq = rsIn.getString("KEY SEQ");

String pkName = rsIn.getString("PK NAME");

tableclassIn.setPK(name, columnName, keySeq, pkName);

}
}

....

public void setForiegnKeys(ResultSet rsIn, RSRtable tableclassIn) throws SQLException {
while(rsIn.next()){

String pkTable = rsIn.getString("PKTABLE NAME");

String pkColName = rsIn.getString("PKCOLUMN NAME");

String fkTable = rsIn.getString("FKTABLE NAME");

String fkColName = rsIn.getString("FKCOLUMN NAME");

short keySeq = rsIn.getShort("KEY SEQ");

String fkName = rsIn.getString("FK NAME");

String pkName = rsIn.getString("PK NAME");

tableclassIn.setFKs(fkTable, fkColName, keySeq, pkTable, pkColName, fkName, pkName);

}
}

....

Figure 8.3: The structure of the ConstructRSR class

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 140

description of each column of a primary key, foreign key, exported key and unique

key includes the key table name, key column, sequence number in case the key is a

composite of more than one attribute, and the key constraint name. Inverse columns

description of key columns that are linked to the given table’s key columns are also

retrieved as part of the description of the key being retrieved. Such information is

obtained using the DatabaseMetaData methods of JDBC described earlier, such

as getTables(), getColumns(), getPrimaryKeys(), getExportedKeys() and

getImportedKeys(). When all of this information has been retrieved for one RDB

table, an RSR relation is constructed and added into the RSR, i.e., RSR vector. Finally

the RSR Constructor returns the RSR, which is then passed to the CDM Generator

for generating the CDM.

The CDM Generator

When the RSR has been constructed, its relations and their attributes are classified,

mainly based on the comparison of keys as described in Section 4.3.4, and then

mapped into equivalents in CDM. In addition, relationships and cardinalities are

identified and classified. This function is the responsibility of the CDM Generator,

which implements the GenerateCDM algorithm described in Section 5.1. The CDM

Generator takes the RSR as input and generates the CDM as output.

The GenerateCDM algorithm is implemented as a main Java class GenerateCDM,

which returns a vector called CDM, containing a set of objects of a class CDMclass.

The CDM vector represents the CDM and each object of CDMclass represents one class

in the CDM. The GenerateCDM class contains a set of methods, each of which has a

specific task, such as the classification of classes, checking whether or not a class is

abstract, and mapping the type of attributes.

The CDM Generator classifies each relation in the RSR by matching its attributes,

primary key, foreign keys and exported keys, and then maps the relation into one

of the nine types of classes described in Section 4.3.4. Attributes are identified and

classified into non-key attributes, primary key attributes or foreign key attributes

using tags. Relationships are identified and classified by matching the primary key,

foreign keys and exported keys of each relation, while the unique keys are retained

unchanged. Moreover, the CDM Generator accesses the RDB data to determine re-

lationship cardinalities and to check whether super-classes are abstract or concrete

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 141

classes. Two methods are used to determine the cardinalities of relationships. The

method deterCard determines cardinality when the RSR relation Rrsr contains for-

eign keys, and the method deterInverCard returns the inverse cardinality when Rrsr

is referenced by other relations. The checkAbstraction method is invoked by the

Generator when the abstraction of a CDM class needs to be checked. The method

takes a CDM super-class as argument, accesses the RDBMS (for querying the corre-

sponding RDB table and its sub-tables) and returns a variable abs of boolean type

as a result. A super-class is not abstract (i.e., abs := false) when all (or some) of

its corresponding RDB table rows are not members of other sub-table rows.

Example 8.3.1. Consider the CDM shown in Table 5.1 and the RDB data given in
Figure 4.4. The following SQL query is used to check whether or not the CDM
super-class corresponding to the Emp relation is abstract, where Hourly emp and
Salaried emp are both its sub-class relations:

select count(*) from Emp e, Hourly emp h, Salaried emp s where e.eno =

h.eno(+) and e.eno = s.eno(+) and h.eno is null and s.eno is null;

If the query result is zero, then the Emp class is abstract; otherwise the class is a
non-abstract (i.e., concrete) super-class.

From these identifications and classifications, the CDM Generator defines one CDM

class and adds it into the CDM. The output of the Generator, the CDM vector, is

stored as an in-memory representation to be used by the Schema Translator and

Data Convertor, without having to repeatedly refer to the existing RDB.

During identification of the CDM association/aggregation relationships, the RDB

Enricher automatically generates strings, which represent relationship names. Each

string is generated as a concatenation of the names of classes which participate in

the relationship and their attributes that form the relationships. After the CDM

is generated, the RDB Enricher interacts with the user to change these strings and

replace them with appropriately meaningful relationship names, e.g., according to the

conceptual schema of the input RDB if available. Each string is stored as a pair with

the new relationship name in a list called relationshipNamesList. The first element

of the pair is the string generated by the Enricher and the second element of the pair

is the name suggested by the user. This list is used later by the Schema Translator

and Data Convertor to define relationships in the target schemas and data.

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 142

8.3.2 Components of the Schema Translator

The Schema Translator is responsible for translating the CDM generated by the RDB

Enricher into the corresponding target schemas. This is performed by implementing

the algorithms and the translation rules designed to produce the target schemas from

the CDM, described in Chapter 6. Each set of rules concerning one target schema is

implemented as one component as follows.

• OODB Schema Mapper (CDMtoOO): The function of the CDMtoOO

component is to translate the CDM into the corresponding OODB schema, im-

plementing the ProduceOODBschema algorithm as described in Section 6.2.

The OODB class definitions, including attributes and relationships are gener-

ated according to lambda-DB 1.8 [Fegaras, 2008], which supports ODMG 3.0

ODL specifications (but is not yet fully ODMG-compliant).

• ORDB Schema Mapper (CDMtoOR): The function of the CDMtoOR

component is to translate the CDM into the corresponding Oracle 11g ORDB

schema, implementing the ProduceORDBschema algorithm as described in

Section 6.3. CDM classes are translated into object types, based on which object

tables are defined when classes are non-abstract. As row and set constructs

of SQL4 are not yet supported in Oracle 11g, the M side of relationships and

classes that represent multi-valued attributes are translated into nested tables.

• XML Schema Mapper (CDMtoXS): The function of the CDMtoXS com-

ponent is to translate the CDM into the corresponding XML Schema, imple-

menting the ProduceXMLschema algorithm as described in Section 6.4. The

main CDM classes are translated into complex types, based on which XML el-

ements are defined when classes are non-abstract. Attributes that are classified

as primary keys, foreign keys or unique keys are translated into XML using the

key mechanism provided by the XML Schema language, i.e., key, refkey and

unique, respectively. Null/not-null and relationship cardinalities are translated

using "minOccurs" and "maxOccurs" keywords.

Each component of the Schema Translator is implemented as a main Java class, where

its translation rules are encoded as methods. Each set of methods is embedded in

the related class. Each method is responsible for performing a specific mapping task,

such as mapping attributes and their types, and the translations of relationships.

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 143

The Schema Translator starts when the target schema/database to be produced is

determined by the user. Then, the Translator calls up the constructor method of

the appropriate component, which in turn applies the suitable set of methods (rules)

for mapping the CDM constructs into their equivalent in the target schema. Using

the classification of CDM constructs, the Translator identifies their equivalents in the

target schema definition language. However, the Schema Translator also contains

common methods, which can be used by any of its three components. For instance,

the method mapAttributeType(tdb, att) (see Figure 8.4) takes the target database

type tdb, e.g., "OODB" and a CDM attribute of type att, e.g., tempClassAttribute as

parameters and returns the corresponding data type. Appendix A provides the RDB

attribute data types and their equivalent data types in the target databases.

The way that the ORDB Schema Mapper and the XML Schema Mapper are imple-

mented is similar to the implementation of the OODB Schema Mapper, apart from

some differences, e.g., generating the constructs according to the target database

schema. Therefore, we describe here only the OODB Schema Mapper.

The OODB Schema Mapper (CDMtoOO)

The CDMtoOO takes the CDM generated by the RDB Enricher and translates it

into equivalent ODMG 3.0 ODL schema, applying appropriate set of rules. The

schema translation rules of the CDMtoOO are encoded as four methods, which are

responsible for mapping: atomic-valued attributes, multi-valued attributes, struct

types and relationships. Each of these mappings is based on the classification of CDM

constructs. After the mapping of the CDM into the target schema, the CDMtoOO

then writes the generated schema into a file. Finally, the CDMtoOO generates a

conversion program, called MakeFile. The MakeFile program is to enact the schema

file first, and then the data files if generated by the RDtoOOD.

An example of mapping CDM attributes into equivalent atomic attributes in a tar-

get ODL schema is shown in Figure 8.4. Attributes are translated into equivalents

with the same names as those of the CDM, and their types are converted accord-

ing to target data types. Keys are specified using tags, e.g., attributeTag = "PK".

For this rule, the method setClassAttributes performs the mapping. The argu-

ments of the method are the OODB class ooClassIn being translated and the vector

cdmAttributesIn that contains a set of attributes of the CDM class, corresponding

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 144

to ooClassIn. The method goes through a loop for each object of the CDM attribute

tempClassAttribute from the cdmAttributesIn vector, and maps them one by one.

The tempClassAttribute is translated into an OODB attribute if it is a non-foreign

key attribute, i.e., attributeTag 6= ("FK" | "PKFK") (foreign keys are mapped to

relationships). The type of the attribute is mapped using the mapAttributeType

method. Finally, the new attribute is added to the attributes of ooClassIn.

private void setClassAttributes (OOClass ooClassIn, Vector cdmAttributesIn)

{
for(int j = 0; j<cdmAttributesIn.size(); j++)

{
CDMClassAttributes tempClassAttribute = (CDMClassAttributes) cdmAttributesIn.elementAt(j);

String attributeTag = tempClassAttribute.getTag();

String attributeName = tempClassAttribute.getAttrName();

String attributeType = mapAttributeType("OODB", tempClassAttribute);

if (!(attributeTag == "FK" || attributeTag == "PKFK")) // the attribute is non-foreign key

{
ooClassIn.setOOattributes(attributeName, attributeType);

}
}

}

Figure 8.4: The OODB class attribute rule

8.3.3 Components of the Data Convertor

The Data Convertor takes the CDM generated by the RDB Enricher and accesses

the RDBMS to convert existing RDB data into the format defined by the target

schemas. This module implements the algorithms and instance conversion rules de-

scribed in Chapter 7. The Data Convertor consists of three main components as

shown in Figure 8.1. These components include the OODB Data Generator (RD-

toOOD), the ORDB Data Generator (RDtoORD) and the XML Data Generator

(RDtoXML), which are responsible for converting RDB data into the correspond-

ing OODB data, ORDB data and XML documents, respectively. For each of the

three components, data stored as tuples in an RDB are converted into complex ob-

jects/literals in object-based databases or elements in XML documents. Firstly, the

Convertor extracts tuples in RDB relations, and then transforms the extracted data to

match the target format. Finally, the Convertor loads the transformed data into text

files suitable for the target platform, in order to populate the schema translated by

the Schema Translator. Each of the three modules has been implemented as a main

Java class together with a set of methods corresponding to its instance conversion

rules. However, further details are given here only for the OODB Data Convertor.

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 145

The OODB Data Convertor

The OODB Data Convertor, i.e., RDtoOOD component, generates the target data

using a set of data instance conversion rules as described in Section 6.2. The RD-

toOOD has been implemented as a main Java class that consists of eleven main

methods representing the conversion rules. The RDtoOOD constructor invokes each

of these methods when the corresponding rule needs to be applied. Sets of customised

SQL queries are embedded in these methods to extract the desired data from an RDB.

Once a query is executed, the result is transformed from the flat RDB form to the

OODB format. The RDtoOOD generates the target data in script files as initial

object files and relationship files. Firstly, the RDtoOOD generates a script file, for

each concrete class, which contains OQL statements, i.e., OIF format, for instantiat-

ing classes by literal data types. Literal data types include atomic, multi-valued and

composite attributes. Secondly, the RDtoOOD generates the files that contain OQL

statements for establishing relationships among the objects defined earlier. Finally,

the RDtoOOD generates codes added to the conversion program MakeFile in order to

enact the generated data files. This process is performed based on the CDM structure,

which facilitates the reallocation of attribute values in an RDB to the appropriate

values or user-defined identifiers in the OODB.

Instantiating Classes: To define objects of a main class in the OODB, the RD-

toOOD executes two SQL queries embedded in a method called instantiateClass.

The first query extracts the primary key values from the RDB table correspond-

ing to the OODB class being migrated. The second query extracts the non-foreign

key values from the same RDB table. Then, from each tuple of these two queries,

the RDtoOOD defines a user-defined object identifer, i.e., a surrogate OID by con-

catenating the CDM class name with the primary key values extracted from the

corresponding RDB table. In addition, the RDB tuple comprising non-foreign key

attributes is converted into the equivalent OQL statements, in order to define the

object. Using the primary key values of the tuple, the RDtoOOD checks if the

CDM class has any aggregation relationships. If so, the RDtoOOD invokes the

establishLitralAggregation method that includes the suitable rules to perform

this conversion. The establishLitralAggregation method takes the CDM class

name and the aggregation relationship as arguments and returns the corresponding

set of values or struct type. The generated OQL statements are stored in a file

CHAPTER 8. IMPLEMENTATION OF THE PROTOTYPE 146

named by the CDM class name, e.g., Emp.oql.

Instantiating Relationships: The defined objects are linked with other objects

using foreign key values extracted from each RDB relation’s tuples based on the

relationships defined in the CDM class. This is the next step of conversion, estab-

lishing object-valued relationships as an implementation of the functions described

in Section 7.2.2. Based on each CDM relationship, data are retrieved from the RDB

table corresponding to the CDM class in which the relationship is defined, in order to

instantiate the corresponding relationship defined in the OODB class mapped from

the CDM class. The generated OQL statements are stored in a file for updating

relationships, e.g., Emp relationships.oql.

8.4 Summary

This chapter has described the prototype in which the concepts and algorithms of

MIGROX solution have been implemented. Section 8.1 described the development

environment and the reasons for choosing the software used in the prototype’s de-

velopment. Section 8.2 illustrated a high level design for the prototype. The three

modules of the prototype and their main components are discussed. Section 8.3

presents in detail how each of these components has been implemented and how they

communicate with each other.

The prototype provides a basis for a proof of concept. It shows that the concepts

described in Chapters 4-7 can actually be implemented in terms of programming

languages at a high level of automation. The prototype facilitates the migration

process and, through its outputs, illustrates that MIGROX and its three phases can

be practically executed. The current prototype can be considered as a basis for an

integrated database migration tool.

The next chapter, Chapter 9, describes how an experimental study was conducted to

evaluate MIGROX. The evaluation aims to check the equivalence between the input

RDBs and each of the three target databases generated by the prototype.

Chapter 9

Evaluation of the Prototype

Chapter 8 has described the implementation of MIGROX prototype. The goal of

this chapter is to evaluate the prototype, including a discussion of the experimental

results. The evaluation aims at validating the solution presented in this dissertation

by checking the equivalence between the input RDBs used in the database migration

process and the three target databases generated by the prototype. Database equiv-

alence checking includes the preservation of schema semantics, data, and integrity

constraints. To the best of our knowledge, a comprehensive evaluation (i.e., one that

takes all aspects of database equivalence) of a database migration solution has never

been conducted before.

This chapter is structured as follows. Section 9.1 describes the criteria and methods

used in the evaluation. Section 9.2 provides a description of an experimental envi-

ronment, the hypotheses to be tested in the evaluation, and experimental setup. In

Section 9.3, a detailed description and analysis of the experimental results is pre-

sented. Section 9.4 discusses the results obtained based on the efficiency of DBMSs

in terms of RDB and ORDB query processing. Section 9.5 provides a summary of

this chapter and points to what follows in the next chapter.

9.1 Evaluation Approach

Different cost metrics have been used in the literature to evaluate DBMS performance

and in a limited way database migration processes. These metrics can be categorised

as follows:

147

CHAPTER 9. EVALUATION OF THE PROTOTYPE 148

• Schema information preservation: Several user-based evaluation metrics

have been proposed to verify the correctness of the schemas which resulted

from schema mapping techniques. The generated target schema is compared to

the input RDB schema to ensure that it reflects all the semantics of the input

database. A schema is correct if all concepts of the underlying model are used

correctly with respect to syntax and semantics [Fahrner and Vossen, 1995a]. In

general, the result of an automatic database engineering process could be vali-

dated against the result that is obtained by an expert who performs the process

manually [Chiang et al., 1996]. Target schemas can be evaluated syntactically

by an expert user who is familiar with both source and target databases. More-

over, an automatically generated target schema can be compared with a schema

translated from the same input database used in the existing literature [Lee

et al., 2001]. Lee et al. [2001, 2003] show a proof of concept by comparing the

DTD schema resulting from the implementation of the algorithms they pro-

posed (i.e., FT and Net algorithms) with that of the DB2XML tool. DB2XML

is a tool for transforming data from RDBs into XML [Turau, 1999].

• Data equivalence: Querying source and target databases can also be used

to evaluate the migration results, e.g., validating the generated schemas. Fong

and Cheung [2005] evaluate their approach by observing the difference between

an RDB schema and its corresponding XML Schema according to query re-

sults provided by their software based on a sample of data loaded into the two

databases. The same criterion has been used to observe the difference between

an input RDB and its corresponding DTD results provided by both SQL Server

for the RDB and Tamino XML Server [2009] for the DTD [Fong et al., 2006].

However, integrity constraints preservation has not been enough addressed in

the current literature.

• System efficiency comparison: Most DBMS performance evaluations con-

sider measurement of query elapsed times. The elapsed time metric is the

amount of time query statements take to execute. A set of query-based bench-

marks has been designed to test and measure different aspects of the function-

ality and performance of object-based and XML systems [Carey et al., 1993,

1997; Schmidt et al., 2001; Kurt and Atay, 2002; Runapongsa et al., 2006].

These benchmarks can be used to test the equivalence between source and tar-

get databases, resulting from database migration approaches. The OO1 [Cattell

CHAPTER 9. EVALUATION OF THE PROTOTYPE 149

and Skeen, 1992] and OO7 [Carey et al., 1993] benchmarks were designed to

evaluate the performance of OODBMS. OO7 represents a comprehensive test

of the wide range of OO features of OODBMS performance [Carey et al., 1993].

OO7 includes three sets of operations: traversals, queries and structural modi-

fications. The BUCKY [Carey et al., 1997] and BORD [Lee et al., 2000] bench-

marks were designed for ORDBMSs. BUCKY is a query-oriented benchmark

which has been developed to test the maturity of an ORDB system’s key features

in relation to an RDB system [Carey et al., 1997]. The Michigan [Runapongsa

et al., 2006] and XMark [Schmidt et al., 2001] benchmarks have been proposed

for evaluating the performance of XML data management systems. XMark

consists of an application scenario and a set of XQuery statements, which have

been designed to assess the performance of XML query processors [Schmidt

et al., 2001]. This benchmark tries to capture essential XML data processing

which includes querying text search, hierarchical and ordered data. Kurt and

Atay [2002] presented an experimental study of query processing efficiency of a

native-XML database and an RDB. However, although query speed is not an

essential issue for data migration methods, it is a very important evaluation

issue for benchmarks that concern DBMS efficiency.

Our Approach: We evaluate our method in terms of the quality of the results

produced by its prototype using experimental study. As we work with real databases,

the experimental study is the most suitable approach to validate MIGROX and test

the hypotheses. The evaluation is based on comparisons where a source RDB is com-

pared with and measured against the target databases obtained by the prototype to

check whether or not their schemas and data are equivalent. Factors for appraising

equivalence of databases include preservation of semantics, data and integrity con-

straints. First, we conducted an experiment on databases used in the literature [Carey

et al., 1997; Wang et al., 2005; Cattell and Barry, 2000; Elmasri and Navathe, 2006]

to test the equivalence of source and target schemas. Second, we designed experiment

based on the query-oriented BUCKY benchmark [Carey et al., 1997] to observe any

differences between the source and target databases with regard to data content and

integrity constraints. We used BUCKY and its queries as it is published, fully released

and freely available benchmark. The BUCKY benchmark has been designed to test

many of the key features offered by ORDB systems in relation to RDB systems. The

CHAPTER 9. EVALUATION OF THE PROTOTYPE 150

tested features include row types and inheritance, references and path expressions,

sets of atomic values and references, and user-defined data types along with their

methods [Carey et al., 1997]. The benchmark consists of an RDB and ORDB, includ-

ing their semantically equivalent schemas, data and sets of queries. This experiment

is implemented using a subset of the benchmark data. However, since our focus is

to compare the quality of the target databases in a query-based experiment, some

simplifications have been made to these queries without affecting the results of the

comparison. We believe that a comprehensive evaluation can be achieved by these

experiments.

Although we focus on assessing equivalence between source RDBs and the correspond-

ing target databases to evaluate MIGROX, the system performance on data retrieval

is also determined. We have used a subset of the queries used above to be run on the

entire BUCKY database so as to appraise the relative efficiency of input and target

databases based on query elapsed time.

9.2 Experimental Environment

In this section, a detailed description of the experiments is presented. The hypotheses

and how the experiments were set up are explained in detail.

9.2.1 Hypotheses

The experiments conducted in this chapter aim to investigate the validity of the

hypotheses that MIGROX is able to 1) preserve the structure and semantics of an

existing RDB in a canonical data model (CDM); 2) generate equivalent target OODB,

ORDB and XML schemas; and 3) effectively convert the RDB data into the target

databases without redundancy or loss of data. The following criteria were investigated

in our study with respect to the MIGROX evaluation:

• The preservation of data semantics: Target schemas hold equivalent se-

mantics of an existing RDB schema. The CDM is able to preserve and en-

hance the RDB’s integrity constraints and data semantics to fit in with the

characteristics of the target databases. Generally, a translation process is called

information-preserving if all possible database instances that can be represented

CHAPTER 9. EVALUATION OF THE PROTOTYPE 151

in the source schema can also be represented in the target database schema and

vice versa [Fahrner and Vossen, 1995a].

• The completeness of migration rules and data equivalence: Data in-

stances of a source RDB are comparable to any of the three target databases

generated by MIGROX. The migration process is complete when all RDB data

semantics that would be represented in target databases are accounted for in

the schema translation and data conversion rules. This can be tested on real

data stored in a database when all possible semantics expected to be gener-

ated from RDBs (e.g., inheritance, object-based relationships, multi-valued and

composite attributes, etc) are considered to be covered in queries on the target

databases and the data are retrieved without loss or redundancy.

9.2.2 Experimental Setup

Most existing studies have focused on measuring overall elapsed query times. In the

experiments reported here, we appraise schema and data equivalence and compare

query results from source and target databases. This is accomplished by observing

the differences among the RDB and each of the target databases according to the

results obtained. Two experiments have been designed to test the hypotheses using

the criteria introduced in Section 9.2.1.

• Experiment I tests whether the target generated schemas have preserved the

data semantics of the source database. Once a target schema is generated, it is

compared to the input RDB schema to ensure that it reflects all the input RDB

semantics. The CDM and target schema, generated from an existing RDB by

the prototype, are correct when this target schema is equivalent to the schema

mapped from the same RDB by existing manual approaches (i.e., [Carey et al.,

1997; Urban and Dietrich, 2003; Elmasri and Navathe, 2006; Keivani, 2006]).

The CDM is then validated as a representation of the existing RDB.

• Experiment II explores the equivalence of source and target data and integrity

constraints based on the user-readable evaluation. This experiment is imple-

mented on a small subset of the relational version of the university (UniDB)

information system used in the BUCKY benchmark [Carey et al., 1997]. We

have used the conceptual schema of the BUCKY benchmark and most of its

CHAPTER 9. EVALUATION OF THE PROTOTYPE 152

RDB and ORDB queries. We have made some modifications to BUCKY’s log-

ical schema and added some queries for testing integrity constraints. As the

benchmark only provides the RDB and ORDB query versions, we have addi-

tionally translated the RDB queries into equivalent versions in an OODB and

XML. Using query languages, the four sets of queries (i.e., for RDB, ORDB,

OODB and XML) have been run on their respective DBMSs for retrieving in-

formation so that the user can check/observe/verify whether or not the results,

which are small in size, are equivalent. Even though the aim of this experiment

is to test the equivalence between source and target data and constraints, the

query results could be interpreted for appraising database equivalence, including

schema validation.

Database Descriptions

Source Databases: The main source RDB used in the experiments reported here

is based on the BUCKY benchmark [Carey et al., 1997]. However, we have used other

existing RDBs (i.e., UniDB [Carey et al., 1997], School [Urban and Dietrich, 2003] and

Company [Elmasri and Navathe, 2006]) for the evaluation of semantic preservation

that have been tested in Experiment I.

Figure 9.1 shows the conceptual schema of the UniDB in UML class diagram notation.

The solid directed lines with a blank arrowhead represent generalisation relationships

from more specialised classes, e.g., Student and Employee to more generalised classes,

e.g., Person. In other words, Student and Employee are sub-classes of the super-

class Person; Staff and Instructor are sub-classes of Employee; Professor is a

sub-class of Instructor, and TA (teaching assistant) is a sub-class of both Student

and Instructor. These generalisations form an inheritance hierarchy. The other lines

represent associations between objects of the classes and are labelled on each side with

a role name by which the association is known at that end and with multiplicities

at the other end. For example, an object of the Department class must (i.e., 1..1,

one and only one) have a chair who is in turn an object of the Professor class;

inversely, an object of the Professor class may (i.e., 0..1, none or only one) lead

a department. A multiplicity of 1..* means at least one and possibly many (e.g., a

department can have one or many employees because 1..* is at the Employee end of

the line and an employee works in one and only one department because 1..1 is shown

at the Department end of the line).

CHAPTER 9. EVALUATION OF THE PROTOTYPE 153

Figure 9.1: Conceptual schema for UniDB

Relational Implementation: Table 9.1 shows the logical schema of the UniDB.

The basic relations in the implementation of the RDB version of the UniDB in-

clude: Department, Person, Employee, Student, Staff, Instructor, TA, Professor,

Course, CourseSection, Enrolled and Kids. The relationships are modelled using

primary/foreign key pairs. Primary keys are in bold font and foreign keys are in

italic. Referential integrity is denoted as: foreign key → referenced relation. There

are several alternative ways to model inheritance in relational data model [Elmasri

and Navathe, 2006]. The approach implemented in BUCKY was to create a sep-

arate entity for each non-abstract type in the inheritance hierarchy, i.e., Student,

TA, Professor, Staff. The common attributes are repeated in each table defini-

tion. Since there is no direct way to model inheritance relationship in the relational

model, we create a separate relation for each super-class and for each of its sub-classes

with their unique attributes and the primary key of the super-class. We assume this

approach because it allows the extraction of inheritance relationships among tables

automatically via the matching of primary/foreign keys without any user interven-

tion. Given that multi-valued attributes are not supported in relational model, the

CHAPTER 9. EVALUATION OF THE PROTOTYPE 154

attribute Kids in the Employee class is modelled by creating an additional table called

Kids, which has an id attribute corresponding to Employee and its sub-classes. Once

the RDB schema is created, the data are bulk-loaded using the Oracle SQL*Loader.

However, only a sample of RDB data and corresponding target data generated by

MIGROX is used in Experiments I and II. Appendix B provides the DDL description

of the RDB UinDB schema, the SQL*Loader control (CTL) files used to load its data,

and the sample of RDB data.

Relation Referential Integrity Tuples
DEPARTMENT (deptno, name, building,
budget, chair, latitude, longitude)

chair → PROFESSOR 250

COURSE (deptno, courseno, name, credits) deptno → DEPARTMENT 12500
COURSESECTION((deptno, courseno),
sectionno, semester, instructorid, textbook,
nostudents, building, roomno)

deptno, courseno→ COURSE, in-
structorid → INSTRUCTOR

50000

PERSON (id, name, street, city, state, zipcode,
birthdate, picture, latitude, longitude)

125000

EMPLOYEE (id, dept, datehired, status) id → PERSON, dept → DEPART-
MENT

75000

INSTRUCTOR (id) id → EMPLOYEE 50000
STAFF (id, annualsalary) id → EMPLOYEE 25000
PROFESSOR (id, aysalary, monthsummer) id → INSTRUCTOR 25000
STUDENT (id, studentno, majordept, advisor) id → PERSON, majordept → DE-

PARTMENT, advisor → PROFES-
SOR

75000

TA (id, semestersalary, apptfraction) id → INSTRUCTOR 25000
KIDS (id, kidname) id → EMPLOYEE 116657
ENROLLED (studentid, (deptno, courseno,
sectionno, semester), grade)

studentid → STUDENT, deptno,
courseno, sectionno, semester →
COURSESECTION

150000

Table 9.1: Logical relational schema for the UniDB

Target Databases: Each target database equivalent to the UniDB is generated by

the prototype as a set of files stored in a separate directory. Each directory contains a

schema file, a set of files for object definitions, a set of files for relationship definitions,

constraints files, and a program file that runs these files in a certain order to create

each of the target databases. To load the database into the system, the program first

enacts the schema file and then the files that contain object definitions in a first pass.

Files containing primary keys, relationship definitions and constraints are loaded into

the database in the second pass. However, the XML database directory contains

only two files: one is an XML Schema document and the other is an XML instance

CHAPTER 9. EVALUATION OF THE PROTOTYPE 155

document. The physical schemas and fragments of data of the target databases

generated by the prototype are provided in Appendix C.

Queries

To select appropriate queries for Experiments II, we consider the types of queries used

to compare and contrast a wide range of data semantics converted from the RDB into

each of the target databases, especially complex and user-defined types. Retrieval

operations, including selecting, matching and joining are important in comparing the

RDB semantics with those of the corresponding targets, e.g., association, aggregation

and inheritance. Update operations such as insert, delete and update are taken

into account in order to show that the integrity constraints in RDB are converted

and preserved in the target databases. The criteria we have used in selecting the

queries include: 1) queries should be simple and basic operations are supported in

all database systems giving results that can be observed by the user; 2) all possible

target database constructs should be covered; and 3) queries should focus on testing

the equivalence between source and target databases, including semantics and data

preservation. We used the queries of the BUCKY benchmark because they cover

the fundamental areas to be tested, including inheritance hierarchies, object-based

relationships, user-defined types and integrity constraints. In addition, the queries are

designed to test the efficiency and speed of the data retrieval from the DBMSs. The

following list gives the essential query types selected to be used in our experiments.

• Selection: Most of the results are obtained from databases using selection

queries, including single and complex selections with relational operators.

• Exact Match Lookup: This type of query shows the ability of the database to

handle simple lookups as a simple exact-match or over inheritance hierarchies.

• Joins: This type of query tests the ability of the database to perform joins,

including single and inheritance joins.

• Set Operations: This type of query tests operations such as intersections and

unions.

• Set Membership: This type of query tests for set membership, where the set

is a collection of values extracted by selection statements.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 156

• Path-Expressions: This type of query tests the ability to handle references

to persistent objects. It specifies a path to related attributes and objects using

the concept of a path expression. A path expression in object-based databases,

which includes a navigation path through a relationship is similar to the outer

join in RDBs.

• User-defined Data Types: This type of query is used for retrieving data

stored as simple/composite multi-valued attributes and weak entities.

• Data Manipulation Operations: We have included this type of operation in

Experiment II to evaluate the preservation of integrity constraints by updating

database contents. Entity and referential integrities, unique keys as well as

enforcing absence of null values are among the constraints to be tested. Insert,

update and delete operations are covered in this category.

Testbed Configuration

The experiments reported in this chapter were conducted on a PC with Intel Pentium

IV CPU clocked at 3.2 GHz, 1024 MB RAM and 80 GB of hard disk. The operating

system used was Windows XP Professional. Oracle 11g was employed for RDBs

and ORDBs. The version of the OODBMS was lambda-DB 1.8 [Fegaras, 2008].

Lambda-DB is built on top of SHORE 1.1.1, operating under Red Hat Enterprise

Linux Server release 5.3 (Tikanga). It supports ODMG ODL specifications and can

handle most ODMG OQL queries [Fegaras, 2008]. Altova XMLSpy 2008 [Altova

XMLSpy, 2008] was used for XML. Altova XMLSpy 2008 is an editor for creating,

editing, and managing XML Schema and instance documents. It offers an XML editor

and graphical schema designer along with a code generator, and it supports XPath

and XQuery.

9.3 Experimental Results

This section reviews the results of our evaluations. We focus on two metrics, namely

schema information preservation and data equivalence.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 157

9.3.1 Experiment I: Testing Data Semantics Preservation

This experiment tests schema information preservation by comparing target schemas

generated from the prototype with that translated from the same source schemas

using existing manual schema mapping techniques (i.e., [Carey et al., 1997; Urban and

Dietrich, 2003; Elmasri and Navathe, 2006; Keivani, 2006]). The evaluation includes

comparisons of the schema structures, data semantics and integrity constraints.

OODB schemas

Urban and Dietrich used UML features to illustrate mapping alternatives from UML

to relational, object-oriented and object-relational data models [Urban and Dietrich,

2003]. The approach used an RDB called School to compare and contrast mapping

techniques specific to each model. Figure 9.2 shows the RDB logical School schema

they used.

Person (pID, dob, firstName, lastName)
Student (pID, status, major): pID → Person, major → Department
Faculty (pID, rank, dept): pID → Person, dept → Department
Department (code, name, chair): chair → Faculty
CampusClub (cID, name, phone, location, advisor): advisor → Faculty
Clubs(pID, cID): pID → Student, cID → CampusClub

Figure 9.2: Relational schema of School database [Urban and Dietrich, 2003]

Figure 9.3 shows a fragment of the ODMG 3.0 ODL schema mapped from Urban

and Dietrich [2003] and Figure 9.4 shows the equivalent schema generated by MI-

GROX. A full description of both schemas is provided in Appendix D. In the fig-

ures it can be observed that apart from methods associated with classes, which are

not assumed in our approach, the results of MIGROX and Urban and Dietrich’s ap-

proach were similar in translating the RDB schema into its equivalent OODB schema,

including classes, attributes, single/collection-based relationships, inheritance, and

keys. However, association relationships are mapped in MIGROX bi-directionally

and aggregation relationships uni-directionally. Such relationships were modelled as

bi-directional and sometimes uni-directional relationships in Urban and Dietrich’s

work, e.g., the deptChair attribute defined in the Department class. Another exam-

ple is that the major association relationship in Student class is translated by MI-

GROX bi-directionally, with its inverse the students relationship in the Department

class. Such a relationship is mapped by Urban and Dietrich as major attribute in

CHAPTER 9. EVALUATION OF THE PROTOTYPE 158

the Student class whose type is a single instance of the Department class, and the

students attribute in the Department class was defined as a collection of students.

class Student extends Person(extent students){
attribute string status; attribute Department major;

relationship set<CampusClub> memberOf inverse CampusClub::members;

. . . }
class Department(extent departments key code) {
attribute string code; attribute string name; attribute Faculty deptChair; attribute set<Student>
students; attribute set<Faculty> deptFaculty;

. . . }
class CampusClub(extent campusClubs key cID){
attribute string cID; attribute string name; attribute string location; attribute string phone;

relationship set<Student> members inverse Student::memberOf;

relationship Faculty advisor inverse Faculty::advisorOf;

. . . }

Figure 9.3: Fragment of OODB School schema mapped from Urban and Dietrich [2003]

class Student extends Person (extent Students) {
attribute string status;

relationship set<Campusclub> memberof inverse Campusclub::members;

relationship Department major inverse Department::students

};
class Department (extent Departments key code) {
attribute string code; attribute string name;

relationship set<Faculty> deptfuclty inverse Faculty::dept;

relationship set<Student> students inverse Student::major;

relationship Faculty deptchair inverse Faculty::chairof;

};
class Campusclub (extent Campusclubs key cid) {
attribute string cid; attribute string name; attribute string phone; attribute string location;

relationship set<Student> members inverse Student::memberof;

relationship Faculty advisor inverse Faculty::advisorof;

};

Figure 9.4: Fragment of OODB School schema generated by the MIGROX prototype

ORDB schemas

Several RDB schemas have been translated into corresponding ORDB schemas [Carey

et al., 1997; Urban and Dietrich, 2003; Keivani, 2006]. Figure 9.5 shows a fragment

of the ORDB SQL3 schema mapped by Urban and Dietrich approach and Figure 9.6

shows the equivalent schema generated by MIGROX. Further descriptions of both

schemas can be found in Appendix D.

Considering the differences in SQL syntax between Oracle (the result of MIGROX)

and the SQL3 standard, the same schemas, including relations and constraints are

translated by MIGROX and the above approaches into equivalent ORDB object types,

including attributes, references among objects and nested tables/arrays, and object

CHAPTER 9. EVALUATION OF THE PROTOTYPE 159

create type student udt under person udt as (

status varchar(20),

clubs ref(campusclub udt) scope campusclub array[20],

major ref(department udt) scope department) not final

method getclubs() returns varchar(25) array[20];

create type campusclub udt as (

cid varchar(11), name varchar(25), location varchar(25), phone varchar(25),

advisor ref(faculty udt) scope faculty,

members ref(student udt) scope student array[100]) not final

ref is system generated;

create type department udt as (

code varchar(3), name varchar(40),

deptchair ref(faculty udt) scope faculty) not final

ref is system generated

method getstudents() returns varchar(40) array[1000],

method getfaculty() returns varchar(40) array[50];

create table student of student udt under person;

create table department of department udt (

constraint department pk primary key(code),

ref is oid system generated);

create table campusclub of campusclub udt (

constraint campusclub pk primary key(cid),

ref is oid system generated);

Figure 9.5: Fragment of ORDB School schema mapped from Urban and Dietrich [2003]

create or replace type student t under person t (

status char(10), clubs campusclub ntt, major ref department t) final;

/

create or replace type campusclub t as object (

cid char(10), name char(20), phone char(10), location char(30),

members student ntt, advisor ref faculty t) not final;

/

create or replace type department t as object (

code char(3), name char(20), faculties faculty ntt, students student ntt, deptchair ref faculty t)

not final;

/

create table campusclub of campusclub t

nested table members store as members nt

;

create table department of department t

nested table faculties store as faculties nt

nested table students store as students nt

;

create table student of student t

nested table clubs store as clubs nt

;

alter table campusclub add constraint campusclub pk primary key (cid);

alter table department add constraint department pk primary key (code);

alter table student add (scope for (major) is department);

alter table campusclub add (scope for (advisor) is faculty);

...

Figure 9.6: Fragment of ORDB School schema generated by the MIGROX prototype

CHAPTER 9. EVALUATION OF THE PROTOTYPE 160

tables. Similar to MIGROX, object types, which may be defined as inheritance hierar-

chies have been used to create object tables [Carey et al., 1997; Keivani, 2006; Urban

and Dietrich, 2003], and primary keys are defined for those tables. Unlike in the other

approaches, RDB relationships are translated by MIGROX into object-based relation-

ships bi-directionally. The 1 side of relationships is translated as ref. However, as

arrays have their drawbacks, such as fixed size, MIGROX is similar to Keivani [2006]

in mapping the M side of relationships as nested tables. Nested tables are supported

by Oracle and are designed to handle unordered and unlimited elements. Nested ta-

bles are especially appropriate for modelling association/aggregation collection data

types. Urban and Dietrich [2003] used an SQL3 array of refs to map the multi-valued

relationships. Unlike other approaches, they proposed using triggers for referential

integrity maintenance in the ORDB schema [Urban and Dietrich, 2003].

XML Schemas

Elmasri and Navathe [2006] described a general algorithm for mapping an EER into

an RDB schema and then into XML Schema. A database called Company is used

to illustrate the mapping steps (see Chapters 7 and 27 for ER diagram, and the

corresponding RBD schema and the XML schema document [Elmasri and Navathe,

2006]). We have used the Company RDB as input for the MIGROX prototype, aiming

to generate an XML document from it. The XML Schema file generated by MIGROX

from this database is comparable to the XML Schema file mapped from Elmasri and

Navathe [2006], a fragment of which is shown in Figure 9.7. The equivalent schema

generated by the MIGROX prototype is given in Figure 9.8. The two XML Schema

documents generated by both approaches can be found in Appendix E.

The description of both schema documents, including namespaces, first level ele-

ments and their types, minimum and maximum occurrences, key specifications and

composed attributes, are specified similarly in both approaches. Elements are speci-

fied with a type attribute so that the structure of the elements are defined separately.

Complex types are defined with sequences of sub-elements corresponding to the at-

tributes of RDB relations. Multi-valued attributes are specified with maxOccurs =

“unbounded” in the corresponding element. Generally, in terms of semantics and

information preservations, it was found that both XML Schema documents were

comparable. However, MIGROX maps more precisely the attributes and their types

and whether each attribute is optional or required.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 161

<xsd:complexType name = "Employee">
<xsd:sequence>

<xsd:element name = "employeeName" type= "Name"/>
<xsd:element name = "employeeSsn" type= "xsd:string"/>
<xsd:element name = "employeeSex" type= "xsd:string"/>
<xsd:element name = "employeeSalary" type= "xsd:unsignedInt"/>
<xsd:element name = "employeeBirthdate" type= "xsd:date"/>
<xsd:element name = "employeeDepartmentNumber" type= "xsd:string"/>
<xsd:element name = "employeeSuperSSN" type= "xsd:string/>
<xsd:element name = "employeeAddress" type= "Address"/>
<xsd:element name = "employeeWorksOn" type= "WorksOn" minOccurs= "1" maxOccurs=

"unbounded"/>
<xsd:element name = "employeeDependent" type= "Dependent" minOccurs= "0" maxOccurs=

"unbounded"/>
</xsd:sequence>

</xsd:complexType>
...

<xs:complexType name = "Name">
<xs:sequence>

<xs:element name = "firstName" type= "xs:string"/>
<xs:element name = "middleName" type= "xs:string"/>
<xs:element name = "lastName" type= "xs:string"/>

</xs:sequence>
</xs:complexType>
...

<xs:complexType name = "Dependent">
<xs:sequence>

<xs:element name = "dependentName" type= "xs:string"/>
<xs:element name = "dependentSsex" type= "xs:string"/>
<xs:element name = "dependentBirthDate" type= "xs:date"/>
<xs:element name = "dependentRelationship" type= "xs:string"/>

</xs:sequence>
</xs:complexType>

Figure 9.7: Fragment of XML Company schema mapped from Elmasri and Navathe [2006]

<xs:complexType name = "Employee t">
<xs:sequence>

<xs:element name = "fname" type= "xs:string"/>
<xs:element name = "minit" type= "xs:string" minOccurs= "0"/>
<xs:element name = "lname" type= "xs:string"/>
<xs:element name = "ssn" type= "xs:int"/>
<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/>
<xs:element name = "address" type= "xs:string" minOccurs= "0"/>
<xs:element name = "sex" type= "xs:string" minOccurs= "0"/>
<xs:element name = "salary" type= "xs:int" minOccurs= "0"/>
<xs:element name = "superssn" type= "xs:int" minOccurs= "0"/>
<xs:element name = "dno" type= "xs:int"/>
<xs:element name = "hasDependent" type= "Dependent t" minOccurs= "0" maxOccurs=

"unbounded"/>
</xs:sequence>

</xs:complexType>
...

<xs:complexType name = "Dependent t">
<xs:sequence>

<xs:element name = "dependent name" type= "xs:string"/>
<xs:element name = "sex" type= "xs:string"/>
<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/>
<xs:element name = "relationship" type= "xs:string" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>

Figure 9.8: Fragment of XML Company schema generated by the MIGROX prototype

CHAPTER 9. EVALUATION OF THE PROTOTYPE 162

Unlike MIGROX, composite attributes such as Name and Address are specified as

complex types and embedded directly in their parent elements by Elmasri and Na-

vathe [2006]. The fname, minit and lname attributes that represent the name of an

Employee are, conceptually, a composite attribute, and is normally identified at the

conceptual design stage. So the fact that the Name is composite in XML is because

of it is being composite in the ER model (see Elmasri and Navathe [2006], page 218).

However, it has been broken down into atomic parts in the relational representation.

There is no way to identify this composition automatically from the RBD schema in

Elmasri and Navathe [2006] without human input. However, although such a mapping

uses the features of XML Schema language, it seems that from a design perspective

it is meaningless to map these attributes as separate types from the RDB, as each

employee has one address and one name. MIGROX maps these attributes in a flat

relational format. However, if these attributes are represented in separate relations

with the key of the Employee relation, then MIGROX will map them in a similar way

to Elmasri and Navathe [2006]. As these attributes are part of the Employee relation,

MIGROX maps them as sub-elements of the Employee complex type.

The Works on relation is translated into two complex types embedded into their

parent elements as compound attributes by Elmasri and Navathe [2006], whereas it

is mapped by MIGROX as main element under the schema.

In summary, in this experiment we have compared MIGROX with existing man-

ual mapping techniques. These techniques give the user an opportunity to use all

features of target models and their conceptual schemas, resulting in well-designed

physical schemas. By comparing the results of these techniques with the results of

the MIGROX prototype, we found that both sets of results were comparable. The

resulting schemas show MIGROX’s algorithms and existing manual algorithms to be

equivalence-preserving translations. Furthermore, MIGROX is a fully-automatic ap-

proach and has the ability to generate more accurate and correct target schemas. In

addition, MIGROX was more comprehensive than its manual counterparts because

it generates (if desired by the user) one target database (or its schema only) or up to

three different databases. Therefore, the CDM, which preserves an enhanced struc-

ture of an existing RDB, is translatable into any of the three target database schemas.

The algorithms of CDM generation and schema translation are correct in the sense

that they have all preserved the original information of the RDBs. Many semantics

CHAPTER 9. EVALUATION OF THE PROTOTYPE 163

have been converted from an RDB into the target databases, e.g., association, aggre-

gation and inheritance. Moreover, the main type of constraints that can be extracted

from an RDB, including key constraints, constraints on NULLs and entity and ref-

erential integrity constraints, are all translated explicitly into the equivalent target

schemas.

9.3.2 Experiment II: Testing Data Equivalence and the Com-
pleteness of Migration Rules

This experiment explores the equivalence between source and target databases in

terms of data and integrity constraints. The experiment involves a set of queries

applied on a subset of the RDB version of the UniDB and each of the three target

databases generated by the MIGROX prototype. This section presents the results of

the experiment, which are measured based on user readable metrics. The description

of each query, its code in RDB SQL and its equivalents in OQL, ORDB SQL and

XQuery as well as the query results, are given. We explain the role of each query and

any observations concerning the results if they vary.

Query 1: SINGLE-EXACT

Query Find the name, building and budget of the department with number 1.

RDB select name, building, budget from department where deptno = 1;

ORDB select name, building, budget from department where deptno = 1;

OQL select struct(name:d.name, building:d.building, budget:d.budget) from d
in Departments where d.deptno = 1

XQuery for $s in doc("XMLSchema.xml")//department where $s/deptno = 1 return
<res> { $s/name/text(), $s/ building/text(), $s/budget/text()} </res>

Result name building budget

deptname1 building 6000000

This query retrieves data from one type as a simple exact-match lookup. The query

returns details of department 1. Departments in the OODB query is the extent of

the Department class, i.e., an entry point to return objects from it as a collection of

struct. The text() in the XML query gives the data of the attributes without the

enclosing tags.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 164

Query 2: HIER-EXACT - Exact Match Over Inheritance Hierarchy

Query Find the name and annual salary of the staff with id 2.

RDB select p.name, s.annualsalary from person p, staff s where s.id = p.id
and s.id = 2;

ORDB select name, annualsalary from staff where id = 2;

OQL select struct(name:s.name, salary:s.annualsalary) from s in Staffs
where s.id = 2

XQuery for $x in doc("XMLSchema.xml")//staff where $x/id = 2 return <res>
{$x/name/text(), $x/annualsalary/text()} </res>

Result name annualsalary

staffName2 33000

This query returns data over the inheritance hierarchy. The join operation is required

in the RDB to join the Staff sub-table with its super-table Person to retrieve the

desired data over the hierarchy, however it is not needed in the target database queries.

Query 3: SINGLE-METH - Method Query Over One Type

Query Find IDs of all Professors who make 145000 or more per year.

RDB select id from professor p where (p.aysalary * (9 + p.monthsummer)/
9.0) >= 145000;

ORDB select id from professor p where (p.aysalary * (9 + p.monthsummer)/
9.0) >= 145000;

OQL select p.id from p in Professors where (p.aysalary * (9 +
p.monthsummer)/ 9.0) >= 145000

XQuery for $x in doc("XMLSchema.xml")//professor where ($x/aysalary * (9 +
$x/monthsummer) div 9.0) >= 145000 return <res> {$x/id/text()}</res>

Result id

65805

54453

This query returns salary calculations over one table/class. For object-based systems,

this calculation could be done by invoking methods, which are described in Section 9.4

as part of query performance testing.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 165

Query 4: HIER-METH - Method Query over Inheritance Hierarchy

Query Find names and addresses of all Employees who make 140000 or more per year.

RDB select p.name, p.street, p.city, p.zipcode from person p,
staff s where p.id = s.id and s.annualsalary >= 140000 union
select p.name, p.street, p.city, p.zipcode from person
p, professor f where p.id = f.id and (f.aysalary
* (9 + f.monthsummer) / 9.0) >= 140000 union
select p.name, p.street, p.city, p.zipcode from person p, ta t where
p.id = t.id and apptfraction * (2 * t.semestersalary) >= 140000;

ORDB select s.name, s.street, s.city, s.zipcode from
staff s where s.annualsalary >= 140000 union
select p.name, p.street, p.city, p.zipcode from professor p
where (p.aysalary * (9 + p.monthsummer) / 9.0) >= 140000 union
select t.name, t.street, t.city, t.zipcode from ta t where apptfraction
* (2 * t.semestersalary) >= 140000;

OQL select struct(name:s.name, street:s.street, city:s.city, zipcode:
s.zipcode) from s in Staffs where s.annualsalary >= 140000 union
select struct(name:p.name, street:p.street, city:p.city,
zipcode: p.zipcode from p in Professors where
(p.aysalary * (9 + p.monthsummer) / 9.0) >= 140000 union
select struct(name:t.name, street:t.street, city:t.city, zipcode:
t.zipcode from t in Tas where t.apptfraction * (2 * t.semestersalary)
>= 140000

XQuery for $s in doc("XMLSchema.xml")//staff where $s/annualsalary
>= 140000 return <res> { $s/name/text(), $s/street/text(),
$s/city/text(), $s/zipcode/text() } </res>,
for $p in doc("XMLSchema.xml")//professor where ($p/aysalary * (9 +
$p/monthsummer) div 9.0) >=140000 return <res> { $p/name/text(),
$p/street/text(), $p/city/text(), $p/zipcode/text() } </res>,
for $t in doc("XMLSchema.xml")//ta where $t/apptfraction * (2
* $t/semestersalary) >= 140000 return <res> { $t/name/text(),
$t/street/text(), $t/city/text(), $t/zipcode/text()}</res>

Result name street city zipcode

professorName47254 xxxx streetname city name 34306

professorName54453 xxxx streetname city name 23403

professorName59247 xxxx streetname city name 98075

professorName65805 xxxx streetname city name 92344

This query returns salary calculations over the inheritance hierarchy. As the Employee

type is in the middle of the hierarchy, searching its sub-classes using the union op-

eration is required in object-based/XML queries. In the RDB, this query is similar

considering the top-level super-class, i.e., Person table to be joined with all other

CHAPTER 9. EVALUATION OF THE PROTOTYPE 166

sub-classes involved in the hierarchy.

Query 5: SINGLE-JOIN - Relational Join Query

Query Find the names, buildings and budgets of all departments with the same budget

RDB select d1.name, d1.building, d1.budget, d2.name, d2.building, d2.budget
from department d1, department d2 where d1.budget = d2.budget and
d1.deptno < d2.deptno;

ORDB select d1.name, d1.building, d1.budget, d2.name, d2.building, d2.budget
from department d1, department d2 where d1.budget = d2.budget and
d1.deptno < d2.deptno;

OQL select struct(name1:d1.name, building1:d1.building, budget1:d1.budget,
name2:d2.name, building2:d2.building, budget2:d2.budget) from d1
in Departments, d2 in Departments where d1.budget = d2.budget and
d1.deptno < d2.deptno

XQuery for $x in doc("XMLSchema.xml")//department, $y in doc("XMLSchema.xml")
//department where $x/budget = $y/budget and $x/deptno < $y/deptno
return <res> { $x/name/text(), $x/building/text(), $x/budget/text(),
$y/name/text(), $y/building/text(), $y/budget/text() } </res>

Result name1 building1 budget1 name2 building2 budget2

deptname1 building 6000000 deptname220 building 6000000

This query retrieves data using self-join processing. As such join operations can be

specified in all the query languages used, the structures of all versions of the query

were very close.

Query 6: HIER-JOIN - Relational Join Over Inheritance Hierarchy

Query Find all TAs with the same hired date as those live in the same zip code area.

RDB select p1.id, p1.name, p2.id, p2.name from person p1, person
p2, employee e1, employee e2, ta t1, ta t2 where e1.datehired =
e2.datehired and p1.zipcode = p2.zipcode and p1.id < p2.id and p1.id =
e1.id and p2.id = e2.id and p1.id = t1.id and p2.id = t2.id;

ORDB select t1.id, t1.name, t2.id, t2.name from ta t1, ta t2 where
t1.datehired = t2.datehired and t1.zipcode = t2.zipcode and t1.id <
t2.id;

OQL select struct(id1:t1.id, name1:t1.name, id2:t2.id, name2:t2.name) from
t1 in Tas, t2 in Tas where t1.datehired = t2.datehired and t1.zipcode =
t2.zipcode and t1.id < t2.id

CHAPTER 9. EVALUATION OF THE PROTOTYPE 167

XQuery for $x in doc("XMLSchema.xml")//ta, $y in doc("XMLSchema.xml")//ta
where $x/datehired = $y/datehired and $x/zipcode = $y/zipcode and $x/id
< $y/id return <res>{$x/id/text(), $x/name/text(), $y/id/text(),
$y/name/text() } </res>

Result id1 name1 id2 name2

47397 studentName47397 71661 studentName71661

This query uses explicit joins between types in inheritance hierarchies. Unlike target

database queries, all top-level super-tables, i.e., Person and Employee of the sub-table

TA, are to be accounted for in the join operation in the RDB version of the query.

Query 7: SET-ELEMENT - Set Membership

Query Find ids, names and addresses of all staff who have a child named boy90.

RDB select p.id, p.name, p.street, p.city, p.state, p.zipcode from person
p, staff s, kids k where p.id = k.id and s.id = k.id and k.kidname =
‘boy90’;

ORDB select s.id, s.name, s.street, s.city, s.state, s.zipcode from staff s,
table (s.kidnames) k where k.kidname = ‘boy90’;

OQL select struct(id:s.id, name:s.name, street:s.street, city:s.city,
state:s.state, zipcode:zipcode) from s in Staffs where "boy90" in
s.kidnames

XQuery for $x in doc("XMLSchema.xml")//staff where $x/kidnames = ‘boy90’
return <res> { $x/id/text(), $x/name/text(), $x/street/text(),
$x/city/text(), $x/state/text(), $x/zipcode/text()} </res>

Result id name street city state zipcode

1 staffName1 xxxx streetname city name Oklahoma 41421

3 staffName3 xxxx streetname city name Florida 18456

This query shows how to handle collection-valued attributes. The RDB query involves

a join with the Kids table, whereas a set of strings, a nested table and a sub-element

containing the collection-valued fields are used in the OODB, ORDB and XML query

versions, respectively.

Query 8: SET-AND - Anded Set Membership

Query Find ids, names and addresses of all Staff who have children named girl90 and boy90.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 168

RDB select p.id, p.name, p.street, p.city, p.state, p.zipcode from person
p, staff e, kids k1, kids k2 where e.id = p.id and e.id = k1.id and
e.id=k2.id and k1.kidname = ‘girl90’ and k2.kidname = ‘boy90’;

ORDB select s.id, s.name, s.street, s.city, s.state, s.zipcode from staff
s, table (s.kidnames) k1, table (s.kidnames) k2 where k1.kidname =
‘girl90’ and k2.kidname = ‘boy90’;

OQL select struct(id:s.id, name:s.name, street:s.street, city:s.city,
state:s.state, zipcode:zipcode) from s in Staffs where "girl90" in
s.kidnames and "boy90" in s.kidnames

XQuery for $x in doc("XMLSchema.xml")//staff let $m := $x/kidnames, $n
:= $x/kidnames where $m = ‘girl90’ and $n = ‘boy90’ return <res>
{$x/id/text(), $x/name /text(), $x/street /text(), $x/city /text(),
$x/state /text(), $x/zipcode/text()} </res>

Result id name street city state zipcode

1 staffName1 xxxx streetname city name Oklahoma 41421

This query is similar to the SET-ELEMENT query used for finding data in collection

types, however, it is slightly more complex.

Query 9: 1HOP-NONE - Single-Hop Path, No Selection

Query Find the details of all student/major pairs.

RDB select p.id, p.name, p.state, d.deptno, d.name from person p,
department d, student s where p.id = s.id and s.majordept = d.deptno;

ORDB select s.id, s.name, s.state, s.major.deptno, s.major.name from student
s;

OQL select struct(id:s.id, name:s.name, state:s.state,
deptno:s.major.deptno, deptname:s.major.name) from s in Students

XQuery for $x in doc("XMLSchema.xml")//student, $y in doc("XMLSchema.xml")//
department where $x/majordept = $y/deptno return <res> {
$x/id/text(), $x/name/text(), $x/state/text(), $y/deptno/text(),
$y/name/text()}</res>

CHAPTER 9. EVALUATION OF THE PROTOTYPE 169

Result id name state deptno deptname

65990 studentName65990 Vermont 1 deptname1

75001 studentName75001 Georgia 1 deptname1

75051 studentName75051 Florida 10 deptname10

117525 studentName117525 Oklahoma 10 deptname10

108981 studentName108981 West Virginia 220 deptname220

47397 studentName47397 Iowa 25 deptname25

71661 studentName71661 Idaho 25 deptname25

This query finds data using path expressions. In object-based databases, references

are de-referenced using the “.” symbol in path expressions. References hide the

join operations, which are explicitly necessary for this kind of query in an RDB and

XML. In the RDB query, the top level super-table, i.e., Person is included in the

join. References simplify query writing considerably.

Query 10: 1HOP-ONE - Single-Hop Path, One-Side Selection

Query Find the major of the student named studentName75001.

RDB select p.id, p.name, d.deptno, d.name, d.building from person p,
student s, department d where p.id = s.id and s.majordept = d.deptno
and p.name= ‘studentName75001’;

ORDB select s.id, s.name, s.major.deptno, s.major.name, s.major.building
from student s where name= ‘studentName75001’;

OQL select struct(id:s.id, name:s.name, deptno:s.major.deptno,
deptname:s.major.name, building:s.major.building) from s in Students
where s.name= "studentName75001"

XQuery for $x in doc("XMLSchema.xml")//student, $y in doc("XMLSchema.xml")//
department where $x/majordept = $y/deptno and $x/name=
‘studentName75001’ return <res> {$x/id/text(), $x/name/text(),
$y/deptno/text(), $y/name/text(), $y/building/text() } </res>

Result id name deptno deptname building

75001 studentName75001 1 deptname1 building

This query is an exact-match lookup (using path expressions) of a department start-

ing from the Student type. In object-based databases, data can also be retrieved

CHAPTER 9. EVALUATION OF THE PROTOTYPE 170

using the opposite direction of the relationship since we define the relationship bi-

directionally. Starting from departments and following the set references to the stu-

dents can return the same data. To extract the same data, joins are again required

in the RDB and XML query versions.

Query 11: 1HOP-MANY - Single-Hop Path, Many-Side Selection

Query Find ids and names of all students majoring in Department1.

RDB select p.id, p.name from person p, student s, department d where p.id =
s.id and s.majordept = d.deptno and d.name = ‘deptname1’;

ORDB select st.column value.id, st.column value.name from department d,
table(d.students) st where d.name = ‘deptname1’;

OQL select struct(id:s.id, name:s.name) from d in Departments, s in
d.students where d.name = "deptname1"

XQuery for $x in doc("XMLSchema.xml")//student, $y in
doc("XMLSchema.xml")//department where $x/majordept = $y/deptno and
$y/name= ‘deptname1’ return <res>{$x/id/text(), $x/name/text()}</res>

Result id name

65990 studentName65990

75001 studentName75001

Joining the related types, this query retrieves the same data from the RDB and XML

systems. In object-based query versions, starting from departments, the queries follow

the path to the set of references to the students to return the data. The column value

is used in the ORDB query to return the objects from nested tables whose tuples are

actually references to tuples in other tables.

Query 12: 2HOP-ONE - Two-Hop Path, Many-Side Selection

Query Find the semester, enrolment limit, department number, and department name for all
sections of courses taught in room 50.

RDB select x.semester, x.nostudents, d.deptno, d.name from coursesection
x, course c, department d where x.deptno = c.deptno and x.courseno =
c.courseno and c.deptno = d.deptno and x.roomno = 50;

ORDB select se.column value.semester, se.column value.nostudents,
d.deptno, d.name from department d, table(d.offers) co,
table(co.column value.sections) se where se.column value.roomno = 50;

CHAPTER 9. EVALUATION OF THE PROTOTYPE 171

OQL select struct(semester:s.semester, nostudents:s.nostudents,
deptno:d.deptno, deptname:d.name) from d in Departments, o in d.offers,
s in o.section where s.roomno = 50

XQuery for $x in doc("XMLSchema.xml")//department, $y in doc("XMLSchema.xml")
//course, $z in doc("XMLSchema.xml") //coursesection where $x/deptno =
$y/deptno and $y/courseno = $z/courseno and $y/deptno = $z/deptno and
$z/roomno = 50 return <res> {$z/semester/text(), $z/nostudents/text(),
$x/deptno/text(), $x/name/text()} </res>

Result semester nostudents deptno deptname

1 20 220 deptname220

2 20 220 deptname220

This query retrieves data with longer paths and more complex collection types. The

desired data are obtained from the RDB and XML by joining the Department, Course

and the Coursesection tables/elements. The same data are returned in the ORDB

using two hop paths, starting from the Department through the path of nested ta-

ble offers, which is a collection of references to the Courses and then the nested

table sections defined in the Course, which is a collection of references to the

Coursesection. This query shows the preservation of a complex ref-based aggre-

gation relationship, as each department offers a collection of courses (as components)

and similarly each course consists of a collection of sections.

Query 13: Checking primary key constraints

Query Insert data of a new depatment with number 25.

RDB insert into department values (25, ‘deptname25’, ‘building’, 8000000,
47254, 55, 12);

ORDB insert into department values (25, ‘deptname25’, ‘building’, 8000000,
55, 12, course ntt(), null, null, null);

OQL %d25 := persistent Department (deptno: 25, name: "deptname25",
building: "building", budget: 8000000, latitude: 55, longitude:
12);

XQuery the XML document has been edited manually by adding a department
elememt instance with number 25

Result unique constraint violated

This query is to ensure that primary key constraints defined in the source schema

are translated into the target schemas. We need to check that no two objects in

CHAPTER 9. EVALUATION OF THE PROTOTYPE 172

one table/class/element can have the same value for the primary key. Every primary

key, which must be unique can be made up of a single attribute or combination of

attributes. For example, duplication in deptno gives an error as the primary key con-

straint is violated. That is, every department object has a number, and that number

is distinct from every other department objects. For each database, we inserted a

tuple that contains a value of an attribute that is specified as a primary key and is

already inserted. The tuple is rejected by all the DBMSs.

Query 14: Checking unique and null/not null constraints

Query Insert data of a new depatment with name deptname25.

RDB insert into department values (26, ’deptname25’, ’building’, 8000000,
47254, 55, 12);

ORDB insert into department values (26, ’deptname25’, ’building’, 8000000,
55, 12, course ntt(), null, null, null);

OQL unique, null and not null constraints are not supported

XQuery the current XML document has been edited manually by adding a
department elememt with name deptname25

Result unique constraint violated

Several queries have been designed to ensure that null/not null and unique constraints

specified in the source schema are translated into the target schemas, if applicable.

In these queries we have ensured that no two objects can have the same value for

the unique key, and that every object must contain a value for the attribute that is

specified as not null. For each database (apart from the OODB), we have inserted

tuples to test these constraints, and found that the tuples have been rejected by

the DBMSs. As the attribute name is restricted to be unique, the department name

department25, which is already stored in a department with number 25, was rejected.

Similarly, we cannot insert null into name attribute in a department as it is specified

in the target schema as not null. The unique keyword is similar to the key in

XML. The names for all departments must be unique. Nullable/not nullable fields in

elements, which are represented with minOccurs=“0” where the field is nullable, or

minOccurs=“1” where the field is not nullable, are validated. The test shows that

these constraints are also preserved in the XML Schema document. For example, a

null value inserted into the name field in an instance of the Department element has

been rejected. This is because the name attribute was specified with minOccurs=“1”.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 173

Query 15: Checking referential integrity constraints

Query Delete the professor identified by id = 59247.

RDB delete from professor where id = 59247;

ORDB delete from professor where id = 59247;

OQL x:= element (select * from p in Professors where id = 59247

x → delete()

XQuery the professor element identifed by id = 59247 has been removed from the
XML document manually

Result referintial integrity constraint violated

Referential integrity in RDB ensures that relationships between tables remain con-

sistent. Referential integrity also includes the cascading update and delete, which

ensure that changes made to the foreign key table are reflected in the primary key

table (cascading techniques are not covered in our method). This means that, if a

table has a foreign key referencing another table, we cannot add a tuple to this ta-

ble unless there is a corresponding tuple in the table that contains the primary key.

In addition, we cannot delete a tuple from the table that contains the primary key

unless the corresponding tuple in the table that contains the foreign key is deleted.

The Department table has a not null foreign key, i.e., chair that references a tuple

in the Professor table. Referential integrity enforces the inability to insert a tuple

to the Department table unless the chair attribute references an existing tuple in the

Professor table. Referential integrity of bi-directional relationships is automatically

maintained in ODMG 3.0. If an object participating in a relationship needs to be

deleted, then any traversal path to that object must also be deleted. For example,

when an object of CourseSection is deleted, then not only is that object’s refer-

ence the Instructor (i.e., Professor/TA) object through the teacher traversal path

deleted, but also any references in Instructor objects to the CourseSection object

via the teaches traversal path must also be deleted. We have deleted an object com-

puted by the OQL query in lambda-DB using %delete() function. However, it seems

that the object is not removed from relationships and object references, and this may

cause dangling pointers. In addition, referential integrity on refs that are in nested

tables in the ORDB is not guaranteed because Oracle does not have a mechanism

to do so. This integrity could be preserved, e.g., using triggers once the migration

process is completed. For XML data, referential integrity carries over with the XML

CHAPTER 9. EVALUATION OF THE PROTOTYPE 174

Schema key and keyref keywords. The keyref keyword specifies a reference to an

element specified by key or unique. In the test, it was found that each chair value

in the Department element must refer to a valid id value in a Professor.

In summary, in this experiment we ran the selected queries for a subset of the RDB

version of the UniDB and for each of the three corresponding target databases to

measure the source and target database equivalence. We have loaded the RDB and

target databases into their native database systems to check whether or not the

results are the same. The queries and their results were applied on a subset of the

UniDB to be assessed easily by a user. The user would analyse the sample databases

to guarantee that the queries had been designed correctly to give the right results.

After we analysed the results of the queries obtained from the four databases, we found

that the results were identical. The query results show that the target databases have

been generated without redundancy or loss of data. Consequently, this means that the

CDM represents a key mediator for converting an existing RDB data into any of the

target databases. The CDM has successfully guided the extraction, transformation

and loading of data into target databases by facilitating the reallocation of attributes

in RDBs to the appropriate values in the target databases. Moreover, many semantics,

which have been extracted from the RDB into the CDM, such as relationships and

integrity constraints, are tested by the queries and found to be preserved in the

target databases. Integrity constraints have been addressed and tested, making our

approach superior to its predecessors at this point. However, in object-based systems

referential integrity cannot be specified. Key constraints of the RDB are converted

into the XML Schema document as key/keyref and unique elements, which can

enforce referential integrity and the uniqueness of primary keys in XML instance

documents. However, the keys of XML elements, i.e., super-types, which are usually

defined in an XML Schema using XPath [Berglund et al., 2007] are not valid for other

element(s), i.e., sub-types, which would substitute the super-type. This is because

XPath is not schema-aware. In addition, from this experiment, we noticed that a

query can work well but may not give the desired results, and this cannot be easily

identified if the query is run on a large database.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 175

9.4 Performance Comparison

Target databases may be accessed through the concepts of their data models with a

reduced overhead in term of performance compared to an existing RDB. This section

describes an experiment designed to explore the efficiency of query processing for an

RDB and the equivalent ORDB created in Oracle 11g DBMS. Although not a direct

issue for the research hypothesis, comparing the performance of source and target

databases may help the user to decide whether or not they should move into their

chosen target database if performance is a deciding factor.

In Experiment II, a set of queries and their results were presented, indicating the

intended coverage for each query, regarding the preservation of semantics and data

equivalence. The queries were run on a subset of the RDB version of UniDB and the

corresponding three targets generated by MIGROX prototype. The results described

here are obtained from implementing the first 12 queries of Experiment II on the

entire RDB UniDB and its corresponding ORDB generated by the prototype. The

elapsed time has been measured for each query. Each RDB query has been executed

for unindexed and indexed data. As Oracle supports scoped references, the ORDB

has been queried with and without index/scoped references. The results of each query

are given, followed by comments on their significance.

Cost metrics: In this experiment, we have measured the query elapsed time as

a performance metric. To ensure a secure and stable environment, the experiment

has been carried out on a stand-alone isolated PC, so that fluctuations in network

activity could not affect query execution. All queries were run with the buffer pool

empty as the Oracle system was shut down and restarted for each query. While

we were obtaining elapsed times in repeating the query many times, it was found

that apart from the first reading, all the subsequent elapsed times were somewhat

similar. Thus the average was taken from the second to the fourth time readings.

Table 9.2 shows the measured times in seconds for both RDB and ORDB versions of

the queries. The table shows the measured time as indexed and unindexed for RDB

queries and indexed/scoped and unindexed/unscoped for ORDB queries. The times

are shown as variant A/variant B for the last two queries. In addition to measuring

elapsed times, the EXPLAIN PLAN statement was used to determine the execution

plan that Oracle DBMS follows in performing each query. The EXPLAIN PLAN

CHAPTER 9. EVALUATION OF THE PROTOTYPE 176

statement inserts a row describing each step of the execution plan into a table called

PLAN TABLE. This table contains the necessary metrics, including the cost of exe-

cuting the query, and CPU and I/O costs for any indexes defined in the table. The

PLAN TABLE gives a good understanding of the operational sequence that Oracle

performs to run the queries. Tables 9.3 and 9.4 show performance analysis results

of the SET-ELEMENT query execution for the RDB and ORDB, respectively. The

output from PLAN TABLE that Oracle fills as a result of the EXPLAIN PLAN state-

ments for RDB and ORDB queries with indexes and scoped references are provided

in Appendixes F and G, respectively.

Query Relational Object-relational rows
indexed unindexed indexed/scoped unindexed/unscoped selected

1- SINGLE-EXACT 0.00 0.01 0.00 0.00 1
2- HIER-EXACT 0.00 0.01 0.00 0.01 1
3- SINGLE-METH 0.24 0.25 00.23 496.80 2014
4- HIER-METH 1.03 1.00 0.96 737.61 2788
5- SINGLE-JOIN 1.28 1.21 1.28 1.26 3044
6- HIER-JOIN 0.34 0.39 0.03 0.03 1
7- SET-ELEMENT 0.21 0.14 0.10 0.11 277
8- SET-AND 0.13 0.15 0.12 0.12 277
9- 1HOP-NONE 43.07 43.07 43.13 43.12 75000
10- 1HOP-ONE 0.00 0.03 0.00 0.46 1
11- 1HOP-MANY 0.04 0.07 0.04/0.03 0.07/0.48 318
12- 2HOP-ONE 0.07 0.07 7.22/0.06 61.8/0.31 530
Sum 46.41 46.40 45.94 1279.90

Table 9.2: Measured times in seconds for queries

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 497 53676 489 (3) 00:00:06
1 NESTED LOOPS 497 53676 489 (3) 00:00:06
2 NESTED LOOPS 497 47215 489 (3) 00:00:06
3 TABLE ACCESS FULL PERSON 114K 8527K 479 (1) 00:00:06

* 4 INDEX UNIQUE SCAN KIDS PK 1 19 0 (0) 00:00:01
* 5 INDEX UNIQUE SCAN STAFF PK 1 13 0 (0) 00:00:01
Predicate Information (identified by operation id):
4 - access(”P”.”ID”=”K”.”ID” AND ”K”.”KIDNAME”=’boy90’)
5 - access(”S”.”ID”=”K”.”ID”)
Note–dynamic sampling used for this statement

Table 9.3: Plan table for relational SET-ELEMENT query

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT 279 28458 240 (1) 00:00:03

* 1 HASH JOIN 279 28458 240 (1) 00:00:03
* 2 TABLE ACCESS FULL KIDNAMES STAFF NT 279 4464 69 (2) 00:00:01

3 TABLE ACCESS FULL STAFF 20802 1747K 171 (1) 00:00:03
Predicate Information (identified by operation id):
1 - access(”K”.”NESTED TABLE ID”=”S”.”SYS NC0001500016$”)
2 - filter(”K”.”KIDNAME”=’boy90’)
Note–dynamic sampling used for this statement

Table 9.4: Plan table for object-relational SET-ELEMENT query

CHAPTER 9. EVALUATION OF THE PROTOTYPE 177

Database size: We have worked with up to 27.5M of RDB data and corresponding

data up to 115M of ORDB in Oracle. The size difference comes from the update

statements in the ORDB input files. RDB UniDB table cardinalities (number of

tuples) are given in Table 9.1. Although the RDB version of UniDB is a relatively

small data set, we have found that it is sufficient to evaluate the DBMS performance

using it and its corresponding ORDB data generated by the prototype. RDB data

have been loaded to Oracle using SQL*Loader, which is a very efficient data loading

tool. It was much faster than loading the script files generated by our prototype.

As ORDB object definition files and relationship files contain thousands of “insert

into” and “update” statements, it was expected that loading these files would take

much longer than using SQL*Loader, especially for object relationship files. We

have loaded the RDB data and ORDB object definition files before creating any

indexes since indexes increase the object loading time. Before loading ORDB object

relationship files, we created indexes on user-defined object identifers, which speed

up the process of establishing relationships among objects.

Indexing: To speed up the response time in query processing, we created other

appropriate indexes. Indexes are defined considering the queries and what data would

be retrieved. Indexes have been created for elements such as name, birthdate, zipcode,

etc. Foreign keys are also indexed whereas primary keys have default indexes in

Oracle. Nested tables have been indexed on NESTED TABLE ID. The salary()

function, which is used to calculate employee salaries has also been indexed. A list

of indexes created for this experiment may be found in Appendix H.

Query 1: SINGLE-EXACT

This query tests exact match look up over a single table. As both relational and

object-relational tables have the same number of attributes, tuples and indexes in

this query, the result times were identical, as expected. The cost (0.00s) estimates

were equal for both queries before and after indexing and scoping (for ORDB queries).

The query plans were also equal.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 178

Query 2: HIER-EXACT

This query assesses the system’s efficiency in managing queries over inheritance hi-

erarchies. Although indexing/scoping increases the time taken slightly (from 0.00s

to 0.01s), all queries performed very similarly with respect to time. As the union

operation was hidden in the query, the ORDB version was more natural and simple

than the RDB query.

Query 3: SINGLE-METH

This query compares performance time for calculating data stored in attributes in

the RDB with invoking functions in the ORDB. In the ORDB query, we used the

salary() function 1 to calculate the salaries of the professors (as shown below in Vari-

ant B of the query). Figure 9.9 shows the body of the function, whereas the function

definitions of the other sub-types of the Employee t type can be found in Appendix C.

Without indexes/scopes, the ORDB query was painfully slow (496.80s). The bad per-

formance, as shown in the plan table, was because of the range scans that have been

made by the optimizer to all nested tables in the Professor table. These nested

tables include advises nt, teaches professor nt and kidnames professor nt. To

speed up the execution time, these nested tables are indexed on the object identi-

fier, which improves the performance with the time dropping to 11.90s. Even this

length of time shows that the ORDB query is still slow, compared to the relational

time (0.25s). However, the performance was enhanced considerably further when an

index was created on the function. After indexing the function, the ORDB query

time (0.23s) shows that the system is more efficient in handling indexed functions,

compared to the complex predicates of the RDB query.

Variant B select id, aysalary from professor p where p.salary() >= 145000;

create or replace type body Professor t as
overriding member function salary return number is
begin

return (aysalary * (9 + monthsummer) / 9.0);
end;

end;

Figure 9.9: The salary() function for Professor t type

1As MIGROX does not map such methods, we have written the body of these methods manually
and added them later to their object types.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 179

Query 4: HIER-METH

This query tests the efficiency of the system in invoking indexed functions over inher-

itance hierarchy. Without indexes/scopes and unindexed function, the ORDB query

was very slow (737.61s). Similar to SINGLE-METH, the performance of Oracle im-

proved significantly, with a response time of 0.96s for the ORDB, after the function

was indexed, and was then faster than the relational time of 1.03s.

Variant B select s.name, s.street, s.city, s.zipcode from staff s where
s.salary() >= 140000 union select p.name, p.street, p.city, p.zipcode
from professor p where p.salary() >= 140000 union select t.name,
t.street, t.city, t.zipcode from ta t where t.salary() >= 140000;

Query 5: SINGLE-JOIN

This query is the baseline test for traditional relational join operations. As the struc-

tures of both queries were the same, the query times and the execution plans were

similar. Although the system seems slower with indexes (1.28s), the results show that

Oracle is efficient in handing join operations in both RDB and ORDB queries.

Query 6: HIER-JOIN

This query tests the efficiency of the system in handling joins among inheritance

hierarchies. Executing this query, Oracle was almost 10 times faster with ORDB

query compared to the RDB query, with similar performance before and after indexing

and scoping with times of 0.03s. The relational times were slower at 0.34s and 0.39s

before and after indexing, respectively.

Query 7: SET-ELEMENT

This query tests the system’s ability to handle collection data types. The RDB query

includes joins among Person, Staff and Kids tables, which make it slower than the

ORDB query. The ORDB query performed better than the RDB query, which proves

that Oracle is powerful in managing nested tables. An index was created on the

object identifier for the kidnames staff nt nested table and the kidname attribute.

However, it seems that indexing does not improve the performance and the elapsed

time was still similar, although the plan table shows that the nested table is accessed

by the index range scan.

CHAPTER 9. EVALUATION OF THE PROTOTYPE 180

Query 8: SET-AND

This query is similar to the SET-ELEMENT with a more complex structure to test the

effectiveness of Oracle in handling more complex value-based collections. Although

the response times of both queries were close (i.e., 0.13s and 0.15s for the RDB query

and 0.12s for the ORDB query) the results show that the system is still efficient in

handling value-based collection/sets of data stored in nested tables.

Query 9: 1HOP-NONE

This query tests the system efficiency at processing queries that involve one-hop path

expressions. In this query, the entire Student table was scanned with the 75000 row

selected. The two versions of queries are very close in elapsed time. Although in the

ORDB query, path expressions and scoped references were used, Oracle was slightly

faster in the RDB query (43.07s) compared to the ORDB query (43.13s). Using

scoped references, the system uses the knowledge that the ref-based attribute points

to an object of a particular type (Department t here). However, indexes and scoped

references do not increase performance in the ORDB query.

Query 10: 1HOP-ONE

This query tests how Oracle handles a short path expression. The elapsed times

of both RDB and ORDB queries with indexes were similar, whereas with unin-

dexd/unscoped settings, the ORDB query was 15 times slower than the RDB query

without an index. As bi-directional relationships are offered in the ORDB schema

generated by MIGROX, this query can have another variant (given below), in which

the efficiency of the system at handling queries involving a collection of references

can be tested (as seen in the subsequent two queries). However, intuitively, as the

data required are for a particular student where its related object contains a reference

pointing to the department object, it would be better to avoid this variant.

Variant B select s.column value.id, s.column value.name, d.deptno,
d.name, d.building from department d, table(d.students) s where
s.column value.name= ‘studentName75001’;

CHAPTER 9. EVALUATION OF THE PROTOTYPE 181

Query 11: 1HOP-MANY

This query tests the efficiency of Oracle at handling queries that contain collections

of references. The ORDB version of this query has two variants. Variant A (given

in Experiment II) with column value performed well in either case: indexed/scoped

(0.04s) or unindexed/unscoped (0.07s). However, Variant B (given below) with unin-

dexed/unscoped references was somewhat slower than the RDB and the ORDB Vari-

ant A queries. The query response time was 0.46s compared to just 0.03s and 0.04s in

the other equivalent queries. In other words, it was 16 times slower than the equiva-

lent ORDB query Variant B with an index and scoped references, and 12 times slower

than the equivalent RDB query with an index.

Variant B select s.id, s.name from student s where s.major.name = ‘deptname1’;

Query 12: 2HOP-ONE

This query examines Oracle ability in handling queries with longer path expressions.

Similar to 1HOP-MANY query, the ORDB version of this query has two variants.

The performance of ORDB Variant A (given in Experiment II) was very poor before

indexing (61.8s) compared to the RDB and the ORDB Variant B queries given below.

Thus, the performance of the Variant A with the selection of two-hop chain set-

valued references (an inner collection of references) was very poor. The query starts

from a department that contain a set of courses, where each course contains a set

of sections. Although the time improved (7.22s) when the references were scoped

and indexes created for the identifiers of nested tables, we could not find a way to

increase the performance of the Variant A query. However, Variant B using the inverse

side of the relationship from sections to courses to the department performed pretty

well (0.31s) compared to the ORDB Variant A (61.8s). In addition, Variant B with

indexes/scoped references did even better (0.06s) than the RDB version of the query

(0.07s).

Variant B select s.semester, s.nostudents, s.course.dept.deptno,
s.course.dept.name from coursesection s where s.roomno = 50;

In summary, in this experiment, we ran the first 12 queries used in Experiment II

on the RDB UniDB and the corresponding ORDB. We loaded the entire RDB and

ORDB into Oracle 11g to measure the performance for both versions of the queries.

All the queries were run with and without indexing, and with and without scoped

CHAPTER 9. EVALUATION OF THE PROTOTYPE 182

references for the ORDB. After comparing and analysing the results, we can draw

the following conclusions:

• The relational and object-relational elapsed times are virtually identical for

all queries on a single table. Indexing and reference scoping do not improve

performance in these kinds of queries.

• In single and hierarchical method queries, the elapsed times are very close.

The system performance with ORDB queries improved when the methods were

indexed. However, when not indexed, the ORDB query performance was very

poor. That is because all nested tables, embedded in accessed object tables, are

scanned while invoking the methods.

• The system with the ORDB version of HIER-JOIN query was faster than in

the RDB query, verifying that the ORDB outperforms the RDB in handling

inheritance and traditional join operations.

• In handling SET-ELEMENT and SET-AND queries, the system was slightly

faster with ORDB than with the RDB queries. The results verify that Oracle

is more efficient in handling value-based collection data type stored in nested

tables. The ORDB with set value-based attributes succeeds over relational

joins. Indexing/scoped references make no difference to performance in both

versions of the queries.

• By looking at path expression queries, it can be noticed that the elapsed times

for RDB and ORDB queries were almost identical. The 1HOP-NONE times

were more or less the same in both of the query versions. This is for in-

dexed/unindexed RDB queries and only indexed/scoped ORDB queries. By

executing the 1HOP-ONE query, the ORDB scoped short path expression query

performed very well like the RDB query. In addition, using column value for de-

referencing objects was effective for the 1HOP-MANY ORDB query. However,

the time taken for the 2HOP-MANY query with unindexed/unscoped references

was obviously slow. Oracle was inefficient in managing queries of two-hop chain

of ref-based collections. As relationships in the ORDB schema are defined bi-

directionally, we used the opposite direction in this query, i.e., the M side of the

relationship. For this option with indexing nested tables and scoped references,

the query processing performance significantly improved. Therefore, for ORDB

CHAPTER 9. EVALUATION OF THE PROTOTYPE 183

queries with index and reference scoping, Oracle was faster in handling path

expressions than in processing the RDB queries.

• The performance of the system is directly affected by the number of tables and

attributes in each query, and also by the structure of the query and the number

of rows in each table.

• Generally speaking, we can see that in the ORDB Oracle was more efficient

in handling queries over inheritance hierarchies, indexed methods, path ex-

pressions and set element queries. In addition, the query structure in ORDB

queries is more simple and concise than in relational ones. At the end, af-

ter having the summation of the reported elapsed times of each set of queries

(see last row in Table 9.2), the ORDB efficiency with indexed/scoped data was

slightly better than that of the RDB queries. However, the ORDB query with

unindexes/unscoped references was painfully slow. The overall time of all RDB

queries with indexes was 46.41s and without indexes was 46.40s. The overall

time of ORDB queries with indexes/scoped references was 45.94s and with unin-

dexes/unscoped references was 1279.90s. Therefore, the system performance

with the RDB queries is not improved when data were indexed, and compared

with the corresponding RDB queries, the ORDB queries with indexes/scoped

references are slightly more efficient in Oracle 11g.

9.5 Summary

The effectiveness of MIGROX and its prototype has been evaluated in this chapter.

The algorithms of the proposed method were tested in experiments based mainly on

database equivalence. Two experiments were setup to validate our approach by ex-

amining the differences between a source RDB and each of the three target databases

resulting from the use of the prototype. The prototype outputs were given and the

overall results of the evaluation discussed.

The correctness of the concepts and the algorithms of MIGROX are checked in Ex-

periment I by comparing the target schemas resulting from the prototype and those

generated by existing manual mapping techniques. It was found that the results were

very compatible. In addition, using the query-based Experiment II, source and tar-

get data equivalences were checked by observing variations in results regarding data

CHAPTER 9. EVALUATION OF THE PROTOTYPE 184

content and integrity constraints.

After applying MIGROX for several RDBs, the results show that the source and target

databases are equivalent, and that the MIGROX solution is demonstrably conceptu-

ally and practically feasible, efficient and correct. In addition, MIGROX was more

comprehensive than existing approaches because it generates a complete database or

its schema only, or a single target database or up to three different databases. Be-

sides, integrity constraints have been addressed and tested in our approach, making

it superior to its counterparts on this point.

By testing query processing, it was found that system performance depends on various

factors, including the size and the type of the databases, the schema and query

structure, the number of tuples scanned in each table, indexes and the environment,

in which the experiment was carried out.

Chapter 10 closes this dissertation with the conclusions of the research and suggestions

for future work.

Chapter 10

Conclusion and Future Work

This chapter presents the conclusion drawn from the research reported in this disser-

tation. It reviews the research followed by a summary of its major contributions. The

chapter then revisits the problems outlined in Chapter 1 and describes open issues

and suggestions for further work.

The rest of this chapter is organised as follows. Section 10.1 provides an overview of

the dissertation and evaluates the achievement of the research. Its major contributions

are summarised in Section 10.2. Section 10.3 draws the main conclusions of the

dissertation, and Section 10.4 indicates some areas that may benefit from the research,

and suggests directions for future work.

10.1 An Overview of the Dissertation

As mentioned in Section 1.3, the objectives of this research were set as follows:

1. to review existing approaches to the migration of RDBs into object-based and

XML databases, considering their capabilities, weaknesses and limitations,

2. to devise a comprehensive solution to the problem of RDB migration, aiming

to provide complete migration into richer models including object-based models

such as OODB and ORDB, and semi-structured models such as XML,

3. to implement the solution as a prototype, and

4. to evaluate the prototype by critically analysing its results so as to measure the

effectiveness of the solution in practice.

185

CHAPTER 10. CONCLUSION AND FUTURE WORK 186

After introducing the main concepts of RDBs and the richer types of databases in

Chapter 2, the first objective of this research was addressed in Chapter 3. The

chapter provided a survey of the existing approaches and techniques for migrating

RDBs into richer database models. Based on our analysis of the literature and the

open problems mentioned in this chapter and Chapter 1, we proposed a complete

method called MIGROX [Maatuk et al., 2008a], which would be able to preserve the

semantics of an existing RDB in a CDM for generating an OODB, ORDB and XML.

An overview of the MIGROX solution, the second research objective, was addressed

in Chapter 4. The chapter introduced the concepts and assumptions underlying the

solution. A detailed description of the MIGROX solution is provided in Chapters 5-

7, covering the algorithms for semantic enrichment, schema translation and data

conversion.

Addressing the third objective, Chapter 8 described how the prototype of MIGROX

was developed by implementing the algorithms and concepts presented in Chapters 4-

7. The prototype performs the process of database migration and generates three

different output databases from an RDB.

Chapter 9 discussed how an experimental study was conducted to evaluate the proto-

type, thereby addressing the fourth objective of the research. The correctness of the

CDM and the database migration algorithms was checked by comparing the equiva-

lence between the source RDBs and the target databases generated by the prototype.

In addition, the outputs of the prototype were compared with the results produced

with existing approaches. The evaluation was performed by observing variations in

the results regarding schema, data and integrity constraints.

10.2 A Summary of the Contributions

The main aim of this research was to devise a solution for migrating an RDB into

object-based and semi-structured models. This aim has led to the achievement of

three major contributions: the review of relevant literature, the solution for RDB

migration and research publications. These contributions are summarised as follows:

The Review of Relevant Literature: The literature shows that the existing

approaches concerned with database conversion are: 1) viewing objects on top of

CHAPTER 10. CONCLUSION AND FUTURE WORK 187

RDBs where data is processed in object/XML form and stored in relational form,

2) database integration where a gateway is used on top of multiple heterogeneous

databases to support a single view, and 3) database migration where an RDB is

migrated completely into its equivalents. In this dissertation, we devised a solution for

migrating RDBs into three equivalent target databases according to recent standards

since no existing research has achieved such RDB migration, covering both schema

translation and data conversion.

The investigation of the relevant literature has shown that viewing objects on top of

existing RDBs and establishing gateways to access existing data only for data retrieval

purposes solves the problems neither of mismatches between different paradigms nor

of the preservation of RDB data semantics. Besides, it seems that existing work does

not provide a complete solution for more than one target database for either schema or

data conversion. In addition, none of the existing work can be considered as a method

for migrating an RDB into an ORDB. Some semantics such as inheritance, are not

considered in some work mainly due to a lack of support for such semantics either in

source or target data models. Less effort has been devoted to using standards as target

models, e.g., ODMG 3.0 and SQL4. Such standards provide better levels of semantic

preservation and portability. Although known conceptual models like ER and UML,

in addition to several specific models such as the BLOOM model [Abelló et al., 1999],

may be used as an intermediate stage for enrichment during RDB migration, however,

we argue that either they are not appropriate for the characteristics of more than one

target data model, or do not support data representation. In addition, the vast

majority of work has migrated RDBs directly into target databases, where the latter

either look like flat RDBs or have deep levels of clustering/nesting. In this kind of

work, object-based model features and the hierarchical form of the XML model are

usually missed, or well-designed target databases could not be guaranteed in term of

data redundancy.

A Solution for RDB Migration: A significant contribution of this dissertation is

to offer a precise description of a solution for migrating an RDB into object-based and

semi-structured models in the form of MIGROX, which has the following features.

• It offers a CDM as an intermediate stage for better preservation of integrity

constraints and data semantics. Using the CDM, a new target database can

be generated without referring to an existing RDB each time another target

CHAPTER 10. CONCLUSION AND FUTURE WORK 188

database needs to be generated. This provides the reading and enrichment of

an RDB only once for multiple subsequent usages.

• It translates the CDM into an object-based and XML schema according to in-

ternationally recognised standards such as ODMG 3.0, SQL4 and XML Schema,

and data definition languages, leading to more portability and flexibility. Al-

gorithms have been developed, each of which consists of a set of rules, which

describe how to translate each construct of the CDM into a specific construct

in the target schema.

• It provides data conversion techniques, which automatically convert an exist-

ing RDB data into any of the target databases based on the CDM. In other

words, the CDM determines and manages the conversion of data into the target

formats.

• It is the first approach designed for migrating RDBs into ORDBs [Maatuk et al.,

2010].

• It has been implemented as a prototype. The implementation helps to demon-

strate the effectiveness of the proposed solution and its concepts. The prototype

facilitates the migration process and, through its outputs, illustrates that MI-

GROX and its three phases can be practically executed. The current prototype

can be considered as a basis for an integrated database migration tool.

• An experimental study for evaluating the prototype of MIGROX has been con-

ducted. The experiments have been designed to validate the solution, demon-

strating the correctness of the CDM and the algorithms, and the completeness

of the schema translation and data conversion rules. The results of the ex-

perimental study demonstrate that the MIGROX solution is feasible, efficient

and correct both conceptually and practically. The results obtained can be

summarised as follows.

– The target schemas produced by MIGROX and existing manual algo-

rithms were comparable, showing that MIGROX and existing manual al-

gorithms compared with it preserve equivalence in translations.

CHAPTER 10. CONCLUSION AND FUTURE WORK 189

– Three target databases equivalent to the input RDB have been generated

by MIGROX without redundancy or loss of data. Analysing the informa-

tion resulting from querying the four databases (i.e., the RDB, OODB,

ORDB and XML), it has been found that the results were identical. In ad-

dition, integrity constraints have been tested, making MIGROX superior

to its predecessors in semantics preservation.

– ORDB and RDB queries run on the same DBMS, i.e., Oracle 11g were

compared. The ORDB queries are generally more efficient, and the query

structure is more simple and concise than that of the relational ones.

Publications: Some parts of the research reported in this dissertation have been

published as follows.

• Abdelsalam Maatuk, M. Akhtar Ali and B. Nick Rossiter. Relational Database

Migration: A Perspective. In Bhowmick, S. S., Küng, J. and Wagner, R.,

editors, DEXA, volume 5181 of Lecture Notes in Computer Science, pages 676–

683, Springer (2008).

• Abdelsalam Maatuk, M. Akhtar Ali and B. Nick Rossiter. An Integrated Ap-

proach to Relational Database Migration. In the Proceeding of International

Conference on Information and Communication Technologies-2008 (IC-ICT

’08), pages 01-06, Bannu, Pakistan (2008).

• Abdelsalam Maatuk, M. Akhtar Ali and B. Nick Rossiter. Semantic Enrich-

ment: The First Phase of Relational Database Migration. In International

Joint Conferences on Computer, Information, and Systems Sciences, and En-

gineering (CIS2E 08), pages 6pp, Bridgeport, USA (2008).

• Abdelsalam Maatuk, M. Akhtar Ali and B. Nick Rossiter. Re-engineering Rela-

tional Databases: The Way Forward. In Journal of Computing and Information

Technology (CIT), pages 14pp (2009, submitted).

• Abdelsalam Maatuk, M. Akhtar Ali and B. Nick Rossiter. Converting Rela-

tional Databases into Object-relational Databases. In Journal of Object Tech-

nology (JOT), pages 17pp (2010, in press).

CHAPTER 10. CONCLUSION AND FUTURE WORK 190

10.3 Conclusions

The main conclusions that can be drawn from this research are as follows.

• This dissertation addresses the question of whether an existing RDB can be

automatically migrated into object-based and XML databases. Several chal-

lenges could arise when the database migration process is aimed at multiple

target databases, which are fundamentally different and have different design

characteristics. The dissertation described a solution to this question which is

superior to existing proposals as it produces three different output databases.

The solution has been implemented and evaluated.

• MIGROX is the first approach that achieves a solution to the problem of mi-

grating RDBs into ORDBs. In addition, it is the first approach to migrate

RDBs into more than one comparatively newer and richer target platform.

• MIGROX is one of the few methods which cover schema translation and data

conversion with data semantics preserved, including integrity constraints, and

association, aggregation and inheritance relationships.

• MIGROX is supported by an approach to semantic enrichment in which the

necessary data semantics of a given RDB are inferred and enhanced to generate

a CDM, which provides a description of the existing RDB’s implicit and explicit

semantics. The CDM is a sound source of semantics and is a well organised

data model, forming the starting point for the remaining phases of database

migration. Its specifications are based on the similarities among object-based

and XML data models. These similarities produce natural correspondences that

can be exploited to bridge the semantic gap among diverse data models. This

provides a basis for the CDM, being used as an intermediate representation

when migrating an RDB into more than one target database. In addition to

considering the most important characteristics of the target models, the CDM

preserves all data semantics that can be extracted from an RDB. Moreover, the

CDM acts as a key mediator for converting an existing RDB data into target

databases.

• The algorithms of MIGROX have been implemented as a prototype, which suc-

cessfully generated the target databases. Java is used for basic coding. The

CHAPTER 10. CONCLUSION AND FUTURE WORK 191

ability of Java to connect to RDBs and the reusability of code makes it prefer-

able for use through JDBC. The JDBC metadata classes and their methods

were useful and saved time in providing full access to metadata and deriving

information describing the content of the RDBs.

• MIGROX is one of only a few database migration methods that have been

evaluated in terms of the equivalence of input and output databases. We used an

experimental study to validate the solution by testing the hypotheses developed

and introduced in Section 9.2. This has been performed by comparing the RDBs

input into the prototype with its output, and comparing the output databases

that the prototype generates with the target databases generated by existing

techniques. Since we work with real databases and the target databases lack

a mathematical foundation compared to the source RDBs, we believe that the

experimental study is an appropriate approach to validate the proposed solution

and test the hypotheses. The experiments explored the following questions:

1. Have the target schemas generated by the prototype preserved the data

semantics of the source RDB?

2. Are the data and integrity constraints of the source and target databases

equivalent?

When MIGROX was evaluated by comparing the output schemas of its proto-

type with the ones produced by existing work, it was found that both sets of

schemas were comparable. The CDM preserves and enhances the metadata of

existing RDBs, and is translatable into any of the three target database schemas.

Therefore, the algorithms for translating CDM into the target schema are em-

pirically shown to be correct. In addition, MIGROX was more comprehensive

than its counterparts since it generates up to three different databases.

The results of queries obtained from source and target databases were analysed

and it was found that both set of results were identical. Therefore, we conclude

that both the source and the target databases, generated by MIGROX, are

equivalent. This means that the CDM has successfully guided the extraction,

transformation and loading of RDB data into target databases, facilitated the

reallocation of attribute values in RDBs to the appropriate domain in the target

databases. Moreover, many of the semantics, e.g., relationships and integrity

CHAPTER 10. CONCLUSION AND FUTURE WORK 192

constraints, extracted from the RDB were found to be preserved in the target

databases.

Although it is not conceptually related to the research hypotheses, the efficiency

of database systems in terms of RDB and ORDB query processing is assessed.

Comparing RDB queries with their equivalents in an ORDB implemented on

Oracle 11g, it was found that the system is more efficient in handling ORDB

queries over the inheritance hierarchy, indexed methods, path expressions and

set element queries. In addition, the structure of ORDB queries is more simple

and concise than the relational ones. The performance of the system is directly

affected by the number of tables and attributes in each query, as well as by the

structure of the query and the number of rows in each table.

10.4 Applications and Further Work

10.4.1 Applications

MIGROX and the concepts it contains might be useful for many applications such as

the following:

• In database design, conceptual data models provide different concepts and di-

agrams to facilitate the development process from requirements specification.

Based on the analysis of data requirements specification, entity types, relation-

ship types, attributes and keys are identify and represented using a conceptual

data model, from which a logical data model is derived. The logical model is

then translated into a physical data model for implementation. The techniques,

developed here for the schema translation phase of MIGROX, for translating

data semantics represented in the CDM into target physical schemas, are ap-

plicable for this purpose. However, the CDM may need to be extended to

cover dynamic aspects, i.e., operations supported by object-based models. In

addition, the CDM (when extended) could be used to represent the conceptual

data-model used in CASE tools (e.g., Oracle Designer and Rational Rose) and

the schema translation rules could be used to generate physical schemas for

object-based/XML and relational implementation.

• The sematic enrichment approach of MIGROX is not only essential for database

CHAPTER 10. CONCLUSION AND FUTURE WORK 193

migration, but also useful for database redesign and maintenance, and possibly

for database integration. During database redesign and maintenance, some se-

mantics might not be captured or difficulty identified from schemas or DBMSs,

for example, the determination of occurrence among tuples in relations partic-

ipating in relationships. The technique for identifying relationships and deter-

mining the cardinalities among tuples from database instances, which has been

developed for the semantic enrichment phase of MIGROX, is useful to make

full use of this. Database integration would be best performed at a canonical

model level. The CDM model is sufficiently enriched to represent the semantics

expressed in the local schemas for integration.

• The essential concepts for teaching database courses to university students

are database design models (e.g., ER), traditional logical and physical mod-

els (e.g., relational models) and schema transformation from conceptual models

into specific implementation models. However, it might be important for those

who already have an essential understanding of traditional modeling to acquire

knowledge about techniques for translating RDBs into object-based and XML

databases. MIGROX could be used, e.g., in more advanced database courses,

as a comparative approach to RDBs with diverse types of more recent database

models in terms of database design and migration.

• Several benchmarks have been designed to test different performance aspects of

database systems [Carey et al., 1993, 1997; Kurt and Atay, 2002]. Benchmarks

provides metrics on how to test the functionality and performance of systems

by querying the data stored in them. Databases generated by MIGROX can

be used in benchmarks to evaluate the performance of query operations over

contemporary DBMSs.

10.4.2 Further Work

The process of information system re-engineering is complex and involves a wide range

of tasks associated with the understanding and transformation of existing systems.

Much more work in these areas is required. This dissertation contributes to the field

of database migration, including schema translation and data conversion. Various

relevant aspects might be studied in order to fully benefit from the solution reported in

this dissertation. In this section, some suggestions for future work are outlined, which

CHAPTER 10. CONCLUSION AND FUTURE WORK 194

are either complementary to MIGROX, adding more functionality, or extensions of

this research.

MIGROX is restricted by a number of factors such as assumptions on which is based,

including incompatibilities among standards and database products and the level of

automation that the method assumes.

• MIGROX mainly focuses on migrating RDBs with the corresponding data dic-

tionary that contains all metadata information, and hence the existence of mod-

ern RDBMSs is assumed. However, not all existing RDBs can provide such

information stored in data dictionaries, and thus the application of existing

database reverse engineering techniques is required. A connection between MI-

GROX and existing database reverse engineering techniques could be an issue

for further work to facilitate the gathering of sematic information when data

dictionaries are missing. Besides, the migration process should consider not

only relations but also views of the input RDBs.

• It should be considered that as yet there are no implementations of all standard

constructs. Collection types in SQL4 such as row and set, and also inheritance

among typed tables are not supported in all DBMSs. In our prototype, the

collection types in ORDB are implemented using nested tables in Oracle. In

addition, since Oracle does not support data or table inheritance, two different

but semantically equivalent ORDB schemas can be generated, based on the root

or leaves representations. Although the MIGROX prototype can produce both

types of inheritance representations, the latter was used in our experiments.

Another issue is that Oracle (and also Lambda-DB) cannot maintain referential

integrity for collections of OIDs. Oracle has no mechanism to maintain refer-

ential integrity on refs that are in nested tables in the ORDB. This integrity

could be preserved, e.g., by using the triggers, once the migration process is

completed. In addition, the keys defined for XML elements may not be valid

for other elements, which would substitute them in the instance document.

This is because keys in XML Schema are defined using XPath 2.0, which is not

schema-aware.

• MIGROX assumes that the process of database migration is to be conducted

automatically. The user interacts with the system only to give more meaning

CHAPTER 10. CONCLUSION AND FUTURE WORK 195

to the relationship names, generated automatically by the prototype. The flex-

ibility of the database migration process to allow help from the user, and in

resuming the loading of the target databases generated after interruption, is

worth further investigation. Whatever the size of the RDB being migrated, the

current prototype offers the generation of the corresponding target schemas or

the complete database in one go, and stores the results in a secondary storage.

In addition, the corresponding CDM is stored only as an in-memory representa-

tion for further reference during schema translation and data conversion. The

prototype can be supported by undo/redo operations and the CDM can be

stored for use on another occasion or to be edited. In addition, the question

of how to proceed with the process when the system crashes or other inter-

ruptions occur needs to be discussed. Algorithms for loading bulk data into

an OODB, taking into account process resumptions/system crashes have been

proposed [Wiener and Naughton, 1994; Wiener, 1996].

MIGROX can be further extended in several possible ways:

• Although the current prototype implements all the concepts and algorithms

of MIGROX, it does not provide a graphical user interface. We argue that

it is necessary to improve the current prototype with a visual user-friendly

interface in the form of a complete database migration tool that can connect

other RDBMSs rather than just Oracle. This might increase the acceptance of

object-based and XML databases in the community, particularly among those

who already have knowledge of RDBs.

• Migration of database applications involves the conversion of schema, data and

application programs into a target platform. The SQL query and update oper-

ations embedded in application programs need to be translated into their corre-

sponding versions in the target environment. One such technique for mapping

RDB update operations into their OODB equivalent has been proposed [Zhang

and Fong, 2000]. Krishnamurthy et al. [2004] consider the problem of query

translation between SQL and XQuery. Studying how to translate RDB SQL

queries into their equivalents in the target databases, based on the framework

described in this dissertation, is an interesting open research problem.

• A complete system should support other standards as target models, such as

CHAPTER 10. CONCLUSION AND FUTURE WORK 196

DTD [DTD, 2009] and Java Data Objects (JDO) [JDO, 2009]. The DTD is an-

other XML standard from W3C used for many applications. The JDO is a Java

application program interface for handling persistent objects. It is a standard

as part of the Sun Java Community, which can work with RDBs, object-based

databases, XML and others. The JDO technology is used to directly store Java

domain model instances into the database.

• Although most concepts of MIGROX are defined using semi-formal notation,

we use an experimental study to demonstrate its correctness. The experimental

study has become an acceptable approach to testing hypotheses and validating

solutions. However, it might be possible to improve this approach and validate

MIGROX mathematically. As a consequence, the rules for schema translation

and data conversion need to be revised using more formal expressions.

• Another interesting issue might be to setup a benchmark to explore system effi-

ciency on query processing between the RDB version of UniDB of the BUCKY

benchmark [Carey et al., 1997] and the equivalent three target databases gen-

erated by MIGROX.

RDB migration is an important topic when migrating into newer and richer database

environments. This research work represents an important advancement in the area

of database migration, showing that development of a canonical model facilitates the

migration of schema and data of RDBs into richer databases models.

Appendix A

Attribute Data Type Mapping

CDM/SQL4 ODMG 3.0 XML Schema

char, varchar, varchar2, longvarchar (length >1) string string
char, varchar, varchar2, longvarchar (length = 1) char string
integer float decimal
binary, varbinary, longvarbinary byte byte
bit boolean boolean
number (data precision = null) long decimal
number (data precision 6= null) float decimal
decimal, numeric decimal decimal
date date date
time time time
timestamp timestamp timestamp
interval interval interval
BLOB BLOB BLOB
CLOB CLOB CLOB

Table A.1: Data type mapping from CDM to target models

197

Appendix B

Specification of RDB UniDB

This Appendix contains the sample RDB UniDB, including the description of schema,
keys, CTL files, and data instances.

B.1 Description of the schema

create table department (
deptno number(3), name varchar(12) not null, building char(8), budget integer, chair
integer not null, latitude number(3), longitude number(3));

create table course (
deptno number(3), courseno number(3) not null, name varchar(16), credits number(1));

create table person (
id integer, name varchar(20) not null, street char(15), city char(9), state varchar(20),
zipcode char(9), birthdate date, picture char(7), latitude number(5),
longitude number(5));

create table student (
id integer, studentno integer, majordept number(3) not null, advisor integer not null);

create table employee (
id integer, dept number(3) not null, datehired date, status number(2));

create table instructor(id integer);

create table staff (id integer, annualsalary integer);

create table professor (
id integer, aysalary integer, monthsummer number(1));

create table ta (
id integer, semestersalary integer, apptfraction number(3,2));

create table kids (id integer, kidname varchar(8));

create table coursesection (
deptno number(3) , courseno number(3) , sectionno number(1), instructorid integer,
semester number(1), textbook char(12), nostudents integer,
building char(8), roomno number(2));

198

APPENDIX B. SPECIFICATION OF RDB UNIDB 199

create table enrolled (
studentid integer, deptno number(3), courseno number(3), sectionno number(1),
semester number (1), grade varchar(3));

B.2 Key definitions

rem primary keys

alter table department add constraint dept pk primary key (deptno);
alter table person add constraint person pk primary key (id);
alter table employee add constraint employee pk primary key (id);
alter table student add constraint stud pk primary key (id);
alter table instructor add constraint instructor pk primary key (id);
alter table staff add constraint staff pk primary key (id);
alter table professor add constraint prof pk primary key (id);
alter table ta add constraint ta pk primary key (id);
alter table course add constraint course pk primary key (deptno, courseno);
alter table coursesection add constraint coursesection pk primary key
(deptno, courseno, sectionno, semester);
alter table kids add constraint kids pk primary key (id, kidname);
alter table enrolled add constraint enrolled pk primary key
(studentid, deptno, courseno, sectionno, semester);

rem foreign keys

alter table department add constraint department fk foreign key (chair) references
professor;
alter table employee add constraint employee fk foreign key (dept) references
department;
alter table employee add constraint employee fk2 foreign key (id) references
person;
alter table student add constraint student fk2 foreign key (id) references
person;
alter table student add constraint student fk foreign key (majordept) references
department;
alter table student add constraint std adv fk foreign key (advisor) references
professor;
alter table staff add constraint staff fk2 foreign key (id) references
employee;
alter table instructor add constraint instructor fk2 foreign key (id) references
employee;
alter table professor add constraint professor fk3 foreign key (id) references
instructor;
alter table ta add constraint ta fk4 foreign key (id) references
instructor;
alter table course add constraint course fk foreign key (deptno) references
department;
alter table coursesection add constraint coursesection fk foreign key
(deptno, courseno) references course;

APPENDIX B. SPECIFICATION OF RDB UNIDB 200

alter table coursesection add constraint coursesection fk1 foreign key
(instructorid) references instructor;
alter table kids add constraint kids fk2 foreign key (id) references employee;
alter table enrolled add constraint enrolled fk1 foreign key (studentid) references
student;
alter table enrolled add constraint enrolled fk2 foreign key
(deptno, courseno, sectionno, semester) references coursesection;

B.3 Description of CTL files

LOAD DATA
INFILE ‘courses.txt’
INTO TABLE COURSE
FIELDS TERMINATED BY ”,”
(
DEPTNO , COURSENO, NAME ENCLOSED BY ‘”’, CREDITS
)
LOAD DATA
INFILE ‘SECTIONS.txt’
INTO TABLE COURSESECTION
FIELDS TERMINATED BY ”,”
(
DEPTNO, COURSENO, SECTIONNO, INSTRUCTORID, SEMESTER, TEXTBOOK ENCLOSED
BY ‘”’, NOSTUDENTS, BUILDING ENCLOSED BY ‘”’, ROOMNO
)
LOAD DATA
INFILE ‘depts.txt’
INTO TABLE DEPARTMENT
FIELDS TERMINATED BY ”,”
(
DEPTNO, NAME ENCLOSED BY ‘”’, BUILDING ENCLOSED BY ‘”’, BUDGET, CHAIR, LAT-
ITUDE, LONGITUDE
)
LOAD DATA
INFILE ‘persons.txt’
INTO TABLE PERSON
FIELDS TERMINATED BY ”,”
(
ID, NAME ENCLOSED BY ‘”’, STREET ENCLOSED BY ’”’, CITY ENCLOSED BY ‘”’, STATE
ENCLOSED BY ‘”’, ZIPCODE ENCLOSED BY ‘”’, BIRTHDATE date ”mm/dd/yyyy”, PICTURE
ENCLOSED BY ‘”’, LATITUDE, LONGITUDE
)
LOAD DATA
INFILE ‘students.txt’
INTO TABLE STUDENT
FIELDS TERMINATED BY ”,”
(
ID, STUDENTNO, MAJORDEPT, ADVISOR
)

APPENDIX B. SPECIFICATION OF RDB UNIDB 201

LOAD DATA
INFILE ‘employees.txt’
INTO TABLE EMPLOYEE
FIELDS TERMINATED BY ”,”
(
ID, DEPT, DATEHIRED date ”mm/dd/yyyy”, STATUS
)
LOAD DATA
INFILE ‘staffs.txt’
INTO TABLE STAFF
FIELDS TERMINATED BY ”,”
(
ID, ANNUALSALARY
)
LOAD DATA
INFILE ‘instructors.txt’
INTO TABLE INSTRUCTOR
FIELDS TERMINATED BY ”,”
(
ID
)
LOAD DATA
INFILE ‘profs.txt’
INTO TABLE PROFESSOR
FIELDS TERMINATED BY ”,”
(
ID, AYSALARY, MONTHSUMMER
)
LOAD DATA
INFILE ‘tas.txt’
INTO TABLE TA
FIELDS TERMINATED BY ”,”
(
ID, SEMESTERSALARY, APPTFRACTION
)
LOAD DATA
INFILE ‘enrolled.txt’
INTO TABLE ENROLLED
FIELDS TERMINATED BY ”,”
(
STUDENTID, DEPTNO, COURSENO, SECTIONNO, SEMESTER, GRADE ENCLOSED BY ‘”’
)
LOAD DATA
INFILE ‘kids.txt’
INTO TABLE KIDS
FIELDS TERMINATED BY ”,”
(
ID, KIDNAME ENCLOSED BY ‘”’
)

APPENDIX B. SPECIFICATION OF RDB UNIDB 202

B.4 Sample of data instances

Person

1,”staffName1”, ”xxxx streetname”, ”city name”, ”Oklahoma”, ”41421”,11/13/1989, ”picture”, 362,
27
2,”staffName2”, ”xxxx streetname”,”city name”, ”Oregon”, ”56429”,12/9/1957, ”picture”, 1782,
1530
3,”staffName3”, ”xxxx streetname”,”city name”, ”Florida”, ”18456”,6/28/1983,”picture”, 1011, 42
59247,”professorName59247”, ”xxxx streetname”, ”city name”, ”Utah”,”98075”, 3/8/1971, ”pic-
ture”, 1211, 98
65805,”professorName65805”, ”xxxx streetname”, ”city name”, ”Minnesota”, ”92344”, 10/30/1983,
”picture”, 1337, 60
65990,”studentName65990”, ”xxxx streetname”, ”city name”, ”Vermont”, ”24609”, 4/16/1941, ”pic-
ture”, 579, 534
75001,”studentName75001”, ”xxxx streetname”, ”city name”, ”Georgia”, ”47880”,7/21/1985, ”pic-
ture”, 1464, 179
75051,”studentName75051”, ”xxxx streetname”, ”city name”, ”Florida”, ”63335”,12/18/1956, ”pic-
ture”, 71, 755
117525,”studentName117525”, ”xxxx streetname”, ”city name”, ”Oklahoma”, ”97695”, 8/27/1952,
”picture”, 1619, 900
108981,”studentName108981”, ”xxxx streetname”, ”city name”, ”West Virginia”, ”83589”, 9/2/1965,
”picture”, 1867, 985
47397,”studentName47397”, ”xxxx streetname”, ”city name”, ”Iowa”,”64177”, 10/12/1970, ”pic-
ture”, 1043, 486
71661,”studentName71661”, ”xxxx streetname”, ”city name”, ”Idaho”,”64177”, 4/17/1952, ”pic-
ture”, 377, 859
47254,”professorName47254”, ”xxxx streetname”, ”city name”, ”Pennsylvania”, ”34306”, 12/3/1981,
”picture”, 1904, 1565
54453,”professorName54453”, ”xxxx streetname”, ”city name”, ”Virginia”, ”23403”, 4/4/1971, ”pic-
ture”, 1111, 1753

Course Department
1, 124, ”coursename124”, 1 1, ”deptname1”, ”building”, 6000000, 54453, 47, 6
1, 126, ”coursename126”, 4 10, ”deptname10”, ”building”, 5000000, 59247, 74, 38
1, 112, ”coursename112”, 1 220, ”deptname220”, ”building”, 6000000, 65805, 23, 37
220, 122, ”coursename122”, 2 25, ”deptname25”, ”building”, 8000000, 47254, 55, 12
220, 136, ”coursename136”, 3
220, 101, ”coursename101”, 4 CourseSection
10, 110, ”coursename110”, 3 1, 126, 2, 54453, 2, ”textbookname”, 20, ”building”, 39
10, 105, ”coursename105”, 4 220, 122, 2, 65990, 2, ”textbookname”, 20, ”building”, 70
25, 121, ”coursename121”, 4 220, 136, 2, 54453, 2, ”textbookname”, 20, ”building”, 91
25, 135, ”coursename135”, 3 220, 101, 2, 65805, 1, ”textbookname”, 20, ”building”, 50

220, 101, 2, 65990, 2, ”textbookname”, 20, ”building”, 50
10, 105, 1, 65990, 2, ”textbookname”, 20, ”building”, 75
1, 112, 2, 59247, 1, ”textbookname”, 20, ”building”, 10
25, 135, 1, 47397, 2, ”textbookname”, 20, ”building”, 13
25, 121, 2, 54453, 2, ”textbookname”, 20, ”building”, 43

APPENDIX B. SPECIFICATION OF RDB UNIDB 203

Enrolled Employee Instructors Kids
71661, 1, 126, 2, 2, ”AB” 1, 1, 11/28/1955, 3 65805 1, ”boy90”
71661, 220, 122, 2, 2, ”F” 2, 1,11/1/1966, 2 65990 1, ”girl90”
47397, 220, 136, 2, 2, ”D” 3, 10, 8/30/1942, 2 59247 2, ”boy62”
65990, 220, 101, 2, 2, ”AB” 59247, 220, 8/8/1958, 9 47397 2, ”girl62”
75001, 10, 105, 1, 2, ”A” 65805, 220, 4/19/1943, 9 71661 3, ”boy90”
75001, 1, 112, 2, 1, ”AB” 47254, 25, 1/9/1982, 0 47254 3, ”girl29”
75051, 25, 121, 2, 2, ”C” 54453, 10, 5/14/1970, 9 54453 59247, ”boy90”
75051, 25, 135, 1, 2, ”B” 65990, 220, 9/29/1987, 6 59247, ”girl39”
117525, 220, 101, 2, 2, ”A” 47397, 1, 11/27/1963, 2 65805, ”boy99”
108981, 220, 101, 2, 1, ”AB” 71661, 25, 11/27/1963, 9 65805, ”girl99”

65805, ”girl877”
65805, ”girl1057”

Student Professor Staff TA
65990, 454356786, 1, 54453 59247, 115000, 2 1, 83000 65990, 12000, 0.55
75001, 503582122, 1, 59247 65805, 127000, 3 2, 33000 47397, 16000, 0.45
75051, 112339778, 10 , 59247 47254, 127000, 1 3, 47000 71661, 17000, 0.65
117525, 374361804, 10, 47254 54453, 111000, 3
108981, 75613281, 220, 65805
47397, 651921317, 25, 47254
71661, 974503561, 25, 65805

Appendix C

Databases Generated by MIGROX

This Appendix contains the OODB, ORDB and XML generated by MIGROX from the subset of
the RDB UniDB given in Appendix B.

C.1 ODMG 3.0 OODB of UniDB

C.1.1 ODMG 3.0 ODL schema

module OODB {
class Course (extent Courses) {

attribute long courseno;
attribute string name;
attribute long credits;
attribute set<Coursesection> sections;

};
class Person (extent Persons key id){

attribute long id;
attribute string name;
attribute string street;
attribute string city;
attribute string state;
attribute string zipcode;
attribute string birthdate;
attribute string picture;
attribute long latitude;
attribute long longitude;

};
class Coursesection (extent Coursesections){

attribute long sectionno;
attribute long semester;
attribute string textbook;
attribute long nostudents;
attribute string building;

204

APPENDIX C. DATABASES GENERATED BY MIGROX 205

attribute long roomno;
relationship set<Enrolled> students inverse Enrolled::section;
relationship Instructor teacher inverse Instructor::teaches;

};
class Department (extent Departments key deptno){

attribute long deptno;
attribute string name;
attribute string building;
attribute long budget;
attribute long latitude;
attribute long longitude;
attribute set<Course> offers;
relationship set<Employee> employees inverse Employee::worksin;
relationship set<Student> students inverse Student::major;
relationship Professor chair inverse Professor::leads;

};
class Employee extends Person (extent Employees) {

attribute string datehired;
attribute long status;
attribute set<string> kidnames;
relationship Department worksin inverse Department::employees;

};
class Enrolled (extent Enrolleds) {

attribute string grade;
relationship Coursesection section inverse Coursesection::students;
relationship Student student inverse Student::taken;

};
class Instructor extends Employee (extent Instructors) {

relationship set<Coursesection> teaches inverse Coursesection::teacher;
};
class Professor extends Instructor (extent Professors) {

attribute long aysalary;
attribute long monthsummer;
relationship Department leads inverse Department::chair;
relationship set<Student> advises inverse Student::advisor;

};
class Staff extends Employee (extent Staffs) {

attribute long annualsalary;
};
class Student extends Person (extent Students) {

attribute long studentno;
relationship set<Enrolled> taken inverse Enrolled::student;
relationship Department major inverse Department::students;
relationship Professor advisor inverse Professor::advises;

};
class Ta extends Instructor (extent Tas) {

attribute long semestersalary;
attribute float apptfraction;

};
};

APPENDIX C. DATABASES GENERATED BY MIGROX 206

C.1.2 The OODB Makefile

include /home/makhtarali/lambda-DB/ldb.include
all: populate

build the user database and catalog
build:
$(ODLB) -build

compile the ODL schema ooschema.odl
ooschema.o: ooschema.odl
$(ODL) ooschema.odl
$(GCC) $(ODMGFLAGS) -c ooschema.cc -o ooschema.o

compile the OQL file populate.oql that populates the database
populate: populate.oql ooschema.o
$(OQL) populate.oql
$(GCC) $(ODMGFLAGS) populate.tmp.cc ooschema.o (LIBS) -o populate
./populate # populate the database with data
clean:
/bin/rm -f *.o * ooschema.sdl ooschema.cc ooschema.h *.tmp.* populate query core

C.1.3 The OODB OIF data file

/***
*
* Populating the BUCKY database
* Programmer: A. Maatuk
* Date: 06/11/2008
*
**/
#include <odmg main.h>
%module OODB;
int main (int argc,char* argv[])
{ %initialize;
%begin;

// Object definitions

// Course file

%c1124 := persistent Course (courseno: 124, name: ”coursename124”, credits: 1);
%c1126 := persistent Course (courseno: 126, name: ”coursename126”, credits: 4);
%c1112 := persistent Course (courseno: 112, name: ”coursename112”, credits: 1);
%c220122 := persistent Course (courseno: 122, name: ”coursename122”, credits: 2);
%c220136 := persistent Course (courseno: 136, name: ”coursename136”, credits: 3);
%c220101 := persistent Course (courseno: 101, name: ”coursename101”, credits: 4);
%c10110 := persistent Course (courseno: 110, name: ”coursename110”, credits: 3);
%c10105 := persistent Course (courseno: 105, name: ”coursename105”, credits: 4);
%c25121 := persistent Course (courseno: 121, name: ”coursename121”, credits: 4);
%c25135 := persistent Course (courseno: 135, name: ”coursename135”, credits: 3);

APPENDIX C. DATABASES GENERATED BY MIGROX 207

// Coursesection file

%cc112622 := persistent Coursesection (sectionno: 2, semester: 2, textbook: ”textbookname”, nos-
tudents: 20, building: ”building”, roomno: 39);
%cc22012222 := persistent Coursesection (sectionno: 2, semester: 2, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 70);
%cc22013622 := persistent Coursesection (sectionno: 2, semester: 2, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 91);
%cc22010121 := persistent Coursesection (sectionno: 2, semester: 1, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 50);
%cc22010122 := persistent Coursesection (sectionno: 2, semester: 2, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 50);
%cc1010512 := persistent Coursesection (sectionno: 1, semester: 2, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 75);
%cc111221 := persistent Coursesection (sectionno: 2, semester: 1, textbook: ”textbookname”, nos-
tudents: 20, building: ”building”, roomno: 10);
%cc2513512 := persistent Coursesection (sectionno: 1, semester: 2, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 13);
%cc2512122 := persistent Coursesection (sectionno: 2, semester: 2, textbook: ”textbookname”,
nostudents: 20, building: ”building”, roomno: 43);

// Department file

%d1 := persistent Department (deptno: 1, name: ”deptname1”, building: ”building”, budget:
6000000, latitude: 47, longitude: 6);
%d10 := persistent Department (deptno: 10, name: ”deptname10”, building: ”building”, budget:
5000000, latitude: 74, longitude: 38);
%d220 := persistent Department (deptno: 220, name: ”deptname220”, building: ”building”, bud-
get: 6000000, latitude: 23, longitude: 37);
%d25 := persistent Department (deptno: 25, name: ”deptname25”, building: ”building”, budget:
8000000, latitude: 55, longitude: 12);

// Enrolled file

%e71661112622 := persistent Enrolled (grade: ”AB”);
%e7166122012222 := persistent Enrolled (grade: ”F”);
%e4739722013622 := persistent Enrolled (grade: ”D”);
%e6599022010122 := persistent Enrolled (grade: ”AB”);
%e750011010512 := persistent Enrolled (grade: ”A”);
%e75001111221 := persistent Enrolled (grade: ”AB”);
%e750512512122 := persistent Enrolled (grade: ”C”);
%e750512513512 := persistent Enrolled (grade: ”B”);
%e11752522010122 := persistent Enrolled (grade: ”A”);
%e10898122010121 := persistent Enrolled (grade: ”AB”);

// Staff file

%s1 := persistent Staff (id: 1, name: ”staffName1”, street: ”xxxx streetname”, city: ”city name”,
state: ”Oklahoma”, zipcode: ”41421”, picture: ”picture”, latitude: 362, longitude: 27, status: 3,
kidnames: set(”boy90”, ”girl90”), annualsalary: 83000);
%s2 := persistent Staff (id: 2, name: ”staffName2”, street: ”xxxx streetname”, city: ”city name”,

APPENDIX C. DATABASES GENERATED BY MIGROX 208

state: ”Oregon”, zipcode: ”56429”, picture: ”picture”, latitude: 1782, longitude: 1530, status: 2,
kidnames: set(”boy62”, ”girl62”), annualsalary: 33000);
%s3 := persistent Staff (id: 3, name: ”staffName3”, street: ”xxxx streetname”, city: ”city name”,
state: ”Florida”, zipcode: ”18456”, picture: ”picture”, latitude: 1011, longitude: 42, status: 2,
kidnames: set(”boy90”, ”girl29”), annualsalary: 47000);

// Professor file

%p59247 := persistent Professor (id: 59247, name: ”professorName59247”, street: ”xxxx streetname”,
city: ”city name”, state: ”Utah”, zipcode: ”98075”, picture: ”picture”, latitude: 1211, longitude:
98, status: 9, kidnames: set(”boy90”, ”girl39”), aysalary: 115000, monthsummer: 2);
%p65805 := persistent Professor (id: 65805, name: ”professorName65805”, street: ”xxxx streetname”,
city: ”city name”, state: ”Minnesota”, zipcode: ”92344 ”, picture: ”picture”, latitude: 1337, lon-
gitude: 60, status: 9, kidnames: set(”boy99”, ”girl1057”, ”girl877”, ”girl99”), aysalary: 127000,
monthsummer: 3);
%p47254 := persistent Professor (id: 47254, name: ”professorName47254”, street: ”xxxx streetname”,
city: ”city name”, state: ”Pennsylvania”, zipcode: ”34306 ”, picture: ”picture”, latitude: 1904, lon-
gitude: 1565, status: 0, aysalary: 127000, monthsummer: 1);
%p54453 := persistent Professor (id: 54453, name: ”professorName54453”, street: ”xxxx streetname”,
city: ”city name”, state: ”Virginia”, zipcode: ”23403 ”, picture: ”picture”, latitude: 1111, longi-
tude: 1753, status: 9, aysalary: 111000, monthsummer: 3);

// Student file

%ss65990 := persistent Student (id: 65990, name: ”studentName65990”, street: ”xxxx streetname”,
city: ”city name”, state: ”Vermont”, zipcode: ”24609”, picture: ”picture”, latitude: 579, longitude:
534, studentno: 454356786);
%ss75001 := persistent Student (id: 75001, name: ”studentName75001”, street: ”xxxx streetname”,
city: ”city name”, state: ”Georgia”, zipcode: ”47880”, picture: ”picture”, latitude: 1464, longitude:
179, studentno: 503582122);
%ss75051 := persistent Student (id: 75051, name: ”studentName75051”, street: ”xxxx streetname”,
city: ”city name”, state: ”Florida”, zipcode: ”63335”, picture: ”picture”, latitude: 71, longitude:
755, studentno: 112339778);
%ss117525 := persistent Student (id: 117525, name: ”studentName117525”, street: ”xxxx streetname”,
city: ”city name”, state: ”Oklahoma”, zipcode: ”97695”, picture: ”picture”, latitude: 1619, longi-
tude: 900, studentno: 374361804);
%ss108981 := persistent Student (id: 108981, name: ”studentName108981”, street: ”xxxx streetname”,
city: ”city name”, state: ”West Virginia”, zipcode: ”83589 ”, picture: ”picture”, latitude: 1867,
longitude: 985, studentno: 75613281); %ss47397 := persistent Student (id: 47397, name: ”stu-
dentName47397”, street: ”xxxx streetname”, city: ”city name”, state: ”Iowa”, zipcode: ”64177 ”,
picture: ”picture”, latitude: 1043, longitude: 486, studentno: 651921317);
%ss71661 := persistent Student (id: 71661, name: ”studentName71661”, street: ”xxxx streetname”,
city: ”city name”, state: ”Idaho”, zipcode: ”64177 ”, picture: ”picture”, latitude: 377, longitude:
859, studentno: 974503561);

// TA file

%ta65990 := persistent Ta (id: 65990, name: ”studentName65990”, street: ”xxxx streetname”, city:
”city name”, state: ”Vermont”, zipcode: ”24609”, picture: ”picture”, latitude: 579, longitude: 534,
status: 6, semestersalary: 12000, apptfraction: 0.55);
%ta47397 := persistent Ta (id: 47397, name: ”studentName47397”, street: ”xxxx streetname”, city:
”city name”, state: ”Iowa”, zipcode: ”64177 ”, picture: ”picture”, latitude: 1043, longitude: 486,

APPENDIX C. DATABASES GENERATED BY MIGROX 209

status: 2, semestersalary: 16000, apptfraction: 0.45);
%ta71661 := persistent Ta (id: 71661, name: ”studentName71661”, street: ”xxxx streetname”, city:
”city name”, state: ”Idaho”, zipcode: ”64177 ”,picture: ”picture”, latitude: 377, longitude: 859,
status: 9, semestersalary: 17000, apptfraction: 0.65);

// Relationship definitions

c220101->update()->sections.add(cc22010121);
c220101->update()->sections.add(cc22010122);
c10105->update()->sections.add(cc1010512);
c1112->update()->sections.add(cc111221);
c25121->update()->sections.add(cc2512122);
c220122->update()->sections.add(cc22012222);
c1126->update()->sections.add(cc112622);
c25135->update()->sections.add(cc2513512);
c220136->update()->sections.add(cc22013622);
p54453->update()->teaches.add(cc112622);
ta65990->update()->teaches.add(cc22012222);
p54453->update()->teaches.add(cc22013622);
p65805->update()->teaches.add(cc22010121);
ta65990->update()->teaches.add(cc22010122);
ta65990->update()->teaches.add(cc1010512);
p59247->update()->teaches.add(cc111221);
p54453->update()->teaches.add(cc2512122);
ta47397->update()->teaches.add(cc2513512);
%p59247.leads := d10;
%p65805.leads := d220;
%p47254.leads := d25;
%p54453.leads := d1;
cc22010121->update()->students.add(e10898122010121);
cc111221->update()->students.add(e75001111221);
cc1010512->update()->students.add(e750011010512);
cc22013622->update()->students.add(e4739722013622);
cc2512122->update()->students.add(e750512512122);
cc22010122->update()->students.add(e6599022010122);
cc22010122->update()->students.add(e11752522010122);
cc112622->update()->students.add(e71661112622);
cc22012222->update()->students.add(e7166122012222);
cc2513512->update()->students.add(e750512513512);
ss47397->update()->taken.add(e4739722013622);
ss65990->update()->taken.add(e6599022010122);
ss71661->update()->taken.add(e71661112622);
ss71661->update()->taken.add(e7166122012222);
ss75001->update()->taken.add(e75001111221);
ss75001->update()->taken.add(e750011010512);
ss75051->update()->taken.add(e750512512122);
ss75051->update()->taken.add(e750512513512);
ss108981->update()->taken.add(e10898122010121);
ss117525->update()->taken.add(e11752522010122);
d1->update()->offers.add(c1112);
d1->update()->offers.add(c1124);

APPENDIX C. DATABASES GENERATED BY MIGROX 210

d1->update()->offers.add(c1126);
d10->update()->offers.add(c10105);
d10->update()->offers.add(c10110);
d25->update()->offers.add(c25121);
d25->update()->offers.add(c25135);
d220->update()->offers.add(c220101);
d220->update()->offers.add(c220122);
d220->update()->offers.add(c220136);
d220->update()->employees.add(p59247);
d220->update()->employees.add(p65805);
d25->update()->employees.add(p47254);
d10->update()->employees.add(p54453);
d1->update()->employees.add(s1);
d1->update()->employees.add(s2);
d10->update()->employees.add(s3);
d220->update()->employees.add(ta65990);
d1->update()->employees.add(ta47397);
d25->update()->employees.add(ta71661);
d1->update()->students.add(ss65990);
d1->update()->students.add(ss75001);
d10->update()->students.add(ss75051);
d10->update()->students.add(ss117525);
d220->update()->students.add(ss108981);
d25->update()->students.add(ss47397);
d25->update()->students.add(ss71661);
p54453->update()->advises.add(ss65990);
p59247->update()->advises.add(ss75001);
p59247->update()->advises.add(ss75051);
p47254->update()->advises.add(ss117525);
p65805->update()->advises.add(ss108981);
p47254->update()->advises.add(ss47397);
p65805->update()->advises.add(ss71661);

%commit;

%begin;
%collect statistics;
%commit;
%cleanup;
};

C.2 ORDB of UniDB

C.2.1 ORDB Oracle 11g schema

create type course t
/
create type coursesection t
/

APPENDIX C. DATABASES GENERATED BY MIGROX 211

create type department t
/
create type employee t
/
create type enrolled t
/
create type instructor t
/
create type person t
/
create type professor t
/
create type staff t
/
create type student t
/
create type ta t
/
create type kids t as object (kidname varchar2(8))
/
create type kids ntt as table of kids t
/
create or replace type course ntt as table of ref course t;
/
create or replace type coursesection ntt as table of ref coursesection t;
/
create or replace type enrolled ntt as table of ref enrolled t;
/
create or replace type employee ntt as table of ref employee t;
/
create or replace type student ntt as table of ref student t;
/
create or replace type course t as object (
courseno number,
name varchar2(16),
credits number,
sections coursesection ntt,
dept ref department t) not final;
/
create or replace type coursesection t as object (
sectionno number,
semester number,
textbook char(12),
nostudents number,
building char(8),
roomno number,
students enrolled ntt,
course ref course t,
teacher ref instructor t) not final;
/
create or replace type department t as object (

APPENDIX C. DATABASES GENERATED BY MIGROX 212

deptno number,
name varchar2(12),
building char(8),
budget number,
latitude number,
longitude number,
offers course ntt,
employees employee ntt,
students student ntt,
chair ref professor t) not final;
/
create or replace type enrolled t as object (
grade varchar2(3),
section ref coursesection t,
student ref student t) not final;
/
create or replace type person t as object (
id number,
name varchar2(20),
street char(15),
city char(9),
state varchar2(20),
zipcode char(9),
birthdate date,
picture char(7),
latitude number,
longitude number) not final;
/
create or replace type employee t under person t (
datehired date,
status number,
kidnames kids ntt,
worksin ref department t) not final;
/
create or replace type instructor t under employee t (
teaches coursesection ntt) not final;
/
create or replace type professor t under instructor t (
aysalary number,
monthsummer number,
leads ref department t,
advises student ntt) final;
/
create or replace type staff t under employee t (
annualsalary number) final;
/
create or replace type student t under person t (
studentno number,
taken enrolled ntt,
major ref department t,
advisor ref professor t) final;

APPENDIX C. DATABASES GENERATED BY MIGROX 213

/
create or replace type ta t under instructor t (
semestersalary number, apptfraction number) final;
/ create table course of course t
nested table sections store as sections nt
;
create table coursesection of coursesection t
nested table students store as students nt
;
create table department of department t
nested table offers store as offers nt
nested table employees store as employees nt
nested table students store as students nt1
;
create table enrolled of enrolled t
;
create table professor of professor t
nested table advises store as advises nt
nested table kidnames store as kidnames professor nt
nested table teaches store as teaches professor nt
;
create table staff of staff t
nested table kidnames store as kidnames staff nt
;
create table student of student t
nested table taken store as taken nt
;
create table ta of ta t
nested table kidnames store as kidnames ta nt
nested table teaches store as teaches ta nt
;

alter table department add constraint dept pk primary key (deptno);
alter table student add constraint stud pk primary key (id);
alter table staff add constraint staff pk primary key (id);
alter table professor add constraint prof pk primary key (id);
alter table ta add constraint ta pk primary key (id);

alter type course t add attribute (uoid char (25)) cascade;
alter type coursesection t add attribute (uoid char (25)) cascade;
alter type department t add attribute (uoid char (25)) cascade;
alter type enrolled t add attribute (uoid char (25)) cascade;
alter type person t add attribute (uoid char (25)) cascade;

alter table department add (scope for (chair) is professor);
alter table enrolled add (scope for (section) is coursesection);
alter table enrolled add (scope for (student) is student);
alter table staff add (scope for (worksin) is department);
alter table ta add (scope for (worksin) is department);
alter table professor add (scope for (worksin) is department);
alter table professor add (scope for (leads) is department);
alter table student add (scope for (major) is department);

APPENDIX C. DATABASES GENERATED BY MIGROX 214

alter table student add (scope for (advisor) is professor);
alter table course add (scope for (dept) is department);
alter table coursesection add (scope for (course) is course);

C.2.2 Functions for ORDB UniDB

alter type employee t add member function salary return number
deterministic cascade;
create or replace type body employee t as
member function salary return number is
begin

return 0;
end;
end;
/
alter type instructor t add overriding member function salary return number
deterministic cascade;
create or replace type body instructor t as
overriding member function salary return number is
begin

return 0;
end;
end;
/
alter type professor t add overriding member function salary return number
deterministic cascade;
create or replace type body professor t as
overriding member function salary return number is
begin

return (aysalary * (9 + monthsummer) / 9.0);
end;
end;
/
alter type staff t add overriding member function salary return number
deterministic cascade;
create or replace type body staff t as
overriding member function salary return number is
begin

return annualsalary;
end;
end;
/
alter type ta t add overriding member function salary return number
deterministic cascade;
create or replace type body ta t as
overriding member function salary return number is
begin

return (apptfraction * (2 * semestersalary));
end;
end;

APPENDIX C. DATABASES GENERATED BY MIGROX 215

/

C.2.3 ORDB UniDB data

// Object definition files

// Course file

insert into course values (124, ’coursename124’, 1, coursesection ntt(), null, ’1124’);
insert into course values (126, ’coursename126’, 4, coursesection ntt(), null, ’1126’);
insert into course values (112, ’coursename112’, 1, coursesection ntt(), null, ’1112’);
insert into course values (122, ’coursename122’, 2, coursesection ntt(), null, ’220122’);
insert into course values (136, ’coursename136’, 3, coursesection ntt(), null, ’220136’);
insert into course values (101, ’coursename101’, 4, coursesection ntt(), null, ’220101’);
insert into course values (110, ’coursename110’, 3, coursesection ntt(), null, ’10110’);
insert into course values (105, ’coursename105’, 4, coursesection ntt(), null, ’10105’);
insert into course values (121, ’coursename121’, 4, coursesection ntt(), null, ’25121’);
insert into course values (135, ’coursename135’, 3, coursesection ntt(), null, ’25135’);

// Coursesection file

insert into coursesection values (2, 2, ’textbookname’, 20, ’building’, 39, enrolled ntt(), null, null,
’112622’);
insert into coursesection values (2, 2, ’textbookname’, 20, ’building’, 70, enrolled ntt(), null, null,
’22012222’);
insert into coursesection values (2, 2, ’textbookname’, 20, ’building’, 91, enrolled ntt(), null, null,
’22013622’);
insert into coursesection values (2, 1, ’textbookname’, 20, ’building’, 50, enrolled ntt(), null, null,
’22010121’);
insert into coursesection values (2, 2, ’textbookname’, 20, ’building’, 50, enrolled ntt(), null, null,
’22010122’);
insert into coursesection values (1, 2, ’textbookname’, 20, ’building’, 75, enrolled ntt(), null, null,
’1010512’);
insert into coursesection values (2, 1, ’textbookname’, 20, ’building’, 10, enrolled ntt(), null, null,
’111221’);
insert into coursesection values (1, 2, ’textbookname’, 20, ’building’, 13, enrolled ntt(), null, null,
’2513512’);
insert into coursesection values (2, 2, ’textbookname’, 20, ’building’, 43, enrolled ntt(), null, null,
’2512122’);

// Department file

insert into department values (1, ’deptname1’, ’building’, 6000000, 47, 6, course ntt(), employee ntt(),
student ntt(), null, ’1’);
insert into department values (10, ’deptname10’, ’building’, 5000000, 74, 38, course ntt(), em-
ployee ntt(), student ntt(), null, ’10’);
insert into department values (220, ’deptname220’, ’building’, 6000000, 23, 37, course ntt(), em-
ployee ntt(), student ntt(), null, ’220’);
insert into department values (25, ’deptname25’, ’building’, 8000000, 55, 12, course ntt(), em-
ployee ntt(), student ntt(), null, ’25’);

APPENDIX C. DATABASES GENERATED BY MIGROX 216

// Enrolled file

insert into enrolled values (’AB’, null, null, ’71661112622’);
insert into enrolled values (’F’, null, null, ’7166122012222’);
insert into enrolled values (’D’, null, null, ’4739722013622’);
insert into enrolled values (’AB’, null, null, ’6599022010122’);
insert into enrolled values (’A’, null, null, ’750011010512’);
insert into enrolled values (’AB’, null, null, ’75001111221’);
insert into enrolled values (’C’, null, null, ’750512512122’);
insert into enrolled values (’B’, null, null, ’750512513512’);
insert into enrolled values (’A’, null, null, ’11752522010122’);
insert into enrolled values (’AB’, null, null, ’10898122010121’);

// Professor file

insert into professor values (professor t(59247, ’professorName59247’, ’xxxx streetname’, ’city name’,
’Utah’, ’98075’, ’1971-03-08’, ’picture’, 1211, 98, ’59247’, ’1958-08-08’, 9, kids ntt(kids t(’boy90’),
kids t(’girl39’)), null, coursesection ntt(), 115000, 2, null, student ntt()));
insert into professor values (professor t(65805, ’professorName65805’, ’xxxx streetname’, ’city name’,
’Minnesota’, ’92344’, ’1983-10-30’, ’picture’, 1337, 60, ’65805’, ’1943-04-19’, 9, kids ntt(kids t(’boy99’),
kids t(’girl1057’), kids t(’girl877’), kids t(’girl99’)), null, coursesection ntt(), 127000, 3, null, stu-
dent ntt()));
insert into professor values (professor t(47254, ’professorName47254’, ’xxxx streetname’, ’city name’,
’Pennsylvania’, ’34306’, ’1981-12-03 00:00:00’, ’picture’, 1904, 1565, ’47254’, ’1982-01-09’, 0, kids ntt(),
null, coursesection ntt(), 127000, 1, null, student ntt()));
insert into professor values (professor t(54453, ’professorName54453’, ’xxxx streetname’, ’city name’,
’Virginia’, ’23403’, ’1971-04-04’, ’picture’, 1111, 1753, ’54453’, ’1970-05-14’, 9, kids ntt(), null, cours-
esection ntt(), 111000, 3, null, student ntt()));

// Staff file

insert into staff values (staff t(1, ’staffName1’, ’xxxx streetname’, ’city name’, ’Oklahoma’, ’41421’,
’1989-11-13’, ’picture’, 362, 27, ’1’, ’1955-11-28’, 3, kids ntt(kids t(’boy90’), kids t(’girl90’)), null,
83000));
insert into staff values (staff t(2, ’staffName2’, ’xxxx streetname’, ’city name’, ’Oregon’, ’56429’,
’1957-12-09’, ’picture’, 1782, 1530, ’2’, ’1966-11-01’, 2, kids ntt(kids t(’boy62’), kids t(’girl62’)), null,
33000));
insert into staff values (staff t(3, ’staffName3’, ’xxxx streetname’, ’city name’, ’Florida’, ’18456’,
’1983-06-28’, ’picture’, 1011, 42, ’3’, ’1942-08-30’, 2, kids ntt(kids t(’boy90’), kids t(’girl29’)), null,
47000));

// Student file

insert into student values (student t(65990, ’studentName65990’, ’xxxx streetname’, ’city name’,
’Vermont’, ’24609’, ’1941-04-16’, ’picture’, 579, 534, ’65990’, 454356786, enrolled ntt(), null, null));
insert into student values (student t(75001, ’studentName75001’, ’xxxx streetname’, ’city name’,
’Georgia’, ’47880’, ’1985-07-21’, ’picture’, 1464, 179, ’75001’, 503582122, enrolled ntt(), null, null));
insert into student values (student t(75051, ’studentName75051’, ’xxxx streetname’, ’city name’,
’Florida’, ’63335’, ’1956-12-18’, ’picture’, 71, 755, ’75051’, 112339778, enrolled ntt(), null, null));
insert into student values (student t(117525, ’studentName117525’, ’xxxx streetname’, ’city name’,
’Oklahoma’, ’97695’, ’1952-08-27’, ’picture’, 1619, 900, ’117525’, 374361804, enrolled ntt(), null,
null));

APPENDIX C. DATABASES GENERATED BY MIGROX 217

insert into student values (student t(108981, ’studentName108981’, ’xxxx streetname’, ’city name’,
’West Virginia’, ’83589’, ’1965-09-02’, ’picture’, 1867, 985, ’108981’, 75613281, enrolled ntt(), null,
null));
insert into student values (student t(47397, ’studentName47397’, ’xxxx streetname’, ’city name’,
’Iowa’, ’64177’, ’1970-10-12’, ’picture’, 1043, 486, ’47397’, 651921317, enrolled ntt(), null, null));
insert into student values (student t(71661, ’studentName71661’, ’xxxx streetname’, ’city name’,
’Idaho’, ’64177’, ’1952-04-17’, ’picture’, 377, 859, ’71661’, 974503561, enrolled ntt(), null, null));

// TA file

insert into ta values (ta t(65990, ’studentName65990’, ’xxxx streetname’, ’city name’, ’Vermont’,
’24609’, ’1941-04-16’, ’picture’, 579, 534, ’65990’, ’1987-09-29’, 6, kids ntt(), null, coursesection ntt(),
12000, .55));
insert into ta values (ta t(47397, ’studentName47397’, ’xxxx streetname’, ’city name’, ’Iowa’, ’64177’,
’1970-10-12’, ’picture’, 1043, 486, ’47397’, ’1963-11-27’, 2, kids ntt(), null, coursesection ntt(), 16000,
.45));
insert into ta values (ta t(71661, ’studentName71661’, ’xxxx streetname’, ’city name’, ’Idaho’, ’64177’,
’1952-04-17’, ’picture’, 377, 859, ’71661’, ’1963-11-27’, 9, kids ntt(), null, coursesection ntt(), 17000,
.65));

// Relationship definition files

// Course Relationships file

insert into table (select sections from course where course.uoid = ’220101’) select ref(c) from cours-
esection c where c.uoid in (’22010121’, ’22010122’);
insert into table (select sections from course where course.uoid = ’10105’) select ref(c) from cours-
esection c where c.uoid in (’1010512’);
insert into table (select sections from course where course.uoid = ’1112’) select ref(c) from cours-
esection c where c.uoid in (’111221’);
insert into table (select sections from course where course.uoid = ’25121’) select ref(c) from cours-
esection c where c.uoid in (’2512122’);
insert into table (select sections from course where course.uoid = ’220122’) select ref(c) from cours-
esection c where c.uoid in (’22012222’);
insert into table (select sections from course where course.uoid = ’1126’) select ref(c) from cours-
esection c where c.uoid in (’112622’);
insert into table (select sections from course where course.uoid = ’25135’) select ref(c) from cours-
esection c where c.uoid in (’2513512’);
insert into table (select sections from course where course.uoid = ’220136’) select ref(c) from cours-
esection c where c.uoid in (’22013622’);
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’1’) where course.uoid = ’1124’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’1’) where course.uoid = ’1126’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’1’) where course.uoid = ’1112’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’220’) where course.uoid = ’220122’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’220’) where course.uoid = ’220136’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid

APPENDIX C. DATABASES GENERATED BY MIGROX 218

= ’220’) where course.uoid = ’220101’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’10’) where course.uoid = ’10110’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’10’) where course.uoid = ’10105’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’25’) where course.uoid = ’25121’;
update course set dept = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’25’) where course.uoid = ’25135’;

// Coursesection Relationships file

insert into table (select students from coursesection where coursesection.uoid = ’22010121’) select
ref(e) from enrolled e where e.uoid in (’10898122010121’);
insert into table (select students from coursesection where coursesection.uoid = ’111221’) select ref(e)
from enrolled e where e.uoid in (’75001111221’);
insert into table (select students from coursesection where coursesection.uoid = ’1010512’) select
ref(e) from enrolled e where e.uoid in (’750011010512’);
insert into table (select students from coursesection where coursesection.uoid = ’22013622’) select
ref(e) from enrolled e where e.uoid in (’4739722013622’);
insert into table (select students from coursesection where coursesection.uoid = ’2512122’) select
ref(e) from enrolled e where e.uoid in (’750512512122’);
insert into table (select students from coursesection where coursesection.uoid = ’22010122’) select
ref(e) from enrolled e where e.uoid in (’6599022010122’, ’11752522010122’);
insert into table (select students from coursesection where coursesection.uoid = ’112622’) select ref(e)
from enrolled e where e.uoid in (’71661112622’);
insert into table (select students from coursesection where coursesection.uoid = ’22012222’) select
ref(e) from enrolled e where e.uoid in (’7166122012222’);
insert into table (select students from coursesection where coursesection.uoid = ’2513512’) select
ref(e) from enrolled e where e.uoid in (’750512513512’);
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’220101’) where coursesection.uoid = ’22010121’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’220101’) where coursesection.uoid = ’22010122’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’10105’) where coursesection.uoid = ’1010512’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’1112’) where coursesection.uoid = ’111221’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’25121’) where coursesection.uoid = ’2512122’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’220122’) where coursesection.uoid = ’22012222’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’1126’) where coursesection.uoid = ’112622’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’25135’) where coursesection.uoid = ’2513512’;
update coursesection set course = (select treat (ref(c) as ref course t) from course c where c.uoid =
’220136’) where coursesection.uoid = ’22013622’;
update coursesection set teacher = (select treat (ref(p) as ref professor t) from professor p where
p.uoid = ’54453’) where coursesection.uoid = ’112622’;
update coursesection set teacher = (select treat (ref(t) as ref ta t) from ta t where t.uoid = ’65990’)

APPENDIX C. DATABASES GENERATED BY MIGROX 219

where coursesection.uoid = ’22012222’;
update coursesection set teacher = (select treat (ref(p) as ref professor t) from professor p where
p.uoid = ’54453’) where coursesection.uoid = ’22013622’;
update coursesection set teacher = (select treat (ref(p) as ref professor t) from professor p where
p.uoid = ’65805’) where coursesection.uoid = ’22010121’;
update coursesection set teacher = (select treat (ref(t) as ref ta t) from ta t where t.uoid = ’65990’)
where coursesection.uoid = ’22010122’;
update coursesection set teacher = (select treat (ref(t) as ref ta t) from ta t where t.uoid = ’65990’)
where coursesection.uoid = ’1010512’;
update coursesection set teacher = (select treat (ref(p) as ref professor t) from professor p where
p.uoid = ’59247’) where coursesection.uoid = ’111221’;
update coursesection set teacher = (select treat (ref(t) as ref ta t) from ta t where t.uoid = ’47397’)
where coursesection.uoid = ’2513512’;
update coursesection set teacher = (select treat (ref(p) as ref professor t) from professor p where
p.uoid = ’54453’) where coursesection.uoid = ’2512122’;

// Department Relationships file

insert into table (select offers from department where department.uoid = ’1’) select ref(c) from course
c where c.uoid in (’1112’, ’1124’, ’1126’);
insert into table (select offers from department where department.uoid = ’10’) select ref(c) from
course c where c.uoid in (’10105’, ’10110’);
insert into table (select offers from department where department.uoid = ’25’) select ref(c) from
course c where c.uoid in (’25121’, ’25135’);
insert into table (select offers from department where department.uoid = ’220’) select ref(c) from
course c where c.uoid in (’220101’, ’220122’, ’220136’);
insert into table (select employees from department where department.uoid = ’1’) select ref(s) from
staff s where s.uoid in (’1’, ’2’);
insert into table (select employees from department where department.uoid = ’1’) select ref(t) from
ta t where t.uoid in (’47397’);
insert into table (select employees from department where department.uoid = ’10’) select ref(s) from
staff s where s.uoid in (’3’);
insert into table (select employees from department where department.uoid = ’10’) select ref(p) from
professor p where p.uoid in (’54453’);
insert into table (select employees from department where department.uoid = ’25’) select ref(p) from
professor p where p.uoid in (’47254’);
insert into table (select employees from department where department.uoid = ’25’) select ref(t) from
ta t where t.uoid in (’71661’);
insert into table (select employees from department where department.uoid = ’220’) select ref(p)
from professor p where p.uoid in (’59247’, ’65805’);
insert into table (select employees from department where department.uoid = ’220’) select ref(t)
from ta t where t.uoid in (’65990’);
insert into table (select students from department where department.uoid = ’1’) select ref(s) from
student s where s.uoid in (’65990’, ’75001’);
insert into table (select students from department where department.uoid = ’10’) select ref(s) from
student s where s.uoid in (’75051’, ’117525’);
insert into table (select students from department where department.uoid = ’25’) select ref(s) from
student s where s.uoid in (’47397’, ’71661’);
insert into table (select students from department where department.uoid = ’220’) select ref(s) from
student s where s.uoid in (’108981’);
update department set chair = (select treat (ref(p) as ref professor t) from professor p where p.uoid

APPENDIX C. DATABASES GENERATED BY MIGROX 220

= ’54453’) where department.uoid = ’1’;
update department set chair = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’59247’) where department.uoid = ’10’;
update department set chair = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’65805’) where department.uoid = ’220’;
update department set chair = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’47254’) where department.uoid = ’25’;

// Enrolled Relationships file

update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’22010121’) where enrolled.uoid = ’10898122010121’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’111221’) where enrolled.uoid = ’75001111221’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’1010512’) where enrolled.uoid = ’750011010512’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’2513512’) where enrolled.uoid = ’750512513512’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’22013622’) where enrolled.uoid = ’4739722013622’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’22010122’) where enrolled.uoid = ’6599022010122’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’22012222’) where enrolled.uoid = ’7166122012222’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’112622’) where enrolled.uoid = ’71661112622’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’2512122’) where enrolled.uoid = ’750512512122’;
update enrolled set section = (select treat (ref(c) as ref coursesection t) from coursesection c where
c.uoid = ’22010122’) where enrolled.uoid = ’11752522010122’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’71661’) where enrolled.uoid = ’71661112622’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’71661’) where enrolled.uoid = ’7166122012222’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’47397’) where enrolled.uoid = ’4739722013622’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’65990’) where enrolled.uoid = ’6599022010122’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’75001’) where enrolled.uoid = ’750011010512’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’75001’) where enrolled.uoid = ’75001111221’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’75051’) where enrolled.uoid = ’750512512122’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’75051’) where enrolled.uoid = ’750512513512’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’117525’) where enrolled.uoid = ’11752522010122’;
update enrolled set student = (select treat (ref(s) as ref student t) from student s where s.uoid =
’108981’) where enrolled.uoid = ’10898122010121’;

APPENDIX C. DATABASES GENERATED BY MIGROX 221

// Professor Relationships file

update professor set worksin = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’220’) where professor.uoid = ’59247’;
update professor set worksin = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’220’) where professor.uoid = ’65805’;
update professor set worksin = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’25’) where professor.uoid = ’47254’;
update professor set worksin = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’10’) where professor.uoid = ’54453’;
insert into table (select teaches from professor where professor.uoid = ’54453’) select ref(c) from
coursesection c where c.uoid in (’112622’, ’22013622’, ’2512122’);
insert into table (select teaches from professor where professor.uoid = ’59247’) select ref(c) from
coursesection c where c.uoid in (’111221’);
insert into table (select teaches from professor where professor.uoid = ’65805’) select ref(c) from
coursesection c where c.uoid in (’22010121’);
update professor set leads = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’10’) where professor.uoid = ’59247’;
update professor set leads = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’220’) where professor.uoid = ’65805’;
update professor set leads = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’25’) where professor.uoid = ’47254’;
update professor set leads = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’1’) where professor.uoid = ’54453’;
insert into table (select advises from professor where professor.uoid = ’47254’) select ref(s) from
student s where s.uoid in (’117525’, ’47397’);
insert into table (select advises from professor where professor.uoid = ’54453’) select ref(s) from
student s where s.uoid in (’65990’);
insert into table (select advises from professor where professor.uoid = ’59247’) select ref(s) from
student s where s.uoid in (’75001’, ’75051’);
insert into table (select advises from professor where professor.uoid = ’65805’) select ref(s) from
student s where s.uoid in (’108981’, ’71661’);

// Staff Relationships file

update staff set worksin = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’1’) where staff.uoid = ’1’;
update staff set worksin = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’1’) where staff.uoid = ’2’;
update staff set worksin = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’10’) where staff.uoid = ’3’;

// Student Relationships file

insert into table (select taken from student where student.uoid = ’47397’) select ref(e) from enrolled
e where e.uoid in (’4739722013622’);
insert into table (select taken from student where student.uoid = ’65990’) select ref(e) from enrolled
e where e.uoid in (’6599022010122’);
insert into table (select taken from student where student.uoid = ’71661’) select ref(e) from enrolled
e where e.uoid in (’71661112622’, ’7166122012222’);
insert into table (select taken from student where student.uoid = ’75001’) select ref(e) from enrolled
e where e.uoid in (’75001111221’, ’750011010512’);

APPENDIX C. DATABASES GENERATED BY MIGROX 222

insert into table (select taken from student where student.uoid = ’75051’) select ref(e) from enrolled
e where e.uoid in (’750512512122’, ’750512513512’);
insert into table (select taken from student where student.uoid = ’108981’) select ref(e) from enrolled
e where e.uoid in (’10898122010121’);
insert into table (select taken from student where student.uoid = ’117525’) select ref(e) from enrolled
e where e.uoid in (’11752522010122’);
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’1’) where student.uoid = ’65990’;
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’1’) where student.uoid = ’75001’;
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’10’) where student.uoid = ’75051’;
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’10’) where student.uoid = ’117525’;
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’220’) where student.uoid = ’108981’;
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’25’) where student.uoid = ’47397’;
update student set major = (select treat (ref(d) as ref department t) from department d where
d.uoid = ’25’) where student.uoid = ’71661’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’54453’) where student.uoid = ’65990’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’59247’) where student.uoid = ’75001’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’59247’) where student.uoid = ’75051’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’47254’) where student.uoid = ’117525’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’65805’) where student.uoid = ’108981’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’47254’) where student.uoid = ’47397’;
update student set advisor = (select treat (ref(p) as ref professor t) from professor p where p.uoid
= ’65805’) where student.uoid = ’71661’;

// Worksin Relationships file

update ta set worksin = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’220’) where ta.uoid = ’65990’;
update ta set worksin = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’1’) where ta.uoid = ’47397’;
update ta set worksin = (select treat (ref(d) as ref department t) from department d where d.uoid
= ’25’) where ta.uoid = ’71661’;
insert into table (select teaches from ta where ta.uoid = ’47397’) select ref(c) from coursesection c
where c.uoid in (’2513512’);
insert into table (select teaches from ta where ta.uoid = ’65990’) select ref(c) from coursesection c
where c.uoid in (’22012222’, ’22010122’, ’1010512’);

APPENDIX C. DATABASES GENERATED BY MIGROX 223

C.3 XML Schema documents of UniDB

C.3.1 Schema document

<?xml version="1.0" encoding="UTF-8"? >
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:annotation>
<xs:documentation xml:lang ="en">
Generated XML Schema </xs:documentation>
</xs:annotation>
<xs:element name= "XMLSchema">
<xs:complexType>

<xs:sequence>
<xs:element name = "course" type= "course t" maxOccurs = "unbounded"/>
<xs:element name = "coursesection" type= "coursesection t"

maxOccurs = "unbounded"/>
<xs:element name = "department" type= "department t" maxOccurs = "unbounded"/>
<xs:element name = "enrolled" type= "enrolled t" maxOccurs = "unbounded"/>
<xs:element name = "professor" type= "professor t" maxOccurs = "unbounded"/>
<xs:element name = "staff" type= "staff t" maxOccurs = "unbounded"/>
<xs:element name = "student" type= "student t" maxOccurs = "unbounded"/>
<xs:element name = "ta" type= "ta t" maxOccurs = "unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name= "coursedeptnocoursenoPK">

<xs:selector xpath= ".//course"/>
<xs:field xpath= "deptno"/>
<xs:field xpath= "courseno"/>

</xs:key>
<xs:key name= "coursesectiondeptnocoursenosectionnosemesterPK">

<xs:selector xpath= ".//coursesection"/>
<xs:field xpath= "deptno"/>
<xs:field xpath= "courseno"/>
<xs:field xpath= "sectionno"/>
<xs:field xpath= "semester"/>

</xs:key>
<xs:key name= "departmentdeptnoPK">

<xs:selector xpath= ".//department"/>
<xs:field xpath= "deptno"/>

</xs:key>
<xs:key name= "enrolledstudentiddeptnocoursenosectionnosemesterPK">

<xs:selector xpath= ".//enrolled"/>
<xs:field xpath= "studentid"/>
<xs:field xpath= "deptno"/>
<xs:field xpath= "courseno"/>
<xs:field xpath= "sectionno"/>
<xs:field xpath= "semester"/>

</xs:key>
<xs:key name= "professoridPK">

<xs:selector xpath= ".//professor"/>

APPENDIX C. DATABASES GENERATED BY MIGROX 224

<xs:field xpath= "id"/>
</xs:key>
<xs:key name= "staffidPK">

<xs:selector xpath= ".//staff"/>
<xs:field xpath= "id"/>

</xs:key>
<xs:key name= "studentidPK">

<xs:selector xpath= ".//student"/>
<xs:field xpath= "id"/>

</xs:key>
<xs:key name= "taidPK">

<xs:selector xpath= ".//ta"/>
<xs:field xpath= "id"/>

</xs:key>
<xs:unique name= "departmentchairUK">

<xs:selector xpath= ".//department"/>
<xs:field xpath= "chair"/>

</xs:unique>
<xs:unique name= "departmentnameUK">

<xs:selector xpath= ".//department"/>
<xs:field xpath= "name"/>

</xs:unique>
<xs:keyref name= "coursedeptnoFK" refer= "departmentdeptnoPK">

<xs:selector xpath= ".//course"/>
<xs:field xpath= "deptno"/>

</xs:keyref>
<xs:keyref name= "coursesectiondeptnocoursenoFK" refer= "coursedeptnocoursenoPK">

<xs:selector xpath= ".//coursesection"/>
<xs:field xpath= "deptno"/>
<xs:field xpath= "courseno"/>

</xs:keyref>
<xs:keyref name= "departmentchairFK" refer= "professoridPK">

<xs:selector xpath= ".//department"/>
<xs:field xpath= "chair"/>

</xs:keyref>
<xs:keyref name= "enrolleddeptnocoursenosectionnosemesterFK"
refer= "coursesectiondeptnocoursenosectionnosemesterPK">

<xs:selector xpath= ".//enrolled"/>
<xs:field xpath= "deptno"/>
<xs:field xpath= "courseno"/>
<xs:field xpath= "sectionno"/>
<xs:field xpath= "semester"/>

</xs:keyref>
<xs:keyref name= "enrolledstudentidFK" refer= "studentidPK">

<xs:selector xpath= ".//enrolled"/>
<xs:field xpath= "studentid"/>

</xs:keyref>
<xs:keyref name= "studentmajordeptFK" refer= "departmentdeptnoPK">

<xs:selector xpath= ".//student"/>
<xs:field xpath= "majordept"/>

</xs:keyref>

APPENDIX C. DATABASES GENERATED BY MIGROX 225

<xs:keyref name= "studentadvisorFK" refer= "professoridPK">
<xs:selector xpath= ".//student"/>

<xs:field xpath= "advisor"/>
</xs:keyref>
</xs:element>
<xs:complexType name = "course t">

<xs:sequence>
<xs:element name = "deptno" type= "xs:decimal"/>
<xs:element name = "courseno" type= "xs:decimal"/>
<xs:element name = "name" type= "xs:string"/>
<xs:element name = "credits" type= "xs:decimal" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "coursesection t">

<xs:sequence>
<xs:element name = "deptno" type= "xs:decimal"/>
<xs:element name = "courseno" type= "xs:decimal"/>
<xs:element name = "sectionno" type= "xs:decimal"/>
<xs:element name = "instructorid" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "semester" type= "xs:decimal"/>
<xs:element name = "textbook" type= "xs:string" minOccurs= "0"/>
<xs:element name = "nostudents" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "building" type= "xs:string" minOccurs= "0"/>
<xs:element name = "roomno" type= "xs:decimal" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "department t">

<xs:sequence>
<xs:element name = "deptno" type= "xs:decimal"/>
<xs:element name = "name" type= "xs:string"/>
<xs:element name = "building" type= "xs:string" minOccurs= "0"/>
<xs:element name = "budget" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "chair" type= "xs:decimal"/>
<xs:element name = "latitude" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "longitude" type= "xs:decimal" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "employee t">

<xs:complexContent>
<xs:extension base= "person t">

<xs:sequence>
<xs:element name = "dept" type= "xs:decimal"/>
<xs:element name = "datehired" type= "xs:date" minOccurs= "0"/>
<xs:element name = "status" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "kidnames" type= "xs:string" minOccurs= "0"

maxOccurs= "unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name = "enrolled t">

APPENDIX C. DATABASES GENERATED BY MIGROX 226

<xs:sequence>
<xs:element name = "studentid" type= "xs:decimal"/>
<xs:element name = "deptno" type= "xs:decimal"/>
<xs:element name = "courseno" type= "xs:decimal"/>
<xs:element name = "sectionno" type= "xs:decimal"/>
<xs:element name = "semester" type= "xs:decimal"/>
<xs:element name = "grade" type= "xs:string" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "instructor t">

<xs:complexContent>
<xs:extension base= "employee t">

<xs:sequence>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name = "person t">

<xs:sequence>
<xs:element name = "id" type= "xs:decimal"/>
<xs:element name = "name" type= "xs:string"/>
<xs:element name = "street" type= "xs:string" minOccurs= "0"/>
<xs:element name = "city" type= "xs:string" minOccurs= "0"/>
<xs:element name = "state" type= "xs:string" minOccurs= "0"/>
<xs:element name = "zipcode" type= "xs:string" minOccurs= "0"/>
<xs:element name = "birthdate" type= "xs:date" minOccurs= "0"/>
<xs:element name = "picture" type= "xs:string" minOccurs= "0"/>
<xs:element name = "latitude" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "longitude" type= "xs:decimal" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "professor t">

<xs:complexContent>
<xs:extension base= "instructor t">

<xs:sequence>
<xs:element name = "aysalary" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "monthsummer" type= "xs:decimal" minOccurs= "0"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name = "staff t">

<xs:complexContent>
<xs:extension base= "employee t">

<xs:sequence>
<xs:element name = "annualsalary" type= "xs:decimal" minOccurs= "0"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name = "student t">

APPENDIX C. DATABASES GENERATED BY MIGROX 227

<xs:complexContent>
<xs:extension base= "person t">

<xs:sequence>
<xs:element name = "studentno" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "majordept" type= "xs:decimal"/>
<xs:element name = "advisor" type= "xs:decimal"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:complexType name = "ta t">

<xs:complexContent>
<xs:extension base= "instructor t">

<xs:sequence>
<xs:element name = "semestersalary" type= "xs:decimal" minOccurs= "0"/>
<xs:element name = "apptfraction" type= "xs:decimal" minOccurs= "0"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:schema>

C.3.2 Instance document

<?xml version=”1.0” encoding=”UTF-8”? >
<XMLSchema xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi: noNamespaceSchemaLocation=”XMLSchema.xsd”>

<course>
<deptno>1</deptno>

<courseno>124</courseno>
<name>coursename124</name>
<credits>1</credits>

</course>
<course>

<deptno>1</deptno>
<courseno>126</courseno>
<name>coursename126</name>
<credits>4</credits>

</course>
<course>

<deptno>1</deptno>
<courseno>112</courseno>
<name>coursename112</name>
<credits>1</credits>

</course>
<course>

<deptno>220</deptno>
<courseno>122</courseno>
<name>coursename122</name>
<credits>2</credits>

APPENDIX C. DATABASES GENERATED BY MIGROX 228

</course>
<course>

<deptno>220</deptno>
<courseno>136</courseno>
<name>coursename136</name>
<credits>3</credits>

</course>
<course>

<deptno>220</deptno>
<courseno>101</courseno>
<name>coursename101</name>
<credits>4</credits>

</course>
<course>

<deptno>10</deptno>
<courseno>110</courseno>
<name>coursename110</name>
<credits>3</credits>

</course>
<course>

<deptno>10</deptno>
<courseno>105</courseno>
<name>coursename105</name>
<credits>4</credits>

</course>
<course>

<deptno>25</deptno>
<courseno>121</courseno>
<name>coursename121</name>
<credits>4</credits>

</course>
<course>

<deptno>25</deptno>
<courseno>135</courseno>
<name>coursename135</name>
<credits>3</credits>

</course>
<coursesection>

<deptno>1</deptno>
<courseno>126</courseno>
<sectionno>2</sectionno>
<instructorid>54453</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>39</roomno>

</coursesection>
<coursesection>

<deptno>220</deptno>
<courseno>122</courseno>

APPENDIX C. DATABASES GENERATED BY MIGROX 229

<sectionno>2</sectionno>
<instructorid>65990</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>70</roomno>

</coursesection>
<coursesection>

<deptno>220</deptno>
<courseno>136</courseno>
<sectionno>2</sectionno>
<instructorid>54453</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>91</roomno>

</coursesection>
<coursesection>

<deptno>220</deptno>
<courseno>101</courseno>
<sectionno>2</sectionno>
<instructorid>65805</instructorid>
<semester>1</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>50</roomno>

</coursesection>
<coursesection>

<deptno>220</deptno>
<courseno>101</courseno>
<sectionno>2</sectionno>
<instructorid>65990</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>50</roomno>

</coursesection>
<coursesection>

<deptno>10</deptno>
<courseno>105</courseno>
<sectionno>1</sectionno>
<instructorid>65990</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>75</roomno>

APPENDIX C. DATABASES GENERATED BY MIGROX 230

</coursesection>
<coursesection>

<deptno>1</deptno>
<courseno>112</courseno>
<sectionno>2</sectionno>
<instructorid>59247</instructorid>
<semester>1</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>10</roomno>

</coursesection>
<coursesection>

<deptno>25</deptno>
<courseno>135</courseno>
<sectionno>1</sectionno>
<instructorid>47397</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>13</roomno>

</coursesection>
<coursesection>

<deptno>25</deptno>
<courseno>121</courseno>
<sectionno>2</sectionno>
<instructorid>54453</instructorid>
<semester>2</semester>
<textbook>textbookname</textbook>
<nostudents>20</nostudents>
<building>building</building>
<roomno>43</roomno>

</coursesection>
<department>

<deptno>1</deptno>
<name>deptname1</name>
<building>building</building>
<budget>6000000</budget>
<chair>54453</chair>
<latitude>47</latitude>
<longitude>6</longitude>

</department>
<department>

<deptno>10</deptno>
<name>deptname10</name>
<building>building</building>
<budget>5000000</budget>
<chair>59247</chair>
<latitude>74</latitude>
<longitude>38</longitude>

APPENDIX C. DATABASES GENERATED BY MIGROX 231

</department>
<department>

<deptno>220</deptno>
<name>deptname220</name>
<building>building</building>
<budget>6000000</budget>
<chair>65805</chair>
<latitude>23</latitude>
<longitude>37</longitude>

</department>
<department>

<deptno>25</deptno>
<name>deptname25</name>
<building>building</building>
<budget>8000000</budget>
<chair>47254</chair>
<latitude>55</latitude>
<longitude>12</longitude>

</department>
<enrolled>

<studentid>71661</studentid>
<deptno>1</deptno>
<courseno>126</courseno>
<sectionno>2</sectionno>
<semester>2</semester>
<grade>AB</grade>

</enrolled>
<enrolled>

<studentid>71661</studentid>
<deptno>220</deptno>
<courseno>122</courseno>
<sectionno>2</sectionno>
<semester>2</semester>
<grade>F</grade>

</enrolled>
<enrolled>

<studentid>47397</studentid>
<deptno>220</deptno>
<courseno>136</courseno>
<sectionno>2</sectionno>
<semester>2</semester>
<grade>D</grade>

</enrolled>
<enrolled>

<studentid>65990</studentid>
<deptno>220</deptno>
<courseno>101</courseno>
<sectionno>2</sectionno>
<semester>2</semester>
<grade>AB</grade>

</enrolled>

APPENDIX C. DATABASES GENERATED BY MIGROX 232

<enrolled>
<studentid>75001</studentid>
<deptno>10</deptno>
<courseno>105</courseno>
<sectionno>1</sectionno>
<semester>2</semester>
<grade>A</grade>

</enrolled>
<enrolled>

<studentid>75001</studentid>
<deptno>1</deptno>
<courseno>112</courseno>
<sectionno>2</sectionno>
<semester>1</semester>
<grade>AB</grade>

</enrolled>
<enrolled>

<studentid>75051</studentid>
<deptno>25</deptno>
<courseno>121</courseno>
<sectionno>2</sectionno>
<semester>2</semester>
<grade>C</grade>

</enrolled>
<enrolled>

<studentid>75051</studentid>
<deptno>25</deptno>
<courseno>135</courseno>
<sectionno>1</sectionno>
<semester>2</semester>
<grade>B</grade>

</enrolled>
<enrolled>

<studentid>117525</studentid>
<deptno>220</deptno>
<courseno>101</courseno>
<sectionno>2</sectionno>
<semester>2</semester>
<grade>A</grade>

</enrolled>
<enrolled>

<studentid>108981</studentid>
<deptno>220</deptno>
<courseno>101</courseno>
<sectionno>2</sectionno>
<semester>1</semester>
<grade>AB</grade>

</enrolled>
<professor>

<id>59247</id>
<name>professorName59247</name>

APPENDIX C. DATABASES GENERATED BY MIGROX 233

<street>xxxx streetname</street>
<city>city name</city>
<state>Utah</state>
<zipcode>98075 </zipcode>
<birthdate>1971-03-08</birthdate>
<picture>picture</picture>
<latitude>1211</latitude>
<longitude>98</longitude>
<dept>220</dept>
<datehired>1958-08-08</datehired>
<status>9</status>
<kidnames>boy90</kidnames>
<kidnames>girl39</kidnames>
<aysalary>115000</aysalary>
<monthsummer>2</monthsummer>

</professor>
<professor>

<id>65805</id>
<name>professorName65805</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Minnesota</state>
<zipcode>92344 </zipcode>
<birthdate>1983-10-30</birthdate>
<picture>picture</picture>
<latitude>1337</latitude>
<longitude>60</longitude>
<dept>220</dept>
<datehired>1943-04-19</datehired>
<status>9</status>
<kidnames>boy99</kidnames>
<kidnames>girl1057</kidnames>
<kidnames>girl877</kidnames>
<kidnames>girl99</kidnames>

<aysalary>127000</aysalary>
<monthsummer>3</monthsummer>
</professor>

<professor>
<id>47254</id>
<name>professorName47254</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Pennsylvania</state>
<zipcode>34306 </zipcode>
<birthdate>1981-12-03</birthdate>
<picture>picture</picture>
<latitude>1904</latitude>
<longitude>1565</longitude>
<dept>25</dept>
<datehired>1982-01-09</datehired>
<status>0</status>

APPENDIX C. DATABASES GENERATED BY MIGROX 234

<aysalary>127000</aysalary>
<monthsummer>1</monthsummer>

</professor>
<professor>

<id>54453</id>
<name>professorName54453</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Virginia</state>
<zipcode>23403 </zipcode>
<birthdate>1971-04-04</birthdate>
<picture>picture</picture>
<latitude>1111</latitude>
<longitude>1753</longitude>
<dept>10</dept>
<datehired>1970-05-14</datehired>
<status>9</status>
<aysalary>111000</aysalary>
<monthsummer>3</monthsummer>

</professor>
<staff>

<id>1</id>
<name>staffName1</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Oklahoma</state>
<zipcode>41421 </zipcode>
<birthdate>1989-11-13</birthdate>
<picture>picture</picture>
<latitude>362</latitude>
<longitude>27</longitude>
<dept>1</dept>
<datehired>1955-11-28</datehired>
<status>3</status>
<kidnames>boy90</kidnames>
<kidnames>girl90</kidnames>
<annualsalary>83000</annualsalary>

</staff>
<staff>

<id>2</id>
<name>staffName2</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Oregon</state>
<zipcode>56429 </zipcode>
<birthdate>1957-12-09</birthdate>
<picture>picture</picture>
<latitude>1782</latitude>
<longitude>1530</longitude>
<dept>1</dept>
<datehired>1966-11-01</datehired>

APPENDIX C. DATABASES GENERATED BY MIGROX 235

<status>2</status>
<kidnames>boy62</kidnames>
<kidnames>girl62</kidnames>
<annualsalary>33000</annualsalary>

</staff>
<staff>

<id>3</id>
<name>staffName3</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Florida</state>
<zipcode>18456 </zipcode>
<birthdate>1983-06-28</birthdate>
<picture>picture</picture>
<latitude>1011</latitude>
<longitude>42</longitude>
<dept>10</dept>
<datehired>1942-08-30</datehired>
<status>2</status>
<kidnames>boy90</kidnames>
<kidnames>girl29</kidnames>
<annualsalary>47000</annualsalary>

</staff>
<student>

<id>65990</id>
<name>studentName65990</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Vermont</state>
<zipcode>24609 </zipcode>
<birthdate>1941-04-16</birthdate>
<picture>picture</picture>
<latitude>579</latitude>
<longitude>534</longitude>
<studentno>454356786</studentno>
<majordept>1</majordept>
<advisor>54453</advisor>

</student>
<student>

<id>75001</id>
<name>studentName75001</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Georgia</state>
<zipcode>47880 </zipcode>
<birthdate>1985-07-21</birthdate>
<picture>picture</picture>
<latitude>1464</latitude>
<longitude>179</longitude>
<studentno>503582122</studentno>
<majordept>1</majordept>

APPENDIX C. DATABASES GENERATED BY MIGROX 236

<advisor>59247</advisor>
</student>
<student>

<id>75051</id>
<name>studentName75051</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Florida</state>
<zipcode>63335 </zipcode>
<birthdate>1956-12-18</birthdate>
<picture>picture</picture>
<latitude>71</latitude>
<longitude>755</longitude>
<studentno>112339778</studentno>
<majordept>10</majordept>
<advisor>59247</advisor>

</student>
<student>

<id>117525</id>
<name>studentName117525</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Oklahoma</state>
<zipcode>97695 </zipcode>
<birthdate>1952-08-27</birthdate>
<picture>picture</picture>
<latitude>1619</latitude>
<longitude>900</longitude>
<studentno>374361804</studentno>
<majordept>10</majordept>
<advisor>47254</advisor>

</student>
<student>

<id>108981</id>
<name>studentName108981</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>West Virginia</state>
<zipcode>83589 </zipcode>
<birthdate>1965-09-02</birthdate>
<picture>picture</picture>
<latitude>1867</latitude>
<longitude>985</longitude>
<studentno>75613281</studentno>
<majordept>220</majordept>
<advisor>65805</advisor>

</student>
<student>

<id>47397</id>
<name>studentName47397</name>
<street>xxxx streetname</street>

APPENDIX C. DATABASES GENERATED BY MIGROX 237

<city>city name</city>
<state>Iowa</state>
<zipcode>64177 </zipcode>
<birthdate>1970-10-12</birthdate>
<picture>picture</picture>
<latitude>1043</latitude>
<longitude>486</longitude>
<studentno>651921317</studentno>
<majordept>25</majordept>
<advisor>47254</advisor>

</student>
<student>

<id>71661</id>
<name>studentName71661</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Idaho</state>
<zipcode>64177 </zipcode>
<birthdate>1952-04-17</birthdate>
<picture>picture</picture>
<latitude>377</latitude>
<longitude>859</longitude>
<studentno>974503561</studentno>
<majordept>25</majordept>
<advisor>65805</advisor>

</student>
<ta>

<id>65990</id>
<name>studentName65990</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Vermont</state>
<zipcode>24609 </zipcode>
<birthdate>1941-04-16</birthdate>
<picture>picture</picture>
<latitude>579</latitude>
<longitude>534</longitude>
<dept>220</dept>
<datehired>1987-09-29</datehired>
<status>6</status>
<semestersalary>12000</semestersalary>
<apptfraction>.55</apptfraction>

</ta>
<ta>

<id>47397</id>
<name>studentName47397</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Iowa</state>
<zipcode>64177 </zipcode>
<birthdate>1970-10-12</birthdate>

APPENDIX C. DATABASES GENERATED BY MIGROX 238

<picture>picture</picture>
<latitude>1043</latitude>
<longitude>486</longitude>
<dept>1</dept>
<datehired>1963-11-27</datehired>
<status>2</status>
<semestersalary>16000</semestersalary>
<apptfraction>.45</apptfraction>

</ta>
<ta>

<id>71661</id>
<name>studentName71661</name>
<street>xxxx streetname</street>
<city>city name</city>
<state>Idaho</state>
<zipcode>64177 </zipcode>
<birthdate>1952-04-17</birthdate>
<picture>picture</picture>
<latitude>377</latitude>
<longitude>859</longitude>
<dept>25</dept>
<datehired>1963-11-27</datehired>
<status>9</status>
<semestersalary>17000</semestersalary>
<apptfraction>.65</apptfraction>

</ta>
</XMLSchema>

Appendix D

School Database Schema
Translation

This Appendix contains the OODB and ORDB schemas of the School RDB translated by MIGROX
and Urban and Dietrich [2003].

D.1 ODMG 3.0 ODL of School database mapped

by Urban and Dietrich [2003]

class Person(extent people key pID) {
attribute string pID; attribute date dob;
attribute string firstName; attribute string lastName;
. . . }
class Student extends Person(extent students){
attribute string status; attribute Department major;
relationship set<CampusClub> memberOf inverse CampusClub::members;
. . . }
class Faculty extends Person(extent facultyMembers){
attribute string rank; attribute Department dept;
relationship set<CampusClub> advisorOf inverse CampusClub::advisor;
Department getChairOf();
. . . }
class CampusClub(extent campusClubs key cID){
attribute string cID; attribute string name; attribute string location;
attribute string phone;
relationship set<Student> members inverse Student::memberOf;
relationship Faculty advisor inverse Faculty::advisorOf;
. . . }
class Department(extent departments key code) {
attribute string code; attribute string name; attribute Faculty deptChair;
attribute set<Student> students; attribute set<Faculty> deptFaculty;
. . . }

239

APPENDIX D. SCHOOL DATABASE SCHEMA TRANSLATION 240

D.2 ODMG 3.0 ODL of School database generated

by MIGROX

class campusclub (extent campusclubs key cid) {
attribute string cid; attribute string name; attribute string phone;
attribute string location;
relationship set<student> members inverse student::memberof;
relationship faculty advisor inverse faculty::advisorof};

class department (extent departments key code) {
attribute string code; attribute string name;
relationship set<faculty> deptfuclty inverse faculty::dept;
relationship set<student> students inverse student::major;
relationship faculty deptchair inverse faculty::chairof};

class faculty extends person (extent facultys) {
attribute string rank;
relationship set<campusclub> advisorof inverse campusclub::advisor;
relationship department chairof inverse department::deptchair;
relationship department dept inverse department::deptfuclty};

class person (extent persons key pid) {
attribute string pid; attribute date dob; attribute string firstname;
attribute string lastname;};

class student extends person (extent students) {
attribute string status;
relationship set<campusclub> memberof inverse campusclub::members;
relationship department major inverse department::students};

D.3 SQL3 DDL of School database mapped by Ur-

ban and Dietrich [2003]

create type person udt as (
pid varchar(11), dob date, firstname varchar(20), lastname varchar(20)) not final
ref is system generated;

create table person of person udt (
constraint person pk primary key(pid), ref is oid system generated);

create type faculty udt under person udt as (
rank varchar(20),
advisorof ref(campusclub udt) scope campusclub array[20],
worksin ref(department udt) scope department,
chairof ref(department udt) scope department)
not final
method getclubsadvised() returns varchar(25) array[20];

APPENDIX D. SCHOOL DATABASE SCHEMA TRANSLATION 241

create table faculty of faculty udt under person;

create type student udt under person udt as (
status varchar(20),
clubs ref(campusclub udt) scope campusclub array[20],
major ref(department udt) scope department)not final
method getclubs() returns varchar(25) array[20];
create table student of student udt under person;

create type campusclub udt as (
cid varchar(11), name varchar(25), location varchar(25), phone varchar(25),
advisor ref(faculty udt) scope faculty,
members ref(student udt) scope student array[100])not final
ref is system generated;
create table campusclub of campusclub udt (
constraint campusclub pk primary key(cid),
ref is oid system generated);

create type department udt as (
code varchar(3), name varchar(40),
deptchair ref(faculty udt) scope faculty)not final
ref is system generated
method getstudents() returns varchar(40) array[1000],
method getfaculty() returns varchar(40) array[50];
create table department of department udt (
constraint department pk primary key(code),
ref is oid system generated);

D.4 Oracle 11g of School database generated by

MIGROX

create type campusclub t
/
create type department t
/
create type faculty t
/
create type person t
/
create type student t
/
create or replace type student ntt as table of ref student t;
/
create or replace type faculty ntt as table of ref faculty t;
/
create or replace type campusclub ntt as table of ref campusclub t;
/
create or replace type campusclub t as object (

APPENDIX D. SCHOOL DATABASE SCHEMA TRANSLATION 242

cid char(10), name char(20), phone char(10), location char(30),
members student ntt, advisor ref faculty t) not final;
/
create or replace type department t as object (
code char(3), name char(20), deptfuclty faculty ntt, students student ntt,
deptchair ref faculty t) not final;
/
create or replace type person t as object (
pid char(10), dob date, firstname char(10), lastname char(10)) not final;
/
create or replace type faculty t under person t (
rank char(5), advisorof campusclub ntt, chairof ref department t,
dept ref department t) final;
/
create or replace type student t under person t (
status char(10), memberof campusclub ntt, major ref department t) final;
/
create table campusclub of campusclub t
nested table members store as members nt
;
create table department of department t
nested table deptfuclty store as deptfuclty nt
nested table students store as students nt
;
create table faculty of faculty t
nested table advisorof store as advisorof nt
;
create table student of student t
nested table memberof store as memberof nt
;
alter table campusclub add constraint campusclub pk primary key (cid);
alter table department add constraint department pk primary key (code);

Appendix E

Company Database Schema
Translation

This Appendix contains the XML Schema documents translated by MIGROX and Elmasri and
Navathe [2006] algorithm, respectively. The documents are mapped from the Company RDB Elmasri
and Navathe [2006].

E.1 XML Schema document generated by MIGROX

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:annotation>
<xs:documentation xml:lang ="en"> Generated XML Schema </xs:documentation>
</xs:annotation>
<xs:element name= "XMLSchema">
<xs:complexType>
<xs:sequence>

<xs:element name = "department" type= "department t" maxOccurs = "unbounded"/>
<xs:element name = "employee" type= "employee t" maxOccurs = "unbounded"/>
<xs:element name = "project" type= "project t" maxOccurs = "unbounded"/>
<xs:element name = "works on" type= "works on t" maxOccurs = "unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name= "departmentdnumberPK">

<xs:selector xpath= ".//department"/>
<xs:field xpath= "dnumber"/>

</xs:key>
<xs:key name= "employeessnPK">

<xs:selector xpath= ".//employee"/>
<xs:field xpath= "ssn"/>

</xs:key>
<xs:key name= "projectpnumberPK">

<xs:selector xpath= ".//project"/>

243

APPENDIX E. COMPANY DATABASE SCHEMA TRANSLATION 244

<xs:field xpath= "pnumber"/>
</xs:key>
<xs:key name= "works onessnpnoPK">

<xs:selector xpath= ".//works on"/>
<xs:field xpath= "essn"/>

<xs:field xpath= "pno"/>
</xs:key>
<xs:keyref name= "departmentmgrssnFK" refer= "employeessnPK">

<xs:selector xpath= ".//department"/>
<xs:field xpath= "mgrssn"/>

</xs:keyref>
<xs:keyref name= "employeednoFK" refer= "departmentdnumberPK">

<xs:selector xpath= ".//employee"/>
<xs:field xpath= "dno"/>

</xs:keyref>
<xs:keyref name= "employeesuperssnFK" refer= "employeessnPK">

<xs:selector xpath= ".//employee"/>
<xs:field xpath= "superssn"/>

</xs:keyref>
<xs:keyref name= "projectdnumFK" refer= "departmentdnumberPK">

<xs:selector xpath= ".//project"/>
<xs:field xpath= "dnum"/>

</xs:keyref>
<xs:keyref name= "works onessnFK" refer= "employeessnPK">

<xs:selector xpath= ".//works on"/>
<xs:field xpath= "essn"/>

</xs:keyref>
<xs:keyref name= "works onpnoFK" refer= "projectpnumberPK">
<xs:selector xpath= ".//works on"/>
<xs:field xpath= "pno"/>
</xs:keyref>
</xs:element>
<xs:complexType name = "department t">

<xs:sequence>
<xs:element name = "dname" type= "xs:string"/>
<xs:element name = "dnumber" type= "xs:int"/>
<xs:element name = "mgrssn" type= "xs:int"/>
<xs:element name = "mgrstartdate" type= "xs:date" minOccurs= "0"/>
<xs:element name = "locations" type= "xs:string" maxOccurs= "unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "dependent t">

<xs:sequence>
<xs:element name = "dependent name" type= "xs:string"/>
<xs:element name = "sex" type= "xs:string"/>
<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/>
<xs:element name = "relationship" type= "xs:string" minOccurs= "0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "employee t">

<xs:sequence>

APPENDIX E. COMPANY DATABASE SCHEMA TRANSLATION 245

<xs:element name = "fname" type= "xs:string"/>
<xs:element name = "minit" type= "xs:string" minOccurs= "0"/>
<xs:element name = "lname" type= "xs:string"/>
<xs:element name = "ssn" type= "xs:int"/>
<xs:element name = "bdate" type= "xs:date" minOccurs= "0"/>
<xs:element name = "address" type= "xs:string" minOccurs= "0"/>
<xs:element name = "sex" type= "xs:string" minOccurs= "0"/>
<xs:element name = "salary" type= "xs:int" minOccurs= "0"/>
<xs:element name = "superssn" type= "xs:int" minOccurs= "0"/>
<xs:element name = "dno" type= "xs:int"/>
<xs:element name = "hasDependent" type= "dependent t" minOccurs= "0"

maxOccurs= "unbounded"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name = "project t">

<xs:sequence>
<xs:element name = "pname" type= "xs:string"/>
<xs:element name = "pnumber" type= "xs:int"/>
<xs:element name = "plocation" type= "xs:string" minOccurs= "0"/>
<xs:element name = "dnum" type= "xs:int"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name = "works on t">

<xs:sequence>
<xs:element name = "essn" type= "xs:int"/>
<xs:element name = "pno" type= "xs:int"/>
<xs:element name = "hours" type= "xs:int"/>

</xs:sequence>
</xs:complexType>
</xs:schema>

E.2 XML Schema document mapped by Elmasri

and Navathe [2006]

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xsd:annotation>
<xsd:documentation xml:lang ="en"> Company Schema </xsd:documentation>
</xsd:annotation>
<xsd:element name= "company">
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "department" type= "Department" minOccurs = "0"
maxOccurs = "unbounded"/>

<xsd:element name = "employee" type= "Employee" minOccurs = "0"
maxOccurs = "unbounded">

<xsd:unique name= "dependentNameUnique">

APPENDIX E. COMPANY DATABASE SCHEMA TRANSLATION 246

<xsd:selector xpath= "employeeDependent"/>
<xsd:field xpath= "employeeName"/>

</xsd:unique">
</xsd:element">
<xsd:element name = "project" type= "Project" minOccurs = "0"

maxOccurs = "unbounded"/>
</xsd:sequence>
</xsd:complexType>
<xsd:unique name= "departmentNameUnique">

<xsd:selector xpath= "department"/>
<xsd:field xpath= "departmentName"/>

</xsd:unique">
<xsd:unique name= "projectNameUnique">

<xsd:selector xpath= "project"/>
<xsd:field xpath= "projectName"/>

</xsd:unique">
<xsd:key name= "projectNumberKey">

<xsd:selector xpath= "project"/>
<xsd:field xpath= "projectNumber"/>

</xsd:key>
<xsd:key name= "departmentNumberKey">

<xsd:selector xpath= "department"/>
<xsd:field xpath= "departmentNumber"/>

</xsd:key>
<xsd:key name= "employeeSSNKey">

<xsd:selector xpath= "employee"/>
<xsd:field xpath= "employeeSSN"/>

</xsd:key>
<xsd:keyref name= "departmentManagerSSNKeyRef" refer= "employeeSSNKey">

<xsd:selector xpath= "department"/>
<xsd:field xpath= "departmentManagerSSN"/>

</xsd:keyref>
<xsd:keyref name= "employeeDepartmentNumberKeyRef" refer= "departmentNumberKey">

<xsd:selector xpath= "employee"/>
<xsd:field xpath= "employeeDepartmentNumber"/>

</xsd:keyref>
<xsd:keyref name= "employeeSupervisorSSNKeyRef" refer= "employeeSSNKey">

<xsd:selector xpath= "employee"/>
<xsd:field xpath= "employeeSupervisorSSN"/>

</xsd:keyref>
<xsd:keyref name= "projectDepartmentNumberKeyRef" refer= "departmentNumberKey">

<xsd:selector xpath= "project"/>
<xsd:field xpath= "projectDepartmentNumber"/>

</xsd:keyref>
<xsd:keyref name= "projectWorkerSSNKeyRef" refer= "employeeSSNKey">

<xsd:selector xpath= "project/projectWorker"/>
<xsd:field xpath= "SSN"/>

</xsd:keyref>
<xsd:keyref name= "employeeWorksOnProjectNumberKeyRef" refer= "projectNumberKey">

<xsd:selector xpath= "employee/employeeWorksOn"/>
<xsd:field xpath= "projectNumber"/>

APPENDIX E. COMPANY DATABASE SCHEMA TRANSLATION 247

</xsd:keyref>
</xsd:element>
<xsd:complexType name = "Department">

<xsd:sequence>
<xsd:element name = "departmentName" type= "xsd:string"/>
<xsd:element name = "departmentNumber" type= "xsd:string"/>
<xsd:element name = "departmentManagerSSN" type= "xsd:string"/>
<xsd:element name = "departmentManagerStartDate" type= "xsd:date"/>
<xsd:element name = "departmentLocations" type= "xsd:string" minOccurs= "0"

maxOccurs= "unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name = "Employee">

<xsd:sequence>
<xsd:element name = "employeeName" type= "Name"/>
<xsd:element name = "employeeSsn" type= "xsd:string"/>
<xsd:element name = "employeeSex" type= "xsd:string"/>
<xsd:element name = "employeeSalary" type= "xsd:unsignedInt"/>
<xsd:element name = "employeeBirthdate" type= "xsd:date"/>
<xsd:element name = "employeeDepartmentNumber" type= "xsd:string"/>
<xsd:element name = "employeeSuperSSN" type= "xsd:string/>
<xsd:element name = "employeeAddress" type= "Address"/>
<xsd:element name = "employeeWorksOn" type= "WorksOn" minOccurs= "1"

maxOccurs= "unbounded"/>
<xsd:element name = "employeeDependent" type= "Dependent" minOccurs= "0"

maxOccurs= "unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name = "Project">

<xsd:sequence>
<xsd:element name = "projectName" type= "xsd:string"/>
<xsd:element name = "projectNumber" type= "xsd:string"/>
<xsd:element name = "projectLocation" type= "xsd:string"/>
<xsd:element name = "projectDepartmentNumber" type= "xsd:string"/>
<xsd:element name = "projectWorker" type= "Worker" minOccurs= "1"

maxOccurs= "unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name = "Dependent">

<xsd:sequence>
<xsd:element name = "dependentName" type= "xsd:string"/>
<xsd:element name = "dependentSsex" type= "xsd:string"/>
<xsd:element name = "dependentBirthDate" type= "xsd:date"/>
<xsd:element name = "dependentRelationship" type= "xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name = "Address">

<xsd:sequence>
<xsd:element name = "name" type= "xsd:string"/>
<xsd:element name = "street" type= "xsd:string"/>
<xsd:element name = "city" type= "xsd:string"/>

APPENDIX E. COMPANY DATABASE SCHEMA TRANSLATION 248

<xsd:element name = "state" type= "xsd:string"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name = "Name">

<xsd:sequence>
<xsd:element name = "firstName" type= "xsd:string"/>
<xsd:element name = "middleName" type= "xsd:string"/>
<xsd:element name = "lastName" type= "xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name = "Worker">

<xsd:sequence>
<xsd:element name = "SSN" type= "xsd:string"/>
<xsd:element name = "hours" type= "xsd:float"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name = "WorksOn">

<xsd:sequence>
<xsd:element name = "projectName" type= "xsd:string"/>
<xsd:element name = "hours" type= "xsd:float"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Appendix F

Query Plans of RDB UniDB

This Appendix includes the query plan tables generated from Oracle for executing the RDB UniDB
queries used in the experiment of performance comparison.

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1 44 1 (0) 00:00:01
1 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 44 1 (0) 00:00:01

* 2 INDEX UNIQUE SCAN DEPT PK 1 0 (0) 00:00:01
Predicate Information (identified by operation id):
2 - access(”DEPTNO”=1)

Table F.1: Plan table for relational SINGLE-EXACT query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1 102 3 (0) 00:00:01
1 NESTED LOOPS 1 102 3 (0) 00:00:01
2 TABLE ACCESS BY INDEX ROWID STAFF 1 26 2 (0) 00:00:01

* 3 INDEX UNIQUE SCAN STAFF PK 1 1 (0) 00:00:01
4 TABLE ACCESS BY INDEX ROWID PERSON 1 76 1 (0) 00:00:01

* 5 INDEX UNIQUE SCAN PERSON PK 1 0 (0) 00:00:01
Predicate Information (identified by operation id):
3 - access(”S”.”ID”=2)
5 - access(”P”.”ID”=2)

Table F.2: Plan table for relational HIER-EXACT query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 2014 78546 18 (6) 00:00:01

* 1 TABLE ACCESS FULL PROFESSOR 2014 78546 18 (6) 00:00:01
Predicate Information (identified by operation id):
1 - filter(”P”.”AYSALARY”*(9+”P”.”MONTHSUMMER”)/9.0>=145000)
Note–dynamic sampling used for this statement

Table F.3: Plan table for relational SINGLE-METH query

249

APPENDIX F. QUERY PLANS OF RDB UNIDB 250

Id Operation Name Rows Bytes TempSpc Cost(%CPU) Time
0 SELECT STATEMENT 2790 280K 588 (100) 00:00:08
1 SORT UNIQUE 2790 280K 664K 588 (100) 00:00:08
2 UNION-ALL
3 NESTED LOOPS
4 NESTED LOOPS 1 90 2 (0) 00:00:01
5 TABLE ACCESS BY INDEX ROWID STAFF 1 26 1 (0) 00:00:01

* 6 INDEX RANGE SCAN STAFF ANNUALSALARY 1 1 (0) 00:00:01
* 7 INDEX UNIQUE SCAN PERSON PK 1 0 (0) 00:00:01

8 TABLE ACCESS BY INDEX ROWID PERSON 1 64 1 (0) 00:00:01
* 9 HASH JOIN 2788 280K 497 (1) 00:00:06

* 10 TABLE ACCESS FULL PROFESSOR 2788 106K 18 (6) 00:00:01
11 TABLE ACCESS FULL PERSON 114K 7180K 479 (1) 00:00:06
12 NESTED LOOPS
13 NESTED LOOPS 1 103 18 (0) 00:00:01

* 14 TABLE ACCESS FULL TA 1 39 17 (0) 00:00:01
* 15 INDEX UNIQUE SCAN PERSON PK 1 0 (0) 00:00:01

16 TABLE ACCESS BY INDEX ROWID PERSON 1 64 1 (0) 00:00:01
Predicate Information (identified by operation id):
6 - access(”S”.”ANNUALSALARY”>=140000)
7 - access(”P”.”ID”=”S”.”ID”)
9 - access(”P”.”ID”=”F”.”ID”)
10 - filter(”F”.”AYSALARY”*(9+”F”.”MONTHSUMMER”)/9.0>=140000)
14 - filter(”APPTFRACTION”*(2*”T”.”SEMESTERSALARY”)>=140000)
15 - access(”P”.”ID”=”T”.”ID”)
Note–dynamic sampling used for this statement

Table F.4: Plan table for relational HIER-METH query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 313 27544 7 (15) 00:00:01

* 1 HASH JOIN 313 27544 7 (15) 00:00:01
2 TABLE ACCESS FULL DEPARTMENT 250 11000 3 (0) 00:00:01
3 TABLE ACCESS FULL DEPARTMENT 250 11000 3 (0) 00:00:01

Predicate Information (identified by operation id):
1 - access(”D1”.”BUDGET”=”D2”.”BUDGET”)
filter(”D1”.”DEPTNO” < ”D2”.”DEPTNO”)
Note—dynamic sampling used for this statement

Table F.5: Plan table for relational SINGLE-JOIN query

Id Operation Name Rows Bytes TempSpc Cost(%CPU) Time
0 SELECT STATEMENT 1 142 2087 (1) 00:00:26
1 NESTED LOOPS 1 142 2087 (1) 00:00:26
2 NESTED LOOPS 1 129 2087 (1) 00:00:26

* 3 HASH JOIN 1 116 1336K 2087 (1) 00:00:26
* 4 HASH JOIN 12834 1178K 1056K 1778 (1) 00:00:22
* 5 HASH JOIN 12834 902K 5392K 1483 (1) 00:00:18

6 TABLE ACCESS FULL PERSON 114K 4039K 479 (1) 00:00:06
7 TABLE ACCESS FULL PERSON 114K 4039K 479 (1) 00:00:06
8 TABLE ACCESS FULL EMPLOYEE 86498 1858K 103 (1) 00:00:02
9 TABLE ACCESS FULL EMPLOYEE 86498 1858K 103 (1) 00:00:02

* 10 INDEX UNIQUE SCAN TA PK 1 13 0 (0) 00:00:01
* 11 INDEX UNIQUE SCAN TA PK 1 13 0 (0) 00:00:01
Predicate Information (identified by operation id):
3 - access(”E1”.”DATEHIRED”=”E2”.”DATEHIRED” AND ”P2”.”ID”=”E2”.”ID”)
4 - access(”P1”.”ID”=”E1”.”ID”)
5 - access(”P1”.”ZIPCODE”=”P2”.”ZIPCODE”)
filter(”P1”.”ID” < ”P2”.”ID”)
10 - access(”P1”.”ID”=”T1”.”ID”)
11 - access(”P2”.”ID”=”T2”.”ID”)
Note–dynamic sampling used for this statement

Table F.6: Plan table for relational HIER-JOIN query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 497 53676 489 (3) 00:00:06
1 NESTED LOOPS 497 53676 489 (3) 00:00:06
2 NESTED LOOPS 497 47215 489 (3) 00:00:06
3 TABLE ACCESS FULL PERSON 114K 8527K 479 (1) 00:00:06

* 4 INDEX UNIQUE SCAN KIDS PK 1 19 0 (0) 00:00:01
* 5 INDEX UNIQUE SCAN STAFF PK 1 13 0 (0) 00:00:01
Predicate Information (identified by operation id):
4 - access(”P”.”ID”=”K”.”ID” AND ”K”.”KIDNAME”=’boy90’)
5 - access(”S”.”ID”=”K”.”ID”)
Note–dynamic sampling used for this statement

Table F.7: Plan table for relational SET-ELEMENT query

APPENDIX F. QUERY PLANS OF RDB UNIDB 251

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 10 1270 27 (8) 00:00:01
1 NESTED LOOPS
2 NESTED LOOPS 10 1270 27 (8) 00:00:01
3 NESTED LOOPS 10 510 17 (12) 00:00:01
4 NESTED LOOPS 497 15904 17 (12) 00:00:01
5 TABLE ACCESS FULL STAFF 25000 317K 15 (0) 00:00:01

* 6 INDEX UNIQUE SCAN KIDS PK 1 19 0 (0) 00:00:01
* 7 INDEX UNIQUE SCAN KIDS PK 1 19 0 (0) 00:00:01
* 8 INDEX UNIQUE SCAN PERSON PK 1 0 (0) 00:00:01

9 TABLE ACCESS BY INDEX ROWID PERSON 1 76 1 (0) 00:00:01
Predicate Information (identified by operation id):
6 - access(”E”.”ID”=”K1”.”ID” AND ”K1”.”KIDNAME”=’girl90’)
7 - access(”E”.”ID”=”K2”.”ID” AND ”K2”.”KIDNAME”=’boy90’)
8 - access(”E”.”ID”=”P”.”ID”)
Note–dynamic sampling used for this statement

Table F.8: Plan table for relational SET-AND query

Id Operation Name Rows Bytes TempSpc Cost(%CPU) Time
0 SELECT STATEMENT 79638 6532K 998 (1) 00:00:12

* 1 HASH JOIN 79638 6532K 998 (1) 00:00:12
2 TABLE ACCESS FULL DEPARTMENT 250 5250 3 (0) 00:00:01

* 3 HASH JOIN 79638 4899K 2960K 994 (1) 00:00:12
4 TABLE ACCESS FULL STUDENT 79638 2022K 103 (1) 00:00:02
5 TABLE ACCESS FULL PERSON 114K 4151K 479 (1) 00:00:06

Predicate Information (identified by operation id):
1 - access(”S”.”MAJORDEPT”=”D”.”DEPTNO”)
3 - access(”P”.”ID”=”S”.”ID”)
Note–dynamic sampling used for this statement

Table F.9: Plan table for relational 1HOP-NONE query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1 82 6 (0) 00:00:01
1 NESTED LOOPS
2 NESTED LOOPS 1 82 6 (0) 00:00:01
3 NESTED LOOPS 1 51 5 (0) 00:00:01
4 TABLE ACCESS BY INDEX ROWID PERSON 1 25 4 (0) 00:00:01

* 5 INDEX RANGE SCAN PERSON NAME 1 3 (0) 00:00:01
6 TABLE ACCESS BY INDEX ROWID STUDENT 1 26 1 (0) 00:00:01

* 7 INDEX UNIQUE SCAN STUD PK 1 0 (0) 00:00:01
* 8 INDEX UNIQUE SCAN DEPT PK 1 0 (0) 00:00:01

9 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 31 1 (0) 00:00:01
Predicate Information (identified by operation id):
5 - access(”P”.”NAME”=’studentName75001’)
7 - access(”P”.”ID”=”S”.”ID”)
8 - access(”S”.”MAJORDEPT”=”D”.”DEPTNO”)
Note–dynamic sampling used for this statement

Table F.10: Plan table for relational 1HOP-ONE query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 285 20520 391 (1) 00:00:05
1 NESTED LOOPS
2 NESTED LOOPS 285 20520 391 (1) 00:00:05

* 3 HASH JOIN 285 13395 106 (2) 00:00:02
4 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 21 2 (0) 00:00:01

* 5 INDEX RANGE SCAN DEPARTMENT NAME 1 1 (0) 00:00:01
6 TABLE ACCESS FULL STUDENT 71169 1807K 103 (1) 00:00:02

* 7 INDEX UNIQUE SCAN PERSON PK 1 0 (0) 00:00:01
8 TABLE ACCESS BY INDEX ROWID PERSON 1 25 1 (0) 00:00:01

Predicate Information (identified by operation id):
3 - access(”S”.”MAJORDEPT”=”D”.”DEPTNO”)
5 - access(”D”.”NAME”=’deptname1’)
7 - access(”P”.”ID”=”S”.”ID”)
Note–dynamic sampling used for this statement

Table F.11: Plan table for relational 1HOP-MANY query

APPENDIX F. QUERY PLANS OF RDB UNIDB 252

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 2 224 105 (1) 00:00:02
1 NESTED LOOPS
2 NESTED LOOPS 2 224 105 (1) 00:00:02
3 NESTED LOOPS 2 182 103 (1) 00:00:02

* 4 TABLE ACCESS FULL COURSESECTION 530 34450 103 (1) 00:00:02
* 5 INDEX UNIQUE SCAN COURSE PK 1 26 0 (0) 00:00:01
* 6 INDEX UNIQUE SCAN DEPT PK 1 0 (0) 00:00:01

7 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 21 1 (0) 00:00:01
Predicate Information (identified by operation id):
4 - filter(”X”.”ROOMNO”=50)
5 - access(”X”.”DEPTNO”=”C”.”DEPTNO” AND ”X”.”COURSENO”=”C”.”COURSENO”)
6 - access(”C”.”DEPTNO”=”D”.”DEPTNO”)
Note–dynamic sampling used for this statement

Table F.12: Plan table for relational 1HOP-MANY query

Appendix G

Query Plans of ORDB UniDB

This Appendix includes the query plan tables generated from Oracle for executing the ORDB UniDB
queries used in the experiment of performance comparison.

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1 44 1 (0) 00:00:01
1 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 44 1 (0) 00:00:01

* 2 INDEX UNIQUE SCAN DEPARTMENT PK 1 0 (0) 00:00:01
Predicate Information (identified by operation id):
2 - access(”DEPTNO”=1)

Table G.1: Plan table for ORDB SINGLE-EXACT query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1 38 2 (0) 00:00:01
1 TABLE ACCESS BY INDEX ROWID STAFF 1 38 2 (0) 00:00:01

* 2 INDEX UNIQUE SCAN STAFF PK 1 1 (0) 00:00:01
Predicate Information (identified by operation id):
2 - access(”ID”=2)

Table G.2: Plan table for ORDB HIER-EXACT query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 2014 78546 18 (6) 00:00:01

* 1 TABLE ACCESS FULL PROFESSOR 2014 78546 18 (6) 00:00:01
Predicate Information (identified by operation id):
1 - filter(”P”.”AYSALARY”*(9+”P”.”MONTHSUMMER”)/9.0>=145000)
Note–dynamic sampling used for this statement

Table G.3: Plan table for ORDB SINGLE-METH query

253

APPENDIX G. QUERY PLANS OF ORDB UNIDB 254

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 2208 86112 205 (1) 00:00:03

* 1 TABLE ACCESS FULL PROFESSOR 2208 86112 205 (1) 00:00:03
Predicate Information (identified by operation id):
1 - filter(”P”.”AYSALARY”*(9+”P”.”MONTHSUMMER”)/9.0>=145000)
Note–dynamic sampling used for this statement

Table G.4: Plan table for ORDB SINGLE-METH query

Id Operation Name Rows Bytes TempSpc Cost(%CPU) Time
0 SELECT STATEMENT 75000 11M 3416 (70) 00:00:41
1 SORT UNIQUE 75000 11M 28M 3416 (70) 00:00:41
2 UNION-ALL

* 3 FILTER
4 TABLE ACCESS FULL STAFF 25000 3344K 208 (2) 00:00:03

* 5 TABLE ACCESS FULL KIDNAMES STAFF NT 2 46 69 (2) 00:00:01
* 6 FILTER

7 TABLE ACCESS FULL PROFESSOR 25000 4345K 242 (2) 00:00:03
* 8 TABLE ACCESS FULL KIDNAMES PROFESSOR NT 2 46 69 (2) 00:00:01
* 9 TABLE ACCESS FULL TEACHES PROFESSOR NT 3 51 68 (0) 00:00:01

* 10 TABLE ACCESS FULL ADVISES NT 3 51 171 (1) 00:00:03
* 11 FILTER

12 TABLE ACCESS FULL TA 25000 3881K 208 (2) 00:00:03
* 13 TABLE ACCESS FULL KIDNAMES TA NT 1 16 2 (0) 00:00:01
* 14 TABLE ACCESS FULL TEACHES TA NT 3 51 68 (0) 00:00:01
Predicate Information (identified by operation id):
3 - filter(”STAFF T”.”SALARY”(”S”.”SYS NC ROWINFO$”)>=140000)
5 - filter(”NESTED TABLE ID”=:B1)
6 - filter(”PROFESSOR T”.”SALARY”(”P”.”SYS NC ROWINFO$”)>=140000)
8 - filter(”NESTED TABLE ID”=:B1)
9 - filter(”NESTED TABLE ID”=:B1)
10 - filter(”NESTED TABLE ID”=:B1)
11 - filter(”TA T”.”SALARY”(”T”.”SYS NC ROWINFO$”)>=140000)
13 - filter(”NESTED TABLE ID”=:B1)
14 - filter(”NESTED TABLE ID”=:B1)

Table G.5: Plan table for ORDB HIER-METH query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 313 27544 7 (15) 00:00:01

* 1 HASH JOIN 313 27544 7 (15) 00:00:01
2 TABLE ACCESS FULL DEPARTMENT 250 11000 3 (0) 00:00:01
3 TABLE ACCESS FULL DEPARTMENT 250 11000 3 (0) 00:00:01

Predicate Information (identified by operation id):
1 - access(”D1”.”BUDGET”=”D2”.”BUDGET”)
filter(”D1”.”DEPTNO” < ”D2”.”DEPTNO”)
Note–dynamic sampling used for this statement

Table G.6: Plan table for ORDB SINGLE-JOIN query

Id Operation Name Rows Bytes TempSpc Cost(%CPU) Time
0 SELECT STATEMENT 1 90 556 (1) 00:00:07

* 1 HASH JOIN 1 90 1504K 556 (1) 00:00:07
2 TABLE ACCESS FULL TA 26881 1181K 205 (1) 00:00:03
3 TABLE ACCESS FULL TA 26881 1181K 205 (1) 00:00:03

Predicate Information (identified by operation id):
1 - access(”T1”.”DATEHIRED”=”T2”.”DATEHIRED” AND ”T1”.”ZIPCODE” = ”T2”.”ZIPCODE”)
filter(”T1”.”ID” < ”T2”.”ID”)
Note–dynamic sampling used for this statement

Table G.7: Plan table for ORDB HIER-JOIN query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 279 28458 240 (1) 00:00:03

* 1 HASH JOIN 279 28458 240 (1) 00:00:03
* 2 TABLE ACCESS FULL KIDNAMES STAFF NT 279 4464 69 (2) 00:00:01

3 TABLE ACCESS FULL STAFF 20802 1747K 171 (1) 00:00:03
Predicate Information (identified by operation id):
1 - access(”K”.”NESTED TABLE ID”=”S”.”SYS NC0001500016$”)
2 - filter(”K”.”KIDNAME”=’boy90’)
Note–dynamic sampling used for this statement

Table G.8: Plan table for ORDB SET-ELEMENT query

APPENDIX G. QUERY PLANS OF ORDB UNIDB 255

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 4 420 309 (1) 00:00:04

* 1 HASH JOIN 4 420 309 (1) 00:00:04
* 2 TABLE ACCESS FULL KIDNAMES STAFF NT 279 4464 69 (2) 00:00:01
* 3 HASH JOIN 279 24831 240 (1) 00:00:03
* 4 TABLE ACCESS FULL KIDNAMES STAFF NT 279 4464 69 (2) 00:00:01

5 TABLE ACCESS FULL STAFF 20802 1482K 171 (1) 00:00:03
Predicate Information (identified by operation id):
1 - access(”K2”.”NESTED TABLE ID”=”S”.”SYS NC0001500016$”)
2 - filter(”K2”.”KIDNAME”=’boy90’)
3 - access(”K1”.”NESTED TABLE ID”=”S”.”SYS NC0001500016$”)
4 - filter(”K1”.”KIDNAME”=’girl90’)
Note–dynamic sampling used for this statement

Table G.9: Plan table for ORDB SET-AND query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 62917 5837K 551 (1) 00:00:07

* 1 HASH JOIN RIGHT OUTER 62917 5837K 551 (1) 00:00:07
2 TABLE ACCESS FULL DEPARTMENT 250 7750 3 (0) 00:00:01
3 TABLE ACCESS FULL STUDENT 62917 3932K 547 (1) 00:00:07

Predicate Information (identified by operation id):
1 - access(”P000003$”.”SYS NC OID$”(+)=”S”.”MAJOR”)
Note–dynamic sampling used for this statement

Table G.10: Plan table for ORDB 1HOP-NONE query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1 93 3 (0) 00:00:01
1 NESTED LOOPS OUTER 1 93 3 (0) 00:00:01
2 TABLE ACCESS BY INDEX ROWID STUDENT 1 52 2 (0) 00:00:01

* 3 INDEX RANGE SCAN STUDENT NAME 1 1 (0) 00:00:01
4 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 41 1 (0) 00:00:01

* 5 INDEX UNIQUE SCAN SYS C009892 1 0 (0) 00:00:01
Predicate Information (identified by operation id):
3 - access(”NAME”=’studentName75001’)
5 - access(”P000003$”.”SYS NC OID$”(+)=”S”.”MAJOR”)
Note–dynamic sampling used for this statement

Table G.11: Plan table for ORDB 1HOP-ONE query

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 960 52800 15 (0) 00:00:01
1 NESTED LOOPS
2 NESTED LOOPS 960 52800 15 (0) 00:00:01
3 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 18 2 (0) 00:00:01

* 4 INDEX RANGE SCAN DEPARTMENT NAME 1 1 (0) 00:00:01
* 5 INDEX RANGE SCAN STUDENTS1 NTAB IX 960 2 (0) 00:00:01

6 TABLE ACCESS BY INDEX ROWID STUDENTS NT1 960 35520 13 (0) 00:00:01
Predicate Information (identified by operation id):
4 - access(”D”.”NAME”=’deptname1’)
5 - access(”ST”.”NESTED TABLE ID”=”D”.”SYS NC0001400015$”)
Note–dynamic sampling used for this statement

Table G.12: Plan table for ORDB 1HOP-MANY query (Variant A)

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 251 17570 279 (0) 00:00:04
1 NESTED LOOPS
2 NESTED LOOPS 251 17570 279 (0) 00:00:04
3 TABLE ACCESS BY INDEX ROWID DEPARTMENT 1 18 2 (0) 00:00:01

* 4 INDEX RANGE SCAN DEPARTMENT NAME 1 1 (0) 00:00:01
* 5 INDEX RANGE SCAN STUDENT MAJOR I 251 2 (0) 00:00:01

6 TABLE ACCESS BY INDEX ROWID STUDENT 251 13052 277 (0) 00:00:04
Predicate Information (identified by operation id):
4 - access(”NAME”=’deptname1’)
5 - access(”P000003$”.”SYS NC OID$”=”S”.”MAJOR”)
Note–dynamic sampling used for this statement

Table G.13: Plan table for ORDB 1HOP-MANY query (Variant B)

APPENDIX G. QUERY PLANS OF ORDB UNIDB 256

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 1160K 77M 388K (2) 01:17:46
1 NESTED LOOPS 1160K 77M 388K (2) 01:17:46

* 2 HASH JOIN 14203 943K 34 (3) 00:00:01
3 TABLE ACCESS FULL DEPARTMENT 250 7750 3 (0) 00:00:01
4 TABLE ACCESS FULL OFFERS NT 14203 513K 30 (0) 00:00:01

* 5 COLLECTION ITERATOR PICKLER FETCH
Predicate Information (identified by operation id):
2 - access(”CO”.”NESTED TABLE ID”=”D”.”SYS NC0001000011$”)
5 - filter(VALUE(KOKBF$)=50)
Note–dynamic sampling used for this statement

Table G.14: Plan table for ORDB 1HOP-MANY query (Variant A)

Id Operation Name Rows Bytes Cost(%CPU) Time
0 SELECT STATEMENT 530 71020 296 (1) 00:00:04

* 1 HASH JOIN RIGHT OUTER 530 71020 296 (1) 00:00:04
2 TABLE ACCESS FULL DEPARTMENT 250 7750 3 (0) 00:00:01

* 3 HASH JOIN OUTER 530 54590 293 (1) 00:00:04
4 TABLE ACCESS BY INDEX ROWID COURSESECTION 530 34980 224 (0) 00:00:03

* 5 INDEX RANGE SCAN COURSESECTION ROOMNO 530 2 (0) 00:00:01
6 TABLE ACCESS FULL COURSE 12452 449K 68 (0) 00:00:01

Predicate Information (identified by operation id):
1 - access(”P000005$”.”SYS NC OID$”(+)=”DEPT”)
3 - access(”P000003$”.”SYS NC OID$”(+)=”S”.”COURSE”)
5 - access(”S”.”ROOMNO”=50)
Note–dynamic sampling used for this statement

Table G.15: Plan table for ORDB 1HOP-MANY query (Variant B)

Appendix H

Created Indexes for UniDB

This Appendix contains the indexes that have been created for the RDB and ORDB in the experi-
ment of performance comparison.

H.1 Indexes for RDB

create index department name on department (name);
create index department building on department (building);
create index department budget on department (budget);
create index person name on person (name);
create index person dob on person (birthdate);
create index person zipcode on person (zipcode);
create index person street on person (street);
create index person city on person (city);
create index person state on person (state);
create index employee datehired on employee (datehired);
create index staff annualsalary on staff (annualsalary);
create index professor aysalary on professor (aysalary);
create index professor monthsummer on professor (monthsummer);
create index ta semestersalary on ta (semestersalary);
create index ta apptfraction on ta (apptfraction);
create index kids kidname on kids (kidname);
create index coursesection nostudentson on coursesection (nostudents);
create index coursesection roomno on coursesection (roomno);

create index department chair on department (chair);
create index employee dept on employee (dept);
create index student majordept on student (majordept);
create index student advisor on student (advisor);
create index course id on course (deptno);
create index coursesection deptno courseno on coursesection (deptno, courseno);
create index coursesection instructorid on coursesection (instructorid);
create index kids id on kids (id);
create index enrolled studentid on enrolled (studentid);
create index enrolled deptno courseno on enrolled (deptno, courseno,

257

APPENDIX H. CREATED INDEXES FOR UNIDB 258

sectionno, semester);

H.2 Indexes for ORDB

create index course uoid on course (uoid);
create index coursesection uoid on coursesection (uoid);
create index department uoid on department (uoid);
create index enrolled uoid on enrolled (uoid);
create index professor uoid on professor (uoid);
create index staff uoid on staff (uoid);
create index student uoid on student (uoid);
create index ta uoid on ta (uoid);

alter table department add constraint department pk primary key (deptno);
alter table professor add constraint professor pk primary key (id);
alter table staff add constraint staff pk primary key (id);
alter table student add constraint student pk primary key (id);
alter table ta add constraint ta pk primary key (id);

create index department chair i on department (chair);
create index enrolled student i on enrolled (student);
create index enrolled section i on enrolled (section);
create index staff worksin i on staff (worksin);
create index ta worksin i on ta (worksin);
create index professor worksin i on professor (worksin);
create index professor leads i on professor (leads);
create index student major i on student (major);
create index student advisor i on student (advisor);
create index course dept i on course (dept);
create index coursesection course i on coursesection (course);

create index department name on department (name);
create index department building on department (building);
create index department budget on department (budget);

create index student name on student (name);
create index student dob on student (birthdate);
create index student zipcode on student (zipcode);
create index student street on student (street);
create index student city on student (city);
create index student state on student (state);

create index staff name on staff (name);
create index staff dob on staff (birthdate);
create index staff zipcode on staff (zipcode);
create index staff street on staff (street);
create index staff city on staff (city);
create index staff state on staff (state);
create index staff annualsalary on staff (annualsalary);

APPENDIX H. CREATED INDEXES FOR UNIDB 259

create index staff datehired on staff (datehired);
create index staff kids on kidnames staff nt (NESTED TABLE ID, kidname);

create index professor name on professor (name);
create index professor dob on professor (birthdate);
create index professor zipcode on professor (zipcode);
create index professor street on professor (street);
create index professor city on professor (city);
create index professor state on professor (state);
create index professor aysalary on professor (aysalary);
create index professor monthsummer on professor (monthsummer);
create index professor datehired on professor (datehired);
create index professor kids on kidnames professor nt (NESTED TABLE ID, kidname);

create index ta name on ta (name);
create index ta dob on ta (birthdate);
create index ta zipcode on ta (zipcode);
create index ta street on ta (street);
create index ta city on ta (city);
create index ta state on ta (state);
create index ta semestersalary on ta (semestersalary);
create index ta apptfraction on ta (apptfraction);
create index ta datehired on ta (datehired);
create index ta kids on kidnames ta nt (NESTED TABLE ID, kidname);

create index sections ntab ix on sections nt (NESTED TABLE ID);
create index students ntab ix on students nt (NESTED TABLE ID);
create index offers ntab ix on offers nt (NESTED TABLE ID);
create index employees ntab ix on employees nt (NESTED TABLE ID);
create index students1 ntab ix on students nt1 (NESTED TABLE ID);
create index advises ntab ix on advises nt (NESTED TABLE ID);
create index teaches professor ntab ix on teaches professor nt (NESTED TABLE ID);
create index taken ntab ix on taken nt (NESTED TABLE ID);
create index teaches ta ntab ix on teaches ta nt (NESTED TABLE ID);
create index coursesection nostudentson on coursesection (nostudents);
create index coursesection roomno on coursesection (roomno);

create index staff sal on staff p (p.salary());
create index ta sal on ta p (p.salary());
create index professor sal on professor p (p.salary());

Appendix I

Glossary

A
ADT Abstract data type

B
BLOB Binary large object

C
CAC Composite attribute class
CDM Canonical data model
CLOB Character large object
CPU Central processing unit

D
DBFE Database forward engineering
DBRE Database reverse engineering
DBMS Database management system
DDL Data definition language
DFK Disjoint foreign key
DML Data manipulation language
DTD Document type definition

E
EER Extended entity relationship
ER Entity relationship

260

APPENDIX I. GLOSSARY 261

J
JDO Java data objects

M
MAC Multi-valued attribute class
MIGROX migrating an RDB into object-based and XML databases

O
ODL Object definition language
ODMG Object database management group
OID Object identifer
OIF Object interchange format
OO Object-oriented
OODB Object-oriented database
OODBMS Object-oriented DBMS
OOPL OO programming language
ORDB Object-relational database
OQL Object query language
ORDBMS Object-relational DBMS

R
RCC Regular component class
RDB Relational database
RDBMS Relational database management system
RRC Regular relationship class
RST Regular strong class
RSR Relational schema representation

S
SGML Standard generalized markup language
SQL Structured query language
SUB Sub-class
SRC Secondary relationship class
SSC Secondary sub-class
SST Secondary strong class

U
UDT User-defined type
UML Unified modeling language

APPENDIX I. GLOSSARY 262

W
W3C World Wide Web consortium

X
XML extensible markup language
XSD XML Schema definition language

Bibliography

Abelló, A., Oliva, M., Rodŕıguez, M. E., and Saltor, F. (1999). The syntax
of BLOOM99 schemas. Technical Report LSI-99-34-R, Universitat Politcnica
de Catalunya, Dept Llenguatges i Sistemes Informtics, Universitat Politcnica de
Catalunya.

Abelló, A. and Rodŕıguez, E. (2000). Describing BLOOM99 with regard to UML
semantics. In JISBD, pages 307–320.

Abu-Hamdeh, R., Cordy, J. R., and Martin, P. (1994). Schema translation using
structural transformation. In CASCON ’94: Proceedings of the 1994 conference of
the Centre for Advanced Studies on Collaborative research, page 1. IBM Press.

Akoka, J., Comyn-Wattiau, I., and Lammari, N. (1999). Relational database reverse
engineering: Elicitation of generalization hierarchies. In ER ’99: Proceedings of the
Workshops on Evolution and Change in Data Management, Reverse Engineering
in Information Systems, and the World Wide Web and Conceptual Modeling, pages
173–185, London, UK. Springer-Verlag.

Al-Kamha, R., Embley, D. W., and Liddle, S. W. (2005). Representing generaliza-
tion/specialization in XML schema. In Desel, J. and Frank, U., editors, EMISA,
volume 75 of LNI, pages 250–263. GI.

Alhajj, R. (1999). Documenting legacy relational databases. In Chen, P. P., Em-
bley, D. W., Kouloumdjian, J., Liddle, S. W., and Roddick, J. F., editors, ER
(Workshops), volume 1727 of Lecture Notes in Computer Science, pages 161–172.
Springer.

Alhajj, R. (2003). Extracting the extended entity-relationship model from a legacy
relational database. Inf. Syst., 28(6):597–618.

Alhajj, R. and Polat, F. (2001). Reengineering relational databases to object-oriented:
Constructing the class hierarchy and migrating the data. In WCRE ’01: Proceedings
of the Eighth Working Conference on Reverse Engineering (WCRE’01), pages 335–
344, Washington, DC, USA. IEEE Computer Society.

263

BIBLIOGRAPHY 264

Altova XMLSpy (2008). Altova XMLSpy. http://altova.com/products/xmlspy/

xml editor.html.

Ambler, S. (2003). Agile Database Techniques: Effective Strategies for the Agile
Software Developer. John Wiley & Sons, Inc., New York, NY, USA.

Amer-Yahia, S. (1997). From relations to objects: The RelOO prototype. In Int.
Conf. on Data Engineering (ICDE), Industrial session, Birmingham, England.

Andersson, M. (1994). Extracting an entity relationship schema from a relational
database through reverse engineering. In ER ’94: Proceedings of the13th Inter-
national Conference on the Entity-Relationship Approach, pages 403–419, London,
UK. Springer-Verlag.

Arora, G., Belden, E., Iyer, C., Lee, G., Manikutty, A., Moore, V., Morsi, M., Yeh,
H., Yoaz, A., and Yu, Q. (2005). Oracle database application developer’s guide
- object-relational features, 10g release 2 (10.2), part number b14260-01. Oracle
Corporation.

Behm, A. (2001). Migrating Relational Databases to Object Technology. PhD the-
sis, Faculty of Economics, Business Administration and Information Technology,
University Of Zurich, Zurich, Switzerland.

Behm, A., Geppert, A., and Dittrich, K. R. (1997). On the migration of relational
schemas and data to object-oriented database systems. In Györkös, J., Krisper, M.,
and Mayr, H. C., editors, Proc. 5th International Conference on Re-Technologies for
Information Systems, pages 13–33, Klagenfurt, Austria. Oesterreichische Computer
Gesellschaft.

Behm, A., Geppert, A., and Dittrich, K. R. (2000). Algebraic database migration to
object technology. In ER, pages 440–453.

Berglund, A., Boag, S., Chamberlin, D., Fernndez, M. F., Kay, M., Robie, J., and
Simon, J. (2007). XML Path language (XPath) 2.0 W3C recommendation 23
january 2007. http://www.w3.org/TR/xpath20/.

Bisbal, J., Lawless, D., Wu, B., and Grimson, J. (1999). Legacy information systems:
Issues and directions. IEEE Software, 16(5):103–111.

Boag, S., Chamberlin, D., Fernndez, M. F., Florescu, D., Robie, J., and Si-
mon, J. (2009). XQuery 1.0: An XML query language W3C recommendation.
http://www.w3.org/TR/xquery/.

Bourret, R. (2005). Mapping DTDs to Databases.
http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html/.

BIBLIOGRAPHY 265

Carey, M., Florescu, D., Ives, Z., Lu, Y., Shanmugasundaram, J., Shekita, E., and
Subramanian, S. (2000a). XPERANTO: Publishing object-relational data as XML.
In WebDB (Informal Proceedings), pages 105–110.

Carey, M. J., DeWitt, D. J., and Naughton, J. F. (1993). The OO7 benchmark.
SIGMOD Rec., 22(2):12–21.

Carey, M. J., DeWitt, D. J., Naughton, J. F., Asgarian, M., Brown, P., Gehrke, J. E.,
and Shah, D. N. (1997). The BUCKY object-relational benchmark. SIGMOD Rec.,
26(2):135–146.

Carey, M. J., Kiernan, J., Shanmugasundaram, J., Shekita, E. J., and Subramanian,
S. N. (2000b). XPERANTO: Middleware for publishing object-relational data as
XML documents. In VLDB ’00: Proceedings of the 26th International Confer-
ence on Very Large Data Bases, pages 646–648, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Castellanos, M. (1993). A methodology for semantically enriching interoperable
databases. In BNCOD 11: Proceedings of the 11th British National Conference
on Databases, pages 58–75, London, UK. Springer-Verlag.

Castellanos, M., Saltor, F., and Garćıa-Solaco, M. (1994). Semantically enriching rela-
tional databases into an object oriented semantic model. In DEXA ’94: Proceedings
of the 5th International Conference on Database and Expert Systems Applications,
pages 125–134, London, UK. Springer-Verlag.

Cattell, R. G. G. and Barry, D. K., editors (2000). The object data standard: ODMG
3.0. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Cattell, R. G. G. and Skeen, J. (1992). Object operations benchmark. ACM Trans.
Database Syst., 17(1):1–31.

Charatan, Q. and Kans, A. (2005). Java in Two Semesters. McGraw-Hill Higher
Education; 2 edition, Maidenhead, Berkshire, UK.

Chebotko, A., Atay, M., Lu, S., and Fotouhi, F. (2007). XML subtree reconstruction
from relational storage of XML documents. Data Knowl. Eng., 62(2):199–218.

Chen, P. P.-S. (1976). The entity-relationship model-toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36.

Chiang, R. H. L. (1995). A knowledge-based system for performing reverse engineering
of relational databases. Decis. Support Syst., 13(3-4):295–312.

BIBLIOGRAPHY 266

Chiang, R. H. L., Barron, T. M., and Storey, V. C. (1993). Performance evalu-
ation of reverse engineering relational databases into extended entity-relationship
models. In ER ’93: Proceedings of the 12th International Conference on the Entity-
Relationship Approach, pages 352–363, London, UK. Springer-Verlag.

Chiang, R. H. L., Barron, T. M., and Storey, V. C. (1994). Reverse engineering of
relational databases: Extraction of an EER model from relational databases. Data
Knowl. Eng., 12(2):107–142.

Chiang, R. H. L., Barron, T. M., and Storey, V. C. (1996). A framework for the
design and evaluation of reverse engineering methods for relational databases. Data
Knowl. Eng., 21(1):57–77.

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387.

Collins, S. R., Navathe, S. B., and Mark, L. (2002). XML schema mappings for
heterogeneous database access. Information & Software Technology, 44(4):251–257.

Comyn-Wattiau, I. and Akoka, J. (1996). Reverse engineering of relational database
physical schemas. In Thalheim, B., editor, ER ’96: Proceedings of the 15th In-
ternational Conference on Conceptual Modeling, volume 1157 of Lecture Notes in
Computer Science, pages 372–391, London, UK. Springer.

Connolly, T. and Begg, C., editors (2002). Database Systems. (Third Edition.).
Addison-Wesley, New York.

Conrad, R., Scheffner, D., and Freitag, J. C. (2000). XML conceptual modeling using
UML. In Laender, A. H. F., Liddle, S. W., and Storey, V. C., editors, Conceptual
Modeling - ER 2000, 19th International Conference on Conceptual Modeling, Salt
Lake City, Utah, USA, October 9-12, 2000, Proceedings, volume 1920, pages 558–
571. Springer.

Darwen, H. and Date, C. J. (1995). The third manifesto. SIGMOD Record, 24(1):39–
49.

Date, C. J. (2002). Introduction to Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Davis, K. H. and Arora, A. K. (1988). Converting a relational database model into
an entity-relationship model. In Proceedings of the Sixth International Conference
on Entity-Relationship Approach, pages 271–285. North-Holland.

Devarakonda, R. S. (2001). Object-relational database systems - the road ahead.
Crossroads, 7(3):15–18.

BIBLIOGRAPHY 267

Dobbie, G., Wu, X., Ling, T., and Lee, M. (2000). ORA-SS: Object-relationship-
attribute model for semistructured data. Technical Report TR21/00, National
University of Singapore, Department of Computer Science, National University of
Singapore.

DTD (2009). Document type definition (DTD), W3C recommendation.
http://www.w3schools.com/DTD/.

Du, W., Lee, M.-L., and Ling, T. W. (2001). XML structures for relational data. In
WISE (1), pages 151–160.

Duta, A. C., Barker, K., and Alhajj, R. (2004). Conv2XML: Relational schema
conversion to XML nested-based schema. In ICEIS (1), pages 210–215.

Eessaar, E. (2006). Whole-part relationships in the object-relational databases. In
Bojkovic, Z. S., editor, Proceedings of the 10th WSEAS Int. Conf. on COMPUT-
ERS, Vouliagmeni, Athens, Greece, pages 1263–1268.

Eisenberg, A. and Melton, J. (1999). SQL:1999, formerly known as SQL3. SIGMOD
Record, 28(1):131–138.

Eisenberg, A., Melton, J., Kulkarni, K., Michels, J.-E., and Zemke, F. (2004).
SQL:2003 has been published. SIGMOD Rec., 33(1):119–126.

Elmasri, R. and Navathe, S. B. (2006). Fundamentals of Database Systems (5th
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

eXist-db (2009). eXist-db. http://exist.sourceforge.net/.

Fahrner, C. and Vossen, G. (1995a). A survey of database design transformations
based on the entity-relationship model. Data Knowl. Eng., 15(3):213–250.

Fahrner, C. and Vossen, G. (1995b). Transforming relational database schemas into
object-oriented schemas according to ODMG-93. In DOOD ’95: Proceedings of
the Fourth International Conference on Deductive and Object-Oriented Databases,
pages 429–446, London, UK. Springer-Verlag.

Fallside, D. and Walmsley, P. (2004). XML schema part 0: Primer
second edition. W3C proposed edited recommendation 18 march 2004.
http://www.w3.org/TR/xmlschema-0/.

Fegaras, L. (2008). Lambda-DB. http://lambda.uta.edu/lambda-DB/manual/.

Fernandez, M. F., Morishima, A., Suciu, D., and Tan, W. C. (2001). Publishing
relational data in XML: the SilkRoute approach. IEEE Data Eng. Bull., 24(2):12–
19.

BIBLIOGRAPHY 268

Fernandez, M. F., Tan, W. C., and Suciu, D. (2000). SilkRoute: trading between
relations and XML. Computer Networks, 33(1-6):723–745.

Fong, J. (1995). Mapping extended entity relationship model to object modeling
technique. SIGMOD Record, 24(3):18–22.

Fong, J. (1997). Converting relational to object-oriented databases. SIGMOD Record,
26(1):53–58.

Fong, J. and Cheung, S. K. (2005). Translating relational schema into XML schema
definition with data semantic preservation and XSD graph. Information & Software
Technology, 47(7):437–462.

Fong, J., Fong, A., Wong, H. K., and Yu, P. (2006). Translating relational schema
with constraints into XML schema. International Journal of Software Engineering
and Knowledge Engineering, 16(2):201–244.

Fong, J., Pang, F., and Bloor, C. (2001). Converting relational database into XML
document. In DEXA ’01: Proceedings of the 12th International Workshop on
Database and Expert Systems Applications, pages 61–65, Washington, DC, USA.
IEEE Computer Society.

Fong, J., Wong, H. K., and Cheng, Z. (2003). Converting relational database into
XML documents with DOM. Information & Software Technology, 45(6):335–355.

Fonkam, M. M. and Gray, W. A. (1992). An approach to eliciting the semantics
of relational databases. In Proceedings of the Fourth International Conference on
Advanced Information Systems Engineering, volume 593, pages 463–480. Springer.

Funderburk, J. E., Kiernan, G., Shanmugasundaram, J., Shekita, E. J., and Wei,
C. (2002). XTABLES: bridging relational technology and XML. IBM Systems
Journal, 41(4):616–641.

Garcia-Molina, H., Ullman, J. D., and Widom, J. (2008). Database Systems: The
Complete Book. Prentice Hall Press, Upper Saddle River, NJ, USA.

Getta, J. R. (1993). Translation of extended entity-relationship database model into
object-oriented database model. In Proceedings of the IFIP WG 2.6 Database
Semantics Conference on Interoperable Database Systems (DS-5), pages 87–100.
North-Holland.

Gogolla, M. (1994). Extended Entity-Relationship Model: Fundamentals and Prag-
matics. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Goldman, R., McHugh, J., and Widom, J. (2000). From semistructured data to XML.
Markup Lang., 2(2):153–163.

BIBLIOGRAPHY 269

Grant, E. S., Chennamaneni, R., and Reza, H. (2006). Towards analyzing UML class
diagram models to object-relational database systems transformations. In Hamza,
M. H., editor, Databases and Applications, pages 129–134. IASTED/ACTA Press.

Graves, M. and Goldfarb, C. F. (2002). Designing XML Databases. Prentice Hall
PTR, Upper Saddle River, NJ, USA.

Hainaut, J.-L. (1991). Database reverse engineering: Models, techniques and strate-
gies.

Hainaut, J.-L., Hick, J.-M., Henrard, J., Roland, D., and Englebert, V. (1997).
Knowledge transfer in database reverse engineering - a supporting case study. In
WCRE ’97: Proceedings of the Fourth Working Conference on Reverse Engineering
(WCRE ’97), page 194, Washington, DC, USA. IEEE Computer Society.

Hainaut, J.-L., Tonneau, C., Joris, M., and Chandelon, M. (1993). Transformation-
based database reverse engineering. In Proceedings of the 12th International Confer-
ence on the Entity-Relationship Approach, pages 364–375, Dallas, Texas. Springer-
Verlag.

Hainaut, J.-L., Tonneau, C., Joris, M., and Chandelon, M. (1994). Schema transfor-
mation techniques for database reverse engineering. In ER ’93: Proceedings of the
12th International Conference on the Entity-Relationship Approach, pages 364–375,
London, UK. Springer-Verlag.

Hamilton, G., Cattell, R., and Fisher, M. (1997). JDBC Database Access with Java:
A Tutorial and Annotated Reference. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Henrard, J., Hick, J.-M., Thiran, P., and Hainaut, J.-L. (2002). Strategies for data
reengineering. In WCRE ’02: Proceedings of the Ninth Working Conference on Re-
verse Engineering (WCRE’02), page 211, Washington, DC, USA. IEEE Computer
Society.

Hohenstein, U. (1996). Using semantic enrichment to provide interoperability between
relational and odmg databases. In International Hong Kong Computer Society
Database Workshop, pages 210–232.

Hohenstein, U. (2000). Supporting data migration between relational and object-
oriented databases using a federation approach. In IDEAS, pages 371–379.

Hohenstein, U. and Körner, C. (1996). A graphical tool for specifying semantic
enrichment of relational databases. In DS-6: Proceedings of the Sixth IFIP TC-2
Working Conference on Data Semantics, pages 389–420, London, UK. Chapman
& Hall, Ltd.

BIBLIOGRAPHY 270

Hohenstein, U. and Plesser, V. (1996). Semantic enrichment: A first step to pro-
vide database interoperability. In Workshop Fderierte Datenbanken, pages 3–17,
Magdeburg.

Hüsemann, F. (1998). Migration of applications and data: An overview of the ReMiS
project. In Föderierte Datenbanken, pages 133–142.

Jahnke, J. and Zundorf, A. (1998). Using graph grammars for building the VARLET
database reverse engineering environment.

Jahnke, J. H., Schäfer, W., and Zündorf, A. (1996). A design environment for mi-
grating relational to object oriented database systems. In ICSM ’96: Proceedings
of the 1996 International Conference on Software Maintenance, pages 163–170,
Washington, DC, USA. IEEE Computer Society.

JDO (2009). Java data objects (JDO), sun microsystems, inc.
http://java.sun.com/products/jdo/.

Johannesson, P. (1994). A method for transforming relational schemas into con-
ceptual schemas. In Proceedings of the Tenth International Conference on Data
Engineering, pages 190–201, Washington, DC, USA. IEEE Computer Society.

Johannesson, P. and Kalman, K. (1989). A method for translating relational schemas
into conceptual schemas. In Lochovsky, F. H., editor, Entity-Relationship Approach
to Database Design and Querying, Proceedings of the Eight International Con-
ference on Enity-Relationship Approach, Toronto, Canada, 18-20 October, 1989,
pages 271–285. North-Holland.

Kappel, G., Kapsammer, E., and Retschitzegger, W. (2001). XML and relational
database systems - a comparison of concepts. In International Conference on In-
ternet Computing (1), pages 199–205.

Keivani, N. (2006). An investigation into the maturity of object-relational database
technology, “the promises, the reality”. Master thesis, Northumbria University,
School of Computing, Engineering and Information Sciences.

Keller, A. M. and Wiederhold, G. (2001). Penguin: Objects for programs, relations
for persistence. In Succeeding with Object Databases. John Wiley & Sons.

Kim, W. (1991). Introduction to object-oriented databases. MIT Press, Cambridge,
MA, USA.

Kleiner, C. and Lipeck, U. W. (2001). Automatic generation of XML DTDs from
conceptual database schemas. In GI Jahrestagung (1), pages 396–405.

BIBLIOGRAPHY 271

Krishnamurthy, R., Kaushik, R., and Naughton, J. F. (2004). Efficient XML-to-SQL
query translation: where to add the intelligence? In VLDB ’04: Proceedings of the
Thirtieth international conference on Very large data bases, pages 144–155. VLDB
Endowment.

Krumbein, T. and Kudrass, T. (2003). Rule-based generation of XML Schemas from
UML class diagrams. In Tolksdorf, R. and Eckstein, R., editors, Berliner XML
Tage, pages 213–227. XML-Clearinghouse.

Kudrass, T. and Krumbein, T. (2003). Rule-based generation of XML DTDs from
UML class diagrams. In Kalinichenko, L. A., Manthey, R., Thalheim, B., and
Wloka, U., editors, ADBIS, volume 2798 of Lecture Notes in Computer Science,
pages 339–354. Springer.

Kurt, A. and Atay, M. (2002). An experimental study on query processing efficiency of
native-XML and XML-enabled database systems. In DNIS ’02: Proceedings of the
Second International Workshop on Databases in Networked Information Systems,
pages 268–284, London, UK. Springer-Verlag.

Laforest, F. and Boumediene, M. (2003). Study of the automatic construction of XML
documents models from a relational data model. In DEXA Workshops, pages 566–
570.

Lammari, N. (1999). An algorithm to extract is-a inheritance hierarchies from a
relational database. In ER ’99: Proceedings of the 18th International Conference
on Conceptual Modeling, pages 218–232, London, UK. Springer-Verlag.

Lammari, N., Comyn-Wattiau, I., and Akoka, J. (2007). Extracting generalization
hierarchies from relational databases: A reverse engineering approach. Data Knowl.
Eng., 63(2):568–589.

Layman, A., Jung, E., Maler, E., Thompson, H. S., Paoli, J., Tigue, J., Mikula,
N. H., and Rose, S. D. (1998). XML-data. W3C recommendation, 05 jan 1998.
http://www.w3.org/TR/1998/NOTE-XML-data-0105/.

Leavitt, N. (2000). Whatever happened to object-oriented databases? Computer,
33(8):16–19.

Lee, D. and Chu, W. W. (2000). Comparative analysis of six XML schema languages.
SIGMOD Record, 29(3):76–87.

Lee, D., Mani, M., Chiu, F., and Chu, W. W. (2001). Nesting-based relational-to-
XML schema translation. In WebDB, pages 61–66.

Lee, D., Mani, M., Chiu, F., and Chu, W. W. (2002). NeT and CoT: Translating
relational schemas to XML schemas using semantic constraints. In CIKM, pages
282–291.

BIBLIOGRAPHY 272

Lee, D., Mani, M., and Chu, W. W. (2003). Solving schema conversion problem
between XML and relational models: Semantic approach. Technical report, Uni-
versity of California, University of California, USA.

Lee, H. and Yoo, C. (2000). A form driven object-oriented reverse engineering method-
ology. Inf. Syst., 25(3):235–259.

Lee, S. H., Kim, S. J., and Kim, W. (2000). The BORD benchmark for object-
relational databases. In DEXA ’00: Proceedings of the 11th International Con-
ference on Database and Expert Systems Applications, pages 6–20, London, UK.
Springer-Verlag.

Lewis, J. P. and Neumann, U. (2004). Performance of Java versus C++. Techni-
cal report, University of Southern California, Computer Graphics and Immersive
Technology Lab, University of Southern California.

Liu, C. and Li, J. (2006). Designing quality XML schemas from E-R diagrams. In Yu,
J. X., Kitsuregawa, M., and Leong, H. V., editors, WAIM, volume 4016 of Lecture
Notes in Computer Science, pages 508–519. Springer.

Liu, C., Vincent, M. W., Liu, J., and Guo, M. (2003). A virtual XML database
engine for relational databases. In Bellahsene, Z., Chaudhri, A. B., Rahm, E., Rys,
M., and Unland, R., editors, XSym, volume 2824 of Lecture Notes in Computer
Science, pages 37–51. Springer.

Lo, A., Alhajj, R., and Barker, K. (2004). Flexible user interface for converting
relational data into XML. In Christiansen, H., Hacid, M.-S., Andreasen, T., and
Larsen, H. L., editors, FQAS, volume 3055 of Lecture Notes in Computer Science,
pages 418–431. Springer.

Maatuk, A., Ali, M. A., and Rossiter, B. N. (2008a). An integrated approach to rela-
tional database migration. In IC-ICT ’08: Proceedings of International Conference
on Information and Communication Technologies, page 6pp, Pakistan. PAK. In
Press.

Maatuk, A., Ali, M. A., and Rossiter, B. N. (2008b). Relational database migration:
A perspective. In Bhowmick, S. S., Küng, J., and Wagner, R., editors, DEXA,
volume 5181 of Lecture Notes in Computer Science, pages 676–683. Springer.

Maatuk, A., Ali, M. A., and Rossiter, B. N. (2008c). Semantic enrichment: The
first phase of relational database migration. In International Conference on Sys-
tems, Computing Sciences and Software Engineering (SCS2 08), page 6pp, USA.
Springer. In Press.

Maatuk, A., Ali, M. A., and Rossiter, B. N. (2010). Converting relational databases
into object-relational databases. Journal of Object Technology, page 17pp. In Press.

BIBLIOGRAPHY 273

Malki, M., Flory, A., and Rahmouni, M. K. (2001). Static and dynamic reverse
engineering of relational database applications: A form-driven methodology. In
AICCSA, pages 191–196. IEEE Computer Society.

Malki, M., Flory, A., and Rahmouni, M. K. (2002). Extraction of object-oriented
schemas from existing relational databases: a form-driven approach. Informatica,
Lith. Acad. Sci., 13(1):47–72.

Marcos, E., Vela, B., and Cavero, J. M. (2003). A methodological approach for object-
relational database design using UML. Software and System Modeling, 2(1):59–75.

Marcos, E., Vela, B., Cavero, J. M., and Caceres, P. (2001). Advances in databases
and information systems, 5th east european conference, adbis 2001, vilnius, lithua-
nia, september 25-28. In Caplinskas, A. and Eder, J., editors, ADBIS, volume 1 of
Lecture Notes in Computer Science, pages 195–209. Springer.

McHugh, J., Abiteboul, S., Goldman, R., Quass, D., and Widom, J. (1997). Lore: A
database management system for semistructured data. SIGMOD Record, 26(3):54–
66.

Missaoui, R., Gagnon, J.-M., and Godin, R. (1995). Mapping an extended entity-
relationship schema into a schema of complex objects. In Object-Oriented and
Entity-Relationship Modelling, pages 204–215.

Missaoui, R., Godin, R., and Sahraoui, H. (1998). Migrating to an object-oriented
databased using semantic clustering and transformation rules. Data & Knowledge
Engineering, 27(1):97–113.

Mok, W. and Paper, D. (2001). On transformations from UML models to object-
relational databases. In HICSS ’01: Proceedings of the 34th Annual Hawaii Inter-
national Conference on System Sciences, volume 3, page 3046, Washington, DC,
USA. IEEE Computer Society.

Mok, W. Y. (2007). Designing nesting structures of user-defined types in object-
relational databases. Inf. Softw. Technol., 49(9-10):1017–1029.

Monk, S., Mariani, J. A., Elgalal, B., and Campbell, H. (1996). Migration from rela-
tional to object-oriented databases. Information & Software Technology, 38(7):467–
475.

Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M.-A., Tilley, S. R., and Wong,
K. (2000). Reverse engineering: a roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 47–60, New York, NY,
USA. ACM.

BIBLIOGRAPHY 274

Narasimhan, B., Navathe, S. B., and Jayaraman, S. (1993). On mapping ER models
into OO schemas. In ER, pages 402–413.

Navathe, S. B. and Awong, A. M. (1988). Abstracting relational and hierarchical
data with a semantic data model. In March, S. T., editor, Proceedings of the
Sixth International Conference on Entity-Relationship Approach, pages 305–333,
Amsterdam, Netherlands. North-Holland Publishing Co.

Objectivity (2009). Objectivity home page. Objectivity.
http://objectivity.com/Products/Products.shtml.

ObjectStore (2009). Objectstore home page. ObjectStore.
http://objectstore.com/datasheet/index.ssp.

OEM (2009). Object Exchange Model (OEM).
http://infolab.stanford.edu/ mchughj/oemsyntax/oemsyntax.html.

OMG (2009). Unified Modeling Language (UML), version 2.0.
http://www.uml.org/.

Orenstein, J. A. and Kamber, D. N. (1995). Accessing a relational database through
an object-oriented database interface. In VLDB ’95: Proceedings of the 21th In-
ternational Conference on Very Large Data Bases, pages 702–705, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Pardede, E., Rahayu, J. W., and Taniar, D. (2003). New SQL standard for object-
relational database applications. In SIIT, pages 191–203, Delft, The Netherlands.
IEEE.

Pardede, E., Rahayu, J. W., and Taniar, D. (2004). Mapping methods and query for
aggregation and association in object-relational database using collection. In ITCC
(1), volume 1, pages 539–, Las Vegas, Nevada, USA. IEEE Computer Society.

Parent, C. and Spaccapietra, S. (2000). Database integration: The key to data
interoperability. In Papazoglou, M. P., Spaccapietra, S., and Tari, Z., editors,
Advances in Object-Oriented Data Modeling, pages 221–253. MIT Press.

Pérez, J., Anaya, V., Cubel, J. M., Ramos, I., and Carśı, J. A. (2003). Data reverse
engineering of legacy databases to object oriented conceptual schemas. Electronic
Notes in Theoretical Computer Science, 72(4).

Petit, J.-M., Kouloumdjian, J., Boulicaut, J.-F., and Toumani, F. (1994). Using
queries to improve database reverse engineering. In ER ’94: Proceedings of the13th
International Conference on the Entity-Relationship Approach, pages 369–386, Lon-
don, UK. Springer-Verlag.

BIBLIOGRAPHY 275

Petit, J.-M., Toumani, F., Boulicaut, J., and Kouloumdjian, J. (1996). Towards the
reverse engineering of denormalized relational databases. In Society, I. C., editor,
Proc. 12th International Conference on Data Engineering, pages 218–227, New
Orleans. S. Su.

Pigozzo, P. and Quintarelli, E. (2005). An algorithm for generating XML schemas
from ER schemas. In SEBD, pages 192–199.

Premerlani, W. J. and Blaha, M. R. (1994). An approach for reverse engineering of
relational databases. Communications of the ACM, 37(5):42–49.

Ramanathan, S. and Hodges, J. (1996). Reverse engineering relational schemas to
object-oriented schemas. Technical Report 960701, Department of Computer Sci-
ence, Mississippi State University.

Ramanathan, S. and Hodges, J. E. (1997). Extraction of object-oriented structures
from existing relational databases. SIGMOD Record, 26(1):59–64.

Roguewave (2006). Rogue wave software. Rogue Wave. http://www.roguewave.com.

Routledge, N., Bird, L., and Goodchild, A. (2002). UML and XML schema. Australian
Computer Science Communications, 24(2):157–166.

Rumbaugh, J. R., Blaha, M. R., Lorensen, W., Eddy, F., and Premerlani, W. (1990).
Object-Oriented Modeling and Design. Prentice-Hall.

Runapongsa, K., Patel, J. M., Jagadish, H. V., Chen, Y., and Al-Khalifa, S. (2006).
The michigan benchmark: towards XML query performance diagnostics. Inf. Syst.,
31(2):73–97.

Saltor, F., Castellanos, M., and Garcia-Solaco, M. (1991). Suitability of datamodels
as canonical models for federated databases. SIGMOD Rec., 20(4):44–48.

Schmidt, A. R., Waas, F., Kersten, M. L., Florescu, D., Manolescu, I., Carey, M. J.,
and Busse, R. (2001). The XML benchmark project. Technical Report INS-R0103,
CWI, Amsterdam, The Netherlands.

Shanmugasundaram, J., Shekita, E., Barr, R., Carey, M., Lindsay, B., Pirahesh, H.,
and Reinwald, B. (2001). Efficiently publishing relational data as XML documents.
The VLDB Journal, 10(2-3):133–154.

Singh, A., Kahlon, K. S., Singh, J., Singh, R., Sharma, S., and Kaur, D. (2004).
Mapping relational database schema to object-oriented database schema. In Inter-
national Conference on Computational Intelligence, pages 153–155.

BIBLIOGRAPHY 276

Sousa, P., de Jesus, L. P., Pereira, G., and e Abreu, F. B. (2002). Clustering relations
into abstract er schemas for database reverse engineering. Science of Computer
Programming, 45(2-3):137–153.

Soutou, C. (1996). Extracting N-ary relationships through database reverse engineer-
ing. In International Conference on Conceptual Modeling / the Entity Relationship
Approach, pages 392–405.

Soutou, C. (1998a). Inference of aggregate relationships through database reverse
engineering. In International Conference on Conceptual Modeling / the Entity
Relationship Approach, pages 135–149, London, UK. Springer-Verlag.

Soutou, C. (1998b). Relational database reverse engineering: Algorithms to extract
cardinality constraints. Data Knowl. Eng., 28(2):161–207.

Soutou, C. (2001). Modeling relationships in object-relational databases. Data Knowl.
Eng., 36(1):79–107.

Stonebraker, J. M., Brown, P., and Moore, D. (1999). Object-Relational DBMSs: The
Next Great Wave and Object-Relational DBMSs: Tracking the Next Great Wave.
Morgan Publishers.

Takahashi, T. and Keller, A. M. (1993). Querying heterogeneous object views of a
relational database. In Int. Symp. on Next Generation Database Systems and Their
Applications (NDA), pages 34–41, Fukuoka, Japan.

Takahashi, T. and Keller, A. M. (1994). Implementation of object view query on
a relational database. In Data and Knowledge Systems for Manufacturing and
Engineering, Hong Kong.

Tamino XML Server (2009). Tamino XML Server.
http://www.softwareag.com/corporate/products/wm/tamino/default.asp.

Tari, Z., Bukhres, O. A., Stokes, J., and Hammoudi, S. (1997). The reengineering of
relational databases based on key and data correlations. In DS-7, pages 184–.

Tari, Z. and Stokes, J. (1997). Designing the reengineering services for the DOK
federated database system. In Gray, W. A. and Larson, P.-Å., editors, ICDE,
pages 465–475. IEEE Computer Society.

Teorey, T. J., Wei, G., Bolton, D. L., and Koenig, J. A. (1989). ER model clustering
as an aid for user communication and documentation in database design. Commun.
ACM, 32(8):975–987.

TopLink (2006). Oracle toplink. http://www.oracle.com/technology/

products/ias/toplink/index.html.

BIBLIOGRAPHY 277

Turau, V. (1999). Making legacy data accessible for XML applications. Web page.

Urban, S. D. and Dietrich, S. W. (2003). Using UML class diagrams for a comparative
analysis of relational, object-oriented, and object-relational database mappings. In
SIGCSE ’03: Proceedings of the 34th SIGCSE technical symposium on Computer
science education, pages 21–25, New York, NY, USA. ACM Press.

Urban, S. D., Dietrich, S. W., and Tapia, P. (2001). Succeeding with Object Databases:
A Practical Look at Today’s Implementations with Java and XML, chapter Mapping
UML Diagrams to Object-Relational Schemas in Oracle 8, pages 29–51. John Wiley
and Sons, Ltd.

Urban, S. D., Tjahjadi, M., and Shah, J. J. (2000). A case study in mapping concep-
tual designs to object-relational schemas. Concurrency - Practice and Experience,
12(9):863–907.

Valentine, C., Tittel, E., and Dykes, L. (2002). XML Schemas. SYBEX Inc., Alameda,
CA, USA.

Valikov, A., Kazakos, W., and Schmidt, A. (2001). Building updateable XML views
on top of relational databases. In Lasker, G. E. and Dahanayake, A., editors,
Proceedings of the International Symposium on Systems Integration (INTERSYMP
2001), pages VII–1 – VII–8. The International Institute for Advanced Studies in
Systems Research and Cybernetics.

Vela, B. and Marcos, E. (2003). Extending UML to represent XML schemas. In Eder,
J. and Welzer, T., editors, CAiSE Short Paper Proceedings, volume 74 of CEUR
Workshop Proceedings. CEUR-WS.org.

W3C (2008). World Wide Web Consortium (W3C). XML Schema.
http://www.w3.org/XML/Schema.

W3C (2009). World Wide Web Consortium (W3C). http://www.w3.org.

Wang, C. (2004). COCALEREX: An engine for converting catalog-based and legacy
relational databases into XML. Master thesis, The University of Calgary, Depart-
ment of Computer Science, Calgary, Alberta.

Wang, C., Lo, A., Alhajj, R., and Barker, K. (2004). Converting legacy relational
database into XML database through reverse engineering. In ICEIS (1), pages
216–221.

Wang, C., Lo, A., Alhajj, R., and Barker, K. (2005). Novel approach for reengineering
relational databases into XML. In ICDE Workshops, page 1284.

Wiener, J. L. (1996). Algorithms for loading object databases. PhD thesis, University
of Wisconsin at Madison, Madison, WI, USA.

BIBLIOGRAPHY 278

Wiener, J. L. and Naughton, J. F. (1994). Bulk loading into an OODB: A performance
study. In VLDB ’94: Proceedings of the 20th International Conference on Very
Large Data Bases, pages 120–131, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

XML (2008). World Wide Web Consortium (W3C). Extensible Markup Language
(XML). http://www.w3.org/XML.

Yan, L.-L. and Ling, T. W. (1993). Translating relational schema with constraints into
OODB schema. In Proceedings of the IFIP WG 2.6 Database Semantics Conference
on Interoperable Database Systems (DS-5), pages 69–85. North-Holland.

Yoshikawa, M., Amagasa, T., Shimura, T., and Uemura, S. (2001). XRel: a
path-based approach to storage and retrieval of XML documents using relational
databases. ACM Trans. Internet Techn., 1(1):110–141.

Zhang, X. and Fong, J. (2000). Translating update operations from relational to
object-oriented databases. Information & Software Technology, 42(3):197–210.

Zhang, X., Zhang, Y., Fong, J., and Jia, X. (1999). Transforming RDB schema into
well-structured OODB schema. Information & Software Technology, 41(5):275–281.

